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Abstract

We develop a new estimator for the process of children’s skill formation
in which children’s skills endogenously develop according to a dynamic latent
factor structure. Rather than assuming skills are measured perfectly by a
particular measure, we accommodate the variety of skills measures used in
practice and allow latent skills to be measured with error using a system of
arbitrarily located and scaled measures. For commonly estimated produc-
tion technologies, which already have a known location and scale, we prove
non-parametric identification of the primitive production function parameters.
We treat the parameters of the measurement model as “nuisance” parameters
and use transformations of moments of the measurement data to eliminate
them, analogous to the data transformations used to eliminate fixed effects
with panel data. We develop additional, empirically grounded, restrictions on
the measurement process that allow identification of more general production
technologies, including those exhibiting Hicks neutral total factor productivity
(TFP) dynamics and non-constant returns to scale.

We use our identification results to develop a sequential estimation al-
gorithm for the joint dynamic process of investment and skill development,
correcting for the biases due to measurement error in skills and investment.
Using data for the United States, we estimate the technology of skill forma-
tion, the process of parental investments in children, and the adult distribution
of completed schooling and earnings, allowing the production technology and
investment process to freely vary as the child ages. Our estimates of high TFP
and increasing returns to scale at early ages indicate that investments are par-
ticularly productive at these ages. We find that the marginal productivity of
early investments is substantially higher for children with lower existing skills,
suggesting the optimal targeting of interventions to disadvantaged children.
Our estimates of the dynamic process of investment and skill development
allow us to estimate heterogeneous treatment effects of policy interventions.
We show that even a modest transfer of family income to families at ages 5-6
would substantially increase children’s skills, completed schooling, and adult
earnings, with the effects largest for low income families.



1 Introduction

The wide dispersion of measured human capital in children and its strong correlation
with later life outcomes has prompted a renewed interest in understanding the de-
terminants of skill formation among children (for a recent review, see Heckman and
Mosso, 2014). However, the empirical challenges in estimating the skill formation
process, principally the technology of child development, is hampered by the likely
imperfect measures of children’s skills we have available. While measurement issues
exist in many areas of empirical research, they may be particularly salient in research
about child development. There exists a number of different measures of children’s
skills, and each measure can be arbitrarily located and scaled and provide widely
differing levels of informativeness about the underlying latent skills of the child.1

In the presence of these measurement issues, identification of the underlying latent
process of skill development is particularly challenging, but nonetheless essential be-
cause ignoring the measurement issues through ad hoc simplifying assumptions could
severely bias our inferences.

In this paper, we develop a new method to estimate the skill formation process
in children when skills are not observed directly but instead measured with error.
Rather than assuming skills are measured perfectly by a particular measure, we
accommodate the variety of skills measures used in practice and allow latent skills
to be measured with error using a system of arbitrarily located and scaled skill
measures. In our framework, we treat the parameters of the measurement model
as “nuisance” parameters and use transformations of moments of the measurement
data to eliminate them, analogous to the transformations used to eliminate fixed
effects with panel data. We show non-parametric identification of the primitive
parameters of the production technology, without assuming any particular values for
the measurement process parameters or “re-normalizing” latent skills each period.

The heart of our identification analysis is a characterization of the classes of
production technologies which can be identified given different assumptions about
the measurement process. We introduce the concept of production technologies that
have a known location and scale, technologies which are implicitly restricted so that
the location and scale is already known. These known location and scale (KLS)
technologies include the CES production technologies considered in a number of
previous papers (Cunha and Heckman, 2007; Cunha et al., 2010; Cunha and Heck-
man, 2008; Pavan, 2015). Starting with this class of technologies, we show that
standard measurement error assumptions non-parametrically identify the primitive

1For a recent analysis of how measurement issues can be particularly salient, see Bond and Lang
(see 2013a,b) who analyze the black-white test score gap.
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production function parameters, up to a normalization on the initial conditions only.
Importantly, identification is obtained without restrictions on the later skill mea-
sures as imposed in some previous papers, which can bias the production function
estimates (see Agostinelli and Wiswall (2016) for a discussion).

Our identification analysis builds on previous work but offers a distinct approach
to the empirical challenges. Previous approaches apply the techniques developed
for cross-sectional latent factor models (Anderson and Rubin, 1956; Jöreskog and
Goldberger, 1975; Goldberger, 1972; Chamberlain and Griliches, 1975; Chamberlain,
1977a,b; Carneiro et al., 2003) to the dynamic latent factor models describing the de-
velopment of children’s skills. In an influential paper applying latent factor modeling
to child development, Cunha et al. (2010) identify the skill production technology
by first “re-normalizing” the latent skill distribution at each period, treating the
skills in each period as separate latent factors. While latent skills, which lack a
meaningful location and scale, require some normalization (say at the initial period),
repeated re-normalization every period is an unnecessary over-identifying restriction
if the production function estimated already has a known location and scale, as is
the case for the technology estimated by Cunha et al. (2010). We show that non-
parametric identification of this class of KLS production functions is possible without
these re-normalization restrictions, and our identification approach avoids imposing
restrictions these restrictions because they can bias the estimation (Agostinelli and
Wiswall (2016)).

In an important extension of our baseline results, we develop additional restric-
tions on the measurement process which are sufficient for identification of more gen-
eral production technologies, including those exhibiting Hicks neutral total factor
productivity (TFP) dynamics and non-constant returns to scale. Using standard as-
sumptions, these more general technologies cannot be identified because the location
and scale of the technology cannot be separately identified from the location and
scale of the measures. These more general aspects of the skill development forma-
tion process are nonetheless potentially important as restricting the technology can
reduce the permissible skill dynamics and productivity of investments, substantially
changing our inferences about the child development process and our evaluation of
policy. Our paper provides the first identification results for these more general
models. Our analysis makes clear the key identification tradeoff researchers face:
identification of restricted KLS technologies is possible with standard measurement
assumptions, but identification of more general technologies requires stronger as-
sumptions. We evaluate the empirical relevance of these additional assumptions,
and provide guidance to researchers to evaluate whether the measures available to
them satisfy these assumptions.
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In the second part of our paper, we estimate a flexible parametric version of
our model using data from the US National Longitudinal Survey of Youth (NLSY).
We examine the development of cognitive skills in children from age 5 to age 14,
and estimate a model of cognitive skill development allowing for complementarties
between parental investment and children’s skills; endogenous parental investment
responding to the stock of children’s skills, maternal skills, and family income; Hicks
neutral dynamics in TFP; non-constant returns to scale; and unobserved shocks to
the investment process and skill production. Following Cunha et al. (2010), our
empirical framework treats not only the child’s cognitive skills as measured with
error, but investment and maternal skills as well.

Constructively derived from our identification analysis, we form a method of
moments estimator. Our estimator is not only relatively simple and tractable but
also robust because it does not impose parametric distributional assumptions on
the distribution of latent skills and measurement errors, as is commonly imposed
in previous estimators. We jointly estimate the technology of skill formation, the
process of parental investments in children, and the adult distribution of completed
schooling and earnings, allowing the production technology and investment process
to freely vary as the child ages. Our estimates of high TFP and increasing returns to
scale at early ages indicate that investments are particularly productive early in the
development period. We also find that the marginal productivity of early investments
is substantially higher for children with lower existing skills, suggesting the optimal
targeting of interventions to disadvantaged children.

Our estimates of the dynamic process of investment and skill development allow
us to estimate the heterogeneous treatment effects of some simple policy interven-
tions. We show that even a modest transfer of family income to families at age 5
would substantially increase children’s skills and completed schooling, with the ef-
fects larger for low income families. When we compare these estimates to those using
models which restrict the technology or ignore measurement error, we estimate pol-
icy effects which are substantially smaller, indicating that the generalities we allow
are important quantitatively to answering key policy questions.

The paper is organized as follows. In the next two sections, we develop the model
of skill development and the measurement process. The next sections analyze the
identification of this model, first under weak assumptions about the measurement
process, and then under stronger assumptions about measurement which allows the
identification of more general technology specifications, including those with TFP
dynamics and non-constant returns to scale. The remainder of the paper develops
our estimator and discusses our estimation results.
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2 A Model of Skill Development in Children

In this section, we lay out our simple stylized model of skill development. In later
sections, we develop a more detailed, and in many respects more general, empirical
model which we take to the data.

Child development takes place over a discrete and finite period, t = 0, 1, . . . , T ,
where t = 0 is the initial period (say birth) and t = T is the final period of childhood
(say age 18). There is a population of children and each child in the population is
indexed i. For each period, each child is characterized by a stock of skills θi,t, with
θi,t > 0 for all t and i, and a flow level of investments Ii,t, withe Ii,t > 0 for all i and
t. For each child, the current stock of skills and current flow of investment produce
next period’s stock of skill according to the skill formation production technology:

θi,t+1 = ft(θi,t, Ii,t) for t = 0, 1, . . . , T − 1 (1)

where equation (1) can be viewed as dynamic state space model with θi,t+1 the
state variable for each child i. The production technology ft(·) is indexed with t to
emphasize that the technology can vary over the child development period. According
to this technology, the sequence of investments and the initial stock of child skills
θi,0 produces the sequence of skill stocks for each child i: θi,0, θi,1, . . . , θi,T .

There are several features of the technology which have particular relevance both
to understanding the process of child development and in evaluating policy interven-
tions to improve children’s skills. We provide a more detailed analysis of policy inter-
ventions after the presentation of the full empirical model, but a few brief points are
important to emphasize here. First, a key question is the productivity of investments
at various child ages. At what ages are investments in children particularly produc-
tive in producing future skills (“critical periods”) and, conversely, at what ages is it
difficult to re-mediate deficits in skill? Second, how does heterogeneity in children’s
skills, at any given period, affect the productivity of new investments in children?
Complementarity in the production technology between current skill stocks and in-
vestments implies heterogeneity in the productivity of investments across children.
Third, how do investments in children persist over time and affect adult outcomes?
Do early investments have a high return because they increase the productivity of
later investments (dynamic complementarities) or do early investments “fade-out”
over time as they are not reinforced by later investments? These features of the
technology of skill development then directly inform the optimal timing of policy
interventions – the optimal investment portfolio across early and late childhood –
and the optimal targeting of policy – to which children should scarce resources be
allocated to, with the goal of using childhood interventions to affect eventual adult

4



outcomes.

3 Measurement

The focus of this paper is estimating the technology determining child skill devel-
opment (1) while accommodating the reality that researchers have at hand various
arbitrarily scaled and imperfect measures of children’s skills. Our framework recog-
nizes that children’s skills are not directly measured by a single measure, but there
exists multiple measures which we hypothesize can have some relationship to the
unobserved latent skill stock θt.

3.1 Measurement Model

In our baseline case, we follow the literature and assume a commonly used (log)
linear system of measures. In later sections,. we explore a variety of other measures
and whether our identification results extend to these other types of measures. Each
measure m for child i skills in period (age) t is given by

Zi,t,m = µt,m + λt,m ln θi,t + εi,t,m, (2)

For period t, we have Mt ∈ {1, 2, . . .} measures for each child i skills (ln θi,t): m =
1, 2, . . . ,Mt. Zi,t,m are the measures, µt,m are the measurement intercepts, and λt,m
are the measurement “factor loadings” or “scaling” parameters, with λt,m > 0 for
all t and m. The µt,m and λt,m measurement parameters allow the latent skills
to be represented by arbitrarily located and scaled measures. Finally, εi,t,m are the
individual measurement errors, with E(εi,t,m) = 0 for all t,m (across children), which
given the free intercept µt,m, the assumption of mean zero εt,m errors is without loss
of generality. To focus on the key identification issues, we assume investments It
are observed without error. In the empirical model which we take to data, we allow
for investments to also be measured with error and allow the investments to be
endogenously determined by the existing skill stocks.

This measurement system has two important advantages over the alternative
approach of using a single measure and assuming it perfectly measure skills, that is
assuming Zi,t,m = ln θi,t. First, the measurement system allows for noisy measures,
in particular allowing measures to differ in their relative “noise” to “signal” ratio,
V (εi,t,m)/λ2

t,mV (ln θi,t,m), thus allowing for the possibility that some measures have
higher correlations to latent skills than others. Given this flexibility the researcher
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can then form estimators to take advantage of the greater signal some measures have
available.

A second advantage is that the measurement parameters allow a kind of “arbi-
trariness” in the relationship between the measure and the latent skills. An ideal
measurement system is one which can accommodate arbitrary changes in the location
and scale of measures. Allowing the measures to have free measurement parameters
µt,m and λt,m, which can vary by measure, allows the measurement model to capture
the arbitrary location or scaling of particular measures.2 We show below that the
estimator of the primitive production function parameters we develop is robust to
changes in the location and scale of the measures up to the initial normalization.

For the remainder of the paper, we omit the children’s i subscript to reduce
notational clutter. All expectations operations (E, V ar, Cov, etc) are defined over
the population of children (indexed i). For random variable Xi,t, we generically define
κt ≡ E(Xi,t) =

∫
Xi,tdFt, with Ft the distribution function for random variable Xi,t

in period t. For simplicity, we drop the i subscript and equivalently write this as
κt ≡ E(Xt).

3.2 Normalization

Latent skill stocks θt have no natural scale and location. A normalization is then
required to fix the scale and location of the latent skill stocks to a particular measure.
We normalize the latent skill stock to one of the measures of initial period skills:

Normalization 1 Initial period normalizations

(i) E(ln θ0) = 0

(ii) λ0,1 = 1

This normalization fixes the location and scale of latent skills θ0 to a particular
measure, Z0,1, where the choice of the normalizing measure as measure m = 1 is
arbitrary. For the normalizing measure, we then have the following:

Z0,1 = µ0,1 + ln θ0 + ε0,1,

where µ0,1 = E(Z0,1) given the normalization E(ln θ0) = 0. The latent skill stock θ0

shares the scale of the normalizing measure in the sense that an 1 unit increase in log

2Measures, such as test scores, can be arbitrarily scaled and located in the sense that for any
measure Z, we could create a new measures Z ′ = a + bZ, where a and b > 0 are some constants,
and the new measure Z ′ therefore preserves at least the ordinal ranking of latent skills given by Z.
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latent skills is equal to a 1 unit increase in the level of the normalized measure Z0,1:
∂Z0,1

∂ ln θ0
= 1, where, for intuition, we have treated the Z as a deterministic function.

For symmetry with the latent skills, we also normalize log investment to be mean
zero in the initial period E(ln I0) = 0.3

While the issue of model normalizations are typically trivial in most cases, in the
case of dynamic models such as this, the type of assumed normalization is actually
quite important. Our limited normalization for the initial period skills is quite dif-
ferent from the “re-normalization” approach used in much of the prior research (see
Cunha and Heckman, 2007; Cunha et al., 2010; Attanasio et al., 2015a,b). In this
approach, skills are re-normalized every period such that latent skills are assumed to
be mean log stationery (E(ln θt) = 0 for all t) and latent skills “load” onto a different
arbitrarily measure in each period (λt,1 = 1 for all t). Agostinelli and Wiswall (2016)
analyze the implications of the re-normalization approach and find that in many
standard cases these assumptions are not necessary for point identification and can
bias the estimates of the production technology.

We argue that our limited normalization is appropriate for the dynamic setting
of child development we analyze. With our normalization for the initial period only,
latent skills in all periods share a common location and scale with respect to the
one chosen normalizing measure. This approach is analogous to deflating a nominal
price series to a particular base year; that is, “normalizing” prices to some chosen
base year (e.g. 2012 US Dollars).4 As in the price normalization context, the choice
of normalizing skill measure does affect the interpretation of the production function
parameters, and we return to this issue when interpreting our particular estimates.

3In practice, if investments are truly observed without error, this can be accomplished by simply
de-meaning the investment data so that the sample mean of ln I0 is zero. In the more general model
we estimate, we assume investment is also observed with error and there are multiple measures of
latent investments. For now, given we assume investment is observed, this normalization is merely
for convenience.

4Given the normalizing measure we use is for young children, as children develop, their stock
of skill may increase to the extent that the implied measure of skill using the initial normalizing
measure Z0,1 exceeds the sample maximum level of the measure. This is not an issue for the
identification of the model since the measurement system assumes no floor or ceiling to the measures.
The measures, and the normalization we use, fixes only the location and scale of the skills, but
not the maximum or minimum values. We briefly discuss the issues of measurement floor and
ceilings in the Appendix. For an example of an alternative measurement system which respects the
discreteness, floor, and ceiling of a particular skill measure, see Del Boca et al. (2014a).
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3.3 Ignoring Measurement Error

Before analyzing the identification of the model, it is helpful to motivate our analysis
by briefly pausing to consider the consequences if we were to ignore measurement
error. Consider a simple regression estimator in which we regress a measure of skills
in period t+ 1 on a measure of skills in period t:

Zt+1,m = β0 + β1Zt,m + ηt,m

The Ordinary Least Squares (OLS) estimand is

β1(OLS) =
Cov(Zt+1,m, Zt,m)

V (Zt,m)

Assuming the measurement system above (2) and that the measurement errors εt,m
are uncorrelated with latent skills ln θt for all t,m and uncorrelated across time, we
have

β1(OLS) =
λt+1,mλt,mCov(ln θt+1, ln θt)

λ2
t,mV (ln θt) + V (εt,m)

This expression makes clear several problems in naively using observed measures to
uncover latent production function relationships given by Cov(ln θt+1, ln θt). First,
the standard issue of attenuation bias: as the “noise” in the measure V (εt,m) increases
the OLS estimand goes to 0, biasing the inference of the relationship in latent skills
given by Cov(ln θt+1, ln θt). Second, the OLS estimand β1(OLS) is a combination
of model primitives (production technology parameters) and measurement parame-
ters, but we cannot directly separately identify them from the data. One common
solution is simply to set λt+1,m = 1 and λt,m = 1 (a “single measure” approach).
If this assumption is incorrect, then the resulting inference about latent production
function relationships are biased.5 The problem is even more severe if we consider
regressions including higher order terms (with the goal of identifying some curvature
or complementarities in the skill production process):

Zt+1,m = β0 + β1Zt,m + β2Z
2
t,m + ηt,m

5Other approaches include age standardizing the measures such that the measures have 0 mean
and standard deviation 1 at each child age. However this approach does not imply λt+1,m = 1.
Another approach is to re-normalize measures at all periods. This approach biases the resulting
estimates. See Agostinelli and Wiswall (2016) for more discussion of these issues. Similar issues
arise if we to examine conditional expectations, E(Zt+1,m|Zt,m), instead of covariances. In this
case, the intercept of the measurement equations, µt,m and µt+1,m, would also come into play.
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where

Z2
t,m = (µt,m + λt,m ln θt + εt,m)2

In this case, λt,m (factor loadings), µt,m (measurement intercepts), and in general the
εt,m distribution need to be identified to uncover structural relationships between
latent skills.

4 Identification

This section provides our main identification results. These identification results
are constructive in the sense that they form the basis of our estimator of the skill
development technology.

Our identification analysis proceeds in two steps. First, we identify the distribu-
tion of latent skills and investments in the initial period G0(θ0, I0). Our identification
of the initial conditions follows standard arguments used in the current literature
(e.g.: Cunha et al., 2010), but for completeness we fully specify this first step of the
identification analysis. The second step of our identification analysis is to identify
the production technology. This identification analysis is new.

We consider identification under the following assumptions about the joint distri-
bution of latent skills ({θt}t), investments {It}t, and measurement errors ({εt,m}t,m):

Assumption 1 Measurement model assumptions:
(i) εt,m ⊥ εt,m′ for all t and m 6= m′

(ii) εt,m ⊥ εt′,m′ for all t 6= t′ and all m and m′

(iii) εt,m ⊥ It′ for all t and t′ and all m
(iv) εt,m ⊥ θt′ for all t and t′ and all m

Assumption 1 (i) is that measurement errors are independent contemporaneously
across measures. Assumption 1 (ii) is that measurement errors are independent over
time. Assumption 1 (iii) and (iv) are that measurement errors in any period are
independent of the latent stock of skills and parental investments in any period.
While these assumptions are strong in some sense, they are common in the current
literature.6

6Our assumption of full independence is sufficient, but not necessary, for at least some of our
identification analysis. Below, we point out instances where weaker assumptions, allowing for some
forms of dependence among measures and among measures and latent variable, can be used for
identification.
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4.1 Identification of Initial Conditions

Under Normalization 1, Assumption 1, and with at least 3 measures in the first
period, M0 ≥ 3, we identify the λ0,2, λ0,3, . . . , λ0,M0 factor loadings from ratios of
measurement covariances:

λ0,m =
Cov(Z0,m, Z0,m′)

Cov(Z0,1, Z0,m′)
, (3)

for m 6= m′, m 6= 1, m′ 6= 1, where measure m = 1 is the normalizing measure.
Further, under the normalization that E(ln θ0) = 0 (Normalization 1), we identify

the µ0,1, µ0,2, . . . , µ0,M0 intercepts from

µ0,m = E(Z0,m). (4)

We then construct the following “residual” skill measures from the original raw mea-
sures:

Z̃0,m =
Z0,m − µ0,m

λ0,m

, (5)

where Z̃0,m identifies the sum of the latent skill and a scaled version of the measure-
ment error:

Z̃0,m = ln θ0 +
ε0,m
λ0,m

.

