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We develop a simulation-based finite-sample identification-robust confidence-

set estimation method for Dynamic Stochastic General Equilibrium [DSGE]

models by testing for insignificant discrepancies between relevant though possi-
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ing Vector Auto-Regressions [VAR], as well as vector error correction models.
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Our method controls coverage exactly by combining Indirect Inference with

the Monte Carlo test method, regardless of sample size, model dimension, lag

truncation order and identification of deep parameters. In contrast with most

available identification-robust methods, exact or near unit roots are allowed,

and a linearized state space solution is not required. The key ingredient is that

the DSGE can be simulated once a finite dimensional parameter is specified,

which covers typical (often calibration-validated) micro-founded models. Size

and power properties and empirical relevance are illustrated via canonical real

business cycle and New Keynesian models.

Keywords: Dynamic stochastic general equilibrium; Estimation uncertainty; In-

direct inference; Exact confidence-set estimation; Monte Carlo test; New Key-

nesian model; Real Business Cycle model; finite sample inference.

1 Introduction

Estimated Dynamic Stochastic General Equilibrium [DSGE] models are now ubiq-

uitous among academics and policy-makers interested in empirical macroeconomic

research and quantitative policy analysis. Regardless of the estimation strategy, how-

ever, weak identification is pervasive in such models, making inference about the deep

parameters a major concern [Canova and Sala (2009), Cochrane (2011), Schorfheide

(2013)]. Under weak identification, many popular methods can deliver confidence

bands or credible sets that are invalid even asymptotically and thereby run the risk

of misleading practitioners interested in determining policy implications. Such con-

cerns have prompted efforts in the literature to understand the causes of identifica-

tion failure, at least locally [Iskrev (2010), Komunjer and Ng (2011)], and to develop

identification-robust econometric methods that are valid whether identification re-

strictions hold or not [Inoue and Rossi (2011),Tkachenko and Qu (2012, 2016), Moon

and Schorfheide (2012), Qu (2014), Dufour, Khalaf and Kichian (2013), Guerron-

Quintana, Inoue and Kilian (2013), Basturk, akmali, Ceyhan and Van Dijk (2014),

Magnusson and Mavroeidis (2014), Andrews and Mikusheva (2015)].1

1Alternatives including limited information modeling and econometrics, survey-based expecta-
tions, or information stickiness are not covered in our analysis. See Mavroeidis (2005, 2010), Dufour,
Khalaf and Kichian (2006), Kleibergen and Mavroeidis (2009), Coibion and Gorodnichenko (2010,
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The literature has pointed out several pervasive “culprits” in the available models

and data that undermine identification, including nonlinearities, and the properties of

disturbances as well as of expectations [Schorfheide (2013)]. Cochrane (2011), on the

other hand, raises more fundamental concerns arising from determinacy, and suggests

that the literature’s “many attempts to rescue identification” may be theoretically

bound to fail. In particular, Cochrane’s analysis of determinacy within New Keyne-

sian models suggests that theory produces estimating equations that is “a snake pit

for econometricians”, so empirical work “must throw out important elements of the

theory in order to identify parameters”.

One way to read Cochrane (2011) is that the particular model in question is not

identified for theoretical rather than for empirical reasons. “Not only might these

problems exist, but theory predicts that most of them do exist”. In models that

are not unidentified “in principle”, the econometric issues raised by Cochrane do not

differ “symptom-wise”, from the above “culprits”. For example, usual exogenous or

predetermined variables are either invalid, that is, cannot be orthogonal to persistent

disturbances, or weakly informative, when i.i.d. disturbances are imposed. Such

central difficulties thus stem from persistence, which invalidates standard and even

recently proposed identification-robust methods [Yang and Xu (2014)].

In this paper we propose a finite-sample simulation-based econometric method

that delivers persistence and identification-robust size control, in a frequentist full-

information rational expectations framework. The proposed method draws on two

classes: (i) the above cited identification-robust methods and (ii) Indirect Inference

[InDInF]. The latter method formally replaces complicated or intractable statisti-

cal functions by computer simulations.2 More to the point from our perspective,

Dridi, Guay and Renault (2007) suggest that calibrations, the common alternative

to estimation and inference in macroeconomics, may formally be captured via In-

DInF. Gouriéroux, Phillips and Yu (2010) also show that the method may control

persistence based biases specifically in dynamic panels.3

However, to the best of our knowledge, all available identification-robust meth-

2015), Mavroeidis, Plagborg-Mller and Stock (2014), Kapetanios, Khalaf and Marcellino (2016) and
references therein for examples of such alternatives.

2See Smith (1993), Gouriéroux, Monfort and Renault (1993), Gouriéroux and Monfort (1997)
and Gallant and Tauchen (1996) for leading references.

3Furthermore, Guay and Scaillet (2003) demonstrate advantages with unidentified nuisance pa-
rameters, and more recently, Calvet and Czellar (2015) revisit equilibrium models. See also Li
(2010), Dominicy and Veredas (2013) and Fuleky and Zivot (2014).
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ods are justified using asymptotic statistical theory, which is known to break down

when persistence is high. Monte Carlo experiments conducted to examine the per-

formance of these methods often consider sample sizes that are beyond empirical

relevance in macroeconomics [see e.g. Kleibergen and Mavroeidis (2009) and Mag-

nusson and Mavroeidis (2014) who consider 1000 and 2000 observations] or sidestep

near-boundary persistence. In contrast, macroeconomic series, especially time series

that can be modeled with stable structures, are typically short4 and near-unit roots

cannot be ruled-out; see Mikusheva (2009) and Yang and Xu (2014) for recent prac-

tical references illustrating the latter problem. These issues combined open the door

to spurious over-rejections, and bring to question the substantive results obtained by

available asymptotically justified identification-robust methods.

With regards to InDInF broadly, confidence sets and hypotheses tests are also

typically justified using standard asymptotic arguments. For example, regularity

conditions are derived to ensure consistency and asymptotic normality of the estimate,

leading to Student-t type confidence intervals. Such approaches [e.g. Dufour and

Taamouti (2007)] usually require identification which suggests that despite promises,

traditional InDInF may also suffer from the weak identification curse. To the best of

our knowledge, provably finite-sample InDInF based methods are scarce.5

This paper introduces a simulation-based confidence-set estimation method based

on InDInF for DSGE models that provides size-control regardless of sample length or

persistence. We need neither the existence of a limiting distribution, nor for errors to

be exclusively Gaussian, nor for (near or) unit roots to be ruled out. A linearized state

space solution is also not necessary. All we require is the possibility of simulating data

from the considered DSGE given its deep parameters. Through simulation studies

based on a real business cycle and a New Keynesian model we show that our method

has exact size and very good power for many key parameters. The prototypical

New Keynesian model [Woodford (2003), Giannoni and Woodford (2004), Milani and

Treadwell (2012)] is also considered to illustrate how our strategy works in practice.

