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Abstract

We consider a model where potential bidders consider paying an

entry cost to participate in an auction. The value of the object sold

depends on an unknown state of the world, and the bidders have

conditionally i.i.d. signals on the state. We compare the expected

revenues in symmetric equilibria of various formats. In particular, we

show that not disclosing the number of active bidders increases the

expected revenue. In many circumstances, first-price auctions with

undisclosed number of bidders raises maximal revenue in the class of

symmetric mechanisms.

1 Introduction

Bidding in an auction is often costly. At the very least, each bidder loses the

opportunity cost of time spent in preparing the bid and paying attention to

the eventual outcome. When the object for sale is valuable and information

is dispersed among potential bidders, these costs can be substantial.

We consider a setting where a large number of potential bidders have

observed a signal on its true value. The value of the object is common to all

bidders, but the bidders are differentially informed about the true value. For

the most part in this paper, we consider the case where the true value of the

object depends on a binary random variable ω ∈ {0, 1} (state of the world),

and we also assume that the signals take binary values θi ∈ {θH , θL}.
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At the beginning of the game, each potential bidder decides whether to

enter the auction at a positive cost c > 0. We consider the case where a

single object is for sale (and discuss extensions to the case of a fixed number

of objects). Furthermore, we assume anonymity on the part of the bidders

so that entry involves a coordination problem. Entry can be profitable only

when a limited number of other bidders enter.

We analyze the symmetric equilibria of the entry game under first-price

and second-price auction rules. Not surprisingly, equilibrium entry decisions

are in mixed strategies for both types of auctions. Conditional on entry,

optimal bidding strategies are qualitatively quite different. In the first-price

auction, equilibrium bids are mixed strategies both for bidders with signal θH

and those with signal θL. In the second-price auction, bidding conditional on

the more pessimistic signal θL is in pure strategies, but bidding conditional

on θH is in mixed strategies when there are many potential bidders. Only in

the case with just two potential bidders, the bids of both types of entrants

are in pure strategies in the second price auction.

Our main result is that in contrast to most findings in common value

auctions, the first-price auction often dominates the second-price auction

in terms of the expected revenue to the seller. To understand this result,

it is useful to consider the entry decisions of a social planner under the

constraint of symmetric strategies (i.e. conditional on the signal, bidders

use identical entry strategies). Since the model is one of common values,

allocative efficiency is not an issue, and as a result, the planner maximizes

the probability of allocating the object weighted by its value in the two states

subject to paying the entry costs.

The planner gains from adding a bidder only when no other bidders are

present. In a second-price auction, bidders with high signals make a positive

profit in the auction if there are no other bidders of high type. If she is the

only bidder in the auction, the high type bidder receives her entire marginal

contribution to the social welfare. If bidders with low signals are present, she

pays a positive price but still makes a positive expected profit due to a more

optimistic signal. Hence the incentives to enter are stronger than socially

optimal for the bidders with high signals.

In a first-price auction, each bidder pays her own bid. In any symmetric
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equilibrium, an entering bidder must believe that there is a positive prob-

ability that no other bidders enter. This leads to mixed strategy equilibria

in the bidding stage, and hence also to potential complications in evaluat-

ing the expected payoffs of the two types of bidders. While it is clear that

the bidders with low signals must have zero bids in the support of their bid

distribution, it is more surprising that for some parameter values this is also

the case for the bidders with high signals. Since there are no mass points in

the bid distributions (by standard arguments), this implies that both types

of bidders are willing to place bids that win at zero price if and only if no

other bidder has entered. Hence the expected payoff to both types of bidders

coincides with their marginal contribution to social welfare, and as a result

equilibrium entry is at socially optimal level.

Since entry decisions are in mixed strategies, entering bidders must make

a zero expected payoff. This implies that the seller gets the entire expected

social surplus in revenue. Since the entry decisions in the first-price auction

are expected surplus maximizing, the seller must gain relative to the second-

price auction.

It is also possible that zero bids are not in the support of the bidding

strategies for bidders with high signals. For the case of two potential bidders,

we show that the first-price auction still dominates the second price auction

in terms of expected revenue. For a large number of potential bidders, we

show that for small entry costs this ranking can be reversed. For high entry

costs, the first-price auction yields a higher revenue in this case as well.

Two additional features of the symmetric second-price equilibria with

many potential bidders deserve special mention. The equilibrium bid condi-

tional on a low signal is not uniquely determined and the bids conditional

on high signal are mixed. In order to understand these results, it is useful to

recall winners curse for common value auctions. As usual, the equilibrium

bid in a second price auction is given by the expected value of the object

conditional on having the highest bid, conditional on tying the second high-

est bid and conditional on winning the object. Suppose that all the high

type bidders submit the same bid. With uniform rationing, the probability

of winning is the highest when the number of tying bids is the smallest. Since

the signals are affiliated with the true value of the object, this is bad news on
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the expected value. By deviating to a slightly higher price, a bidder with a

high signal wins in all cases including those in which there are large numbers

of other bidders. Hence a pure strategy equilibrium cannot exist.

Consider next the incentives of the low type bidders. In a second price

auction, they can win only in the cases where no bidders with high signal

have entered. If all low type bidders pool at the same bid, winning is more

likely when there are fewer other bidders with low signals. Again by affiliated

values, this is positive news on the value of the object. By deviating to a

slightly higher price, a low type bidder wins the object in all cases with

no bidders with high signals present. In a sense, low bidders experience a

winner’s blessing at the pooled bid and as a consequence, a continuum of

pooled equilibrium prices exists.