Applying the Kotalarski Theorem (Kotalarski 1964) to the {Z̃0,m}M0
m=1 residual

measures, conditional on each level of investment I0, we identify the distribution of θ0

for any level of investment I0. This then allows us to identify the joint distribution of
latent skills and investment in the initial period G0(θ0, I0), up to the normalizations
given in Normalization 1.7

4.2 Identification of the Production Technology

With the initial distribution for latent skills and investments G0(θ0, I0) identified in
the first step, we next identify the process of child development given by the sequences
of production technologies f0(θ0, I0), . . . , fT−1(θT−1, IT−1). Our identification analy-
sis is sequential, and uses the production technology in period t, ft(θt, It), to identify

7The key necessary condition for the Kotalarski theorem to hold in this case is that at least
two of the residual measures in the set of measures {Z̃0,m}M0

m=1 have full support conditional on I0,

that is Z̃0,m ∈ R conditional on I0.
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the distribution of latent skills (and investments) in the next period, Gt+1(θt+1, It+1).
We first establish a general identification result for any periods t and t+ 1. We then
conclude this section by describing the sequence of identification steps starting from
the initial period t = 0.

4.2.1 From Measures to Latent Relationships

Given the generalities we have allowed, in which we do not assume that skills are
measured perfectly in data, identification of the production technology now poses
considerable challenges. The production technology in some period t would in prin-
ciple be identified by the relationship between output θt+1 and inputs θt, It. We
do not directly observe latent skills θt+1 or θt in data. Instead, we observe relation-
ships among measures Zt+1,m and Zt,m. Under Assumption 1, we have the following
relationship between measures and latent variables:

E(Zt+1,m|Zt,m, ln It) = µt+1,m + λt+1,mE(ln θt+1|Zt,m, ln It)

This expression shows that E(Zt+1,m|Zt,m, ln It) does not identify a production func-
tion relationship directly, but instead a combination of latent skill relationships and
measurement parameters.

In the following Lemma, we first show that we can identify dynamic production
function relationships, E(ln θt+1| ln θt, ln It), from measures of latent skills in periods
t and t+1, Zt,m and Zt+1,m, up to the measurement parameters for the t+1 measure,
µt+1,m and λt+1,m.8

Lemma 1 Given i) Gt(θt, It) is known, ii) a pair of measures Zt,m and Zt+1,m which
satisfy Assumption 1, and iii) measurement parameters for Zt,m (µt,m, and λt,m) are
known, E(Zt+1,m| ln θt = a, ln It = `) is identified for some (a,`) ∈ R2 and is equal
to µt+1,m + λt+1,mE(ln θt+1| ln θt = a, ln It = `).

Proof. See Appendix.
Lemma 1 establishes that while we cannot use realizations of measures Zt,m = z to
identify particular values of the latent variable θt = p, we can identify moments of
the latent distribution.

8Note that the measure m for t+1, Zt+1,m, which is used to measure ln θt+1, can be a completely
different “kind” of measure from the measure Zt,m used to measure ln θt. The use of the same
measure index m does not connote any relationship.
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Substituting the production technology θt+1 = ft(θt, It), Lemma 1 shows that
measures Zt+1,m and Zt,m identify the following:

E(Zt+1,m| ln θt = a, ln It = `) = µt+1,m + λt+1,m ln ft(e
a, e`) (6)

Note that the left-hand side of (6) is not directly observed in data (given the un-
observability of ln θt) but is identified from observed measures (Lemma 1). The
right-hand side of (6) is a combination of production function relationships and
measurement parameters µt+1,m and λt+1,m.9 If we do not know the measurement
parameters µt+1,m, λt+1,m, we cannot directly use E(Zt+1| ln θt, ln It) to identify the
production technology. One simple but problematic solution to this problem is to
assume values for the µt+1,m and λt+1,m parameters, and identification is trivially ob-
tained.10 However, if the assumptions on the measurement parameters are incorrect,
then estimation under these assumptions can be biased.

4.2.2 Transformations to Eliminate Measurement Parameters

Our solution to this problem is to treat the measurement parameters µt,m and λt,m
for all t > 0 as “nuisance” parameters and use transformations of the moments (6) to
eliminate them. Using four pairs of (ln θt, ln It) = {(a1, l1), (a2, l2), (a3, l3), (a4, l4)},
we compute the following transformation of the conditional expectations:

E(Zt+1,m| ln θt = a1, ln It = `1)− E(Zt+1,m| ln θt = a2, ln It = `2)

E(Zt+1,m| ln θt = a3, ln It = `3)− E(Zt+1,m| ln θt = a4, ln It = `4)

=
ln ft(e

a1 , e`1)− ln ft(e
a2 , e`2)

ln ft(ea3 , e`3)− ln ft(ea4 , e`4)
(7)

where the values ak, `k, k = 1, 2, 3, 4 are such that E(Zt+1,m| ln θt = a3, ln It = `3) 6=
E(Zt+1,m| ln θt = a4, ln It = `4).

The left-hand side of (7) is a transformation of moments which are identified
directly from the measures of skills for periods t + 1 and t (Lemma 1), and the

9Note that we have used the fact that in our stylized model, there are no stochastic elements to
the production process, hence θt+1 given θt, It is a constant for all t. We return to the topic of how
to identify a shock to the production technology below. In brief, adding a mean 0 (log) shock to the
production technology does not change the main identification analysis. Re-write the technology
as θt+1 = ft(θt, It) exp(ηt), where E(ηt) = 0 and ηt is independent of θt, It, and εt,m, εt+1,m. Log
skills are then ln θt+1 = ln ft(θt, It) + ηt, and mean log skills are ln ft(θt, It) as before.

10For example, the researcher could assume the values µt,m = 0 and λt,m = 1 for all t and m, as
in the case when all measures are assumed to be “classical” in the sense that Zt,m = ln θt + εt,m,
and εt,m is simply a mean zero measurement error.
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right-hand side is the corresponding transformation of the technology. The transfor-
mation in (7) has eliminated the measurement parameters µt+1,m and λt+1,m without
making any assumption about their values. This transformation is analogous to the
transformation used in panel data analysis where differences at the observation level
are used to eliminate common fixed effects.11 As in the panel data literature, we
exploit the particular form of the measurement equations and Assumption 1 to find
an appropriate transformation to eliminate the nuisance measurement parameters.
Other transformations can accomplish the same goal, and for convenience in some
examples, we work with ratios of covariances, which already implicitly eliminate
dependence on the measurement intercepts µt,m.

4.2.3 Location and Scale of the Production Technology

Much of our analysis centers on the classes of production technologies which can be
identified given that some inputs (latent skills) are measured with error. Crucial to
our analysis is whether the production technology has a known location and scale
or whether the location or scale is unknown in the sense that it depends on free
parameters which need to be estimated. This concept is new to the production func-
tion identification literature, as far as we know. This concept is key to our analysis
because our results below show that we can identify the production technologies up
to location and scale, and can therefore point identify production technologies which
already have a known location and scale.

We first define the concept of a production function with “known location and
scale”:

Definition 1 A production function ft(θt, It) has known location and scale (KLS)
if for two non-zero input vectors (θ′t, I

′
t) and (θ′′t , I

′′
t ), where the input vectors are

distinct (θ′t 6= θ′′t or I ′t 6= I ′′t ), the output ft(θ
′
t, I
′
t) and ft(θ

′′
t , I
′′
t ) are both known (do

not depend on unknown parameters), finite, and non-zero.

A production technology with known location and scale implies that for a change
in inputs from (θ′t, I

′
t) to (θ′′t , I

′′
t ), the change in output ft(θ

′
t, I
′
t)−ft(θ′′t , I ′′t ) is known.

Other points in the production possibilities set may be unknown, i.e. depend on free
parameters to be estimated.

For example, consider the class of Constant Elasticity of Substitution (CES) skill
production technologies, the class of technologies estimated in a number of previous

11Consider the model yi,t = µi+X
′
i,tβ+εi,t, and the within transformation of the data yi,t+1−yit

eliminates the µi fixed effects.
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studies (e.g.: Cunha et al., 2010).12 The CES technology is

θt+1 = (γtθ
φt
t + (1− γt)Iφtt )1/φt . (8)

with γt ∈ (0, 1) and φt ∈ (−∞, 1], and φt → −∞ (Leontif), φt = 1 (linear), φt → 0
(log-linear, Cobb-Douglas). The elasticity of substitution is 1/(1− φt).

The production technology (8) satisfies Definition 1 because for inputs It = θt =
α > 0, θt+1 = α. That is, for inputs which are known to be equal at value α, we
also know the output is α as well. This property of known location and scale is
related to constant returns to scale property of this function, but constant returns to
scale is not necessarily a sufficient property to satisfy Definition 1, as shown below.
While the scale and location of the production function (8) are known, other points
in the production possibilities set are determined by the free parameters γt and φt.
Identifying these remaining parameters is the subject of the section.

Another example of KLS production technologies are those based on the translog
function, a generalization of the Cobb-Douglas production technology which does
not restrict the elasticity of substitution to be constant:

ln θt+1 = γ1t ln θt + γ2t ln It + γ3t(ln θt)(ln It) (9)

with
∑3

j=1 γjt = 1. Consider the points (θt, It) = (1, 1) and (e, e). For these points,
the output of the production technology is known at ln θt+1 = 0 and 1, respectively,
and thus this function satisfies Definition 1.

In contrast, a class of technologies which does not satisfy the known location and
scale property (Definition 1) is the following

θt+1 = At(γtθ
φt
t + (1− γt)Iφtt )1/φt (10)

with At > 0 representing Total Factor Productivity (TFP). The previous case (8)
is a special case of (10) with At = 1. In the more general case, the addition of the
unknown TFP process term At implies that the scale of the function is unknown. For
example, for θt = It = α > 0, we have ft(α, α) = Atα, where At is a free parameter.
This class of technologies has constant returns to scale but does not have a known
location and scale.13

12The functions estimated by Cunha et al. (2010) also include a mean zero production function
shock. We consider identification of these functions below. In general, including a mean zero shock
does not change the main results of the identification analysis, see Footnote 9.

13Similarly, a function where the factor share parameters did not sum to a known constant would
also lack a known scale, for example θt+1 = (γ1tθ

φt

t + γ2tI
φt

t )1/φt , with γ1t + γ2t 6= 1. In this case,
θt = α, It = α, we have ft(α, α) = ((γ1t + γ2t)α)1/ψt .
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Another class of technologies which does not satisfy Definition 1 is CES technolo-
gies without constant returns to scale:

θt+1 = (γtθ
φt
t + (1− γt)Iφtt )ψt/φt . (11)

where ψt > 0 is a returns to scale parameter, with ψt = 1 constant returns to scale,
ψt < 1 decreasing returns to scale, and ψt > 1 increasing returns to scale. In this
case, ft(α, α) = αψt . For this function, while we know the point ft(1, 1) = 1, and can
identify the location of the function, we do not know a second point in the production
possibilities set, and therefore cannot identify the scale of the function. Similarly,
the translog function (9) with

∑3
j=1 γj,t not equal to a known constant would not

satisfy the KLS definition (Definition 1).

4.2.4 Per Period Identification of the Production Technology

We next proceed to the main identification result. We show that with the distribution
of skills and investments in period t, Gt(θt, It) and the measurement parameters, µt,m
and λt,m, known for period t, then a single measure of skills in period t+ 1, Zt+1,m,
with sufficient support, non-parametrically identifies a production technology θt+1 =
ft(θt, It) with known location and scale (satisfying Definition 1). The key aspect
of the identification result is that we identify the production technology without
knowledge of the period t + 1 measurement parameters, µt+1,m and λt+1,m. We
specify the exact conditions for identification in the following theorem.

Theorem 1 If i) the distribution of skills Gt(θt, It) is known, ii) measurement pa-
rameters µt,m, λt,m are known, iii) there exists at least one measure Zt+1,m which
satisfies Assumption 1, iv) the measure Zt+1,m has full support, Zt+1,m ∈ R, and v)
the production technology ft(θt, It) has known location and scale (Definition 1), then
the production technology ft(θt, It) is identified for all (θt, It) ∈ R2

+.

Proof. See Appendix.

Theorem 1 indicates that we can identify production technologies which have a
known scale (Definition 1), such as the CES technologies (8) considered in much of
the previous literature (see Cunha and Heckman, 2007; Cunha et al., 2010). The
limitation of Theorem 1 is that we cannot apply it to more general production tech-
nologies which do not satisfy the known location and scale property. In the next
section, we propose stronger assumptions on the measurement process which could
allow for identification of more general production technologies.
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4.2.5 Sequential Production Function Identification

Theorem 1 shows identification of the production technology for period t, θt+1 =
ft(θt, It), given measures Zt+1,m and Zt,m. We now apply these per-period results to
show how we can sequentially identify the full sequence of production technologies,
f0(θ0, I0), . . . , fT−1(θT−1, IT−1), and hence the distribution of the sequence of skill
stocks (θ1, . . . , θT ). The minimal data we require are at least 3 measures of latent
skills for the initial period Z0,1, Z0,2, Z0,3, and a single measure m of latent skills in
the following periods, Z1,m, Z2,m, . . . , ZT,m.

The sequential identification proceeds as follows. First, using the measures for
the initial period, following the analysis above, we identify the initial distribution
of skills and investments G0(θ0, I0), and initial measurement parameters, µ0,m and
λ0,m, for some measure Z0,m. Then, applying Theorem 1, we identify the production
technology for period 0, θ1 = f0(θ0, I0), where the technology is assumed to be of
the known location and scale class (satisfying Definition 1). With the production
function identified, we identify the distribution of period 1 skills from the production
technology:

G1(θ1|I0) = pr(θ1 ≤ θ|I1) =

∫
pr(f0(θ0, I0) ≤ θ)dG0(θ0|I0)

where G1(θ1|I0) is the conditional distribution of latent skills, which given that in-
vestments are assumed observed, can then be used to identify the joint distribution
of skills and investment.

We then proceed to identify the measurement parameters for measure Z1,m used
to measure period 1 latent skills. The factor loadings can be identified from the
across time correlation in measures of skills, Cov(Z1,m, Z0,m):

λ1,m =
Cov(Z1,m, Z0,m)

λ0,mCov(ln θ1, ln θ0)
.

where Cov(ln θ1, ln θ0) is identified from the production technology and the initial
distribution of skills:

Cov(ln θ1, ln θ0) = Cov(ln f0(θ0, I0) , ln θ0).

=

∫
(ln f0(θ0, I0) ln θ0)dG(θ0, I0)

The measurement intercept for period 1 is then identified from

µ1,m = E(Z1,m)− λ1,mE(ln θ1),
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where as above E(ln θ1) is identified from the production technology, as above:

E(ln θ1) =

∫
ln f0(θ0, I0)dG(θ0, I0).

This shows the identification of the technology f0(θ0, I0) and the measurement
parameters for µ1,m and λ1,m. We can continue to follow these steps, applying
Lemma 1 and Theorem 1 sequentially, to identify the technology in the next pe-
riods, f1(θ1, I1), . . . , fT−1(θT−1, IT−1).

4.3 Intuition

Before we continue with examples and extensions to our identification concept, we
pause to consider some simple intuition for our idea in a general setting. Consider
a general production technology Y = f(X1, X2), where Y is some latent unobserved
output and X1 and X2 are some observed inputs. We have measure Z of the output,
and the measure has error of the form we consider above: Z = µ+ λ lnY + ε, where
ε is uncorrelated with lnY , X1, and X2, and µ and λ are measurement parameters.
The ratio of covariances of the measure of the output Z with the two inputs X1, X2

is

Cov(Z,X1)

Cov(Z,X2)
=
λCov(lnY,X1)

λCov(lnY,X2)

=
Cov(lnY,X1)

Cov(lnY,X2)
.

The ratio of covariances has eliminated the “nuisance” measurement parameter
λ. Working with covariances, rather than conditional expectations, has already elim-
inated dependence on the measurement intercept µ. This expression makes clear that
even with output mis-measured in data and with free unknown measurement param-
eters allowing for arbitrary scale and location, we can still learn something about
the production technology. For example, the ratio in this example is related to the
relative marginal product of the two inputs X1, X2. Considering ratios of higher
order covariances, such as Cov(Z,X2

1 )/Cov(Z,X1) and Cov(Z,X1X2)/Cov(Z,X1),
can similarly provide information about the “curvature” of the production function
and the degree of complementarities between inputs. Our results above show iden-
tification in models which generalize this simple example, allowing for a dynamic
production technology and mis-measured inputs as well.
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4.4 Examples

We next proceed to demonstrate the identification results using simple two period
models and commonly used production technologies.

Example 1 Log-Linear (Cobb-Douglas) Technology

There are two periods T = 2. Skills in t = 1 are given by the following log-linear
(Cobb-Douglas) production technology:

ln θ1 = γ0 ln θ0 + (1− γ0) ln I0 (12)

where γ0 ∈ (0, 1) is the unknown production function parameter we would like to
identify. Like the more general CES class to which it belongs, this production func-
tion has a known location and scale (Definition 1).

We have three measures of initial period skills: Z0,1, Z0,2, Z0,3. We have one
measure of skills in period 1, Z1,m. The measures satisfy Assumption 1.

We normalize initial period skills as E(ln θ0) = 0 and initial investments E(ln I0) =
0. We normalize the factor loading for the first measure as λ0,1 = 1. Following the
analysis above, we then identify the remaining measurement factor loadings λ0,2, λ0,3

and measurement intercepts µ0,1, µ0,2, µ0,3 for the initial period measures. We then
identify the joint distribution of the latent skills and investments, G0(θ0, I0). Apply-
ing Lemma 1 identifies E(Z1,m| ln θ0, ln I0) for values of ln θ0, ln I0 from the measures
Z1,m and Z0,m and the identified measurement parameters µ0,m and λ0,m.

Next we apply Theorem 1 to identify the production function parameter γ0. The
key to our analysis is that we identify the production function primitive without
making any assumptions about the values of measurement parameters µ1,m or λ1,m.
We compute the following transformations of conditional expectations (algebra is
given in the Appendix):

E(Z1,m| ln θ0 = a, ln I0 = 0)− E(Z1,m| ln θ0 = 0, ln I0 = 0)

E(Z1,m| ln θ0 = 1, ln I0 = 1)− E(Z1,m| ln θ0 = 0, ln I0 = 0)
=
γ0a

1

Letting ∆ be the left-hand side of the expression and solving for the production
function parameter, we have

γ0 =
∆

a

This expression shows that the unknown parameter γ0 of the production technology
is identified from the transformation of the conditional expectations. Identification
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of γ0 requires only a single measure of latent skills in period 1 and is invariant to the
measurement parameters, µ1,m and λ1,m.

With the production technology f0(θ0, I0) identified, we can now identify the
measurement parameters for Z1,m. λ1,m is identified from

λ1,m =
Cov(Z1,m, Z0,m)

λ0,mCov(ln θ1, ln θ0)

where we can use any of the three first period measures, m = 1, 2, 3 to form the
right-hand side. Substituting for the production technology, we have

λ1,m =
Cov(Z1,m, Z0,m)

λ0,mCov(γ0 ln θ0 + (1− γ0) ln I0, ln θ0)

=
Cov(Z1,m, Z0,m)

λ0,m(γ0V (ln θ0) + (1− γ0)Cov(ln θ0, ln I0))
.

Given the identification of γ0, and that we have already identified the initial joint dis-
tribution of θ0, I0 (and can compute V (ln θ0) and Cov(ln θ0, ln I0) ), we can compute
the right-hand side.

µ1,m is then identified from

µ1,m = E(Z1,m)− λ1,mE(ln θ1),

where, for this particular production technology, we have E(ln θ1) = γ0E(ln θ0) +
(1− γ0)E(ln I0) = 0, given the normalization for the initial period (E(ln θ0) = 0 and
(E(ln I0) = 0). As described in more detail below, the mean of log latent skills will
in general not be 0 in periods after the initial period. For alternative production
functions, E(ln θ1) can be computed from the identified production technology.

Example 2 General CES Technology

In our second example, we maintain the same setup as Example 1 but consider
the general CES function (8):

θ1 = (γ0θ
φ0

0 + (1− γ0)Iφ0

0 )1/φ0 .

with parameters defined as in (8). For this technology, there are two unknown
production function parameters we wish to identify, γ0 and φ0. We have the same
measures as in Example 1 and identify the initial condition as before.

