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Abstract. We analyze a large roommate problem (i.e., marriage matching in
which the marriage is not restricted solely to matchings between men and women)
with non-transferable utility. It is well known that while a roommate problem may
not have a stable proper matching, each roommate problem does have an stable
improper matching. In a random utility model with types from Dagsvik (2000) and
Menzel (2015), we show that all improper stable matchings are asymptotically close
to being a proper stable matching. Moreover, the distribution of types in stable
matchings (proper or not) converges to the unique maximizer of an expression that
is a sum of two terms: the average “welfare” of the matching and the Shannon
entropy of the distribution. In the noiseless limit, when the random component of
the utility is reduced to zero, the distribution of types of matched pairs converges
to the outcome of the transferable utility model.

1. Introduction

We analyze stable matchings in the large “roommate” model (Gale and Shapley
(1962)) with random and non-transferable utility. We assume that the utility of
individual i matching with individual j is drawn from a distribution

U j
i ∼ F

tj ,θ{i,j}
ti (1)

that depends on the types t of both of individuals (for example, income, beauty, etc.),
and an unobservable match-specific shock θ{i,j}. The match-specific shock is drawn
from a distribution that depends on the types of the individuals. The key assumption
is that distributions F s,θ

t are absolutely continuous with respect to each other at the
top end of their supports. The assumption ensures that the utilities are subject to a
non-trivial randomness that remains even after learning the types and match-specific

Date: 10/06/15.
1



2 MARCIN PĘSKI

shock of two individuals. A special case is the random utility specification of Dagsvik
(2000):

U j
i = υ

tj
ti + γεji , (2)

where υtjti is the deterministic part of the utility, the random shock εji is independently
distributed with extreme value type I distribution, and γ > 0 is a parameter.

The roommate problem is a generalization of the classic marriage matching model
in which matching is no longer restricted solely to members of two different sides of
the market. In particular, this generalization allows for the possibility of same-sex
marriages, or partnerships between workers in worker-firm matching. It is well-known
that the roommate problem may not have a stable proper matching. For this rea-
son, we use an approximate concept of (improper) matching where some individuals
are (badly) matched with two, instead of one, other individuals. The concept was
introduced in Tan (1991) who established the existence of a stable (but, possibly,
improper) matching.

Our main result establishes two asymptotic properties of all stable (and, possibly,
improper) matchings when the population grows large and utilities are derived from
the random utility model (1). First, we show that, with a probability converging to
1, the fraction of badly matched individuals in any stable matching converges to 0. It
follows that all stable matchings are asymptotically proper. Second, we characterize
the limit of the probability masses d ∈ ∆ (T ∪ {∅} × T ∪ {∅}) over the pairs of types
of matched individuals. Here, match with ∅ corresponds to staying alone. As the size
of the population grows to infinity, the distributions over the matched types in any
stable matching converge to the unique solution of the concave maximization problem

max
d

Welfare (d;F .
. ) + 1

γ
Entropy (d) st. d satisfies feasibility restrictions. (3)

The welfare term of formula (3) is equal to the average sum of “deterministic utili-
ties” in the stable match, where the “utility” coefficients are derived from the top end
densities of distributions (1). The second term does not depend on the properties
of the distributions (1) and is a version of a well-known measure of disorder from
thermodynamics (and it also bears resemblance to the Shannon measure of informa-
tional content). As in physics, the entropy here has a counting interpretation and it
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is equal (modulo a constant) to the logarithm of the number of micro-configurations
(i.e., individual matchings) that are consistent with a given macro-state (i.e, distri-
bution d). In particular, the larger the entropy, the more imprecise the information
about the individual matchings. Finally, the most important feasibility restriction is
that the marginals of distribution d match the distribution of types in the population.
Other feasibility restrictions may by required to reflect special additional features of
the environment. For example, in case of the marriage matching, “male” types are
restricted from marrying other “male” types, etc. Together, our result says that the
stable matching balances the “welfare” maximization with an entropy cost.

The random utility model (1) was introduced in Dagsvik (2000) for the case of
the marriage matching (and extreme value type 1 distribution of shocks). Dagsvik
(2000) relies on a heuristic to argue that the limit of stable distributions must be
the unique solution to a system of demand-supply type of equations. Menzel (2015)
provides a formal proof of the claim in Dagsvik (2000). The ingenious argument
follows the demand-supply logic and it relies on various probability bounds obtained
from a careful analysis of the rejection chains in the Gale-Shapley algorithm.

This paper contributes to the literature in the following ways. First, we work with
a more general roommate problem where, as Gale and Shapley (1962) have already
observed, the deferred acceptance algorithm does not apply. For this reason, our proof
is necessarily very different from Menzel (2015). Instead, our argument is direct and
it consists of two parts. In the first part, we estimate a combinatorial upper bound on
the number of all (not necessarily stable) matchings that induce a given distribution
d. It turns out that this number is increasing with entropy. In the second part, we
estimate an upper bound on the probability that a given matching is stable. We show
that this probability is monotonically increasing with the “average welfare” term of
(3). The estimate relies on approximations from the large deviations theory (see Ellis
(2005)). By multiplying both estimates, we obtain an upper bound on the probability
of a stable matching with type distribution d. We show that if d does not maximize
expression (3), then the probability of a stable matching with a type d converges to 0
at an exponential rate. Thus, the distribution that is induced by all stable matching
must be a maximizer of (3).
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Second, Menzel (2015) assumes that the utility shocks are independent across part-
ners in the match. However, utility correlations are common in a typical matching
situation.1) Examples of common shocks include:

• random events that affect both parties simultaneously (weather during a first
date, market conditions during a job interview),
• common history (attending the same university, common friends),
• unobserved relationship characteristics (part-time vs full-time, possibility of
working from home, etc.) that jointly affect the preferences of both matching
parties.

It is important to understand how the correlated shocks affect the predictions of the
model. For this reason, we allow for any common unobservable match-specific shocks.
Our proof is simple and flexible enough so that the match correlations do not cause
any extra complication.

Third, Dagsvik (2000) and Menzel (2015) show that the unique limit distribution
is a solution to a system of demand-supply type of equations. Our result is consistent
with their findings, as the unique maximizer of (3) solves the same set of equations.
We are not aware of any other, earlier use of formula (3) to describe the social out-
comes. Both approaches are complementary and shed light on different aspects of
the problem. In particular, our approach emphasizes the fact that the likelihood of
a certain social outcome is directly related to its “randomness”, or the cardinality of
micro-configurations that are consistent with the observed outcome.

Fourth, formula (3) leads to a surprising connection between large population
matching with non-transferable and random utility (2) and matching models with
transferable utility with coefficients υs. We consider a noiseless limit of the model (2)
where γ → 0. In the noiseless limit, expression (3) becomes dominated by the first
term and the stable matching distribution maximizes average welfare. The latter is
also the unique distribution obtained in matching with preferences given by υs and
transferable utility. At the same time, the limit is typically not equal to the distri-
bution obtained when utility is non-transferable and γ = 0. We interpret the result
as a non-transferable foundation for the transferable utility model.

1Dagsvik (2000) allows for correlations in his model, but his argument remains heuristic.



LARGE ROOMMATE PROBLEM WITH NON-TRANSFERABLE RANDOM UTILITY 5

Choo and Siow (2006) introduced a different version of marriage matching model
(2) with transferable utility and where the random shock εji = ε

tj
i is the same for all

individuals j of the same type. Working with that model, Galichon and Salanie (2012)
show that, with the transferable utility, the limit distribution over types in stable
matching with transfers (i.e., welfare maximizing matching) converges to the solution
of a version of (3), but where Entropy (d) is replaced by a “generalized entropy”. The
“generalized entropy” is defined relative to the distribution of the vector of the shocks
(εt.)t∈T and it is equal to the value of a certain stochastic allocation problem. The
main difference with our paper is that the entropy in (3) does not depend on the
distribution of the shocks and the entire impact of the distribution is captured by the
“average welfare” term.

Section 2 describes a general roommate problem. Sections 3 and 4 introduce,
respectively, the models of types and random utility. Section 5 presents the main
result and describes the main ideas of the proof.