InDInF relies on a binding function that links a model of interest to an aux-

4See e.g. the literature emphasizing pre and post-Volcker analyses of the Taylor rule, including
Mavroeidis (2010), Benati (2008) and the references therein for a historical perspective on instabil-
ities with inflation persistence.

5Exceptions include Dufour and Valéry (2009) for stochastic volatility models, and Dufour and
Kurz-Kim (2010), Dufour, Khalaf and Beaulieu (2003) and Beaulieu, Dufour and Khalaf (2014) in
Multivariate regressions and simple location-scale models with fat-tailed fundamentals.
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iliary one for which a simple estimator is available. Minimum-distance estimation

matches the observed to the calibrated criteria, which formally captures calibra-

tion and equilibrium, and attenuates persistence biases. In DSGEs, Vector Auto-

Regressions [VAR] provide natural choices, since solved models can often be approx-

imated via restricted VARs, for which the coefficients can be calibrated by simulation.

Conformably, we first consider the popular unrestricted finite order VAR where, in

contrast to Dufour et al. (2013), we account, exactly, for a mis-specified lag order.

Secondly, we introduce a forward and backward looking VAR. To the best of our

knowledge, this is the first paper that relies on leads and lags for identifying DSGE

parameters. Perhaps the closest connection is the VAR with an Error Correction

[EC] used e.g. by Del Negro, Schorfheide, Smets and Wouters (2007), since leads and

lags and EC models are competing approaches with near non-stationary data. Our

third auxiliary specification is thus a Vector EC model [VECM]. Finally, we assess

whether leads in VECM improve mis-specification corrections.

The key ingredient to our methodology is that the DSGE model can be simulated

once a finite dimensional parameter, denoted ϑ in what follows, is specified. Note

that calibration exercises that are popular in the DSGE literature depend on drawing

such simulated samples from the model to derive population measures, including

impulse responses, associated with specific choices for ϑ. Building on this property,

we devise a finite sample multi-stage simulation-based strategy to robustify InDInF

on DSGEs. The outcome is a confidence set, derived by screening the observed-

to-calibrated distance in question over relevant parameter values and retaining the

ones with insignificant distances. Conceptually, this summarizes an infinite number

of significance checks across the parameter space; if each check is valid at every

check-point, the non-rejected set will reveal the full range of true parameters that fit

the data. A non-informative possibly unbounded range confirms weak identification

and all parameter values will be rejected if the model lacks fit. In contrast to usual

methods, non-rejected values can thus be interpreted without taking an ex-ante stand

on whether the model is the right one.

Rather than minimizing the observed-to-calibrated distance which makes sense

from a point-estimation perspective, we thus view model-to-data matching as a search

for the insignificant distances. The so-called test inversion general principle underly-

ing confidence sets of this form conveys much more information than minimum dis-

tance and eschews standard errors. As a matter of fact, usual standard errors severely
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under-state uncertainty when objective functions may have flat weakly-identified

zones. The critical requirement is a test that is valid at every check-point. This

paper introduces multi-level Monte Carlo Test [MCT] methods extending Dufour

(2006), to validate the above distance measure at each tested point, in finite samples.

The remainder of the paper is organized as follows. Section 2 describes the sta-

tistical framework. The methodology is discussed in section 3. Section 4 documents

the properties of our methodology via two fully micro-founded canonical DSGE mod-

els. Section 5 provides a practical example where a New Keynesian baseline model is

taken to the data, and section 6 provides concluding comments.

2 Framework

Consider the general state-space representation of a DSGE model solution:

Xt = F (Xt−1, Vt, ϑ) , (1)

Yt = G (Xt−1, Vt, ϑ) , (2)

Vt = J (Vt−1, εt, ϑ) , (3)

where, Xt is a vector of possibly unobserved endogenous state variables; Yt is a vector

of observed endogenous variables of dimension n?; Vt is a vector of exogenous process

driven by the vector of shocks εt, satisfying Eεt = 0, Eεtε
′
t = I, and Eεtε

′
t−j = 0 for

j 6= 0; and ϑ is a vector of deep parameters. Functions F and G relate the exogenous

driving processes and pre-determined state variables to current period endogenous

variables, and comprise the solution of the DSGE model. J is a description of the

law of motion of the exogenous process. The solution may or may not be linear in

Xt−1, Vt and εt. However, most DSGE solutions are usually non-linear in ϑ.

We further assume that observables compatible with (1)-(3) can be obtained by

simulation for a given parameter value ϑ = ϑ0. Our purpose is to derive a joint and

simultaneous confidence set for ϑ, maintaining a full-information perspective.

A likelihood function may - or may not - be tractable in this context. We also

do not require that the associated score is tractable. In particular, assumptions on

the likelihood or the score as in Guerron-Quintana et al. (2013) and Andrews and

Mikusheva (2015) are not required. All we need is the possibility of simulating data

compatible with (1)-(3) imposing usual assumptions of the parameter space of ϑ.
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InDInF, which exploits the fact that simulations can be easily drawn from the model

whether likelihoods and/or scores are regular or not, provides interesting statistical

objective functions in our context.6

2.1 Background

InDInF requires an underlying auxiliary model that “matches” the structural model

and may be easily fit to available data. Matching does not presume that the auxil-

iary model is correctly specified. Instead, a binding function that is not necessarily

tractable should exist that links the parameters of the auxiliary to the postulated

model. A closed form for the binding function is not used explicitly and may hold in

limits as well. For example, the well-know Yule-Walker equations provide a natural

binding function for moving average models estimated via AR auxiliary regression.

This same rationale suggests a VAR as an auxiliary model for DSGEs. Note that

linearized versions of DSGE solutions in (1)-(3) can be expressed as a VARMA or

infinite VAR model in the observables whose coefficients are nonlinear functions of

ϑ. In that special case, which we consider in our examples below, a finite-order VAR

provides a natural auxiliary regression.

