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Abstract

We study the implications of flexible adjustment in strategic interactions using a class

of finite-horizon models in continuous time. Players take costly actions to affect the evo-

lution of state variables that are commonly observable and perturbed by Brownian noise.

The values of these state variables influence players’ terminal payoffs at the deadline, as

well as their flow payoffs. In contrast to the static case, the equilibrium is unique un-

der a general class of terminal payoff functions. Our characterization of the equilibrium

builds on recent developments in the theory of backward stochastic differential equations

(BSDEs). We use this tool to analyze applications, including team production, hold-up

problems, and dynamic contests. In a team production model, the unique equilibrium

selects an efficient outcome when frictions vanish.
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dination problem, team production, hold-up problem, contest]
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1 Introduction

In a variety of economic settings, strategic interactions are often modeled as one-shot

games. According to this approach, time is not explicitly modeled and the outcome of

a game is instantaneously determined as a consequence of players’ static and simultane-

ous decisions. However, this approach abstracts away from the fact that players often

take a certain amount of time to finalize their actions in real-world settings, such as in-

vestment or production. In these situations, players may want to gradually adjust their

positions while additional noisy information arises. To examine the implications of such

“gradual adjustment,” we propose and analyze a broad class of finite-horizon games with

stochastically evolving states.

As a motivating example, consider several firms engaged in a joint project with a fixed

end date, such as the development of a new product with a pre-determined release date.

Each firm continuously makes investments to improve the quality of the product, all the

way up until the deadline. On the release date, demand for the new product is affected by

market conditions and the overall quality of the product. If firms simultaneously choose

their total investment levels at the start, then they face a coordination problem in the form

of equilibrium multiplicity, especially when their decisions are strategic complements.

Our key insight in this study is that gradual adjustment eliminates this coordination

problem: We show that a unique equilibrium can be obtained when firms can adjust their

investment levels gradually. To formalize this insight, Section 2 builds a general class of

continuous-time stochastic games which fit a variety of applied settings studied in the

literature, including capital investment, sticky price competition, and R&D races. We

consider a model with a fixed deadline and a commonly observed state variable whose

evolution depends on players’ actions and Brownian noise. Up until the deadline, players

make flexible and frequent adjustments to the state by influencing the drift of the state

variable process subject to convex adjustment costs. The costs can depend on the state

variables (and can thus also be interpreted as a net flow payoff), and there is a lump-

sum return that depends on the final values of the state variables at the deadline. This

model can be interpreted as a dynamic elaboration of a one-shot game, in which players

simultaneously and directly choose the values of the state variables. We solve for the Nash

equilibrium of this class of games, allowing for history-dependent strategies.

In Section 3, we show that, under a general class of terminal payoff functions, the

model has a unique equilibrium. Notably, this is true even if the adjustment costs and
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noise are arbitrarily small—and, perhaps more interestingly, if the corresponding one-

shot model generates multiple equilibria. In addition, the unique equilibrium has the

Markovian property, that is, each player’s adjustment at each moment in time depends

only on the current time and state and is independent of past histories.

We identify the following key assumptions needed for the uniqueness result: (i) gradual

adjustment; (ii) bounded time horizon; (iii) no instantaneous strategic interdependence;

and (iv) noisy state evolution. In the absence of any of these key assumptions, we can

construct counterexamples where equilibrium multiplicity arises. For the basic intuition

behind this, consider a discrete-period environment in which players commit to fixed

actions during each period. In this environment, one’s optimal choice of current action

depends on the opponents’ actions in the same period, which creates the potential for

equilibrium multiplicity. However, this coordination incentive vanishes when the period

length is very small. This follows from the fact that the opponents’ current actions

influence the state by only a small amount during any given period, and the continuation

values are continuous in the state, because discontinuities are smoothed out by Brownian

noise. Moreover, in any equilibrium the continuation values at the deadline are uniquely

determined by the state variables, by definition. Given that payers’ flow payoffs are

independent of the opponents’ current actions, these observations enable us to solve the

game by “backward induction” and to uniquely compute the continuation values and

optimal actions for earlier periods from those for the deadline in the limit.

Section 4 illustrates the scope of our general model by analyzing three specific ap-

plications. As a prime application, we consider a team production game in Section 4.1.

Each player exerts costly effort to increase the value of a one-dimensional state variable,

representing the team’s total output, which generates a common-value benefit to the play-

ers at the deadline. There might exist multiple equilibria in the static benchmark case,

even when the cost function is arbitrarily small. In our model, such a coordination failure

disappears and there is a unique equilibrium. Moreover, provided the costs and noise

are sufficiently small, this equilibrium is approximately efficient. Intuitively, this is be-

cause some noise realizations can substitute for current efforts on the part of the players

and promote subsequent efforts on their part. When the state is sufficiently close to the

socially efficient outcome near the deadline, the players can strongly coordinate on the

efficient outcome with small costs and noise, which will unravel any inefficient equilibrium

because the players will anticipate that even small noise fluctuations will trigger repeated
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coordination toward the efficient outcome.

In Section 4.2, we study a hold-up problem, in which a seller can improve the quality of

a good but the price of the good is fixed ex-ante, independently of the quality. While the

static benchmark case predicts no investment in quality, we show that in our setting with

gradual adjustment the seller chooses positive investment levels. This illustrates a form

of commitment power embedded in the gradually evolving state. We provide a closed-

form solution of the equilibrium strategies in this game. Finally, Section 4.3 studies a

model of a dynamic contest, in which players exert costly effort to improve the quality

of their own project, and a winner is chosen by comparing all players’ quality levels at

the deadline. In contrast to the static benchmark case, players have dynamic strategic

incentives to discourage their opponents from making efforts in the future. This effect is

non-stationary because of the deadline, and we quantify the size by numerically computing

the equilibrium payoffs and strategies through partial differential equations (PDEs).

From a technical point of view, we employ techniques recently developed in the the-

ory of backward stochastic differential equations (BSDEs). BSDEs are a form of (possibly

non-Markovian) stochastic differential equation defined backwards in time from stochastic

terminal conditions. The theory of BSDEs has been developed as a powerful approach to

stochastic control problems in cases where the Hamilton-Jacobi-Bellman (HJB) equations

are not applicable. To the best of our knowledge, this study is the first to use BSDEs

to obtain equilibrium uniqueness in continuous-time games.1 In contrast to the standard

approach in continuous-time games, which is based on recursive dynamic programming,

we relate the optimality condition and equilibrium directly to BSDEs. As an important

consequence, we do not need to require smoothness of the value functions, which is nec-

essary the HJB equation approach but is often difficult to ensure, in particular in the

case of multi-dimensional state variables. In addition, we apply the BSDE comparison

theorem (Kobylanski, 2000) to obtain our efficiency result and other comparative statics

in Section 4.1.

The Supplementary Appendix contains results for variations of the main model, as

well as omitted proofs. In particular, we show, using a discrete-time model, that the

uniqueness result holds under a Poisson noise environment as well if the period length is

1The theory of BSDEs was first introduced by Bismut (1973) for the linear case, and later by Pardoux and
Peng (1990) for the uniform Lipschitz case. Duffie and Epstein (1992) used BSDE in constructing recursive
utility in continuous time, and Chen and Epstein (2002) incorporate ambiguity aversion. Recently, Williams
(2011) and Cvitanic, Wan, and Zhang (2009) used BSDEs in the context of dynamic contracts, while our focus
is on strategic interactions among multiple long-run players.
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small enough.

1.1 Related Literature

We formulate a continuous-time model in which the players’ actions are imperfectly mon-

itored with Brownian signals as in Sannikov (2007). Our paper identifies situations in

which the strategic interdependence during a short time interval is small, which implies

the equilibrium uniqueness via the backward induction argument. This logic is different

from several studies in the repeated-game literature that examine the role of Brownian

signals in sustaining intertemporal incentives when actions are flexible.2 Sannikov and

Skrzypacz (2010) show that Brownian signals are not effective for this purpose unless they

are used for linear value transfers between agents. When such a transfer is not feasible be-

cause of structural restrictions, several studies have shown that equilibria are either static

or Markovian when players’ actions are flexible enough. For example, this is the case

when there is only one long-run agent (Fudenberg and Levine, 2007, 2009; Faingold and

Sannikov, 2011; Bohren, 2014) or a signal is one-dimensional (Sannikov and Skrzypacz,

2007). Those structural restrictions play no role in the uniqueness result in our paper.3

The model in our paper can be seen as a differential game in which flow payoffs are

independent of the opponents’ current actions. As we will see, the model is applicable

to many economic examples in the literature (see Dockner, Jorgensen, Long, and Sorger

(2001) for a survey). In important economic settings such as capital accumulation or

duopoly with a sticky price, there typically exist many equilibria (Fudenberg and Tirole,

1983; Tsutsui and Mino, 1990). This paper contributes to the literature by providing a

uniqueness result. Lepeltier, Wu, and Yu (2009) and Hamadene and Mu (2015) consider

imperfect monitoring models similar to ours, and use BSDEs to show equilibrium exis-

tence. In these models, flow payoffs do depend on the opponents’ actions, which precludes

equilibrium uniqueness in general. We also note that their proof method does not im-

ply uniqueness, even under the setting in our paper. Papavassilopoulos and Cruz (1979)

show that, in a certain class of deterministic models, an equilibrium is unique within the

2We choose an imperfect monitoring set-up in order to avoid technical issues that can arise in formalizing
perfect monitoring in continuous time (e.g., Simon and Stinchcombe (1989) and Bergin and MacLeod (1993)).
In Supplementary Appendix C.2.1, we show a sense in which the monitoring imperfectness itself is not important
for our uniqueness result, by using a discrete-time model with noisy state evolution.

3We also note that the uniqueness result continues to hold in our model, even under Poisson noise (see
Supplementary Appendix C.2.2), which is in sharp contrast to the findings of Fudenberg and Levine (2007) and
Faingold and Sannikov (2011).
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class of Markov strategies that are analytic functions of the state, provided that such an

equilibrium exists.4 We note that equilibrium strategies are often not differentiable even

if there is noise. Also, discontinuity is an important source of equilibrium multiplicity, as

we show in Example 3.

There are some studies on finite-horizon models with frequent actions that examine

the effects of commitment power caused by switching or adjustment costs (most of these

papers do not allow players to receive flow payoffs in addition to the costs). We note that

a similar effect is at work in our model, because players cannot make appreciable changes

in their state during a short time horizon, on account of the adjustment costs and the

boundedness of the players’ controls. Caruana and Einav (2008a) study Cournot compe-

tition using a deterministic differential game model with quadratic payoffs in which firms

change the target production level before the market opens. In this study, we consider a

much wider class of payoffs and costs under history-dependent strategies with imperfect

public monitoring, focusing on equilibrium uniqueness. Lipman and Wang (2000) study

finitely repeated games with finite actions and switching costs. They consider the effect

of increasing the frequency of repetitions, which makes the switching cost disproportion-

ally larger than a stage game payoff for each period.5 While they obtain an equilibrium

selection result in binary-coordination games, the equilibrium is not unique in general.

In Kamada and Kandori (2014), players have opportunities to revise their positions si-

multaneously, at the times of arrival of synchronous Poisson shocks during the preparation

phase. In contrast to our uniqueness result, they show that a broad range of outcomes can

emerge as equilibria even if the static benchmark game has a unique equilibrium. In their

model, adjustment is not gradual and can take any size, which makes it possible to im-

plement effective punishments against deviations even when the remaining time is short.

In contrast, our uniqueness result suggests that gradualness in adjustments can eliminate

such punishment incentives during the preparation phase. Calcagno, Kamada, Lovo, and

Sugaya (2014) consider a model of sequential moves that occur with asynchronous Pois-

son arrivals, and show that a unique equilibrium selects Pareto efficient outcome under a

certain class of two-player coordination games.6

4Wernerfelt (1987) extends this result to a certain stochastic setting. That is, an equilibrium is unique within
the class of Markov strategies that are C2 in the state variables if such an equilibrium exists.

5To this effect, Caruana and Einav (2008b) analyze a model in which players announce their intended actions
to be taken at the deadline and the switching cost of changing an action plan is increasing with time. Their
model is a finite-period sequential-move game, and thus generically has a unique equilibrium.

6They provide an example of multiple equilibria when there are more than two players. Lovo and Tomala
(2015) prove the existence of Makov perfect equilibria in a more general framework.

6



Our focus is different from that of many papers that study gradual contributions to

public goods.7 While the details of the models vary, the existing research typically ques-

tions whether and how gradual contributions can help to mitigate free-rider problems and

focuses on the most efficient equilibrium among possible multiple equilibria. In contrast,

we show how gradual adjustments and noise help achieve equilibrium uniqueness.