As in Example 1, we compute the following:
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E(Z1,m| ln θ0 = ln a1, ln I0 = ln `1)− E(Z1,m| ln θ0 = ln a2, ln I0 = ln `2)

E(Z1,m| ln θ0 = ln a3, ln I0 = ln `3)− E(Z1,m| ln θ0 = ln a4, ln I0 = ln `4)
=

ln f0(a1, `1)− ln f0(a2, `2)

ln f0(a3, `3)− ln f0(a4, `4)

Now define ∆1 to be the left-hand side of the above equation and take values
a1 6= 0, a3 6= 0, where a1 6= a3, a2 = a4 = `2 = `4 = 1, `1 = 0 and a3 = `3 = e1. We
have (see Appendix for omitted algebra):

∆1 =
ln f0(a1, 0)− ln f0(1, 1)

ln f0(e1, e1)− ln f0(1, 1)
,

∆1 =
ln(γ0a1)

1
,

Solving for γ0 , we have

γ0 =
e∆1

a1

This expression identifies γ0. With γ0 identified, we form a second ratio:

∆2 =
ln f0(a1, 1)− ln f0(1, 1)

ln f0(a3, 0)− ln f0(1, 1)
,

=
ln(γ0a

φ0

1 + 1− γ0)

ln(γ0a3)
,

Solving for φ0 (see Appendix for omitted algebra), we have

φ0 =
ln
(

(γ0a3)∆2−1+γ0

γ0

)
ln(a1)

This analysis shows that a single measure of period 1 skills identifies the unknown
production function parameters γ0, φ0 without imposing any restrictions on the values
of the period 1 measurement parameters. We can follow the same analysis as in
Example 1 to identify the measurement parameters.

4.5 Comparison to Cunha et al. (2010)

Our results show identification of a production function with known location and
scale without imposing any particular values for the measurement parameters after
the initial period. Cunha et al. (2010) provide identification results in which they not
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only normalize initial period latent skills, as we do here, but also “re-normalize” latent
skills each period. In our notation, their re-normalization restriction is E(ln θ0) =
E(ln θ1) = · · · = E(ln θT ) = 0 and λ0,1 = λ1,1 = · · · = λT,1 = 1 for the normalized
measure m = 1.

Some normalization is necessary (and we impose a normalization on the initial
period), but, as we prove here, the additional restrictions on later periods are not
necessary for identification of a known location and scale technology. The function
Cunha et al. (2010) estimate is a known location and scale CES technology of the
form given by (8). Because this function is already restricted (as compared to the
more general functions with non-constant returns to scale and TFP dynamics), the
additional normalizations are unnecessary and over-identifying. Importantly these
re-normalization restrictions are not cost free as these additional normalizations can
bias the technology estimates toward the Cobb-Douglas technology and away from
more general patterns of substitution (see Agostinelli and Wiswall, 2016).

4.6 Errors-in-Variables Formulation

The KLS class of technologies can also be understood as a restriction in a traditional
error-in-variables model (Chamberlain (1977a)). In this literature, identification is
often achieved by proportionality restriction (linear regression parameters are as-
sumed proportional to each other) within the context of a “reduced form” linear
regression model. In our case, the restrictions we consider come from restrictions
on the primitive production function, which is intuitively appealing because we can
understand the consequences of these restrictions on the primitive production rela-
tionships.

Consider the Cobb-Douglas case (12). Using the normalizations on the initial
period, we proceed as before and form measures for the initial period:

Z̃0,m =
Z0,m − µ0,m

λ0,m

= ln θ0 + ε0,m.

We also have a single measure of period 1 skills θ1 given by

Z1,m = µ1,m + λ1,m ln θ1 + ε1,m

As in all of our analysis above, the measurement parameters µ1,m and λ1,m are treated
as free parameters.

Substituting the production technology into the period 1 measurement equation,
we have
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Z1,m = µ1,m + λ1,m[γ0 ln θ0 + (1− γ0) ln I0] + ε1,m

Substituting one of the measures for ln θ0, say Z̃0,m, we have

Z1,m = µ1,m + λ1,m[γ0(Z̃0,m − ε̃0,m) + (1− γ0) ln I0] + ε1,m

with ε̃0,m = ε0,m/λ0,m.
Re-arranging, we have

Z1,m = µ1,m + λ1,mγ0Z̃0,m + λ1,m(1− γ0) ln I0 + (ε1,m − λ1,mγ0ε̃0,m)

= β0 + β1Z̃0,m + β2 ln I0 + π1,m (13)

where β0 = µ1,m, β1 = λ1,mγ0, β2 = λ1,m(1− γ0), and π1,m = ε1,m − λ1,mγ0ε̃0,m. The
“reduced form” equation (13) now has the standard errors-in-variables form: (13)
is a linear regression of a measure of period 1 skills Z1,m on a measure for period 0

skills Z̃0,m. The β1 and β2 coefficients are combinations of the measurement factor
loading λ1,m and the production function parameter γ0.

Identification takes two steps. First, the standard error-in-variables problem is
that the OLS regression estimands for β1 and β2 do not identify β1 and β2. We can
solve this problem using any number of standard techniques. In this setting with
multiple measures available satisfying independence assumptions, a second measure
for period 0 skills, Z̃0,m′ , can be used as an instrument for Z̃0,m, and we identify
β1 and β2. Second, with β1 and β2 identified, we can then solve for the underlying
primitive parameters γ0 and λ1,m:

γ0 =
β1

β1 + β2

, λ1,m = β1 + β2 and µ1,m = β0

The key to the identification here is that this commonly used production function
(12) is already restricted (the factor shares sum to 1) and hence we can identify the
production function parameters separately from the measurement parameters. With-
out this restriction on the production function, a function ln θ1 = γ0,θ ln θ0 +γ0,I ln I0,
where γ0,θ and γ0,1 are free parameters and do not sum to 1, point identification is
not possible as there would be three unknown parameters γ0,θ, γ0,I , and λ1,m and
only two regression coefficients β1, β2.
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4.7 Robustness to Alternative Types of Measures

One of the characteristics of the data used to study child development is the rich
variety of skill measures. Here we considered identification where the skill mea-
sures are in a “raw” form: each measure is a linear function of the latent log skill.
This measurement system, while commonly assumed in the prior literature, is in
some respects a “best case.” In the Appendix, we briefly discuss alternative forms
of measures and re-examine whether we can identify the same types of production
technologies using these alternative measures. We consider four classes of measures
which are sometimes encountered empirically: (i) age-standardized measures where
the raw measures are transformed ex post (in the sample) to have mean 0 and stan-
dard deviation 1; (ii) relative measures where the measures reflect not the level of a
child’s skill but the child’s skill relative to the population mean (i.e. other children);
(iii) ordinal measures which provide a discrete ranking of children’s skills; and (iv)
censored measures where the measures are truncated with a “floor” (finite minimum
value) and/or a “ceiling” (finite maximum value).

For the age-standardized and relative measures, we find that our identification
results continue to hold because these alternative measures can be expressed as al-
ternative linear functions of the latent skills with particular measurement intercepts
and factor loadings. Our identification results are invariant to these measurement
parameters as the measurement parameters would be “transformed away,” as de-
scribed above (7). More generally, our identification results are robust to any linear
increasing transformation of the original raw measures. On the other hand, without
additional assumptions, the latter two classes of measures would appear to not allow
non-parametric identification, at least globally, as these measures do not provide a
one-to-one mapping between latent variables and measures (in expectation) as with
the linear continuous measurement system we consider here.

5 Identification of General Technologies

The preceding analysis demonstrated that production functions with known location
and scale (KLS, Definition 1) are non-parametrically identified using measures of
latent skills that satisfy Assumption 1. This class of production technologies include
the CES technologies analyzed in much of the previous work (see Cunha and Heck-
man, 2007; Cunha et al., 2010). These types of production functions are restricted,
and these restrictions can affect our inferences about the child development process
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and the effects of policy interventions, as we demonstrate empirically below.14 We
next consider classes of technologies which are more general and no longer have a
known location and scale, and we analyze identification of these more general tech-
nologies under additional assumptions about the measurement error process. We
conclude this section with a discussion of what empirical measures may justify these
additional assumptions.

5.1 Identifying Production Technologies with Dynamics in
TFP

Consider a general class of technologies which exhibit Hicks-neutral TFP growth:

θt+1 = Atf̃t(θt, It) (14)

where At > 0 is the TFP term and the f̃t(θt, It) sub-function is a known location
and scale (KLS) production technology. An example of this class of functions is the
CES production technologies augmented with TFP dynamics:

θt+1 = At(γtθ
φt
t + (1− γt)Iφtt )1/φt

We first establish that our identification result for KLS production technologies
fails in this case because we cannot separately identify the TFP parameter At from
the measurement parameters. To see this, write the production technology in logs:

ln θt+1 = lnAt + ln f̃t(θt, It)

Note that At is the scale of the production technology in levels, but lnAt is the
location of the production function in logs.

Next consider the following difference in the conditional expectations for a latent
log skill measure m, Zt+1,m:

E(Zt+1,m| ln θt = a1, ln It = `1)− E(Zt+1,m| ln θt = a2, ln It = `2)

= µt+1,m + λt+1,m(lnAt + ln f̃t(e
a1 , e`1))− [µt+1,m + λt+1,m(lnAt + ln f̃t(e

a2 , e`2))]

= λt+1,m(ln f̃t(e
a1 , e`1)− ln f̃t(e

a2 , e`2))

14See the Appendix for more discussion. For example, a CES technology with constant returns
to scale implies that the elasticity of skill formation with respect to investment must be between 0
and 1, regardless of the data. This restriction can then bias downward the effects on skill formation
of investment and interventions which increase investment.
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From this expression, it is clear that the TFP location lnAt cannot be identified.
Without further restrictions, the location of the production function (in logs) can-
not be separately identified from the location of the measurement equations (which
measure skills in logs) given by µt,m intercept.

Given the failure of identification for this more general technology, it is natural
to ask what additional assumptions would be sufficient for identification. We show
that if we have some auxiliary information on the relationship between measurement
intercepts over time, then we can identify the At TFP terms in production functions
of the form (14. We consider identification under the following assumption:

Assumption 2 For some measures Zt+1,m = µt+1,m + λt+1,m ln θt+1 + εt+1,m and
Zt,m′ = µt,m′ + λt,m′ ln θt + εt,m′, we have µt+1,m = g(µt,m′), where g(·) is a known
relationship.

Whether Assumption 2 holds depends on the particular measures the researcher
has available. We discuss the applicability of this assumption to our particular data
and measures in our empirical application. This assumption could be justified if
the measure in period t + 1 and period t are age-invariant measures, as discussed
below, where for example the measure is the same test given to children of different
ages. In this case, it is plausible that the measures have the same location so that
µt+1,m = µt,m. This assumption of age-invariant intercepts is of course sufficient but
not necessary. And, to be clear, Assumption 2 does not require the researcher to
assume any particular values for the measurement intercepts, but simply that they
are related to each other in a known way.

We next present identification results which show that with Assumption 2, and
the other assumptions previously used to prove Theorem 1, we can now identify
skill development technologies of the form given in (14) which do not have a known
location and scale:

Theorem 2 Consider a production technology of the form ft(θt, It) = Atf̃t(θt, It)
where f̃t(θt, It) has known scale and location (Definition 1) and At ∈ R++. Under
Assumption 1, Assumption 2, the full support assumption on some measure Zt+1,m

and the conditions for Theorem 1, the technology f̃t(θt, It) and At are separately
identified.

Proof.
The identification of f̃t(θt, It) follows directly from Theorem 1, as the unknown At

term is “differenced” away allowing identification of the f̃t(θt, It) KLS sub-function.
We identify the factor loading for the measure λt+1,m as well because identification
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of this parameter does not depend on the At value. We then identify At from the
mean of the measure of skills in period t+ 1, E(Zt+1,m), and re-arranging for lnAt:

lnAt =
E(Zt+1,m)− (µt+1,m + λt+1,mE(ln f̃t(θt, It)))

λt+1,m

From Assumption 2, with µt,m known, we also identify the measurement intercept
for t+ 1 from µt+1,m = g(µt,m).

From the proof we have some intuition for our result. As is common in the
literature estimating TFP in a variety of contexts, TFP here is also identified by the
residual growth in mean measured skills from period 0 to period 1 (scaled by λt+1,m

factor loading), netting out the growth due to period t inputs θt, It. Identification of
the full sequence of production technologies then proceeds as above in a sequential
fashion, and we identify the production function parameters, including the sequence
of At TFP terms, for all periods. In the estimation sections below, we use this
identification result constructively to develop an estimator for the TFP sequence.

5.2 Example

Next consider an example:

Example 3 Log-Linear (Cobb-Douglas) Technology with TFP

Return to the two period Cobb-Douglas example considered above (Example 1)
but now add a scaling factor A0 > 0:

ln θ1 = lnA0 + (γ0 ln θ0 + (1− γ0) ln I0)

Assume the single period 1 measure Z1,m satisfies Assumption 2 and µ1,m = g(µ0,m)
for some m = 1, 2, 3. We proceed as before to identify γ0 from

E(Z1,m| ln θ0 = a, ln I0 = 0)− E(Z1,m| ln θ0 = 0, ln I0 = 0)

E(Z1,m| ln θ0 = 1, ln I0 = 1)− E(Z1,m| ln θ0 = 0, ln I0 = 0)
=

lnA0 + γ0a− lnA0

lnA0 + 1− lnA0

where the lnA0 TFP terms drop out of the expression. As in Example 1, we can
then solve for the γ0 production function parameter.

The TFP term lnA0 is identified from

lnA0 =
E(Z1,m)− (µ1,m + λ1,mE(ln f̃0(θ0, I0)))

λ1,m

26



=
E(Z1,m)− g(µ0,m)

λ1,m

because E(ln f̃0(θ0, I0)) = 0 for this log-linear production function. lnA0 is iden-
tified from the growth in mean measured skills because µ0,m = E(Z0,m) given the
normalization of the initial conditions. Substituting, the TFP term is then

lnA0 =
E(Z1,m)− g(E(Z0,m))

λ1,m

.

TFP is identified from the growth in mean skills between periods 0 and 1, scaled by
the identified measurement factor loading for the period 1 measures, λ1,m.

5.3 Identifying Production Technologies with Unknown Scale

We next consider a parallel problem to that of identifying the location (in logs) of the
production technology considered above: identifying a production technology with
an unknown scale. Consider the following production technology:

θt+1 = f̃t(θt, It)
ψt , (15)

where ψt ∈ R+ is an unknown scaling parameter and f̃t is a sub-function with known
location and scale. Given the unknown scaling parameter, the technology described
in (15) is not a known location and scale technology (Definition 1). An example of
this type of production function is the following CES function with unknown scale:

θt+1 = (γtθ
φt
t + (1− γt)Iφtt )ψt/φt (16)

As in the TFP case above, we cannot separately identify the scale parameter ψt from
the measurement factor loading λt+1,m. We consider an auxiliary restriction on the
factor loadings which would allow identification:

Assumption 3 For some measures Zt+1,m = µt+1,m + λt+1,m ln θt+1 + εt+1,m and
Zt,m′ = µt,m′ + λt,m′ ln θt + εt,m′, we have λt+1,m = q(λt,m′), where q(·) is a known
function.

We show that with Assumption 3, together with the other assumptions previously
used to prove Theorem 1, we can now identify skill development technologies of the
form given in (15), which do not have a known scale:
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Theorem 3 Consider a production technology of the form ft(θt, It) = f̃t(θt, It)
ψt,

where f̃t(θt, It) has known scale and location (Definition 1) and ψt ∈ R++. Under
Assumption 1, Assumption 3, the full support assumption on some measure Zt+1,m

and the conditions for Theorem 1, the technology f̃t(θt, It) and ψt are separately
identified.

Proof.
Identification of f̃t(θt, It) follows directly from Theorem 1, as the unknown ψt

term drops out allowing identification of the f̃t(θt, It) KLS sub-function. To identify
ψt, take the covariance between a measure of latent skills at age t+ 1 and at age t:

Cov(Zt+1,m, Zt,m) = λt+1,mλt,mCov(ln θt+1, ln θt)

= q(λt,m)λt,mψtCov(ln f̃t(θt, It), ln θt)

Given λt,m is known and Cov(ln f̃t(θt, It), ln θt) can be computed from the identified
sub-function f̃t(θt, It), then we can re-arrange this expression to solve for ψt.

This proof mirrors the identification result for TFP. If we assume that the factor
loading in the measurement equation (which provides the scale of the measure) has
some known relationship with already identified factor loadings, then we can identify
the scale of the production technology.

5.4 Age-Invariant Measures

We conclude this section with a discussion of measures which would satisfy these
auxiliary assumptions. An extensive literature, principally in the field of psycho-
metrics, is concerned with designing skill measures which can be “equated” across
children of different ages so that the development of children can be tracked using a
coherent single measure. These measures consist of tests which are designed to be
applicable for children of various ages, and include a range of test items (questions)
which show meaningful variation for both younger and older children. Tests such as
the Peabody Individual Achievement Test (PIAT)and the Woodcock-Johnson tests
are designed so that they include a range of questions of various difficulty levels. The
simple raw scores on these tests, reflecting the total number of questions answered
correctly, can then be interpreted as an age-invariant measure of skills.15

15In practice, these types of age-invariant tests are often administered such that the questions are
endogenously determined by the previous answers of the child. Therefore, while not all children are
in fact answering the exact same test questions, their scores are determined in an age comparable
way. The typical test includes a number of test items ranging from low difficulty to high difficulty

28



We formalize this notion of age-invariant measures in the following definition.
A pair of measures are age-invariant if their measurement parameters are constant
across child ages:

Definition 2 A pair of measures Zt,m and Zt+1,m is age-invariant if E(Zt,m|θt =
p) = E(Zt+1,m|θt+1 = p) for all p ∈ R++ .

Age-invariant measures imply that two children of different ages t and t + 1 would
nonetheless have the same expected level of measured skill if the children have the
same latent level of skill: θt = θt+1 = p.16 In this case, the younger child, aged t,
could be considered “ahead” of her age group, and the older child, aged t+ 1, could
be considered “behind” her age group. The age invariant measures Zt,m and Zt+1,m

would report the same score (in expectation) for these two children. Definition 2
implies that for age-invariant measures both Assumption 2 and Assumption 3 hold,
allowing identification of the technology with unknown TFP and unknown return to
scale (see Theorem 3 (i)-(ii)).17

Finally note that whether a given pair of measures is age-invariant depends on
the measures and must be evaluated on a case-by-case basis. Using pairs of unrelated
measures, such as birth weight to measure cognitive skills at birth and SAT scores to
measures skills at age 18, would not seem to constitute a set of age-invariant measures
as there is no reason to believe these measures would have a common location and
scale.

questions. Testing begins by first establishing a baseline test item for each child. While the baseline
is initially based on the child’s age, the baseline adjusts downward (to less difficult questions) as
the child is unable to answer questions correctly. Once the baseline is established, the test then
progressively asks more difficult questions. Testing stops when the child makes a certain number
of mistakes. The score is then determined as the number of correct answers before testing stops.
Included in this number of correct answers are the lower difficulty test items prior to the baseline
item because it is assumed the child would have answered these items correctly (given she was able
to answer more the difficult items).

16Age-invariant measures should not be confused with “age-standardized” measures, which are
measures the researcher constructs to be mean 0 and standard deviation 1 at all ages for the
particular sample at hand (See the Appendix). Our concept of age-invariant measures concerns the
underlying primitive and unobserved parameters of the measurement equations. Age-standardized
measures would in fact not represent any growth in average skills or changes in the dispersion of
skills as children age.

17Age-invariance implies the following restrictions on measurement parameters: µt+1 +
λt+1 ln p = µt + λt ln p for all p. Re-arranging, we have (µt+1 − µt) = ln p (λt − λt+1) for all
p. This is the case if and only if µt = µt+1 and λt = λt+1.
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6 Estimation

In this section we discuss the empirical model we take to the data, the estimation
algorithm we develop based on the identification analysis of the preceding sections,
and briefly describe the data. Additional details about the data and sample are left
for the Appendix.

6.1 Empirical Model

There are five parts to the empirical model: 1) a model of skill development where
skills in the next period are produced by the stocks of existing skills and parental in-
vestments; 2) a model of parental investment where investment depends on household
characteristics and the existing stock of skills; 3) a distribution of initial conditions of
household characteristics and child skills; 4) a model of the relationship between final
childhood skills and adult outcomes (schooling and earnings); and 5) a measurement
model relating each of the latent model elements to observed data measures. Be-
sides specifying particular functional forms for the production technology, the major
distinction between the empirical model and the preceding identification analysis is
that we assume parental investment is also measured with error and allow parental
investment to be endogenously related to the stock of existing children’s skill.

The timing of the model is as follows. There are five biannual periods of child
development: ages 5-6 (t = 0), 7-8 (t = 1), 9-10 (t = 2), 11-12 (t = 3), 13-14 (t = 4).
While it would be ideal to extend the model to even earlier ages (to birth or even to
pre-natal periods), we face the common tradeoff of assuming “too much” relative to
the data we have available. We have chosen here to focus on the childhood period
from age 5 to 14 where we have more skill measures, and plausibly age-invariant
measures, and can judge the performance of the model and estimator in closer to
ideal conditions.