For this same problem, Dufour et al. (2013) propose an inference method that does

not require a closed likelihood yet respects full-information principles. The method

builds on the underlying infinite VAR solution approximated via the finite-order VAR

model,7

Γ(L, ϑ, p)Yt = z(ϑ) + ut, (4)

where Γ(L, ϑ, p) =
∑p

i=0 Γi(ϑ)Li, Γ0(ϑ) = I, L is a lag operator, p is the truncation

order, z(ϑ) is a constant, and ut is a vector of white noises with covariance matrix

Ω.8 From there on, and for a given parameter value ϑ = ϑ0, regress the Ordinary

Least Square [OLS] residual ût(ϑ0) = Γ̂(L, ϑ0, p)Yt − ẑ(ϑ0) on as many of the lags

of Yt as implied by the structure. Then, ϑ = ϑ0 implies that these regressors should

be jointly insignificant. Testing this restriction involves a regular zero-restriction in

6Refer to Gouriéroux et al. (1993) and Smith (1993) for a general discussion of IndInF, and for
Dridi et al. (2007) with regards to DSGEs.

7For further conditions on such approximations, see Fernández-Villaverde, Rubio-Ramrez, Sar-
gent and Watson (2007), Ravenna (2007).

8Given the true process is VARMA, if p is mis-specified, it is possible that ut is no longer a vector
of white noises and Ω may depend on ϑ.
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a VAR, which evacuates identification concerns.

In traditional estimation methodology a point estimate is found first and con-

fidence intervals are then constructed, of the form {estimate ± standard error ×
critical point}. In contrast, “inverting” an identification- robust test, as in Dufour

et al. (2013) and many other contributions to this literature, produces a confidence

region assembling the ϑ0 that are not rejected by the test in question at a certain

level α?. In contrast to intervals, confidence sets so obtained can be unbounded. If

objective functions are almost flat, most values in the parameter space would not be

rejected, reflecting weak identification. The sets can also be empty, which implies

that the structural model is rejected at the considered level.

2.2 Auxiliary specifications

Our methodology - from a general perspective - is not restricted to (4) as the auxiliary

model. We consider (4) as well as three other specifications, the first is a VAR with

Leads and Lags [VARLL]:

Γ†(L, ϑ, p, q)Yt = z†(ϑ) + ut, (5)

where Γ†(L, ϑ, p, q) =
∑p

i=−q Γ†i(ϑ)Li, Γ†0(ϑ) = I, q is the maximum number of leads,

and z†(ϑ) is a constant. In this case, the future values of Yt may have an impact

on current Yt, which may also better approximate the VARMA solution. We next

consider a VECM as an alternative auxiliary specification:

Φ(L, ϑ, p)∆Yt = c(ϑ) + ΦΨ(ϑ)(Ψ(ϑ)LYt) + ut, (6)

where Φ(L, ϑ, p) =
∑p−1

i=0 Φi(ϑ)Li, Φ0(ϑ) = I, c(ϑ) is a constant, ΦΨ(ϑ)(Ψ(ϑ)LYt) is

the error correction term, and Ψ(ϑ) may or may not depend on ϑ. In line with the

VAR case, we also consider a VECM with Leads and Lags [VECMLL]

Φ†(L, ϑ, p, q)∆Yt = c†(ϑ) + Φ†Ψ(ϑ)(Ψ†(ϑ)LYt) + ut, (7)

where Φ†(L, ϑ, p, q) =
∑p−1

i=−q Φ†i(ϑ)Li, Φ†0(ϑ) = I, c†(ϑ) is a constant, Φ†Ψ(ϑ)(Ψ†(ϑ)LYt)

is the error correction term.

In contrast to Dufour et al. (2013) who suggest that Heteroskedastic and Autocor-
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relation Consistent [HAC] procedures may be used to correct for the truncation lags,

we use (4)-(7) so that the order p, q does not need to reflect a correct specification.

Our methodology can accommodate exact unit roots, in addition to highly persistent

stationary data. For ease of the presentation, we use (4) as an example to present

our methodology below.

3 Inference Methodology

We proceed by inverting a test statistic for the hypothesis that fixes ϑ = ϑ0 to a

known value

H0 (ϑ0) : ϑ = ϑ0, ϑ0 known. (8)

A complete description of our methodology thus requires: (i) defining the test statistic

we propose to invert, (ii) obtaining identification-robust p-values for this statistic,

and (iii) characterizing the numerical inversion solution. Steps (i)-(iii) are discussed

in what follows.

Formally, given a right-tail test S(ϑ0) and setting the number of Monte Carlo

simulations to N so that α?(N + 1) is an integer, we obtain MCT p-values, denoted

pN(ϑ0), such that for finite T and finite N ,

P
[
pN(ϑ0) ≤ α?

]
= α?.

pN(ϑ0) is formally defined in section 3.2. Inverting a test, which produces a joint

confidence set for intervening parameters, means assembling the parameter values ϑ0

that are not rejected by this test at a given level. For example, given a right-tail test

statistic S(ϑ0) and associated exact p-values pN(ϑ0) at α? level, we aim to collect

the ϑ0 for which pN(ϑ0) > α?. The set of parameters that satisfies this inequality is

a joint confidence set with level no less than 1 − α?. The least rejected parameter

values (associated with the highest p-value) can be treated as point estimates. Note,

however, that by the very nature of weak identification, the least rejected parameter

values can be a set, rather than a unique point.

Projecting a joint confidence region, which produces confidence intervals for indi-

vidual parameters, entails finding the smallest and largest values of each parameter

component within this region. We apply the Genetic Algorithm for this purpose.9

9See Khalaf and Lin (2015) for further insights and references on the performance of this opti-
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Concretely, we iterate over ϑ0 to obtain the minimum and maximum of the function

a′ϑ0, where a is a selection matrix, such that pN(ϑ0) > α?; e.g. a = [1, 0, ..., 0]′ leads

to a confidence interval on the first component of ϑ.

The shape of the joint confidence region can be highly irregular and non-convex,

therefore the test inversion and related projection have to be conducted numerically.

The individual confidence sets can be unbounded or empty, which would suggest

identification or specification problems, respectively.

3.1 Test statistics

The VAR(p) process in (4) is in the form of a Seemingly Unrelated Regressions [SUR]

model, where each equation has the same explanatory variables. Hence Γ(L, ϑ, p)

and z(ϑ) can be estimated equation-by-equation disregarding underlying restrictions

using OLS applied to (4) with the observed data. Let Γ̂(L, ϑ, p) and ẑ(ϑ) denote the

OLS-based estimate over the n? equations.

