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Abstract

We explore the learning process and behavior of an individual with unrealistically high

expectations about ability (“overconfidence”) when outcomes also depend on an external fun-

damental that affects the optimal action. Moving beyond existing results in the literature, we

show that the agent’s belief regarding the fundamental converges under weak conditions. Fur-

thermore, we identify a broad class of situations in which “learning” about the fundamental is

self-defeating: it leads the individual systematically away from the correct belief and toward

lower performance. Due to her overconfidence, the agent—even if initially correct—becomes

too pessimistic about the fundamental. As she adjusts her behavior in response, she lowers

outcomes and hence becomes even more pessimistic about the fundamental, perpetuating the

misdirected learning. The greater is the loss from choosing a suboptimal action, the further the

agent’s action ends up from optimal. We argue that the decision situations in question are com-

mon in economic settings, including delegation, organizational, public-policy, and labor-leisure

choices. We partially characterize environments in which self-defeating learning occurs, and

show that the decisionmaker is indistinguishable from a rational agent if, and in some cases only

if, a specific non-identifiability condition is satisfied. In contrast to an overconfident agent, an

underconfident agent’s misdirected learning is self-limiting and therefore not very harmful.
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support under Starting Grant #313341. Part of this research was carried out while Heidhues and Kőszegi visited the
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1 Introduction

Large literatures in psychology and economics suggest that in many situations, individuals have

unrealistically positive beliefs about their traits or prospects, and researchers have began to inves-

tigate the nature of this “overconfidence” and study its implications for economic interactions.1

One important question concerning individuals with overconfident or otherwise biased beliefs is

how they update these beliefs when relevant information comes in. Indeed, classical results identify

conditions under which learning leads to correct beliefs (e.g., Savage, 1954, Chapter 3), and more

recent research explores ways in which a biased learning process can lead to overconfident beliefs

(e.g., Gervais and Odean, 2001, Chiang, Hirshleifer, Qian and Sherman, 2011).

With overconfident individuals, however, interesting and potentially important learning ques-

tions arise not only regarding the overconfident beliefs themselves, but also regarding other variables—

simply because overconfidence affects inferences about other variables. For example, if a team

member is overly full of herself and is hence disappointed by her team’s performance, she might

conclude that her teammates are less talented or lazier than she thought—and this can affect her

perceived optimal behavior, such as how much work to delegate to others.

In this paper, we investigate an individual’s learning process and behavior when outcomes

depend both on a factor that she is overconfident about and on an additional fundamental that

affects the optimal action. Moving beyond existing results in the literature, we show that the

agent’s belief regarding the fundamental converges under weak conditions. Furthermore, we identify

a broad and economically important class of situations in which the agent’s inferences regarding

the fundamental are self-defeating: they lead her systematically away from the correct belief and

toward lower performance. Continuing with the team-production example, as the overconfident

team member becomes unduly pessimistic about her teammates, she increases her control of the

team, lowering team performance. She misinterprets this low performance as reflecting even more

negatively on her teammates, perpetuating the misdirected learning further. Perversely, the greater

is the loss from choosing a suboptimal action, the further the agent’s action ends up from optimal.

We partially characterize environments in which self-defeating learning occurs, and show that the

1 We use the term “overconfidence” to mean broadly any unrealistic beliefs, especially about ability or other
important personal characteristics, that lead a person to expect good outcomes. The same expression is often used
more specifically to denote overly narrow confidence intervals (Moore and Healy, 2008). We review evidence for and
theoretical work on overconfidence in Section 5.
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decisionmaker is indistinguishable from a rational agent if, and in some cases only if, a specific

non-identifiability condition is satisfied. In contrast to an overconfident agent, an underconfident

agent’s misdirected learning is self-limiting and therefore not very harmful.

We present our framework in Section 2.1. In each period t ∈ {1, 2, 3, . . . }, the agent produces

observable output qt = Q(et, a, bt), which depends on her action et, her ability or other output-

relevant parameter a, and external conditions bt beyond her control. We assume that Q is increasing

in a and bt, and that the optimal action is increasing in bt.
2 The states bt are independent normally

distributed random variables with mean equal to a fixed fundamental Φ and precision equal to hε.

The agent does not directly observe Φ or bt, but attempts to learn about them from her observations

and to adjust her action optimally in response. Crucially, the agent is overconfident: while her true

ability is A, she believes with certainty that it is ã > A.

In Section 2.2, we argue that beyond team production, this reduced-form model captures a

number of economically important situations in which individuals may be overconfident. A person

may not know how much of a certain activity, such as work or training, maximizes well-being or

performance. A principal may not know the optimal level of control or explicit incentives for her

employees. And a policymaker may not know what scale of intervention, such as regulations in an

industry or restrictions on drug use, leads to the best outcomes.

In Section 3, we study the limit version of our model in which noise vanishes (hε → ∞),

beginning in Sections 3.1 and 3.2 with identifying our central mechanism, summarizing a variety

of casual evidence for it, and discussing key economic implications. To illustrate in a specific case,

suppose for a moment that the optimal action does not depend on ability, and that the agent starts

off with the correct mean belief about the fundamental, taking the optimal action. Yet because she

is overconfident, the output she obtains is to her unexpectedly low. To explain this observation,

she concludes that the fundamental is lower than she thought, and adjusts her action accordingly.

But because she now takes a suboptimal action, her output—instead of achieving the optimum she

was expecting to reach by the adjustment—falls. As a result, she becomes even more pessimistic

about the fundamental, continuing the vicious circle of self-defeating learning.

More generally, we establish that for any prior, the agent’s belief regarding the fundamental

changes monotonically over time and converges to a—not necessarily unique—limiting belief that

2 Note that so long as these effects are monotonic, the above assumptions are just normalizations.
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is below the true fundamental. Similarly to Esponda and Pouzo (forthcoming), the limiting belief

has the intuitive consistency property that—given her false beliefs and her action induced by these

beliefs—the level of output the agent expects coincides with the level of output she produces.

Furthermore, the agent’s limiting belief satisfies a surprising and perverse comparative static: the

more important it is for her to take the right action—that is, the greater is the loss from a suboptimal

action—the further her belief and behavior end up from optimal. Intuitively, when choosing a

suboptimal action is more harmful, the agent hurts herself more through her misguided learning.

To develop a consistent theory of her observations, therefore, she must become more pessimistic

about the world.

We also consider what happens if—such as when a dissatisfied team member can replace her

teammate—the agent can choose between the above task and an outside option. Consistent with

the literature on overconfidence, the agent might be too prone to enter into and initially persist

in the task. In contrast to received wisdom, however, our model predicts that the agent’s growing

pessimism about the fundamental may induce her to exit the task too easily, and by implication

to jump too much between tasks. This prediction is consistent with the observation that many

documented effects of overconfidence in economic settings, such as the pursuit of mergers and

innovations by overconfident CEOs or the creation of new businesses by overconfident entrepreneurs,

pertain to new directions.

In Section 3.3, we partially characterize the conditions on Q under which self-defeating mis-

guided learning—self-defeating in the sense that the ability to update her action based on what she

has learned makes an agent with an approximately correct prior about the fundamental worse off—

does versus does not occur. Roughly, self-defeating learning occurs if the optimal action depends

on the fundamental, and either depends sufficiently less on ability, or does so in the opposite way.

As a conceptually interesting case, we show that the agent’s behavior is always indistinguishable

from someone’s with a correct belief about ability, and therefore optimal, if and only if output has

the form Q(et, B(a, bt))—that is, ability and the fundamental are not separately identifiable. This

conclusion contrasts with the lesson from classical learning settings that non-identifiability hinders

efficient learning. Intuitively, because ability and the fundamental do not have independent effects

on output, the agent’s misinference about the fundamental can fully compensate her overconfidence,

and hence overconfidence does not adversely affect her. If her team’s output depends on her effort
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and the team’s total ability, for instance, she is able to correctly infer total ability, and chooses

effort optimally.

In Section 3.4, we compare underconfident agents (for whom ã < A) to overconfident agents

when output has the simple form Q(et, a, bt) = a+bt−L(|et−bt|) for a loss function L. We identify

an interesting asymmetry: while an overconfident agent’s utility loss from misguided learning can

be an arbitrarily large multiple of her overconfidence ã − A, an underconfident agent’s limiting

utility loss is bounded by her underconfidence A− ã. To understand the intuition, consider again

an agent who starts off with a correct initial belief about the fundamental. Upon observing a better

performance than she expected, the underconfident agent concludes that the fundamental is better

than she thought, and revises her action. The resulting utility loss, however, leads her to reassess

her first optimistic revision of her belief, bringing her belief back toward the true fundamental.

In this sense, her misinference regarding the fundamental—which with overconfidence was self-

reinforcing—is now self-correcting.

In Section 4, we consider the version of our model with non-trivial noise. We use tools from

stochastic approximation theory to show that under weak conditions on Q, the agent’s belief con-

verges with probability one to a point where the external conditions b̃t that the agent thinks she

has observed on average equal to her belief about the fundamental. Within our setting, this con-

vergence result substantially supersedes previous ones in the literature, including those of Berk

(1966)—where the agent does not make decisions based on her beliefs—and Esponda and Pouzo

(forthcoming)—where convergence to stable beliefs is established only for nearby priors and in ex-

pectation approximately optimal actions. Even with convergence guaranteed, however, with noise

the agent’s limiting belief depends in a complicated way on the shape of Q. While our results are

therefore weaker than in the noiseless case, we confirm the main mechanisms above also in this

version of our model.

In Section 5, we relate our paper to the two big literatures our paper connects, that on over-

confidence and that on learning with misspecified models. From a methodological perspective, our

model is a special case of Esponda and Pouzo’s (forthcoming) framework for games when players

have misspecified models. Because we have an individual-decisionmaking problem with a specific

structure, we can derive novel and economically important results that are not possible in the

general framework. In particular, we are unaware of previous research studying the implications
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of overconfidence for inferences about decision-relevant other variables, and how these inferences

interact with behavior. In addition, to our knowledge our paper is the only one to analyze an

individual-decisionmaking problem that features systematic self-defeating learning.

In Section 6, we conclude by discussing some potential applications of our framework for multi-

person situations, and by pointing out limitations of our approach. Most importantly, our assump-

tion that the agent has a degenerate overconfident belief about ability prevents us from studying

whether and how the forces we identify interact with the forces that generate widespread overcon-

fident beliefs in the population.

2 Learning Environment

In this section, we introduce our basic framework, outline possible economic applications of it, and

perform a few preliminary steps of analysis.

2.1 Setup

In each period t ∈ {1, 2, 3, . . . }, the agent produces observable output qt ∈ R according to the twice

differentiable output function Q(et, a, bt), which depends on her action et ∈ (e, e), her ability a ∈ R,

and an unobservable external state bt ∈ R beyond her control.3 We assume that bt = Φ + εt, where

Φ is an underlying fixed fundamental and the εt are independent normally distributed random

variables with mean zero and precision hε. The agent’s prior is that Φ is distributed normally with

mean φ̃0 and precision h0.

Throughout the paper, we impose the following largely technical assumptions on Q:

Assumption 1 (Technical Assumptions). (i) Qee < 0 and is bounded, and lime→eQe(e, a, bt) >

0 > lime→eQe(e, a, bt) for all a, bt; (ii) Qa and Qb are bounded from above and below by positive

numbers; (iii) Qeb > 0; (iv) Qeb/|Qee| is bounded from above and Qea is bounded from below.

Part (i) guarantees that there is always a unique myopically optimal action. Part (ii) implies

that output is increasing in the state and ability, and Part (iii) implies that the optimal action is

increasing in the state. Note that so long as the effects implied by Parts (ii) and (iii) are monotonic,

3 In Footnote 10 and Proposition 8, we use output functions with kinks. In the latter case, it is not immediately
obvious that the methods we develop for the differentiable case apply, so we prove convergence of the agent’s belief
directly.
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our directional assumptions on them are just normalizations. We use the bounds on the derivatives

of Qa and Qb for our proof that the agent’s belief converges, and the positive lower bound on Qb

also guarantees that the agent can always find an explanation for her observations. Finally, the

bounds in Part (iv) ensure that the agent’s action and inference are Lipschitz continuous in her

belief.

While the above assumptions are technical, the following one is substantial: it is a sufficient

condition for self-defeating misguided learning to occur.

Assumption 2 (Sufficient Condition for Self-Defeating Learning). Qea ≤ 0.

Assumption 2 implies that an increase in ability either has no effect on the optimal action, or

its effect is opposite to that of the state. We explore the implications of misguided learning under

this assumption, and also study what happens when the assumption is not satisfied.

Crucially, we assume that the agent is overoptimistic about her ability: while her true ability

is A, she believes with certainty that it is ã > A. Let ∆ = |A − ã| denote the degree of the

agent’s overconfidence. Given her inflated self-assessment, the agent updates her belief about the

fundamental in a Bayesian way, and chooses her action in each period to maximize perceived

discounted expected output.

