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Abstract

I examine the implications of learning-based asset pricing in a model in which firms face

credit constraints that depend partly on their market value. Agents learn about stock prices,

but have conditionally model-consistent expectations otherwise. The model jointly matches

key asset price and business cycle statistics, while the combination of financial frictions and

learning produces powerful feedback between asset prices and real activity, adding substantial

amplification. The model reproduces many patterns of forecast error predictability in survey

data that are inconsistent with rational expectations. A reaction of the monetary policy rule to

asset price growth increases welfare under learning.

JEL: D83, E32, E44, G12
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1 Introduction

Financial frictions are a central mechanism by which asset prices interact with macroeconomic

dynamics. But to understand this interaction, we need models that are able to capture the dynamics

of asset prices in the data. Moreover, the interaction is likely two-sided, with feedback from asset

prices to the real economy, but also from the real economy to asset prices. Asset price dynamics

observed in the data should therefore arise endogenously in our models.

At the same time, there is evidence that measures of expectations do not conform to the rational

expectations hypothesis, even in financial markets. The rational expectations hypothesis implies,
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Figure 1: Return expectations and expected returns.
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Expected nominal returns (left) are the mean response in the Graham-Harvey survey, realized nominal returns (right)
and P/D ratio are from the S&P 500. Data period 2000Q3–2012Q4. Correlation coefficient for return forecasts ρ = .54,
for realized returns ρ = −.44.

for example, that investors are fully aware of return predictability in the stock market, expecting

low returns when prices are high and vice versa. Instead, in survey data they expect high returns

when prices are high. This pattern has been documented extensively by Greenwood and Shleifer

(2014) and is illustrated in Figure 1. The left panel plots the mean 12-month return expectation

of the S&P500, as measured in the Graham-Harvey survey of American CFOs, against the value

of the P/D ratio in the month preceding the survey. The correlation is strongly positive: Return

expectations are more optimistic when stock valuations are high. This contrasts sharply with the

actual return predictability in the right panel of the figure, where the correlation is strongly negative.

This discrepancy is easy to detect and therefore hard to reconcile with rational expectations-based

asset pricing theories such as the long-run risk, habit, and disaster risk models, but it is consistent

with asset pricing theories based on extrapolative expectations or learning. Adam, Marcet and

Nicolini (2015) develop a learning-based asset pricing theory that, in an endowment economy, is

able to reproduce the discrepancy between subjective and rational return expectations as well as

many so-called asset price puzzles.

In this paper, I examine the implications of a learning-based asset pricing theory for the business

cycle. I construct a model of firm credit frictions in which firms’ access to credit depends on their

market value. This dependency implies that stock market valuations affect the availability of

credit and therefore investment. At the same time, agents do not have rational expectations but

are instead learning about price growth in the stock market. Equilibrium prices are determined

endogenously and depend on agents’ beliefs.

Deviating from rational expectations is a tricky business. One needs to explicitly spell out the

entire belief formation process, how agents form expectations about future income, interest rates
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and so on. I develop a restriction on expectations which requires that agents’ expectations remain

consistent with equilibrium conditions other than stock market clearing. It implies that agents

make the best possible forecasts compatible with their subjective beliefs about stock prices. These

“conditionally model-consistent expectations” allow me to study the effects of asset price learning

in isolation while retaining most of the familiar logic and parsimony of rational expectations. The

method is general and can be of interest in other situations where limited departures from rational

expectations are desirable.

The model with learning jointly matches key business cycle and asset price moments, includ-

ing the volatility and predictability of returns, negative skewness and heavy tails. Learning also

considerably magnifies the strength of the financial accelerator. The model therefore addresses the

Kocherlakota (2000) critique that amplification of shocks through financial frictions is usually quite

weak. This weakness is due in part to the low endogenous asset price volatility in standard models

(as previously observed by Quadrini, 2011). Under learning, a positive feedback loop emerges be-

tween asset prices and the production side of the economy. When beliefs of learning investors are

more optimistic, their demand for stocks increases. This raises firm valuations and relaxes credit

constraints, in turn allowing firms to move closer to their profit optimum. Firms are able to pay

higher dividends to their shareholders, raising stock prices further and propagating investor opti-

mism. The interaction between learning and financial frictions is stronger when credit constraints

are tighter.

I also compare the forecast error predictability implied by the model with that found in survey

forecasts. Such comparisons can be used to discriminate among models of expectation formation

(Manski, 2004). I compare forecast error predictability in the model and in the data on a range of

variables including stock returns, real GDP and its main components, inflation and interest rates.