Next, obtain a population counterpart to Γ̂(L, ϑ, p) and ẑ(ϑ) which we will denote

Γ̄(L, ϑ0, p) and z̄(ϑ0). The following simulation-based algorithm is applied using the

state-space DSGE model (1)-(3) imposing ϑ = ϑ0.

Algorithm 1 calibrated counterparts of auxiliary parameters

1: For a given ϑ0, generate m = 1, ...,M simulated series {Ỹt,m(ϑ0)}Tt=1 using the

state-space DSGE model (1)-(3) and random draws {ε̃t,m}Tt=1 compatible with

(3);

2: Calculate the equation-by-equation OLS estimates using each simulated data set

and collect them in Γ̃m(L, ϑ0, p) and z̃m(ϑ0);

3: The average over the M paths

Γ̄(L, ϑ0, p) =
1

M

M∑
m=1

Γ̃m(L, ϑ0, p),

z̄(ϑ0) =
1

M

M∑
m=1

z̃m(ϑ0)

provides our model consistent proxy for Γ(.) and z(.).

mization method.
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Discrepancies between {Γ̂(L, ϑ, p), ẑ(ϑ0)} and {Γ̄(L, ϑ0, p), z̄(ϑ0)} will serve to as-

sess H0 (ϑ0). We use the LR distance measure to assess this discrepancy:

Λ(ϑ0) = |Σ̂0
W |/|Σ̂W | (9)

where

Wt(Y, ϑ) = Γ̂(L, ϑ, p)Yt − ẑ(ϑ), Σ̂W =
1

T − p− 1

T∑
t=p+1

Wt(Y, ϑ)W ′
t(Y, ϑ), (10)

Wt(Y, ϑ0) = Γ̄(L, ϑ0, p)Yt − z̄(ϑ0), Σ̂0
W =

1

T − p− 1

T∑
t=p+1

Wt(Y, ϑ0)W
′
t(Y, ϑ0),

(11)

so Σ̂0
W and Σ̂W give the constrained (imposing ϑ = ϑ0) and unconstrained sum of

squared errors matrices. This statistic admits an F-based approximation under the

null in regressions with fixed covariates that was used by Dufour et al. (2013). Since

Dufour et al. (2013) did not provide supportive simulation evidence, it would be useful

to assess this approximation to motivate our MCT alternative. The F-approximation

proceeds as follows:

L(ϑ0) =

(
µτ − 2λ

(p+ 1)n?

)
1− (Λ(ϑ0))

τ

(Λ(ϑ0))
τ , (12)

µ = (T − p− 1)− n? − p
2

,

λ =
n?(p+ 1)− 2

4
,

τ =


[

(p+1)2n?2−4
(p+1)2+n?2−5

]1/2
, if (p+ 1)2 + n?2 − 5 > 0;

1, otherwise,

where L(ϑ0) has an approximate F ((p+ 1)n?, µτ − 2λ) null distribution at level α?.

3.2 Finite-sample p-values

The null distribution of Λ(ϑ0), as well as the statistics introduced above, can be easily

simulated, which justifies the application of MCTs [Dufour (2006), Beaulieu et al.

(2014), Khalaf and Peraza (2014a,b) and Khalaf and Saunders (2014)]. When applied
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to the above Λ(ϑ0) statistic, for example, the MCT technique can be summarized as

follows.

Algorithm 2 MCT technique

1: Obtain the simulation-based estimates underlying the considered statistic. Specif-

ically, we implement the procedure described in Algorithm 1 of section 3.1 to

obtain Γ̄(L, ϑ0, p) and z̄(ϑ0) given ϑ0. This population measure is generated only

once, so the following steps are conditional on Γ̄(L, ϑ0, p) and z̄(ϑ0).

2: Applying (10)-(11) and (9) to the data, find the observed value of the considered

test statistic and denote it as S0(Γ̄(L, ϑ0, p), z̄(ϑ0)), where conditioning on the

calibrated Γ̄(.) and z̄(.) is emphasized.

3: Draw N i.i.d. samples of size T from the model (1)-(3) under ϑ = ϑ0; these draws

should be independent from those underlying Γ̄(.) and z̄(.).

4: Using the same population measure as in S0(Γ̄(L, ϑ0, p), z̄(ϑ0)), and applying

(10)-(11) and (9) to the simulated data, obtain N simulated values for the con-

sidered test statistic, denoted S1(Γ̄(L, ϑ0, p), z̄(ϑ0)), . . . , SN(Γ̄(L, ϑ0, p), z̄(ϑ0)),

where again, conditioning on the same value used for Γ̄(.) and z̄(.) used in S0(.)

is emphasized.

5: Compute a simulated p-value for the test statistic, using the rank of the observed

statistic, relative to its simulated counterpart:

pN(S0(Γ̄(L, ϑ0, p), z̄(ϑ0)) ) =
NGN(S0(Γ̄(L, ϑ0, p), z̄(ϑ0)) ) + 1

N + 1
, (13)

GN(S0(Γ̄(L, ϑ0, p), z̄(ϑ0)) ) =
1

N

N∑
i=1

1
(
Si(Γ̄(L, ϑ0, p), z̄(ϑ0)) ≥ S0(Γ̄(L, ϑ0, p), z̄(ϑ0))

)
,

(14)

where 1(C) is the indicator function associated with event C:

1(C) = 1, if event C holds;

= 0, otherwise.

In other words, NGN(S0(Γ̄(L, ϑ0, p), z̄(ϑ0)) ) is the number of simulated values

greater than or equal to S0.

The null hypothesis is rejected at level α? by the test considered if the MCT
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p-value so obtained is less than or equal to α?. The MCT critical region is:

pN(S0 (Γ̄(L, ϑ0, p), z̄(ϑ0))) ≤ α? , 0 < α? < 1,

which is exact for finite T and N , in the following sense.

Theorem 1. In the context of model (1)-(3) under the null hypothesis (8), con-

sider the test statistic (9) where Γ̄(L, ϑ0, p) and z̄(ϑ0) are derived conforming with

Algorithms 1 and pN(S0 (Γ̄(L, ϑ0, p), z̄(ϑ0))), its MCT p-value (13) derived using Al-

gorithms 2. Then for finite T and N

P
[
pN(S0(Γ̄(L, ϑ0, p), z̄(ϑ0)) ) ≤ α?

]
= α? (15)

provided α?(N + 1) is an integer.