6.1.1 Skill Production Technology

At each age t the current level of latent cognitive skills and investment produce the
next period’s (t+ 1) skills. The technology takes a stochastic translog specification:

ln θt+1 = lnAt + γ1,t ln θt + γ2,t ln It + γ3,t ln It · ln θt + ηθ,t, (17)

where lnAt is the TFP term, and ηθ,t is the stochastic production shock, which is
assumed i.i.d. ∼ N(0, σ2

θ,t) for all t and independent of the current stock of skills
and investment. The translog specification is a generalization of the Cobb-Douglas
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specification, where the special case γ3,t = 0 is the typical Cobb-Douglas specification
(with the addition of a TFP term and a stochastic shock). We use the translog
specification because of its flexibility relative to the Cobb-Douglas and other CES
functions. The translog function allows a non-constant elasticity of substitution
between inputs and can be expanded with the inclusion of additional terms to a
close provide an approximation of any unknown production technology. The log-
linear form of the function also facilitates convenient and fast closed form estimators,
as detailed below. Our general translog function also allows non-constant returns to
scale. With γ3 6= 0, the elasticity of skill production with respect to investment
depends on the current level of children’s skills:

∂ ln θt+1

∂ ln It
= γ2,t + γ3,t ln θt,

where γ3,t > 0 implies a higher return to investment for children with currently high
levels of skill than for children with low levels of skill, a dynamic complementar-
ity where past skills (and past investments which produced those skills) affect the
productivity of current investments. Moreover, γ3,t 6= 0 implies that the elasticity
of next period skills with respect to investment is a function of the child’s stock of
skills.

6.1.2 Parental Investment

We specify a parametric policy function for parental investment. Investment is en-
dogenously determined by the current stock of the child’s skills, mother’s skills, and
family income:

ln It = α1,t ln θt + α2,t ln θMC + α3,t ln θMN + α4,t lnYt + ηI,t (18)

where
∑

j αj,t = 1 for all t, θMC is the mother’s stock of cognitive skills, θMN is
the mother’s stock of non-cognitive skills, Yt is household income, and ηI,t is the
investment shock, where ηI,t i.i.d. ∼ N(0, σ2

I,t) for all t and independent of latent
skills and income. Our concept of investment represents both quantity and quality
aspects, where we use measures of investments which capture quantity aspects of
investment (time parents spent reading to children) and quality aspects (whether
children are “praised” by their parents).

This specification of investment is a kind of “reduced form” specification rep-
resenting a policy function for parental investment which is not derived from an
explicit economic model of the household behavior. This approach follows Cunha
et al. (2010); Attanasio et al. (2015a,b). The advantages of this approach are twofold.
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First, this approach provides a simple and tractable model of the investment process
which avoids the computational burden of solving and estimating a formal model
of household behavior. Second, this approach has the potential to allow for some
generality as our specification of the investment process can be consistent with mul-
tiple models of the households. Other work derives parental investment from explicit
models of the household, including explicit representations of household preferences,
decision making, beliefs, and constraints (see for example Del Boca et al., 2014a,b;
Cunha, 2013; Cunha et al., 2013; Bernal, 2008). The advantage of these latter ap-
proaches is that the counterfactual policy analysis incorporates well defined house-
hold responses to policy, see Del Boca et al. (2014b) for some discussion.

Given the investment function does not derive from an explicit model, the inter-
pretation of the parameters is in some sense speculative. α1,t can be interpreted as
reflecting whether parents “reinforce” existing skill stocks (α1,t > 0) or “compensate”
for low skill stocks (α1,t < 0). α2,t and α3,t reflect the extent to which the mother’s
skills relate to the quantity and quality of her parental investment as in the case
where more skilled mothers read to their children more or provide higher quality
interactions. Finally, α4,t reflects the influences that household resources have on the
extent of parental investments, and reflects the combined effects of constraints the
household faces (such as credit market constraints) and preferences the household
has to invest scarce resources in children (see Caucutt et al., 2015).

Finally, to close the investment model, we assume that log-family income (lnYt)
follows an AR(1) process which allows for life-cycle trends in income:

lnYt+1 = µY + δY · t+ ρY lnYt + ηY,t (19)

where the innovation is ηY,t i.i.d. ∼ N(0, σ2
Y ) and is assumed independent of all

latent variables. Initial family income Y0 is allowed to be correlated with mother’s
and children’s initial skills, and hence our model captures important correlations
between household resources and the skills of parents and children.

6.1.3 Initial Conditions

The initial conditions consist of the child’s initial (at age 5-6) stock of skills θC,0, the
mother’s cognitive and non-cognitive skills (θMC and θMN), which are assumed to be
time invariant over the child development period, and the level of family income at
birth (Y0). Define the vector of initial conditions as

Ω = (ln θ0, ln θMC , ln θMN , lnY0)

We assume a parametric distribution for the initial conditions:
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Ω ∼ N(µΩ,ΣΩ)

where µΩ = [0, 0, 0, 0, µ0,lnY ]. µ0,lnY is the mean of the family log income when
children are 5-6 years old. The means of the remaining variables are set to zero by
Normalization 1. ΣΩ is the variance-covariance matrix for the initial conditions.

6.1.4 Adult Outcome

In order to provide a more meaningful metric to evaluate policy interventions in our
model, we relate adult outcomes to the stock of children’s skills in the final period
of the child development process (period T = 4 or age 13-14):

Q = µQ + αQ ln θT + ηQ, (20)

where ηQ is independent of ln θT . We use years of schooling measured at age 23 and
log earnings at age 29 as adult outcomes. Schooling is an attractive adult outcome
to use because it explains a large fraction of adult earnings and consumptions, is
largely determined at an early point in adulthood and, unlike realized labor market
earnings, does not suffer from a censoring issue due to endogenous labor supply.

6.1.5 Measurement

The final piece of our model is the model of measurement relating latent variables to
observed data. Children’s skills, parental investment, and mother’s skills are all as-
sumed to be measured with error. There are 4 latent variables: ω ∈ {θ, θMC , θMN , I}.
There are in general multiple measures for each latent variable. Each measure is as-
sumed to take the following form:

Zω,t,m = µω,t,m + λω,t,m lnωt + εω,t,m

where m indexes the measures for each latent variable ω ∈ {θ, θMC , θMN , I}.
We assume a generalized version of Assumption 1 appropriate for this more gen-

eral empirical model. All measurement errors are assumed independent of each
other (across measures and over time), and all measurement errors are assumed
independent of the latent variables, household income, and the “structural” shocks
(ηI,t, ηθ,t, ηQ). This assumptions is strong, and weaker assumptions of mean-independence
are sufficient for identification of the parametric model. While we assume strong
independence assumption, we make no other restrictions on the distribution of mea-
surement error (e.g. we do not assume εω,t,m is distributed Normal) as is common in
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previous approaches. Our sequential estimator, described below, is therefore robust
to mis-specification of the marginal distributions of measurement errors.

6.2 Estimation Algorithm

Our estimation algorithm is formed from the identification results presented above,
and in particular relies on the error-in-variable formulation from Section 4.6. Before
describing the steps of the algorithm, consider several estimation options. One ap-
proach, a kind of “brute force” approach, is to simulate the full sequence of latent
variables and measures from candidate primitive parameters and explicit assump-
tions about the distribution of measurement errors (e.g. assume they are Normally
distributed) and compute a likelihood function or a set of moments to form the basis
of an estimator. We do not prefer this approach because it requires additional as-
sumptions about the distribution of measurement errors which are not required for
identification. This approach may also involve a tremendous amount of computa-
tionally costly simulation given the non-linear nature of the model.

A second estimation approach is to use the measures directly to simulate the
distribution of latent variables by assuming a particular distribution for the latent
variables. One then could estimate the production function in a second step from
the simulated distribution of latent variables. This is the approach of Cunha et al.
(2010) and Attanasio et al. (2015a,b) in which both assume the latent variables are
distributed according to a mixture of 2 Normal distributions. This approach too
makes specific parametric assumptions which are not required.

Our estimation approach directly follows our identification approach in treating
the measurement parameters as nuisance parameters which can be computed sequen-
tially along with the primitive parameters of the model generating the latent vari-
ables. Following the estimation of the initial conditions using standard techniques, we
sequentially estimate for each age the investment and production functions, followed
by the measurement parameters for the measures used for that age. The sequential
algorithm we develop has the advantage of tractability because our estimator does
not require the simulation of the full model; the primitives of the production tech-
nology and investment functions can be estimated directly from data. In addition,
another advantage of our approach over a joint estimation approach is by breaking
the estimator into steps, we make the identification assumptions as transparent as
possible. Of course, the disadvantage of our approach is a potential loss of efficiency
from not estimating the parameters jointly and exploiting “cross-step” restrictions.

We present two versions of the estimation algorithm. The first version works with
a unrestricted version of the technology:
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Model 1 (General): lnAt free and
∑3

j=1 γj,t free. At least one measure is
age-invariant.

The availability of this age-invariant measure allows us to identify the more general
technology.

The second version of the model restricts the production technology (17) to have
a known location and scale.

Model 2 (Restricted): lnAt = 0 for all t (no TFP dynamics) and
∑3

j=1 γj,t = 1
for all t (constant returns to scale).

6.2.1 Estimation of Model 2 (Restricted)

We begin with the estimator for the second version of the model, using the restricted
technology. The estimator for the more general technology (Model 2) is below.

Step 0 (Estimate Initial Conditions and Initial Measurement Parameter)

First, we estimate the measurement parameters at the initial period (age 5-6),
λω,0,m, µω,0,m for all measures m, for both children’s and mother’s skills. To esti-
mate these measurement parameters, we use ratios of covariances and measurement
means as outlined above (3) and (4). We choose one measure for children’s cognitive
skills, mother’s cognitive skills, and mother’s non-cognitive skills as the normalizing
measure (which we label m = 1, without loss of generality) and normalize the factor
loading for this measure to be 1: λθ,0,1 = 1, λMC,0,1 = 1, λMN,0,1 = 1.18 We estimate
the remaining factor loadings using the average of the covariances between all of the
remaining measures, where each factor loading is computed from

λω,0,m =
Cov(Zω,0,m, Zω,0,m′)

Cov(Z0,ω,1, Zω,0,m′)
∀m 6= m′ and ∀ω ∈ {θ,MC,MN}.

Given the normalization that log skills are mean 0 in the initial period, we compute
the initial measurement intercepts as

µω,0,m = E(Zω,0,m) ∀m and ∀ω ∈ {θ,MC,MN}

18Note that while investment is a latent variable as well, we do not need to normalize the scale
and location of latent investment because investment already has a scale and location specified by
the KLS investment equation (18).
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With the factor loading estimates in hand, we then estimate the initial period
variance-covariance matrix ΣΩ using variances and covariances in measures of skills
and family income (assumed measured without error). This step provides estimates
of the initial joint distribution of children’s skills, mother’s skills, and family income.
In this initial step, we also estimate the parameters of the income process (19) using
a regression of income on lagged income and a time trend.

Finally, given the estimates of the measurement parameters for children and
mother skills, we form the following “residual” measures:

Z̃ω,0,m =
Zω,0,m − µω,0,m

λω,0,m
∀m and ∀ω ∈ {θ,MC,MN}

We are now ready to estimate the investment function for period t = 0, where
the investment in this first period depends on the initial child’s skills and household
characteristics (mother’s skills and family income).

Step 1 (Estimate Investment Function Parameters):

Following the errors-in-variables formulation described above, substitute a “raw”
measure for investment ZI,0,m and a “residual” measure for each of the latent skills

(Z̃θ,0,m, Z̃MC,0,m, Z̃MN,0,m) into the model of investment defined in terms of primitives
(18):

ZI,0,m − µI,0,m − εI,0,m
λI,0,m

= α1,0(Z̃θ,0,m − ε̃θ,0,m) + α2,0(Z̃MC,m − ε̃MC,m)

+α3,0(Z̃MN,m − ε̃MN,m) + α4,0 lnY0 + ηI,0

Re-arranging, we have

ZI,0,m = µI,0,m + λI,0,mα1,0Z̃θ,0,m + λI,0,mα2,0Z̃MC,m + λI,0,mα3,0Z̃MN,m + λI,0,mα4,0 lnY0

+ εI,0,m + λI,0,m(ηI,0 − ε̃θ,0,m − ε̃MC,m − ε̃MN,m)

= β0,0,m + β1,0,mZ̃θ,0,m + β2,0,mZ̃MC,m + β3,0,mZ̃MN,m + β4,0,m lnY0 + πI,0,m (21)

where βj,0,m = λI,0,mαj,0 for all j and

πI,0,m = εI,0,m + λI,0,m(ηI,0 − α1,0ε̃θ,0,m − α2,0ε̃MC,m − α3,0ε̃MN,m).
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Estimation of (21) by OLS would yield inconsistent estimates of the βj,0,m coeffi-
cients because the measures are correlated with their measurement errors (included
in the residual term πI,0,m). Here the structure of the model affords the researcher
several possible strategies to consistently estimate the βj,0,m coefficients. We use an
instrumental variable estimator with the vector of excluded instruments composed
of alternative measures of skills: [Zθ,0,m′ , ZMC,0,m′ , ZNC,0,m′ ]. Under Assumption 1,
these instruments are valid because each of these alternative measures is uncorrelated
with all of the components of πI,0,m. Using this IV strategy, we obtain consistent
estimators for the βj,t,m coefficients. The primitive parameters of the investment
function are then recovered from

αj,0 =
βj,0,m∑4
j=1 βj,0,m

Step 2 (Compute Measurement Parameters for Latent Investment):

After estimating the primitive parameters of the investment function, we recover
the scale and location for the investment equation without further re-normalizations
on the measurement equation parameters. The intercept and factor loading for the
investment measure are given by

µI,0,m = β0,0,m

and

λI,0,m =
4∑
j=1

βj,0,m

With these consistent estimators for the measurement parameters for investment,
we form the “residual” measures for investment in period t = 0:

Z̃I,0,m =
ZI,0,m − µI,0,m

λI,0,m

Step 3 (Estimate Skill Production Technology)

Next, we use a similar technique to estimate the production technology. Substi-
tuting the residual measures into the production technology (17), we have

37



Zθ,1,m − µθ,1,m − εθ,1,m
λθ,1,m

= γ1,0(Z̃θ,0,m − ε̃θ,0,m) + γ2,0(Z̃I,0,m − ε̃I,0,m)

+ γ3,0(Z̃θ,0,m − ε̃θ,0,m)(Z̃I,0,m − ε̃I,0,m) + ηθ,0

With some algebra, we can re-write this as:

Zθ,1,m = δ0,0,m + δ1,0,mZ̃θ,0,m + δ2,0,mZ̃I,0,m + δ3,0,mZ̃θ,0,m · Z̃I,0,m + πθ,0,m (22)

where δ0,0,m = µθ,0,m, δj,0,m = λθ,1,mγj,0 for j = 1, 2, 3 and

πθ,0,m = εθ,1,m+λθ,1,m[ηθ,0−γ1,0εθ,0,m−γ2,0εI,0,m−γ3,0(Z̃θ,0,mεI,0,m+Z̃I,0,mεθ,0,m−εθ,0,mεI,0,m)]

As with the investment function, estimation of 22 using OLS would lead to incon-
sistent estimates. We use the same IV approach as above using instruments formed
from alternative measures [Zθ,0,m′ , ZI,0,m′ , Zθ,0,m′ · ZI,0,m′ ]. Under Assumption 1
these instruments are uncorrelated the residual error term πθ,0,m.19 With consistent
estimates of δj,0,ms in hand, we can then recover the structural parameters and for
the production technology as:

γj,0 =
δj,0,m∑3
j=1 δj,0,m

∀ j ∈ {1, 2, 3}

Step 4 (Compute Measurement Parameters for Latent Skill):
The measurement parameters for the latent skill measure in period t = 1 (Zθ,1,m)

can then be recovered from

µθ,1,m = δ0,0,m,

λθ,1,m =
3∑
j=1

δj,0,0.

19Perhaps the less obvious terms are terms such as this E(Z̃θ,0,mεI,0,m|Zθ,0,m′ · ZI,0,m′). Under
the assumption of independence of the errors, we have

E(Z̃θ,0,mεI,0,m|Zθ,0,m′ · ZI,0,m′) = E(Z̃θ,0,m|Zθ,0,m′ · ZI,0,m′)E(εI,0,m|Zθ,0,m′ · ZI,0,m′)

given εI,0,m is independent of Z̃θ,0,m. Given the independence assumption, the latter term is

E(εI,0,m|Zθ,0,m′ · ZI,0,m′) = E(εI,0,m) = 0. Therefore, E(Z̃θ,0,mεI,0,m|Zθ,0,m′ · ZI,0,m′) = 0.
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We then form the residual measure for latent skill as

Z̃θ,1,m =
Zθ,I,m − µθ,1,m

λθ,1,m

Step 5 (Estimate variance of Investment and Production Function Shocks):

The remaining parameters to be estimated for this period are the variances of
the investment and production function shocks, σ2

I,0 and σ2
θ,0. To estimate σI,0, we

use the covariance between the residual from (21), πI,0,m and an alternative residual

measure of investment Z̃I,0,m′ = ln I0 + εI,0,m′ :

Cov(πI,0,m/λI,0,m, Z̃I,0,m′) = V (ηI,0) = σ2
I,0

To compute the residual measure Z̃I,0,m we need to compute the measurement pa-
rameters for this measure. We do this by repeating the estimation in Steps 2 and 3
replacing the left-hand side variable in (21) with the alternative measure ZI,0,m′ .

The variance of the production shock is estimated in the same way using an
alternative measure of children’s skills in period t = 1:

Cov(πθ,1,m/λI,1,m, Z̃θ,1,m′) = V (ηθ,0) = σ2
θ,0

Remaining Steps

We repeat Steps 1-5 for the remaining periods until the final period of child de-
velopment T . This algorithm produces estimates of the parameters of the investment
and production functions for all child ages.

6.2.2 Estimation of Model 1 (Unrestricted)

The preceding algorithm restricted the production technology to have no TFP dy-
namics and constant returns to scale (Model 2). Following Theorem 2 and Theorem
3, identification of the more general model can be accomplished with restrictions on
the measurement parameters. We assume we have available at least one child skill
measure which is age-invariant (Definition 2). Label the age-invariant measure to be
measure m, and for this measure we have µθ,t,m = µθ,0,m for all t and λθ,t,m = λθ,0,m
for all t.

With this age invariant measure, we repeat Step 3 (Estimate Production Tech-
nology). The “reduced form” equation (22) and estimation of the δj,0,m parameters
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remains the same. To allow for non-constant returns to scale we do not restrict the
structural γj,0 parameters to sum to 1. The structural parameters are computed as

γj,0 =
δj,0,m
λθ,1,m

∀ j ∈ {1, 2, 3}

With the inclusion of the TFP term lnA0, the δ0,0,m intercept from the reduced
form equation (22) is now

δ0,0,m = µθ,1,m + λθ,1,m lnA0

Given the age-invariance assumption, we can consistently estimate µθ,1,m and λθ,1,m
and compute lnA0.

With the addition of these computations to Step 3, the other steps in the al-
gorithm remain the same. We can use this extended to algorithm to compute the
full sequence of parameters for the investment and production functions for all child
ages.

6.2.3 Estimating the Adult Outcome Equation

Finally, after we have computed the full path of primitive parameters for the invest-
ment and production functions, we are able to estimate the adult outcome process
(20). We focus on both final years of education at age 23 and log earnings at age
30. We use the same IV method as before to solve the measurement error issue.
Substituting the measures for skills at age 13-14 (t = 4) in equation (20), we have:

Q = µQ + αQZ̃θ,4,m + (ηQ − αQε̃θ,4,m) (23)

We use a second measure for skills at age 13-14 as an IV to identify αQ.

6.3 Data

We estimate the model using information about children and their families obtained
from the National Longitudinal Study of Youth 1979 (NLSY). Descriptive statistics
for the sample and additional data construction details are left for the Appendix.

The NLSY dataset is constructed by matching female respondents of the original
dataset with their children who were part of the Children and Young Adults surveys,
from 1986 to 2012. The dataset provides observations of the first period of the model
(age 5-6) through adulthood. The total number of children in our sample is 11,509.
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The NLSY dataset contains multiple measures of children’s skills, mother’s skills,
and parental investments. The complete set of measures, their ranges and descrip-
tive statistics for our sample are included in the Appendix. For children’s skills we
rely on different sub-scales of the Peabody Individual Achievement Test (PIAT) in
Mathematics, Reading and Recognition, and the Peabody Picture Vocabulary Test
(PPVT). Finally, we use information for children when they become young adults to
link the children skills into a more meaningful metric to evaluate policy intervention:
we use children’s highest grade completed at age 23 or older and their earnings at age
29. The information about the educational attainment is measured as the highest
grade completed as of date of last interview. We considered schooling information
only for those young adults who were at least 23 years old or older in the last 2012
interview. Age 29 earnings is in real 2012 dollars.

For mother’s cognitive skills we use sub-scales of the Armed Services Vocational
Aptitude Battery (ASVAB), and for mother’s non-cognitive skills we use the Rotter
and Rosenberg indexes. For parental investments, we use the various HOME score
measures from direct observation and interview with the mother. Family income
includes all sources of income for the parents, including mother’s and father’s labor
income, and any sources of non-labor income.