2 Model

2.1 Setup

We consider a continuous-time game over a finite horizon [0, T ] played by a finite set of

players N = {1, 2, ..., n}. Let Xt ∈ Rd denote the value of the d-dimensional state variable

at time t. As we discuss in Section 2.2 below, the interpretation of this variable can vary

with the application, representing for instance accumulated capital, project quality, or

sticky price levels. The players gradually adjust the state variable subject to random

shocks. Specifically, we assume Xt follows a process of the form

dXt = µ(At, Xt)dt+ ΣdZt, (1)

where At = (Ait)i∈N is the profile of control actions chosen by the players at time t, and

Ait ∈ Ai is the control chosen by player i at time t.8 The control range Ai is assumed

to be a compact interval in R. Moreover, Zt = (Zkt )k=1,..,d is a d-dimensional Brownian

motion, and Σ is a d× d matrix that describes the correlation of the shocks to the state

variable. The game starts with an exogenously given initial state X0 ∈ Rd.

We impose the following restrictions on the state process in (1).

Assumption 1.

1. There exist µi ∈ Rd for each i ∈ N and a bounded, Lipschitz continuous function

µ0 : Rd → Rd such that µ(A,X) =
∑

i∈N µiA
i + µ0(X).

2. The correlation matrix Σ is invertible.

7For example, see Admati and Perry (1991), Fershtman and Nitzan (1991), Marx and Matthews (2000),
Lockwood and Thomas (2002), Compte and Jehiel (2004), Pitchford and Snyder (2004), Matthews (2013), and
Battaglini, Nunnari, and Palfrey (2014). Guéron (2015) considers a discrete-time infinite horizon model and
obtains an equilibrium uniqueness result under an imperfect monitoring set-up.

8We use the so-called weak formulation, which is the standard way that a continuous-time game with
imperfect monitoring is formulated in the literature (see Appendix B.2 for more formal description).
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The first condition requires that the drift term be additively separable across players

and linear in their actions. As we will see, the separability ensures that each player’s

instantaneous control choice at any given moment is independent of the control choices

of the other players at that moment, which is important for equilibrium uniqueness. The

second condition rules out perfect correlation among the components of the state variables.

At each time t, player i incurs an instantaneous adjustment cost ci(Ait, Xt)dt, where

ci : Ai × Rd → R. At the end of the game, that is, at time T , each player receives a

terminal payoff U i : Rd → R as a function of the terminal state XT . To summarize,

player i’s total payoff is

U i(XT )−
∫ T

0
ci(Ait, Xt)dt.

We impose the following conditions on ci and U i.

Assumption 2.

1. ci is C2 and has bounded derivatives such that infAi,X
∂2ci(Ai,X)

(∂Ai)2
> 0.

2. U i is bounded and Lipschitz continuous.

The first condition ensures that the adjustment cost is strictly convex in the control

size. The second condition is a technical requirement.

At time t, player i observes the state Xt but does not directly observe the control

actions Ajt of the other players. Formally, player i’s (public) strategy is an Ai-valued

stochastic process Ai = (Ait)t∈[0,T ] that is progressively measurable with respect to FX ,

the filtration generated by the public history of Xt. Note that this setup allows the players’

actions to depend on past histories of the Xt process.

Under any profile of feasible strategies A = (Ai)i∈N , we can define player i’s continu-

ation value at time t as

W i
t (A) = E

[
U i(XT )−

∫ T

t
ci(Ais, Xs)ds

∣∣∣∣ FXt ] . (2)

A profile of feasible strategies A = (Ai)i∈N is a Nash equilibrium if each player maximizes

her expected payoff (2) at t = 0 given the other players’ strategies. Since the distribution

of the publicly observable Xt process has full support in our setup, the Nash equilib-

rium concept is identical to its refinement known as public perfect equilibrium, which is

frequently used in the literature on dynamic games.
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2.2 Discussion of the Model

In this subsection, we discuss two interpretations of the model. Our main motivation is to

study the effects of introducing a flexible adjustment phase into a static game framework.

To see this, consider the special case in which ci does not depend onXt and µ0 is identically

0. Such a game can be viewed as a “dynamic elaboration” of the following static game:9

Player i chooses Ai0 ∈ Ai at time 0 and receives a payoff of U i(XT )− Tci(Ai0)

at time T , where XT = X0 + T
∑

i µiA
i
0.10

In this game, player i can be seen as committing to the particular control level Ai0 during

the entire interval [0, T ]. Without substantial restrictions on the functional forms of the

U i, this static game can have multiple Nash equilibria. Our model elaborates on this static

game by introducing a noise term Zt and allowing players to change their action Ait during

the preparation phase [0, T ]. As shown in the next section, this natural modification leads

to equilibrium uniqueness under a broad class of terminal payoff functions. Moreover,

because the state is observable during the preparation phase [0, T ], players are faced

with dynamic strategic interactions that are absent in the static benchmark. We analyze

this dynamic aspect in Section 4, within the context of three applications, namely team

production, hold-up problems, and dynamic contests.

Alternatively, we can interpret −ci as player i’s net flow payoff. Under this inter-

pretation, our model accommodates many games studied in the literature on differential

games, including the two examples given below. (See Dockner, Jorgensen, Long, and

Sorger (2001) for other examples.) We note that the papers mentioned below consider a

stationary environment without noise, and thus do not obtain equilibrium uniqueness.

Example 1 (Capital accumulation). Consider firms competing to expand their capital

levels. Let d = n, so that the number of players coincides with the dimension of the state

variable. Xi
t is the capital level of firm i, which follows dXi

t = Aidt + dZit , and Ait is

the net investment made by i at time t. Each firm receives flow revenue as a function

of the profile of the current capital levels Xt, and incurs a flow investment cost that is

convex in Ait. Thus ci(Ait, Xt) represents the flow revenue minus the investment cost at

time t. Spence (1979) proposes this class of games, and Fudenberg and Tirole (1983) show

9Similarly, Caruana and Einav (2008a,b), Kamada and Kandori (2014) and Calcagno, Kamada, Lovo, and
Sugaya (2014) analyze games in which players adjust their plans for future actions. The relationship between
these studies and ours is more extensively discussed in the Related Literature section.

10An alternative but similar formulation of a corresponding static game includes a noise term by setting
XT = X0 + T

∑
i µiA

i
0 + ΣZT . Similarly, multiple equilibria are possible with this formulation.
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that there exists a continuum of multiple (Markov perfect) equilibria, in contrast to our

uniqueness result with a fixed horizon and noise. �

Example 2 (Duopoly with a sticky price). Fershtman and Kamien (1987) propose a

model of duopolistic competition in a homogeneous good whose price adjusts gradu-

ally.11 Our framework extends their model by introducing noise (due to noise traders,

for example) and using a one-dimensional state Xt as the price of the good at time t.

Ait represents firm i’s supply at time t. The price adjustment takes the form dXt =(
X̄ −

∑
iA

i
t −Xt

)
dt + dZt, where X̄ is a fixed parameter. Here X̄ −

∑
iA

i
t denotes the

price level induced by a linear demand curve based on the current output
∑

iA
i
t. The

flow payoff for firm i at time t, which consists of the revenue minus the production cost,

is independent of (Ajt )j 6=i since the current price Xt is unaffected by the firms’ current

output choices. �

3 Equilibrium Uniqueness

In this section, we establish equilibrium uniqueness. Section 3.1 states the formal result,

while Section 3.2 provides intuition for the result, and Section 3.3 discusses the role of

our key assumptions.

3.1 Uniqueness Result

We follow DeMarzo and Sannikov (2006) in characterizing the optimality of each player’s

strategy by using the martingale representation theorem (e.g., Karatzas and Shreve (1991)).

For any profile of feasible policies A = (Ai)i∈N , the evolution of player i’s continuation

value satisfies

dW i
t (A) = ci(Ait, Xt)dt+ βit(A) · dZt (3)

along with the terminal condition

W i
T (A) = U i(XT ). (4)

11Tsutsui and Mino (1990) construct multiple equilibria of this game.
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Here βi(A), whose existence and uniqueness are ensured by the martingale representation,

is an FX -progressively measurable d-dimensional process such that E[
∫ T

0 |β
i
t|2dt] < ∞.12

Intuitively, βi,kt (A) measures the sensitivity of player i’s continuation payoff to fluctuations

in Zkt at time t.

Rewriting dXt = µ(At, Xt)dt+ΣdZt as dZt = Σ−1(dXt−µ(At, Xt)dt) and substituting

the latter into equation (3), we obtain

dW i
t (A) =

ci(Ait, Xt)− βit(A) · Σ−1

∑
j

µjA
j
t + µ0(Xt)

 dt+ βit(A) · Σ−1dXt,

where we used Assumption 1. To characterize the players’ incentive compatibility con-

straint, we define player i’s response function f i : Rn×d × Rd → Ai as

f i(b, x) = arg max
αi∈Ai

{(
bi · Σ−1µiα

i
)
− ci(αi, x)

}
for each b = (bi)i∈N ∈ Rn×d and x ∈ Rd. The maximand is taken from (the negative

of) the drift term in the expression for the continuation value above. The function f i is

well-defined because we assume strict convexity of ci in Ai (Assumption 2). Using these

response functions, the optimality of the strategies can be characterized in terms of the

following “local incentive compatibility condition” (Lemma 7 in Appendix): i’s strategy

Ai is optimal against A−i if and only if

Ait = f i(βt(A), Xt) almost surely for almost all t. (5)

Lemma 1. A strategy profile (Ai)i∈N is a Nash equilibrium if and only if (3), (4), and

(5) hold for some FX-progressively measurable processes W,β such that

E[ sup
0≤t≤T

|Wt|2],E[

∫ T

0
|βt|2dt] <∞.

Combining equations (1), (3), (4), and (5) leads to a multi-dimensional backward

stochastic differential equation (BSDE)

dW i
t =

ci(f i(βt, Xt))− βit · Σ
−1

∑
j

µj(Xt)f
j(βt, Xt) + µ0(Xt)

 dt+ βit · Σ
−1dXt

W i
T = U i(XT ) (6)

12In this paper we use | · | to denote both the Euclidean norm for vectors and the Frobenius norm for matrices.
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under a probability measure for which the Xt process is a Brownian motion.13 A solu-

tion (W,β) to this BSDE describes the stochastic evolution of the continuation payoffs.

Moreover, the control Ait given by f i(βt, Xt) is incentive compatible for player i and is

consistent with the evolution of the continuation payoffs.

We build on the results of Delarue (2002) and Cheridito and Nam (2015) to show that

this BSDE has a unique solution (W,β), which establishes our main claim of equilibrium

uniqueness.

Theorem 1. Under Assumptions 1 and 2, there exists a unique Nash equilibrium. More-

over, this equilibrium has the Markovian property, that is, the continuation values and

the strategies take the form W i
t (A) = wi(t,Xt) and Ait = ai(t,Xt) for some function

wi : [0, T ] × Rd → R that is Lipschitz continuous in x ∈ Rd uniformly in t ∈ [0, T ] and

some function ai : [0, T ]× Rd → Ai.

The intuition underlying the uniqueness result and the key assumptions on which it

relies are discussed in detail in Sections 3.2 and 3.3. Recall that we allow players’ actions

to depend on past histories of Xt in a non-trivial manner. However, by Theorem 1 the

unique equilibrium turns out to be Markovian.

3.2 Heuristic Explanation of Uniqueness

To glean some intuition for the uniqueness result (Theorem 1), consider a discrete-time

version of the model with a short period length ∆. This departs from the original model

only in that each player’s action remains constant within each discrete period. To simplify

the notation, we assume that d = 1 and Σ = 1. At the start of the final period, t = T −∆,

player i chooses Ait to maximize the value of

W i,∆
t = −ci(Ait, Xt)∆ + E

[
U i (XT ) |Xt

]
= −ci(Ait, Xt)∆ + E

U i
Xt +

∑
j∈N

µjA
j
t + µ0(Xt)

∆ + εt

∣∣∣∣Xt



given the opponents’ actions (Ajt )j 6=i, where εt is distributed N(0,∆). Note that the

second term depends on the actions of all the players, (Ait)i∈N . It is precisely because

of this strategic interdependence that the subgame at the last period can have multiple

13See Appendix B.1.1 for a formal description.
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equilibria when ∆ is not small.

We claim that if ∆ is sufficiently small, then the strategic interdependence is “small”

and the equilibrium action profile at t = T − ∆ is unique. To see this, for now assume

that U i is twice differentiable. Then we can directly compute

∂2

∂Ait, ∂A
j
t

E
[
U i (XT ) |Xt

]
= E

[
(U i)′′ (XT ) |Xt

]
µiµj∆

2 = O(∆2).

Intuitively speaking, this is because each player’s action influences the state to first order

in ∆, and the interactions among their influences is of order less than ∆, since the drift in

the value of the state variable is separable across players. On the other hand, the second-

order partial derivative ∂2

∂(Ai
t)

2W
i,∆
t is of the order of ∆ because of the strict convexity of

the adjustment cost. The first-order condition implicitly defines i’s best response against

the opponents’ actions at time t. By the implicit function theorem, its slope is bounded

by ∣∣∣∣∣∣
∂2

∂Ai
t∂A

j
t

W i,∆
t

∂2

∂(Ai
t)

2W
i,∆
t

∣∣∣∣∣∣ ,
which is close to 0 when ∆ is small. This means that each player’s incentive is nearly

insensitive to her opponents’ actions, and thus the equilibrium actions at time t are

uniquely determined by the contraction mapping theorem.