Proof: Step (1) in Algorithm 2 ensures that observed statistic S0(Γ̄(L, ϑ0, p), z̄(ϑ0))

and its simulated counterparts S1(Γ̄(L, ϑ0, p), z̄(ϑ0)), . . . , SN(Γ̄(L, ϑ0, p), z̄(ϑ0)) are

exchangeable, since they rely on the same approximated population measure Γ̄(L, ϑ0, p)

and z̄(ϑ0). The considered statistics are also continuous. Thus (15) follows from

Proposition 2.2 of Dufour (2006).�

Theorem 1 proves finite sample exactness regardless of: (i) the VAR truncation

order and other possible mis-specification of the auxiliary model; (ii) the curse of

dimensionality10; (iii) dynamic auxiliary models where lags violate the fixed-regressor

assumption required for most exact finite-sample multivariate methods including the

approximation used by Dufour et al. (2013); and, most importantly, (iv) persistence.

We also note that a linearized state-space is not necessary as long as model consis-

tent simulated data can be obtained given ϑ0. This property circumvents important

deficiencies with available methods.

The fact that exchangeability is sufficient to establish (15) from a finite-sample

perspective is worth pointing out here since the statistic we propose relies on just one

preliminary simulation. Exactness holds for all other statistics and all other auxiliary

specifications, which we also estimate, using observed and calibrated data, by OLS;

the error correction component in the VECM auxiliary model, that is Ψ(ϑ)LYt in

10When n? is large relative to T , asymptotic approximations usually break down because of
degrees-of-freedom crunches. Our methodology is valid for any n? as long as the above defined
determinants are regular.

13



(6), is usually imposed conforming with theory. Alternatively, if an expression for

Ψ(ϑ)LYt is unavailable analytically, reduced rank regression estimation as in e.g.

Johansen (1988, 1991) may be used instead of OLS, on observed and calibrated data.

The models we consider below provide a tractable form for Ψ(ϑ)LYt.

4 Simulation Evidence

In this section, we illustrate the properties of our MCT method via a simulation study

conducted on two different prototypical DSGE models – a real business cycle model

with flexible prices and a New Keynesian DSGE model with sticky prices. Although

our method can accommodate non-linear solutions of DSGE models, the current

exercise considers linearized solutions as they continue to be used most frequently in

the literature and particularly in available work on identification-robust methods.

This exercise achieves three purposes. First, we establish that our method is (a)

finite-sample exact and (b) persistence-robust. That is, our method provides correct

size irrespective of the sample length or the degree of persistence for the time series

processes involved. To show this, we generate data from the model under a null

or “true” value of the underlying deep parameters, and analyze rejection frequen-

cies using our method under the null as well as alternative parameter values. We

then compare them to the rejection frequencies of an asymptotically based method,

for which we pick the asymptotically F-distributed [denoted by LRAsy] statistic

of Dufour et al. (2013). We show that our method provides correct size, while the

asymptotically based method provides size distortion for (a) small samples, and (b)

persistent shock processes.

Second, we demonstrate that our methodology can accommodate different auxil-

iary representations of the DSGE model. In particular, we show that DSGE models

that have a VECM representation can be represented as such. VECM forms of DSGE

models have received very little attention in the literature (with the important ex-

ception of Del Negro et al. (2007)). To the best of our knowledge, this is the first

paper that demonstrates the relevance of VECM forms in the identification of DSGE

model parameters. Moreover, we add leads and lags to auxiliary VAR or VECM

forms and find that they contain important information on deep parameters related

to structural shocks.

Finally, we shed light on the inherent non-linearities in the identification of DSGE
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models. Specifically, the identifiability of deep parameters depend on the “true value”

of these parameters. Identification of one parameter can vary depending on the “true

value” of that or another deep parameter.

4.1 A Real Business Cycle Model with Permanent Shocks

We choose a prototypical RBC model from Del Negro and Schorfheide (2013) with

flexible prices that is especially suited for our purposes. First, the model can ac-

commodate both a temporary technology shock under a deterministic trend and a

permanent one under a stochastic trend. This makes it particularly useful in demon-

strating the performance of our method under both stationary and unit root processes.

Second, the model provides explicit cointegration relationships between multiple vari-

ables from theory that permit a VECM representation alongside the usual VAR form.

Finally, the lack of price stickiness means that the chosen model does not suffer from

any additional identification problems documented for the New Keynesian case in

the next section and in the literature (cf. Mavroeidis (2010) and Canova and Sala

(2009)).

The optimality conditions that constitute the model can be summarized as follows:

1

Ct
= βE

[
1

Ct+1

(Rt+1 + (1− δ))
]
, (16)

1

Ct
W ?
t =

1

Bt

(
Ht

Bt

)1/ν

, (17)

Kt+1 = (1− δ)Kt + It, (18)

Y ?
t = (AtHt)

αK1−α
t , (19)

W ?
t = α

Y ?
t

Ht

, (20)

Rt = (1− α)
Y ?
t

Kt

, (21)

Y ?
t = Ct + It. (22)

Here, Ct, It and Y ?
t represent consumption, investment and output, respectively. Rt

and W ?
t represent returns on capital and wages. Kt and Ht are capital and labour

inputs into production, At represents aggregate technology, and Bt is an exogenous

shock to labour supply. Equation (16) summarizes the representative agent’s in-

tertemporal consumption trade-off. Equation (17) determines labour supply. Equa-
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tion (18) describes the capital accumulation. Equation (19) defines the production

function. Equations (20) and (21) summarize the firms’ optimal conditions for labour

and capital demand. Finally, equation (22) specifies the resource constraint.

Log technology moves according to the following:

lnAt = lnA0 + (ln γ) t+ ln Ãt,

ln Ãt = ρa ln Ãt−1 + σaεa,t,

where ρa ∈ [0, 1] and εa,t ∼ i.i.d.N (0, 1). This allows us two cases. If 0 ≤ ρa ≤ 1,

technology is trend stationary. On the other hand, if ρa = 1, lnAt is a random-walk

process with drift.

Exogenous labour supply shifts are assumed to follow a stationary process:

lnBt = (1− ρb) lnB∗ + ρb lnBt−1 + σbεb,t

where 0 ≤ ρb ≤ 1, and εb,t ∼ i.i.d.N (0, 1). The model is detrended by dividing all

trending variables by At, log-linearized, and solved using methods outlined in Sims

(2002).