In the last section of this paper, we outline some generalizations of our

findings. First of all, the revenue ranking favoring the first-price auction

remains true for some parameter values of the model even if the entry decision

is taken at the ex ante stage, i.e. before knowing own signal realization.

At this moment, we are not sure how often this happens (relative to the

interim case that we mostly study), Randomized entry decisions give a strong

incentive for placing a zero bid in the first price auction if it is likely that no

competition is present. If bidders with both types of signals place such a bid,

then the timing of information revelation is immaterial, We also discuss the

extension to settings with multiple signals and also the case where a number

of identical objects are for sale.

We should stress that we are not claiming a general result showing the

uniform superiority of first-price auction when participation in the auction is

random. As the entry cost c → 0, the usual reasons based on linkage principal

become relatively more important, and second-price auctions are likely to

dominate. Our goal is to demonstrate that in a non-trivial set of models,

limited and random entry may reverse the usual revenue comparisons.

1.1 Related Literature

Auctions with endogenous entry have been modeled in two separate frame-

works. In the first, entry decisions are taken at an ex ante stage where all

4



bidders are identical. Potential bidders learn their private information only

upon paying the entry cost. Hence these models can be though of as games

with endogenous information acquisition. French & McCormick (1984) gives

the first analysis of an auction with an entry fee in the IPV case. Harstad

(1990) and Levin & Smith (1994) analyze the affiliated values case. These

papers show that due to business stealing, entry is excessive relative to so-

cial optimum. They also show that second-price auctions results in higher

expected revenues than the first-price auction.

In the other strand, bidders decide on entry only after knowing their own

signals. Samuleson (1985) and Stegeman (1996) are early papers in the IPV

setting where this question has been taken up. Due to revenue equivalence in

the IPV case, comparisons across auction formats are not very interesting. To

the best of our knowledge, common values auctions have not been analyzed

in this setting. Hence our paper is the first to ask how the auction format

affects information aggregation through entry.

Finally some recent papers have analyzed common values auctions with

some similarities to our paper. Lauermann & Wolinsky (2013) analyze first-

price auctions where an informed seller chooses the number of bidders to

invite to an auction. In their setting, it is also important to account for

the winner effect when computing the expected value of the object. Atakan

& Ekmekci (2014) consider a common value auction where the winner in

the auction has to take an additional action after winning the auction. This

leads to a non-monotonicity in the value of winning the auction that has some

resemblance to the forces in our model that lead to non-monotonic entry (i.e.

bidders with both types of signals enter with positive probability).

2 Binary model

We start by laying out the basic model. The state of the world is a binary

random variable ω ∈ {0, 1} with a prior probability

q = Pr{ω = 1}.

The common value of the object in state ω is v (ω) for all the bidders, and

we assume that v (1) > v (0) > 0.
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At the outset, each potential bidder i observes a binary signal θi ∈
{θh, θl}. Let Pr

(
θ = θl |ω = 0

)
= Pr

(
θ = θh |ω = 1

)
:= α > 1/2 and de-

note by qh := Pr
(
ω = 1

∣∣θ = θh
)
and ql := Pr

(
ω = 1

∣∣θ = θl
)
the posterior

based on a high and low signal, respectively. For example, if prior is q = 1/2,

then ql = 1−α and qh = α. The signals are assumed to be i.i.d. conditional

on the state of the world.1

After observing θi, each player i decides whether to pay an entry cost

c > 0 with c < v (0) and submit a bid bi in an auction for a single object

or whether to stay out and receive a certain payoff of 0. At the moment of

bidding, i does not know how many other bidders have chosen to participate

in the auction. Furthermore, we distinguish between two alternative auction

formats: the first-price auction (FPA) and the second-price auction (SPA).

The entry strategy of potential bidder i specifies the probability of entry:

πi : {θh, θl} → [0, 1].

We use πh
i for πi

(
θh
)
and πl

i for πi

(
θl
)
. Since we concentrate on symmetric

equilibria, we often omit subscripts. Similarly a bid strategy is a function

bi : {θh, θl} → ∆(R+) ,

where we have allowed for randomized bids.

The bidders are risk neutral and bid to maximize their expected profit

from the auction.

3 A two-player version

We start the analysis with the simple case where there are only two potential

bidders. There are now just two players, and we look for a symmetric mixed

strategy equilibrium. We are interested in seeing how the equilibrium entry

decisions depend on the format of the auction chosen.

1We consider the symmetric case with Pr{θ = θh |ω = 1} = Pr{θ = θl |ω = 0} for

notational simplicity. The results in this paper go through with asymmetric specifications

too.
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We start by characterizing the efficient solution, i.e. the symmetric entry

probabilities that a utilitarian planner would choose. The planner’s problem

is to

max
πh,πl

V
(
πh, πl

)
:=

q
[(

1−
(
1− απh − (1− α)πl

)2)
v (1)− 2

(
απh + (1− α)πl

)
c
]

+(1− q)
[(

1−
(
1− (1− α) πh − απl

)2)
v (0)− 2

(
απl + (1− α) πh

)
c
]
.

From the first order conditions to this concave maximization problem, we

get:

π̂h =
1

2α− 1

(
α
v (1)− c

v (1)
− (1− α)

v (0)− c

v (0)

)
,

π̂l =
1

2α− 1

(
α
v (0)− c

v (0)
− (1− α)

v (1)− c

v (1)

)
.