We specify the agent’s belief about ability as degenerate for two main reasons. Technically,

the assumption is invaluable for tractability. If the decisionmaker was uncertain about ability

in addition to the fundamental, we would have a multi-dimensional updating problem that also

features an experimentation motive, and we do not know how to analyze this complicated problem.

Nevertheless, continuity suggests that even if the agent was somewhat uncertain about ability

and her true ability was in the support of her prior, the mechanism of our model would remain

operational, albeit only for a while.

Perhaps more importantly, we view an assumption of overconfident beliefs that are not updated

downwards as broadly realistic. Quite directly, such an assumption is consistent with the view of

many psychologists that individuals are extremely reluctant to revise self-views downwards (e.g.,

Baumeister, Smart and Boden, 1996). More generally, this kind of assumption can be thought of

as a stand-in for forces explored in the psychology and economics literatures (but not explicitly

modeled here) that lead individuals to maintain unrealistically positive beliefs. Viewed from this

perspective, any model in which the agent eventually learns her true ability contradicts observed
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widespread overconfidence among individuals who have had plenty of opportunity to learn about

themselves. Of course, as we emphasize in the conclusion, it would be interesting to study how the

forces maintaining overconfidence interact with the forces we explore.

Consistent with the above arguments, in describing and discussing our model and results we

interpret a as ability and Φ as an external feature of the world. But more broadly, a could stand for

any variable—possibly an external one—that leads the agent to be steadfastly and unrealistically

optimistic about her prospects, and Φ could stand for any variable—possibly an internal one—

about which the agent is willing to draw inferences. For example, she may have overly positive

views about her country or organization; and she may be willing to draw inferences about internal

skills that are not central to her self-esteem (e.g., mathematical talent for an athlete).

2.2 Applications

In this section, we argue that several economically important settings fit our reduced-form model

of Section 2.1. In each of these settings, it seems plausible to assume that the agent has unrealistic

expectations regarding what can be achieved, and (consistent with Assumption 2) the optimal

action is either much more sensitive to the state than to ability, or depends on ability in the

opposite way than on the state.

Delegation. The decisionmaker is working in a team with another agent, and must decide how

much of the work to delegate. The output of the team is Q(et, a, bt) = af(et) + btg(et), where

et ∈ (0, 1) is the proportion of the job the decisionmaker delegates, bt is the teammate’s ability,

and f(e), g(e) > 0, f ′(e), f ′′(e), g′′(e) < 0, g′(e) > 0. Then, the higher is the decisionmaker’s ability

and the lower is the teammate’s ability, the lower is the optimal amount of delegation.

Control in Organizations. A principal is deciding on the incentive system to use for an agent who

chooses two kinds of effort, overt effort xot (e.g., writing reports) and discretionary effort xdt (e.g.,

helping others in the organization). The principal can incentivize overt effort, for instance through

monitoring (e.g., requiring and reading reports) or explicit incentives written on an objective signal

of overt effort. For simplicity, we assume that the principal chooses xot directly. Consistent with

the literature on multitasking starting with Holmström and Milgrom (1991), we also assume that

discretionary effort is a decreasing function of overt effort. In addition, we suppose that discre-

tionary effort is an increasing function of the agent’s intrinsic motivation bt. Writing discretionary
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effort as xdt = xd(xot , bt), the principal’s profit is R(a, xot , x
d(xot , bt)), where a is the quality of the

organization, the principal’s ability, or other factor affecting overall productivity. Supposing that

the optimal overt effort is decreasing in intrinsic motivation,4 this model reduces to our setting

with Q(et, a, bt) = R(a,−et, xdt (−et, bt)).
An alternative interpretation of the same framework is that xot is the agent’s “mechanical” input

into the organization, xdt is her “creative” input, and bt is her ability. In this interpretation, creative

input depends on creative effort—which is a substitute to overt effort—and ability.

Public policy. A policymaker is choosing a policy et to maximize the performance of some aspect

of the economy, Q(et, a, bt) = a+ bt−L(et− bt), where bt is the optimal policy, L(et− bt) is the loss

from a potentially suboptimal choice, and a is the policymaker’s ability or her party’s or country’s

potential. Several specific examples broadly fit these features.

First, suppose that qt is the health outcomes of the population, and bt is a measure of the

prevailing quality of the healthcare market, which depends on factors such as adverse selection,

externalities, and private decisionmakers’ conflicts of interest. The policymaker’s goal is to align

the amount of deregulation, et, with the optimal level. More widespread problems with the market

mean greater optimal regulation, so that et is increasing in bt.

A second relevant example is drug policy. Suppose that qt is the well-being of the population

in relation to drug-related crime, bt is the underlying condition of the population with respect to

drug use, and et is the degree of drug liberalization. The extent of restrictions must be optimally

aligned with underlying conditions to minimize drug-related crime.

Military policy aimed at minimizing attacks on the army in an occupied enemy region provides

a third example. Suppose qt measures the well-being of the army, which is a decreasing function

of the level of attacks, bt is the friendliness of the local population, and et is the level of restraint

in engagement. The friendlier is the local population, the higher is the optimal level of restraint in

engagement.

Work and Social Status. A person’s social status is given by a + f(et, bt), where a is how

likable she is, et is the amount of leisure she takes, and bt captures the social norm for work or

consumption, with higher bt corresponding to a lower norm. We assume that f is increasing in bt

and decreasing in et, and that fe(et, bt) is increasing in bt. This means that the more the agent

4 One simple functional form capturing our discussion is R(a, xot , x
d
t (x

o
t , bt)) = a + xot + xdt (x

o
t , bt), where the

discretionary effort function satisfies
∂xdt (xot ,bt))

∂xot
< 0,

∂xdt (xot ,bt))

∂bt
> 0, and

∂2xdt (xot ,bt))

∂xot ∂bt
< 0.
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works or consumes, the greater is her social status, but the higher is the norm, the lower is her

social status. Furthermore, the higher is the norm for work, the greater is the marginal social-status

return of work. The agent’s overall happiness or life satisfaction is Q(et, a, bt) = a+f(et, bt)+b(et),

where b(et) is her utility from leisure.5

2.3 Preliminaries

We begin the analysis of our model by noting a few basic properties. After observing output qt

generated by the realized state bt, the agent believes that the realized state was a b̃t satisfying

Q(et, ã, b̃t) = qt = Q(et, A, bt) . (1)

By Assumption 1, there is a unique b̃t satisfying Equation 1. Since bt does not depend on et,

therefore, the agent believes that whatever action she chooses, she will infer the same signal b̃t about

Φ. This implies that she chooses her action in each period to maximize that period’s perceived

expected output. In addition, since the agent believes that b̃s ∼ N (Φ, h−1
ε ), at the end of period

t ≥ 1 she believes that Φ is distributed with mean

φ̃t =
t∑

s=1

hεb̃s + h0φ̃0

thε + h0
(2)

and precision h0 + thε. Hence, at the beginning of period t, the agent believes that b̃t is normally

distributed with mean φ̃t−1 and variance h−1
ε + [h0 + (t− 1)hε]

−1. Let Ẽt−1,φ̃t−1
be her subjective

expectation with respect to this distribution.

Lemma 1 (Agent Chooses Myopic Decision Rule). Suppose Assumption 1 holds. In each period t,

there is a unique optimal action given by

e∗(t, φ̃t−1) = arg max
e

Ẽt−1,φ̃t−1

[
Q(e, ã, b̃)

]
. (3)

Furthermore, e∗(t, φ̃t−1) is differentiable and increasing in φ̃t−1.

The proof of Lemma 1 also implies that there is a unique confident action

e∗(φ̃) = arg max
e

Ẽ∞,φ̃
[
Q(e, ã, b̃)

]
that the agent perceives as optimal if she is confident that the fundamental is φ̃. Furthermore, this

confident action e∗(φ̃) is differentiable and increasing in φ̃.

5 Reinterpreting et as the amount of rest and bt as the state determining the optimal training schedule, our
example describes training decisions by athletes as well.
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3 Noiseless Limit

In this section, we investigate properties of the agent’s beliefs and behavior in the limiting case

of our model when noise vanishes (hε → ∞). While somewhat artificial, this version allows us to

study not only the agent’s limiting belief, but also her full path of beliefs, as well as to pose a

question on the observational equivalence between rational and overconfident agents. In the next

section, we show that all of our qualitative results survive in a weaker form with non-trivial noise.

Formally, we assume that in every period, the agent observes Q(et, A,Φ) with probability one,

and to update her belief she uses the limit of the updating rule (2) as hε →∞, so that

φ̃t =

∑t
s=1 b̃s
t

=
t− 1

t
φ̃t−1 +

1

t
b̃t.

To avoid some clumsy statements regarding the first period, we assume that in the noiseless limit

the precision of the prior also approaches infinity, but at a slower speed than the signals (h0 →∞
and hε/h0 →∞). This does not affect any of our points.

3.1 Example and Economic Implications

We begin by presenting the main insights and economic implications of our model using a simple

example. We consider an output function of the form

Q(et, a, bt) = a+ bt − L(et − bt), (4)

where L is a symmetric loss function with |L′(x)| < k < 1 for all x. To make our points most

starkly, we also suppose that the agent’s mean belief is initially correct: φ̃0 = Φ.

Fixed Action. As a benchmark case, we suppose for a moment that et is exogenously given and

constant over time at level e ≥ Φ. To explain output q1 = A+Φ−L(e−Φ) given her overconfidence,

the agent solves ã+ b1 − L(e− Φ) = q1 = A+ Φ− L(e− Φ). This yields φ̃1 = b1 < Φ. Intuitively,

the agent is surprised by the low output she observes, and explains it by concluding that the

fundamental is worse than she thought. This tendency to attribute failures to external factors

provides a formalization of part of the self-serving attributional bias documented by Miller and

Ross (1975) and the literature following it. Indeed, one account of the bias is that individuals have

high expectations for outcomes, and update when outcomes fall short (Tetlock and Levi, 1982,

Campbell and Sedikides, 1999).
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Figure 1: Learning Dynamics

Since the agent takes the same action every period and hence observes the same output, after

period 1 she does not update her belief further (φ̃t = φ̃1 for all t > 1). And while her inference

about the fundamental is misguided—it takes her away from her correct prior—in the current setup

with a fixed action it is harmless or potentially even beneficial. For instance, because the agent

now correctly predicts her output, she makes the correct choice when deciding whether to choose

this task over an outside option with a given level of utility.6

Endogenous Action. We next turn to illustrating the main theoretical point of our paper: that

when the agent can adjust her behavior to what she thinks she has learned about the fundamental,

6 As a simple implication, if her high belief about ability is due to ego utility as in Kőszegi (2006), then misdirected
learning allows her to have her cake and eat it too: she can maintain the pleasure from believing that her ability is
high, while not suffering any losses associated with incorrect beliefs.
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she is often drawn into extremely suboptimal behavior over time.

Suppose that in each period the agent chooses her leisure et optimally given her beliefs. We

illustrate the agent’s learning dynamics in Figure 1, normalizing Φ and A to zero. The agent’s

belief about the fundamental (φ̃t) as well as her action (et) are on the horizontal axis, and output is

on the vertical axis. The “output possibilities curve” −L(et) represents the agent’s level of output

as a function of her action, and the “perceived achievable output line” ã+ φ̃t represents the output

level the agent believes is reachable as a function of the fundamental φ̃t.

In period 1, the agent chooses e1 = φ̃0 = 0, and ends up with an output of zero. What

perceived state b̃1 is consistent with this observation? The highest red dashed curve is the loss

function starting at (0, 0). Her perceived state b̃1 and hence also her mean belief φ̃1 is where this

curve intersects the perceived achievable output line: at this point, the difference between the

achievable output and actual output is exactly the loss from choosing the in her mind suboptimal

action of zero.

In period 2, then, the agent chooses e2 = φ̃1 = b̃1 and ends up with an output of −L(e2).

To identify the b̃2 consistent with this observation, we draw a copy of the loss function starting

from her current effort-output location, and find the intersection of this curve with the perceived

achievable output line. This is the perceived state in period 2, and because b̃2 < φ̃1, we have

φ̃2 = (b̃1 + b̃2)/2 < φ̃1. Continuing with this logic identifies the agent’s learning dynamics.

The intersection of the output possibilities curve and the perceived achievable output line gives

the agent’s limiting belief φ̃∞ < Φ −∆. To see this, note that if φ̃t > φ̃∞, then φ̃∞ < b̃t < φ̃t, so

the agent’s belief keeps drifting downwards toward φ̃∞. In contrast, if φ̃t = φ̃∞, then b̃t = φ̃t, so

this belief is stable. Intuitively, a mean belief of φ̃∞ provides a coherent theory of what is going

on, so the agent feels no need to update her belief: given her false belief about the fundamental,

she chooses an action that leads her to produce exactly as much as she expects. Unfortunately

for her, her utility loss relative to the optimal action can be an arbitrarily large multiple of her

overconfidence ∆.