If ρa = 1, then the log-linearized technology variable is nonstationary. In this

case, the model implies the following cointegration relationship:

[
−1 1

] [lnGDPt

ln It

]
= ln

[
(1− α) (γ − 1 + δ)

γ/β − 1 + δ

]
+ Ît − Ŷ ?

t

where variables with hats denote log deviations around their detrended steady-state.

Further details of the assumptions of the model and treatments regarding detrending

and log-linearization can be found in Del Negro and Schorfheide (2013).

Collect all parameters of interest in ϑ, where

ϑ = [α, γ, ν, ρa, ρb, σa, σb]
′ .

Figures 1 through 6 plot the rejection-frequency curves at the 95% confidence

level for our MCT method for different sample sizes and different degrees of persis-

tence in shock processes. For comparison, we also include rejection frequencies of the

asymptotically based method in Dufour et al. (2013), which we denote by LRAsy.
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Rejection-frequency curves are generated by varying the grid value of the parameters

one at a time, while keeping all other at their null values. The null values are provided

in the title of each figure with a subscript zero, and have been chosen from estimated

posterior means reported in Del Negro and Schorfheide (2013). The rejection fre-

quency of a parameter at their null value gives the size of the test, while the rejection

frequency of the parameter away from the null value gives the power.

Figures 1 through 4 correspond to a sample size of 100. Many important quarterly

time series for different countries begin only after the mid 1980’s. Given the specific

nature of the Great Recession of 2008, many studies often consider data prior to

the great recession. Together, this restricts the available sample size to about 100.

Moreover, many studies focus only on a subset of all available data. For example,

there is an active literature focusing on comparing monetary policy across the “pre-

Volcker” (1954:Q3 - 1879:Q4) and the “post-Volcker” or “Great Moderation” periods

(1986:Q1 - 2007:Q4). Each of these periods correspond to a sample length close to

100. In contrast, Figures 5 and 6, consider a sample size of 300 – about one-and-half

times the sample available for the Post-War U.S. economy.

A number of observations can be made. First, the MCT provides correct size

regardless of the sample length. In contrast, the LRAsy method (solid lines with

circles for the VECM case and dashed lines with circles for the VAR case) provides

significant size distortions for empirically relevant small samples. However, Figure 5

shows that the LRAsy method approaches the correct size when the sample is large

enough (albeit empirically irrelevant).

More importantly, the MCT method retains the correct size in the face of se-

vere persistence. Figure 6 shows that even for the unit root case of ρa = 1, the

MCT method provides correct size. In contrast, size in LRAsy is distorted when the

persistence of the shock process (magnitude of ρa) is high.

Second, different auxiliary forms of the DSGE model retain different levels of

information relating to the identifiability of a parameter. Figure 2 shows rejection

frequencies using the MCT method for four different auxiliary formulations of the

same DSGE model – a VECM form, a VAR form, and both of these enhanced with

leads and lags.

Again, a number of observations can be made. First, the VECM formulation is

more informative on the identification of certain parameters compared to the VAR

formulation. That is, the rejection probability under the alternative (power of the
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procedure) is higher for the VECM case than the VAR case. Not surprisingly, the

advantage of the VECM manifests itself in parameters relevant to the common trend

– the time trend parameter γ, the shock persistence parameters ρa and ρb, and shock

standard error σb, compared to the VAR formulation. To the best of our knowledge,

this is the first paper that highlights the importance of VECM formulations in the

identification of DSGE model parameters.

Moreover, adding leads and lags to either the VAR or the VECM formulation

(represented by dashed and solid lines with diamonds, respectively) provides impor-

tant information on the identification of parameters, specifically those related to the

standard deviation of shocks.

Finally, identification of a particular parameter depends crucially on the “true

value” of that or another parameter. As long as they are produced under the same

method, rejection-frequency curves can serve as a graphical device for measuring the

relative depth of the identification problem inherent in parameter values of different

models. If the rejection frequency of a parameter is low regardless of the distance

from the “true value” from which data is generated, we can say that the parameter

is hard to identify. In this light, compare Figures 1 and 2. An increase in the

persistence of the shock processes ρa and ρb not only makes it harder to identify the

persistence parameters in question, but also makes in harder to reject “wrong values”

of parameters α and γ.

4.2 A New Keynesian Model with Sticky Prices

The New Keynesian model with sticky prices, inflation inertia and habit formation is

widely considered to be more empirically relevant than the flexible price model studied

above. Versions of the three equation New Keynesian DSGE model has been widely

estimated by proponents of Bayesian and frequentist economists alike. Moreover,

complications related to parameter identification in New Keynesian DSGE models

have recently received significant attention in the literature (Canova and Sala (2009)

Mavroeidis (2010) Cochrane (2011), Dufour et al. (2013), among others), making it

particularly interesting and relevant for our case.

In this section, we conduct the same simulation study on a version of the New

Keynesian model derived and estimated in Milani and Treadwell (2012). For book-

length treatments of the model, see Woodford (2003) and Gaĺı (2008).
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The model consists of a New Keynesian Phillips Curve [NKPC], an Euler-equation

based modified IS function, a Taylor rule followed by the monetary authority, and

exogenous shock processes, summarized in log-linearized form below:

πt =
β

1 + βγ
Etπt+1 +

γ

1 + βγ
πt−1

+
(1− α)(1− αβ)

α(1 + βγ)

(
ωyt +

σ−1

1− φ
(yt − φyt−1)

)
+ µt, (23)

yt =
1

1 + φ
Etyt+1 +

φ

1 + φ
yt−1 −

σ(1− φ)

1 + φ
(Rt − Etπt+1) + gt, (24)

Rt = ρRt−1 + (1− ρ) [χππt + χyyt] + ζt, (25)

µt = ρπµt−1 + επ,t, (26)

gt = ρygt−1 + εy,t, (27)

ζt = ρRζt−1 + εR,t. (28)

All variables are expressed as log deviations from their respective stationary

steady-states. y denotes the output gap, π denotes inflation, and R denotes the

nominal interest rate. The parameter γ represents the degree of price indexation to

past inflation, while α represents the fraction of firms that cannot re-optimize their

prices in a given period due to Calvo-type price rigidities. σ represents the consumer’s

intertemporal elasticity of substitution, φ denotes the degree of habit persistence in

the consumer’s utility function. Parameters χπ and χy denote the monetary author-

ities’ response to inflation and the output gap, respectively, while ρ represents the

degree of monetary policy inertia. µ, g, and ζ are exogenous disturbances to the

marginal cost of production, the Euler function, and the systematic policy rule. They

evolve according to AR(1) processes with autoregressive coefficients ρi, for i = π, y, R,

and are affected by i.i.d. fundamental Gaussian shocks εi ∼ N(0, σ2
i ). In what fol-

lows, the two remaining parameters of the model, namely the discount factor, β, and

the elasticity of marginal cost to income, ω, is kept fixed at 0.99 and 2 respectively.