This is a valid solution if π̂l ≥ 0 and π̂h ≤ 1. These restrictions are satisfied

if

α
v (0)− c

v (0)
≥ (1− α)

v (1)− c

v (1)

and
α

1− α
≥ v (1)

v (0)
.

If the first inequality is violated, then only high signal players enter in the

efficient solution. We shall see that in this case competitive entry followed

by the SPA and the FPA also result in efficient entry levels and identical

expected revenues to the seller. In the case of an interior solution, we shall

see that FPA dominates SPA in terms of expected revenue. Notice that

the second inequality restriction is needed only because here the number

of potential entrants is limited to two. In the model with a large number

of potential bidders a corner solution π̂h = 1 would be very costly to the

planner.

Lemma 1 Fix πh ∈ (0, 1) in the planner’s problem and let π̂l
(
πh

)
be the

conditionally optimal entry rate by the low type bidders. Then π̂l
(
πh

)
is

decreasing in πh and V
(
πh,, π̂l

(
πh

))
is strictly concave in πh.

Proof. By straightforward computation.
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3.1 Entry game with second-price auction

With only two bidders, the realized price is the lower of the two bids if both

players enter, and zero if only one player enters. Equilibrium inference about

the value of the good is straightforward. As usual in common value auctions,

the optimal bid is obtained by assuming that both bidders have submitted

the same bid. It is clear that this can occur only if the bidders have observed

the same signals. Hence, if both types enter with positive probability in

equilibrium, we can write

ph = Eω[v (ω)
∣∣θ1 = θ2 = θh ],

pl = Eω[v (ω)
∣∣θ1 = θ2 = θl ].

The bidding strategies of both types are thus pure.

If only high type bidders enter in equilibrium, then their bids remain as

above and low type bidders bid any amount below bh in any sequentially

rational continuation following a deviation since they want to win only con-

ditional on having entered alone. Since the expected profit to the deviating

low type bidder is exactly her contribution to the expected social surplus, she

will choose to stay out of the market if high types enter efficiently whenever

the planner’s solution is not an interior solution. Notice that high signal bid-

ders also collect exactly their expected marginal contribution at the efficient

profile. We conclude that efficient entry is an equilibrium in the entry game

followed by second-price auction as long as π̂l = 0 in the efficient solution.

Suppose next that π̂l > 0. In this case, the social planner gains from

a high type entry if and only if there are no other bidders present in the

market. In the SPA, high type bidders gain their social contribution if there

are no other bidders present, but in addition, they also make a positive profit

whenever another bidder with low signal has entered. Hence, with π̂l > 0,

the expected private profit of a high signal type exceeds the social benefit

due to a business stealing effect, and equilibrium level of πh exceeds the

conditional social optimum (i.e. optimum given πl). Since the low type

bidders make a positive profit only when there are no other bidders present,

their private profit coincides with their marginal social contribution. Since

the conditionally efficient level of πl
(
πh

)
is decreasing in πh, we conclude

that:
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Proposition 1 Suppose π̂l > 0. Then the entry equilibrium
(
πh
S, π

l
S

)
followed

by a second-price auction is characterized by: i) πh
S > π̂h and ii) πl

S < π̂l.

3.2 Entry game with first-price auction

Consider next the case of a first-price auction. Using standard arguments,

we can show that symmetric equilibria in this case must be in atomless

mixed strategies. Denote by πs > 0 the equilibrium entry probability and

by bs (p) the equilibrium bid distribution for s ∈ {h, l}. We can then let

πs (p) = πs − b (p) denote the probability that i has entered the auction and

placed a bid above level p, conditional on having observed signal s. Let supp

πs (·) denote the support of the bid distribution bs.

A first simple observation is that if both types of potential bidders enter

with a positive probability and a bid of 0 is in the support of their bid

distributions, then entry must be at efficient level. Since there are no atoms,

a bid of zero wins only if there are no other active bidders. If this bid is in the

support of both types, we conclude that potential bidders of both types earn

an expected profit exactly equal to their marginal contribution and hence

entry must be at the constrained efficient level. We consider next the case

where 0 is not necessarily in the support of the bid distributions.

Suppose that both types of bidders enter with positive probability and

that a bid p is in the support of the bid strategies of both types of potential

bidders. Since both must be indifferent between entering and not, and since

the two types of bidders have different assessments of the relative probabilities

of the two states, we must have indifference between entering with bid p and

staying out across the two states. In other words, the following must hold:(
1− απh (p)− (1− α)πl (p)

)
(v (1)− p)

=
(
1− απl (p)− (1− α)πh (p)

)
(v (0)− p) = c,

which leads to

πh (p) =
1

2α− 1

(
α
v (1)− p− c

v (1)− p
− (1− α)

v (0)− p− c

v (0)− p

)
, (1)

πl (p) =
1

2α− 1

(
α
v (0)− p− c

v (0)− p
− (1− α)

v (1)− p− c

v (1)− p

)
.
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This observation leads to the following lemma that is key to all our revenue

comparisons.

Lemma 2 Suppose that 0 < πl < πh < 0. Then either i) 0 ∈ supp πs (·)
for s ∈ {h, l} or ii) supp πl (·) =

[
0, pl

]
and supp πh (·) =

[
pl, ph

]
for some

0 < pl < ph < v (1) .