2. Roommate problem

In this section, we discuss the roommate problem. There are N individuals i ∈ I.
An individual i may form a match with another individual j 6= i, in which case i
receives utility U j

i . Alternatively, individual i may decide to remain alone with utility
U i
i .
We allow for the possibility that some matches are not feasible. Let R ⊆ I × I

be the set of restricted matches. We assume that the restriction is symmetric: if
(i, j) ∈ R, then (j, i) ∈ R, and that the option of staying alone is not restricted:
(i, i) /∈ R. For example, in the marriage matching model of Gale and Shapley (1962),
the population is divided into two sexes, and only opposite-sex matches are allowed.2

A proper matching is a bijection µ : I → I such that µ (µ (i)) = i for each i and
such that (i, µ (i)) /∈ R. Proper matching µ is stable if

∀(i,j)/∈R either U j
i ≤ U

µ(i)
i or U i

j ≤ U
µ(j)
j (4)

2An alternative way of modeling match restrictions is to assume that the utility from restricted
matches are −∞, or at least smaller than the utility from staying alone. We take the explicit
approach because it is more convenient when we present the random utility model.
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Figure 1. An (improper) matching.

In other words, a matching is stable if there is no unrestricted blocking match.
It is well-known that a roommate model may not have a stable proper matching

(and, in the particular, that the Gale-Shapley algorithm does not apply). Instead,
we use a relaxed solution proposed in Tan (1991). An (improper) matching is a
bijection µ : I → I such that (i, µ (i)) /∈ R.3 If µ (µ (i)) = i, then, we say that i is
properly matched; otherwise, i is badly matched. Because µ is a bijection, all badly
matched individuals can be divided into cycles i, µ (i) , µ2 (i) , ..., µn (i) = i, where each
individual is matched with a predecessor and successor in the cycle and all members
of the cycle are badly matched. An example of a matching is drawn on Figure 1. An
arrow from individual i to j indicates that µ (i) = j. Thus, individuals a, b, f, g,m, n
are properly matched, individuals c, d, h, i, j, k, l are badly matched, and individual o
remains single.

For each matching µ, define a mapping cµ : I → {s, p, b} that assigns each individ-
ual i with a category of its match:

cµ (i) =


s, if µ (i) = i (i.e., if i is single),

p, if µ (i) 6= i, µ (µ (i)) = i, (ie., if i is properly matched),

b, otherwise.

3Tan (1991) refers to µ as a partition.
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(Improper) matching µ is stable if (4) holds and, additionally, for each i,

U
µ(i)
i ≤ U

µ−1(i)
i .

The first requirement is obvious. The second requirement bites only for the badly
matched individuals and it plays the role of sorting: each badly individual is matched
with two other individuals, and µ (i) is the worse of two matches.

Assumption 1. (Strict Preferences) For each i and j 6= j′, U j
i 6= U j′

i .

The assumption is satisfied with probability 1 in the random utility model described
later in the paper.

Theorem 1. (Tan (1991)) Assume Strict Preferences. Then, there exists a stable
(possibly, improper) matching µ.4

3. Types

Following Dagsvik (2000) and Choo and Siow (2006), we are interested in the
distribution of types among the matched individuals. A type is any observable char-
acteristic, including gender, beauty, income, education. A type of individual i is
denoted as ti ∈ T , where T is a finite set.5 Let αt = 1

N
{i : ti = t} denote the fraction

of individuals with type t.
We assume that the set of restrictions R is type-measurable: ie., there is R∗ ⊆ T×T

such that for each i 6= j, (i, j) ∈ R if and only if (ti, tj) ∈ R∗. There are two special
cases:

• no-restriction case, in which R∗ = Ø, and

4Theorem 1 is closely related to Chiappori, Galichon, and Salanie (2014) who consider the room-
mate problem with transferable utility. They show that if each individual can be cloned into two
identical copies (with the same preferences, and treated in the same way by other players), then
there exists a proper stable matching.

5This assumption can be relaxed to a situation where T is compact. The idea is to divide
(“discretize”) the space of types T into finitely many small areas. The formal argument would not
add much to the difficulty of the current proof, but it would complicate the exposition. We will
provide the details for an interested reader.
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• the Gale-Shapley marriage matching, where the set of types T = M ∪W is a
disjoint union of men typesM and women typesW and R∗ = M×M∪W×W .

A type distribution is a probability measure d ∈ ∆ (T × T × {s, p, b}). Each matching
µ induces a matching type dµ so that for each (t, t′, c),

dµ (t, t′, c) = 1
N

{
i : ti = t, tµ(i) = t′, cµ (i) = c

}
.

In other words, dµ is a probability distribution of an ordered tuple of random variables
(T, T ′, C), where T is a type of a randomly drawn individual i in the population, T ′

is the type of µ (i), and C is the category of the match (i, µ (i)). We write d (c) =∑
t,t′ d (t, t′, c) for each c ∈ C. Let DN (α) denote the set of type distributions dµ

induced from some matching µ.
Any induced type distribution d = dµ must satisfy the following equalities for each

t, t′: ∑
t′,c

d (t, t′, c) = αt, (5a)

d (t, t′, c) = 0 if (t, t′) ∈ R∗ for each c, (5b)

d (t, t′, s) = 0 if t 6= t′, (5c)

d (t, t′, p) = d (t′, t, p) for each t′, (5d)∑
t′
d (t, t′, b) =

∑
t′
d (t′, t, b) =: βt (d) , (5e)

Identity (5a) ensures that all type t individuals are counted. Identity (5b) reflects
the restrictions. Identity (5c) is about single matched individuals. Identity (5d) is
implied by the fact that all proper matches are symmetric. Identity (5e) follows from
the fact that each bad match of individual i with µ (i) corresponds to exactly one
bad match with individual µ−1 (i). We define βt (d) as the fraction of badly matched
individuals of type t.

For each α ∈ ∆T and (βt) ∈ [0, 1]T , let D (α, (βt)) be the set of matching types that
satisfy (5a)-(5e) and such that βt (d) = βt for each t. Finally, let D (α) = D∗ (α,0)
be the subset of matching types of proper matchings (ie., ds such that d (b) = 0).
Sometimes, we shall use the following assumption:

Assumption 2. Set {d ∈ D∗ (α) : d (s) = 0} is non-empty.
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If the assumption is satisfied, then one can always divide the individuals into pairs
(with the possible exception of insignificant fractions of the population). The as-
sumption is always satisfied in the no-restriction case. In the marriage matching
case, the assumption is satisfied if and only if the number of men and women are
equal, ∑t∈M αt = ∑

t∈W αt.
For each matching type d, define

Entropy (d) =−
∑
t

d (t, t, s) log d (t, t, s)− 1
2
∑
t,t′
d (t, t′, p) (log d (t, t′, p) + 1) (6)

−
∑
t,t′
d (t, t′, b) (log d (t, t′, b) + 1) .

We refer to Entropy (d) as a “per capita entropy” of d. The coefficient 1
2 in front

of the proper pairwise terms comes from the fact that each such match involves two
people. Because each badly matched individual belongs to two matches, there is no
analogous coefficient in front of the “entropy” of bad matches.

The per-capita entropy is a normalized version of the Shannon entropy of random
variable (T, T ′), where T is a type of randomly drawn individual and T ′ is the type
of his or her match. The Shannon entropy is typically interpreted as a measure of
“randomness” (or “unpredictability) of distribution d. In this paper, the role of the
entropy comes from a closely related fact: it serves as a bound on the number of
matchings of a given type. For each matching market of size N , let

MN (d) = {µ : dµ = d} .

Lemma 1. For each matching type d ∈ D (α, (βt))
1
N

log |MN (d)| (7)

≤
(1

2d (p) + d (b)
)

logN +
∑
t

αt logαt +
∑
t

βt log βt + Entropy (d) + o (1)

The reminder term o (1)6 does not depend on d.

The proof can be found in Appendix A. 7

6Recall that o (1) denotes a sequence aN → 0 as N →∞.
7Although it is not necessary for our purposes, one can show that the bound (7) is asymptotically

tight.
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4. Random utility

For each i 6= j, the utility U j
i is conditionally independently drawn from distribution

(1), that depends on the type of both of the individuals, and an unobservable match-
specific shock θ{i,j} ∈ Θ. For each i, utility U i

i is drawn from distribution Fti .
Following Menzel (2015), we assume that utility U i

i is equal to the maximum among
JN i.i.d draws from distribution Fti and that limN−1/2JN = j∗ ≥ 0. We allow that
j∗ = 0. If j∗ > 0, this assumption ensures that, as N → ∞, the fraction of the
population that remains single does not converge to 0. If j∗ = 0 (for instance, because
JN = 1 for each N), each individual receives many more utility draws from pairwise
matches than from staying alone, which leads to asymptotically small fractions of
populations who prefer to stay single. If JN grows at rate higher than N−1/2, then
almost all individuals remain single in large populations.