A full derivation of the model from micro-foundations can be found in Milani and

Treadwell (2012).

Note that many available studies of identification-robust estimation of three-

equation DSGE models focus on “semi-structural” versions of the above, where com-

plex non-linear expressions of deep-parameters are simplified to reduced form linear

parameters [Lindé (2005), Benati and Surico (2009), Dufour et al. (2013), Mavroeidis
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et al. (2014), Castelnuovo and Fanelli (2015)], that can be easier to identify. However,

in the spirit of Cochrane (2011), we stick to the micro-founded model to illustrate the

identification problems inherent in versions where we do not “throw out important

elements of the theory in order to identify parameters”.

Collect all parameters of interest in ϑ, where

ϑ = [φ, σ, γ, α, ρ, χπ, χy, ρπ, ρy, ρR, σπ, σy, σR]′. (29)

Figures 7 and 8 show rejection frequencies for this model at the 95% confidence

level similar to the previous subsection. The null values of the parameters, denoted

with a zero subscript and noted in the titles of the sub figures, are chosen from

posterior mean values estimated in Milani and Treadwell (2012). Since there is no

cointegration relationship between the three variables considered in the model, only

VAR forms of the auxiliary model is considered. The dashed and solid lines represent

the MCT case with a VAR and VAR with leads and lags, respectively. The dashed

lines with circles represent the LRAsy case with a VAR.

The main messages from the previous section carry through. Asymptotically based

methods spuriously reject “true values” of the model parameter for finite samples.

The size distortion worsens with the persistence of the underlying shock processes.

This is shown starkly in Figure 8, where the shock persistence parameters ρy and ρR

have been increased to near unit root. In contrast, the MCT method provides correct

size regardless of sample length or persistence.

Augmenting the VAR auxiliary form with leads and lags provide better identifi-

cation of shock standard deviations. It also provides for better identification of all

parameters under persistent shocks (Figure 8). Finally, comparing Figures 7 with 8,

we see that changing the “true value” of some parameters (in this case the shock per-

sistence parameters) can worsen the identification of other parameters (for example

the Taylor rule response parameters χπ and χy).

In conclusion, we demonstrate in this section that (i) asymptotically motivated

identification-robust methods can generate spurious rejections for the model, espe-

cially when sample length is small or when persistence of the underlying processes is

high. In contrast, the MCT method retains correct size regardless of sample length

or degree of persistence. (ii) VECM formulations and adding leads and lags in the

auxiliary representation of DSGE models can be informative for the identification of
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important parameters. And (iii) the inherent non-linearity of DSGE model parame-

ters imply that the identification of one parameter can be deeply influenced by the

“true value” of that or any other parameter in the model.

5 How does it work in practice?

Having demonstrated the properties of our method using a simulation study in the

previous section, we now consider a practical application. We choose an application

related to the literature on identification of monetary policy stance before and during

the period of the “Great Moderation”. Sample lengths available to address this issue

is small and thus is susceptible to spurious over-rejections, as shown above.

The “Great Moderation” refers to the period between mid-1980’s and the begin-

ning of the global recession of 2008, when U.S. macroeconomic volatilities were much

lower compared to other periods (Stock and Watson (2003)). Clarida et al. (2000)

proposes that the decline in volatility is due to the U.S. monetary authority’s adop-

tion of an aggressive stance against inflation in the early 1980’s.11 This narrative has

subsequently been supported by Lubik and Schorfheide (2004) using Bayesian meth-

ods, Boivin and Giannoni (2006), and Benati and Surico (2009) in a VAR setting,

and Mavroeidis (2010), Inoue and Rossi (2011), and Castelnuovo and Fanelli (2015)

in asymptotically justified identification-robust settings.

We revisit this question in light of our findings from the previous section on the

possibility of spurious rejections inherent in asymptotically justified methods. Specif-

ically, we estimate and compare the upper and lower-bounds of the 95% confidence

sets of the model parameters for the “pre-Great Moderation” subsample of 1954Q3

through 1985Q4, and “Great Moderation” subsample of 1986Q1 through 2007Q4.

Two application details need to be discussed before we proceed further. First, we

match the DSGE model, that deal in stationary variables, with first-differenced data

using the measurement equations given below. The left hand side variables describe

11In a New Keynesian framework, such a switch from a passive to active monetary policy can
bring an economy from an indeterminacy region, where movements in macroeconomic variables can
occur due to sun-spot fluctuations, to a determinate region, where active monetary policy succeeds
in anchoring private agents’ inflation expectations, which in turn, induces stability in the economy.
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the data, and the right-hand-side variables denote their model-equivalent expressions.

Output growth (annualized %) = 400 (yt − yt−1 + εy,t) ,

Inflation (annualized %) = 400 (πt + ln π∗) ,

Interest rates (annualized %) = 400 (Rt + lnR∗) .

The three series of data are downloaded via Haver Analytics.

Second, we employ a Genetic Algorithm to find the upper and lower bounds of

a 95% confidence set by projecting the accepted sets one parameter at a time. In

particular, we optimize an objective function that imposes a high penalty on the

distance statistic we invert if (i) determinacy conditions are not met, or (ii) the

simulated p-value implies a rejection at the 5% level. Khalaf and Lin (2015) show

that the Genetic Algorithm provides a significantly more accurate result compared

with e.g. grid search methods employed by Mavroeidis (2010) or Castelnuovo and

Fanelli (2015).

Our results are stark. The model is rejected at the 95% confidence level when

we use a VAR with leads and lags as an auxiliary representation. In contrast, the

model is accepted when we use a simple VAR as auxiliary representation. However,

the accepted parameter intervals are too large to provide any useful information. In

other words, the model jumps from well identified but rejected to accepted but badly

identified, depending on the auxiliary form used.