7 Results

In this section we discuss our parameter estimates, simulate the estimated model to
describe the development of children’s skills, and compute the effects of simple inter-
ventions to improve skills and adult outcomes. We begin by presenting estimates of
the general model in which we allow for Total Factor Productivity (TFP) dynamics
and non-constant returns to scale (Model 1). Because this general technology no
longer has a known location and scale, we use an age-invariance restriction for iden-
tification. Given the structure of the PIAT tests, which administer the same test to
children of various ages (given their ability level), we believe it is appropriate to as-
sume the measurement intercepts and factor loadings for these measures of cognitive
skills are age-invariant (Definition 2). Note that we do not assume any particular
values for these measurement parameters, only the age invariance of them, and treat
the measurement parameters as free parameters to be estimated.

We also consider results using alternative restricted models, and estimates which
do not correct for measurement error and treat the measures as error free measures.
We briefly discuss the policy predictions of these models below, but, for brevity, we
report estimates of these several alternative models in the Appendix.

Another key issue involves interpreting the magnitude of the parameter estimates.
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Because the parameter estimates of the production technology and investment equa-
tions are relative to the initial skill normalizations, the magnitudes of many of the
parameters estimates are not directly interpretable in isolation. We conclude this sec-
tion with a series of policy counter-factual experiments using the estimated model.
These exercises provide necessary metrics to interpret the estimates with respect to
adult outcomes, years of completed schooling at age 23 and earnings at age 29.

7.1 Parameter Estimates

7.1.1 Initial Conditions

Table 2 reports estimates of the initial conditions variance-covariance matrix ΣΩ

and the associated correlation matrix. We normalize children’s cognitive skills to
the PIAT-Mathematics test, mother’s cognitive skills to the ASVAB2 (Arithmetics
reasoning) and mother’s non-cognitive skills to the Self-Esteem1 (Rosenberg Self-
Esteem: “I am a person of worth”) measure. The variances and covariances of the
latent skills, and the investment and production function parameters, are interpreted
relative to these normalizations. As expected, we estimate that children’s skills,
mother’s cognitive and non-cognitive skills, and family income are all highly posi-
tively correlated. For space considerations, estimates of the dynamic family income
process can be found in the Appendix.

7.1.2 Investment Function

Table 3 reports the estimates of the investment function specified in Section 6.1.2.
At ages 5-6, we find that investment is increasing in children’s skills, mother’s skills,
and family income. Because of the log-log form of the investment equation, we can
interpret parameter estimates as elasticities. The parameter estimate of 0.230 on
the log children’s skills variable indicates that a 1 percent increase in children’s skills
raises investment by 0.23 percent, an inelastic response. The positive coefficient sug-
gests that parents are “reinforcing” existing skills with further investments: children
with higher skills are receiving even more investment than children with lower skills.
Mother’s cognitive skills and non-cognitive skills also increase investment at ages
5-6, with non-cognitive skills of the mother estimated to have a substantially higher
elasticity than cognitive skills. These coefficients indicate that mothers with higher
skills are providing higher quantities and qualities of investments in children. Turn-
ing to the importance of income to parental investments, we find that a 1 percent
increase in family income raises investment by 0.34 percent. The response of invest-
ment with respect to mother’s skills and family income reflects the combination of
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parental preferences and household constraints, which we cannot unfortunately sep-
arately distinguish using this reduced form model of investment. Given that positive
correlation between mother’s initial skills, child’s initial skills, and household income,
taken together, these estimates of the investment function indicate that endogenous
investment increases inequality in children’s skills. The estimated variance on the in-
vestment shock reveals how much of the remaining variation in parental investments
remains unexplained by this model, such as investments from schools, peers, and the
child herself.

Comparing parameter estimates of the investment function over the development
period reveals that the influence of the child’s prior skills on investments becomes
much smaller at later ages, indicating that parental investments are less reinforcing
of existing skill stocks at older ages. As the child develops, we find that mother’s
non-cognitive skills becomes the dominant influence on investment. However, while
the importance of family income falls somewhat from an elasticity of 0.34 at age 5-6
to 0.275 at age 11-12, income is still a significant and positive factor for parental
investment even at later ages.

7.1.3 Production Function

Table 4 reports the parameter estimates for the technology of skill formation, as
described in Section 6.1.1. We present measurement error corrected estimates of the
two versions of the model: our preferred unrestricted Model 1 and the restricted
Model 2. We turn first to the unrestricted Model 1 estimates.

At all ages, we find that skills are “self-productive” (next period’s skills are in-
creasing in existing skill stocks) and that skills are positively increasing in investment.
For age 5-6 skill production, we estimate a statistically significant from 0 negative
coefficient on the interaction term (ln θt ln It) indicating that we reject the Cobb-
Douglas special case.

The elasticities of skill production with respect to investment are heterogeneous,
and we graph the skill elasticity for the age 5-6 production function in Figure 1 with
respect to the existing stock of children’s skill. The estimated negative coefficient on
the interaction term indicates that the elasticity of skill production with respect to
investment is decreasing in the child’s current skill level. For low skill children,
the elasticity approaches 1.4, indicating a that 1 percent increase in investment
increases next period’s skills by 1.4 percent. For already high skill children, the
elasticity approaches 0.2, indicating that a 1 percent increase in investment raises
future skills by only 0.2 percent. These heterogeneous investment elasticities suggest
that targeting interventions to improve children’s skills would have the largest effect
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on skill disadvantage children. This estimate stands in contrast to the estimates
reported in Cunha et al. (2010). They estimate a CES technology which implies
that the marginal productivity of investment is higher for high skill children given
that current investments and the current stock of skills are complements. Note also
that unlike the constant returns to scale CES case, our unrestricted model allows
investment elasticities to be larger than 1, and we estimate, at least for some children,
an elastic response of skill formation to investment.

The high TFP estimate for age 5-6 and the increasing returns to scale (indicated
by the sum of the coefficients being greater than 1) indicate that existing skills
and investments at this initial age are very productive relative to later ages. These
estimates of high returns to early investment will underlie the policy experiment
results we discuss next. As children age, Table 4 indicates that skills and investment
become generally less productive and skills less “malleable.” We graph the estimated
TFP at each age in Figure 2. Our estimate of TFP at age 11-12 falls to 1/6 the
level at age 5-6, indicating a dramatic slowdown in the productivity of existing skills
and investments in producing new skills. This feature of the technology is largely
consistent with the evidence that cognitive skills are difficult to change as children
after age 10.

Comparing these estimates for the unrestricted Model 1 to the restricted Model
2 in Table 4 reveals that we clearly reject the restricted technology of Model 2. The
estimated sum of the input coefficients far exceeds 1, with the estimated return to
scale of 2.66 in the early period indicating increasing returns to scale. The estimated
return to scale declines with the child’s age to a value of 1.3 at older ages, revealing
that even for older children we can reject constant returns to scale. In addition,
the estimate of high positive TFP term also indicates that we clearly reject the
assumption of a 0 log TFP in Model 2. As discussed below, these differences in
production function estimates imply very different investment and policy effects,
with the restricted Model 2 estimates implying a much smaller effect of an income
transfer on children’s skill development than in our preferred unrestricted model.

7.1.4 Adult Outcomes

Table 5 presents our estimates of the completed schooling outcome equation and log
earnings equation. We estimate that a percentage change in children skills at age
13-14 leads to an increase of 0.086 years of school. We also find that a 1 percentage
change in children skills leads to a 0.021 percentage change in earnings at age 29.
Below, we use these estimates to “anchor” our policy estimates to a meaningful adult
outcome metric.
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7.2 Estimated Child Development Path

We analyze the quantitative implications of the estimated model by simulating the
dynamic model. Simulation of the model proceeds by drawing 100,000 children from
the estimated initial conditions distribution and, for each child, forward simulating
the path of income, investments, children’s skills, and adult outcomes.

Figure 3 shows the estimated development path of mean log latent cognitive skills.
Figures 4 and 5 show the dynamics in the distribution of latent skills. And, Figure 6
provides the estimated dynamics in the distribution of latent investment.

Perhaps not surprisingly, we find that children’s mean latent skills grow substan-
tially over this development period, from age 5 to 14, with the most rapid growth at
early ages and growth slowing somewhat in the later period. In addition to growth in
mean skills, we estimate that the latent distribution of cognitive skills becomes more
dispersed as children age. Inequality rises substantially as there are different rates
of skills growth for children at different percentiles of the initial skill distribution.
Figure 5 shows that skills for high skill children at the 90th percentile grow 20% from
age 5-6 to age 9-10 and grow 9% during the rest of the childhood. For low initial
skill children at the 5th percentile, growth is slower, with a 6 % growth rate from age
5-6 to age 7-8 and a 3 % growth rate from age 11-12 to age 13-14.

7.3 Policy Experiments

In this section, we explore implications of the estimated model by using the estimated
model to predict the effect of income transfers on childhood skill development and
adult outcomes. While we do not have a fully developed model of household resource
allocation to provide a more realistic setting to evaluate these policy, we argue that
the experiments do at the very least provide a meaningful metric to understand the
magnitude of the parameter estimates, and allow us to meaningfully compare the
importance of various model features such as measurement error and the specification
of general technologies.

7.3.1 Short and Long-Term Effects

Before we analyze the results for our particular parameter estimates, we first present
a brief discussion of the effects of income transfers in our model. To allow for the
possibility that an income transfer could have heterogeneous effects across house-
holds, we examine policy effects conditional on a vector of current state variables
Ωt = [θt, θMC , θMN , Yt], which includes the child’s initial skills, the mother’s skills,
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and initial family income. First, consider the expected short-term marginal effect of
an increase in household income Yt on the log of childhood skills in period t+ 1:

∆t+1,t(Ωt) =
∂ ln θt+1

∂Yt

=
∂ ln It
∂Yt

∂ ln θt+1

∂ ln It
,

∆t+1,t(Ωt) is the product of the marginal change in parental investment and the
marginal change in skill production. With our parametrization, this is given by

∆t+1,t(Ωt) =
α4,t

Yt
(γ2,t + γ3,t ln θt).

This short-term effect is heterogeneous by the level of family income and the existing
stock of the child’s skills. The marginal increase in investment is decreasing in the
current level of income, as would be expected given the log form of the investment
equation. The key parameter for the heterogeneity of the short-term effect is γ3,t,
with γ3,t > 0 implying a higher return to investment for children with higher existing
stocks of skills.

The dynamic model of skill development we estimate also allows us to consider
the long-term effect of an income transfer at age t on outcomes beyond the immediate
next period. The expected long-term effect of a marginal increase in income at period
t on children’s skills in period t+ 2 is given by

∆t+2,t(Ωt) =
∂ ln θt+2

∂Yt

= ∆t+1,t(Ωt)
∂ ln θt+2

∂ ln θt+1

(1 +
∂ ln It+1

∂ ln θt+1

)

Note that we are analyzing the long-term effect of a one-time change in income at
period t; income remains at baseline levels for all subsequent periods. With our
parametrization, the long-term effect becomes

∆t+2,t(Ωt) =
α4,t

Yt
(γ2,t + γ3,t ln θt)(γ1,t+1 + γ3,t ln It)(1 + α4,t+1).

The short-term effect (∆t+1,t(Ωt)) and the long-term effect (∆t+2,t(Ωt)) can differ in
general. Our model of skill and investment dynamics allows for the possibility that
either short-term effects are higher than long-term effects (the effect of the policy
“fades-out” as the child ages) or that long-term effects can exceed short-term effects
(early interventions have a kind of “multiplier effect” on later skill development).
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7.3.2 Effects on Final Skills

We first consider a simple exercise designed to assess the optimal timing of the
income transfer. In Figure 7 we show the average percent change in the level of
latent children’s skills at age 13-14 by the different timing (age) of income transfer:

100 · E(
θ
′
T (a)− θT

θT
)

where θ
′
T (a) is level of skill at age t = T (age 13-14) with an income transfer of $1,000

dollars (in 2012 $) provided to the family at age a, and θT is level of skill at age 13-14
in the baseline model (no income transfer). The transfer is a one-time transfer and
does not affect the future levels of income. The figure shows that a $1,000 transfer
given at age 5-6 increase the average stock of age 13-14 skills by about 1 percent.
Providing the same transfer later in the childhood period has a smaller average effect.
Providing a $1,000 transfer at age 11-12 would increase the average skill stocks at
age 13-14 by less than 0.4 percent. We estimate that providing transfers early in the
development period would have a long-term effect that exceeds the short-term effect
of providing a transfer in later childhood. This result reflects the high productivity
of investment in the early periods and the high level of productivity of existing stocks
of skill in producing future skills (limited fade-out).

7.3.3 Effects on Completed Schooling

Figure 8 displays the results of the same set of policy experiments as in Figure 7
but using completed schooling at age 23 as the outcome. In this Figure, we plot
E(S

′
(a)−S), where S

′
(a) is the number of months of completed schooling at age 13-

14 with an income transfer of $1,000 given at age a, and S is the number of months of
completed schooling at age 13-14 in the baseline model (no income transfer). These
estimates provide a meaningful metric to evaluate the magnitude of the policy effects.
We find that a $1,000 transfer given at age 5-6 would increase the number of average
months of completed schooling by about 1.80 months. Providing the same transfer
at a later period would increase completed schooling by only 0.55 months.

7.3.4 Comparison with Dahl and Lochner (2012)

Our estimated effects of a family income transfer on children outcomes are similar to
some previous finding in the literature using different sources of identifying variation.
Using changes in the Earned Income Tax Credit (EITC) to instrument for family
income, Dahl and Lochner (2012) find that a $1,000 dollars increase in family income
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implies an increase in PIAT score of about 4.5% of a standard deviation.20 To directly
compare our estimates to their reported effects, we compute the equivalence between
their PIAT score outcome and years of schooling. We calculate that the Dahl and
Lochner (2012) estimates imply an average increase of about 0.54 months of schooling
for a $1,000 transfer at age 11-12.21 This results is quite similar to our main results
(see Figure 8).

7.3.5 Heterogeneous Treatment Effects

The previous results showed the average effect of policies providing transfers at dif-
ferent stages of the development process. Our modeling framework allows potentially
important sources of heterogeneity by the child’s initial skills, mother’s skills, and
initial family income levels; all of which could affect the individual level treatment
effect. The model estimates allow us to directly estimate this heterogeneity in the
policy treatment effects.

Figure 9 plots the heterogeneous effect of a $1,000 income transfer at age 5-6 on
completed months of schooling by the percentile of initial (age 5-6) family income.
This figure also plots the average treatment effect (ATE), the average effect over
the income distribution; the same effect as reported above. While the ATE is about
1.8 months, the effect varies considerably depending on the child’s initial level of
income. For the children from poor households in the 9-10th income percentiles,

20This result is based on the results reported in the correction dated March 2016 to the previous
results (Table 4). In comparing our results to their results, it should be noted that the policy
considered is different. Dahl and Lochner (2012) consider a change in the EITC, which affects
after-tax wage rates, parental labor supply, and hence parental time allocation, and we consider
here a pure income transfer (where we do not distinguish between income from labor and other
sources).

21As an outcome, Dahl and Lochner (2012) use a combined PIAT test score (the average of the
three separately age-standardized tests in Math, Reading Recognition, and Reading Comprehen-
sion). We rescale the PIAT scores in terms of schooling in the same way as we estimate the factor
loadings for different skill measures. Define S to be years of schooling at age 23, ZT to be the PIAT
test score at age 13-14 (period T = 4), and ZT−1 the PIAT test score at age 11-12 (period 3). We
write

S = µS + αS ln θT + ηS

ZT = µT + λT ln θT + εT

ZT−1 = µT−1 + λT−1 ln θT−1 + εT−1

Under the assumption that error terms are uncorrelated, the following ratio of covariances provides

the scaling of adult schooling with respect to the PIAT test score: αS

λT
= Cov(S,ZT−1)

Cov(ZT−1,ZT ) .
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the effect of the income transfer is to increase completed schooling by around 4
months, and for the children from the richest households, the effect is near 0. The
large heterogeneous effects by family income stem from the estimated importance of
family income in producing child investments and the estimated positive correlation
of income with maternal skills and the child’s initial skills. This heterogeneity in
the effects by income mirrors the heterogeneity in income effects found in previous
papers using alternative sources of identification (see Dahl and Lochner, 2012; Loken
et al., 2012). Using the varied effects of the Norwegian oil boom to instrument for
family income, Loken et al. (2012) report estimates on completed schooling which are
smaller in magnitude than those reported here, but similar qualitatively in finding
that the effects are substantially larger for low income Norwegian families

Figure 10 plots the heterogeneous effect of the same policy but by the level of the
child’s initial (age 5-6) skill. The ATE plotted in this Figure is the same as in the
previous figure as it is simply the effect averaged over the initial skill distribution. In
this Figure, we also find evidence of heterogeneous treatment effects with low initial
skill children benefiting more (about 7 months of additional schooling) from the
policy intervention than high initial skill children (near 0 effect). But the importance
of heterogeneity by initial skill is substantially less than by family income. This
suggest that it is better to target the policy to low income households than low skill
households, but of course it cannot be worse to target based on both criteria.

7.4 Comparing Model Predictions: Quantifying the Impor-
tance of Model Generality and Measurement Error

Our results presented thus far have been focused on our preferred model estimates:
estimates of the general unrestricted technology (Model 1) with measurement error
correction. We next briefly discuss how the estimates of the primitive production
technology would differ if we were to instead estimate the restricted model (Model
2) or ignore the measurement error issues. This analysis allows us to quantify how
important measurement error and model generality are to our findings, using policy
predictions on adult schooling as a meaningful metric for comparison.

Table 6 presents estimates for four versions of the model: Models 1 and 2, using
both measurement error corrected and not corrected estimators. For each model
and estimator, we re-estimate all parts of the model: the investment and technology
process equations at each age and the final adult outcome equation. The estimates
of the primitive parameters for these equations can be found in the Appendix; we
present here only the implied policy effects.

In Panel A of Table 6, we present the average treatment effects (ATE) on adult

49



schooling of the $1,000 income transfer at various ages. The first row repeats the
estimates from the preferred model: using the unrestricted Model 1 and correcting
for measurement error, we estimate that $1,000 income transfer at age 5-6 would
increase average schooling by about 1.8 additional month. In comparison, using the
restricted Model 2 (assuming constant returns to scale and no TFP dynamics) would
imply an estimated increase in average schooling of about one-quarter this effect, at
0.40 additional months. This shows that restricting the model and ignoring possible
TFP dynamics and non-constant returns to scale would severely bias downward the
implied effects of income transfers on children’s skill development.

The next panel of Table 6 presents the estimated ATE using the same models but
not correcting for measurement error. Using these uncorrected estimates, we estimate
policy effects less than half the size of the preferred measurement error corrected
estimates of the most general model, Model 1. These substantially lower estimates
of the effect of an income transfer are consistent with the standard attenuation
bias in standard linear models, where classical measurement error biases coefficient
estimates toward 0. Our models are dynamic, non-linear, and consist of inter-related
multiple equations, so there is no clear theoretical prediction about the sign of the
measurement error bias. But we estimate in this case that ignoring measurement
error would substantially bias downward the estimates of the ATE of the income
transfer policy.

Panel B of Table 6 repeats the analysis but focusing on the heterogeneity in
the treatment effect at different parts of the family income distribution. Similar
conclusions are evident here: restricting the model to have constant returns to scale
and no TFP dynamics or ignoring measurement error would substantially reduce the
estimated policy effect of the income transfer. We see that ignoring measurement
error would bias the estimated policy effect on low income families at the 9-10th
percentile from an effect size of about 4 months to only 1.4 - 1.8 months.

7.5 Cost-Benefit Analysis

We have thus far shown that the estimated model implies that a policy intervention
of providing income transfers to family would produce modest but positive gains
in children’s skills, with larger effects for poorer households. Would these gains be
justified given the cost? We next present a simple cost-benefit analysis to answer
this question.

Table 7 shows the effects of the income transfer policy, by children’s age, on
the present value of earnings. The Table also provides the associated cost of that
policy, including the cost of additional schooling. In this analysis, we consider a
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median earner worker. The expected present value of her lifetime earnings when
she is age 5-6 is calculated to be approximately $ 260,000 (in 2012 dollars).22 The
benefit of this policy is the comparison between the present value of worker’s earnings
with and without that policy during the childhood. In other words, we compute
the counterfactual present value of earnings if the worker’s family had received the
income transfer when the worker was a child. The effect of the family income transfer
to the growth in children earnings are computed using estimates in Table 5 under
the assumption that the change in the growth rate due to the policy intervention is
constant over the life-cycle. Table 7 suggests that, considering both the cost of the
income transfer and the cost of additional education, the net benefit of the policy
is positive for any age, and the effect is largest when implemented at age 5-6. The
additional present value for the policy intervention at age 5-6 is slightly more than
$ 5,500 and the net benefit is around $ 2,700.