Rational expectations imply the absence of any forecast error predictability and are rejected by

the data. By contrast, the learning model replicates many patterns of forecast error predictability

remarkably well. Although agents learn only about stock prices, their expectational errors spill

over into their other forecasts as well. For example, when agents are too optimistic about future

stock prices, they also become too optimistic about the tightness of credit constraints and therefore

over-predict real economic activity. The price dividend-ratio therefore predicts not only forecast

errors on stock returns but also on GDP, and this holds true in survey data, too. This and other

patterns of predictability discussed in the paper provide strong evidence in favor of the model with

learning.

Assumptions on expectation formation carry not only positive but also normative implications,

which I explore at the end of the paper. Specifically, I find that a positive response to stock price

growth in the interest rate rule—a form of “leaning against the wind”—is welfare-increasing in the

model with learning because it helps to stabilize expectations in financial markets and to mitigate

asset price fluctuations. In the rational expectations version of the model, such a reaction is not

beneficial.

The remainder of the paper is structured as follows. Section 2 briefly discusses the related
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literature. Section 3 presents the model and discusses the setup of expectation formation under

learning. To gain some understanding of the interaction between asset price learning and financial

frictions, Section 4 discusses a special case of the model that shuts off auxiliary frictions and allows

for a closed-form solution. Section 5 discusses the quantitative fit of the full model on the asset

pricing and business cycle side, while Section (6) compares survey data on expectations with model-

implied forecasts. Section 7 provides a discussion of other aspects of the model, namely the effects

of learning beyond the effect on asset prices; the possibility of allowing for mean reversion in asset

price expectations; and the role of nominal rigidities for the quantitative fit of the model. Section

8 explores implications for monetary policy. Section 9 concludes.

2 Related literature

This paper builds on the learning-based asset pricing theory developed in Adam and Marcet (2011)

and Adam et al. (2015, 2016) who show that, in an endowment economy, learning about asset prices

can explain many so-called asset price puzzles. Barberis et al. (2015), using a similar model, show

that the price fluctuations induced by learning even survive the introduction of some traders with

rational expectations. This paper is the first to employ this theory in a business cycle context.

There are a number of papers in the adaptive learning literature that examine linkages between

asset prices and the real economy, including Milani (2008, 2011), Caputo et al. (2010) and Gelain

et al. (2013), to name just a few. In that literature, agents typically learn about all forward-looking

variables simultaneously in an otherwise linear model. This paper introduces a different approach

to learning, focusing on learning about one variable while keeping expectations close to rational

otherwise, and thereby retaining most of the intuition and the parsimony of rational expectations

models. It also does not require the underlying model to be linear.

The paper also relates to a number of studies that try to explain asset price fluctuations with

non-rational beliefs about exogenous fundamentals. This idea goes back to Timmermann (1996)

and has recently become more prominent with applications by Fuster et al. (2012), Hirshleifer et

al. (2015), and Collin-Dufresne et al. (2016). The idea is that agents have an incomplete under-

standing of some exogenous process such as dividends or consumption in an endowment economy

or productivity growth in a production economy and estimate a subjective model for that process.

Because the subjective model is often simpler than the true data-generating process and hard to

reject in small samples, Fuster et al. (2012) refer to such expectations as “natural expectations”.

Pintus and Suda (2013) and Pancrazi and Pietrunti (2014) also use this type of expectations to

study lending and borrowing in the housing market. One limitation of this approach is that there

is no feedback from asset prices to beliefs, as beliefs depend on exogenous fundamentals only. As

such, the amount of endogenous amplification is limited (Timmermann, 1996). In this paper, agents

instead learn about the endogenous price that depends itself on beliefs. This leads to two-sided

feedback between learning and asset prices (and also to and from the real economy), considerably

magnifying volatility.
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The paper also contributes to the literature on financial frictions as an amplification channel.

The early literature on financial frictions emphasized amplification of standard productivity or mon-

etary policy shocks (Kiyotaki and Moore, 1997; Bernanke and Gertler, 2001), but the quantitative

importance of the “financial accelerator” mechanism was found to be small (Kocherlakota, 2000;

Cordoba and Ripoll, 2004; Quadrini, 2011). The more recent literature on financial frictions has

found sizable amplification effects in response to shocks to borrowing constraints (e.g. Jermann and

Quadrini, 2012) or shocks that directly move collateral prices (e.g. Liu et al., 2013) and emphasizes

their role as driving forces of the business cycle. Other proposed solutions to the Kocherlakota

critique explore occasionally binding constraints (Mendoza, 2010) or other non-linearities (Brun-

nermeier and Sannikov, 2014) which lead to amplification in severe crisis states. Instead, this paper

takes a different approach by going back to the question of financial frictions as an amplification

mechanism for standard and frequent business cycle shocks that do not directly impact credit con-

straints or asset prices. Learning endogenously generates volatility in asset prices and interacts

with financial frictions to form a feedback loop that amplifies even standard productivity shocks.