The agent’s limiting belief has a puzzling feature: it is a terrible explanation for her early

observations. In particular, in the limit the agent believes that if she takes the action e1 or e2,

her expected output is far lower than what she observed in periods 1 and 2. Given her early

observations, how does the agent end up with such a wrong theory? By reacting to what she thinks
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she has learned, she generates misleading observations that move her further from the correct

theory. In addition, she endogenously generates so many of these misleading observations that

they overwhelm the initial less misleading observations she made.

The self-defeating learning our model predicts is plausible in all the applications in Section 2.2.

In the context of personal decisions, our model provides one possible mechanism for self-destructive

behavior in normal individuals observed by psychologists (for a review, see for instance Baumeister

and Scher, 1988). For instance, Kasser (2003) argues that materialism (the pursuit of material

possessions and pleasure) can lead to a vicious cycle whereby a person pursues consumption to

become happier, she becomes less happy as a result, and as she attempts to compensate with even

more consumption, she exacerbates the problem.7

In the context of manager-subordinate relationships, Manzoni and Barsoux (1998, 2002) de-

scribe a common problem—the “set-up-to-fail syndrome”—that is due to a dynamic similar to our

mechanism. When the subordinate performs below expectations, the manager reacts by increasing

control and assigning less inspiring tasks. This undermines the employee’s motivation, lowering

performance and eliciting further negative reactions from the manager. Similarly, the idea that or-

ganizations can get caught in dysfunctional vicious circles has been described in sociology (March

and Simon, 1958, Crozier, 1964, Masuch, 1985). Management is dissatisfied with the performance

of the organization, and attempts to improve things with increased monitoring, control, or other

bureaucratic measures. These measures backfire, for instance because they alienate employees.

Management reacts by tightening bureaucratic measures further.8

Although we have not found discussions that are reminiscent of our mechanism, self-defeating

interpretations of worse-than-expected outcomes also seem plausible in the context of policymaking.

In the war on drugs, for instance, a policymaker may interpret drug problems as indicating that

she should crack down on drugs, only to make the problem worse and the reaction harsher.

Note that one channel for the agent to develop overconfidence is through a drop in her ability—

for instance due to aging—that is not accompanied by a change in her belief about ability. In this

7 Similarly, overtraining by performance athletes is a widely discussed problem in academic, professional, and
popular writings (Budgett, 1998, for example). Looking for better performance, an athlete begins to train harder
than previously. Because the body cannot cope with such a demanding training schedule, performance suffers. The
athlete reacts by training even harder, exacerbating the problem.

8 Masuch (1985) also argues that one reason for such vicious cycles is that people have unrealistically high
expectations regarding how well things will work. The cycle ends when management runs out of control tools, or, as
described for instance by Argyris (1982), when management settles into a suboptimal set of practices.
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case, relatively small drops in ability can trigger our mechanism and lead to a drastic drop in her

belief about the world—as when an aging person concludes that things are much worse than they

used to be.

Comparative Statics with Respect to the Loss Function. Because it provides a surprising and

potentially testable prediction of our model, we consider the comparative statics of the agent’s

beliefs with respect to the loss function. As is clear from Figure 1, an increase in the loss function

leads the agent to initially adjust her belief by less (i.e., to increase φ̃1). Intuitively, with a higher

loss function a smaller deviation from the perceived-optimal action is necessary to explain the

agent’s surprise in period 1, and hence a smaller adjustment in the state is necessary to explain her

observation.

But the opposite comparative static holds for the agent’s limiting belief: the more important

it is for her action to be aligned with the fundamental, the further from the fundamental she ends

up. If the loss function shifts up, then in Figure 1 the curve −L(et) shifts down, and the limiting

belief φ̃∞ therefore moves to the left. Intuitively, a steeper loss function means that the agent

hurts herself more through her misinferences. To develop a consistent theory of her observations,

therefore, she must become more pessimistic about the world.

Outside Options. In the above model, we have assumed that the agent participates in the task

in every period regardless of her beliefs. It is natural to consider an environment in which she has

an outside option, such as another task she could perform. In the manager-employee setting, for

instance, a manager can keep working with the current employee, or replace her. Let the perceived

utility of the outside option be ũ. Interesting new issues arise if ã > ũ > A−L(A−φ̃∞) = −L(φ̃∞)—

i.e., ũ is in the intermediate range—which implies that the agent starts off with the task but

eventually quits.

We consider two cases. If ũ > A, then the agent should not be in this task in the first place, so

both her entry into it and her persistence in it are suboptimal. The prediction that overconfident

individuals—overestimating their ability to perform well—are more likely to enter into and persist in

ability-sensitive enterprises is consistent with common intuition and evidence from both psychology

and economics. Overconfidence is often invoked as one explanation for why many new businesses

fail in the first few years, and indeed Landier and Thesmar (2009) find that entrepreneurs of small

startups have overconfident expectations about future growth. Similarly, several studies suggest
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that CEO overconfidence is associated with a higher likelihood of pursuing risky actions, such as

making acquisitions (Malmendier and Tate, 2008) and undertaking innovation (Galasso and Simcoe,

2011, Hirshleifer, Low and Teoh, 2012). And persisting in tasks (often for too long) is regarded as

one of the main characteristics of overconfidence (McFarlin, Baumeister and Blascovich, 1984, for

example).

In contrast, if ũ < A, then the agent should be in the task, so overconfidence generates sub-

optimal exit: ironically, the agent stops performing the task because she overestimates her ability

to do well in it. Intuitively, she is more prone to exit than a realistic agent because her repeated

negative inference about the world eventually negates the effect of her overconfidence. Because the

agent does not update her belief about a, this reaction can generate interesting dynamics when

there are multiple types of alternative tasks for her to choose. The logic of our model suggests that

she will first seek out another ability-sensitive task in which she believes a different fundamental

determines outcomes, and then successively jump from one such task to the next. And once she

runs out of these tasks, she chooses a less ability-sensitive task and sticks with it.

The prediction that overconfidence leads individuals to eventually quit superior tasks, to jump

too much between tasks, and to eventually prefer less ability-sensitive tasks, contrasts with the

typical view on the implications of overconfidence. While we have not found direct evidence for

this prediction, it is consistent with the observation that many documented effects of overconfi-

dence in economic settings, such as the tendency of overconfident CEO’s to undertake mergers

or innovations, pertain to new directions. In particular, Landier and Thesmar (2009) find that

serial entrepreneurs—those who start a new business following another one—have more unrealis-

tic expectations than first-time entrepreneurs. This observation is consistent with the idea that

overoptimistic entrepreneurs do not simply persist in a single project, but also jump to others.9

3.2 Self-Defeating Learning: General Results

We now derive the results on self-defeating learning—illustrated in a specific setting above—for

general production functions Q satisfying Assumption 2. In the next subsection, we discuss what

happens when Assumption 2 does not hold.

9 It is important to note, however, that alternative interpretations are also possible. For instance, Landier and
Thesmar suggest that previous experience increases overoptimism because entrepreneurs attribute failures to bad
luck, and successes to ability.
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To characterize the agent’s learning process, we define the “surprise function” Γ(φ̃) as the

difference between actual output and expected output:

Γ(φ̃) = Q(e∗(φ̃), A,Φ)−Q(e∗(φ̃), ã, φ̃) . (5)

It is easy to see that the surprise function governs the agent’s updating process. To start, if

Γ(φ̃t) = 0—the agent gets exactly the output she expects—then b̃t = φ̃t, so that the agent sees no

reason to update her belief about the fundamental. Hence, the zeros of Γ(·) constitute consistent

theories of the world. We define this set as C:

C = {φ̃ |Γ(φ̃) = 0}.

In our simple example of Section 3.1, C is a singleton given by the intersection of the output

possibilities curve and the perceived achievable output line.

If, on the other hand, the agent is surprised about output (Γ(φ̃t) 6= 0), then she must update

her belief about the fundamental. In particular, if Γ(φ̃t) < 0—she gets lower output than she

expects—then b̃t < φ̃t, so she updates her belief downwards; and if Γ(φ̃t) > 0—she gets higher

output than she expects—then b̃t > φ̃t, so she updates her belief upwards. It turns out that

updating is monotonic:

Proposition 1. Suppose Assumptions 1 and 2 hold. If Γ(φ̃0) < 0, then φ̃t is strictly decreasing

in t and converges to max{φ ∈ C : φ < φ̃0}. If Γ(φ̃0) > 0, then φ̃t is strictly increasing in t and

converges to min{φ ∈ C : φ > φ̃0}. If Γ(φ̃0) = 0, then φ̃t is constant.

These implications are illustrated in Figure 2, where there are three possible consistent beliefs.

If the prior is above φ̃1
∞, then the agent’s belief decreases monotonically over time and approaches

φ̃1
∞. If her prior is between φ̃2

∞ and φ̃1
∞, then her belief increases monotonically over time, and

again converges to φ̃1
∞. If the agent’s prior is below φ̃2

∞, her belief converges to φ̃3
∞ from the side

from which it starts off.

To understand why the agent reacts to a change in her belief in a way that reinforces the

change—thus generating monotonically evolving beliefs over time—note that because Qea ≤ 0 and

Qeb > 0, the fact that the agent overestimates her ability and underestimates the state implies that

she underestimates Qe. This means that an increase in her action generates a positive surprise—

spurring further increases in the action—and a decrease in the action generates a negative surprise—

spurring further decreases in the action.

16



�̃t

�(�̃t)

�̃3
1

�̃2
1

�̃1
1

�

Figure 2: Convergence and Dependence of Limiting Belief on Prior

An interesting possibility is that—as illustrated in Figure 2—there are multiple consistent be-

liefs, and which one the agent converges to depends on her prior. Multiple consistent theories can

arise if (unlike in the loss-function specification) the agent’s overconfidence has different effects on

expected output for different fundamentals. In particular, if ability has a large effect on output

for a lower fundamental and a small effect for a higher fundamental, then both the lower and the

higher fundamental can constitute consistent theories. If the agent believes the lower fundamental,

then—since the true fundamental is much higher—output is (for a realist) inexplicably high, but

since she is overconfident and output is very sensitive to ability, in the end output is consistent with

her theory. And if the agent believes in the higher fundamental, then output is less inexplicably

high, which is also consistent with her overconfidence since here output is less sensitive to ability.10

10 We demonstrate through an example that a production function with multiple consistent beliefs is indeed
possible. For simplicity, we use an output function with kinks and linear parts; our output function can obviously be
approximated arbitrarily closely by a differentiable output function satisfying Assumptions 1 and 2. Let Q(et, a, bt) =
T (a, bt− (bt− et)+/2)− et/4. We specify T such that (i) it is optimal to choose et = φ̃t−1 for any t; (ii) Tax(a, x) ≤ 0
for all a, x; and (iii) T (a, x) to be increasing in a and x with derivatives bounded from above and below.

Assuming (i)—which we will check later—the belief φ̃ is consistent if and only if T (A, φ̃+(Φ− φ̃)/2) = T (ã, φ̃). We
construct T (A, x) and T (ã, x) so that for Φ = 10, both φ̃ = 0 and φ̃ = 6 are consistent theories. Let T (ã, x) = 10 +x.
Then, for the two theories to be consistent, we need T (A, 5) = T (ã, 0) = 10 and T (A, 8) = T (ã, 6) = 16. We let
T (A, x) be three-piece linear in x with a slope of one below 5 and above 8, and a slope of 2 between 5 and 8.

To extend the above to a full function T (a, x), we let T (a, x) = T (A, x)−(A−a) for a < A, T (a, x) = T (ã, x)+(a−ã)
for a > ã, and we linearly interpolate between A and ã. It is now straightforward to check properties (i)-(iii): (i)
follows as Tx ≥ 1; (ii) as Tx(ã, ·) = 1 ≤ Tx(A, ·) the property holds by the piecewise linear construction; and (iii) as
T (A, ·) ≤ T (ã, ·), Tx ≤ 2, and min{1, 2

ã−A} ≤ Ta ≤ max{1, 5
ã−A}.
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A simple but important corollary of Proposition 1 is that the agent ends up being too pessimistic,

and if she has an approximately correct or overly optimistic initial belief about the fundamental,

then she perpetually revises her belief downwards:

Corollary 1. Suppose Assumptions 1 and 2 hold. From period 1 on, the agent is overly pessimistic

about the fundamental (i.e., for any φ̃0, φ̃t < Φ for t ≥ 1). For any initial belief φ̃0 ≥ Φ, the agent

permanently revises her belief downwards (i.e., φ̃t is strictly decreasing).

Given Proposition 1, the corollary follows from the fact that—as illustrated in Figure 2—the

surprise function is negative for any φ̃ ≥ Φ. And this fact is intuitive: given her overconfidence

about ability, if the agent is not too pessimistic about the fundamental, she will be negatively

surprised about output.