In the above argument, the presence of noise becomes important when U i is not suffi-

ciently smooth, because it is this noise that ensures the differentiability of E
[
U i (XT ) |Xt

]
in (Aj)j∈N by convolution.14 The convexity of ci ensures that each player’s incentive prob-

lem is a well-behaved concave problem for small ∆, which implies that the best-response

function is continuous. Moreover, the continuation value at t depends on only the current

state Xt, and is Lipschitz continuous by the implicit function theorem. We can then repeat

this argument backward from the final period to recursively pin down the continuation

values.15

3.3 Key Assumptions Underlying the Uniqueness

In this subsection, we identity four key assumptions underlying the result:

14In general, this term is smooth even when U i is discontinuous. When U i is only Lipschitz continuous, we

can show that ∂2

∂Ai
t,∂A

j
t

E
[
U i (XT ) |Xt

]
= O(∆3/2). See Appendix B.4 for the details.

15Strictly speaking, the Lipschitz coefficient should not grow too fast as we repeat the backward induction
steps to continue this argument. See Supplementary Appendix C.2.1 for the details.
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(i) Gradual adjustment

(ii) Bounded time horizon

(iii) No instantaneous strategic dependence

(iv) Noisy state evolution

By the term “gradual adjustment” in (i), we mean that a player’s decision at each time

has only a small influence on the value of the state variable. In the discrete-time model

discussed in Section 3.2, this influence is of order ∆. In the case of the Poisson noise

model (see Supplementary Appendix C.2.2), it is also of order ∆ in expectation, and we

prove that there exists a unique equilibrium if ∆ is small enough. If ∆ is large, we cannot

ensure uniqueness in general, for the same reason that a one-shot game can have multiple

equilibria. To understand why (ii) is necessary, consider the case in which the terminal

deadline T is randomly distributed and has unbounded support. Then it is not possible to

apply the “backward induction” argument, which requires a definite terminal date. (See

Supplementary Appendix C.1 for an explicit construction of multiple equilibria in the case

of a random time horizon with an unbounded distribution.) By (iii), we mean the additive

separability of the drift term of the Xt-process and the fact that ci does not depend on

the current actions of the other players, (Ajt )j 6=i. When (iii) is violated, each player’s local

incentive constraint arg maxαi∈Ai

{
(βi · Σ−1µ(αi, A−i, Xt)

)
− ci(αi, A−i, Xt)} defines an

“augmented game” that, given (β,X), does not in general uniquely pin down the optimal

action profile.16 For (iv), recall that as established by Theorem 1, the continuation value

functions become continuous in the state variable in the presence of Brownian noise.

Without noise, it is possible that continuation value functions are discontinuous in states.

This can lead to a continuum of multiple equilibria, as in Example 3 (Section 4.1). We

also note that there is a technical issue in formulating non-Markovian strategies without

noise in continuous time (e.g., Simon and Stinchcombe (1989)).

16Even when flow payoffs directly depend on the actions of others, we can generalize the equilibrium uniqueness
result if every pair (β,X) induces a unique enforceable action profile in the sense of Sannikov (2007), and this
unique profile is Lipschitz continuous in β and X. For example, this is the case when the payoff is an additively
separable function of opponents’ actions and own action. The same argument applies to the case in which the
drift of the Xt process is not separable across players. Analogous conditions appear as Condition 2 in Faingold
and Sannikov (2011) and Assumption 4 in Bohren (2014), and these are used to rule out multiple Markov
equilibria in games between a long-run agent and a sequence of short-run agents.
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4 Applications

In this section we study three applications of the model. Unless stated explicitly, we

suppose Assumptions 1 and 2.

4.1 Team Production

We consider a team production model in which the state variable Xt is one-dimensional

as follows:

dXt =
∑
i∈N

Aitdt+ σdZt, (7)

where σ > 0 and Zt is a one-dimensional Brownian motion. The state variable can be

interpreted as, for example, the total production level by a team of workers, the amount

of a public good, or the quality level of a joint research project. Players receive a common

terminal payoff, denoted by U : R→ R. They also have the same cost function κc(·) ≥ 0,

with c : A → R and a scaling parameter κ > 0, where A = [A, Ā] is the control range that

is common across the players.17

Before analyzing this model, we will demonstrate the issue of multiple equilibria and

inefficiency under benchmark cases. The following simple example shows equilibrium

multiplicity under both the static benchmark and the deterministic case σ = 0 even if κ

is arbitrarily small.

Example 3. Consider a form of “debt contract” U(X) = max{0, X}. That is, players

receive a positive benefit if their total output is positive and zero payoff otherwise. Assume

that A = [0, 1] and c is strictly increasing. Also, suppose that T < −X0 < NT .

1. Consider the static benchmark model, in which player i chooses effort level Ai0 only

once and the final output is determined by XT = X0 + T
∑

iA
i
0 (Section 2.2). If

κc′(1) < 1, then there exists a Nash equilibrium Ai0 = 1 for every i. The symmetric

equilibrium payoff is X0 +TN −Tκc(1). On the other hand, there is always a Nash

equilibrium in which Ai0 = 0 for every i. In this case, the symmetric equilibrium

payoff is X0−Tκc(0). Note that the equilibrium outcome in the latter case is Pareto

dominated by that in the former case.18

17See Radner (1992) and Zandt (1998) for surveys of models of team production. Georgiadis (2015) and
Cvitanic and Georgiadis (2015) study Markov equilibria in a continuous-time model similar to ours in which
the game terminates if and only if the state variable reaches some pre-established threshold.

18Even if we consider the alternative formulation of the static benchmark model with noise, that is, XT =
X0 + T

∑
iA

i
0 + σZT , these two strategy profiles remain Nash equilibria when σ is small.
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2. The equilibrium multiplicity in the static benchmark model carries over to the case

where time is continuous but there is no noise. Consider a variation of the main

model in which the noise level σ is 0, and focus on Markov strategies in which the

control at time t depends on only t and Xt. If N ≥ 3, then for any θ ∈ (−N+1,−1),

the symmetric strategy profile in which player i chooses control

Ait =


1 if Xt ≥ (T − t)θ

0 if Xt < (T − t)θ

is a Markov perfect equilibrium (for the details, see Appendix B.5). Thus, for a fixed

initial state, there is a continuum of equilibria parameterized by θ. If X0 ≥ Tθ, the

players always choose the maximal effort Ait = 1 on the equilibrium path, and they

achieve the symmetric equilibrium payoff X0 +TN−Tκc(1). If X0 < Tθ, there is no

effort at all, that is, Ait = 0, and the symmetric equilibrium payoff is X0 − Tκc(0),

which is lower than the former case. Note that, in this class of equilibria, the

continuation value of each player is discontinuous at this state.19

�

The main model predicts a unique Nash equilibrium under arbitrary values of κ > 0

and σ > 0. Below we provide some results that partially characterize the unique equilib-

rium payoff that is common across players. Our approach to the proofs of these results,

which is based on the BSDE comparison theorem (Kobylanski, 2000) that compares the

solutions of two different BSDEs, is of independent interest.

First, we provide (rough) bounds of the unique equilibrium payoff, and use these to

characterize the limit equilibrium when noise and costs are small. The idea is to construct

a hypothetical single-agent problem in which the agent chooses all the players’ strategies.

Formally, consider the problem of choosing a strategy profile Â = (Âi)i∈N to maximize

E[U(XT ) −
∫ T

0 κ
∑

i ĉ(Â
i
t)dt]. Let Ŵ0 denote the optimal value. Let W0 denote the

equilibrium payoff under the unique equilibrium, which is symmetric across players. The

following result provides two-sided bounds on the equilibrium payoff:

Lemma 2. Consider the team production game. Then Ŵ0 + κT (N − 1)c̄ ≥W0 ≥ Ŵ0.

19The nature of multiplicity is similar to that of Fudenberg and Tirole (1983) under an infinite-horizon
capacity expansion game (Example 1), in that discontinuities in the continuation value functions play a key
role.

16



We compare the BSDEs under the equilibrium and the representative agent problem.

The bounds become tight when κ is small. We can show that, under small frictions, the

representative agent approximately achieves the efficient payoff supx∈[X0+NTA,X0+NTĀ] U(x),

which provides an accurate lower bound on the equilibrium payoff. As a consequence, the

equilibrium is shown to achieve approximate efficiency under small frictions.

Proposition 1. Consider the team production game. Then, for any ε > 0, there exists

δ > 0 such that

E[U(XT )] ≥ max
x∈[X0+NTA,X0+NTĀ]

U(x)− ε

holds under the unique equilibrium if σ, κ ≤ δ.

Recall that there can be an inefficient equilibrium even when κ is small if there is no

noise (Example 3). Proposition 1 ensures that such a coordination failure cannot occur

in our dynamic setting when frictions are sufficiently small. To informally explain why

inefficient equilibria (as in the above example) do not exist, consider the case in which

the state is sufficiently close to the socially efficient outcome near the deadline. Then

the players can coordinate on the efficient outcome and they attain high continuation

payoffs at this state. This triggers players to coordinate to target toward the efficient

state from nearby states in earlier times. The value of the state can eventually end up

near an inefficient local maximum by an “unlucky” noise realization. In such a case,

players might want to coordinate on the inefficient local maximum instead if the time left

until the deadline is insufficient to push the state toward the most efficient one. However,

the probability that such an event will occur shrinks to 0 if the noise level goes to 0.

To examine the dependence of the equilibrium outcome distribution on the initial

point X0 when frictions are not necessarily small, we conducted numerical simulations.

We specified U(x) = sin(ax)+bx−cx2 with a = 0.5, and b = c = 0.01 (Figure 1), and used

the quadratic cost function c(a) = κ
2a

2. There are two local maxima, and we cannot rule

out multiple equilibria in the static benchmark case, because the players can coordinate

on “targeting” either of the locally maximum points. In particular, the players might

coordinate on playing a Pareto-inefficient equilibrium by targeting the local maximum at

x ≈ −8.30 rather than the global maximum at x ≈ 3.28.

Figure 2 shows a set of simulation results for the stated utility function with different

initial points X0 and cost levels κ. In each panel, we fix X0 ∈ {−6, 0,−5.2} and compare

the simulated distribution of XT with κ = 0.5 (grey) and that with 0.2 (black). For each

parameter specification, we compute the equilibrium strategy profile and then randomly
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generated XT 1000 times and plotted the resulting values as a histogram. We found that

when X0 is very close to one of the local maxima of U(XT ), as in Panels A and B, the

players tend to coordinate on the closer of the two local maxima, regardless of cost level.

However, when the initial point is not very close to one of the local maxima, the cost level

can significantly affect the distribution of XT . In Panel C, although X0 = −5.2 is closer

to the inefficient local maximum, players try to push the state variable toward the global

maximum in more than half of the simulations when the cost level is sufficiently small.20

Finally, we consider comparative statics of the equilibrium payoff assuming that U is

monotone. We let A(κ,N) denote the unique equilibrium under the cost parameter κ and

team size N .

Proposition 2. Consider the team production game in which U is increasing. Then

W0(A(κ,N)) is decreasing in κ and increasing in N .

While this result may not be surprising in and of itself, it ensures that our “equilibrium

selection” has natural properties. In general, an arbitrary selection of an equilibrium can

lead to strange comparative statics results when we vary parameters locally. The proof

is based on the comparison theorem applied to the equilibrium BSDEs across different

parameters. In order to conduct the appropriate comparison, we need to ensure that βt

is always positive in the equilibrium. This is guaranteed by the co-monotonicity theorem

(Chen, Kulperger, and Wei, 2005; dos Reis and dos Reis, 2013), which is useful in checking

the signs of sensitivity processes βt of BSDEs in general.

Remark 1. By the uniqueness result for a one-dimensional BSDE (Lemma 5 in the

Appendix B.1.1), the unique equilibrium result holds in the team production model even

when U is discontinuous in XT or depends on the entire path (Xt)0≤t≤T . �

4.2 Hold-Up Problem

In this subsection we study a class of hold-up problems that highlight a form of com-

mitment power embedded in the gradually evolving state. In particular, we obtain a

closed-form solution for the equilibrium strategy and show that a certain level of “coop-

eration” can be achieved, which is not possible under the static benchmark. This also

illustrates the point that Nash equilibrium outcomes in the game with gradual adjust-

ments can be very different from those under the static benchmark model even if the

20We thank an anonymous referee for suggesting this simulation experiment.
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Figure 1: Terminal payoff function with multiple local maxima
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Figure 2: Simulated distributions of XT with different initial points X0 and cost levels κ. In each
panel, we fix X0 ∈ {−6, 0,−5.2} and compare the simulated distributions of XT with κ = 0.5 (grey)
and 0.2 (black). For each parameter set, we simulated XT 1000 times and plotted them as a histogram.
The other parameters are σ = 1, N = 2, and T = 1.
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noise level is arbitrarily small.

Suppose that d = n = 2, and there are a seller (player 1) and a buyer (player 2).

Player i controls his/her own one-dimensional state dXi
t = Aitdt + dZit given Xi

0 = 0.