The match-specific shock is chosen independently for each match from probability
distribution Φt,t′ over finite set Θ. Its role is to generate (unobservable) correlations
between the utilities of match partners. The existence of such correlations is natural
in almost all matching situations.

Definition 1. The random utility model F =
{
F t′,θ
t , Ft

}
is regular if each distribution

F ∈ F (a) is atomless, (b) it has support restricted to [0, 1], (c) it has continuous
density f with respect to the Lebesgue measure on the interval, and (d) the top end
density is strictly positive f (1) > 0.

Part (d) is the key restriction: it ensures that, at least at the top of the support of
the distributions, even after learning the type and the match specific shocks, the utility
is subject to non-trivial remaining randomness. Our characterization of matching type
in stable matchings depends on the distribution of utilities only through the top end
derivatives.

Because the notion of stability is purely ordinal, the regularity assumption can be
relaxed in the following way. The model is essentially regular if there exist strictly
increasing functions φt : R → R for each type t such that the random utility model
F ′ =

{
F t′,θ
t ◦ φt, Ft ◦ φt

}
is regular. Example 1 below illustrates this definition. From

now on, we assume that the model is regular.



LARGE ROOMMATE PROBLEM WITH NON-TRANSFERABLE RANDOM UTILITY 11

For any two types t, t′, θ, let

V t′,θ
t := f t

′,θ
t (1) > 0,V t,t′ =

∑
θ

Φt,t′ (θ)V t′,θ
t V t,θ

t′ , and υt,t
′ = log V t,t′ , (8)

Vt := ft (1) > 0, and υt = log Vt + log j∗.

We refer to υt,t′ as the “welfare” of a match of individual type t with type t′ and υt

as the “welfare” of staying single. The latter is modified by the normalized number
of draws j∗ that is used to determine the utility of being single.

We use the term “welfare” for two reasons. First, υt,t′ has a natural interpretation
of deterministic (or, observable) welfare in some applications (see Example 1 below).
Second, constant υt,t′ plays the role of match welfare in the following formula. For
each matching d, let

Welfare (d; υ..) =
∑
t

d (t, t, s) υt + 1
2
∑
t,t′
d (t, t′, p) υt,t′ +

∑
t,t′
d (t, t′, b) υt,t′ . (9)

We interpret Welfare (d; υ..) as a average “welfare” of matching type d. The coefficient
1
2 in front of the average welfare of proper pairwise matches comes from the fact that
each such match involves two people. Because each badly matched individual belongs
to two matches, there is no analogous coefficient in front of average “welfare” in bad
matches. By convention, the value of (9) is well-defined whenever j∗ > 0 or d (s) = 0;
otherwise, it is equal to −∞.

Example 1. Suppose that υt′t are constants and suppose that the random utility is
the sum

uji = υ
tj
ti + εji

of a type-dependent deterministic (normalized) utility υtji , and an idiosyncratic ran-
dom shock εji ≥ 0 that is drawn i.i.d from distribution G. Further, suppose that the
support of the distribution G is unbounded, and for each a, the limit

lim
x→1

1−G (x+ a)
1−G (x) > 0 (10)

exists and is strictly positive. (Examples include the extreme value type I distribution
used in Dagsvik (2000) and the exponential distribution.) This model is essentially
regular with welfare constants equal to υt,s = υts+υst . Indeed, let U

j
i = G

(
uji
)
. Then,
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the cumulative distribution function F j
i of U j

i is equal to F j
i (x) = G

(
G−1 (x)− υtjti

)
.8

Moreover, one can show that the logarithm of the density at 1 is equal to9

log f ji (1) = CGυ
tj

ti

for some constant CG > 0.

5. Main result

The main result characterizes the matching type of stable matchings. Consider a
maximization problem

max
d∈D(α)

Welfare (d; υ) + Entropy (d) . (11)

Problem (11) has a solution if and only if the objective function is well-defined over at
least some part of the feasible set, or when either j∗ > 0, or Assumption 2 is satisfied.
Moreover, because Welfare (d; υ) is linear and Entropy (d) is strictly concave, if the
solution exists, it is necessarily unique. We denote the solution as d∗ (α, υ).

The constraint d ∈ D (α) ensures that the solution respects the distribution of
types, feasibility restrictions R∗, and, importantly, assigns probability 1 to proper
matches. In particular, because d (b) = 0 for each d ∈ D (α), problems (3) and (11)
are equivalent.

Theorem 2. Fix a type space T , a measure α ∈ ∆T , a match shock space Θ, distri-
butions Φt,t′ of match shocks, and a regular random utility model

{
F t′,θ
t , Ft

}
. Let υ.

be derived as in (8). Suppose that either j∗ > 0, or Assumption 2 holds. Then, there

8F ji (x) = P
(
U ji < x

)
= P

(
G
(
uji

)
< x

)
= P

(
uji < G−1 (x)

)
= P

(
εji < G−1 (x)− υtjti

)
=

G
(
G−1 (x)− υtjti

)
.

9Let L (υ) denote the value of the limit in (10). It must be that L (υ + υ′) = L (υ)L (υ′), or
L (υ) = e−CGυ for some constant CG. Because the limit is decreasing, it must be that CG > 0. By
L’Hospital’s rule,

f ji (1) = lim
y→1

d

dy

(
G
(
G−1 (y)− υtjti

))
= lim
x→∞

g
(
x− υtjti

)
g (x) = lim

x→∞

1−G
(
x− υtjti

)
1−G (x) = eCGυ

tj
ti .
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exists a unique solution d∗ (α, υ) to problem (3) and

lim
N→∞

ProbN (‖dµ − d∗ (α, υ)‖ < ε for each stable matching µ) = 1.

The proof of Theorem 2 can be found below. The theorem says that for sufficiently
large regular markets, in all random stable matchings, the matching type converges
to the unique solution of the maximization problem (11). In particular, the fractions
of badly matched individuals in all stable matchings converge to 0 and all stable
matchings are asymptotically proper.

The hypothesis of Theorem 2 requires that either Assumption 2 holds and there
exists a matching in which no individual stays single, or j∗ > 0. Assumption 2 is
always satisfied in the unrestricted roommate problem. In the marriage matching
case, the Assumption holds as long as the number of men and women are equal. In
such a case, the thesis of Theorem 2 holds even when j∗ = 0. 10

It follows from the proof of the Theorem, that the utilities of (asymptotically) all
individuals converge to 1, i.e., to the top end of the support of the distribution of
utilities. One could interpret this observation as a statement about the efficiency of
the stable matchings. At the same time, it is worth remembering that our model of
stochastic utility is purely ordinal and the comparison of individual utilities through
aggregate welfare might not always be justified. 11

10In Menzel (2015), JN = N−1/2 and j∗ = 1. The proofs in Menzel (2015) rely in multiple ways
on the assumption that j∗ > 0. Our proof demonstrates that this assumption is not necessary (at
least, as long as Assumption 2 holds).

11In cases where cardinal interpretation and the interpersonal comparison of utilities are war-
ranted, the above observation confirms a recent result of Lee and Yariv (2014) who study a closely
related random utility model, but with transferable utility.
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5.1. Relation to Dagsvik (2000) and Menzel (2015). The first-order conditions
of problem (11) lead to the following system of equations12

log d∗ (t, t′, p) = υt,t
′ + λt + λt′ for (t, t′) /∈ R∗, (12)

log d∗ (t, t, s) = υt + λt,

where λt are Lagrange multipliers associated with constraints (5a). In particular, the
solution can be represented as a function of Lagrange multipliers λt. After substitut-
ing to the feasibility constraints, using the definitions (8), we obtain

αte
−λt = Vt +

∑
s

αsV
t,s
(
αse

−λs
)−1

.

Further, after letting Γt = αte
−λt − Vt, we obtain

Γt =
∑
s

αs
V t,s

Vt + Γs
. (13)

Equation (13) corresponds to equations (3.5) from Menzel (2015) (recall that in that
paper, j∗V t = 1.) Menzel (2015) refers to terms Γt as an inclusive value of type
t individuals. Dagsvik (2000) and Menzel (2015) establish the uniqueness of the
solution to (13) using the contraction properties of a certain operator. Here, we show

12Consider first the non-restricted case. Because of (5d), we can take d (t, t′, p) = d ({t, t′} , p).
The Lagrangian associated with problem (11) can be written as

L (d, λ)

=
∑
t

d (t, t, s)
(
υt − log d (t, t, s)

)
+ 1

2
∑
t

d ({t} , p)
(
υt,t − log d ({t} , p)− 1

)
+
∑
{t,t′}

d ({t, t′} , p)
(
υt,t

′
− log d (t, t′, p)− 1

)

+
∑
t

λt

(
d (t, t, s) +

∑
t′

d ({t, t′} , p)
)
.