8 Conclusion

This paper develops new identification concepts and associated estimators for the
process of skill development in children. One of the key empirical challenges in this
context is that the various measures of children’s skills are in general imperfect and
arbitrarily located and scaled. We introduce the concept of known location and
scale production technologies, which are the type of technologies actually estimated
in many previous papers, and show that for these technologies, standard measure-
ment assumptions non-parametrically identify the production technology, up to the
normalization of initial period skills. Importantly, we show non-parametric identifi-
cation for these cases without re-normalizing latent skills each period which can bias
the production technology. For production functions which do not have a known
location or scale, additional assumptions are necessary, and we provide empirically
grounded assumptions which are sufficient for identification of these more general
technologies. Our paper provides the first analysis of these crucial identification
tradeoffs, and hopefully will serve as a useful guide for future work.

Based on our identification results, we develop a robust method of moments es-
timator and show that it can be implemented using a sequential algorithm. Our
estimator does not require strong assumptions about the marginal distribution of
measurement errors or the latent factors. We estimate the skill production process
using data for the United States and a flexible parametric model of skill develop-

22The baseline present value of earnings is computed using data from the Bureau of Labor
Statistics (BLS) for the fourth quarter of 2012 with a discount rate of 4 %.
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ment allowing for non-constant returns to scale, dynamics in TFP, and for parental
investment to endogenously depend on unobserved children’s skills.

Our empirical results show a pattern of rapid skill development from age 5 to 14.
We find that as children age, not only does their mean skill level increase, but the level
of skill inequality also increases. Our parameter estimates reveal that investments
are more productive at early ages and in particular for disadvantaged children. Our
findings of a positive return to income transfers at early ages, especially for poorer
households, is largely consistent with prior evidence of a positive effect of income
on a number of child outcomes (see Dahl and Lochner, 2012; Loken et al., 2012)
using different sources of identification. Our results suggest that family income
is a better “target” than initial children’s skills for children’s skills. Lastly, our
finding that that the estimated policy effects would be substantially smaller if one
estimated a restricted technology or ignored measurement error demonstrates the
critical importance of allowing for general technologies and correcting estimates for
measurement error.

Online Appendix
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Table 1: Sample Descriptive Statistics

Mean Std

N Obs 19,070
N of Mothers 3,199
N of Children 4,941
% Male Children 51.32
% Female Children 48.68
% Hispanic Children 21.44
% Black Children 30.44
% Other races 48.12
Mom Education 12.59 2.63
Family Income 61,657.88 47,527.85
Children Final Years of Education 13.30 2.36

Notes: This table shows the main descriptive statistics of the CNLSY79 sample we
use to estimate the model. Children’s Completed Education is the child’s completed
years of education at age 23. The variable ”other races” represents all children which
are not black neither Hispanic (i.e. it includes white, non-Hispanic children). Income
is in $2012 USD.
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Table 2: Estimates for Initial Conditions

Log Child Skills Log Mother Log Mother Log Family
at age 5 Cognitive Skills Noncognitive Skills Income

Variance-Covariance Matrix

Log Child Skills 4.947 6.254 0.122 0.668
at age 5 ( 0.471) ( 0.479) ( 0.031) ( 0.065)

Log Mother 6.254 30.190 0.593 2.588
Cognitive Skills ( 0.479) ( 1.032) ( 0.137) ( 0.099)

Log Mother 0.122 0.593 0.046 0.058
Noncognitive Skills ( 0.031) ( 0.137) ( 0.017) ( 0.012)

Log Family 0.668 2.588 0.058 0.780
Income ( 0.065) ( 0.099) ( 0.012) ( 0.018)

Correlation Matrix

Log Child Skills 1.000 0.512 0.256 0.340
at age 5 (-) ( 0.026) ( 0.029) ( 0.027)

Log Mother 0.512 1.000 0.504 0.533
Cognitive Skills ( 0.026) (-) ( 0.025) ( 0.015)

Log Mother 0.256 0.504 1.000 0.307
Noncognitive Skills ( 0.029) ( 0.025) (-) ( 0.022)

Log Family 0.340 0.533 0.307 1.000
Income ( 0.027) ( 0.015) ( 0.022) (-)

Notes: This table shows the estimated variance-covariance matrix (ΣΩ) and associate
correlation matrix of the initial conditions at age 5-6. Standard errors in parenthesis
are computed using a cluster bootstrap.
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Table 3: Estimates for Investment (Model 1)

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 0.230 0.027 0.020 0.018
( 0.059) ( 0.009) ( 0.009) ( 0.009)

[ 0.14, 0.33] [ 0.01, 0.04] [ 0.01, 0.04] [ 0.01, 0.03]

Log Mother Cognitive Skills 0.071 0.004 0.012 -0.005
( 0.022) ( 0.009) ( 0.015) ( 0.013)

[ 0.04, 0.12] [-0.01, 0.02] [-0.01, 0.04] [-0.02, 0.02]

Log Mother Noncognitive Skills 0.359 0.742 0.694 0.712
( 0.131) ( 0.060) ( 0.084) ( 0.088)

[ 0.11, 0.54] [ 0.64, 0.82] [ 0.52, 0.81] [ 0.54, 0.82]

Log Family Income 0.341 0.227 0.274 0.275
( 0.076) ( 0.056) ( 0.076) ( 0.087)

[ 0.25, 0.48] [ 0.15, 0.33] [ 0.17, 0.43] [ 0.17, 0.44]

Variance Shocks 1.186 1.019 0.868 1.087
( 0.232) ( 0.148) ( 0.236) ( 0.296)

[ 0.96, 1.53] [ 0.83, 1.29] [ 0.66, 1.33] [ 0.82, 1.64]

Notes: This table shows the measurement error corrected estimates for the invest-
ment equation for Model 1 (see Section 6.2.1). Each column shows the coefficients
of the investment equation at the given ages. The dependent variable is investment
in period t which is determined by the covariates at time t . For example, the first
column shows the coefficients at age 5-6 for both contemporaneous parental invest-
ments and contemporaneous child’s skill and contemporaneous family income. Both
standard errors in parenthesis and the 90% confidence interval in square brackets are
computed using a cluster bootstrap.
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Table 4: Estimates for Skill Technology (Model 1 and Model 2)

Model 1 Model 2(
Free Return to Scale Technology

and TFP Dynamics

) (
Restricted Return to Scale Technology

and No TFP Dynamics

)

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 1.966 1.086 0.897 1.065 0.739 0.816 0.833 0.910
( 0.153) ( 0.036) ( 0.027) ( 0.029) ( 0.087) ( 0.072) ( 0.105) ( 0.096)

[ 1.69, 2.21] [ 1.03, 1.15] [ 0.84, 0.93] [ 1.01, 1.11] [ 0.61, 0.88] [ 0.69, 0.93] [ 0.71, 1.02] [ 0.76, 1.07]

Log Investment 0.799 0.695 0.713 0.252 0.300 0.187 0.170 0.087
( 0.262) ( 0.339) ( 0.404) ( 0.541) ( 0.077) ( 0.069) ( 0.097) ( 0.095)

[ 0.41, 1.23] [ 0.15, 1.24] [-0.10, 1.25] [-0.53, 1.20] [ 0.18, 0.42] [ 0.08, 0.32] [-0.01, 0.30] [-0.07, 0.23]

( Log Skills * -0.105 -0.005 -0.003 0.003 -0.040 -0.004 -0.003 0.003
Log Investment ) ( 0.066) ( 0.019) ( 0.013) ( 0.010) ( 0.026) ( 0.015) ( 0.014) ( 0.009)

[-0.22,-0.03] [-0.04, 0.03] [-0.02, 0.02] [-0.02, 0.02] [-0.09,-0.01] [-0.03, 0.02] [-0.03, 0.02] [-0.02, 0.01]

Return to scale 2.660 1.776 1.606 1.320 1.000 1.000 1.000 1.000
( 0.225) ( 0.317) ( 0.398) ( 0.535) (-) (-) (-) (-)

[ 2.30, 3.02] [ 1.25, 2.31] [ 0.79, 2.14] [ 0.58, 2.25] [-,-] [-,-] [-,-] [-,-]

Variance shocks 5.612 4.519 3.585 4.019 2.110 1.279 0.944 0.903
( 0.174) ( 0.184) ( 0.181) ( 0.247) ( 0.178) ( 0.144) ( 0.163) ( 0.165)

[ 5.37, 5.93] [ 4.27, 4.89] [ 3.27, 3.88] [ 3.70, 4.46] [ 1.88, 2.44] [ 1.09, 1.57] [ 0.78, 1.32] [ 0.74, 1.33]

Log TFP 13.067 14.747 11.881 2.927 0.000 0.000 0.000 0.000
( 0.295) ( 0.367) ( 0.541) ( 0.957) (-) (-) (-) (-)

[12.67,13.61] [14.22,15.47] [11.17,13.00] [ 1.38, 4.65] [-,-] [-,-] [-,-] [-,-]

Notes: This table shows the measurement error corrected estimates for the technology
of skills formation for both Model 1 and Model 2 (see Sections 6.2.1 and 6.2.2) . Each
column shows the coefficients of the technology of skills formations at the given age.
The dependent variable is log skills in the next period t + 1, and the covariates
(inputs) are at time t. For example, the first column shows the coefficients for the
skills inputs at age 5-6 which lead to log skills at age 7-8. Both standard errors in
parenthesis and the 90% confidence interval in square brackets are computed using
a cluster bootstrap.
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Table 5: Estimates for Adult Outcome Equation (Model 1)

Schooling Log Wage

Constant 7.088 9.444
( 0.399) ( 0.121)

[ 6.56, 7.71] [ 9.26, 9.64]

Log Children Skills 0.151 0.021
at age 13-14 ( 0.010) ( 0.003)

[ 0.14, 0.16] [ 0.02, 0.03]

Variance Shock 4.333 0.246
( 0.143) ( 0.012)

[ 4.07, 4.56] [ 0.22, 0.26]

Notes: This table shows the estimates for two adult outcome equation specifications:
schooling and log earnings. In both cases the estimates are for Model 1 (see Section
6.2.1) and they are corrected for measurement error. The dependent variable is
either the years of completed education for the child at age 23 or log earnings at age
29. Both standard errors in parenthesis and the 90% confidence interval in square
brackets are computed using a cluster bootstrap.
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Table 6: Estimated Policy Effects under Different Modeling Assumptions

Panel A: ATE by Age of Income Transfer

Measurement Error Corrected

Age of Income Transfer ($ 1000)

Model Age 5-6 Age 7-8 Age 9-10 Age 11-12

Model 1 1.818 0.799 1.025 0.574
[ 0.93, 2.56] [ 0.29, 1.33] [-0.05, 2.15] [-0.39, 1.74]

Model 2 0.404 0.179 0.229 0.128
[ 0.22, 0.64] [ 0.07, 0.32] [-0.02, 0.42] [-0.10, 0.36]

Not Corrected for Measurement Error

Age of Income Transfer ($ 1000)

Model Age 5-6 Age 7-8 Age 9-10 Age 11-12

Model 1 0.687 0.220 0.210 0.251
[ 0.48, 0.90] [ 0.09, 0.36] [ 0.07, 0.34] [ 0.06, 0.47]

Model 2 0.846 0.271 0.259 0.309
[ 0.62, 1.06] [ 0.12, 0.44] [ 0.09, 0.41] [ 0.08, 0.55]

Panel B: ATE at age 5-6 by Family Income

Measurement Error Corrected

Low Income Families High Income Families
(10th Income Percentile) (90th Income Percentile)

Model 1 4.11 Model 1 0.313
Model 2 0.91 Model 2 0.070

Not Corrected for Measurement Error

Low Income Families High Income Families
(10th Income Percentile) (90th Income Percentile)

Model 1 1.465 Model 1 0.158
Model 2 1.806 Model 2 0.194

Notes: Panel A shows the average treatment effects on additional months of com-
pleted education by age of policy intervention ($ 1000 income transfer) for different
model specifications (Model 1 vs Model 2, see Sections 6.2.1 and 6.2.2) and different
estimators (controlling for measurement error or not). The 90% confidence inter-
val in square brackets are computed using a cluster bootstrap. Panel B shows the
ATE respect to family income for the different model specifications and different
estimators.



Table 7: Average Effect of an Income Transfer by Age of Transfer (Outcome: PV of
Earnings)

Panel A: Benefit-Cost Analysis by Age

Age of Benefit on Direct Cost Cost of Education Net Benefit
Intervention PV Earnings (Income Transfer)

($) ($) ($) ($)

Age 5-6 5549 1000 1818 2730

Age 7-8 2437 1000 799 638

Age 9-10 3128 1000 1025 1103

Age 11-12 1750 1000 574 177

Notes: This table shows the benefit-cost analysis for a 1000 dollars transfer to family
of a future median earner workers with 12 years of completed education. The benefit
on the PV of earnings is the difference between the present value of earnings with
and without that transfer when worker was age 5-6. The effect of family income
transfer on earning growth is computed adjusting for the increased earning growth
implied by estimates in Table 5. The cost of that policy takes into account both
the direct transfer and the discounted cost of additional education that the policy
induces. We use a yearly cost of school of 12,000 dollars as approximately estimated
from the National Center for Education Statistics.
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Figure 1: Estimates of Skill Production Elasticity with Respect to Investment at
Age 5-6 (Model 1)

Notes: This figure shows the measurement error corrected estimates of the elasticity
of children’s skills at age 7-8 (θ1) with respect to parental investments at age 5-6 (I0)
for Model 1: ∂ ln θ1

∂ ln I0
= γ2,0 + γ3,0 ln θ0.
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Figure 2: Total Factor Productivity (TFP) Estimates (Model 1)

Notes: This figure shows the estimated log TFP (correcting for measurement error)
for Model 1 (see Section 6.2.1). The x-axis shows children age. Child age of 5 is age
5-6, 7 is age 7-8, and so on.
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Figure 3: Estimated Mean of Log Latent Skills (Model 1)

Notes: This figure provides the mean log latent skills (E(ln θt)) predicted by the
estimated Model 1 (see Section 6.2.1), controlling for measurement error) . The x-
axis shows children age. Child age of 5 is age 5-6, 7 is age 7-8, and so on. Log latent
skills at age 5-6 are normalized to be mean 0.
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Figure 4: Estimated Distribution of Log Cognitive Latent Skills at Age 5-6 and Age
13-14 (Model 1)

Notes: This figure shows the distribution of log latent skills at age 5-6 and at age
13-14 simulated from the estimated Model 1 (see Section 6.2.1), controlling for
measurement error. Log latent skills at age 5-6 are normalized to be mean 0.
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Figure 5: Estimated Dynamics in the Latent Skills Distribution (Model 1)

Notes: This figure shows the dynamics in the distribution of the log latent skill dis-
tribution for the estimated Model 1 (see Section 6.2.1), controlling for measurement
error. Log latent skills at age 5-6 are normalized to be mean 0.
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Figure 6: Estimated Distribution of Log Investments at Age 5-6 and Age 13-14
(Model 1)

Notes: This figure shows the distribution of log latent investments at age 5-6 and at
age 13-14 simulated from the estimated Model 1 (see Section 6.2.1), controlling for
measurement error.
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Figure 7: Average Effect of Income Transfer by Age of Transfer (Outcome: Final
Period θT Skills)

Notes: This figure shows the average percent change in the level of latent children’s
skills at age 13-14 by the different timing (age) of income transfer for the estimated
Model 1 (see Section 6.2.1), controlling for measurement error. The transfer is $1,000

in family income at some age t. We report 100 · E(
θ
′
T (a)−θT
θT

), where θ
′
T (a) is level of

skill at age 13-14 with an income transfer of $1,000 dollars provide to the family at
age a and θT is level of skill at age 13-14 in the baseline model (no income transfer).

69



Figure 8: Average Effect of an Income Transfer by Age of Transfer (Outcome: School-
ing at Age 23)

Notes: This figure shows the average change in the number of months of com-
pleted schooling at age 23 by different timing (age) of income transfer for the es-
timated Model 1 (see Section 6.2.1), controlling for measurement error. We report
E
[
S
′
(a)− S

]
, where S

′
(a) is the number of months of completed schooling at age

23 with an income transfer of $1,000 given at age a while S is the number of months
of completed schooling in baseline model (no income transfer). This figure reports
the results of the same policy experiment as Figure 7 but with a different outcome
measure.
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Figure 9: Heterogeneity in Policy Effects by Age 5-6 Household Income (Outcome:
Schooling at Age 23)

Notes: This figure plots the heterogeneous effect of a $1,000 income transfer at age
5-6 on completed months of schooling by the percentile of initial (age 5-6) family
income for the estimated Model 1 (see Section 6.2.1), controlling for measurement
error. Each income category is defined as the people contained between nth and the
n− 1th of the percentiles of the income distribution. For example, Income category
10 in the graph means the people who belong between the 9th and 10th percentile of
the income distribution. In the estimated income distribution for our sample, income
categories 10, 50, and 90 contain families with about $14,000, $45,000, and $145,000
of annual family income. This figure also plots the average effect over the income
distribution.
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Figure 10: Heterogeneity in Policy Effects by Age 5-6 Children’s Skills (Outcome:
Schooling at Age 23)

Notes: This figure plots the heterogeneous effect of a $1,000 income transfer at age
5-6 on completed months of schooling by the percentile of the child’s initial (age
5-6) skill for the estimated Model 1 (see Section 6.2.1), controlling for measurement
error. Each initial skills category includes the children contained between nth and
the n − 1th of the percentiles of the skills distribution. For example, skill category
10 is the children between the 9th and 10th percentile of the initial skills distribution.
This figure also plots the average effect over the initial skill distribution.
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Appendices

A Proofs

A.1 Proof of Lemma 1

Proof. First, we note that with Zt,m, Gt(θt, It), µt,m and λt,m known, we then
identify the distribution of the measurement error, given

ϕ εt,m
λt,m

(x) =
ϕZ̃t,m(x)

ϕln θt,m(x)

Given the one-to-one mapping between characteristic functions and distributions,
we identify the marginal density of εt,m

λt,m
. Since λt,m is known, we also identify the

marginal density of εt,m, Fεt,m(ε).
Next, consider the following conditional expectation:

E(Zt+1,m| ln θt = a, ln It = `) = µt+1 + λt,mE(ln θt+1| ln θt = a, ln It = `)

+E(εt+1,m| ln θt = a, ln It = `)

where E(εt+1,m| ln θt = a, ln It = `) = 0 given Assumption 1 (εt+1,m independent of
ln θt and ln It).

Iterating expectations and substituting for ln θt = Zt,m−µt,m−εt,m
λt,m

, we have the

following:

E(Zt+1,m| ln θt = a, ln It = `) =

∫
E(Zt+1,m|

Zt,m − µt,m − ε
λt,m

= a, ln It = `, ε)dFεt,m(ε)

Again applying Assumption 1 (εt,m independent of Zt+1,m), we have

=

∫
E(Zt+1,m|

Zt,m − µt,m − ε
λt,m

= a, ln It = `)dFεt,m(ε)

Re-writing again, we have

=

∫
E(Zt+1,m|Zt,m = λt,ma+ µt,m + ε, ln It = `)dFεt,m(ε)
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=

∫
E(Zt+1,m|Zt,m = b(ε), ln It = `)dFεt,m(ε)

Note that for each realization of εt,m = ε, we have Zt,m = b(ε), where b(ε) is
known given µt,m, λt,m, and a are known. We identify the conditional expectation
E(Zt+1,m|Zt,m = b(ε), ln It = `) from the observed distribution of Zt+1,m and Zt,m
measures. Because the distribution of measurement errors Fεt,m(ε) is identified, we
identify E(Zt+1,m| ln θt = a, ln It = `).

Example 4 Consider the case where εt,m ∼ N(0, σ2
t,m) ∀t. We identify σ2

t,m from
V (Zt,m) = λ2

t,mV (ln θt) + V (εt,m) since we have already identified V (ln θt) and λt,m.
The idea of the proof of Lemma 1 is that the value of the current latent skills (ln θt =
a) comes both from observable measure (Zt,m) and unobservable measurement error
(εt,m). Since we identify the distribution of the unobservable, we are able to integrate
out each possible realization of that unobservable random variable. Indeed, if ε takes
value 0, because we are fixing ln θt to be equal to a, this implies that Zt,m would equal:

Zt,m = λt,m · a+ µt,m = b(0)

where both λt,m and µt,m are known. Hence weight E(Zt+1,m|Zt,m = b(0), ln It =
`) with the likelihood of the event that ε takes the value of zero. Because εt,m ∼
N(0, σ2

t,m), we have that the marginal density of the measurement error is

fεt,m(ε) =
1

σt,m
√

2π
e
− ε2

2σ2
t,m

and ∫
E(Zt+1,m|Zt,m = b(ε), ln It = `) fεt,m(ε)d ε

Because εt,m is a continuous random variable, we integrate over all the values to find
E(Zt+1,m| ln θt = a, ln It = `). This approach would be similar in the case where
investment is also a latent variable. In this case, we would integrate over the support
of the measurement error terms of both variables. by Fεt,m(ε) = pr(εt,m ≤ ε). Define

Z̃t,m = ln θt + εt,m
λt,m

and its characteristic function ϕZ̃t,m(x) = E

[
e
ix
(
Zt,m−µt,m

λt,m

)]
.