The seller chooses investment A1
t to improve the quality of a good X1

t by incurring a flow

cost c1(A1
t ). The buyer decides the amount of the purchase, X2

t . His adjustment cost

c2(A2
t ) captures the transaction costs of—or the frictions involved in loading—new goods,

such as preparing the necessary facilities. The price per unit is exogenously fixed. The

seller’s terminal payoff U1 is her revenue, and the buyer’s terminal payoff U2 is his utility

of consumption. We make the following assumptions: (i) ∂U1

∂X2 > 0, that is, the seller’s

benefit is increasing in the amount of the buyer’s purchase; (ii) ∂U1

∂X1 = 0, that is, the

seller’s revenue does not depend on the quality per se; (iii) ∂2U2

∂X1∂X2 > 0; and (iv) c1 is

minimized at 0.

When the quality of a good is not contractible, incentivizing the seller to make a

costly investment is a difficult problem in general. The seller and buyer could negotiate

the price of the good after observing the final quality, but this approach may not be

helpful when the buyer gains bargaining power ex post. In this subsection, we examine

an alternative scheme in which the seller and buyer agree on a fixed price ex ante and

the buyer gradually adjusts the scheduled amount of the purchase while observing the

seller’s quality investment thus far. In this setting, the seller has an incentive to choose a

positive level of investment under the dynamic model, because it will encourage the buyer

to purchase the good at a later time.21 This is in contrast to the static benchmark case

(Section 2.2), where the seller chooses the dominant strategy, A1
0 = 0.

To quantify the welfare gain, we focus on the following quadratic payoffs to obtain a

closed-form solution:

U1(X) = X2, U2(X) = X1X2, ci(Ai) =
c̄i
2

(Ai)2

for some c̄1, c̄2 > 0 with Ai = R. In Supplementary Appendix D, we show that a lin-

ear equilibrium in a general quadratic game is obtained by using a system of ordinary

differential equations, which is independent of σ. Accordingly, we obtain the following

21The logic is similar to that of Bohren (2014), who studies an infinite-horizon model in which a long-lived
seller is faced with a continuum of short-lived buyers at each moment in time. The seller has an incentive to
make an investment, since the effect is persistent over time, which will convince prospective future buyers to
make purchases. In our model, the buyer is not myopic, and his forward-looking incentive is captured by the
cooperation term.
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result.

Proposition 3. Consider the hold-up problem with quadratic payoffs. Then there is a

Nash equilibrium A = (Ai)i=1,2 given by

A1
t =

T − t
c̄1c̄2︸ ︷︷ ︸

cooperation term

, A2
t =

(T − t)2

2c̄1(c̄2)2︸ ︷︷ ︸
cooperation term

+
X1
t

c̄2
.

Moreover, the corresponding equilibrium payoffs are as follows:

W 1
0 (A) =

T 3

3c̄1(c̄2)2
, W 2

0 (A) =
T 2σ2

4c̄2
+

3T 5

20(c̄1)2(c̄2)3

The basic reason for the welfare improvement is that the seller can acquire commitment

power from the gradually evolving state, which encourages the seller’s investment. Also,

anticipating the positive investment incentive by the seller, the buyer has an additional

incentive to increase the purchase amount. These effects are captured by the “cooperation

terms” in the above formula, and disappear as time t approaches the deadline T .22

As an extreme form of a seller’s commitment power, we can compute the Stackelberg

equilibrium in the static benchmark game, where the seller chooses A1
0 = T

c̄1c̄2
, and the

buyer chooses A2
0 = T

c̄1c̄2
. The seller’s payoff is T 3

2c̄1(c̄2)2
, which is always higher than the

dynamic equilibrium payoff in Proposition 3. The buyer’s payoff is T 5

2(c̄1)2(c̄2)3
, which can

be lower than the dynamic equilibrium payoff if σ is high. This captures the value of

action flexibility in a dynamic setting that is missing in the static case. The payoffs in the

static benchmark case are not affected even if a noise term ZT affects the state variables.

4.3 Dynamic Contest

Next, we apply our framework to a contest model.23 In this class of games, players

compete for a fixed prize, and the value of the prize does not depend on their effort. As

an example, consider an internal labor market where colleagues compete for a promotion.

The boss gives a promotion to the employee whose project receives the highest evaluation.

In our model, each player chooses her effort level at each time to improve the quality of

her project, and the boss evaluates performance based on the final quality of each player’s

project at deadline T .

22We note that the unbounded control ranges deviate from the original model formulation, and thus the
equilibrium uniqueness is an open question.

23See Konrad (2009) for an extensive survey of this field.
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Consider the case of two players (d = 2). Player i exerts costly effort Ait at each time

t to improve the quality Xi
t of her project, which follows dXi

t = Aitdt + dZit given the

initial value Xi
0. We normalize the payoff for the winner of the prize to 1. We suppose

the winner is stochastically determined with the following additive noise:

U i(X) = Pr[Xi + θi > Xj + θj ],

where θi is a random element that affects the contest designer’s judgment. Hence the

terminal payoff for player i is increasing in the state difference Xi
T − X

j
T . By assuming

that the distribution of θ := θ1−θ2 admits a bounded density, the terminal payoff function

U i becomes Lipschitz continuous.

In the dynamic model, the players’ equilibrium controls depend on their relative po-

sitions, which reflect their dynamic strategic incentives. To examine this point, we nu-

merically simulated the equilibrium PDE using the symmetric quadratic cost funcitons

ci(a) = c̄
2a

2 with Ai = R and terminal payoffs with logit noise U i(X) = exp[γXi]
exp[γX1]+exp[γX2]

,

where γ > 024. The numerical simulation results indicate that the leader (i.e., the player

with the higher value of the state variable) generally exerts greater effort than the fol-

lower. The leader has an incentive to “discourage” the follower and get her to exert less

effort.

Relative to the static benchmark case, we observe that the expected total payoff for

each player is higher than in the dynamic setting (Figure 3). That is, the total cost of

effort is lower in expectation. This is because the players tend to exert less effort under

the dynamic model when the state difference becomes large (Figure 4).

Another observation from the simulations is that the equilibrium effort level ai(t,X)

is monotone in t (Figure 4). In particular, it is increasing in t when competition is fierce,

that is, when X1 ≈ X2. To understand this, note that the benefit of exerting effort in

such a situation is greater when t is closer to the deadline, because the magnitude of

the remaining Brownian noise is smaller. On the other hand, consider the case where

|X1
t −X2

t | is large. Then the winner of the contest is essentially already determined if t is

close to the deadline, hence the players tend to stop choosing high effort levels, and this

causes ai to be decreasing in t.25

24See Appendix A. We used the unbounded control range in the simulation for simplicity.
25The simulations suggest that ai tends to be increasing in t, especially when γ is small. To interpret this,

note that in more random contests (smaller γ), raising the level of effort has a greater marginal effect on the
winning probability. Therefore, the players become competitive even when the difference |X1 −X2| is large.
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Harris and Vickers (1987) study a related model of continuous-time contest games,

called the tug-of-war model.26 In this model, the players exert effort to influence the

drift of their state variables, as in the current paper. As in our model, in each state the

leader always exerts more effort than the follower. In contrast to our model, there is no

fixed deadline; one of the players wins, and the game ends if the difference between the

values of the state variables reaches some pre-established value. Harris and Vickers focus

on time-stationary strategies, while our model allows us to investigate the effects of the

length of time remaining (before the deadline) on equilibrium behavior.
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Figure 3: Expected total payoff of the players under different initial state differences X1
0 −X2

0 . The
total payoff under the dynamic model (solid line) exceeds that under the static model (dashed line)
for each initial state. The other parameters are σ = 1 and γ = 1.

5 Conclusion

This study examines a class of games that embeds one-shot strategic interactions into

a richer continuous-time setting. The equilibrium uniqueness result holds even if the

adjustment costs and noise are arbitrarily small—and, more interestingly, even if the

corresponding one-shot model generates multiple equilibria. The result suggests that, as

long as our model seems to be a more realistic description than the one-shot modeling, the

multiple equilibrium problem in static games could be attributed to over-simplification

that abstracts away certain dynamic aspects. We also identify certain situations in which

the model with gradual adjustment predicts higher efficiency than the one-shot setting.

26Budd, Harris, and Vickers (1993) analyze a more general model. Cao (2014) also studies a model with
asymmetric players and the effect of a handicapping policy. Yildirim (2005) examines a discrete-time contest
model with multiple periods. Notable differences from our result are as follows: (i) There are multiple equilibria
when the players are asymmetric, and (ii) the total effort is typically at least as great as that in the one-shot
model. Seel and Strack (2015) consider a continuous-time model in which players solve the optimal stopping
problem with a private observation of the own state variables.
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Figure 4: Time dynamics of player 1’s optimal control policy in the dynamic contest game when
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under the static benchmark for different initial states. The other parameters are σ = 1 and γ = 1.

These results might be useful for understanding how timing of agents’ decisions affects

welfare, which is relevant in designing policies and institutions.

In general, we believe that the BSDE-based approach provides powerful tools that are

applicable to broad classes of continuous-time games in which the standard HJB equations

cannot be used. For example, the theory of BSDEs in settings with an infinite horizon

and/or general Levy processes could be useful in other classes of economic models beyond

the finite-horizon model with Brownian noise in this paper.

In Iijima and Kasahara (2015), we show the uniqueness of an open-loop equilibrium, in

which players observe only the Zt process. Moreover, if there exists a potential function,

the unique equilibrium maximizes the potential in the small friction limit, which serves

as an equilibrium selection result.27

27The theory of global games (Carlsson and van Damme, 1993) is another equilibrium selection approach that
enriches a complete information game by introducing uncertainty about economic fundamentals, which leads
to equilibrium uniqueness. In contrast to our approach, the presence of private information is essential for the
equilibrium uniqueness result in global games. Note that, while global games with strategic substitutes can
have multiple equilibria, even such a class of games have a unique equilibrium in our framework.
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Appendix

A PDE Characterization

In this section, we derive a PDE characterization of the unique equilibrium, where the

continuation value solves a system of PDEs. Our intention is to facilitate numerical

calculation of the unique equilibrium, as it is often useful to be able to compute an

equilibrium numerically in applications.28 In order to derive a PDE characterization, we

impose the following conditions.

Assumption 3.

1. ci is C2 and bounded. In addition, ci is strictly convex in Ai, and ∂ci(Ai,X)
∂Ai →∞ as

Ai → bd(Ai).

2. U i is C3 and has bounded derivatives.

Assumption 3.1 ensures that player i’s optimal action is in the interior of Ai and f i

is continuously differentiable. Note that Assumption 3 is not consistent with Assumption

2. We now introduce a restriction on the class of equilibria.

Definition 1. A bounded sensitivity equilibrium is a Nash equilibrium A = (Ai)i∈N such

that |βt(A)| is bounded, that is, there exists M > 0 such that |βit(A)| < M for any i and

for almost all t almost surely.

Proposition 4. Under Assumptions 1 and 3, if µ0 and µi for each i ∈ N are bounded and

continuously differentiable, then there exists a unique bounded sensitivity equilibrium A.

Its continuation value take the form W i
t (A) = wi(t,Xt), where w = (wi)i∈N is a unique

solution to the following system of PDEs:

0 =
∂wi(t, x)

∂t
+

1

2

d∑
l,m=1

d∑
k=1

σlkσmk
∂2wi(t, x)

∂xl∂xm
+

∑
j∈N

µja
j + µ0(x)

 ·∇xwi(t, x)−ci(ai, x),

(8)

where ai(t, x) = f i(∇xwi(t, x), x) for all t, x with a terminal condition wi(T, x) = U i(x).

The equilibrium strategy takes the form Ait = f i(µi(Xt) · ∇xwi(t,Xt), Xt).

28Numerical calculation of Markovian BSDEs is an active research area, and we note that many papers that
use Monte Carlo simulations as well (Gobet, Lemor, and Warin, 2005).
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Here we give only a sketch of the proof; the details are provided in Supplementary

Appendix E.2. First, we construct a particular bounded sensitivity equilibrium by solv-

ing the HJB equations that lead to the PDEs (8). We rely on the theory of uniformly

parabolic PDEs (Ladyzenskaja, Solonnikov, and Ural’ceva, 1995) to prove the existence

of a unique solution to the system of PDEs. Assumption 3 is used in this step to ensure

the continuous differentiability of f i. Then we show that the constructed strategy profile

is a unique bounded sensitivity equilibrium, by truncating the original BSDEs and apply-

ing the uniqueness result for uniform Lipschitz BSDEs (Pardoux and Peng, 1990). The

bounded sensitivity assumption is used in justifying the truncation step. It is an open

question whether Nash equilibria with unbounded sensitivity exist.

B Proofs of Main Results

B.1 Preliminaries

This section introduces results from the BSDE literature that we rely on for the proofs.

B.1.1 BSDEs

In this subsection, we define BSDEs and introduce relevant results.29

Fix any invertible d × d matrix Σ̃ throughout this subsection. Let X = {Xt}0≤t≤T

be a standard d-dimensional Brownian motion on a filtered probability space (Ω,F ,P),

where F = {Ft}0≤t≤T is the augmented filtration generated by X, and T is a fixed finite

horizon. We denote by S2 the set of Rn-valued progressively measurable processes W over

[0, T ] such that

E

[
sup

0≤t≤T
|Wt|2

]
<∞,

and by H2 the set of Rn×d-valued progressively measurable processes β over [0, T ] such

that

E
[∫ T

0
|βt|2dt

]
<∞.