The dependency of the borrowing constraint on equity valuations is similar to the one developed

in Miao et al. (2015). In their model, rational liquidity bubbles exist which allow for a sunspot

shock that governs the size of the bubble and drives the bulk of the variation in equity prices.1 In

this paper, asset price volatility instead arises endogenously through learning, which interacts with

financial frictions to form a feedback loop that amplifies standard business cycle shocks.

Finally, the paper relates to the literature testing the rational expectations hypothesis with

survey data. It is well known that expectations measured in surveys fail to conform to the rational

expectations hypothesis because forecast errors are statistically predictable (e.g. Bacchetta et al.,

2009; Andrade and Le Bihan, 2013; Gennaioli et al., 2016). Coibion and Gorodnichenko (2015)

document predictability by forecast revisions across a range of variables and interpret their results

as evidence in favor of rational inattention models. The learning model in this paper also matches

predictability by forecast revisions, as well as by the level and first difference of the price dividend

ratio. It does so with learning about asset prices as the only departure from rational expectations.

To my knowledge, a model-data comparison of forecast error predictability within a single, general

equilibrium model and across the range of variables presented in this paper has not been carried

out previously in the literature.

3 The model

3.1 Model setup

The economy is closed and operates in discrete time. It is populated by two types of households.

Lending households consume final goods and supply labor. They are risk-averse, trade debt claims

on intermediate goods producers and receive interest from them. Firm owners only consume final

1In principle, such bubbly sunspot equilibria can arise in my model as well, but they do not exist in the range of
parameter values considered (see the Appendix).
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goods. They are risk-neutral and trade equity claims on firms and receive dividends from them.

The intermediate goods producers, or simply firms, are at the heart of the model. They combine

capital and labor into intermediate goods and are financially constrained.

In addition, the model has nominal price and wage rigidities and investment adjustment costs.

These are introduced by adding other types of firms into the model (which are all owned by the

lending households): Final good producers transform intermediate goods into differentiated final

goods and set prices; labor agencies transform homogeneous household labor into differentiated

labor services and set wages; and capital goods producers produce new capital goods from final

consumption goods. Finally, there is a fiscal authority setting tax rates to offset steady-state

distortions from monopolistic competition, and a central bank setting nominal interest rates. Since

these additional elements of the model are standard (e.g. Christiano et al., 2005), their detailed

description is relegated to the appendix. A simplified version of the model without nominal rigidities

and adjustment costs is discussed in Section 4.

3.1.1 Households

Households with time-separable preferences maximizes utility as follows:

max
(Ct,Lt,Bjt,Bgt )

∞
t=0

EP
∞∑
t=0

βt
C1−θ
t

1− θ − η
L1+φ
t

1 + φ

s.t. Ct = w̃tLt +Bg
t − (1 + it−1)

pt−1

pt
Bg
t−1 +

∫ 1

0
(Bjt −Rjt−1Bjt−1) dj + Πt

Here, w̃t is the real wage received by the household and Lt is the amount of labor supplied.

Consumption Ct is a standard Dixit-Stiglitz aggregator of differentiated consumption varieties with

elasticity of substitution σp. Bg
t are real quantities of nominal one-period government bonds (in

zero net supply) that pay a nominal interest rate it and pt is the price level. Households also lend

funds Bjt to intermediate goods producers indexed by j ∈ [0, 1] at the real interest rate Rjt. These

loans are the outcome of a contracting problem described later on. Households do not trade equity

claims.2 Πt represents lump-sum profits received from price- and wage-setting firms and capital

goods producers, as described in the appendix.

The expectation operator is evaluated under the probability measure P. Agents use this measure

when forming their expectations to solve their optimization problems. Under learning, the distri-

bution of outcomes expected under P does not necessarily coincide with the distribution induced

2The fact that households do not trade equity claims is not technically necessary, but helps the model fit business
cycle properties. If households held equity in this model, fluctuations in beliefs under learning would introduce
strong wealth effects: Agents that are optimistic about future stock returns have higher expected financial wealth
and therefore work less and reduce their savings, which can lead to a counterfactually low rise or even a fall in
investment and hours worked during expansions. Here, household wealth effects from changes in beliefs are present
as well, but are more muted because they operate only through changes in expected labor income rather than expected
financial wealth. A similar problem is known in the news shock literature (Beaudry and Portier, 2007).
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in equilibrium.

The first-order conditions are standard. In what follows I define the stochastic discount factor

of the household as Λt+1 = β (Ct+1/Ct)
−θ.

3.1.2 Intermediate good producers (firms)

The production of intermediate goods is carried out by a continuum of firms, indexed j ∈ [0, 1].