The FOC are:

log d (t, t, s) = −1 + λt + υt,

log d ({t} , p) = −2 + 2λt + υt,t,

log d (t, t′, p) = −2 + λt + λt′ + υt,t
′
for t 6= t′.

By changing the variable λt → λt − 1, we obtain (12).
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that equation (13) describes a solution to the strictly concave maximization problem.
Such a solution is, necessarily, unique.

5.2. Proof of Theorem 2. The probability that the matching type of some stable
matching is ε-away from d∗ (α, υ) is bounded from above by

1− Prob (‖dµ − d∗ (α, υ)‖ < ε for each stable matching µ) (14)

=Prob (‖dµ − d∗ (α, υ)‖ > ε for some stable matching µ)

≤
∑

µ,‖dµ−d∗(α,υ)‖>ε
Prob (µ is a stable matching)

=
∑

d∈DN (α),‖d−d∗(α,υ)‖>ε

∑
µ∈MN (d)

p (µ)

=
∑

d∈DN (α),‖d−d∗(α,υ)‖>ε
|MN (d)| pN (d)

where we denote p (µ) as the probability that the realization of individual utilities
makes matching µ stable, and

pN (d) = 1
|MN (d)|

∑
µ∈MN (d)

p (µ)

is the average probability of a stable matching among matchings that induce d.
Below, we show the following claim: (14) converges to 0 at an exponential rate.

Notice that
1
N

log (1− Prob (‖dµ − d∗ (α, V )‖ < ε for each stable matching µ))

≤ 1
N

log |DN (α)|+ max
d∈D∗(α),‖d−d∗(α,V )‖>ε

( 1
N

log |MN (d)|+ 1
N

log pN (d)
)
.

The number of type distributions, |DN (α)|, is polynomial inN .13 Thus, 1
N

log |DN (α)| →
0 as N increases, and in order to prove our claim, it is enough to show that the second
term of the last line above is strictly negative.

Let jN = N−1/2JN , and let

υN (d) =
∑
t

d (t, t, s) (log jNVt) + 1
2
∑
t,t′
d (t, t′, p) υt,t′ +

∑
t,t′
d (t, t′, b) υt,t′

13Notice that for each d ∈ DN (α), d (t, t,′ , c) ∈
{

0, 1
N , ..., 1

}
for each t, t′, c. Thus, |DN (α)| ≤

N3|T |2 .
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be a version of the welfare where j∗ is replaced by the approximating sequence jN →
j∗. In Appendix B, we establish the following bound.

Lemma 2. There exists a continuous function g : R → R+such that g (x) > 0 for
x > 0 and such that for each matching type d ∈ D (α, (β)),

1
N

log pN (d) ≤υN (d)− max
δ∈D(α,(β))

[υN (δ) + Entropy (δ) + g (δ (b))]

−
(1

2d (p) + d (b)
)

logN −
∑
t

αt logαt −
∑
t

βt log βt + o (1) .

The reminder term o (1) does not depend on type d.

Recall that Lemma 1 derives a bound on the number of matchings with type d.
Together with Lemma 2, we have for each d ∈ D (α, (βt)),

1
N

log |MN (d)|+ 1
N

log pN (d)

≤υN (d) + Entropy (d) + g (d (b))

− max
δ∈D(α,(β))

[υN (δ) + Entropy (δ) + g (δ (b))]− g (d (b)) + o (1) . (15)

As N →∞, the right hand side of inequality (15) is negative if either d (b) > 0, or
d (b) = 0 and the value of the term in the first square bracket is strictly smaller than
the value of the optimization problem

max
δ∈D(α,(β))

[υN (δ) + Entropy (δ)] .

If j∗ > 0 or Assumption 2 holds, then the value of the above optimization problem
converges to the value of (11). The result follows.

6. Noiseless limit

In this section, we consider a parametrized version of Example 1 with the match
utility given by

U j
i = υ

tj
ti + γεji ,

where γ > 0 is a constant parameter, and εji are i.i.d. drawn from the distribution
G that satisfies (10). As a normalization, we assume that CG = 1. Such a model is
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essentially regular (see Example 1). By Theorem 2, as N →∞, the distribution over
the matched types in all stable matchings converges to the unique solution

d∗
(
α,

1
γ
υ

)
= arg max

d∈D(α)
Welfare

(
d; 1
γ
υ

)
+ Entropy (d) (16)

= arg max
d∈D(α)

Welfare (d; υ) + γEntropy (d)

(Indeed, a monotonic transformation translates the model into its regular form with
the “welfare” coefficients equal to 1

γ
υ... The second line follows from the fact that

function Welfare (d; .) is linear in the “welfare” coefficients υ...)
As the noise disappears, γ → 0, the maximization problem (16) becomes dominated

by the first (welfare) term, and the limit distribution over types in the stable matches
converges to the solution(s) of the welfare maximization problem

max
d∈D(α)

Welfare (d; υ) . (17)

This leads to a surprising discontinuity. As it is well-known, problem (17) char-
acterizes outcomes that can be obtained in stable matches of the transferable utility
(TU) model with no noise, γ = 0.14 Typically, such outcomes do not arise as stable
matchings in the non-transferable (NTU) utility model. As the noise converges to
γ → 0, the large population limit of the NTU random utility model converges to the
TU outcome of the model with no noise, and not necessarily to the NTU outcome.
15We illustrate this observation with a simple example.

Example 2. Suppose that the population is divided equally into two types, H and L.
The “deterministic” utility υ is described in Table 1. Let dγ be the unique solution of
(3), or the limit of type distributions in stable matchings. As γ → 0, dγ converges to
the distribution d∗ that assigns probability 1 to mixed pairs, d∗ (H,L)+d∗ (L,H) = 1.
When γ = 0, d∗ is the unique outcome of the TU model, and emphatically not the

14The classic result from Shapley and Shubik (1971) states that “any stable matching in the
marriage market maximizes welfare” . It is easy to extend the observation to the roommate problem.
The converse holds as well (see Chiappori, Galichon, and Salanie (2014)).

15The order of the limits is important. If we take the noise limit γ → 0 first, and the large
population limit N →∞ second, then the stable matchings trivially converge to the NTU case.
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υt
′
t t′ = H t′ = L

t = H 1 0
t = L 0 −10

Table 1.

outcome of the NTU model. In the latter, the stable matching is assortative (i.e., it
assigns a mass of zero to the mixed pairs).

In order to develop the intuition for this observation, it is useful to think about
individuals as trading off the payoffs from the deterministic “utilty” υ and the random
shocks ε. The H individuals are willing to match with an L individual if the random
part of the utility is sufficiently high. On the other hand, because the difference in
the deterministic values for L individuals is much higher, the latter are willing to
give up on the random shock in order to secure the larger deterministic value. In a
sense, the random shocks in the random non-transferable utility model play a role of
transfers. This observation can be interpreted as a non-transferable foundation for
the transferable utility model.

7. Conclusions

In this paper, we consider the large random utility matching model introduced in
Dagsvik (2000). We extend the result from Menzel (2015) to the roommate prob-
lem. Since the Gale-Shapley algorithm does not apply to the roommate problem,
our proof technique is necessarily very different. Instead, our proof is based on the
estimates of the number of different matchings and an estimates of the probability
for each matching being stable. The proof leads to a succinct characterization of type
distributions obtained in stable matchings as maximizers of a “welfare plus entropy”
formula. The formula leads to a surprising connection between a noiseless limit of
the non-transferable model with large population.

It is natural to ask whether the model and convergence results can be extended
further, for instance, to many-to-many matching. One difficulty is that our results
rely on Tan (1991)’s characterization of approximate stable matching in the roommate
problem. As far as we know, there are no appropriately tight approximate solutions
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concepts for the general many-to-many matching models that can be used in the
probability estimates as in the Lemma 2. (Some of the most recent results on the
existence of approximate solutions can be found in Che, Kim, and Kojima (2015).)