We call g : Ω× [0, T ]× Rn × Rn×d → Rn a driver if the following conditions hold:

- g(ω, t, w, b), written g(t, w, b) for simplicity, is progressively measurable for all w ∈
29See, for example, Pham (2010). Note that the notation (W,β) used here corresponds to (Y, Z) in the

standard notation.
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Rn and b ∈ Rn×d

- g(t, 0, 0) ∈ S2(0, T )n

We call ξ a terminal condition if it is an Rn-valued random variable such that E[|ξ|2] <∞.

Definition 2. Let ξ be a terminal condition, and let g be a driver. A BSDE is a stochastic

system of equations defined by30

Wt = ξ +

∫ T

t
g(s,Ws, βs)ds−

∫ T

t
βs · Σ̃dXs, 0 ≤ t ≤ T.

A solution to a BSDE is a pair (W,β) ∈ S2 × H2 that satisfies the above system of

equations. A BSDE is said to be one-dimensional if n = 1.

We often write the above BSDEs in differential form as

dWt = −g(t,Wt, βt)dt+ βt · Σ̃dXt, WT = ξ.

The following result is due to Pardoux and Peng (1990).

Lemma 3 (Lipschitz BSDE). Let ξ be a terminal condition, and let g be a driver that

satisfies the uniform Lipschitz condition. That is, there exists a constant Cg such that

|g(t, w, b)− g(t, w̃, b̃)| ≤ Cg(|w − w̃|+ |b− b̃|), for all w, w̃, b, b̃, dt⊗ dP a.e.

Then there exists a unique solution (W,β) of the BSDE.

A driver g satisfies the quadratic growth condition if there is a constant C > 0 such

that

|g(t, w, b)| ≤ C(1 + |w|+ |b|2),

|g(t, w, b)− g(t, w̃, b̃)| ≤ C
(
|w − w̃|+ (|w|+ |b|+ |w̃|+ |b̃|)|b− b̃|

)
for all ω ∈ Ω, t ∈ [0, T ], w, w̃ ∈ Rn, and b, b̃ ∈ Rn×d.

The following results for one-dimensional BSDEs are due to Kobylanski (2000).

Lemma 4 (Comparison Theorem). Consider a pair of one-dimensional BSDEs that are

associated with drivers and terminal conditions (ξ, g) and (ξ̃, g̃) that satisfy the quadratic

30In the standard notation, Σ̃ is usually an identity matrix. We chose to include this additional term, which
does not change any of the results in this section, in order to make it easier to see their applicability to our
model.
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growth condition. Let (W,β) and (W̃ , β̃) be the corresponding solutions. If ξ ≥ ξ̃ almost

surely and g(t,Wt, βt) ≥ g̃(t,Wt, βt) for almost all t almost surely, then Wt ≥ W̃t for

all t almost surely. If, in addition, g(t,Wt, βt) > g̃(t,Wt, βt) holds for a strictly positive

measure under dt⊗ dP, then W0 > W̃0.

Lemma 5 (One-dimensional Quadratic BSDE). Consider a one-dimensional BSDE in

which ξ is a terminal condition and g is a driver that satisfies the quadratic growth con-

dition. Then there exists a unique solution (W,β) of the BSDE.

B.1.2 FBSDE

Fix a probability space (Ω,G,Q) in which {Gt}0≤t≤T satisfies the usual conditions and

(Zt)0≤t≤T is a standard d-dimensional Gt-Brownian motion. Note that Gt can be larger

than the filtration generated by the Brownian motion Zt. A (Markovian) forward back-

ward stochastic differential equation (FBSDE) is a stochastic system of equations that

takes the form

dXt = F (t,Xt,Wt, βt)dt+ Σ̃dZt, X0 = x0

dWt = G(t,Xt,Wt, βt)dt+ βt · dZt, WT = U(XT ) (9)

for some F : [0, T ]×Rd×Rn×Rn×d → Rn, G : [0, T ]×Rd×Rn×Rn×d → Rd, U : Rd → Rn,

x0 ∈ Rd, and invertible Σ̃ ∈ Rd×d.

A solution (X,W, β) to an FBSDE is an Rd × Rn × Rn×d-valued {Gt}-progressively

measurable process that satisfies (9) and

E
[∫ T

0

(
|Xt|2 + |Wt|2 + |βt|2

)
dt

]
<∞.

The following result is due to Delarue (2002).31

Lemma 6 (Non-degenerate FBSDE). Consider the FBSDE (9). Assume that there exists

a constant K > 0 such that the following conditions are satisfied (for all t, x, x′, w, w′, b, b′):

31Delarue (2002) uses a more general formulation that, in particular, allows the matrix Σ̃ to depend on t
and X. He requires the condition called uniform parabolicity: There exist ν, ν′ > 0 such that ∀ξ ∈ Rd, ν ≤
1
|ξ|2 ξ

′(Σ̃(t,X)Σ̃′(t,X))ξ ≤ ν′ for all t,X. To see that this condition is satisfied in the current framework, first

note that Σ̃Σ̃′ has d real positive eigenvalues (λ1, · · · , λd), because Σ̃ is invertible, which guarantees that Σ̃Σ̃′

is positive definite. By the standard results in linear algebra, 0 < (mink λk)|ξ|2 ≤ ξ′(Σ̃Σ̃′)ξ ≤ (maxk λk)|ξ|2 for
any non-zero ξ ∈ Rd.
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1. F is continuous in x and satisfies

|F (t, x, w, b)− F (t, x, w′, b′)| ≤ K(|w − w′|+ |b− b′|)

(x− x′) · (F (t, x, w, b)− F (t, x′, w, b)) ≤ K|x− x′|2

|F (t, x, w, b)| ≤ K(1 + |x|+ |w|+ |b|)

2. G is continuous in w and satisfies

|G(t, x, w, b)−G(t, x′, w, b′)| ≤ K(|x− x′|+ |b− b′|)

(w − w′) · (G(t, x, w, b)−G(t, x, w′, b)) ≤ K|w − w′|2

|G(t, x, w, b)| ≤ K(1 + |x|+ |w|+ |b|)

3. U is Lipschitz continuous and bounded, that is, it satisfies

|U(x)− U(x′)| ≤ K(|x− x′|)

|U(x)| ≤ K.

Then there exists a unique solution (X,W, β) of the FBSDE. The solution takes the form

Wt = w(t,Xt), βt = b(t,Xt) for some function w : [0, T ] × Rd → Rn that is uniformly

Lipschitz continuous in x ∈ Rd, and some function b : [0, T ]× Rd → Rd×n.

B.2 Proof of Lemma 1

We note that the model is constructed from a canonical probability space (Ω,F ,P) where

there is no drift in X and changes in the probability measure depend on A = (Ai)i∈N . We

denote this new probability space by (Ω,F ,PA;FX), which has been augmented with the

filtration generated by X, and the the corresponding expectation operator by EA. This

construction is standard and (often implicitly) used by most continuous-time models that

feature imperfect public monitoring.32

We begin with the following preliminary lemma.

Lemma 7. Fix a strategy profile A = (Ai)i∈N . Then W i
0(A) ≥ W i

0(Âi, (Aj)j 6=i) for any

strategy Âi of player i if and only if Ait = f i(βt(A), Xt) for almost all t ∈ [0, T ] almost

32Chapter 5 of Cvitanic and Zhang (2012) discusses the technical details more extensively in the context of
dynamic contracts.
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surely.

Proof. Fix any strategy profile A = (Ai)i∈N . As discussed in Section 3.1, player i’s

continuation payoff under A takes the form

W i
t (A) = EA

[
U i(XT )−

∫ T

t
ci(Ais, Xs)ds|FXt

]
= U i(XT )−

∫ T

t
ci(Ais, Xs)ds−

∫ T

t
βis(A) · dZs(A)

= U i(XT )−
∫ T

t

ci(Ais, Xs)− βis(A) · Σ−1

∑
j∈N

µjA
j
s + µj(Xs)

 ds−
∫ T

t
βis(A) · Σ−1dXs

with W i
T (A) = U i(XT ). The second equality follows by applying the extended martingale

representation theorem to the conditional expectation of the total payoff (see for example

Chapter 5 and Lemma 10.4.6 in Cvitanic and Zhang (2012)), and the third equality uses

dXt =
(∑

j µjA
j
t + µ0(Xt)

)
dt+ ΣdZt.

The pair (W i(A), βi(A)) is a solution to the one-dimensional BSDE (under the original

probability space) with driver −ci(Ait, Xt) + βi · (Σ−1
∑

j∈N µjA
j
t + µ0(Xt)) and terminal

condition U iT (XT ). Note that we treat (Aj)j 6=i as exogenous processes in this BSDE

formulation.

Take another strategy profile Ã = (Ãj)j∈N in which player i uses strategy Ãit =

f i(βt(A), Xt) and where Ãj = Aj for every j 6= i. Using the same argument as above,

player i’s continuation value takes the form

W i
t (Ã) = U i(XT )−

∫ T

t

ci(Ãis, Xs)− βis(Ã) · Σ−1

∑
j

µjÃ
j
s + µ0(Xs)

 ds−
∫ T

t
βis(Ã)·Σ−1dXs

with W i
T (Ã) = U i(XT ). Likewise, (W i(Ã), βi(Ã)) is a solution to the one-dimensional

BSDE with driver−ci(Ãit, Xt)+β
i·Σ−1(

∑
j µjÃ

j
t+µ0(Xt)) and terminal condition U i(XT ).

Note that the driver term satisfies the quadratic growth condition, because f i is bounded

and Lipschitz continuous (Lemma 8). By the comparison theorem (Lemma 4), W i
0(Ã) ≥

W i
0(A) holds. This proves the “if” direction.

To prove the “only if” direction, consider the case in which Ait 6= f i(βt, Xt) for some

strictly positive measure dt ⊗ dP. Then by the strict inequality part of the comparison

theorem (Lemma 4), W i
0(Ã) > W i

0(A).
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Proof of Lemma 1. To show the “if” direction, take any strategy profile A = (Ai)i∈N

under which conditions (1), (3), (4), and (5) hold for some FX -progressively measurable

processes (W,β) such that E
[
sup0≤t≤T |Wt|2

]
, E[
∫ T

0 |βt|
2dt] <∞. As we have seen in the

proof of Lemma 7, for player i, the pair of processes (W i(A), βi(A)) is a unique solution

to one-dimensional BSDE with driver −ci(Ait, Xt) + βi · (Σ−1
∑

j∈N µjA
j
t + µ0(Xt)) and

terminal condition U iT (XT ). Thus W i
t = W i

t (A) and βit = βit(A) (for almost all t almost

surely). By Lemma 7 and the incentive compatibility condition (5), each player maximizes

her expected total payoff. Thus A is a Nash equilibrium.

To show the “only if” direction, take any Nash equilibrium A = (Ai)i∈N . Then the

incentive compatibility condition (5) holds by Lemma 7. The remaining conditions follow

immediately by setting W i
t = W i

t (A) and βit = βit(A).

B.3 Proof of Theorem 1

Lemma 8. There is Cf > 0 such that |f i(β,X)− f i(β̃, X̃)| ≤ Cf (|βi− β̃i|+ |X − X̃|) for

all β, β̃,X, X̃.

Proof. Denote the control range by Ai = [Ai, Āi]. Since βi ·Σ−1µiα
i− ci(αi, X) is strictly

concave in αi, its unique maximizer Ai is continuous in β and X and satisfies the first-

order condition βi · Σ−1µi = ∂ci(Ai,X)
∂Ai in the case of Ai ∈ (Ai, Āi). Furthermore, this

maximizer takes the form

f i(β,X) =


Āi if βi · Σ−1µi ≥ ∂ci(Āi,X)

∂Ai

gi(β,X) if βi · Σ−1µi ∈ (∂c
i(Ai,X)
∂Ai , ∂c

i(Āi,X)
∂Ai )

Ai if βi · Σ−1µi ≤ ∂ci(Ai,X)
∂Ai

where gi(β,X) is the unique value Ai ∈ Ai that is defined by the equality ∂ci(Ai,X)
∂Ai − βi ·

Σ−1µi = 0. Note that this value is uniquely determined, since ci is strictly convex in Ai.

By the implicit function theorem, for k = 1, . . . , d, he first-order partial derivatives of gi

satisfy ∣∣∣∣ ∂gi∂Xk

∣∣∣∣ =

∣∣∣∣∣∣
∂2ci

∂Ai∂Xk

∂2ci

(∂Ai)2

∣∣∣∣∣∣ ,
∣∣∣∣ ∂gi∂βik

∣∣∣∣ =

∣∣∣∣∣∣e
k · Σ−1µi
∂2ci

(∂Ai)2

∣∣∣∣∣∣ ,
where βik denotes the kth element of the vector βi ∈ Rd, and ek is the kth unit vector in

Rd. Since we can choose constants M,M ′ > 0 uniformly in (β,X) such that
∣∣∣ ∂2ci

(∂Ai)2

∣∣∣ > M
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and
∣∣∣ ∂2ci

∂Ai∂Xk

∣∣∣ < M ′ by Assumption 2.1, this establishes the Lemma.