We now generalize the insight from the example that the agent ends up further from truth when

it is more important to be close. For this purpose, we define

R(a, φ) = Q(e∗(a, φ), a, φ)

L(e, a, φ) = Q(e∗(a, φ), a, φ)−Q(e, a, φ), (6)

and observe that Q(e, a, φ) = R(a, φ) − L(e, a, φ). Intuitively, R(a, φ) is the achievable level of

output given a and φ, and L(e, a, φ) is the loss relative to the achievable output due to choosing a

suboptimal action. We compare two technologies Q1, Q2 with corresponding R1, R2, L1, L2:

Proposition 2. Suppose Assumptions 1 and 2 hold, e∗1(a, φ) = e∗2(a, φ) and R1(a, φ) = R2(a, φ)

for all a, φ, and L1(e, a, φ) < L2(e, a, φ) for all a, φ, e 6= e∗(a, φ). Then, for any initial belief φ̃0,

the agent’s limiting belief is lower under technology Q2 than under technology Q1.

The key step in the proof of Proposition 2 is that an increase in the loss function decreases

the surprise function. As in Section 3, an increase in the loss function means that the agent hurts

herself more through her misinference-induced suboptimal behavior, and this must mean that she

is more negatively surprised by her output. And examining Figure 2 makes it intuitively clear that

a downward shift in the surprise function lowers the agent’s limiting belief for any initial belief.

3.3 When Learning Is Not Detrimental

To sharpen our intuitions regarding when self-defeating learning occurs, in this section we identify

some conditions in which it does not. To begin, we note a mathematically obvious, but useful fact:
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that if the optimal action is not sensitive to the state, then self-defeating learning does not occur.

Proposition 3. Suppose Assumption 1(i) holds and output takes the form Q(S(et, a), bt). Then,

the agent never changes her action.

If the optimal action depends on ability, the agent takes the wrong action, and if she is surprised

by low output, she makes an incorrect inference regarding the fundamental. But if the optimal

action does not depend on the fundamental, these reactions are not self-reinforcing. Since the

agent does not change her action in response to her change in belief, she is not surprised by her

output, and stops changing her action or updating her belief.

Beyond supposing that the optimal action depends on the state, in Section 3.2 we have assumed

that Qea ≤ 0. We now discuss the implications of the possibility that Qae > 0. To understand the

key issue, suppose that the agent starts off with the correct belief about the fundamental. Then,

because she is overconfident and her ability and action are complements, her initial action is too

high. As in the rest of our analysis, her observation of the surprisingly low output in period 1 leads

her to revise her belief about the fundamental downwards—and, as a consequence, to choose a lower

action next time. Because her initial action was too high, this adjustment can increase output.

That is, the agent’s misdirected learning can counteract the effect of the agent’s overconfidence. It

is possible that in the limit misdirected learning increases output. It is, however, also possible that

misdirected learning lowers the action below optimal, at which point the logic by which further

learning occurs is analogous to that in Section 3.2.

To say more about when each of the above two possibilities obtains, we next identify circum-

stances under which an overconfident agent behaves in the same way as an agent who is correct

about her ability—who in our noiseless model identifies the fundamental correctly in period 1, and

behaves optimally from period 2 on.

Proposition 4 (Non-Identifiability and Optimal Behavior). Suppose Assumption 1 holds. The

following are equivalent:

I. For any A, ã, and Φ, there is a unique belief φ̃(A, ã,Φ) such that for any φ̃0, φ̃t = φ̃(A, ã,Φ)

for any t ≥ 1 and the agent chooses the optimal action from period 2 on.

II. The agent’s behavior is identical to that with an output function of the form Q(et, B(a, bt)),

where QB, Ba, Bb > 0, and for any a, b, ã, there is some b̃ such that B(a, b) = B(ã, b̃).
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Proposition 4 says that agents with wrong beliefs about ability behave optimally if and only

if behavior can be described by an output function that depends only on a summary statistic of

ability and the state, and not independently on the two variables. If this is the case, then the

agent can correctly deduce the level of the summary statistic from output in period 1, so that she

correctly predicts how changes in her action affect output. As a result, she both chooses the optimal

action and gets the output she expects—and hence she does not adjust her action any further. Our

proof establishes that this kind of production function is not only sufficient, but also necessary for

learning to be optimal in steady state.

An interesting aspect of Proposition 4 is that the agent is able to find the optimal action

exactly when the problem is not identifiable—when her observations of output do not allow her to

separately learn A and Φ. This beneficial role of non-identifiability is in direct contrast with what

one might expect based on the statistical learning literature, where non-identifiability is defined as

a property of the environment that hinders learning. Yet it is exactly the non-identifiability of the

problem that allows the overconfident agent to choose her action well: because ability and the state

do not have independent effects on output, the agent’s misinference about the fundamental can

fully compensate her overconfidence regarding ability, and hence overconfidence does not adversely

affect her.

In the team production setting, for instance, suppose that the agent—instead of making del-

egation decisions—chooses her effort level, and output depends on effort and the total ability of

the team. Then, although the agent still underestimates her teammates, she is able to deduce the

team’s total ability from output. As a result, she chooses the optimal action.

Notice that combined with our assumptions that Qeb, Qa, Qb > 0, statement II of Proposition 4

implies that Qea > 0. Furthermore, since the optimal action depends only on a summary statistic of

ability and the state, ability and the state affect the optimal action to the same extent (controlling

for their effect on output). Combining this insight with that of Proposition 3 indicates that changes

in the agent’s belief about the fundamental eventually induces actions that are significantly lower

than optimal—and hence self-defeating learning occurs—if the optimal action is sufficiently more

sensitive to the state than to ability. And adding our insights from Section 3.2, we conclude that

self-defeating learning occurs when the optimal action depends on the state of the world, and either

does not depend so much on ability, or it does so in an opposite way than on the state.
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Figure 3: Limiting Belief and Loss with Underconfidence

3.4 Underconfidence

While available evidence indicates that people are on average overconfident, it is clear that some are

instead “underconfident”—having unrealistically low beliefs about their ability and other traits. We

briefly discuss how this modifies our results, restricting attention to the loss-function specification

of Section 3.1.

The key insight regarding the agent’s limiting belief is easiest to see graphically. In Figure 3,

we redraw the relevant parts of Figure 1 for underconfident beliefs, again normalizing A and Φ to

0. As for overconfident agents, any possible limiting belief is given by the intersection of the output

possibilities curve −L(et) and the perceived achievable output line ã+ φ̃t. If ã < A, the two curves

intersect to the right of the true fundamental: since the agent is pessimistic about her own ability,
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she becomes overly optimistic about the fundamental. Furthermore, it is apparent from the figure

that in the limit the agent’s loss from underconfidence is bounded by ∆:

Proposition 5 (Limiting Belief and Loss with Underconfidence). Suppose Q(et, a, bt) = a + bt −
L(et − bt) for a symmetric convex loss function L with L′(x) < k < 1 for all x, ã < A, and there

is a vanishingly small amount of noise. Then, for any φ̃0 the agent’s belief converges to the same

limiting belief φ̃∞, and 0 < φ̃∞ − Φ < ∆ and L(φ̃∞ − Φ) < ∆.

These results contrast sharply with those in the overconfident case, where the limiting belief

is always more than ∆ away from the true fundamental (Φ − φ̃∞ > ∆), and the associated loss

can be an arbitrarily large multiple of ∆. Underconfidence therefore has a very different effect on

the agent’s misguided learning than an identical degree of overconfidence. Consistent with such an

asymmetry in our managerial example, while Manzoni and Barsoux emphasize that the set-up-to-

fail syndrome is a severe consequence of a manager’s unrealistically high expectations regarding a

subordinate, they do not identify similar consequences from unrealistically low expectations.

To understand the intuition, consider again an agent who starts off with the correct initial belief

about the fundamental (φ̃0 = Φ). Upon observing a better performance than she expected, she

concludes that the fundamental is better than she thought, and revises her action. The resulting

utility loss, however, leads her to reassess her first optimistic revision of her belief, bringing her

belief back toward the true fundamental. In this sense, the agent’s misinference regarding the

fundamental is self-correcting—in contrast to the logic in the case of overconfidence, where the

misinference is self-reinforcing. Moreover, because a utility loss of ∆ or more cannot be explained

by a combination of underconfidence in the amount of ∆ and an unrealistically positive belief about

the fundamental (which increases expected output), any consistent belief must generate a utility

loss of less than ∆.

In addition to explaining that the limiting loss from underconfidence can be bounded, the

above logic also makes clear that—unlike with overconfidence and vanishingly little noise—the

agent’s path to this limit is often non-monotonic.
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4 Noisy Model

In this section, we analyze our model when noise is non-trivial. First, going beyond previous results

in the literature, we show that the agent’s belief converges under general conditions on Q. Second,

we establish versions of all of our results above also for the noisy model.

4.1 Convergence of the Agent’s Belief

Establishing convergence is technically challenging because of the endogeneity of the agent’s action:

as the agent updates her belief, she changes her action, thereby changing the objective distribution

of the perceived signal she observes and uses to update her belief. This means that we cannot apply

results from the statistical learning literature, such as that of Berk (1966), where the observer does

not choose actions based on her belief. Within our more specific domain, our convergence result

also substantially supersedes that of Esponda and Pouzo (forthcoming, Theorem 3), which applies

only for priors close to the limiting belief and for actions that are only asymptotically optimal.

We first identify key features of how the agent interprets output. For this purpose, we define

b̃(bt, et) as the signal b̃t (given by the solution to Equation (1)) that the agent perceives as a function

of the true signal bt and her action et.

Proposition 6. Suppose Assumption 1 holds. Then, the function b̃ has the following properties:

(1) 0 ≤ bt− b̃(bt, et) ≤ ∆Qa/Qb for all bt, et; (2) b̃ is differentiable in et; (3) if Assumption 2 holds

in addition, then b̃ is strictly increasing in et.

The agent’s inferences satisfy three important properties. First, Assumption 1 implies that

inferences are downward biased—the agent perceives worse news in each period than is warranted.

Because the agent believes she is more able than she actually is, any given level of output conveys

worse news to her about the world than is realistic. Second, by the differentiability properties

of Q, the agent’s perceived signal is differentiable in her action. Third, if Assumption 2 holds,

then the agent’s inferences are more biased if she takes a lower action. Since ã > A and b̃t < bt,

the assumptions that Qea ≤ 0 and Qeb > 0 imply that the agent underestimates Qe. To explain

the change in output resulting from an increase in her action, therefore, she must become more

optimistic about the fundamental.
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Using Equation (2), the dynamics of the agent’s belief can be written as

φ̃t+1 = φ̃t + γt

[
b̃t+1 − φ̃t

]
, where γt =

hε
(t+ 1)hε + h0

. (7)

We define the function g : N×R→ R as the expectation an outside observer holds about b̃t+1− φ̃t:

g(t, φ̃t) = Ebt+1 [b̃(bt+1, e
∗(t+ 1, φ̃t))|Φ]− φ̃t. (8)

The above expectation is the one of an outside observer who knows the true fundamental Φ and

the agent’s subjective belief φ̃t, so that—being able to deduce the action e∗(t + 1, φ̃t)—she knows

the distribution of b̃t+1. The function g can be thought of as the agent’s mean surprise regarding

the fundamental, and in this sense it is a noisy variant of the surprise function Γ we have defined

for output in Section 3.2.

As we are interested in how the agent’s subjective belief is updated in the limit, we define

g(φ̃) = limt→∞ g(t, φ̃). Generalizing our definition for the noiseless limit, we denote by C the set

of points where g intersects zero, i.e., the agent’s mean surprise equals zero:

C = {φ̃ : g(φ̃) = 0}. (9)

Intuitively, the agent cannot have a long-run belief φ̃ outside C as her limiting action e∗(φ̃) would

generate subjective signals that push her systematically away from φ̃. Specifically, when g(φ̃t) > 0,

then the agent eventually generates signals that are on average above φ̃t, so that her belief drifts

upwards; and if g(φ̃t) < 0, then the agent’s belief eventually drifts downwards. Hence, any limiting

belief must be in C. Furthermore, not every belief in φ̃ ∈ C is stable: whenever g is negative on

the left of φ̃ and positive on the right of φ̃, the agent’s perceived signals would still in expectation

push her away from φ̃. We thus have the following definition:

Definition 1 (Stability). A point φ̃ ∈ C is stable if there exists a δ > 0 such that g(φ) < 0 for

φ ∈ (φ̃, φ̃+ δ) and g(φ) > 0 for φ ∈ (φ̃− δ, φ̃).

We denote by H the set of stable points in C. Our main result in this subsection shows that H

completely describes the set of possible long-run beliefs.

Theorem 1. Suppose Assumption 1 holds, and that C is the union of a countable number of points.