Proof. First of all, it is obvious that 0 ∈
{
supp πl (·) ∪ supp πh (·)

}
since

otherwise the bidder submitting the lowest bid would have a profitable de-

viation. We prove the claim by showing that whenever 0 /∈ supp πh (·) , the
supports are non-overlapping intervals with 0 ∈ supp πl (·) . To show this, we

notice that if the supports overlap on a non-empty interval, then equations

(1) hold over this interval, and we can differentiate the equations to get:

dπh (p)

dp
=

1

2α− 1

(
− αc

(v (1)− p)2
+

(1− α) c

(v (0)− p)2

)
,

dπl (p)

dp
=

1

2α− 1

(
− αc

(v (0)− p)2
+

(1− α) c

(v (1)− p)2

)
.

Differentiating for a second time yields:

d2πh (p)

dp2
=

2

2α− 1

(
− αc

(v (1)− p)3
+

(1− α) c

(v (0)− p)3

)
, (2)

d2πl (p)

dp2
=

2

2α− 1

(
− αc

(v (0)− p)3
+

(1− α) c

(v (1)− p)3

)
< 0.

We see here that
dπl (p)

dp
< 0 for all p,

and that the following implication holds:

dπh (p)

dp
≥ 0 =⇒ d2πl (p)

dp2
> 0.

The first property implies immediately that if bid p is in the support of πl (·) ,
then so is p′ < p demonstrating 0 ∈ supp πl (·) .

Since the conclusion of the second implication is false by the second line

in equation (2), we know that its premise must be false as well and hence
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dπh(p)
dp

< 0. By the same logic as above, 0 ∈ supp πh (·) . Hence we conclude

that either 0 ∈ supp πh (·) or the supports do not overlap.

Gaps in supp πl (·)∪ supp πh (·) and mass points in either distribution

are ruled out by usual arguments. Notice also that by the second line in

equation (1) for p′ < p

{p′, p} ⊂ {supp πl (·) ∩ supp πh (·)} ⇒ πl (p′) < πl (p) .

This rules out the possibility that supp πl (·) is a union of disjoint intervals.

Finally, we need to show that in the case of non-overlapping interval

supports 0 ∈supp πl (·) . Let pmax be the maximal bid in the union of the two

supports. Since we have assumed that 0 < πl < πh < 0, we have

E
[
v (ω)− pmax|θh

]
> E

[
v (ω)− pmax|θl

]
.

Hence pmax ∈supp πh (p) ,and hence also 0 ∈supp πl (·) .

Lemma 3 If the equilibrium entry rates in the first-price equilibrium
(
πh, πl

)
̸=(

π̂h, π̂l
)
, then

πh > π̂h and πl < π̂l.

Proof. Against any fixed rate πl of entry for the low types, the equilibrium

rate of entry is at least π̂h
(
πl
)
. For a lower rate, entry followed by p = 0

would yield a profitable deviation. The conclusion of the lemma follows

immediately.

With the help of these lemmas, we are ready to prove the main result of

this section.

Theorem 1 In the two-bidder model, the first-price auction yields always a

higher expected revenue than the second price auction.

Proof. i) If 0 ∈ supp πh (·)∩supp πl (·) , then entry rates
(
π̂h, π̂l

)
∈ are

consistent with the First-Price Auction. Since
(
ph, pl

)
= (0, 0) is in the sup-

port of the bidders, their expected payoff coincides with the expected payoff

of the planner. Since the bidders’ expected payoffs in this equilibrium are

zero, the revenue in the auction coincides with the maximal expected social
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surplus. Proposition 1 shows that in the second-price auction, entry rates

differ from the planner’s solution. Since the bidders’ expected payoffs are

non-negative in any equilibrium, the claim follows from the strict concavity

of the planner’s optimization problem.

ii) If 0 /∈ supp πh (·) in the equilibrium of the game with first-price auction.

Then, by the previous lemma, supp πl (·) =
[
0, pl

]
and supp πh (·) =

[
pl, ph

]
in the first-price auction.

Let
(
πh, πl

)
denote the equilibrium entry rates for the game with first-

price auction bidding. Keep entry rates fixed at
(
πh, πl

)
, but switch the

auction format to second-price auction. Bidder with θl is still indifferent

between entering and not because in first-price auction by bidding 0 she

gets the same allocation and price as in the second price auction. On the

other hand, pl is also in supp πl (p). At that price, she gets the good with

probability 1 if and only if there is no opponent of type θh. Denote this event

by A.

Thus, consider the allocation rule where a bidder gets the good if and only

if event A happens. Compare two different pricing rules for event A as follows:

i) pay pl for sure, and ii) pay p = 0 if no low type presents, and otherwise

pay p = E
(
v|θ = θl, a low type present

)
. A bidder of type θl is indifferent

between these two situations since i) is her outcome in first price auction for

bid b = 0, which is within her bidding support, and ii) is her outcome in

second price auction (if she outbids equilibrium bid by an infinitesimal ε).

But then a bidder type θh prefers case ii) to i), because she finds it more

likely that p = 0 than bidder type θl. Since pl ∈supp πh (·) in the first-price

auction, her expected profit in that auction must be c. Hence, the high type

makes a strictly higher profit in the second price auction. Hence, there must

be more entry by bidders of type θh in the second-price auction if πh < 1,

and if πh = 1, then the rent to θh is higher in the second-price auction. By

Lemma 1 and Lemma 3, we conclude that the second-price auction yields a

lower social surplus and hence also lower expected revenue to the seller.
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4 Many potential bidders

We consider the limiting model where the number of potential bidders N →
∞. By usual arguments, given a sequence of symmetric entry strategies for

finite games {πs
N}, s = l, h, such that N · πs

N → πs, the realized number

of entering agents converges to a Poisson random variable with parameter

απh+(1− α) πl in state ω = 1 and with parameter (1− α)πh+απl in state

ω = 0. Hence, we will be looking for equilibrium ”entry intensities” πl and

πh.