Firm j enters period t with capital Kjt−1 and a stock of debt Bjt−1 which needs to be repaid at

the gross real interest rate Rjt−1. First, capital is combined with labor Ljt to produce output:

Yjt = (Kjt−1)α (AtLjt)
1−α , (1)

where At is aggregate productivity. Labor is a CES combination of differentiated labor services

with elasticity of substitution σw, but the firm’s problem can be treated as if the labor index was

acquired in a competitive market at the real wage index wt. Output is sold competitively to final

good producers at price qt. The capital stock depreciates at rate δ. This depreciated capital can

be traded by the firm at the price Qt.

The firm’s net worth is the difference between the value of its assets and its outstanding debt:

Njt = qtYjt − wtLjt +Qt (1− δ)Kjt−1 −Rjt−1Bjt−1. (2)

I assume that firms exit with probability γ. This probability is exogenous and independent across

time and firms. As in Bernanke et al. (1999), exit prevents firms from becoming financially un-

constrained. If a firm does not exit, it needs to pay out a fraction ζ ∈ (0, 1) of its earnings as a

regular dividend (where earnings Ejt are given by Njt−QtKjt−1 +Bjt−1). The number ζ therefore

represents the dividend payout ratio for continuing firms.3 The firm then decides on the new stock

of debt Bjt and the new capital stock Kjt, maximizing the present discounted value of dividend

payments using the discount factor of its owners. Its balance sheet must satisfy:

QtKjt = Bj
t +Njt − ζEjt (3)

If a firm does exit, it pays out its entire net worth as a terminal dividend.

3.1.3 Firm owners

Firm owners differ from households in their capacity to own intermediate firms. They are risk-

neutral and trade equity claims on firms indexed by j ∈ [0, 1]. As described above, if a firm exits,

it pays out its net worth Njt as a terminal dividend. Otherwise it pays a regular dividend of

3The optimal dividend payout ratio in this model would be ζ = 0, as firms would always prefer to build up
net worth to escape the borrowing constraint over paying out dividends. However, this would imply that aggregate
dividends would be proportional to aggregate net worth, which is rather slow-moving. The resulting dividend process
would not be nearly as volatile as in the data. Imposing ζ > 0 allows to better match the volatility of dividends and
therefore obtain better asset price properties.
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ζEjt. Denote the subset of firms alive at the end of period t by Γt. Then, a firm owner’s utility

maximization problem is given by:

max(
Cft ,Sjt

)∞
t=0

EP
∞∑
t=0

βtCft

s.t. Cft +

∫
j∈Γt

SjtPjtdj =

∫
j∈Γt

Sjt−1 (Pjt + ζEjt) dj (4)

+

∫
j∈Γt−1\Γt

Sjt−1Njtdj (5)

Sjt ∈
[
0, S̄

]
(6)

where S̄ > 1. Consumption Cft is the same Dixit-Stiglitz aggregator of consumption varieties as

for households. Firm owners do not trade debt claims.

The first term on the right-hand side of the budget constraint deals with continuing firms while

the second term deals with exiting firms. In addition, firm owners face upper and lower bounds on

traded stock holdings. This renders demand for stocks finite under arbitrary beliefs. In equilibrium,

the bounds are never binding. The first-order condition of the firm owner is:

Sjt = 0 if Pjt >

Sjt ∈
[
0, S̄

]
if Pjt =

Sjt = S̄ if Pjt <

βEPt
[
Njt+11{j /∈Γt+1} + (ζEjt+1 + Pjt+1)1{j∈Γt+1}

]
∀j ∈ Γt. (7)

3.1.4 Borrowing constraint

In choosing their debt holdings, firms are subject to a borrowing constraint. The constraint is the

solution to a particular limited commitment problem in which the outside option for the lender

in the event of default depends on the market value of the firm. Effectively, it introduces a link

between stock market valuations and investment.

Each period, lenders (households) and borrowers (firms) meet to decide on the lending of funds.

Pairings are anonymous. Contracts are incomplete because the repayment of loans cannot be made

contingent. Only the size Bjt and the interest rate Rjt of the loan can be contracted in period

t. Both the lender (a household) and the firm have to agree on a contract (Bjt, Rjt). Moreover,

there is limited commitment in the sense that at the end of the period, but before the realization

of next period’s shocks, firm j can always choose to enter a state of default. In this case, the

value of the debt repayment must be renegotiated. If the negotiations are successful, then wealth

is effectively shifted from creditors to debtors. The outside option of this renegotiation process is

bankruptcy of the firm and seizure by the lender. Bankruptcy carries a cost of a fraction 1− ξ of

the firm’s capital being destroyed. The lender, a household, does not have the ability to operate

the firm. It can liquidate the firm’s assets, selling the remaining capital in the next period. This
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results in a recovery value of ξQt+1Kjt. With some probability x (independent across time and

firms), the lender receives the opportunity to “restructure” the firm if it wants. Restructuring

means that, similar to Chapter 11 bankruptcy proceedings, the firm gets partial debt relief but

remains operational. I assume that the lender has to sell the firm to another firm owner, retaining

a fraction ξ of the initial debt. In equilibrium, the recovery value in this case will be ξ (Pjt +Bjt)

and this will always be higher than the recovery value after liquidation.