An alternative approach is to abandon classic matching theory and analyze many-
to-many matching in the game-theoretic framework of search theory. The advantage
of such approach is that the existence of equilibrium is assured by standard arguments.
We follow this approach in companion paper Peski (2015), where we consider a search-
based model of many-to-many matching with the utility extending (2). We show that
the equilibrium distribution over the match types can be characterized as critical
points of a “welfare plus entropy” formula. In the special case of the roommate
problem with one-to-one matching, the characterizations from this paper and from
Peski (2015) coincide.

Appendix A. Number of matchings: proof of Lemma 1

For each (improper) matching µ, define sets

Aµ (t, t′, c) =
{
i : ti = t, tµ(i) = t′, cµ (i) = c

}
.

Sets Aµ (., ., .) are disjoint and |Aµ (t, t′, c)| = Ndµ (t, t′, c). Set Aµ (t, t′, c) consists of
type t individuals who are matched with type t′ individuals and the category of their
match is c.

From now on, we fix the type d ∈ D (α, (βt)). To shorten the notation, for each
t, t′ ∈ T and c ∈ {s, p, b}, we write d (c) instead of ∑t,t′ d (t, t′, c), d (t, ., c) instead of∑
t′ d (t, t′, c) and d (., t′, c) instead of ∑t d (t, t′, c).
The counting of matchings with type d is divided into the following steps.
Different choices of sets Aµ. The number of different ways of dividing the popula-

tion into sets Aµ (t, t′, c) is equal to

∏
t

(
(αtN)!∏

t′,c (Nd (t, t′, c))!

)
. (18a)

Proper matchings between individuals in sets Aµ (t, t′, p) and Aµ (t′, t, p) for t 6= t′.
Any two pairwise matchings between two disjoint sets with the same cardinality can
be obtained from each other by the permutation of the elements of one of the sets.
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For this reason, the number of pairwise matchings between Aµ (t, t′, p) and Aµ (t′, t, p)
is equal to

(Nd (t, t′, p))!.

The number of proper matchings that can be formed by the individuals in set ⋃t6=t′ Aµ (t, t′, p)
so that individuals in Aµ (t, t′, p) match with Aµ (t′, t, p) is equal to

∏
{t,t′}:t6=t′

(Nd (t, t′, p))! =
 ∏

(t,t′):t6=t′
(Nd (t, t′, p))!

1/2

. (18b)

The square root on the right-hand side comes from the fact that each two-element
subset in the product on the left-hand side corresponds to exactly two ordered pairs
on the right-hand side.

Proper matchings between individuals in sets Aµ (t, t, p). If set Aµ (t, t, p) has an
odd number of elements, then there are no pairwise matchings with set Aµ (t, t, p).
Otherwise, for each t, the number of pairwise matchings within population of type
t individuals is not larger to the number of ways of choosing 1

2Nd (t, t, p) indistuin-
guishable pairs from Nd (t, t, p)-element sets, or

((Nd (t, t, p))!)
2 1

2Nd(t,t,p)
((

1
2Nd (t, t, p)

)
!
) = 1 · 3 · ... · (Nd (t, t, p)− 1) ≤ ((Nd (t, t, p))!)1/2 .

The number of proper matchings that can be formed by the individuals in set ⋃tAµ (t, t, p)
so that each type t individual is matched with another type t is not larger than(∏

t

(Nd (t, t, p))!
)1/2

. (18c)

Bad matchings. In order to count the number of bad matchings, notice that each
bad matching can be uniquely represented as a directed graph with the set of nodes
equal to the sets of two copies, “left” and “right”, of badly matched individuals, and
the egdes connecting a “left” copy of i to the “right” copy of j if and only if j = µ (i).
Because µ is a bijection, each “left” node has exactly one outgoing edge, and each
“right” node has exactly one incoming edge.

Each “left” copy of an individual in set Aµ (t, t′, b) is connected to a a “right” node
of type t′ individual that belongs to set

Bµ (t′, t, b) =
{
j : tj = t′, tµ−1(j) = t, cµ (j) = b

}
.



LARGE ROOMMATE PROBLEM WITH NON-TRANSFERABLE RANDOM UTILITY 21

The number of individuals in set Bµ (t′, t, b) is equal to dµ (t, t′, b). The number of
ways of dividing the set of “right” nodes of type t′ individuals into sets Bµ (t′, t, b) is
equal to

∏
t′

(Nd (., t′, b))!∏
t (Nd (t, t′, b))! .

Given the definition of sets Bµ (.), each directed graph corresponds to a (proper)
matching between disjoint sets given that a “left” node in set Aµ (t, t′, b) must be
matched with a “right” node in set Bµ (t′, t, b). The number of such directed graphs
is equal to ∏

t,t′
(Nd (t, t′, b))!.

Thus, the total number of bad matchings between all badly matched individuals is
equal to

∏
t′

(Nd (., t′, b))!∏
t (Nd (t, t′, c))!

∏
t,t′

(Nd (t, t′, b))! =
∏
t′

(Nd (., t′, b))! =
∏
t

(Nβt (d))! (18d)

The last equality follows from (5e).
All matchings. The number of all improper matchings with type d is not larger

than the product of (18a)-(18d):

|M (d)|

≤
∏
t

(
(αtN)!∏

t′,c (Nd (t, t′, c))!

)∏
t,t′

(Nd (t, t′, p))!
1/2∏

t

(Nβt (d))!

=
∏
t

((αtN)! (Nβt (d))!)
(

1∏
t (Nd (t, t, s))!

)(
1∏

t,t′ (Nd (t, t′, p))!

)1/2
∏
t,t′

1
(Nd (t, t′, b))!

 .
(We use the fact that d (t, t′, s) = 0 for t 6= t′ and the convention that 0! = 1.) The
Stirling approximation implies that for each a ∈ [0, 1],

1
N

log (aN)! = a log a+ a (logN − 1) + o (1) ,
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where o (1) does not depend on a ∈ [0, 1]. Thus,
1
N

log |M (d)|

≤
∑
t

αt logαt + logN − 1

+
∑
t

βt (d) log βt (d) + d (b) (logN − 1)

−
∑
t

d (t, t, s) log d (t, t, s)− d (s) (logN − 1)

− 1
2
∑
t,t′
d (t, t′, p) log d (t, t′, p)− 1

2d (p) (logN − 1)

−
∑
t,t′
d (t, t′, b) log d (t, t′, b)− d (b) (logN − 1) + o (1) .

The result follows from the definition of entropy (6) and the fact that d (s) + d (p) +
d (b) = 1.

Appendix B. Proof of Lemma 2

B.1. Preliminary observation. Let F =
{
F t′,θ
t , Ft

}
t,t′,θ

be a regular random utility
model. For each F ∈ F , let V F = dF

dU
(1) denote the associated “welfare” constant.

We use the following observation about regular model F :

Lemma 3. There exist continuous, strictly increasing and continuously differentiable
functions H, h : [0, 1]→ R+ such that h (1) ≤ 1,

h (0) = H (0) = 0,

h′ (0) = H ′ (0) = 1,

h (x) ≤x ≤ H (x) for each x,

and, for each F ∈ F ,

V Fh (1− u) ≤ 1− F (u) ≤ V FH (1− u) , and dF

dU
(u) ≤ V HH ′ (1− u) .

Proof. Let G be a collection of functions G (x) = 1
V F

(1− F (1− x)) for each F ∈ F .
Each G ∈ G is continuous, continuously differentiable, G (0) = 0, and G′ (0) = 1.
Because set G is finite, it follows that there exists functions functions H, h : [0, 1] →
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R+ that have all the required properties stated in the Lemma and such that for each
G ∈ G,

h (x) ≤ G (x) ≤ H (x) , and G′ (x) ≤ H ′ (x) .

�

Let H∗ = maxx∈[0,1]
(

1
h′(x) , H

′ (x)
)
<∞. Let V ∗ = maxF

{
Vt, V

t′,θ
t

}
.

From now on, fix a matching type d ∈ D (α, (βt)). Let β = ∑
t βt. Let S2 =

{{i, j} : i, j ∈ I, i 6= j, (i, j) /∈ R} be the set of all (feasible) match pairs and let S =
S2 ∪ I be the set of all possible matches, that includes match pairs as well as the
possibility of staying alone. Let S (µ) = {{i, µ (i)} : i ∈ I} be the set of matches that
occur in a matching µ. Let B (µ) = {i : µ (µ (i)) 6= i} be the set of badly matched
individuals.

B.2. Overview of the proof. We describe the main steps of the proof, leaving
details for subsequent sections.