As in the previous section, we start by considering the social planner’s

problem: She chooses entry intensities πl and πh to maximize social surplus

net of entry cost. The objective function of the social planner is given by:

W
(
πl, πh

)
= q

[(
1− e−απh−(1−α)πl

)
v (1)−

(
απh + (1− α)πl

)
c
]

+(1− q)
[(

1− e−(1−α)πh−απl
)
v (0)−

(
(1− α)πh + απl

)
c
]
.

The first term in square brackets computes the benefit and cost of entry if

the state is high and the second corresponds to the low state. To simplify

the formulas slightly, write

λ (1) = απh + (1− α) πl,

λ (0) = (1− α)πh + απl,

for the Poisson parameter conditional on the state of the world.

This is a concave problem with first-order conditions for interior solutions

given by:

qα
[
e−λ(1)v (1)− c

]
+ (1− q) (1− α)

[
e−λ(0)v (0)− c

]
= 0,

q (1− α)
[
e−λ(1)v (1)− c

]
+ (1− q)α

[
e−λ(0)v (0)− c

]
= 0.

This is satisfied when

e−λ(1)v (1) = c,

e−λ(0)v (0) = c,
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or

π̂h =
1

2α− 1

(
α log

(
v (1)

c

)
− (1− α) log

(
v (0)

c

))
,

π̂l =
1

2α− 1

(
− (1− α) log

(
v (1)

c

)
+ α log

(
v (0)

c

))
.

For this to yield a valid solution, we must have π̂l > 0, so our assumption

in terms of model parameters is:

α log

(
v (0)

c

)
> (1− α) log

(
v (1)

c

)
or

α

1− α
>

log (v (1))− log (c)

log (v (0))− log (c)
.

Notice that as c → 0, the right hand side converges to 1. Therefore, we

always have πl > 0 for low enough c. On the other hand, by increasing c

towards v (0), at some point π̂l reduces to zero and we get a corner solution

where only high types enter.

Notice also that we have immediately the result that π̂h > π̂l since

π̂h − π̂l =
1

2α− 1
log

(
v (1)

v (0)

)
.

4.1 Second-price auction with unobserved entry

With more than two potential bidders, the effect of conditioning upon win-

ning the auction is more complicated than in the standard case of a fixed

number of bidders with a continuum of signal. In the standard case, the

conditioning event is that the winner’s bid ties with the highest bid amongst

other bidders. Under increasing strategies this again translates into having

a tie between the two highest signals.

In our case, winning the auction gives also information about the number

of other entrants to the auction. In accordance with our interest in symmetric

equilibria, we assume symmetric rationing in case of tied bids. This implies

that a bidder is more likely to win the object if there are fewer bidders. This
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in turn gives information on the value of the object for sale if entry takes

place at different rates for different signals.

It is easy to show that in any symmetric equilibrium of the SPA, bidders

with low signals must bid below the bidders with high signals. If high sig-

nal bidders bid according to a pure strategy, the probability of winning is
1
nh , where nh is the (random) number of entrants with high signals. Hence

winning is evidence of low nh and by affiliated signals this is also evidence in

favor of {ω = 0}. By the usual logic of SPA, the equilibrium bid must equal

the conditional expected value of the object upon winning. By a small up-

ward deviation, any bidder with a high signal wins the object for sure. Under

this conditioning event, the value of the object is strictly larger than when

submitting the assumed common equilibrium bid. Hence bidders with high

signals cannot use the same pure bid in equilibrium, and we must consider a

mixed strategy equilibrium for those bidders.

Bidders with low signals face a different updating. Again, with symmetric

rationing winning the object gives evidence of a small number of bidders in

the auction. In contrast to the bidders with high signals, this is now good

news about the value of the object. This translates into a multiplicity of

symmetric pure equilibrium bids for bidders with low signals. By deviating

to a higher price (still below the lowest bid of the high signal biders), any

low signal bidder wins regardless of the number of other low signal bidders

(as long as there are no high type bidders). But the expected value of the

object is smaller under the new conditioning event. This ’winner’s blessing’

effect makes it possible to sustain different pure symmetric equilibrium bids

for the bidders with low signals.

It is clear that equilibrium entry with a second-price auction is always

distorted if bidders with both signals enter with positive intensity. To see

this, assume efficient entry. Then by the same arguments as in the previous

section, at least the high type gets more than her contribution to social wel-

fare. It is also possible that low type gets more (in a particular equilibrium).

So it is possible that too many bidders of both types enter in equilibrium

(similarly to the traditional business stealing effect).

Let us derive next the equilibrium, where for given entry rates, the low

signal type bids the highest bid consistent with equilibrium. This is the
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equilibrium where a low type entrant gains exactly her contribution to social

welfare. The bid of a player with θ = θh when equilibrium entry rates are πh

and πλ is denoted bl
(
πl, πh

)
.