Define ϕln θt(x) = E
[
eix ln θt

]
to be the characteristic function of ln θt. Given the

independence between εt,m and ln θt (Assumption 1), we can rewrite the characteristic
function for εt,m

λt,m
to be:
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A.2 Proof of Theorem 1

Proof.
Given Gt(θt, It) and the measurement parameters for period t, µt,m and λt,m, are

known, we use Lemma 1 to identify E(ln θt+1| ln θt = a, ln It = `) from E(Zt+1,m| ln θt =
a, ln It = `) for any a ∈ R and ` ∈ R. We then use the following transformation:

E(Zt+1,m| ln θ = a1, ln It = `1)− E(Zt+1,m| ln θ = a2, ln It = `2)

E(Zt+1,m| ln θ = a3, ln It = `3)− E(Zt+1,m| ln θ = a2, ln It = `2)
=

ln ft(e
a1 , e`1)− ln ft(e

a2 , e`2)

ln ft(ea3 , e`3)− ln ft(ea2 , e`2)

Because the function ft satisfies the known location and scale definition, then
for the points (a2, `2) and (a3, `3) the function evaluated at those points, ft(e

a2 , e`2)
and ft(e

a3 , e`3), where ft(e
a2 , e`2) 6= ft(e

a3 , e`3), is known. Call these known points,
ft(e

a2 , e`2) = α2 and ft(e
a3 , e`3) = α3.

E(Zt+1,m| ln θt = a1, ln It = `1)− E(Zt+1,m| ln θt = a2, ln It = `2)

E(Zt+1,m| ln θt = a3, ln It = `3)− E(Zt+1,m| ln θt = a2, ln It = `2)
=

ln ft(e
a1 , e`1)− α2

α3 − α2

We identify the function ln ft(θt, It) over its support by varying a1 ∈ R and
`1 ∈ R. We cannot of course use this transformation to identify the function at the
point (a2, `2), but the function evaluated at this point ft(e

a2 , e`2) is already known
by Definition 1.

A.3 Derivation of Example with CES Technology (Example
2)

∆1 =
ln f0(a1, 0)− ln f0(1, 1)

ln f0(e1, e1)− ln f0(1, 1)

∆1 =
ln(γ0 a1)− 0

ln(e1)− 0

∆1 =
ln(γ0 a1)

1

e∆1 = γ0 a1

γ0 =
e∆1

a1

3



Once we have γ0, we can use the same ratio as before taking a1 6= {0, 1}, a3 6= 0,
`1 = 1, a2 = a4 = `2 = `4=1 and taking the limit `3 → 0 we have:

∆2 =
ln f0(a1, 1)− ln f0(1, 1)

ln f0(a3, 0)− ln f0(1, 1)

∆2 =
ln f0(a1, 1)− 0

ln f0(a3, 0)− 0

∆2 =
ln f0(a1, 1)

ln f0(a3, 0)

∆2 =
ln(γ0 a

φ0

1 + 1− γ0)

ln(γ0 a3)

ln(γ0 a3)∆2 = ln(γ0 a
φ0

1 + 1− γ0)

(γ0 a3)∆2 = γ0 a
φ0

1 + 1− γ0

(a1)φ0 =
(γ0 a3)∆2 − 1 + γ0

γ0

φ0 ln(a1) = ln

(
(γ0 a3)∆2 − 1 + γ0

γ0

)

φ0 =
ln
(

(γ0 a3)∆2−1+γ0

γ0

)
ln(a1)

A.4 Technologies and Output Elasticities

One rationale for the choice of a technology specification with non-constant returns
to scale is the flexibility this specification offers with respect to the implied output
elasticity. We consider the output elasticity with respect to investment defined as

εI ≡
∂ ln θt+1

∂ ln It

This elasticity is key to quantifying the effects of policy interventions.
In the general CES case, with technology given by
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θt+1 =
[
γtθ

φt
t + (1− γt)Iφtt

]ψt
φt ,

the output elasticity is given by

εI =
ψt
φt

[
γθφtt + (1− γt)Iφtt

]ψt
φt
−1

φ(1− γt)Iφt−1
t · It[

γtθ
φt
t + (1− γt)Iφtt

]ψt
φt

=
ψt(1− γt)Iφtt

γtθ
φt
t + (1− γt)Iφtt

∈ [0,∞)

In the special case of constant returns to scale (CRS), ψt = 1, and εI ∈ (0, 1). CRS
implies this elasticity is bounded from above by 1. The general, non-constant returns
to scale, case allows a larger than unit elastic response.

Similarly, the general translog technology,

ln θt+1 = α1t ln θt + α2t ln It + α3t ln θt ln It

with elasticity

εI = α1t + α3t ln θt

also allows general higher than unit elastic elasticities.
The main insight we want to underline is that the CES technology with constant

return to scale restricts the output elasticity to be between 0 and 1: a one percent
change in investment leads to a less than one percent change in next period skills.
This prediction is independent of data, hence it can potentially be very restrictive in
the context of child development and skills formation.
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B Additional Tables and Figures

B.1 Additional Tables for Model 1 Corrected for Measure-
ment Error
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Table B.1-1: Estimates for Income Process

Constant 0.377
( 0.013)

Log Family Income t-1 0.753
( 0.008)

Variance Innovation 0.579
( 0.008)

Notes: This table shows the estimates for the income process. The dependent variable
is log family income at time t. Log Family Income t − 1 is log family income two
years prior. Standard errors in parenthesis are computed using a cluster bootstrap.
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Figure B.1-1: Distribution of Elasticity of Next Period Skills with respect to Invest-
ment by Age

Notes: This figure shows the box plot for the elasticity of next period skills with
respect to investment by different ages in the estimated Model 1 controlling for mea-
surement error. The box plot is constructed as follow: the ”central box” represents
the central 50% of the data. Its lower and upper boundary lines are at the 25th and
75th quantile of the data. The central line indicates the median of the data while
the two extreme lines (the top and the bottom ones) represents the 5th and 95th

percentiles.
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Figure B.1-2: Distribution of Technology Return to Scale by Age

Notes: This figure shows the box plot for the technology return to scale by different
ages in the estimated Model 1 controlling for measurement error. The box plot is
constructed as follow: the ”central box” represents the central 50% of the data. Its
lower and upper boundary lines are at the 25th and 75th quantile of the data. The
central line indicates the median of the data while the two extreme lines (the top
and the bottom ones) represents the 5th and 95th percentiles.
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B.2 Descriptive Statistics
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Table B.2-1: Children’s Skills Measures

Measures Range Values Age Range Scoring Order

(The Peabody Individual Achievement Test):
Math 0-84 5-14 Positive
Recognition 0-84 5-14 Positive
Comprehensive 0-84 5-14 Positive

Notes: This table shows the features of children cognitive measures. The first column
indicate each type of children skills measure we use to estimate our model. The
second column shows the minimum and maximum value that each measure takes.
The third column shows the minimum and maximum children age at which each
measure is available. The last column indicates whether the measure is ordered
positively (the higher score tend to reveal higher skills) or negatively (the lower
score tend to reveal higher skills).
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Table B.2-2: Mothers Cognitive Skills Measures

Measures Range Values Scoring Order

Arithmetics 0-30 Positive
Word Knowledge 0-35 Positive
Paragraph Composition 0-15 Positive
Numeric Operations 0-50 Positive
Coding Speed 0-84 Positive
Math Knowledge 0-25 Positive

Notes: This table shows the features of mother cognitive measures. The first column
indicate each type of mother cognitive skills measure we use to estimate our model.
The second column shows the minimum and maximum value that each measure
takes. The last column indicates whether the measure is ordered positively (the
higher score tend to reveal higher skills) or negatively (the lower score tend to reveal
higher skills).
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Table B.2-3: Mothers Noncognitive Skills Measures

Type of variables Range Values Label Scoring Order

Mother Noncognitive Measures

(Rosenberg indexes):
I am a person of worth

1-4

1= Strongly agree

Negative
I have a number of good qualities 2= Agree
I am able to do things as well as most other people 3=Disagree
I take a positive attitude toward myself 4=Strongly disagree

I am inclined to feel that I am a failure

1-4 Positive
I felt I do not have much to be proud of 1= Strongly agree
I wish I could have more respect for myself 2= Agree
I certainly feel useless at times 3=Disagree
At times I think I am no good at all 4=Strongly disagree

(Rotter Indexes):

Rotter 1 ( Life is in control or not) 1-4

1= In Control and closer to my opinion

Negative2= In control but slightly closer to my opinion
3= Not in control but slightly closer to my opinion
4= Not in control and closer to my opinion

Rotter 2 (Plans work vs Matter of Luck) 1-4

1= Plans work and closer to my opinion

Negative
2= Plans work but slightly closer to my opinion
3= Matter of Luck but slightly closer to my opinion
4= Matter of Luck and closer to my opinion

Rotter 3 (Luck not a factor vs Flip a coin) 1-4

1= Luck not a factor and closer to my opinion

Negative
2=Luck not a factor but slightly closer to my opinion
3= Flip a coin but slightly closer to my opinion
4= Flip a coin and closer to my opinion

Rotter 4 (Luck big role vs Luck no role) 1-4

1= Luck big role and closer to my opinion

Positive
2=Luck big role but slightly closer to my opinion
3= Luck no role but slightly closer to my opinion
4= Luck no role and closer to my opinion

Notes: This table shows the features of mother noncognitive measures. The first
column indicate each type of mother cognitive skills measure we use to estimate
our model. The second column shows the minimum and maximum value that each
measure takes. The third column shows the type of answers associated with each
measure value. The last column indicates whether the measure is ordered positively
(the higher score tend to reveal higher skills) or negatively (the lower score tend to
reveal higher skills).
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Table B.2-4: Descriptive Statistics about Children’s Cognitive Skills Measures

Number
of

Measures Mean Std Min Max Values

Age 5-6

PIAT Math 11.858 4.278 0.000 37.000 32.000
PIAT Recognition 12.864 5.048 0.000 57.000 35.000
PIAT Comprehensive 12.770 4.930 0.000 49.000 35.000

Age 7-8

PIAT Math 23.016 8.681 0.000 74.000 58.000
PIAT Recognition 25.748 8.774 0.000 80.000 67.000
PIAT Comprehensive 24.099 8.142 0.000 69.000 60.000

Age 9-10

PIAT Math 38.720 10.832 0.000 84.000 71.000
PIAT Recognition 40.825 11.487 0.000 84.000 76.000
PIAT Comprehensive 37.540 10.231 0.000 78.000 64.000

Age 11-12

PIAT Math 48.184 10.543 0.000 84.000 78.000
PIAT Recognition 51.079 13.278 0.000 84.000 74.000
PIAT Comprehensive 45.732 11.272 0.000 84.000 72.000

Age 13-14

PIAT Math 53.767 11.387 0.000 84.000 78.000
PIAT Recognition 58.670 14.262 0.000 84.000 74.000
PIAT Comprehensive 51.015 12.229 0.000 84.000 74.000

Notes: This table shows main sample statistics of children cognitive skills measures
by children age.
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Table B.2-5: Descriptive Statistics of Mother Cognitive and Noncognitive Skills Mea-
sures

Mother Cognitive Skills
Number

of
Measures Mean Std Min Max Values

Mom‘s Arithmetic Reasoning Test Score 13.946 6.603 0.000 30.000 31.000

Mom‘s Word Knowledge Test Score 21.773 8.562 0.000 35.000 36.000

Mom‘s Paragraph Composition Test Score 9.620 3.778 0.000 15.000 16.000

Mom‘s Numerical Operations Test Score 31.044 11.831 0.000 50.000 51.000

Mom‘s Coding Speed Test Score 42.953 17.468 0.000 84.000 85.000

Mom‘s Mathematical Knowledge Test Score 10.853 5.867 0.000 25.000 26.000

Mother Non Cognitive Skills

Mom‘s Self-Esteem: ”I am a person of worth” 2.461 0.549 0.000 3.000 4.000

Mom‘s Self-Esteem: ” I have good qualities” 2.338 0.539 0.000 3.000 4.000

Mom‘s Self-Esteem: ”I am a failure” 3.379 0.618 1.000 4.000 4.000

Mom‘s Self-Esteem: ”I am as capable as others” 2.291 0.567 0.000 3.000 4.000

Mom‘s Self-Esteem: ”I have nothing to be proud of” 3.360 0.669 1.000 4.000 4.000

Mom‘s Self-Esteem: ”I have a positive attitude” 2.183 0.619 0.000 3.000 4.000

Mom‘s Self-Esteem: ”I wish I had more self-respect” 2.796 0.817 1.000 4.000 4.000

Mom‘s Self-Esteem: ”I feel useless at times” 2.650 0.770 1.000 4.000 4.000

Mom‘s Self-Esteem: ”I sometimes think I am no good” 3.039 0.802 1.000 4.000 4.000

Mom‘s Rotter Score:”I have no control” 2.863 1.058 1.000 4.000 4.000

Mom‘s Rotter Score: ”I make no plans for the future” 2.386 1.192 1.000 4.000 4.000

Mom‘s Rotter Score: ”Luck is big factor in life” 3.205 0.856 1.000 4.000 4.000

Mom‘s Rotter Score: ”Luck plays big role in my life” 2.594 1.024 1.000 4.000 4.000

Notes: This table shows main sample statistics of mother cognitive skills measures.
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Figure B.2-1: Descriptive Statistics: Mean of PIATs over the Childhood

Notes: This figure shows the mean Piat Math, Recognition and Comprehensive test
scores by age. The x-axis shows children age. Child age of 5 is age 5-6, 7 is age 7-8,
and so on.
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B.3 Measurement Parameter Estimates
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Table B.3-1: Measurement Parameter Estimates for Children’s Cognitive Measures

Measures µ λ Signal Noise

Age 5-6

PIAT Math 11.858 1.000 0.270 0.730
PIAT Recognition 12.864 2.238 0.972 0.028
PIAT Comprehensive 12.770 2.159 0.948 0.052

Age 7-8

PIAT Math 11.858 1.000 0.757 0.243
PIAT Recognition 15.592 0.906 0.608 0.392
PIAT Comprehensive 15.014 0.802 0.554 0.446

Age 9-10

PIAT Math 11.858 1.000 0.779 0.221
PIAT Recognition 10.297 1.136 0.894 0.106
PIAT Comprehensive 12.273 0.936 0.765 0.235

Age 11-12

PIAT Math 11.858 1.000 0.803 0.197
PIAT Recognition 2.107 1.347 0.918 0.082
PIAT Comprehensive 6.129 1.089 0.833 0.167

Age 13-14

PIAT Math 11.858 1.000 0.927 0.073
PIAT Recognition 8.556 1.195 0.845 0.155
PIAT Comprehensive 9.041 1.002 0.806 0.194

Notes: This table shows the measurement error parameters and associated statistics
for children cognitive measures. The first two columns shows the measurement pa-
rameters (µ and λ) while the last two columns shows the signal and noise variance
decomposition for the children cognitive measures.
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Table B.3-2: Measurement Parameter Estimates for Mother Cognitive and Noncog-
nitive Measures

Mother Cognitive Skills
Measures µ λ Signal Noise

Mom‘s Arithmetic Reasoning Test Score 13.946 1.000 0.692 0.308

Mom‘s Word Knowledge Test Score 21.773 1.345 0.745 0.255

Mom‘s Paragraph Composition Test Score 9.620 0.584 0.722 0.278

Mom‘s Numerical Operations Test Score 31.044 1.720 0.638 0.362

Mom‘s Coding Speed Test Score 42.953 2.308 0.527 0.473

Mom‘s Mathematical Knowledge Test Score 10.853 0.854 0.639 0.361

Mother Non Cognitive Skills

Mom‘s Self-Esteem: ”I am a person of worth” 2.461 1.000 0.152 0.848

Mom‘s Self-Esteem: ” I have good qualities” 2.338 1.263 0.252 0.748

Mom‘s Self-Esteem: ”I am a failure” 3.379 1.612 0.311 0.689

Mom‘s Self-Esteem: ”I am as capable as others” 2.291 1.127 0.181 0.819

Mom‘s Self-Esteem: ”I have nothing to be proud of” 3.360 1.746 0.312 0.688

Mom‘s Self-Esteem: ”I have a positive attitude” 2.183 1.474 0.260 0.740

Mom‘s Self-Esteem: ”I wish I had more self-respect” 2.796 2.080 0.297 0.703

Mom‘s Self-Esteem: ”I feel useless at times” 2.650 1.861 0.268 0.732

Mom‘s Self-Esteem: ”I sometimes think I am no good” 3.039 2.096 0.313 0.687

Mom‘s Rotter Score:”I have no control” 2.461 1.000 0.092 0.908

Mom‘s Rotter Score: ”I make no plans for the future” 2.338 1.263 0.140 0.860

Mom‘s Rotter Score: ”Luck is big factor in life” 3.379 1.612 0.118 0.882

Mom‘s Rotter Score: ”Luck plays big role in my life” 2.291 1.127 0.044 0.956

Notes: This table shows the measurement error parameters and associated statistics
for mother cognitive and noncognitive measures. The first two columns shows the
measurement parameters (µ and λ) while the last two columns shows the signal and
noise variance decomposition for the mother measures.
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B.4 Estimates and Results for Model 2 with Measurement
Error Corrected Estimator
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Table B.4-1: Estimates for Investment (Model 2)

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 0.230 0.069 0.068 0.065
( 0.059) ( 0.021) ( 0.029) ( 0.030)

Log Mother Cognitive Skills 0.071 0.004 0.011 -0.005
( 0.022) ( 0.009) ( 0.014) ( 0.012)

Log Mother Noncognitive Skills 0.359 0.711 0.660 0.678
( 0.131) ( 0.059) ( 0.084) ( 0.084)

Log Family Income 0.341 0.217 0.261 0.262
( 0.076) ( 0.054) ( 0.072) ( 0.082)

Variance Shocks 1.186 0.969 0.831 1.028
( 0.232) ( 0.134) ( 0.211) ( 0.259)

Notes: This table shows the measurement error corrected estimates for the invest-
ment equation for Model 2. Each column shows the coefficients of the investment
equation at the given ages. The dependent variable is investment in period t which
is determined by the covariates at time t . For example, the first column shows
the coefficients at age 5-6 for parental investments and child’s skill and family in-
come at age 5-6 as well. Standard errors in parenthesis are computed using a cluster
bootstrap.