In the first step, we derive a bound on the probability p (µ) that a given matching
µ is stable. The idea is to consider first the conditional probability that µ is stable,
conditionally on the realization of the match utilities Uµ(i)

i as well as the match specific
shocks θ{i,j}. Such a probability is a product of the probabilities of independent events:

• for each i such that µ (i) 6= i, the event that JN i.i.d. draws from distribution
Fti is not larger than U

µ(i)
i ,

• for each unmatched pair of individuals {i, j} ∈ S2 \ S (µ), the complement of
the event that both U j

i is larger than Uµ(i)
i and U i

j is larger than U
µ(i)
j ,

• for each badly matched individual i ∈ B (µ), the event that the utility from
the “better” match U

µ−1(i)
i is larger than the utility from the worse match

U
µ(i)
i .

Using approximations from Lemma 3, integrating over the normalized utilities and
match specific shocks, and changing the variables

xi = h
(
1− Uµ(i)

i

)
≈ 1− Uµ(i)

i
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(where the approximation is good for utility values close to the top end of the support
U
µ(i)
i ∼ 1), we obtain the following bound:

Lemma 4. There exists a continuous function a (x) such that a (0) = 0 and for each
N , each matching µ,

p (µ) ≤ J
d(s)N
N

 ∏
{i,j}∈S(µ)

V ti,tj

˙
0≤xi≤1

 ∏
i∈B(µ)

xi
∏
i

(1 + a (xi)) ... (19)

...
∏
i

(1− Vtixi)
JN−1
+

∏
{i,j}∈S2\S(µ)

(
1− V ti,tjxixj

)
+

∏
i

dxi.

(We write (x)+ = max (x, 0).) The expression in the square bracket can be treated
as a function ofN independent and uniformly distributed variablesXi and the integral
is the expectation of such a function.

In the second step, we find a bound on the average probability pN (d) of a stable
matching with type d. The bound has the form of an intergal of an expression that
depends on the average of (normalized) utilities across the population. For each
x : I → [0, 1], each type t, let

xt = 1
αtN

∑
i:ti=t

xi.

Let µm be the probability distribution of the average 1
m

∑m
i=1Xi, where Xi are in-

dependent and uniformly distributed on the interval [0, 1]. We use bound (19) , an
inequality,

∏
i

(1− xi)+ ≤ e−
∑

i
xi

and some algebra to show
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Lemma 5. There exists a continuous function A (x) such that A (0) = 0 and for each
N , each matching type d

pN (d) (20)

≤eN(υN (d)+ 1
2d(s) logN)

·
˙

0≤xt≤1

exp
−N3/2jN

∑
t

Vtαtxt −
1
2N

2 ∑
(t,t′)∈R∗

V t,t′αtxtαt′xt′


· exp

(
N
∑
t

βt log xt +NA

(∑
t

αtxt

))∏
t

dµαtN (xt)

The goal of the third step is to estimate the convergence rate of the integral (20) as
N →∞. We rely on two ideas from the large deviation theory. First, we use the fact
that for large m, the following approximation of measure µm can be used for x ∼ 0:

dµm (x) ≈ em(1+log x).

Second, Varadhan’s Lemma (Ellis (2005)) says that for large m, the value of the
integral grows at the rate of the largest exponent of the integrand:

1
m

log
ˆ
emF (x)dx→ max

x
F (x) .

Using (a careful version of) the above approximations, we can bound the convergence
rate of integral (20) with the solution to a certain maximization problem:

Lemma 6. When N →∞,

1
N

log pN (d) ≤ υN (d) + 1
2d (s) logN + 1 + o (1) (21)

+ max
x.∈[0,1]T

 −N
1/2jN

∑
t Vtαtxt − 1

2N
∑

(t,t′)∈R∗ V
t,t′αtxtαt′xt′

+∑
t (αt + βt) log xt + A (∑t αtxt)

 .
In the fourth step, we find an upper bound on the value of the maximization

problem in (21).
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Lemma 7. There exists a continuous function g : R → R+such that g (x) > 0 for
x > 0 and such that as N →∞,

lim sup
N→∞

max
x.∈[0,1]T

 −N
1/2jN

∑
t Vtαtxt − 1

2N
∑

(t,t′)∈R∗ V
t,t′αtxtαt′xt′

+∑
t (αt + βt) log xt + A (∑t αtxt)


≤− 1−

∑
t

αt logαt −
∑
t

βt log βt −
(1

2d (s) + 1
2d (p) + d (b)

)
logN

− max
δ∈D(α,(β))

[υN (δ) + Entropy (δ) + g (δ (b))] + o (1) .

Lemma 2 follows from Lemmas 6 and 7

B.3. Proof of Lemma 4: Probability that matching µ is stable. Let Θ̃ : S →
Θ be a realization of match-specific shocks. Similarly, let Ũ : I → R denote the
realizations of utilities Uµ(i)

i of agents in their (worse) matches. When the values of
Θ̃ are clear from the context, we write F̃ j

i instead of F tj ,Θ̃{i,j}
ti , and Ṽ j

i instead of
V
tj ,Θ̃{i,j}
ti for each i, j.

B.3.1. Conditional probability given Ũ and Θ̃. First, we estimate the conditional
probability that µ is a stable matching given the realization of match-specific Θ̃ and
utilities Ũ . By conditional independence assumptions, the conditional probability
p
(
µ|Θ̃, Ũ

)
is equal to the product of

• the probability that the individual rationality is preserved for all individuals
who are alone: ∏

i:µ(i)6=i

(
Fti

(
Ũi
))JN

,

• the probability that no unmatched pair {i, j} blocks an existing match:
∏

{i,j}∈S2\S(µ)

(
1−

(
1− F̃ j

i

(
Ũi
)) (

1− F̃ i
j

(
Ũj
)))

, and

• the probability that the utility of badly matched individuals in their “better”
match is not smaller than the utility in the “worse” match:

∏
i∈B(µ)

(
1− F̃ µ−1(i)

i

(
Ũi
))
.
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B.3.2. Conditional probability given Θ̃. The conditional probability p
(
µ|Θ̃

)
that µ

is stable given Θ̃ is equal to the above product integrated over the realization of
utilities Ũ . Conditionally on the realization of match-specific shock, the variables Ũi
are independently distributed with dentisty

dF̃ j
i

(
Ũi
)
if µ (i) 6= i, and

JN
(
Fti

(
Ũi
))JN−1

dFti
(
Ũi
)
if µ (i) = i.

Thus, the conditional probability p
(
µ|Θ̃

)
that µ is stable given Θ̃ is equal to

p
(
µ|Θ̃

)
=
˙

Ũi,i∈I

∏
i:µ(i) 6=i

(
Fti

(
Ũi
))JN  ∏

i∈B(µ)

(
1− F̃ µ−1(i)

i

(
Ũi
))

∏
{i,j}∈S2\S(µ)

(
1−

(
1− F̃ j

i

(
Ũi
)) (

1− F̃ i
j

(
Ũj
)))

(22)

∏
i:µ(i)=i

JN
(
Fti

(
Ũi
))JN−1

dFti
(
Ũi
) ∏
i:µ(i)6=i

dF̃
µ(i)
i

(
Ũi
)
.

B.3.3. Unconditional probability. Let yi = 1− Ũi. Lemma 3, the fact that Fti
(
Ũi
)
≤

1, and equation (22) imply

p
(
µ; Θ̃

)
≤Jd(s)N

N

˙

Ũi,i∈I

∏
i

(1− Vtih (yi))JN−1 ∏
{i,j}∈S2\S(µ)

(
1− Ṽ j

i Ṽ
i
j h (yi)h (yj)

)
 ∏
i∈B(µ)

Ṽ
µ−1(i)
i H (yi)

 ∏
i:µ(i)=i

Vti
∏

i:µ(i)6=i
Ṽ
µ(i)
i

∏
i

H ′ (yi) dyi.

Because the match shocks are independent, and V ti,tj = ∑
θ Φti,tj (θ) Ṽ j

i Ṽ
j
j , we obtain

p (µ) ≤Jd(s)N
N

 ∏
i:µ(i)=i

Vti
∏

{i,j}∈S2∩S(µ)
V ti,tj


˙

0≤yi≤1,i∈I

∏
i

(1− Vtih (yi))JN−1 ∏
{i,j}∈S2\S(µ)

(
1− V ti,tjh (yi)h (yj)

)
 ∏
i∈B(µ)

H (yi)
∏

i

H ′ (yi) dyi.
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By another change of variables xi = h (yi), the value of the integral from the above
expression is not larger than

≤
˙

0≤xi≤h(1),i∈I

∏
i

(1− Vtixi)
JN−1 ∏

{i,j}∈S2\S(µ)

(
1− V ti,tjxixj

) ∏
i∈B(µ)

xi

 (23)

∏
i

max
(

1, H (h−1 (xi))
xi

)∏
i

(
H ′ (h−1 (xi))
h′ (h−1 (xi))

)
dxi.