Then, almost surely φ̃∞ = limt→∞ φ̃t exists and lies in H. Furthermore, −∆Qa/Qb ≤ φ̃∞ − Φ ≤
−∆Q

a
/Qb.
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The mathematical intuition behind Theorem 1 is the following. Because the agent’s posterior

can be fully described by its mean and variance and the latter only depends on time t, we study

dynamics of the agent’s mean belief φ̃t. Although—as we have explained above—the agent’s sub-

jective signals are not independently and identically distributed over time, we use a result from

stochastic approximation that in our context requires the perceived signals to be approximately

independent over time conditional on the current subjective belief. To use this result, for s ≥ t we

approximate the agent’s time-dependent action e∗(s, φ̃s) by the time-independent confident action

e∗(φ̃s)—that is, the action the agent would choose if she was fully confident of the fundamental. We

show that the mistake we make in approximating e∗(s, φ̃s) in this way is of order 1/s, and since the

perceived signal b̃s is Lipschitz continuous in es, the mistake we make in approximating b̃s is also

of order 1/s. Since when updating the agent’s newest signal gets a weight of order 1/s, this means

that the error in approximating the change in her beliefs is of order 1/s2, and hence the total error

in approximating beliefs from period t onwards is of order
∑∞

s=t 1/s2, i.e., finite. Furthermore, as

t→∞, the approximation error from period t onwards goes to zero.

Given the above considerations, on the tail we can think of the dynamics as driven by those

that would prevail if the agent chose e∗(φ̃t) in period t+ 1. The expected change in the mean belief

in period t + 1 is therefore a function of g(φ̃t) defined above. Note, however, that the expected

change is a time-dependent function of g(φ̃t)—as the agent accumulates observations, she puts less

and less weight on her new observation. Stochastic approximation theory therefore defines a new

time scale τt and a new process z(τ) that “speeds up” φ̃t to keep its expected steps constant over

time, also making z(τ) a continuous-time process by interpolating between points. It then follows

that on the tail the realization of z can be approximated by the ordinary differential equation

z′(τ) = g(z(τ)), (10)

which is a deterministic equation. Intuitively, since z(τ) is a sped-up version of φ̃t, as τ increases any

given length of time in the process z(τ) corresponds to more and more of the agent’s observations.

Applying a version of the law of large numbers to these many observations, the change in the

process is close to deterministic. In this sense, on the tail the noisy model reduces to a noiseless

model. Now because the solution to Equation (10) converges, the agent’s belief converges.

To show this convergence, the bounds we imposed on the derivatives of Q play a key role: they

ensure that the agent’s belief does not diverge to minus infinity and imply the bounds on H. Since
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the agent overestimates her ability, she eventually develops pessimistic views about the world. But

since the signal has at least some influence on output and the influence of ability on output is

bounded, the agent cannot make arbitrarily large misinferences about the signal as a consequence

of her overconfidence.11

A simple corollary of Theorem 1 is that if C is a singleton, then the agent’s belief converges to

a unique limiting belief:

Corollary 2. Suppose Assumption 1 holds. If there exists a unique φ∗ with g(φ∗) = 0, then φ̃t

converges to φ∗ almost surely.

Unfortunately, the single-crossing condition in Corollary 2 is not a condition on the primitives

of the model. In a specific setting, it may be easy to check the condition numerically. Furthermore,

we can derive sufficient conditions on the primitives for the condition to hold.

First, C is a singleton if overconfidence is sufficiently small (ã is close to A). If ã = A, then

b̃t = bt, so g(φ̃t) = Φ− φ̃t, and g has a unique root. By continuity of g in ã, g has a unique root if

ã is sufficiently close to A.

Second, as in the noiseless case, C is a singleton if Q has the loss-function specification intro-

duced in Section 3:

Lemma 2. If Q(a, b, e) = a+b−L(e−b) for a symmetric loss function L satisfying |L′(x)| < k < 1

for all x, then C is a singleton.

4.2 Properties of the Limiting Beliefs

We now study the properties of the agent’s learning and limiting belief. Even given that her belief

converges, the agent’s learning process is complicated because the effect of noise on output depends

on the shape of Q, so that the agent’s inferences depend on the comparison of the shape of Q at

the perceived and true fundamentals. Due to this complication, our results are weaker than for the

noiseless limit above.

Self-Defeating Learning. We first generalize our insight that the agent’s learning has a self-

defeating nature in that—so long as she starts off not too far from the correct action—the possibility

11 Our model can produce divergence of the agent’s belief to minus infinity if we do not assume that the influence
of the signal on output is bounded from below (Qb > Q

b
) or that the influence of the action is bounded from above

(Qa < Qa).
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to update her action leads her further away from the true fundamental Φ. Denote by φ̂et the

subjective belief the agent holds when she has taken the fixed action e in all periods. Then:

Proposition 7. Suppose Assumptions 1 and 2 hold, and that C is the union of countably many

points. The sequence φ̂et converges almost surely to a unique point. If e ≥ e∗(Φ), then

lim
t→∞

φ̃t < lim
t→∞

φ̂et < Φ.

The intuition is the same as in the noiseless limit. Because she is overconfident, the agent’s

belief—in the noiseless case immediately, in the noisy case eventually—becomes too pessimistic.

This leads her to choose lower actions and to generate further surprisingly low output observations,

perpetuating the misguided learning.

The Greater Is the Loss from Incorrect Beliefs, the More Incorrect Is the Limiting Belief. We

now establish a version of our insight—formalized for the noiseless limit of our model in Proposition

2—that an increase in the loss function moves the agent’s limiting belief further from the true

fundamental. Since a general analysis of this comparative static has proved intractable, we focus

on our loss-function specification with a linear loss function: Q(et, a, bt) = a+ bt− η|et− bt|, where

η < 1. We have:

Proposition 8 (Limiting Belief with Linear Loss Function.). For any η, there is a φ̃∞(η) such that

for any φ̃0, φ̃t converges to φ̃∞(η) almost surely. Furthermore, the limiting belief φ̃∞(η) is strictly

decreasing in η.

The intuition for Proposition 8 is the same as for Proposition 2: the higher is the loss function,

the more the agent suffers from her misinference regarding the fundamental, and hence—to explain

her suffering—the more pessimistic about the fundamental she becomes. The complication that

arises in the noisy case is that an increase in the loss function lowers not only actual output, but

also the output the agent expects, so that the net effect on the agent’s mean surprise is unclear.

But since the agent’s action is too low while she thinks it is optimal, for the majority of realizations

of the state the increase in the loss she actually suffers due to the increase in the loss function

is greater than the increase in the loss she thinks she suffers. This means that she interprets

the typical output realization more negatively, so that the logic from the noiseless case extends.

Although this intuition suggests that Proposition 8 should hold far more generally than for linear

loss functions, we have not been able to prove a broader statement.
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When Learning Is Not Detrimental. To conclude our analysis of the noisy model, we reconsider

the questions in Section 3.3 regarding situations in which self-defeating learning does not occur.

To start, Proposition 3, which states that when the optimal action does not depend on the state,

learning has no effect on behavior, trivially extends to the noisy case. Next, we consider conditions

under which the agent behaves optimally. Although for the noisy model we have not been able to

formulate an “if-and-only-if” result of the type in Proposition 4—nor even to find an appropriate

definition of what it means for the agent to be observationally equivalent to a realistic agent—we

state an “if” result that again connects optimal behavior to non-identifiability:

Proposition 9. If output has the form Q(et, g(a) + bt), then for any prior φ̃0 and any true funda-

mental Φ, the agent’s action converges to the optimal one almost surely.

If output depends only on g(a) + bt, then the agent is able to use repeated observations to

correctly infer g(A)+Φ and thereby learn to take the optimal action. Furthermore, this separability

condition on the output function is a non-identifiability condition: it implies that learning A and

Φ separately is impossible. This means that non-identifiability is again beneficial for the agent.

5 Related Literature

Our theory connects two literatures, that on overconfidence and that on learning with misspecified

models. While we discuss other more specific differences below, to our knowledge our paper is the

only one to analyze an individual-decisionmaking problem in which the agent’s own behavior in

response to a misinterpretation of information generates data that reinforces the misinterpretation.

We are also unaware of previous research studying the implications of overconfidence for inferences

about other, decision-relevant exogenous variables.

5.1 Overconfidence

Our paper studies the implications of unrealistic expectations regarding a variable for learning about

another variable. In many applications, the most plausible source of such unrealistic expectations

is overconfidence—the topic of an extensive literature in economics and psychology.

A plethora of classical evidence in psychology as well as economics suggests that on average

people have unrealistically positive views of their traits and prospects (e.g., Weinstein, 1980, Sven-
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son, 1981, Camerer and Lovallo, 1999). Recently, Benôıt and Dubra (2011) have argued that much

of this evidence is also consistent with Bayesian updating and correct priors, and thus does not

conclusively demonstrate overconfidence. In response, a series of careful experimental tests have

documented overconfidence in the laboratory in a way that is immune to the Benôıt-Dubra cri-

tique (Burks, Carpenter, Goette and Rustichini, 2013, Charness, Rustichini and van de Ven, 2014,

Benôıt, Dubra and Moore, 2015). In addition, there is empirical evidence that consumers are

overoptimistic regarding future self-control (Shui and Ausubel, 2004, DellaVigna and Malmendier,

2006, for instance), that truck drivers persistently overestimate future productivity (Hoffman and

Burks, 2013), that genetically predisposed individuals underestimate their likelihood of having

Huntington’s disease (Oster, Shoulson and Dorsey, 2013), that unemployed individuals overesti-

mate their likelihood of finding a job (Spinnewijn, 2012), and that some CEOs are overoptimistic

regarding the future performance of their firms (Malmendier and Tate, 2005). Moreover, in all of

these domains the expressed or measured overconfidence predicts individual choice behavior. For

example, CEOs’ overconfidence predicts the likelihood of acquiring other firms (Malmendier and

Tate, 2008), of using internal rather than external financing (Malmendier and Tate, 2005), of using

short-term debt (Graham, Harvey and Puri, 2013), of engaging in financial misreporting (Schrand

and Zechman, 2012), and of engaging in innovative activity (Hirshleifer et al., 2012). While all of

these papers look at the relationship between overconfidence and behavior, they do not theoretically

investigate the implications of overconfidence for (misdirected) learning about other variables.

A number of theoretical papers explain why agents become (or seem to become) overconfident.

In one class of papers, the agent’s learning process is tilted in favor of moving toward or stopping

at confident beliefs (Gervais and Odean, 2001, Zábojnik, 2004, Bénabou and Tirole, 2002, Kőszegi,

2006). In other papers, non-common priors or criteria lead agents to take actions that lead the

average agent to expect better outcomes than others (Van den Steen, 2004, Santos-Pinto and Sobel,

2005). Finally, some papers assume that an agent simply chooses unrealistically positive beliefs

because she derives direct utility from such beliefs (Brunnermeier and Parker, 2005, Oster et al.,

2013). While these papers provide foundations for overconfident beliefs and some feature learning,

they do not analyze how overconfidence affects learning about other variables.

Many researchers take the view that overconfidence can be individually and socially beneficial
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even beyond providing direct utility.12 Our theory is not in contradiction with this view, but it

does predict circumstances under which overconfidence can be extremely harmful.

5.2 Learning with Misspecified Models

On a basic level, an overconfident agent has an incorrect view of the world, and hence our paper is

related to the literature on learning with misspecified models. Most closely related to our theory,

Esponda and Pouzo (forthcoming) develop a general framework for studying repeated games in

which players have misspecified models. Our model is a special case of theirs in which there is

one player. Building on Berk (1966), Esponda and Pouzo establish that if actions converge, beliefs

converge to a limit at which a player’s predicted distribution of outcomes is closest to the actual

distribution. Our limiting beliefs have a similar property. Because of our specific setting, we derive

stronger results on convergence of beliefs and establish many other properties of the learning process

and the limiting beliefs.

Taking the interpretation that at most one prior can be correct, multi-agent models with non-

common priors can also be viewed as analyzing learning with misspecified models. In this literature,

papers ask how different agents’ beliefs change relative to each other, but do not study the interac-

tion with behavior. Dixit and Weibull (2007) construct examples in which individuals with different

priors interpret signals differently, so that the same signal can push their beliefs further from each

other. Similarly, Acemoglu, Chernozhukov and Yildiz (forthcoming) consider Bayesian agents with

different prior beliefs regarding the conditional distribution of signals given (what we call) the

fundamental, and show that the agents’ beliefs regarding the fundamental do not necessarily con-

verge.13

Misdirected learning also occurs in social learning settings when individuals have misspecified

models of the world. In Eyster and Rabin (2010) and in many cases also in Bohren (2013), agents

do not sufficiently account for redundant information in previous actions. With more and more

redundant actions accumulating, this mistake is amplified, preventing learning even in the long

12 See, e.g., Taylor and Brown (1988) for a review of the relevant psychology literature, and Bénabou and Tirole
(2002) and de la Rosa (2011) for economic examples.

13 Andreoni and Mylovanov (2012) and Kondor (2012) develop closely related models within the common-prior
paradigm. In their models, there are two sources of information about a one-dimensional fundamental. Agents receive
a series of public signals, and private signals on how to interpret the public signals. Although beliefs regarding
the public information converge, beliefs regarding the fundamental do not, as agents keep interpreting the public
information differently.
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run. We are interested in self-defeating learning in individual-decisionmaking rather than in social

environments, and explore the implications of a very different mistake.