The entry rate of θl conditional on state ω is given by:

λlow (ω) =

{
(1− α)πl for ω = 1

απl for ω = 0

Denote the event that no bidder with θh enter by A. The probability of

getting the object (for bidder of type θl), conditional on state ω and event

A is (for simplicity denote λ = λlow (ω)):

Pr (win |ω and A)

= 1e−λ +
1

2
λe−λ +

1

3

λ2

2!
e−λ +

1

4

λ3

3!
e−λ + ...

=
1

λ

(
−e−λ + e−λ + λe−λ +

λ2

2!
e−λ +

λ3

3!
e−λ +

λ4

4!
e−λ+

)
=

1

λ

(
1− e−λ

)
.

For the right conditioning event for the equilibrium bid, let B denote the

event that at least one (other) bidder of type θl entered. We compute the

probability of winning the auction in event B conditional on the state ω and

event A as follows:

Pr (win and B |ω and A)

=
1

λ

(
1− e−λ

)
− e−λ =

1

λ

(
1− e−λ − λe−λ

)
.

Then we can compute the likelihood ratio on the states for a low type that

gets the object at price bl. This decomposes information into 1) the prior

belief, 2) own signal, 3) the event that no high types enter, 4) other low types

enter and the player in question wins

ql

1− ql
=

q

1− q

1− α

α

e−απh

e−(1−α)πh

1
(1−α)πl

(
1− e−(1−α)πl − (1− α)πle−(1−α)πl

)
1

απl

(
1− e−απl − απle−απl

)
=

q

1− q

e−απh

e−(1−α)πh

1− e−(1−α)πl − (1− α) πle−(1−α)πl

1− e−απl − απle−απl

: = L.
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Similarly, we can compute the belief ratio for high type who gets the object

at price bl:

qh

1− qh
=

q

1− q

α

1− α

e−απh

e−(1−α)πh

1− e−(1−α)πl

1− e−απl > L.

We compute the bid of θl in the equilibrium where she is indifferent be-

tween winning the auction and losing it at bl. This is obviously the highest

possible pure strategy equilibrium bid by θl and we call it the highest equi-

librium.

bl
(
πl, πh

)
=

L

1 + L
v (1) +

1

1 + L
v (0) . (3)

Given bl
(
πl, πh

)
, we can compute the expected payoffs V l and V h for θl and

θh respectively. Since we concentrate on the highest equilibrium, the the low

type gets positive payoff only if no other bidders present, so V l is easy to

compute:

V l = qle−απh−(1−α)πl

v (1) +
(
1− ql

)
e−(1−α)πh−απl

v (0) .

The expected payoff of θh is:

V h = qhe−απh
(
v (1)−

(
1− e−(1−α)πl

)
bl
)

+
(
1− qh

)
e−(1−α)πh

(
v (0)−

(
1− e−απl

)
bl
)
,

where bl depends on πl and πh through equation (3). In equilibrium, πl and

πh must be such that V l = V h = c. We do not have closed form solutions

for equilibrium πl and πh, but it can be shown that πh > π∗h and πl < π∗l,

where the starred rates denote the socially efficient entry rates. Hence we

conclude that similar to the two-bidder case, the entry rate of θh is distorted

upwards and the entry of θl is distorted downwards.

4.2 First price auction with unobserved entry

We construct the symmetric equilibrium by considering different price re-

gions. We us use notation πh (p) and πl (p) to denote Poisson entry intensity

of high and low type, who bid above p.
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4.2.1 Overlapping price intervals

If p is within the equilibrium price support for both players, then it must be

the case that both types are indifferent between state realization. Therefore,

posteriors qh and ql play no role, and we have:

e−απh(p)−(1−α)πl(p) (v (1)− p) = c

e−(1−α)πh(p)−απl(p) (v (0)− p) = c

or

απh (p) + (1− α)πl (p) = log

(
v (1)− p

c

)
(1− α)πh (p) + απl (p) = log

(
v (0)− p

c

)
and we get

πh (p) =
1

2α− 1

(
α log

(
v (1)− p

c

)
− (1− α) log

(
v (0)− p

c

))
, (4)

πl (p) =
1

2α− 1

(
− (1− α) log

(
v (1)− p

c

)
+ α log

(
v (0)− p

c

))
. (5)

If the supports of πh (·) and πl (·) overlap on an interval of positive length,

then within this interval, the above equalities hold for all p, and we can

differentiate the entry intensities to get our first results:

πh
p (p) =

1

2α− 1

(
1− α

v (0)− p
− α

v (1)− p

)
,

πl
p (p) =

1

2α− 1

(
1− α

v (1)− p
− α

v (0)− p

)
,

whenever

α log

(
v (0)

c

)
> (1− α) log

(
v (1)

c

)
.

By definition (in the interior of the relevant supports), these derivatives must

be negative.
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In any equilibrium, we have always πh (p) > 0, and πl
p (p) < 0. To have a

simple equilibrium, where

p ∈ suppπh ∩ suppπl ⇒ [0, p] ⊂ suppπh ∩ suppπl, (6)

we should have πh
p (p) < 0 for p < p′, where p′ =

{
p : πl (p) = 0

}
. This

is the case for c high enough. For low c, equilibrium must have a different

structure.

We compute the second derivatives of the entry intensities as follows:

πh
pp (p) =

1

2α− 1

(
1− α

(v (0)− p)2
− α

(v (1)− p)2

)
,

πl
pp (p) =

1

2α− 1

(
1− α

(v (1)− p)2
− α

(v (0)− p)2

)
.