In the appendix, I show that the optimal debt contract in this limited commitment problem

takes the form of a leverage constraint with a weighted average of liquidation and market value of

the firm:4

Bjt ≤ (1− x)EPt Λt+1Qt+1ξKjt︸ ︷︷ ︸
liquidation value

+x ξ (Pjt +Bjt)︸ ︷︷ ︸
market value

(8)

It is worth noting that even under rational expectations, the market value of the firm Pjt +Bjt is

different from the value of its capital stock, QtKjt. Because financial frictions prevent firms from

investing up to the efficient level, so that the marginal discounted revenue on capital exceeds the

marginal cost of capital. Therefore, the market value of the firm is higher than the value of its

capital stock.

The borrowing constraint acts as a link between firm investment and equity valuations. It is

well known that in the data, stock prices comove with investment, too (Barro, 1990). This could

be simply because news about investment opportunities affect stock prices and predict investment

at the same time Blanchard et al. (1993). But the literature has documented evidence that firms’

investment depends on equity valuations beyond fundamentals (e.g. Baker et al., 2003 for equity-

dependent firms; and more recently Hau and Lai, 2013 for firms whose shares were subjected to

fire sales by distressed equity funds in the 2007–2009 financial crisis). While not the only one, the

borrowing constraint developed here is one possible explanation for this dependency.5

3.1.5 Further model elements and shocks

To improve the quantitative fit of the model, I add standard nominal rigidities and adjustment

costs (details are provided in the appendix).The prices for final goods and labor are subject to

Calvo rigidities, with probabilities of non-adjustment κ and κw and elasticities of substitution σ

and σw, respectively. The price for intermediate goods qt equals the inverse of the gross markup

of final goods producers. The monetary authority sets the nominal interest rate according to a

4The borrowing constraint is similar to that in Miao and Wang (2011) who develop a model where x = 1 but
where only a fraction of firms are constrained, and show that this type of borrowing constraint can lead to sunspot
equilibria. The appendix shows that such multiple equilibria do not arise for the parameter values considered in this
paper.

5Other studies examine models in which firms’ credit constraints depend on the value of their real estate rather than
their equity value (Liu et al., 2013). Here, too, the empirical evidence is not clear-cut. For example, Chakraborty
et al. (2016) argue that price increases in real estate might induce lenders to substitute commercial lending with
mortgage lending, thereby tightening credit constraints.
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Taylor-type interest rate rule:

it = ρiit−1 + (1− ρi)
(
β−1 + φππt + εit

)
, (9)

where φπ is the reaction coefficient on consumer price inflation, ρi is the degree of interest rate

smoothing, and εit is an interest rate shock. Capital needs to be purchased from capital goods

producers, owned by the household, whose technology of transforming consumption to capital

goods is subject to standard quadratic adjustment costs that move the price for capital goods:

Qt = 1 + ψ

(
It
It−1

− 1

)
(10)

Productivity evolves as an AR(1) process and there are exogenous shocks to productivity and

the nominal interest rate.

logAt = (1− ρ) log Ā+ ρ logAt−1 + log εAt (11)

εAt ∼ iidN
(
0, σ2

A

)
(12)

εit ∼ iidN
(
0, σ2

i

)
(13)

3.2 Rational expectations equilibrium

I first describe the equilibrium under rational expectations. A rational expectations equilibrium is

a set of stochastic processes for prices and allocations, a set of strategies in the limited commitment

game, and an expectation measure P such that the following holds for all states and time periods:

Markets clear; allocations solve the optimization programs of all agents given prices and expecta-

tions P; the strategies in the limited commitment game are a subgame-perfect Nash equilibrium for

all lender-borrower pairs; and the measure P coincides with the actual distribution of equilibrium

outcomes.

Under a mild restriction on the exit probability γ, there exists a rational expectations equi-

librium characterized by the following properties in a neighborhood of the non-stochastic steady

state.

1. All firms choose the same capital-labor ratio Kjt/Ljt. This allows one to define an aggregate

production function and an internal rate of return on capital:

Yt = αKα
t−1

(
AtL̃t

)1−α
(14)

Rkt = qtα
Yt
Kt−1

+Qt (1− δ)Kt−1 (15)

2. The expected return on capital is higher than the internal return on debt: EtRkt+1 > Rjt.

3. At any time t, the stock market valuation Pjt of a firm j is a linear function of its post-

dividend net worth QtKt − Bt. This permits one to write an aggregate stock market index
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as

Pt =

∫ 1

0
Pjt = βEt [Dt+1 + Pt+1] . (16)

where aggregate dividends are given by Dt = γNt + ζEt.