Let
a (x) =

(
max

(
1, H (h−1 (x))

x

))
H ′ (h−1 (x))
h′ (h−1 (x)) − 1 for x > 0,

and a (0) = 0. By properties of functions h and H listed in Lemma 3, a (x) is contin-
uous. Lemma 4 follows from the fact that h (1) ≤ 1.

B.4. Proof of Lemma 5: Average probability that a matching of type d is
stable. The proof follows from (19) and the subsequent observations. First, observe
that

1
N

log Jd(s)N
N

 ∏
i:µ(i)=i

Vti
∏

{i,j}∈S2∩S(µ)
V ti,tj


=d (s) log JN + 1

N

 ∑
i∈S(µ)\S2

log Vti +
∑

{i,j}∈S(µ)∩S2

log V ti,tj


=d (s)

(
log jN + 1

2 logN
)

+
∑
t

d (t, t, s) log Vt + 1
2
∑
t,t′
d (t, t′, p) υt,t′ +

∑
t,t′
d (t, t′, b) υt,t′

=υN (d) + 1
2d (s) logN.

Lemma 8. For each d,

1
|M (d)|

∑
µ∈M(d)

 ∏
i∈B(µ)

xi

 ≤∏
t

xβtNt .

Proof. Let Bt be a collection of subsets B ⊆ {i : ti = t} of type t individuals such
that |B| = βt. Symmetry implies that

1
|M (d)|

∑
µ∈M(d)

 ∏
i∈B(µ)

xi

 =
∏
t

1
|Bt|

∑
B∈Bt

(∏
i∈B

xi

)
≤
∏
t

 1
αtN

∑
i:ti=t

xi

βt(d)N

.

The last inequality follows from the Newton multinomial formula. �
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Lemma 9. There exist a constant K <∞, such that for all N , for all x ∈ [0, 1]N

log
max

∏
i

(1− Vtixi)
JN−1 ∏

{i,j}∈S2\S(µ)

(
1− V ti,tjxixj

)
, 0


≤ −JN
∑
t

Vtαtxt −
1
2N

2 ∑
(t,t′)∈R∗

V t,t′αtxtαt′xt′ +KN
∑
t

αtxt.

Proof. First, notice that log (1− x) ≤ −x. Thus,

log
[∏
i

(1− Vtixi)
JN−1

]
≤− (JN − 1)

∑
i

Vtixi ≤ −JN
∑
t

Vtαtxt + V ∗αtxt,

and

log
 ∏
{i,j}∈S2\S(µ)

(
1− V ti,tjxixj

) ≤− ∑
{i,j}∈S2\S(µ)

V ti,tjxixj ≤ −
∑

{i,j}∈S2

V ti,tjxixj +
∑

{i,j}∈S(µ)∩S2

V ti,tjxixj.

Second, observe that

−
∑

{i,j}∈S2

V ti,tjxixj =− 1
2

∑
(t,t′)∈R∗

V t,t′ (Nαtxt) (Nαt′xt′) + 1
2
∑
t

V t,t

∑
i:ti=t

x2
i

 .
Third, because xi ∈ [0, 1] for all i, which implies that xixµ(i) ≤ xi, we have∑

{i,j}∈S(µ)∩S2

V ti,tjxixj ≤V ∗
∑

{i,j}∈S(µ)∩S2

xixj ≤ V ∗
∑
i

xixµ(i)

≤V ∗
∑
i

xi = V ∗
∑
t

Nαtxt.

Similarly, we show that

1
2
∑
t

Vt

∑
i:ti=t

x2
i

 ≤ 1
2V
∗∑

t

∑
i:ti=t

xi


≤ 1

2V
∗∑

t

αtxt.

The Lemma follows from the above inequalities. �

Lemma 10. There exists a continuous increasing function b : [0, 1] → R+ such that
b (0) = 0 and for each N , each t

∏
i

(1 + a (xi)) ≤ exp
(
Nb

(∑
t

αtxt

))
.
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Proof. We assume w.l.o.g. that a (1) > 1. For each y > 0, let b (y) be defined as a
unique solution b ≥ 2a (1) y to the equation

a (1) 1
a−1

(
b
2

)x = b

2 .

Because the left-hand side is strictly decreasing in b and the right-hand side is strictly
increasing, it is clear that the solution exists. Moreover, one shows that the solution
is continuous in y, and that limy→0 b (0) = 0.

Fix x1, ..., xN ∈ [0, 1], and let x = 1
N

∑
i xi. Observe that for each c, c |{i : xi ≥ c}| ≤∑

xi, which implies that

1
N
a−1

(
b (x)

2

) ∣∣∣∣∣
{
i : xi ≥ a−1

(
b (x)

2

)}∣∣∣∣∣ ≤ 1
N

∑
i

xi = x.

It follows that

1
N

∑
i

a (xi) ≤
b (x)

2 + 1
N
a (1)

∣∣∣∣∣
{
i : xi ≥ a−1

(
b (x)

2

)}∣∣∣∣∣
≤ b (x)

2 + a (1) 1
a−1

(
b(x)

2

)x = b (x) .

The result follows from the fact that ∏i (1 + a (xi)) ≤ exp 1
N

∑
i a (xi) . �

Finally, let

A (x) = Kx+ b (x) .

Function A (.) is continuous and A (0) = 0 by Lemma 10.

B.5. Proof of Lemma 6: Large deviation bound. The result follows from equa-
tion (20) and the following result.

Lemma 11. For any continuous function h : [0, 1]k → R of k <∞ variables,

log
ˆ

0≤x1,...,xk≤1

h (x1, ..., xk) dµm1 (x1) ...dµmk (xk)

≤
∑
k

log 2mk +
∑
k

mk + max
0≤x1,...,xk≤1

(
log h (x1, ..., xk) +

∑
k

(mk − 1) log xk
)
.
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Lemma 11 is a version of the Varadhan’s Lemma from large deviations theory (see
for example, Theorem II.7.1. in Ellis (2005)). The Varadhan’s Lemma establishes
asymptotic upper and lower bound on the values of certain sequences of integrals.
Here, we need a proper (and not just asymptotic) upper bound.

Proof. Assume first that k = 1. We are going to show that

ˆ

0≤x≤1

h (x) dµm (x) ≤ 2mem max
0≤x≤1

(
h (x)xm−1

)
.

For each probability measure µ on [0, 1], any function f : [0, 1] → R, let Eµf =´ 1
0 f (x) dµ (x) denote the expected value of f with respect to measure µ. Notice that

µm (x ≤ x0) = µm
(
e−mx/x0 ≥ e−m

)
≤ emEµme

−mx/x0 (24)

= em
(
Eλe

−x/x0
)m
≤ emxm0 , (25)

where λ is the Lebesgue measure on the interval [0, 1]. (The first inequality is a
version of Markov’s inequality. The second equality comes from the fact that µm is
a probability distribution of the average x = 1

m

∑
xi of m i.i.d. variables. The last

equality comes from the fact that Eλe−x/x0 =
´ 1

0 e
− 1
x0
x
dx ≤ x0.) Take any function

h () and let h∗ (x) = maxy≥x h (y) be the smallest decreasing function, not smaller
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than h (.). By integration by parts,

Eµmh (x) ≤ Eµmh
∗ (x)

=
1ˆ

0

h∗ (x) dµm (x)

=
1ˆ

0

(
− (h∗)′ (y)

)
µm (x ≤ y) dy + h∗ (1)

≤ em
1ˆ

0

(
− (h∗)′ (x)

)
xmdx+ h∗ (1)

= emm

1ˆ

0

h∗ (x)xm−1dx− (em − 1)h∗ (1)

≤ 2emmmax
x

h∗ (x)xm−1 = 2emmmax
x

h (x)xm−1.