We see here that the following implication holds:

πh
p (p) ≥ 0 =⇒ πh

pp (p) > 0,

which implies that the only possible equilibrium that does not satisfy condi-

tion (6) is the following: suppπl (·) =
[
0, pl

]
and suppπl (·) =

[
pl, ph

]
for some

ph > pl. Hence the entry distributions in the first-price auction with many

bidders look qualitatively similar to the two-bidder case. We summarize our

findings in the following lemma.

Lemma 4 In the entry game with first-price auction, we have either i) 0 ∈
supp πs (·) for s ∈ {h, l} or ii) supp πl (·) =

[
0, pl

]
and supp πh (·) =

[
pl, ph

]
for some 0 < pl < ph < v (1) .

4.2.2 Highest possible price

The highest possible price, p, can be easily solved by considering the highest

bidding high type bidder. He is certain to get the good, so upon getting it his

belief is unchanged. On the other hand, free entry means that his value-price

margin must be c. So, we have

qh (v (1)− p) +
(
1− qh

)
(v (0)− p) = c
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or

p = qhv (1) +
(
1− qh

)
v (0)− c

= qh∆v + v (0)− c,

where ∆v := v (1)− v (0).

4.2.3 Price range above low type

Take p ∈suppπh (·)∩
[
suppπl (·)

]C
, where θh enter but θl do not enter. Then

by Lemma 4, we have πl (p) = 0, and πh (p) > 0. Any bidder of type θl that

submits bid p makes an expected loss:

qle−απh(p) (v (1)− p) +
(
1− ql

)
e−(1−α)πh(p) (v (0)− p) < c

and a bidder of type θh breaks even in expectation:

qhe−απh(p) (v (1)− p) +
(
1− qh

)
e−(1−α)πh(p) (v (0)− p) = c.

For this to hold, we must have

e−απh(p) (v (1)− p) > c > e−(1−α)πh(p) (v (0)− p) .

It is clear that for p < p, the indifference equation for high type is solved by

some decreasing function πh (p).

If πh (·) is constructed to maintain indifference for the bidders with θh,

then at some p, low type wants to enter. This can always be guaranteed

to happen if the optimal entry rate π̂l in the planners problem is strictly

positive. There is some p′ < p such that

qle−απh(p) (v (1)− p) +
(
1− ql

)
e−(1−α)πh(p) (v (0)− p) > (<) c

for p < (>) p′. We find p′ by requiring

qle−απh(p) (v (1)− p) +
(
1− ql

)
e−(1−α)πh(p) (v (0)− p)

= qhe−απh(p) (v (1)− p) +
(
1− qh

)
e−(1−α)πh(p) (v (0)− p)

and this is of course satisfied when

e−απh(p) (v (1)− p) = e−(1−α)πh(p) (v (0)− p) = c.
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Clearly there is a unique p′ that solves this, and p′ < p. So, the range of

prices where only high type enters, is [p′, p].

If c is high enough, we have a simple equilibrium where θl submit bids

within [0, p′] and θh submit bids within [0, p]. Notice that since πh (0) and

πl (0) given in (4) and (5) are equal to the efficient entry rates, this equilib-

rium is efficient, and hence maximizes expected revenue to the seller across

all possible mechanisms.

4.2.4 Price range where only low type is active

Suppose that only θl submits bids in some [p−, p+] for some 0 ≤ p− < p+.

Let πh := πh (p+) denote the constant entry intensity above p ∈ [p−, p+] for

θh. Since type θh does not want to enter and low type is indifferent, so

qhe−απh−(1−α)πl(p) (v (1)− p) +
(
1− qh

)
e−(1−α)πh−απl(p) (v (0)− p) < c,

qle−απh−(1−α)πl(p) (v (1)− p) +
(
1− ql

)
e−(1−α)πh−απl(p) (v (0)− p) = c .

For this to hold, we must have

e−(1−α)πh−απl(p) (v (0)− p) > c > e−απh−(1−α)πl(p) (v (1)− p) .

We can show that for some parameters, there is an equilibrium where θl

bids within [0, p′′] and θh within [0, p′] ∪ [p′′, p], where p′ < p′′. Notice that

this equilibrium is also efficient.

For other parameters, we can have an equilibrium, where θl bids within[
0, pl

]
and θh within

[
pl, p

]
. Since the price support of high type does not

extend to zero, this equilibrium is not efficient.

4.3 Revenue comparisons

We have shown that for some cases where both types of bidders enter with

positive intensity, zero bids are in the support of the bid distribution for

both bidder types. Hence the first-price auction results in socially optimal

entry in this case. Since the bidders’ expected surplus is zero by construc-

tion, expected revenue must equal expected social surplus. This implies that

FPA gives the highest possible revenue to the seller subject to individual

rationality by the bidders.
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We also showed that all equilibria of the SPA involve distorted entry

profiles. Since the bidders still make a zero expected profit, this implies that

the expected revenue in any symmetric equilibrium of the SPA falls below

the expected revenue in FPA.

For small c > 0, we have found a numerical example where a symmetric

equilibrium of the SPA dominates the FPA in terms of expected revenue.

Hence the clean revenue ranking of the two-bidder game no longer holds. We

can show, however, that FPA dominates for high enough entry costs.

5 Further remarks

5.1 Entry cost at ex ante stage

In this subsection, we consider equilibria in a version of the model where

entry decision is made before learning the signals. This corresponds to the

case where inspecting the good for sale is costly. We maintain the assumption

that the number of actual bidders that have paid the cost c is not disclosed

prior to the bidding stage. This is the only significant modeling difference

in comparison to Levin & Smith (1994). The example demonstrate that the

randomness in the number of participants allows the bidders in a second-price

auction to get higher profit than in the first price auction.