4. Borrowers never default on the equilibrium path and borrow at the risk-free rate

Rjt = Rt =
1

EtΛt+1
. (17)

The lender only accepts debt payments up to the limit given by (8), which is linear in the

firm’s net worth, and the firm always exhausts this limit, so that the borrowing constraint is

always binding.

5. As a consequence of the previous properties of the equilibrium, all firms can be aggregated.

Aggregate debt, capital, and net worth are sufficient to describe the intermediate goods sector:

Nt = RktKt−1 −Rt−1Bt−1 (18)

QtKt = (1− γ) ((1− ζ)Nt + ζ (Bt−1 −QtKt−1)) +Bt (19)

Bt = xEtΛt+1Qt+1ξKt + (1− x) ξ (Pt +Bt) . (20)

I prove these equilibrium properties in the appendix.

3.3 Learning equilibrium

I require that the equilibrium under learning satisfies internal rationality (Adam and Marcet, 2011).

Specifically, given a subjective belief measure P of the distribution of model outcomes, an internally

rational equilibrium is a set of stochastic processes for prices and allocations, and a set of strategies

in the limited commitment game such that the following holds for all states and time periods: Mar-

kets clear; allocations solve the optimization programs of all agents given prices and expectations

P; and the strategies in the limited commitment game are a subgame-perfect Nash equilibrium

for all lender-borrower pairs. The only difference from a rational expectations equilibrium is that

the measure P under which agents evaluate expectations can differ from the actual distribution of

model outcomes.6

How, then, should one choose the subjective beliefs P? In a forward-looking business cycle

model, there are many ways in which expectations affect equilibrium. Households need to form

expectations about future interest rates and wages to determine their savings, investors need to

form expectations about stock prices, firms need to forecast future productivity and wages in order

to decide their demand for capital and so forth. This leaves many degrees of freedom to be filled.

My focus in this paper is to concentrate on the effects of stock price learning, while keeping the

model dynamics as close as possible to a rational expectations equilibrium otherwise.

6It then becomes crucical to distinguish the subjective expectations EP [·] taken under P from the expectation
E [·] taken under the actual distribution of model outcomes.
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To this end, I construct the belief P in two steps: First, I specify the belief about stock prices

that give rise to a learning problem; second, I impose what I call conditionally model-consistent

expectations with respect to stock prices.

Under the subjective belief measure P, agents are not endowed with the knowledge of the

equilibrium pricing function for stocks, i.e. the mapping of state variables and shocks to prices Pjt.

To keep things simple and retain the linear aggregation property, I assume that agents do believe

that the value of an individual firm is proportional to its net worth, as under rational expectations:

Pjt =
EPt Njt+1

EPt Nt+1
Pt. (21)

However, they are uncertain about the evolution of the aggregate market value Pt. They employ a

simple subjective model to forecast the market value, according to which Pt evolves as a random

walk with a small unobservable drift:

logPt = logPt−1 + µt + ηt, ηt ∼ N
(
0, σ2

η

)
µt = µt−1 + νt, νt ∼ N

(
0, σ2

ν

)
where the innovations ηt and νt are independent of each other and across time, and also independent

of the other exogenous shocks in the model.7

Importantly, the innovations are unobservable, as is the mean growth rate µt. The only ob-

servable in the system above is the price Pt. Bayesian updating of this belief system amounts to a

simple Kalman filtering problem. With an appropriate prior, the system above can be rewritten in

terms of observables only:

logPt = logPt−1 + µ̂t−1 + zt (22)

µ̂t = µ̂t−1 + gzt, (23)

where µ̂t = EPt µt is the mean belief about the trend in stock price growth, and zt is the subjective

forecast error. Under P, zt is normally distributed white noise with variance σ2
z , independent of

the structural shocks εAt and εit. The belief µ̂t is updated in the direction of the last forecast error:

When agents see stock prices rising faster than they expected, they will also expect them to rise by

more in the future. The parameter g is the learning gain which governs the speed of adjustment

of price growth expectations.8

7This subjective model is the one selected by Adam et al. (2016) for its good asset pricing properties in an
endowment economy. One particularly strong departure from rational expectations implied by the subjective model
is that agents think that prices can diverge forever from economic fundamentals. In equilibrium however, prices and
dividends (and other fundamentals) will turn out to be cointegrated, contrary to agents’ expectations. Section 7.2
shows that it is possible to generalize this belief system to allow for mean reversion in prices, as long as beliefs about
price growth remain very persistent in the short run.