Two caveats should be kept in mind when interpreting these results. First, rejec-

tion or weak identification of the specific three-equation model provided in equations

(23) through (28) does not imply a rejection of the building blocks of the New Key-

nesian theory. Second, different methods of bridging raw data to their DSGE model

counterparts can have important implications for the estimated parameters. Canova

(2014) shows that one can reach drastically different conclusions while comparing

Taylor rule coefficients that measure the aggressiveness of monetary policy stance in

a similar three-equation DSGE model in the two-subsample periods, depending on

whether the data is first differenced, de-trended, or matched with the model through

bridge-equations that correct for non-stationarity. In particular, the VAR with leads

and lags may be rejecting the measurement equations rather than the model itself.

Finally, as simulation results from the previous section and in Figure 8 suggests,

weak identification of model parameters may follow from high persistence of the shock
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processes. To gain further insight on this possibility, we look at a subset of the model

parameters inspired by the choice of priors considered in Milani and Treadwell (2012)

as a special example. In particular, we restrict the standard deviation of two of the

shock processes, σπ, σR to be equal to each other and normalize them to one.

The results of the projection-based upper and lower bounds for the VAR case of

this special example are given in Tables 1 and 2 for the “pre-Great Moderation” and

“Great Moderation” periods, respectively. First, we find that the model is accepted

for both subsamples. To be precise, the determinate version of the model is accepted

for both subsamples.

Second, we find that the model suffers from serious identification problems in

both subsamples. For both subsamples, the entire search set is accepted for most

parameters. The few parameters that are identified include the shock persistence

parameters ρy and ρR, and the Calvo parameter α. Importantly, accepted sets of

these parameters point to high persistence and a flatness in the slope of the NKPC.

As shown in the simulation study in the previous section, persistent shock processes

are expected to worsen the identification problem in a significant number of model

parameters. This point is also made in an analytically tractable version of the model

in Mavroeidis (2010). Therefore, the only parameters we find to be identified is

expected to result in a lack of identification for the rest of the model parameters.

6 Conclusion

The paper develops a simulation-based finite-sample identification-robust confidence-

set estimation method for DSGE models by combining Indirect Inference with the

Monte Carlo test method. Confidence sets are obtained by inverting finite-sample

tests that assess discrepancies between relevant, though possibly mis-specified, aux-

iliary forms from their DSGE-restricted population counterparts obtained by simu-

lation. Auxiliary forms considered in this paper include standard and forward and

backward looking VARs as well as VECMs. Our method controls coverage exactly,

regardless of sample size, model dimension, lag truncation order, identification of

deep parameters and persistence of underlying processes and data. A linearized state

space solution is not required as long as the DSGE can be simulated once a finite

dimensional parameter is specified. Size and power properties and empirical relevance

are illustrated via canonical real business cycle and New Keynesian models.
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We used VAR-based metrics as measures of empirical fit, since such metrics pro-

vide a well-understood prototypical tool-kit. Whichever other metrics one chooses to

match, we show how its “observed” value can be contrasted with its “model coher-

ent” counterpart endogenously, that is, adjusting the latter as well as the resulting

“critical distance” to the data generating parameters. Exactness is achieved this way

via just two nested simulations, which opens up many promising research avenues.
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Figure 1: Rejection frequencies using the MCT method at the 5% significance level
for small samples.
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Figure 2: Rejection frequencies using the MCT method at the 5% significance level
for small samples and unit root shocks.
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Figure 3: Comparison of rejection frequencies between the MCT and LRAsy methods
at the 5% significance level for small samples.
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Figure 4: Comparison of rejection frequencies between the MCT and LRAsy methods
at the 5% significance level for small samples and unit root shocks.
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Figure 5: Comparison of rejection frequencies between the MCT and LRAsy methods
at the 5% significance level for large samples.
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Figure 6: Comparison of rejection frequencies between the MCT and LRAsy methods
at the 5% significance level for large samples and unit root shocks.
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Figure 7: Comparison of rejection frequencies in the New Keynesian model for MCT
and LRAsy methods at the 5% significance level for small samples
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Figure 8: Comparison of rejection frequencies in the New Keynesian model for MCT
and LRAsy methods at the 5% significance level for small samples and persistent
shocks.
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Note: Dashed lines represent MCT VAR, and solid lines represent MCT VLL, circle-
dot lines represent LRAsy VAR. T = 100.
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Table 1: Projection-based 95% confidence sets, “pre-Great Moderation” data, σπ =
σR = 1, VAR vs.VLL

Coefficient Search set Least-rejected value VAR 95% CI VLL 95% CI
γ [0.01, 0.99] 0.079133 [0.010000, 0.989319] ∅
α [0.01, 0.99] 0.452218 [0.199834, 0.989899] ∅
σ [0.20, 5.50] 4.616626 [0.205419, 5.458306] ∅
φ [0.01, 0.99] 0.308725 [0.010000, 0.985683] ∅
ρ [0.01, 0.99] 0.154502 [0.010000, 0.961050] ∅
χπ [0.50, 3.00] 2.520063 [0.500000, 2.915174] ∅
χy [0.01, 1.00] 0.055120 [0.010000,1.000000] ∅
ρπ [0.01, 0.99] 0.990000 [0.181789, 0.990000] ∅
ρy [0.01, 0.99] 0.990000 [0.952433, 0.990000] ∅
ρR [0.01, 0.99] 0.990000 [0.981949, 0.990000] ∅
σy
σR

[0.01, 0.99] 0.215264 [0.638714, 0.989949] ∅
Sup p-value 0.070000 0.010000

Table 2: Projection-based 95% confidence sets, “Great Moderation” data, σπ = σR =
1, VAR vs.VLL

Coefficient Search set Least-rejected value VAR 95% CI VLL 95% CI
γ [0.01, 0.99] 0.989752 [0.010000, 0.990000] ∅
α [0.01, 0.99] 0.462407 [0.144809, 0.990000] ∅
σ [0.20, 5.50] 1.977300 [0.200000, 5.499904] ∅
φ [0.01, 0.99] 0.096445 [0.010010, 0.988959] ∅
ρ [0.01, 0.99] 0.010224 [0.010000, 0.990000] ∅
χπ [0.50, 3.00] 1.960051 [0.500000, 2.997760] ∅
χy [0.01, 1.00] 0.999935 [0.010000, 1.000000] ∅
ρπ [0.01, 0.99] 0.989997 [0.010000, 0.990000] ∅
ρy [0.01, 0.99] 0.990000 [0.025103, 0.990000] ∅
ρR [0.01, 0.99] 0.989818 [0.703749, 0.990000] ∅
σy
σR

[0.01, 0.99] 0.690177 [0.091410, 0.985605] ∅
Sup p-value 0.090000 0.010000
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