The interaction between incorrect inferences and behavior we study is somewhat reminiscent

of Ellison’s (2002) model of academic publishing, in which researchers who are biased about the

quality of their own work overestimate publishing standards, making them tougher referees and

thereby indeed toughening standards. In contrast to our work, updating is ad-hoc, and the model

relies on “feedback” from others on the evolution of the publishing standard.

There is also a considerable literature on the learning implications of various mistakes in inter-

preting information (see for instance Rabin and Schrag, 1999, Rabin, 2002, Eyster and Rabin, 2010,

Madarász, 2009, Rabin and Vayanos, 2010, Benjamin, Rabin and Raymond, 2012). Overconfidence

is a different type of mistake—in particular, it is not directly an inferential mistake—so our results

have no close parallels in this literature.

Methodologically, our theory confirms Fudenberg’s (2006) point that it is often insufficient

to do behavioral economics by modifying one assumption of a classical model, as one modeling

change often justifies other modeling changes as well. In our setting, the agent’s false belief about

her ability leads her to draw incorrect inferences regarding the fundamental, so assuming that an

overconfident agent is otherwise classical may be misleading.

6 Conclusion

While our paper focuses exclusively on individual decisionmaking, the possibility of self-defeating

learning likely has important implications for multi-agent situations. For example, it has been

recognized in the literature that managerial overconfidence can benefit a firm both because it leads

the manager to overvalue bonus contracts and because it can lead her to exert greater effort (de la

Rosa, 2011, for example). Yet for tasks with the properties we have identified, misguided learning

can also induce a manager to make highly suboptimal decisions. Hence, our analysis may have

implications on the optimal allocation of decisionmaking authority for a manager.

A completely different issue is that different individuals may have different interpretations as to

what explains unexpectedly low performance. For instance, a Democrat may interpret poor health

outcomes as indicating problems with the private market, whereas a Republican may think that

the culprit is government intervention. In the formalism of our model, one side believes that output
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is increasing in bt, while the other side believes that output is decreasing in bt. Similarly to Dixit

and Weibull’s (2007) model of political polarization, decisionmakers with such opposing theories

may prefer to adjust policies in different directions. Our model highlights that unrealistically high

expectations regarding outcomes can play an important role in political polarization. Furthermore,

our model makes predictions on how the two sides interpret each other’s actions. It may be the case,

for instance, that if a Republican has the power to make decisions, she engages in self-defeating

learning as our model predicts, with a Democrat looking on in dismay and thinking that—if only

she had the power—a small adjustment in the opposite direction would have been sufficient. If the

Democrat gets power, she adjusts a little in the opposite direction, initially improving performance,

but then she engages in self-defeating learning of her own. Frequent changes in power therefore

help keep self-defeating learning in check. Meanwhile, an independent who also has unrealistic

expectations but is unsure about which side’s theory of the world is correct always tends to move

her theory toward the theory of the party in opposition, as that party’s theory is better at explaining

current observations.

The assumption in our model that the agent has a degenerate overconfident belief about ability—

while invaluable for tractability—prevents us from studying a number of relevant questions. As a

case in point, it would be important to understand whether and how the forces we identify interact

with the forces that generate widespread overconfident beliefs in the population. For instance,

our results suggest one possible reason for the persistence—though not for the emergence—of

overconfidence. Since (as discussed in Section 3.1) the agent often abandons tasks and prefers

tasks for which previous learning does not apply, she can keep updating mostly about external

circumstances, slowing down learning about her ability.
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Zábojnik, Ján, “A Model of Rational Bias in Self-Assessments,” Economic Theory, 2004, 23 (2),
259–282.

A Notation

Throughout the proofs in the Appendix, we use the following additional notation for the bounds

on the derivatives of Q we imposed in Assumption 1. We let Q
ee
> −∞ be a lower bound on Qee.

Let Q
b
, Qb > 0 be bounds on Qb such that Q

b
≤ Qb ≤ Qb; similarly, let Q

a
, Qa > 0 be bounds

satisfying Q
a
≤ Qa ≤ Qa. Let Q

ea
> −∞ and 0 < κ < ∞ be bounds such that Qea ≥ Q

ea
and

Qeb(et, a, bt)/|Qee(et, a, bt)| ≤ κ for all et, a, bt. Note that since |Q
ee
| <∞, the latter bound implies

also that Qeb is bounded from above. Let Qeb <∞ be a bound such that Qeb ≤ Qeb.

B Proofs

Proof of Lemma 1. We established in the text that the agent believes at the end of period t− 1

that bt is normally distributed with mean φ̃t−1 and variance h−1
ε + [h0 + (t− 1)hε]

−1. Now because

Q is strictly concave in et, so is the expectation Ẽt−1,φ̃t−1

[
Q(e, ã, b̃)

]
and thus if an optimal action

exists it is unique and characterized by the first order condition

0 = Ẽt−1,φ̃t−1

[
Qe(e

∗(t, φ̃t−1), ã, b̃)
]
. (11)

Since for all a, bt, lime→eQe(e, a, bt) < 0 and lime→eQe(e, a, bt) > 0, an optimal action exists. As

|Qee| and |Qeb| are bounded we can apply the dominated convergence theorem to show that the
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right-hand-side of Equation 11 is differentiable in e and φ. We can thus apply the implicit function

Theorem to get

∂e∗(t, φ̃t−1)

∂φ̃t−1

= −
Ẽt,φ̃t−1

[
Qeb(e

∗(t, φ̃t−1), ã, b̃)
]

Ẽt,φ̃t−1

[
Qee(e∗(t, φ̃t−1), ã, b̃)

] > 0 ,

where the inequality follows from the facts that that Qeb > 0 and Qee < 0 by Assumption 1.

Proof of Proposition 1. We begin with the following lemma:

Lemma 3. The belief φ̃t is strictly increasing in et.

Proof of Lemma 3. The agent’s perceived signal b̃t at the end of period t is implicitly defined

through

Q(et, ã, b̃t) = Q(et, A, bt) . (12)

Because Q is strictly increasing in the state of the world, there is a unique belief b̃t satisfying the

above equation. We begin by establishing that since Qae ≤ 0, the perceived signal b̃t is strictly

increasing in the effort chosen in period t. To see this formally, subtract Q(et, ã, bt) on both sides

of Equation 12

Q(et, ã, b̃t)−Q(et, ã, bt) = Q(et, A, bt)−Q(et, ã, bt),

and rewrite it as ∫ bt

b̃t

Qb(et, ã, z)dz =

∫ ã

0
Qa(et, z, bt)dz.

Since Qae ≤ 0, the right hand side of the above equation weakly decreases in the chosen effort

et, and since Qbe > 0 the left hand side strictly increases unless b̃t strictly increases. Since φ̃t

is a weighted average between b̃t and φ̃t−1, the fact that b̃t strictly increases in e completes the

proof.

We now prove the proposition.

Step 1. We now establish that the belief strictly decreases in period t, i.e. φ̃t < φ̃t−1, if and

only if Γ(φ̃t−1) < 0. Using that et = e∗(φ̃t−1), that bt = Φ in our noiseless limit, and subtracting

Q(e∗(φ̃t−1), ã, φ̃t−1) from both sides of Equation 12 yields

Q(e∗(φ̃t−1), ã, b̃t)−Q(e∗(φ̃t−1), ã, φ̃t−1) = Γ(φ̃t−1) .
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Since Qb > 0, it follows that b̃t < φ̃t−1, and because φ̃t is a weighted average of b̃t and φ̃t−1,

φ̃t < φ̃t−1.

Step 2. We next establish that the sequence of beliefs is monotone. Observe that the belief at

the end of period t, φ̃t, depends only on et and φ̃t−1, and by Lemma 3 φ̃t is strictly increasing in

et and it is also obviously increasing in φ̃t−1. Furthermore, by Lemma 1, e∗(φ̃t−1) itself is strictly

increasing in φ̃t−1. Hence, φ̃t is strictly increasing in φ̃t−1.

We conclude from Steps 1 and 2 that the sequence φ̃t is strictly decreasing if Γ(φ̃0) < 0 and

strictly increasing if Γ(φ̃0) > 0.

Step 3. Consider first the case in which Γ(φ̃0) < 0. Let

φ̂ = max{φ ∈ C : φ ≤ φ̃0} .

We proof by induction that φ̃t > φ̂ for all t. Suppose φ̃t−1 > φ̂. The optimal effort et is increasing

in φ̃t−1, so that et = e∗(φ̃t−1) > e∗(φ̂). Since the belief φ̃t is a strictly increasing function of et and

increasing in φ̃t−1, and since et > e∗(φ̂) and φt−1 > φ̂, we have

φ̃t = φ̃(e∗(φ̃t−1), φ̃t−1) > φ̃(e∗(φ̂), φ̂) .

Because φ̂ ∈ C, we also have φ̃(e∗(φ̂), φ̂) = φ̂. Hence, φ̃t > φ̂. By induction, thus, φ̃t > φ̂ for all t.

In case Γ(φ̃0) > 0, an analogous argument shows that for φ̂′ = min{φ ∈ C : φ ≥ φ̃0}, φ̃t < φ̂′ for

all t.

Step 4. Again, we consider the case Γ(φ̃0) < 0 first. Since the belief is monotone decreasing for

Γ(φ̃0) < 0, and it is bounded from below by φ̂, it thus converges. We next show that it converges

to φ̂ by showing that any limit point must satisfy Γ(φ) = 0. As in the noiseless limit bt = Φ one

has

Γ(φ̃t) = Q(e∗(φ̃t), A,Φ)−Q(e∗(φ̃t), ã, φ̃t) = Q(e∗(φ̃t), ã, b̃t)−Q(e∗(φ̃t), ã, φ̃t) ≥ Qb(b̃t − φ̃t),

where the first line follows from Equation 12 and the second from the facts that Qb ≥ Q
b

and

b̃t < φ̃t. Let φ̃∞ = limt→∞ φ̃t. We have that

φt+1 − φt =
1

t
(b̃t − φ̃t) ≤

1

Q
b
t

inf
φ∈[φ̃∞,φ0]

Γ(φ) .

Thus, if we define d := infφ∈[φ̃∞,φ0] Γ(φ) < 0, we have

φ̃t = φ̃0 −
t−1∑
s=1

(φ̃t+1 − φ̃t) ≤ φ̃0 −
|d|
Q
b

t∑
s=1

1

s
.
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Consequently, φ̃ diverges to minus infinity whenever d 6= 0 and thus by definition of d we have

Γ(φ̃∞) = 0 .

In case Γ(φ̃0) > 0, a very similar argument establishes that beliefs converge to φ̂′ = min{φ ∈
C : φ ≥ φ̃0}.

Proof of Corollary 1. It follows from the updating rule in the noiseless limit case that φ̃1 = b̃1;

b̃1 is implicitly defined through

Q(e∗(φ̃0, ã, b̃1) = Q(e∗(φ̃0), A,Φ).

Since Qa, Qb > 0, b̃1 < Φ as otherwise the left-hand side above is greater than the right-hand side.

Hence, φ̃1 < Φ. As beliefs are initially decreasing, Γ(φ̃0) < 0, and the remainder of the corollary

follows immediately from Proposition 1.

Proof of Proposition 2. Consider the set of points where the agent revises his belief upwards

Di = {φ : Γi(φ) ≥ 0}, for i = 1, 2.

Note that Γi(φ) = Ri(A,Φ)−Ri(ã, φ)−Li(e∗(ã, φ), A,Φ). Thus, Γ1 > Γ2 pointwise and D1 ⊃ D2.

First, let φ̃0 ∈ D2. By Proposition 1 the limit belief is given by

φ̃∞,i = inf{φ /∈ Di : φ ≥ φ̃0} = inf
(
DC
i ∩ [φ̃0,∞)

)
for i = 1, 2.

As DC
1 ⊂ DC

2 the infimum strictly increases and φ̃∞,2 < φ̃∞,1. Second, consider the case where

φ̃0 /∈ D2 and φ̃0 ∈ D1. By Proposition 1, with technology Q1 beliefs are updated upwards and with

Q2 strictly downwards, so that φ̃∞,2 < φ̃0 ≤ φ̃∞,1. Third, let φ̃0 /∈ D2 and φ̃0 /∈ D1. Proposition 1

implies that the limit belief is given by

φ̃∞,i = sup{φ ∈ Di : φ ≤ φ̃0} = sup
(
Di ∩ (−∞, φ̃0]

)
for i = 1, 2.

As D1 ⊃ D2 the supremum strictly decreases and φ̃∞,2 < φ̃∞,1. Fourth, observe that φ̃0 ∈ D2

and φ̃0 /∈ D1 contradicts d2 ⊂ D1. Finally, since, Γ1 > Γ2 it follows that C1 ∩ C2 = ∅. Hence

φ̃∞,2 < φ̃∞,1 in all cases above.

Proof of Proposition 3. By Assumption 1(i) the agent has a unique optimal action, and since

Q is twice differentiable, the agent’s optimal effort in period t must satisfy the following first-order

condition:

QS(S(et, a), bt) Set(et, a) = 0.
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Since the optimal action is unique, QS(S(et, a), bt) 6= 0 at the optimum, and hence at the optimum

Set(et, a) = 0. Therefore, the optimal action is independent of the state of the world, and hence

the agent’s beliefs. Thus, the agent never changes her action.