8The parameters of the state-space system and the observable system map into each other through the relations
σ2
η = σ2

p (1− g) and σ2
ν = σ2

pg
2. Intuitively, a small learning gain g implies that agents believe there is little

predictability in stock prices.
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While agents think that Pt is a random walk with a drift, in equilibrium this will generally not

be the case. The equilibrium stock price must be such that the stock market clears. This implies

that the Euler equation (7) has to hold with equality in the aggregate:

Pt = βEPt [Pt+1 +Dt+1]

= βEPt [Pt exp (µ̂t + zt+1)] + βEPt [Dt+1]

=
βEPt [Dt+1]

1− β exp
(
µ̂t + 1

2σ
2
z

) . (24)

The value for the forecast error zt that equates (22) and (24) is not white noise but depends on the

belief about future dividends and price growth, even though agents remain ignorant of this fact.9

The expression also shows that, since the denominator is close to zero, small changes in the belief

µ̂t can induce large swings in equilibrium asset prices.

The specification of the subjective probability measure P is not complete yet. It does not

yet specify how to calculate the expectation of future dividends EPt [Dt+1] above, or indeed any

expectation of other model variables. The subjective probability measure P has to fully specify

expectations about all variables in the model in order for an equilibrium to be well-defined. In

principle, there is an enormous amount of degrees of freedom still left to specify P: Once we

move away from rational expectations, agents could entertain arbitrary beliefs about dividends,

inflation, interest rates, wages and so on. Here is where I introduce the concept of conditionally

model-consistent expectations in order to impose discipline on the expectation formation process.

Definition. Consider an internally rational equilibrium with beliefs P. Agents’ subjective expec-

tations P are conditionally model-consistent if:

1. the distribution under P of the exogenous shocks, denoted ut, coincides with their actual

distribution, and

2. for any endogenous model variable yt and t ≥ 0:

EPt [yt+1 | ut+1, Pt+1] = yt+1 (25)

almost everywhere in equilibrium.

Conditional model consistency restricts the subjective belief P to have the maximum degree of

consistency with the model given agents’ misspecified belief about stock prices. Agents endowed

with such expectations may not know the equilibrium pricing function, but they make the small-

est possible expectational errors consistent with their subjective view about the evolution of stock

prices. Conditionally model-consistent expectations are close to but different from rational expec-

tations, for which condition (25) would be strengthened to EPt [yt+1 | ut+1] = yt+1. In particular,

agents’ systematic forecast errors on stock prices spill over to their forecasts of other variables:

9The corresponding equilibrium values for the subjective forecasting error zt and the belief µ̂t are zt = ∆ logPt −
µ̂t−1 and µ̂t = (1− g) µ̂t−1 + g∆ logPt−1.
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When households are overly optimistic about the stock market, they expect borrowing constraints

to be loose and are therefore overly optimistic about how much they will be able to consume in the

future. These expectational spillovers are what enables the model to match the predictability of

forecast errors in Section 6; they also lead to aggregate demand effects in the presence of nominal

rigidities which are discussed in Section 7.3.

I construct expectations satisfying conditional model-consistency as follows. I solve for expec-

tations that would be model-consistent in a model in which the stock price really evolved according

to agents’ subjective beliefs. I take the set of equilibrium conditions and remove the market clear-

ing conditions for stocks and consumption goods,10 replacing it with the subjective belief system

(22)–(23). I then solve the model as under rational expectations, which leads to a subjective policy

function yt = h (yt−1, ut, zt) where yt is the collection of all endogenous model variables, ut is the

collection of exogenous shocks, and zt is the subjective forecast error on stock prices. The policy

function h together with the joint distribution of (ut, zt)defines the subjective probability measure

P. In order to solve for the equilibrium, I then impose the market clearing condition in the stock

market. This leads to a solution for the equilibrium stock price and, through Equation (22), a

solution for the equilibrium subjective forecast error zt = r (yt−1, ut). Importantly, under P agents

think that zt is an unpredictable white noise process, while in equilibrium it is a function of the

states and the exogenous shocks. Finally, the actual policy function describing the equilibrium is

computed as yt = g (yt−1, ut) = h (yt−1, ut, r (yt−1, ut)).

The appendix spells out this procedure in detail. I approximate the equilibrium both under

learning and under rational expectations using a second order perturbation method.

4 Inspecting the mechanism

In this section, I examine a special case of the model which does away with nominal rigidities,

adjustment costs, net worth dynamics and risk aversion. This special case reduces the number of

state variables and allows me to solve the model in closed form.

One insight is that neither learning nor financial frictions alone generate sizable amplification

of business cycle shocks or asset price volatility in a production economy. It is the interaction of

these two features that leads to endogenous amplification.

4.1 Simplifying the model

First, I render the nominal rigidities redundant by setting κ = κw = 0 and σ = σw = 0. Investment

adjustment costs are eliminated by setting ψ = 0.

Next, I simplify the financial structure of the firm. I set the exit rate of firms to γ = 0, so that

firms are infinitely-lived. To ensure that they do not escape the borrowing constraint, I then require

10Dividends are paid in units of consumption goods, and so it is necessary to remove the market clearing condition
for consumption goods in addition to that for stocks. Otherwise agents could infer the equilibrium amount of stocks
traded from the equilibrium amount of dividends paid.