We assume here that there are only two potential entrants. Consider the

following special case of the binary model:

αh = Pr
{
θi = θh|ω = 1

}
,

and

αl = Pr
{
θi = θl|ω = 0

}
= 1.

In this case, the posteriors are

qh = 1, ql =
q
(
1− αh

)
1− q (1− αh)

.

The characterization of socially optimal entry using symmetric strategies

is even easier than before. Simply compute the symmetric entry probability
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π to get

W (π) : = max
π

q
[(
1− (1− π)2

)
v (1)− 2πc

]
+(1− q)

[(
1− (1− π)2

)
v (0)− 2πc

]
.

Hence the optimal entry rate is given by:

π∗ =
qv (1) + (1− q) v (0)− c

qv (1) + (1− q) v (0)
:=

v − c

v
.

Consider a bidding equilibrium in a first price auction that is held un-

der the assumption that entry has taken place at rate π∗. Since entry is

independent of the true state, both types of bidders believe to be bidding

alone with probability (1− π∗). With probability π∗, there is a compet-

ing bidder. A bidder of type θh believes that her opponent is of type θh

with probability αh. A bidder of type θl believes that her opponent is of

type θh with probability qlαh. Hence for θh, the three possible events {no
competitor, competitor of type θh, competitor of type θl} have probabilities(
1− π∗, αhπ∗,

(
1− αh

)
π∗) , and for θl, the corresponding probabilities are(

1− π∗, αhqlπ∗,
(
1− αhql

)
π∗) . Finally, let q̂l denote the posterior probabil-

ity that a bidder of type θl assigns on {ω = 1} if she is told that there is no

competitor of type θh, i.e.

q̂l :=
ql − αhqlπ∗

1− αhqlπ∗ .

Again, it is easy to see that all possible equilibria involve mixed strate-

gies for both types of players. Assume then first that the supports in the

distributions are intervals without overlap such that θl bids on [0, pl] and θh

bids on [pl, ph]. Furthermore let

vl := qlv (1) +
(
1− ql

)
v (0) ,

and

v̂l := q̂lv (1) +
(
1− q̂l

)
v (0) .

Then we have from the optimality conditions of the two types of bidders:

(1− π∗) vl =
(
1− αhqlπ∗) (v̂l − pl

)
,

23



(1− π∗) v (1) ≤
(
1− αhπ∗) (v (1)− pl

)
= v (1)− ph.

If we have αh → 1, we see from the inequality that pl must converge to zero.

Also, ql → 0 and q̂l → 0 and therefore the first equation becomes

(1− π∗) v (0) = v (0) .

Since π∗ does not depend on αh, we get a contradiction. Hence we conclude

that for αh → 1, ordered supports are not possible. By arguments similar to

the previous sections, we also conclude that when αh is large enough, then 0

is in the support of both bid distributions.

In this case, the bidding strategy
(
bh, bl

)
= (0, 0) is an optimal ex ante

strategy for a player considering entry. The expected payoff from this strat-

egy is the value of the object in each state of the world if the other bidder

does not enter, i.e.

(1− π∗) (qv (1) + (1− q) v (0)) ,

and the cost is c. Hence by definition of π∗, the player is indifferent be-

tween entering and not, and we have an overall equilibrium in the game with

symmetric entry rate π∗ and zero payoffs to the bidders.

A full analysis of this model (including the many bidders case) is left for

future research.

5.2 More signals

A trivial extension to a pure strategy equilibrium in a model with a contin-

uum of signals is possible immediately for our model. Consider a continuum

of signals with only two possible likelihood ratios for the states of the world.

Lumping signals with the same likelihood ratios into two aggregate signals

yields a model that is equivalent to the current discrete-signal case. The

mixed strategy equilibria of the current paper can then be translated into a

pure strategy equilibrium of the continuous model. As long as the signals

satisfy monotone likelihood ratio property, there is good reason to hope that

the results would hold for nearby signal structures (in the sense that condi-

tional signal distributions are close to the continuous version of the current

model in the weak topology).
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More generally, the case with more signals (e.g. a continuum) seems

relatively easily handled in the case of a large number of bidders. The planner

can concentrate on the two signals with the highest and the lowest likelihood

ratios for the states. By mixing these appropriately, any feasible entry profile

can be generated. Equilibria in first-price and second-price auctions can then

be constructed where only bidders with these signals enter.

5.3 More objects

We are currently working on an extension to the case with k objects for sale.

A comparison of discriminatory auctions and k + 1st price auctions is then

possible. For payoff calculations in the discriminatory auction, each bidder

trades off the probability of having one of the k highest bids to the cost of

the bid. Hence the equations for bidder indifference are similar to the ones

in the first-price auction of Section 4. For the k+1st price auction, the same

issues on non-unique equilibrium (pure) bids for θl and randomized bids for

θh persist.

This extension also raises the interesting issue of information aggregation

for large k. It seems clear that full information aggregation in the sense of

Pesendorfer & Swinkels (1997) or Kremer (2002) will not be possible. As

long as c > 0, numbers of entrants remain random, and prices in k + 1st

price auctions will not converge to the true value of the object. Determining

the limit distribution of the realized price when c → 0 is also an interesting

question for future research.
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