Proof of Proposition 4. I ⇒ II. Denote by φ̃(A, ã, φ) the unique steady-state beliefs associated

with A, ã, φ, and note that lead the agent to take the optimal action. That the action is optimal

when the agent holds beliefs φ̃(A, ã, φ) is equivalent to

e∗(A, φ) = arg max
e
Q(e,A, φ) = arg max

e
Q(e, ã, φ̃(A, ã, φ)). (13)

Furthermore, the fact that these are steady-state beliefs means that the agent gets no surprise:

Q(e∗(A, φ), A, φ) = Q(e∗(A, φ), ã, φ̃(A, ã, φ)). (14)

We establish some properties of e∗(a, φ). First, we know that e∗φ(a, φ) > 0. Second, we show

that e∗a(a, φ) > 0. Take any a′ > a. By Equation (13), we have e∗(a, φ) = e∗(ã, φ̃(a, ã, φ)), so that

e∗(a′, φ) = e∗(a, φ̃(a′, a, φ)).

Now by Equation (14), we know that φ̃(a, ã, φ) is strictly decreasing in ã. Furthermore, since

φ̃(a′, a′, φ) = φ, we can conclude that φ̃(a′, a, φ) > φ. But then e∗(a, φ̃(a′, a, φ)) > e∗(a, φ), estab-

lishing our claim that e∗a(a, φ) > 0.

Given these properties, we can define B(a, φ) = e∗(a, φ), and this function satisfies the properties

in the proposition. Furthermore, using again that e∗(a, φ) = e∗(ã, φ̃(a, ã, φ)), note that for any

a, ã, φ, the unique φ′ satisfying B(a, φ) = B(ã, φ′) is φ′ = φ̃(a, ã, φ). Now we define

Q̂(e, a, φ) = B(a, φ)− L(|e−B(a, φ)|),

where L(·) is any strictly increasing function satisfying L′(x) < 1 everywhere. By construction, for

any initial beliefs the agent chooses the same action with the output function Q̂ as she does with

the output function Q. In addition, upon observing q1, she can infer the value of B, so that she

forms new beliefs equal to φ̃(a, ã, φ). Again by construction, from here she does not change beliefs,

and behaves the same way as she would with output function Q.

II ⇒ I. Because QB, Ba, Bb > 0, for any action e there is a unique b̃ such that Q(e,B(A,Φ)) =

Q(e,B(ã, b̃)). Hence, φ̃t = b̃ for all t ≥ 1 and φ̃(a, ã,Φ) in the proposition thus equals b̃. For all t ≥ 2,
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et is implicitly defined through Qe(et, B(ã, φ̃t−1)) = 0. Since B(ã, φ̃t−1) = B(ã, b̃) = B(A,Φ)), the

agent thus chooses the optimal action for which Qe(et, B(A,Φ)) = 0 from period 2 on.

Proof of Proposition 5. First, note that as Q(e, a, b) = a+ b−L(e− b) is increasing in b, a, the

agent is under-confident ã < 0 and the perceived signal b̃t satisfies

Q(et, ã, b̃t) = Q(et, A, bt) (15)

we have that b̃t > bt = Φ for all t. Thus, the limit mean belief is bounded from below by the

fundamental Φ

φ̃∞ = lim
t→∞

1

t

∑
s≤t

b̃s ≥ lim
t→∞

1

t

∑
s≤t

bs = Φ .

By the symmetry of the loss function, the agent takes the action that equals her posterior belief

in the previous period φ̃t−1 = et. Beliefs converge to φ̃∞ if and only if limt→∞ b̃t = φ̃∞. Thus, if

the beliefs converge, the expected loss L(et − b̃t) from the agent’s perspective vanishes in the limit

for which limt→∞ et = limt→∞ φ̃t−1 = limt→∞ φ̃t = limt→∞ b̃t. As the agent expects to suffer no

loss in the limit, the limit mean belief satisfies

ã+ φ̃∞ = A+ Φ− L(φ̃∞ − Φ) .

Rearranging for |∆| = −(ã − A) and using the fact that L is strictly positive whenever φ̃∞ 6= Φ

yields

|∆| = φ̃∞ − Φ + L(φ̃∞ − Φ) > φ̃∞ − Φ .

Since we already established that φ̃∞ > Φ, we conclude that 0 < φ̃∞ −Φ < |∆|. Since the slope of

the loss function is less than one everywhere, this also implies that L(φ̃∞ − Φ) < |∆|.
Finally, we argue that mean beliefs converge. Rewriting Equation 15 yields

|∆|+ Φ− L(et − Φ) = b̃t − L(et − b̃t).

Since b̃t > Φ, we know that for any period τ > 1, eτ = φτ−1 =
∑τ−1

t=1 b̃t > Φ. Since L(·) is weakly

convex, b̃τ is weakly decreasing in eτ . Defining b̃max implicitly through |∆|+Φ = b̃max−L(b̃max−Φ),

thus, implies that for all τ > 1, b̃τ ∈ [Φ, b̃max].

Since b̃t is weakly decreasing in the chosen action et = φ̃t−1 and there is a unique consistent

belief φ̂, for all φ̃t > φ̂ one has b̃t ≤ φ̂ and for all φ̃t < φ̂ one has b̃t ≥ φ̂. For any φ̃ 6= φ̂ let
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δ = |φ̃ − φ̂|/2. If for any period t ≥ τ the agent chooses an action et ∈ (φ̂ − δ, φ̂ + δ), the sum∑∞
t=τ (1/t)|b̃t− φ̂| ≥

∑∞
t=τ (1/t)δ =∞, and hence beliefs cannot converge to some limit belief other

than φ̂. By definition Γ(φ̂) = 0.

To establish that beliefs converge, we next show that for every δ > 0, there exists a period

t̂(δ) such that if beliefs φ̃t enter the interval (φ̂ − δ, φ̂ + δ) in some period t ≥ t̂(δ), then they

never leave this interval. Let t(δ) be the smallest t for which [b̃max − Φ] < t̂(δ)δ. Then, for

any t ≥ t̂(δ), |φ̃t+1 − φ̃t| = (1/(t + 1))[b̃max − Φ] < δ, and since for φ̃t < φ̂ beliefs increase,

one has φ̂ − δ < φ̃t < φ̃t + δ < φ̂ + δ. Similarly, since for φ̃t > φ̂ beliefs decrease, one has

φ̂+ δ > φ̃t > φ̃t − δ > φ̂− δ, which establishes that for every δ > 0, there exists a period t̂(δ) such

that if beliefs φ̃t enter the interval (φ̂− δ, φ̂+ δ) in some period t ≥ t̂(δ), then they never leave this

interval.

To complete the proof that beliefs converge, we argue that the sequence of beliefs φ̃t must

eventually enter the interval (φ̂− δ, φ̂+ δ). Suppose otherwise. Since the belief sequence is strictly

increasing below and strictly decreasing above this interval, and cannot converge to any point

outside of this interval, it must therefore jump over φ̂ infinitely often. Hence it must cross φ̂ after

period t(δ) without entering the interval (φ̂ − δ, φ̂ + δ). To do so, |φ̃t+1 − φ̃t| > 2δ, contradicting

the fact established above that for all t ≥ t̂(δ), |φ̃t+1 − φ̃t| < δ.

Hence for any δ > 0, there exists some period t such that for all t > t, |φ̃t − φ̃∞| < δ. Thus,

mean beliefs converge to φ̂.

Proof of Proposition 6. (1) To establish the bounds in the proposition, observe that Equation 1

implies that b̃t < bt since output increases in ability and the state. We are left to show that bt − b̃t
is bounded from above. Since Qa < Qa and Qb > Q

b
,

Qa × (ã−A) ≥ Q(et, ã, bt)−Q(et, A, bt) = Q(et, ã, bt)−Q(et, ã, b̃t) ≥ Qb × (bt − b̃t) .

Thus, bt − b̃t ≤ Qa/Qb ×∆.

(2) We apply the Implicit Function Theorem to Equation 1 to show that b̃t is differentiable in

et with derivative

∂b̃t
∂et

=
Qe(et, A, bt)−Qe(et, ã, b̃t)

Qb̃(et, ã, b̃t)
=

[Qe(et, A, bt)−Qe(et, A, b̃t)] + [Qe(et, A, b̃t)−Qe(et, ã, b̃t)]
Qb(et, ã, b̃t)

.

(3) As Qb > 0, b̃t < bt and Qeb > 0, ã > A and Qea ≤ 0 (by Assumption 2), it follows that

∂b̃t
∂et

> 0.
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In the proof of Theorem 1, we make use of the following fact.

Lemma 4 (Convergence to the Limiting Action.). Suppose Assumption 1 holds. There is a d > 0

such that for any t and any φ̃t−1, we have |e∗(t, φ̃t−1)− e∗(φ̃)| ≤ (1/t)d.

Proof of Lemma 4. Consider the optimal action as a function of the posterior variance σt =

1
hε

+ 1
h0+(t−1)hε

. As the optimal action e∗ is interior and the output Q is differentiable with respect

to the action, we have that

0 = E
[
Qe(e

∗(σ, φ̃), ã, φ̃+ ση) | η ∼ N (0, 1)
]
.

As |Qee| and |Qeb| are bounded we can apply the dominated convergence theorem to show that the

right-hand-side of Equation 11 is differentiable in e and η. We can thus apply the implicit function

Theorem to get

∂e∗(σ, φ̃)

∂σ
= −

E
[
Qeb(e

∗(σ, φ̃), ã, φ̃+ ση)η | η ∼ N (0, 1)
]

E
[
Qee(e∗(σ, φ̃), ã, φ̃+ ση) | η ∼ N (0, 1)

] .
Using that Qeb(et, a, bt)/|Qee(et, a, bt)| ≤ κ for all et, a, bt, thus,∣∣∣∣∣∂e∗(σ, φ̃)

∂σ

∣∣∣∣∣ ≤ E
[
Qeb(e

∗(σ, φ̃), ã, φ̃+ ση)|η| | η ∼ N (0, 1)
]

E
[
|Qee(e∗(σ, φ̃), ã, φ̃+ ση)| | η ∼ N (0, 1)

]
≤

E
[
κ|Qee(e∗(σ, φ̃), ã, φ̃+ ση)||η| | η ∼ N (0, 1)

]
E
[
|Qee(e∗(σ, φ̃), ã, φ̃+ ση)| | η ∼ N (0, 1)

] = κE [|η| | η ∼ N (0, 1)] =: d .

We thus have that

|e∗(σt, φ)− e∗(σ∞, φ)| =
∣∣∣∣∣
∫ σt

σ∞

∂e∗(z, φ̃)

∂z
dz

∣∣∣∣∣ ≤
∫ σt

σ∞

∣∣∣∣∣∂e∗(z, φ̃)

∂z

∣∣∣∣∣dz
≤ d(σt − σ∞) = d

1

h0 + (t− 1)hε
.

Proof of Theorem 1. The result is Theorem 2.1 in Kushner and Yin (2003), page 127 applied

to dynamics given in Equation (7)

φ̃t+1 = φ̃t + γt

[
b̃t+1 − φ̃t

]
,

which (when constrained to a compact set) is a special case of the dynamics of Equation (1.2) on

page 120 in Kushner and Yin. We will first establish that the sequence of mean beliefs is bounded
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with probability one, and then apply the theorem for the case in which the dynamics are bounded

with probability one and there is no constraint set. Second, we verify that the conditions for the

theorem apply.

First, by Proposition 6, bt − b̃t ∈ [0, Qa/Qb∆]. Since φ̃0 = φ0 and φt − φ̃t = (1 − γt)(φt−1 −
φ̃t−1) + γt(bt − b̃t) for t ≥ 1, φt − φ̃t ∈ [0, Qa/Qb∆] is bounded. Hence, because (φt)t converges to

Φ almost surely, lim supt→∞ φ̃t ≤ Φ and lim inft→∞ φ̃t ≥ Φ−Qa/Qb∆ are almost surely bounded.

Second, we now check the conditions that are necessary for the Theorem to be applicable. Below

we follow the enumeration of assumptions used in Kushner and Yin:

(1.1) The theorem requires
∑∞

t=1 γt = ∞ and limt→∞ γt = 0. Immediate from the definition of

γt = hε
(t+1)hε+h0

.

(A2.1) The theorem requires supt E
[
|b̃t+1 − φ̃t|2 | Φ

]
< ∞, where the expectation condition on the

true state and is taken at time 0. We have that

b̃t+1 − φ̃t = (b̃t+1 − bt+1) + (bt+1 − φt) + (φt − φ̃t) .

By the norm inequality for the L2 norm we have that√
E
[
|b̃t+1 − φ̃t|2 | Φ

]
≤
√
E
[
|b̃t+1 − bt+1|2 | Φ

]
+
√
E [|bt+1 − φt|2 | Φ] +

√
E
[
|φt − φ̃t|2 | Φ

]
≤ 2∆Qa/Qb +

√
E [|bt+1 − Φ|2 | Φ] +

√
E [|φt − Φ|2 | Φ]

= 2∆Qa/Qb + h−1/2
ε +

√
E [|φt − Φ|2 | Φ] .