21



Figure B.4-1: Heterogeneity in Policy Effects by Age 5 Household Income (Outcome:
Schooling at Age 23)

Notes: This figure plots the heterogeneous effect of a $1,000 income transfer at age 5-6
on completed months of schooling by the percentile of initial (age 5-6) family income
for the estimated Model 2, controlling for measurement error. Each income category
is defined as the people contained between nth and the n − 1th of the percentiles of
the income distribution. For example, Income category 10 in the graph means the
people who belong between the 9th and 10th percentile of the income distribution. In
the estimated income distribution for our sample, income categories 10, 50, and 90
contain families with about $14,000, $45,000, and $145,000 of annual family income.
This figure also plots the average effect over the income distribution.
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B.5 Estimates and Results without Measurement Error Cor-
rection (Model 1 and Model 2)
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Table B.5-1: Estimates for Investment (Model 1 and Model 2)

Model 1 Model 2(
Free Return to Scale Technology

and TFP Dynamics

) (
Restricted Return to Scale Technology

and No TFP Dynamics

)

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 0.083 0.032 0.024 0.015 0.083 0.045 0.030 0.014
( 0.023) ( 0.009) ( 0.009) ( 0.007) ( 0.023) ( 0.012) ( 0.011) ( 0.007)

Log Mother Cognitive Skills 0.082 0.010 0.010 -0.002 0.082 0.010 0.010 -0.002
( 0.019) ( 0.011) ( 0.014) ( 0.011) ( 0.019) ( 0.011) ( 0.014) ( 0.011)

Log Mother Noncognitive Skills 0.248 0.454 0.442 0.553 0.248 0.448 0.440 0.553
( 0.093) ( 0.073) ( 0.098) ( 0.074) ( 0.093) ( 0.073) ( 0.098) ( 0.074)

Log Family Income 0.587 0.504 0.524 0.434 0.587 0.498 0.521 0.435
( 0.074) ( 0.070) ( 0.095) ( 0.077) ( 0.074) ( 0.069) ( 0.095) ( 0.078)

Variance Shocks 1.635 1.522 1.537 1.535 1.635 1.504 1.529 1.537
( 0.224) ( 0.172) ( 0.364) ( 0.327) ( 0.224) ( 0.168) ( 0.360) ( 0.329)

Notes: This table shows the estimates (not corrected for measurement error) for
the investment equation for both Model 1 and Model 2. Each column shows the
coefficients of the investment equation at the given ages. The dependent variable
is investment in period t which is determined by the covariates at time t . For
example, the first column shows the coefficients at age 5-6 for parental investments
and child’s skill and family income at age 5-6 as well. Standard errors in parenthesis
are computed using a cluster bootstrap.
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Table B.5-2: Estimates for Skill Technology (Model 1 and Model 2)

Model 1 Model 2(
Free Return to Scale Technology

and TFP Dynamics

) (
Restricted Return to Scale Technology

and No TFP Dynamics

)

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 0.875 0.771 0.669 0.770 0.625 0.868 0.897 0.880
( 0.057) ( 0.022) ( 0.017) ( 0.018) ( 0.047) ( 0.039) ( 0.039) ( 0.052)

Log Investment 0.518 0.069 0.042 0.325 0.370 0.125 0.101 0.127
( 0.089) ( 0.066) ( 0.061) ( 0.099) ( 0.045) ( 0.038) ( 0.039) ( 0.052)

( Log Skills * 0.006 0.007 0.002 -0.006 0.005 0.008 0.002 -0.007
Log Investment ) ( 0.012) ( 0.003) ( 0.002) ( 0.002) ( 0.009) ( 0.004) ( 0.002) ( 0.003)

Return to scale 1.399 0.846 0.713 1.089 1.000 1.000 1.000 1.000
( 0.098) ( 0.072) ( 0.063) ( 0.096) (-) (-) (-) (-)

Variance shocks 7.490 7.673 6.716 7.382 5.354 6.155 7.211 9.092
( 0.127) ( 0.145) ( 0.192) ( 0.220) ( 0.386) ( 0.565) ( 0.769) ( 0.980)

Log TFP 12.789 18.491 18.477 14.011 0.000 0.000 0.000 0.000
( 0.215) ( 0.299) ( 0.444) ( 0.690) (-) (-) (-) (-)

Notes: This table shows the estimates (not corrected for measurement error) for the
technology of skills formation and the technology return to scale (i.e. the sum of the
share parameters for each input) for not measurement error corrected estimates of
both Model 1 and Model 2. Each column shows the coefficients of the technology of
skills formations at the given age. The dependent variable is log skills in the next
period t+1 while the covariates (inputs) are at time t. For example, the first column
shows the coefficients for the skills inputs at age 5-6 which lead to log skills at age
7-8. Standard errors in parenthesis are computed using a cluster bootstrap.
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Figure B.5-1: Heterogeneity in Policy Effects by Age 5 Household Income (Outcome:
Schooling at Age 23, Model 1 )

Notes: This figure plots the heterogeneous effect of a $1,000 income transfer at age
5-6 on completed months of schooling by the percentile of initial (age 5-6) family
income for the estimated Model 1, not controlling for measurement error. Each
income category is defined as the people contained between nth and the n − 1th of
the percentiles of the income distribution. For example, Income category 10 in the
graph means the people who belong between the 9th and 10th percentile of the income
distribution. In the estimated income distribution for our sample, income categories
10, 50, and 90 contain families with about $14,000, $45,000, and $145,000 of annual
family income. This figure also plots the average effect over the income distribution.
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Figure B.5-2: Heterogeneity in Policy Effects by Age 5 Household Income (Outcome:
Schooling at Age 23, Model 2 )

Notes: This figure plots the heterogeneous effect of a $1,000 income transfer at age
5-6 on completed months of schooling by the percentile of initial (age 5-6) family
income for the estimated Model 2, not controlling for measurement error. Each
income category is defined as the people contained between nth and the n − 1th of
the percentiles of the income distribution. For example, Income category 10 in the
graph means the people who belong between the 9th and 10th percentile of the income
distribution. In the estimated income distribution for our sample, income categories
10, 50, and 90 contain families with about $14,000, $45,000, and $145,000 of annual
family income. This figure also plots the average effect over the income distribution.
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B.6 Skills measures in CNLSY79

Measures for Cognitive Skills

• Peabody Picture Vocabulary Test

The Peabody Picture Vocabulary Test, revised edition (PPVT-R) ”measures
an individual’s receptive (hearing) vocabulary for Standard American English
and provides, at the same time, a quick estimate of verbal ability or scholastic
aptitude” (see Dunn and Dunn, 1981). The PPVT was designed for use with
individuals aged 2 to 40 years. The English language version of the PPVT-R
consists of 175 vocabulary items of generally increasing difficulty. The child
listens to a word uttered by the interviewer and then selects one of four pictures
that best describes the word’s meaning. The PPVT-R has been administered,
with some exceptions, to NLSY79 children between the ages of 3-18 years of
age until 1994, when children 15 and older moved into the Young Adult survey.
In the current survey round, the PPVT was administered to children aged 4-5
and 10-11 years of age, as well as to some children with no previous valid PPVT
score.

The first item, or starting point, is determined based on the child’s PPVT age.
Starting at an age-specific level of difficulty is intended to reduce the number
of items that are too easy or too difficult, in order to minimize boredom or
frustration. The suggested starting points for each age can be found in the
PPVT manual (see Dunn and Dunn, 1981).

Testing begins with the starting point and proceeds forward until the child
makes an incorrect response. If the child has made 8 or more correct responses
before the first error, a “basal” is established. The basal is defined as the last
item in the highest series of 8 consecutive correct answers. Once the basal is
established, testing proceeds forwards, until the child makes six errors in eight
consecutive items. If, however, the child gives an incorrect response before
8 consecutive correct answers have been made, testing proceeds backwards,
beginning at the item just before the starting point, until 8 consecutive correct
responses have been made. If a child does not make eight consecutive responses
even after administering all of the items, he or she is given a basal of one. If
a child has more than one series of 8 consecutive correct answers, the highest
basal is used to compute the raw score.

A “ceiling” is established when a child incorrectly identifies six of eight con-
secutive items. The ceiling is defined as the last item in the lowest series of
eight consecutive items with six incorrect responses. If more than one ceiling is
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identified, the lowest ceiling is used to compute the raw score. The assessment
is complete once both a basal and a ceiling have been established. The ceiling
is set to 175 if the child never makes six errors in eight consecutive items.

A child’s raw score is the number of correct answers below the ceiling. Note
that all answers below the highest basal are counted as correct, even if the child
answered some of these items incorrectly. The raw score can be calculated by
subtracting the number of errors between the highest basal and lowest ceiling
from the item number of the lowest ceiling.

• The Peabody Individual Achievement Test (PIAT): Math

The PIAT Mathematics assessment protocol used in the field is described in
the documentation for the Child Supplement (available on the Questionnaires
page). This subscale measures a child’s attainment in mathematics as taught
in mainstream education. It consists of 84 multiple-choice items of increasing
difficulty. It begins with such early skills as recognizing numerals and progresses
to measuring advanced concepts in geometry and trigonometry. The child looks
at each problem on an easel page and then chooses an answer by pointing to
or naming one of four answer options.

Administration of this assessment is relatively straightforward. Children enter
the assessment at an age-appropriate item (although this is not essential to
the scoring) and establish a ”basal” by attaining five consecutive correct re-
sponses. If no basal is achieved then a basal of ”1” is assigned (see PPVT).
A ”ceiling” is reached when five of seven items are answered incorrectly. The
non-normalized raw score is equivalent to the ceiling item minus the number
of incorrect responses between the basal and the ceiling scores.

• The Peabody Individual Achievement Test (PIAT): Reading Recog-
nition

The Peabody Individual Achievement Test (PIAT) Reading Recognition sub-
test, one of five in the PIAT series, measures word recognition and pronuncia-
tion ability, essential components of reading achievement. Children read a word
silently, then say it aloud. PIAT Reading Recognition contains 84 items, each
with four options, which increase in difficulty from preschool to high school
levels. Skills assessed include matching letters, naming names, and reading
single words aloud.

The only difference in the implementation procedures between the PIAT Math-
ematics and PIAT Reading Recognition assessments is that the entry point into
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the Reading Recognition assessment is based on the child’s score in the Math-
ematics assessment, although entering at the correct point is not essential to
the scoring.

The scoring decisions and procedures are identical to those described for the
PIAT Mathematics assessment.

• The Peabody Individual Achievement Test (PIAT): Reading Com-
prehension

The Peabody Individual Achievement Test (PIAT) Reading Comprehension
subtest measures a child’s ability to derive meaning from sentences that are
read silently. For each of 66 items of increasing difficulty, the child silently
reads a sentence once and then selects one of four pictures that best portrays
the meaning of the sentence.

Children who score less than 19 on Reading Recognition are assigned their
Reading Recognition score as their Reading Comprehension score. If they score
at least 19 on the Reading Recognition assessment, their Reading Recognition
score determines the entry point to Reading Comprehension. Entering at the
correct location is, however, not essential to the scoring.

Basals and ceilings on PIAT Reading Comprehension and an overall nonnormed
raw score are determined in a manner identical to the other PIAT procedures.
The only difference is that children for whom a basal could not be computed
(but who otherwise completed the comprehension assessment) are automati-
cally assigned a basal of 19. Administration instructions can be found in the
assessment section of the Child Supplement.

30



C Alternative Measures

One of the characteristics of the data used to study child development is the rich
variety skill measures. The previous sections considered identification where the skill
measures are in a “raw” form: each measure is a linear function of the latent log
skill. This measurement system, while commonly assumed in the prior literature, is
in some respects a “best case.”

In this section, we consider alternative forms of measures and re-examine whether
we can identify the same types of production technologies using these alternative
measures. We consider four classes of measures which are frequently encountered
empirically: (i) age-standardized measures where the raw measures are transformed
ex post to have mean 0 and standard deviation 1 for the sample at hand; (ii) relative
measures where the measures reflect not the level of a child’s skill but the child’s
skill relative to the population mean; (iii) ordinal measures which provide a dis-
crete ranking of children’s skills; and iv) censored measures where the measures are
truncated with a “floor” (finite minimum value) and/or a “ceiling” (finite maximum
value). For each type of measure, we discuss which of our prior identification results
still hold, if any, and what auxiliary assumptions would be sufficient to restore our
identification results.

C.1 Age-Standardized Measures

Age-standardized measures are defined as the following transformation of raw mea-
sures Zt,m:

ZS
t,m =

Zt,m − E(Zt,m)

V (Zt,m)1/2
. (C-1)

By construction, these measures are mean 0 and standard deviation 1 for all child
ages.

Our main identification result using standardized measures (Theorem 1) continues
to hold if the technology of skill formation has known scale and location functions
(KLS, Definition 1). To show this, we can re-write the standardized measures as a
linear function of the latent variable:

ZS
t,m = µSt,m + λSt,m ln θt + εSt,m

where the measurement parameters and measurement error are

µSt,m = −λSt,m(V (ln θt)) · E(ln θt)

31



λSt,m =
λt,m

V (Zt,m)1/2
=

λt,m
(λ2

t,mV (ln θt) + V (εt))1/2

εSt,m =
εt,m

V (Zt,m)1/2
=

εt,m
(λ2

t,mV (ln θt) + V (εt))1/2

These expressions show that the standardized measurement parameters are linear
functions of the underlying moments of the latent skill distribution.23 The reason for
the invariance of our identification result to the use of standardized or raw measures
is that any measurement parameters are “transformed away” as shown in Lemma 1.
More generally, identification of the KLS production technologies is invariant to any
increasing linear transformation of the original raw measures, say Z ′t,m = a + bZt,m
for a ∈ R and b ∈ R+.24

However, the use of age-standardized measures may not be cost free in the sense
that age-standardized measures, which are constructed to be age-stationary in their
first and second moments, contain no information about skill dynamics in these
moments. For example, standardizing age-invariant measures, as defined in the
previous section, so that the mean and variance of these measures is equal at all ages,
would essentially “throw away” information regarding the average skill development
of children across ages. This loss of information prevents the identification of the
broader classes of technology of skills formation discussed above, the unknown Total
Factor Productivity (TFP) functions (as in equation 14) or unknown scale functions
(as in equation 15).

To see this point, recall that the identification of TFP or scaling parameter are
based on additional information of the dynamics of measurement parameters. In
the case of raw measures, those parameters are fully free parameters. On the other
hand, when we use standardized measures, the new measurement parameters (µSt,m
and λSt,m) are no longer free parameters but functions of the moments of the la-
tent distribution. Hence, restricting the dynamics of the measurement parameters
in this case (imposing Assumption 2 and Assumption 3) is equivalent to restricting
the dynamics of the latent skills, and can restrict the possible classes of technolo-
gies. While age-standardizing measures may provide some descriptive value, in the

23It is important to recognize that the use of standardized measures does not necessarily imply
that any particular restriction on the underlying latent variables such as E(ln θt) = 0 or V (ln θt) = 1.
The standardizations are necessarily in terms of the observed measures, not the unobserved latent
variables.

24One caveat deserves mention. Recall that because the initial conditions are normalized to a
particular measure, using standardized rather than raw measures can affect the normalized location
and scale of the latent skills, and in general affect the values of the production parameters which
are identified up to the normalized initial period measure.
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context of identifying dynamic production technologies, there is simply no point to
transforming the measures in this way and throwing away potentially important
identifying information.

C.2 Relative Measures

Some of the proxies used to measure children outcomes come from surveys where
observers (often mothers, fathers, or other caregivers) provide assessments of the
child. It can be plausible then that these observers are actually evaluating the child
with respect to their perceptions of the average in the population. We call this type
of measure a relative measures. In this case, these measures can be written as:

ZR
t,m = µRt,m + λRt,m(ln θt − E(ln θt)) + εRt,m. (C-2)

where (ln θt−E(ln θt) is the latent variable being measured by ZR
t,m, which we model

as the deviation of the actual level of the child’s skill ln θt relative to the mean value in
the population E(ln θt). Relative measures are not ordinal ranking measures (which
we discuss below) but a continuous measure of skills relative to the population mean.
As with the age-standardized measures, the relative measures are an increasing linear
function of the underlying latent variable, and therefore the main identification result
in Theorem 1 continues to hold as the measurement parameters are “transformed
away.”

C.3 Ordinal Measures

We define ordinal measures the measures which are based on children rankings: this
child has higher skills than another child. Let’s assume that we observe in data
children’s skill rank. Let Zt = {1, 2, . . . , J} be the child’s human capital rank, with 1
highest level, and J lowest level. The observer (or us forming ranks from test scores)
forms rank according to this ordinal model:

ZO
t,m =



J if λOt,m ln θt + εOt,m < κJ,t,m
J − 1 if κJ,t,m < λOt,m ln θt + εOt,m < κJ−1,t,m
...
2 if κ3,t,m < λOt,m ln θt + εOt,m < κ2,t,m

1 if λOt,m ln θt + εOt,m > κ2,t,m

(C-3)

where the κ2, . . . , κJ , with κ2 > κ3, . . . , κJ , are measurement parameters which pro-
vide the mapping from latent skills ln θt and measurement error εOt,m to the observed
ordinal ranking values ZO

t,m. The probability a child is ranked first (j = 1) is then
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pr(ZO
t,m = 1) = pr(λOt,m ln θt + εOt,m > κ2,t,m)

= Fε(λ
O
t,m ln θt − κ2,t,m)

where Fε is the distribution function for the measurement error εOt,m.
With ordinal ranking measures the non-parametric identification result no longer

holds. There is no longer a one-to-one mapping between a child’s latent skills θt
and expected measures, as multiple values of θt are consistent with a child having a
certain rank. Without additional assumptions beyond Assumption 1 (independence
of measures), ordinal measures of skills do not allow non-parametric identification of
the continuous skill production function.

If the researcher were to assume a particular known distribution for the measure-
ment errors Fε, then under this assumption for an ordinal measure of t+ 1 skills we
would have:

F−1
ε (pr(ZO

t+1,m = 1| ln θt, ln It)) = λt+1,mft(It, θt)− κ2,t+1,m

where pr(ZO
t+1,m = 1| ln θt, ln It) is the probability the child receives rank 1 at age t+1

given inputs θt, It at age t. This expression shows that with a known distribution
for measurement errors, we can then apply Theorem 1 to identify a KLS technology
ft(It, θt) up to this assumed distribution.

C.4 Censored Measures

Censored measures are defined as

ZC
t,m =


Z if Zt,m ≥ Z
Zt,m if Z < Zt,m < Z
Z if Zt,m < Z

(C-4)

where Zt,m = µt,m + λt,m ln θt + εt,m is the “latent” measure, and Z (“ceiling”) and
Z (“floor”), with Z > Z, are the truncation points. Censoring occurs, for example,
when a test score used as the measure has a maximum score (answering all questions
correctly) and a minimum score (say answering none of the questions correctly). In
practice, researchers can ascertain whether censoring is an important issue empir-
ically by investigating what proportion of the sample actually has measured skills
at the floor or ceiling points of the measure. Because censored measures do not
have full support, the non-parametric identification result of Theorem 1 appears no
longer to hold. As with the ordinal measures, auxiliary assumptions could be used
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to achieve identification up these additional assumptions (for a complete analyze of
the problem, see Wang et al. 2009, Koedel and Betts, 2010)
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D Monte Carlo Exercise for Model 1 and Mea-

surement Error Correction

We implement a Monte Carlo exercise to examine the properties of our estimator.
The true data generating process is assumed to be the estimated (measurement error
corrected) Model 1 with some additional parametric assumptions about the measure-
ment error process. In order to simulate the dataset, we use the both the estimated
measurement parameters and the joint distribution of children skills and investments.
In addition, we assume that all the measurement noises are Normally distributed.25

We generate a simulated longitudinal dataset of 10,000 children ranging from age
5-6 to age 13-14. In particular, the Monte Carlo analysis is performed estimating
the model on 200 simulated data sets. In the following tables we show the mean
estimates over the 200 estimates of the coefficients.

We focus only on estimates of skills technology, investment process and children’s
skills measurement parameters. Tables D-1-D-3 show true and mean estimated pa-
rameters. Overall, the estimator is able to recover the true parameters with minimal
bias.

25We assume that the standard deviation of the error terms for all the skills measures are 0.5
(children and mothers) while we fix to 0.1 the standard deviation of the error terms for all the
investment measures.
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Table D-1: Monte Carlo Estimates for Investment Process

True Parameters Monte Carlo Estimates
Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 0.230 0.027 0.020 0.018 0.249 0.026 0.020 0.018

Log Mother Cognitive Skills 0.071 0.004 0.012 -0.005 0.077 0.002 0.008 -0.011

Log Mother Noncognitive Skills 0.359 0.742 0.694 0.712 0.322 0.748 0.700 0.700

Log Family Income 0.341 0.227 0.274 0.275 0.352 0.224 0.272 0.292

Variance Shocks 1.186 1.019 0.868 1.087 1.263 0.993 0.827 1.103

Notes: This table shows the both the true estimates (reported also in Table 3) and
the mean Monte Carlo estimates for the investment equation. Each column shows
the coefficients of the investment equation at the given ages. The dependent variable
is investment in period t which is determined by the covariates at time t . For
example, the first column shows the coefficients at age 5-6 for parental investments
and child’s skill and family income at age 5-6 as well.
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Table D-2: Monte Carlo Estimates for Skill Technology

True Parameters Monte Carlo Estimates
Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 1.966 1.086 0.897 1.065 1.955 1.091 0.897 1.071

Log Investment 0.799 0.695 0.713 0.252 0.759 0.700 0.839 0.502

( Log Skills * -0.105 -0.005 -0.003 0.003 -0.092 -0.005 -0.005 -0.002

Log Investment )

Return to scale 2.660 1.776 1.606 1.320 2.623 1.786 1.731 1.571

Variance shocks 5.612 4.519 3.585 4.019 5.613 4.520 3.586 4.018

Log TFP 13.067 14.747 11.881 2.927 13.060 14.689 11.801 2.594

Notes: This table shows the both the true estimates (reported also in Table 4) and
the mean Monte Carlo estimates for the technology of skills formation. Each column
shows the coefficients of the technology of skills formations at the given age. The
dependent variable is log skills in the next period t+1 while the covariates (inputs)
are at time t. For example, the first column shows the coefficients for the skills inputs
at age 5-6 which lead to log skills at age 7-8.
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Table D-3: Monte Carlo Estimates for Measurement Parameters

True Constant (µ) Monte Carlo Constant (µ) Estimates

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 13-14 Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 13-14

PIAT Math 11.858 11.858 11.858 11.858 11.858 11.858 11.858 11.858 11.858 11.858

PIAT Recognition 12.864 15.592 10.297 2.107 8.556 12.864 15.592 10.298 2.110 8.555

PIAT Comprehensive 12.770 15.014 12.273 6.129 9.041 12.770 15.013 12.270 6.132 9.040

True Factor Loadings (λ) Monte Carlo Factor Loadings (λ) Estimates

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 13-14 Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 13-14

PIAT Math 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

PIAT Recognition 2.238 0.906 1.136 1.347 1.195 2.238 0.905 1.136 1.347 1.196

PIAT Comprehensive 2.159 0.802 0.936 1.089 1.002 2.159 0.802 0.936 1.089 1.002

Notes: This table shows the both the true estimates (reported also in Table B.3-1)
and the mean Monte Carlo estimates for the measurement parameters of children
skills measures equation. Each column shows the parameters at the given ages for
each test score.
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