Proof of Theorem 1. Take any solution (W,β) of BSDE (6) it one exists. This is a solution

to an FBSDE of the form

dW i
t = ci(f i(βt, Xt))dt+ βit · dZt, W i

T = U i(XT ), i ∈ N

dXt =

(∑
i

µif
i(βt, Xt) + µ0(Xt)

)
dt+ ΣdZt (10)

under the probability space (Ω,G,Q) in which G = FX and the Zt-process is a d-

dimensional Brownian motion. The probability measure Q is constructed from the original

canonical probability space (Ω,FX ,P) by the Girsanov theorem, which ensures FZ ⊆ FX .

We apply Lemma 6 to show that a unique solution (X,W, β) to FBSDE (10) exists.

To check condition 1 in Lemma 6, first note that the drift term in the expression for the

Xt process, namely
∑

i µif
i(β,Xt) + µ0(Xt), is Lipschitz continuous in βt by Lemma 8,

which ensures the first inequality. The second inequality follows by the Cauchy-Schwartz

inequality and the Lipschitz continuity of
∑

i µif
i(βt, Xt) + µ0(Xt) in X (Lemma 8), and

the boundedness of µ0 and Ai for each i ensures the third inequality. To check condition

2, note that the drift term in the expression for the W i
t process, namely ci(f i(β,X), X),

is Lipschitz continuous in (X,β) by Lemma 8 and the assumptions on ci. This term is

independent of W , which ensures the second inequality. The third inequality follows from

the boundedness of ci for each i. Condition 3 is satisfied by Assumption 2.2.

Thus if there is another solution (W ′, β′) to BSDE (6), this induces another solution

(X ′,W ′, β′) to FBSDE (10) that coincides with the solution (X,W, β). Thus (Wt, βt) =

(W ′t , β
′
t) for almost all t almost surely. By Theorem 2.1 of Cheridito and Nam (2015),

the process (W,β) is a solution to BSDE (6). This shows existence of a unique Nash

equilibrium by Lemma 1.

Finally, by Lemma 6, the unique solution (X,W, β) to the FBSDE with G = FZ takes

the form Wt = w(t,Xt), βt = b(t,Xt) for some function w : [0, T ] × Rd → Rn that is

uniformly Lipschitz continuous in x ∈ Rd and some function b : [0, T ]× Rd → Rd×n.
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B.4 Details for Section 3.2

The continuation payoff for player i at time t = T −∆ can be written as

W i,∆
t = −ci(Ait, Xt)∆ + E

[
U i (XT ) |Xt

]
= −ci(Ait, Xt)∆ + E

U i
Xt +

∑
j∈N

µjA
j
t

∆ + εt

∣∣∣∣Xt

 .

Note that by convolution the second term on the right-hand side is smooth in At. There-

fore, the first- and second-order partial derivatives of W i,∆
t are

∂

∂Ait
W i,∆
t = − ∂

∂Ai
ci∆ + ∆

∫
U i(Xt +

∑
k

µkA
k
t∆ + εt)

∂

∂ε
φ∆dεt

= − ∂

∂Ai
ci∆ + ∆

∫
U i(Xt +

∑
k

µkA
k
t∆ + εt)

exp
[
−ε2t
2∆

]
∆
√

2π

εt
∆
dεt

= − ∂

∂Ai
ci∆ + E

[∫
U i(Xt +

∑
k

µkA
k
t∆ + εt)εt|Xt

]

and

∂2

∂Ait∂A
j
t

W i,∆
t = − ∂2

∂Ai∂Aj
ci∆ + ∆

∫
U i(Xt +

∑
k

µkA
k
t∆ + εt)εt

∂

∂ε
φ∆dεt

= − ∂2

∂Ai∂Aj
ci∆ + E

[∫
U i,∆(Xt +

∑
k

µkA
k
t∆ + εt)εtεt|Xt

]
,

where φ∆ denotes the density of εt.

We show that the equilibrium action profile at period t is unique if ∆ is small. To

show this, we claim that the players’ best response in period t has a slope less than 1 if ∆

is small enough; this ensures the uniqueness by the contraction mapping theorem. Note

that the equilibrium action satisfies the first-order condition ∂
∂Ai

t
W i,∆
t = 0 in the case of

an interior solution.

Because U i is Lipschitz continuous, there exists a constant L > 0 such that

|U i(x+ ε)− U i(x)| ≤ L|ε|
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for any x, ε. The second-order partial derivatives are bounded in absolute value as follows:∣∣∣∣∣ ∂2

∂Ait∂A
j
t

W i,∆
t

∣∣∣∣∣ ≤ E[|(U i(Xt +
∑
k

µkA
k
t∆ + εt)− U i(Xt +

∑
k

µkA
k
t∆))ε2t |] +

∣∣∣∣∣E[U i(Xt +
∑
k

µkA
k
t∆)ε2t ]

∣∣∣∣∣
≤ E[((U i(Xt +

∑
k

µkA
k
t∆ + εt)− U i(Xt +

∑
k

µkA
k
t∆))2]1/2E[ε4t ]

1/2

≤ E[L22ε2t ]
1/2(Var[εt]

2)1/2

≤ L
(

2E[ε4t ]
1/2
)1/2

∆

=
√

2L∆3/2,

which is based on E[εt] = 0 and Var[εt] = ∆; the Holder inequality was used on the second

and fourth lines.

Let K > 0 denote the lower bound of the second-order partial derivative of ci with

respect to Ai. Then

∣∣∣∣ ∂2

∂(Ait)
2
W i,∆
t

∣∣∣∣ ≥
∣∣∣∣∣K∆−

∣∣∣∣∣E[U i(Xt +
∑
k

µkA
k
t∆ + εt)ε

2
t ]

∣∣∣∣∣
∣∣∣∣∣

≥ |K∆−
√

2L∆3/2|

for sufficiently small ∆. By the implicit function theorem applied to the first-order con-

ditions, the slope of each player’s best response in period t is bounded as follows:∣∣∣ ∂2

∂Ai
t,∂A

j
t

W i,∆
t

∣∣∣∣∣∣ ∂2

∂(Ai
t)

2W
i,∆
t

∣∣∣ ≤
∣∣∣∣∣
√

2L∆1/2

K −
√

2L∆1/2

∣∣∣∣∣ ,
which establishes the claim.

B.5 Details for Example 3

We show that no player has an incentive to deviate from the prescribed strategy. Fix any

t and current state Xt.

• Case 1: Xt ≥ (T − t)θ.

If there is no deviation, the terminal state is XT = Xt + (T − t)N , which is strictly

positive. After an arbitrary deviation on the part of player i after time t, the

state variable Xt′ at any t′ > t is strictly greater than (T − t′)θ because of θ <

−N + 1. Thus, the terminal state after any deviation is still positive. Given this,
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the optimization problem reduces to

max
Ai

∫ T

t
(Ais − κc(Ais))ds,

and thus it is strictly optimal to choose Ait = 1 at any time t′ ≥ t.

• Case 2: Xt < (T − t)θ.

If there is no deviation, the terminal state is XT = Xt − (T − t)N , which is strictly

negative. By the same argument as in Case 1, under an arbitrary deviation on the

part of player i after time t, the terminal state is strictly negative. Given this, the

optimization problem reduces to

max
Ai

∫ T

t
(−c(Ais))ds,

and thus it is strictly optimal to choose Ait = 0 at any time t′ ≥ t.

B.6 Proof of Lemma 2

Proof. By symmetry of the players, at the unique equilibrium A = (Ai)i∈N , every player

chooses the same action, namelyAit = f(βt(A)), where f(β) := arg maxα∈A {σ
−1βα− κc(α)}

at almost all t almost surely. Thus the equilibrium BSDE (6) reduces to a single dimension

dWt = −
(
Nf(βt)σ

−1βt − κc(f(βt))
)
dt+ σ−1βtdXt, WT = U(XT ). (11)

Let Ŵt denote the continuation value process for this hypothetical single-agent problem

under the optimal policy Â = (Âi)i∈N . By construction, Âit = f(β̂t) for each i ∈ N and

almost all t almost surely, where (Ŵ , β̂) follows the BSDE

dŴt = −(Nf(β̂t)σ
−1β̂t −Nκĉ(f(β̂t)))dt+ σ−1β̂tdXt, ŴT = U(XT ).

By the assumption that c(·) ≥ 0, the comparison of the driver terms yields

Nf(β)σ−1β − κc(f(β)) ≥ Nf(β)σ−1β −Nκc(f(b))

for almost all t almost surely. Because these BSDEs satisfy the quadratic growth condition,

the comparison theorem (Lemma 4) implies W0 ≥ Ŵ0.

To show the remaining inequality, consider the modified version of the hypothetical
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single-agent problem in which the agent maximizes E[U(XT ) −
∫ T

0 κ(
∑

i c(Â
i
t) − (N −

1)c̄)dt]. Let W̃t denote the continuation value process under the optimal policy. Then

dW̃t = −(Nf(β̃t)σ
−1β̃t − κ(Nc(f(β̃t)) + (N − 1)c̄))dt+ σ−1β̃tdXt, W̃T = U(XT ),

where β̃t is the corresponding sensitivity process. Comparing its driver to the driver term

in (11), we obtain

Nf(β)σ−1β − κ(Nc(f(β))− (N − 1)c̄) ≥ Nf(β)σ−1β − κc(f(β))

for almost all t almost surely. By the comparison theorem (Lemma 4), W̃0 ≥W0.

B.7 Proof of Proposition 1

Proof. We show that Ŵ0 is approximately greater than maxx∈[X0−NAT,X0+NĀT ] U(x) if

both σ and κ are small. To see this, let x∗ ∈ arg maxx∈[X0−NAT,X0+NĀT ] U(x). Then,

the expected payoff in the hypothetical single-agent problem under the constant policy

(Âit = x∗−X0
NT for each i ∈ N) converges to maxx∈[X0−NAT,X0+NĀT ] U(x) as σ, κ → 0.

This expected payoff is lower than Ŵ0 by definition, and thus the Proposition follows by

Lemma 1.

B.8 Proof of Proposition 2

Proof. First, we prove the following lemma, which restricts the sign of the βt process under

the unique equilibrium for any values of the parameters, assuming that U is increasing.

Lemma 9. Consider the team production game in which U is increasing, and let A =

(Ai)i∈N be the unique Nash equilibrium. Then β(A)t ≥ 0 for almost all t almost surely.

Proof. Note that the driver term in (11) satisfies the quadratic growth condition, and that

the terminal payoff U(x) is bounded, Lipschitz continuous, and increasing. Therefore, the

claim follows by Corollary 3.5 and Remark 3.8 in dos Reis and dos Reis (2013).

For any β ≥ 0, the term maxα Σ−1βα − κc(α) is decreasing in κ by the envelope

theorem. Let f(β;κ) := arg maxα Σ−1βα − κc(α). Thus, for each β ≥ 0, the driver term

in the equilibrium BSDE (11),

(N − 1)f(β;κ)Σ−1β + max
α
{Σ−1βα− κc(α)},
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is decreasing in κ and increasing in N . By Lemmas 4 and 9, W0(A(κ,N)) ≥W0(A(κ̃, N))

for any κ ≤ κ̃ and N , and W0(A(κ,N)) ≤W0(A(κ, Ñ)) for any N ≤ Ñ and κ.

B.9 Proof of Proposition 3

In the proof of Proposition 8, we construct an equilibrium strategy profile for general

quadratic payoffs U i =
∑

k=1,2(αik(x
k)2 + βikx

k) + γix
1x2. This implies that the equilib-

rium actions and continuation values take the form ai(t, x1, x2) = 1
c̄i

(2αii(t)x
i + βii(t) +

γi(t)x
j) and wi(t, x1, x2) =

∑
k=i,j

(
αik(t)(x

k)2 + βik(t)x
k
)

+ γi(t)x
ixj + δi(t), where the

coefficients are obtained by solving the system of ODEs (16) given in that proof. For the

current game, we can directly verify the solution

α11(t) = α12(t) = γ1(t) = α22(t) = 0,

β11(t) =
T − t
c̄2

, β12(t) = 1, δ1(t) =
(T − t)3

3c̄1c̄2
2

,

α21(t) =
T − t
2c̄2

, β22(t) =
(T − t)2

2c̄1c̄2
, β21(t) =

(T − t)3

2c̄1c̄2
2

,

γ2(t) = 1, δ2(t) =
σ2

1(T − t)2

4c̄2
+

3(T − t)5

20c̄2
1c̄

3
2

,

where the boundary conditions (17) given in the proof of Proposition 8 take the form

β12(T ) = γ2(T ) = 1, α11(T ) = α12(T ) = α21(T ) = α22(T ) = β11(T ) = β21(T ) = β22(T ) =

γ1(T ) = δ1(T ) = δ2(T ) = 0.