Where the second to last line follows as |φt − φ̃t| ≤ ∆Qa/Qb and |bt − b̃t| ≤ ∆Qa/Qb. The

result follows as the expected L2 distance of the correct belief of an outsider φt from the state

Φ is monotone decreasing.

(A2.2) The theorem requires the existence of a function g and a sequence of random variables (βt)t

such that E
[
b̃t+1 − φ̃t | Φ, φ̃t

]
= g(φ̃t) + βt. Hence, we define

βt = E
[
b̃t+1 − φ̃t | Φ, φ̃t

]
− g(φ̃t) = g(t, φ̃t)− g(φ̃t) ,

where g is defined in Equation 8.

(A2.3) The theorem requires g(φ̃) to be continuous in φ̃. By Lemma 1, e∗(φ̃) is differentiable and

thus continuous in φ̃. By Proposition 6, b̃ is differentiable in e and thus continuous e. Hence,

g(φ̃) = E
[
b̃(e∗(φ̃), b)− φ̃ | Φ

]
is continuous in φ̃.
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(A2.4) The theorem requires
∑∞

t=1(γt)
2 <∞. Immediate from the definition of γt = hε

(t+1)hε+h0
.

(A2.5) The theorem requires
∑∞

t=1 γt|βt| <∞ w.p.1. Observe that

βt = E
[
b̃(e∗(t, φ̃), b)− b̃(e∗(φ̃), b) | Φ

]
.

To bound βt we first bound the derivative of the perceived signal with respect to the action

∂b̃
∂e . The equality below follows from the proof of Proposition 6 and the inequality from Part

(v) of Assumption 1

∂b̃t
∂et

=
[Qe(et, A, bt)−Qe(et, A, b̃t)] + [Qe(et, A, b̃t)−Qe(et, ã, b̃t)]

Qb(et, ã, b̃t)

≤
Qeb|bt − b̃t|+ |Qea| × |A− ã|

Q
b

=: d1 .

Hence,

|βt| ≤ E
[
|b̃(e∗(t, φ̃), b)− b̃(e∗(φ̃), b)| | Φ

]
≤ d1 E

[
|e∗(t, φ̃)− e∗(φ̃)|

]
.

By Lemma 4 |e∗(t, φ̃)− e∗(φ̃)| < (1/t)d2 for some d2 > 0. Consequently,

∞∑
t=1

γt|βt| ≤ d1d2

∞∑
t=1

hε
(t+ 1)hε + h0

× 1

t
<∞.

(A2.6) The theorem requires the existence of a real valued function f that satisfies fφ̃(φ̃) = g(φ̃) and

that f is constant on each connected subset of C. We thus define f by

f(φ̃) = −
∫ φ̃

x
g(z)dz ,

for some x. As in our case C is the union of countably many points, f trivially satisfies all

conditions of the theorem.

Proof of Proposition 7. If the agent uses the action e in every period her long-run mean belief

is given by

φ̂ = Eb [b̃(b, e)|Φ] .

When the agent can change her actions, by Theorem 1 the mean beliefs converge to some limit

belief φ̃∞ ≤ Φ − ∆Qb/Qa. Since by Lemma 3 the action is monotone in the state, e∗(φ̃∞) ≤
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e∗(Φ −∆Qb/Qa) < e∗(Φ) ≤ e. By Proposition 6 the perceived signal b̃(b, e) is strictly increasing

in the action e for every realization of b. Thus b̃(b, e) < b̃(b, e∗(φ̃∞)), and hence one has

φ̃ = Eb [b̃(b, e∗(φ̃∞))|Φ] < Eb [b̃(b, e)|Φ] = φ̂.

Furthermore, by Proposition 6, b̃(e, b) < b and therefore φ̂ = Eb [b̃(b, e)|Φ] < Φ = E[b].

Proof of Proposition 8. To prove the proposition, we first solve for the perceived signal. Second,

we show that there is a unique limiting belief. Since the linear-loss specification does not satisfy

Assumption 1, we then—in a third setp—use the fact that there is a unique limiting belief to

establish directly that mean beliefs converge. Finally, we establish the comparative static in η.

Lemma 5. In the linear loss case, the perceived signal satisfies

b̃t(bt, et) =


bt − ∆

1+η if bt ≤ et

bt − ∆
1+η −

2η
1+η (bt − et) if et < bt < et + ∆

1−η

bt − ∆
1−η if bt ≥ et + ∆

1−η .

(16)

Proof of Lemma 5. We distinguish two cases: et < bt and et > bt. We have that

et > bt ⇒ qt = A+ (1 + η)bt − η et < A+ et ,

and

et < bt ⇒ qt = A+ (1− η)bt + η et > A+ et .

Hence, the perceived signal b̃t the agent infers from observing the output qt in period t is given by

b̃t =


qt+ηet−ã

1+η for qt < ã+ et

qt−ηet−ã
1−η for qt > ã+ et

.

Because ã > A, qt < A+ et implies qt < ã+ et. Since qt = a+ bt − η|et − bt|, we have that in this

case

b̃t =
(A+ (1 + η)bt − η et) + η et − ã

1 + η
= bt −

ã−A
1 + η

.

Similar, as qt > ã+ et implies qt > A+ et it follows that

b̃t =
(A+ (1− η)bt + η et)− η et − ã

1− η = bt −
ã−A
1− η .
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In case A+ et < qt < ã+ et we have that

b̃t =
(A+ (1− η)bt + η et) + η et − ã

1 + η
= bt −

ã−A
1 + η

− 2 η

1 + η
(bt − et) .

With a linear loss function, it is optimal for the agent to choose the action equal to the expected

state of the world, so that e∗(t, φ̃) = φ̃. Hence, in this example

g(t, φ̃) = Eb [b̃(b, φ̃)|Φ]− φ̃ = g(φ̃).

We now show

Lemma 6. In the linear loss case there is a unique limiting belief satisfying φ̃∞ < Φ−∆.

Proof of Lemma 6. Substituting the expected signal b̃t as a function of the mean belief φ̃ and Φ

into the definition of g gives

g(φ̃) = E
[
bt −

∆

1 + η
− 2η

1 + η
min

{
(bt − φ̃)+,

∆

1− η

}]
− φ̃ ,

where bt ∼ N (Φ, h−1
ε ). Let us first show that there exists a unique a unique belief φ̂ ∈ (Φ− ∆

1−η ,Φ−
∆

1+η ) such that g(φ̂) = 0. Substituting establishes that g
(

Φ− ∆
1−η

)
> 0 and g

(
Φ− ∆

1+η

)
< 0. The

derivative of g is given by

gφ̃(φ̃) =
2η

1 + η
E
[
1{φ̃<bt<φ̃+ ∆

1−η }

]
− 1 < 0 ,

where we use that η < 1 and that the probability that bt lies in a given interval is less than one.

As g is continuous and strictly decreasing, there exists a unique φ̂ ∈ (Φ− ∆
1−η ,Φ− ∆

1+η ).

It remains to show that g(Φ−∆) < 0. Evaluating g at Φ−∆ gives

g(Φ−∆) = ∆
η

1 + η

{
1− 2E

[
min{(b− Φ

∆
+ 1)+,

1

1− η}
]}

.

Hence it suffices to establish the expectation in the equation above is greater than 1/2, which holds

since

E
[
min{(b− Φ

∆
+ 1)+,

1

1− η}
]
≥ E

[
min{(b− Φ

∆
+ 1)+, 1}

]
> P

[
b− Φ

∆
≥ 0

]
=

1

2
.

Lemma 7. In the linear loss case beliefs converge to the unique limiting belief φ∞.
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Proof of Lemma 7. We beginng by establishing that for almost every sequence of ε′s there exists

an interval I containing φ̃∞ and a tI such that for all t > tI the mean belief is in that interval

φ̃t ∈ I . First, Lemma 5 shows that for every true signal bt the perceived signal b̃t is increasing in

et. Second, Lemma 5 implies that

bt −
∆

1− η ≤ b̃t ≤ bt −
∆

1 + η
.

Hence, we have that the mean belief of the agent is bounded by the true mean belief minus ∆
1+η

from above for all t ≥ 1;

φ̃t =

t−1∑
s=0

hεb̃s + h0φ0

hεt+ h0
≤

t−1∑
s=0

hεbs + h0φ0

hεt+ h0
− hεt

hεt+ h0

∆

1 + η
= φt −

hεt

hεt+ h0

∆

1 + η

≤ φt −
hε

hε + h0

∆

1 + η
,

and by the true mean belief minus ∆
1−η from below

φ̃t ≥ φt −
hεt

hεt+ h0

∆

1− η = φt −
∆

1− η .

By the strong law of large numbers the mean belief of an outside observer converges to the fun-

damental almost surely P [limt→∞ φt = Φ] = 1 . By convergence of the mean beliefs of an outside

observer, it follows that for almost every sequence of ε′s the subjective mean belief φ̃ stays in an

interval, i.e. for every δ > 0 there exists a tδ such that for all t ≥ tδ

φ̃t ∈
[
φ− ∆

1− η − δ, φ−
hε

hε + h0

∆

1 + η
+ δ

]
= Iδ .

Finally, we show that the mean belief (φ̃t)t=0,1,... converges to φ̂ for almost every sequence of ε′s.

Fix a sequence of ε′s. Let, [u, v] be the smallest interval such that the beliefs φ̃t never leave it.

As the mean belief of the agent never leave the interval [u, v] and the actions satisfy et = φ̃t, her

actions never leave the interval [u, v]. As b̃t is increasing in et, a lower bound on the perceived

signals is given by

b̃t ≥ bt −
∆

1 + η
− 2η

1 + η
min

{
(bt − u)+,

∆

1− η

}
. (17)

Note, that the right-hand side is a sequence of identically, independently distributed random vari-

ables whose average converges for almost every sequence of ε′s to g(u) + u. This implies that the

belief φ̃ is bounded from below by g(u) +u− δ in the long-run with probability one for every δ > 0.

Suppose u < φ̂, by definition of φ̂ and the single crossing property of g we have g(u) > 0 which
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contradicts the fact that [u, v] is the minimal interval that the beliefs do not leave. Similar, the

perceived signals are upper bounded by

b̃t ≤ bt −
∆

1 + η
− 2η

1 + η
min

{
(bt − v)+,

∆

1− η

}
,

and hence the long-run belief is upper bounded by g(v)+v+δ with probability one for every δ > 0.

Suppose v > φ̂. By definition of φ̂ this implies g(v) < 0 which contradicts the fact that [u, v] is

the minimal interval that the beliefs do not leave. Hence, we have that u ≥ φ̂ and v ≤ φ̂, which

together with u ≤ v implies that the beliefs converge to φ̂ for almost every path.

To establish the proposition, we are left to show that φ̃∞ decreases in η. We do so, by showing

that g is decreasing in η at φ̃∞. The long run belief φ̃∞ solves the equation

0 = g(φ̃∞) = Φ− φ̃∞ −
1

1 + η
− 2η

1 + η
E
[
min{(b− φ̃∞)+,

∆

1− η}
]
. (18)

Taking the derivative with respect to η yields

gη(φ̃∞) =
∆

(1 + η2)
− 2

(1 + η)2
E
[
min{(b− φ̃∞)+,

∆

1− η}
]
− 2η

1 + η

∆

(1− η)2
P
[
b ≥ φ̃∞ +

∆

1− η

]
.

Solving for the expectation using the Equation 18 and rewritting we have

gη(φ̃∞) = (Φ− φ̃∞)
−1

(1 + η)η
+

∆

(1 + η)η
− 2η

1 + η

∆

(1− η)2
P
[
b ≥ φ̃∞ +

∆

1− η

]
.

As (Φ − φ̃∞) > ∆, we have that gη(φ̃∞) < 0. In the proof of Lemma 6, we established that

gφ̃(φ̃∞ < 0). Using the implicit function theorem and these facts, it follows that

dφ̃∞
dη

= −gη(φ̃∞)

gφ̃(φ̃∞)
< 0 .

Proof of Proposition 9. We first establish that there is a unique limiting mean belief φ̃∞. The

perceived signal b̃t satisfies

Q(et, g(ã) + b̃t) = Q(et, g(A) + bt).

By Assumption 1, Q is strictly increasing in g(a) + bt, and therefore g(ã) + b̃t = g(A) + bt. Thus,

for any sequence of action each b̃t is normally distributed with mean g(A)− g(ã) + bt and variance

h−1
ε . Hence, the mean beliefs converge with probability one to φ̃∞ = g(A)− g(ã) + Φ.

Since the aggregator g(A) + bt ∼ N (g(A) + Φ, h−1
ε ) and the agent expects the aggregator

g(ã) + φ̃∞ to have the same distribution in the limit, for each action e the expected distribution of

output is the same, and hence the agent’s action converges to the unique optimal limit action.
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