The multi-variable case k ≥ 1 follows from induction on k and a repeated application
of single-variable case k = 1:

ˆ

0≤x1,...,xk≤1

h (x1, ..., xk) dµm1 (x1) ...dµmk (xk)

=
ˆ

0≤xk≤1


ˆ

0≤x1,...,xk−1≤1

h (x1, ..., xk−1, xk) dµm1 (x1) ...dµmk−1 (x1)

 dµmk (xk)

≤
k−1∏
l=1

(2ml) e
∑k−1

l=1 ml

ˆ

0≤xk≤1

((
max

0≤x1,...,xk−1≤1

(
h (x1, ..., xk−1, xk)

k−1∏
l=1

xml−1
l

)))
dµmk (xk)

=
k−1∏
l=1

(2ml) e
∑k−1

l=1 ml (2mk) emk
(

max
0≤xk≤1

(
max

0≤x1,...,xk−1≤1

(
h (x1, ..., xk)

k−1∏
l=1

xml−1
l

)
xmk−1
k

))

=
k∏
l=1

(2ml) e
∑k

l=1 ml max
0≤x1,...,xk≤1

(
h (x1, ..., xk)

k∏
l=1

xml−1
l

)
.

�
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B.6. Proof of Lemma 7: Maximization. First, notice that by changing variables
xt = N−1/2yt, the maximization problem in (21) turns into

max
yt≥0

 −jN
∑
t Vtαty − 1

2
∑

(t,t′)∈R∗ V
t,t′αtytαt′yt′

+∑
t (αt + βt) log yt + A

(
N−

1
2
∑
t αtyt

)
− 1

2
∑

(αt + βt) logN. (26)

Note that ∑ (αt + βt) = d (s) + d (p) + 2d (b).
Second, because A is a continuous function such that A (0) = 0, notice that as

N →∞, the value of the maximization problem in (26) converges to

→ max
yt≥0

−jN∑
t

Vtαtyt −
1
2

∑
(t,t′)∈R∗

V t,t′αtytαt′yt′ +
∑
t

(αt + βt) log yt

 . (27)

Third, we show that

Lemma 12. For each δ ∈ D (α, (βt)), the value of problem (27) is not larger than

− 1−
∑
t

(αt + βt) logαt −
[
υN (δ) + E0 (δ) + δ (b)

]
,

where

E0 (d) =−
∑
t

d (t, t, s) log d (t, t, s)

− 1
2

∑
(t,t′)∈R∗

(d (t, t′, p) + 2d (t, t′, b)) log ((d (t, t′, p) + 2d (t, t′, b)) + 1) .

Proof. Observe first that for each δ ∈ D (α, (βt)), each type t

δ (t, t, s)+
∑

t′:(t,t′)∈R
(δ (t, t′, p) + 2δ (t, t′, b)) = δ (t, t, s)+

∑
t′:(t,t′)∈R

(δ (t′, t, p) + 2δ (t′, t, b)) = αt+βt.

(28)
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Thus,

− jN
∑
t

Vtαtyt −
1
2

∑
(t,t′)∈R∗

V t,t′αtαt′ytyt′ +
∑
t

(αt + βt) log yt

=− jN
∑
t

Vtαtyt −
1
2

∑
(t,t′)∈R∗

V t,t′αtαt′ytyt′ +
∑
t

δ (t, t, s) log yt+

+
∑

(t,t′)∈R∗

(1
2δ (t, t′, p) + δ (t, t′, b)

)
log yt +

∑
(t,t′)∈R∗

(1
2δ (t, t′, p) + δ (t, t′, b)

)
log yt′

=− jN
∑
t

Vtαtyt +
∑
t

δ (t, t, s) log yt

− 1
2

∑
(t,t′)∈R∗

V t,t′αtαt′ytyt′ +
∑

(t,t′)∈R∗

(1
2δ (t, t′, p) + δ (t, t′, b)

)
log ytyt′

=
∑
t

δ (t, t, s)
(
− jNVtαt
δ (t, t, s)yt + log yt

)

+
∑

(t,t′)∈R∗

(1
2δ (t, t′, p) + δ (t, t′, b)

)(
− αtαt′V

t,t′

δ (t, t′, p) + 2δ (t, t′, b)ytyt
′ + log ytyt′

)

≤
∑
t

δ (t, t, s)
(
−1− log

(
jNVtαt
δ (t, t, s)

))

+
∑

(t,t′)∈R∗

(1
2δ (t, t′, p) + δ (t, t′, b)

)(
−1− log

(
αtαt′V

t,t′

δ (t, t′, p) + 2δ (t, t′, b)

))
,

where the last line follows from the fact that −ax + log x ≤ − log a − 1. for any
a, x > 0. By the identity (28) and the definition of functions υN and E0, the latter is
equal to

=−
(
δ (s) + 1

2δ (p) + δ (b)
)
− υN (δ)

+
∑
t

δ (t, t, s) log δ (t, t, s) + 1
2

∑
(t,t′)∈R∗

(δ (t, t′, p) + 2δ (t, t′, b)) log (δ (t, t′, p) + 2δ (t, t′, b))

−
∑
t

δ (t, t, s) logαt −
∑

(t,t′)∈R∗

(1
2δ (t, t′, p) + δ (t, t′, b)

)
(logαt + logαt′) .

The expression in the bracket in the first line is equal to −1 + 1
2δ (p) due to (5a).

The last line is equal to −∑t (αt + βt) logαt due to (5d) , (5e) and (5a). The result
follows. �
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Fourth, we show that

Lemma 13. There exists a continuous function g : R → R+such that g (x) > 0 for
x > 0 and for each δ ∈ D (α, (βt)),

−E0 (δ) ≤ −Entropy (δ) + δ (b) +
∑
t

βt logαt −
∑
t

βt log βt − g (δ (b)) .

Proof. For each χ ≥ 0, let

l (χ) = −χ logχ.

Then, l (.) is a concave function such that l (1) = 0. For future use, notice that for
each a, χ ≥ 0,

l (aχ) = χl (a) + al (χ) . (29)

Also, define

f (ξ) = 1
2 l (1− ξ)−

1
2 l (1 + ξ)− ξ (30)

Observe that f (0) = 0 and f (.) is strictly decreasing and strictly concave.
For each t, t′, define

a (t, t′) = δ (t, t′, p) + δ (t, t′, b) ,

ξ (t, t′) = 1
a (t, t′)δ (t, t′, b) .

Then, for each δ ∈ D (α, (βt)),

Entropy (δ) =− 1
2δ (p)− δ (b)−

∑
t

d (t, t, s) log d (t, t, s)

+ 1
2

∑
(t,t′)∈R∗

(l (δ (t, t′, p)) + 2l (δ (t, t′, b)))

=− 1
2δ (p)− δ (b)−

∑
t

d (t, t, s) log d (t, t, s)

+
∑

(t,t′)∈R∗

(1
2 l (a (t, t′) (1− ξ (t, t′))) + l (a (t, t′) ξ (t, t′))

)
,
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and

E0 (δ) =− 1
2δ (p)− δ (b)−

∑
t

d (t, t, s) log d (t, t, s)

+ 1
2

∑
(t,t′)∈R∗

(l (δ (t, t′, p) + 2δ (t, t′, b)))

=− 1
2δ (p)− δ (b)−

∑
t

d (t, t, s) log d (t, t, s)

+
∑

(t,t′)∈R∗

1
2 l (a (t, t′) (1 + ξ (t, t′))) .

Moreover, ∑
t

βt =
∑

(t,t′)∈R∗
a (t, t′) ξ (t, t′) .

It follows that

Entropy (δ)− E0 (δ)−
∑
t

βt =
∑

(t,t′)∈R∗
a (t, t′) f (ξ (t, t′)) +

∑
(t,t′)∈R∗

a (t, t′) l (ξ (t, t′)) .

Using (29), (30), the concavity of f and l, and the fact that ∑t′:(t,t′)∈R∗
a(t,t′)
αt

ξ (t, t′) =
βt
αt
, we obtain that the latter is not larger than

≤ (δ (p) + δ (b))
∑

(t,t′)∈R∗

a (t, t′)
δ (p) + δ (b)f (ξ (t, t′)) +

∑
(t,t′)∈R∗

a (t, t′) l (ξ (t, t′))

≤ (δ (p) + δ (b)) f (δ (b)) +
∑
t

αt
∑

t′:(t,t′)∈R∗

a (t, t′)
αt

l (ξ (t, t′))

≤ (δ (p) + δ (b)) f (δ (b)) +
∑
t

αtl

(
βt
αt

)

= (δ (p) + δ (b)) f (δ (b))−
∑
t

αt
β

αt
log

(
βt
αt

)

≤δ (b) f (δ (b)) +
∑

βt logαt −
∑
t

βt log βt.

The last equality follows from the fact that f (δ (b)) ≤ 0. Let g (x) = −xf (x). �
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