Therefore, the equilibrium strategies are

a1(t, x1, x2) =
T − t
c̄1c̄2

, a2(t, x1, x2) =
(T − t)2

2c̄1(c̄2)2
+
x1

c̄2
.

For the continuation value functions,

w1(t, x1, x2) =
T − t
c̄2

x1 + x2 +
(T − t)3

3c̄1c̄2
2

,

w2(t, x1, x2) =
T − t
2c̄2

(x1)2 +
(T − t)3

2c̄1c̄2
2

x1 +
(T − t)2

2c̄1c̄2
x2 + x1x2 +

σ2
1(T − t)2

4c̄2
+

3(T − t)5

20c̄2
1c̄

3
2

.
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Supplementary Appendix

C Variations of the Model

In this section, we consider several variations of the original model.

C.1 Multiplicity with an Infinite Horizon

We demonstrate that equilibrium may not be unique if there is no deterministic bounded

deadline T . To make this point, we assume that the deadline T is time of the first arrival

of a Poisson process with fixed intensity λ > 0. For simplicity, here we focus on the

two-player case with one-dimensional state dXt =
∑

i=1,2A
i
tdt+ σdZt.

Focusing on Markov strategies that depend on only the current state Xt, we can derive

the following HJB equations:

0 = max
Ai∈Ai

−ci(x,Ai) + (wi)′(x)
∑
k=1,2

Ak +
σ

2
(wi)′′(x) + λ

(
U i(x)− wi(x)

) ,
where wi(x) denote the continuation value of player i when the state Xt is equal to x.

These equations can be written as

λwi(x) = max
Ai∈Ai

λU i(x)− ci(x,Ai) + (wi)′(x)
∑
k=1,2

Ak +
σ

2
(wi)′′(x)

 .
Therefore, the model is equivalent to the infinite-horizon model in which each player

receives flow payoff λU i(Xt)− ci(Xt, A
i) and has discount rate λ.

It is known in the literature that infinite-horizon differential games can have multiple

equilibria in Markov strategies even if flow payoffs are independent of opponents’ actions

(e.g., Tsutsui and Mino (1990)). As a particularly simple example, consider the game

in which the terminal payoff U i is constantly zero and the flow payoff −ci is given by

−1
2

(
(Ait)

2 + 4(Ajt )
2 + γ(Xt)

2
)

for some constant γ > 0. Note that the uniqueness result

in the main model still holds even if flow payoffs depend on opponents’ actions in an

additively separable manner (footnote 16). Based on Example 2 in Lockwood (1996), one

can verify that there are two possible values of θ > 0 such that the strategy profile of the

form Ait = −θXt is a (Markov perfect) equilibrium of this game when γ is small.33

33Lockwood (1996) analyzes a deterministic model, in which σ = 0. Under quadratic payoffs, any Markov
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This multiplicity contrasts with the uniqueness result under the original model with a

finite horizon. Because there is no terminal-value condition on the continuation value W i
t ,

the “backward induction” argument which drives the unique equilibrium in the original

model does not work here.

C.2 Discrete-Time Model

In this subsection, we develop discrete-time models. Player i chooses a control action Ait

at only the times t = 0,∆, 2∆, . . . , T −∆, where ∆ > 0 is the period length and T/∆ is

assumed to be a natural number.

Player i’s total payoff is given by

U i(XT )−∆

T/∆∑
t=0

ci(Ait).

We retain Assumption 2 on U i and ci. In the first subsection, we consider a discretized

version of the original model. In the second subsection, we consider a Poisson noise model.

C.2.1 Brownian Case

We consider the same environment as in the main model, except that player i’s action

Ait is assumed to remain constant in [t, t + ∆). To simplify the notation, we assume

that d = n and player i chooses a one-dimensional action Ait to influence the process

dXi
t = Aitdt+ dZit . This assumption is not essential for any argument made here.

Note that the state evolves as

Xi
t+∆ = Xi

t + ∆Ait + εit

for each i ∈ N and t = 0,∆, ..., T − ∆, where εit is i.i.d noise that follows the normal

distribution N(0,∆).

We consider two cases: imperfect monitoring and perfect monitoring.

Let X̃t = (X0, ..., Xt) denote a public history at period t, a sequence of state variables

for all periods up to and including the one that begins at time t. We define player i’s

imperfect monitoring strategy Ai as a function that, for period t, maps the public public

history X̃t−∆ to some element o Ai. A Nash equilibrium under imperfect monitoring is

strategy equilibrium profile that is linear in the state constitutes an equilibrium of the stochastic model as long
as the transversality condition is satisfied.
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a profile (Ai)i∈N of imperfect monitoring strategies such that each player maximizes her

expected total payoff within the class of imperfect monitoring strategies. Note that the

distribution of public histories at every period t has full support. As usual, we do not

distinguish between two strategies if for each period t, they specify the same action with

probability 1.

Let X̂t = ((X0, A
i
0)i∈N , ..., (Xt, A

i
t)i∈N ) denote a full history at period t, that is, a

sequence of the state variables and the actions chosen by the players for all periods up

to and including the one that begins at time t. We define player i’s perfect monitoring

strategy Âi as a function that, for each period t, maps the full history Ht−∆ to some

element of Ai. A Nash equilibrium under perfect monitoring is a profile (Âi)i∈N of perfect

monitoring strategies such that each player maximizes her expected total payoff within the

class of perfect monitoring strategies. We say that a profile (Âi)i∈N of perfect monitoring

strategies is outcome equivalent to a profile of imperfect monitoring strategies (Ai)i∈N if

the distributions of the Xt processes induced by the two strategy profiles coincide with

probability 1.

We first show that whenever there is a unique equilibrium under imperfect monitoring,

then any equilibrium under perfect monitoring is essentially unique, that is, any equilib-

rium under perfect monitoring is outcome equivalent to the unique equilibrium under

imperfect monitoring. This suggests that the monitoring imperfectness is not important

for the equilibrium uniqueness result in the original model.

Proposition 5. Consider the discrete-period model with period length ∆. Suppose that

there is a unique Nash equilibrium (Ai)i∈N under imperfect monitoring. Then a Nash

equilibrium under perfect monitoring exists. Moreover, any Nash equilibrium under perfect

monitoring is outcome equivalent to (Ai)i∈N .

Proof. Let (Ai)i∈N denote the unique Nash equilibrium under imperfect monitoring.

Step 1: (Ai)i∈N is a unique Nash equilibrium in Markov strategies.

Given a strategy profile (Ai)i∈N , let W̃ i(X̃t) denote the expected continuation payoff

for player i at time t conditional on public history X̃t. Then

W̃ i(X̃t) = −ci(Ait(X̃t))∆ + E[W̃ i((X̃t, Xt +At(X̃t)∆ + εt))] (12)

for each t ∈ {0,∆, . . . , T −∆} and X̃t, with W̃ i(X̃T ) = U i(XT ).

Observe first that, at t = T − ∆ and for almost all realizations of X̃t, (Ai(X̃t))i∈N
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should be a unique control action profile At such that

−ci(Ait)∆ + E[U i(Xt +At∆ + εt))] ≥ −ci(Āit)∆ + E[U i(Xt + (Āit, A
−i
t )∆ + εt))] ∀Āit ∈ Ai,

for every i. (If not, we can construct multiple Nash equilibria under imperfect monitoring

by specifying the different action profiles at histories of positive measure at t = T −

∆ and then solving backwards to determine the equilibrium actions at earlier periods.)

Furthermore, since U i depend on only the terminal state, if we take any two histories

X̃t, X̃
′
t such that the state variables at t coincide, we must have Ai(X̃t) = Ai(X̃t) for

every i.

We iterate this argument backwards to earlier periods: Except for histories of measure

0, the continuation value can be written as a function of time and state, Wt(Xt), such

that the equilibrium control action profile at period t is a unique action profile At with

the property that

−ci(Ait)∆+E[W i
t+∆(Xt+At∆+εt))] ≥ −ci(Āit, Xt)∆+E[W i

t+∆(Xt+(Āit, A
−i
t )∆+εt))] ∀Āit ∈ Ai

for every i.

Step 2: Outcome equivalence

Next, we take any Nash equilibrium (Âi)i∈N under perfect monitoring. Let Ŵ i(X̂t)

denote the expected continuation payoff for player i at time t conditional on history X̂t.

Note that at time t = T −∆,

−ci(Ai(X̂t))∆+E[U i(Xt+At(X̂t)∆+εt))] ≥ −ci(Āit)∆+E[U i(Xt+(Āit, A
−i
t (X̂t))∆+εt))] ∀Āit ∈ Ai

holds with probability 1 for every i ∈ N . Thus, by the argument in Step 1, Âi(X̂t) =

Ai(X̃t) holds with probability 1 for each i (Here we are comparing two strategy profiles

under the common probability space in which the distribution of (εt)t=0,...,T is fixed.) This

implies W̃ i(X̃t) = Ŵ i(X̂t) with probability 1.

Based on the argument in Step 1, we iterate this argument backwards to earlier periods:

Except for histories of measure 0, the continuation value can be written as a function of

time and state, Ŵt(Xt), such that the equilibrium control action profile at period t is a
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unique action profile At with the property that

−ci(Ait)∆+E[Ŵ i
t+∆(Xt+At∆+εt))] ≥ −ci(Āit, Xt)∆+E[Ŵ i

t+∆(Xt+(Āit, A
−i
t )∆+εt))] ∀Āit ∈ Ai

for every i. This leads to Âi(X̂t) = Ai(X̃t) and W̃ i(X̃t) = Ŵ i(X̂t) with probability 1 for

each period t and i ∈ N . This completes the proof.

The next result provides a uniqueness result for small ∆ under a restriction on the

equilibrium continuation value functions:

Proposition 6. Consider the discrete-time game described above. Assume that there

exist constants M > 0 and δ ∈ (0, 1
2) such that for each ∆, any equilibrium continuation

value W i,∆(X̃t) is Lipschitz continuous with coefficient less than M∆δ− 1
2 . Then for small

enough ∆, there is a unique equilibrium.

The proof is based on repeating the argument in Appendix B.4 and thus is omitted.

The result is not entirely satisfactory, in that it restricts the asymptotic behavior of the

slopes of the continuation value functions. While we conjecture that this assumption is

unnecessary, this conjecture has not yet been proved. In this paper, we have circumvented

this issue by formulating the game directly in continuous time.

C.2.2 Poisson Case

Let λi : Ai → R++ be a bounded, differentiable function with a bounded derivative, and

suppose that the state variable Xi
t follows a compound Poisson process

Xi
t =

N i
t∑

l=1

Di
l ,

where N i
t is an inhomogeneous Poisson process with intensity λi(Ait) > 0 at time t, and the

jump sizes (Di
l)l=1,2,...,N i

t
are i.i.d and follow cumulative distribution Gi. We approximate

this environment with the following discretized model: Choose ∆ sufficiently small so that

maxi,Ai λi(Ai)∆ ≤ 1. At each period t, Xi
t+∆ = Xi

t holds with probability 1 −∆λi(Ait).

Conditional on Xi
t+∆ 6= Xi

t , the jump size Di
t := Xi

t+∆−Xi
t follows the distribution Gi. We

define a strategy (in imperfect monitoring) as a function that, for t = 0,∆, 2∆, . . . , T −∆,

maps public history (X0, X∆, ..., Xt) to some element of Ai as in the previous subsection.

The notion of Nash equilibrium is defined likewise.
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Proposition 7. Consider the discrete-time model with Poisson noise. There is a unique

Nash equilibrium if ∆ is small enough.

We note that the analogue of Proposition 6 holds, so that the uniqueness result is

intact even if we consider the perfect monitoring case.

D Quadratic Games

In this subsection, we analyze a specific class of games in which the terminal payoffs

and adjustment costs are quadratic functions, and we show that equilibrium PDEs can be

simplified to ODEs. Because of the tractability of quadratic games, they have been widely

employed in applications. A drawback to this approach is that it involves unbounded

terminal payoffs and unbounded control ranges, which violate the assumptions for our

main theorems; the uniqueness of equilibrium is an open question. In this section, we

assume the two-player case as in Supplementary Appendix C.1 for simplicity.

We consider a quadratic game that has the following terminal payoff function and cost

function:

U i(X) =
∑
k=1,2

(
ᾱik(X

k)2 + β̄ikX
k
)

+ γ̄iX
1X2, ci(a) =

c̄i
2
a2,

where ᾱik, β̄ik, γ̄i, c̄i are fixed constants such that c̄i > 0. We also allow for unbounded

controls: Ai = R. Proposition 8 states that an equilibrium is linear in the state variables,

where the coefficients follow ODEs.

Proposition 8. Consider a quadratic game. Let (αik(t), βik(t), γi(t), δi(t))i,k=1,2,t∈[0,T ] be

a solution to the system of ordinal differential equations

α̇ii(t) = −2(αii(t))
2

c̄i
− γi(t)γj(t)

c̄j
, α̇ij(t) = −γ

2
i (t)

2c̄i
− 4αij(t)αjj(t)

c̄j
,

β̇ii(t) = −2αii(t)βii(t)

c̄i
− βjj(t)γi(t) + βij(t)γj(t)

c̄j
, β̇ij(t) = −βii(t)

c̄i
γi(t)−

2(αij(t)βjj(t) + αjj(t)βij(t))

c̄j
,

γ̇i(t) = −2αii(t)γi(t)

c̄i
− 2(αij(t)γj(t) + αjj(t)γi(t))

c̄j
, δ̇i(t) = −(σ1)2αi1 − (σ2)2αi2 −

β2
ii

2c̄i
− βijβjj

c̄j

(13)

associated with the boundary conditions

αik(T ) = ᾱik, β̄ik(T ) = βik, γ̄i(T ) = γi, δi(T ) = 0. (14)
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Then a Nash equilibrium strategy takes the form

ai(t, x1, x2) =
1

c̄i
(2αii(t)x

i + βii(t) + γi(t)x
j).

E Proofs of Results in the Appendix

E.1 Uniformly Parabolic PDEs

The lemma below on uniformly parabolic PDEs is taken directly from Theorem 7.1 on

p.596 in Ladyzenskaja, Solonnikov, and Ural’ceva (1995). It gives a set of sufficient

conditions that ensures a unique solution to a system of second-order PDEs. In the

statement below, u = (ui)ni=1 : Rd × [0, T ] → Rn is the function to be determined, and

the subscripts represent partial derivatives, that is, ut = (∂u
i

∂t )ni=1, ukl = ( ∂2ui

∂xk∂xl
)ni=1,

uk = ( ∂u
i

∂xk
)ni=1 and ux = (uk)

d
k=1. Let H denote the set of n-dimensional functions u(x, t)

that are continuous, together with all derivatives of the form Dr
tD

s
x with 2r + s < 3.

Lemma 10. Consider the following n-dimensional PDE system in u = (ui)ni=1 : Rd ×

[0, T ]→ Rn:

ut −
∑
k,l

αkl(x, t,u)ukl +
∑
k

δk(x, t,u,ux)uk + γ(x, t,u,ux) = 0, u(x, T ) = U(x),

where αkl : Rd× [0, T ]×Rn → R, δk : Rd× [0, T ]×Rn×Rn×d → R, γ : Rd× [0, T ]×Rn×

Rn×d → Rn, and U : Rd → Rn are exogenous functions, k, l = 1, . . . , d.

Then there exists a unique solution to the above system in H if the following conditions

are satisfied:

1. There exist M1,M2 ≥ 0 such that

γi(x, t,u,0)ui ≥ −M1|u|2 −M2, i, j = 1, . . . , n

2. There exist constants M3, µ, ν > 0 such that

(a) (Uniform Parabolicity)

ν ≤ 1

|ξ|2
∑
k,l

αkl(t, x,u)ξkξl ≤ µ, k, l = 1, . . . , d
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(b)

|δk(x, t,u,p)| ≤ µ(1 + |p|)2, k = 1, . . . , d

(c)

|γ(x, t,u,p)| ≤ M3

|p|
(1 + |p|)2

(d) ∣∣∣∣∂αkl∂xk
(x, t,u,p),

∂αkl

∂ui
(x, t,u,p)

∣∣∣∣ ≤ µ, k, l = 1, . . . , d

3. The first-order partial derivatives of αkl, δk, γ with respect to (t, x,u,p) are contin-

uous, as are the second-order partial derivatives ∂2αkl

∂ui∂uj
, ∂2αkl

∂ui∂xk
, ∂

2αkl

∂ul∂t
, ∂2αkl

∂xk∂un
.

4. U(·) is C3 and has bounded derivatives.

E.2 Proof of Proposition 4

The proof consists of two steps.

Step 1: Construction of a bounded sensitivity equilibrium

Lemma 11. The PDE system (8) with the terminal condition has a unique solution w̃

that is C3,b.

Proof. Let us reproduce the PDE system:

0 =
∂wi(t, x)

∂t
+

1

2

d∑
l,m=1

d∑
k=1

σlkσmk
∂2wi(t, x)

∂xl∂xm
+

∑
j∈N

µja
j + µ0(x)

 ·∇xwi(t, x)−ci(ai, x),

where ai(t, x) = f i(µi(x) ·∇xwi(t, x), x) for all (t, x), with a terminal condition wi(T, x) =

U i(x). To see how the notations in Lemma 10 correspond to the current case, define the

following quantities for i = 1, ..., n and k, l,m = 1, ..., d:

αlm =
1

2

d∑
k=1

σlkσmk, δ
k =

∑
j∈N

µkj f
j(∇xwj(t, x), x) + µk0(x)

 , γi = −ci(f i(∇xw, x), x).

Note that f i is continuously differentiable and bounded, by Assumption 3 and the implicit

function theorem. We now verify that each of the conditions of Lemma 10 is satisfied.

Condition (1) holds because ci(f i, x) is bounded. Condition (2a) follows from the fact

that Σ is invertible (see footnote 31). Condition (2d) is clearly satisfied, because the
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αlm are constants. If we take µ to be sufficiently large, then condition (2b) is satisfied

because f i is bounded. Likewise, with a sufficiently large M3, (2c) is satisfied because

ci is bounded. The continuity assumptions in (3) follow from the continuity of the first-

order partial derivatives of ci and f i. Finally, (4) is satisfied because U i(·) is C3 and has

bounded derivatives.

Based on the uniqueness of the solution, we construct a particular strategy profile Ã

defined as

Ãit = f i(∇xw̃(t,Xt), Xt). (15)

Lemma 12. Ã is an equilibrium with bounded sensitivity strategies.

Proof. Treating ∇xwi as a column-vector-valued function, for each i define

βit(Ã) := Σ′∇xwi(t,Xt)

(equivalently ∇xwi(t,Xt) = Σ−1′βit(Ã)).

By applying Ito’s formula, we can confirm that (W,β(Ã)) indeed solves the equilibrium

BSDE

dW i
t =

ci(f i(∇xwi(t,Xt), Xt), Xt)− βit(Ã) · Σ−1
∑
j

µjf
j(∇xwj(t,Xt), Xt) + µ0(Xt)

 dt+βit(Ã)·Σ−1dXt

with W i
T = U i(XT ).

Note that the first-order partial derivatives of wi with respect to x are uniformly

bounded. The results above verify that Ã is a regular equilibrium strategy.

Step 2: Uniqueness of a bounded sensitivity equilibrium

Suppose there exist two bounded sensitivity equilibrium strategy profiles, A and Ã. Let

(W,β) and (W̃ , β̃) denote the corresponding equilibrium value and sensitivity processes.

Note that the driver terms of the BSDE take the form

gi(t, w, b) = ci(f i(b, x), x)− bi · Σ−1(
∑
i

µif
i(b, x) + µ0(x)),
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which is continuously differentiable in b. Define a function h : Rn×n → Rn×n by

hi,j(b) =


M if bi,j ≥M

bi,j if bi,j ∈ (−M,M)

−M if bi,j ≤ −M.

for each i, j. By the boundedness of β and β̃, if we take a sufficiently large M > 0, (W,β)

and (W̃ , β̃) are solutions to the modified BSDE with driver terms

ḡi(t, w, b) = ci(f i(h(b), x))− hi(b) · Σ−1(
∑
i

µif
i(h(b), x) + µ0(x))

and terminal condition U(XT ). This driver satisfies the uniform Lipschitz condition in

Lemma 3 (see Appendix B.1.1) and thus there is a unique solution to the modified BSDE.

Thus (W,β) = (W̃ , β̃), which implies A = Ã.

E.3 Proof of Proposition 7

Proof. To simplify the notation, we consider only the two-player case. By the boundedness

of ci and U i, there is M > 0 such that any equilibrium continuation payoff is bounded in

absolute value by M uniformly in ∆, A, t, and the history. Let M ′ := infi,Ai,X
∂2(ci)(Ai,X)

∂(Ai)2
,

which is strictly positive. Also, let L := supi,Ai |(λi)′(Ai)|.

Fix any ∆ and any Nash equilibrium strategy profile A. Take any t and history

ht = (X0, ..., Xt). Let (Ait, A
j
t ) denote the action profile specified in the strategy profile.

Then Ait is a best-response against Ajt that maximizes

−ci(ai, Xt)∆ + E[W i((ht, Xt+∆))|Ajt , ai]

= −ci(ai, Xt)∆ + (1−∆λi(ai))E[W i((ht, (X
i
t , X

j
t+∆)))|Ajt ]

+∆λi(ai)

∫
E[W i((ht, (X

i
t +Di

t, X
j
t+∆)))|Ajt ]dGi(Di

t)

over ai ∈ Ai, where W i(ht′) denotes the equilibrium continuation payoff at history ht′ .
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The first derivative in Ait takes the form

−∂c
i(Ait, Xt)

∂Ai
∆ + ∆(λi)′(Ait)E

[∫
W i((ht, (X

i
t +Di

t, X
j
t+∆)))dGi(Di

t)−W i((ht, (X
i
t , X

j
t+∆)))

∣∣∣∣Ajt]
= −∂c

i(Ait, Xt)

∂Ai
∆ + ∆(λi)′(Ait)∆λ

j(Ajt )

(∫
W i(+,+)dGidGj −

∫
W i(0,+)dGj

)
+∆(λi)′(Ait)(1−∆λj(Ajt ))

(∫
W i(+, 0)dGi −W i(0, 0)

)
,

where we used the shorthand notation of the continuation value where + or 0 indicates

whether each state variable admits a jump within the period or not.

For j 6= i, the derivative of left hand side with respect to Ajt is

∆(λi)′(Ait)∆(λj)′(Ajt )

(∫
W i(+,+)dGidGj −

∫
W i(0,+)dGj

)
−∆(λi)′(Ait)∆(λj)′(Ajt ))

(∫
W i(+, 0)dGi −W i(0, 0)

)
,

which is bounded by 4∆2L2M in the absolute value.

As in Appendix B.4, using the implicit function theorem, the best-response of i’s action

conditional on this history against the opponent’s choice Ajt has a slope less than 1 if ∆

is sufficiently small. Because this bound on ∆ is uniform in all histories, we can apply

the contraction mapping argument from the last period to show that a Nash equilibrium

is unique.

E.4 Proof of Proposition 8

Proof. We first solve (αik(t), βik(t), γi(t), δi(t))i,k=1,2,t∈[0,T ] by solving the system of ordinal

differential equations

α̇ii(t) = −2(αii(t))
2

c̄i
− γi(t)γj(t)

c̄j
, α̇ij(t) = −γ

2
i (t)

2c̄i
− 4αij(t)αjj(t)

c̄j
,

β̇ii(t) = −2αii(t)βii(t)

c̄i
− βjj(t)γi(t) + βij(t)γj(t)

c̄j
, β̇ij(t) = −βii(t)

c̄i
γi(t)−

2(αij(t)βjj(t) + αjj(t)βij(t))

c̄j
,

γ̇i(t) = −2αii(t)γi(t)

c̄i
− 2(αij(t)γj(t) + αjj(t)γi(t))

c̄j
, δ̇i(t) = −(σ1)2αi1 − (σ2)2αi2 −

β2
ii

2c̄i
− βijβjj

c̄j

(16)
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associated with the boundary conditions:

αik(T ) = ᾱik, β̄ik(T ) = βik, γ̄i(T ) = γi, δi(T ) = 0. (17)

Guess the functional form of value function by

wi(t, x1, x2) =
∑
k=i,j

(
αik(t)(x

k)2 + βik(t)x
k
)

+ γi(t)x
ixj + δi(t).

Substituting this into the HJB equations

0 =
∑
k=i,j

(
α̇ik(x

k)2 + β̇ikx
k
)

+ γ̇ix
ixj + δ̇i + (σ1)2αi1 + (σ2)2αi2 +

1

2c̄i
(2αiix

i + βii + γix
j)2

+
1

c̄j
(2αijx

j + βij + γix
i)(2αjjx

j + βjj + γjx
i)

=(xi)2

(
α̇ii +

2α2
ii

c̄i
+
γiγj
c̄j

)
+ (xj)2

(
α̇ij +

γ2
i

2c̄j
+

4αijαjj
c̄j

)
+ xixj

(
γ̇i +

2αiiγi
c̄i

+
2

c̄j
(αijγj + αjjγi)

)
+ xi

(
β̇ii +

2αiiβii
c̄i

+
βjjγi + βijγj

c̄j

)
+ xj

(
β̇ij +

βiiγi
c̄i

+
2(αijβjj + αjjβij)

c̄j

)
+

(
δ̇i + (σ1)2αi1 + (σ2)2αi2 +

β2
ii

2c̄i
+
βijβjj
c̄j

)

where we have omitted the argument t for coefficient functions. By the proposed ODE,

the right hand side becomes zero for every x1 and x2. Also, the boundary condition holds

with

wi(T, x1, x2) =
∑
k=i,j

(
ᾱik(x

k)2 + β̄ikx
k
)

+ γ̄ix
ixj

which verifies the solution.

Finally, by Theorem 1, the equilibrium action is given by

ai(t, x1, x2) =
wii(t, x

1, x2)

c̄i
=

1

c̄i
(2αii(t)x

i + βii(t) + γi(t)x
j).
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