14



them to pay out their earnings entirely every period, by setting ζ = 1. The equations (18)–(20)

describing aggregate firm dynamics now simplify to:

Nt = RktKt−1 −Rt−1Bt−1 (26)

Kt = Bt (27)

Bt = ξxKt + ξ (1− x) (Pt +Bt) . (28)

I further simplify preferences by setting the household coefficient of relative risk aversion to

γ = 0 and the inverse elasticity of labor supply to φ→∞, implying inelastic labor supply Lt = L̄.

I also set the autoregressive coefficient for the productivity process to ρ = 1, effectively making all

productivity innovations permanent.

4.2 Rational expectations equilibrium

The presence of financial frictions does not necessarily imply strong amplification, and this is true

in particular in this model under rational expectations. Start first with the case ξ = 1, where the

borrowing constraint (28) is never binding. In this case, the model is just a particular variant of

the RBC model. Equilibrium in the labor market requires equalization of the marginal rate of

substitution and the marginal rate of transformation between consumption and labor:

wt = (1− α)A1−α
t

(
Kt

L̄

)α
(29)

which implies that the expected marginal return on investment can be written as:

Et
[
Rkt+1

]
= Rk (Kt, At) = α

(
AtL̄e

ασ2A
2

)α
K−αt + 1− δ

The firm equates this expected return with the interest rate, which is constant at R = 1/β.

Capital is simply proportional to productivity: Kt/At = K∗ for some fixed value K∗.

Once we introduce financial frictions by setting ξ < 1, how much amplification do we get? The

answer: none. For all values of ξ strictly below one, the borrowing constraint is always binding,

but the capital stock and the stock price of the firm are still proportional to productivity. The

equilibrium is characterized by the following two equations:

Pt = AtP̄ = At
β
(
Rk
(
K̄, 1

)
−R

)
K̄

1− β (30)

Kt = AtK̄ =
ξx

1− ξPt (31)

The first equation pins down the stock market value of the firm, which depends on the capital stock

through expected dividends in the enumerator. These dividends depend on capital through the size

of the firm and the rate of return on capital. The second equation determines the capital stock that
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can be reached by exhausting the borrowing constraint that depends on the stock market value. In

the unique equilibrium, the capital stock is proportional to productivity, just as was the case when

ξ = 1.

Financial frictions do not lead to any amplification or propagation of shocks in the rational

expectations equilibrium. They have a level effect on output, capital, etc., but the dynamics of

the model are identical for any value of ξ (or x). Similarly, the behavior of asset prices is entirely

independent of financial frictions. The stock price evolves simply as:

logPt = logPt−1 + εt. (32)

Intuitively, with financial frictions, a shock to productivity raises asset prices just as much as

to allow the firm to instantly adjust the capital stock proportionately. At the same time, stock

returns are not volatile and unpredictable at all horizons.

The complete irrelevance of financial frictions for the model dynamics is particular to the as-

sumptions in this section, which make prices in the collateral constraint move exactly in lockstep

with the marginal product of capital. However, the problem that low endogenous asset price volatil-

ity leads to low amplification through financial frictions is illustrative of most models with financial

frictions (Quadrini, 2011).

4.3 Learning equilibrium

I now describe the equilibrium under learning. The first-order conditions of the household imply

that the interest rate still has to equal R = 1/β regardless of expectations. Also, the static labor

demand equation of the firm is unchanged, so that labor market equilibrium implies Equation (29)

has to hold. The firm’s investment decision depends on the expected return on investment. Here, I

make use of conditionally model-consistent expectations: Expectations under the subjective mea-

sure P can be calculated using the equilibrium conditions of the model except for the market clearing

condition for stocks and consumption goods. In this setting, we then have EPt
[
Rkt+1

]
= Rk (Kt, At),

as under rational expectations. Agents in the learning equilibrium are able to accurately infer the

equilibrium wage, and therefore the optimal choice of labor and the return on capital, given today’s

productivity and capital stock.

By the same logic, they can also accurately predict next period’s dividend.11 They do not accu-

rately predict next period’s stock price, instead relying on the subjective law of motion (22)–(23).

Applying the expression for the equilibrium stock price (24), here we have:

Pt =
β
(
Rk (Kt, At)−R

)
Kt

1− β exp
(
µ̂t + 1

2σ
2
z

) .

We can infer the equilibrium realization of the subjective forecast error as zt = ∆Pt−1 − µ̂t. So

11They do not accurately predict dividends more than one period ahead, as those depend on (misperceived) future
stock prices.
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Figure 2: Stock price dynamics under learning.
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while under P, agents think that zt is random white noise, in equilibrium it is a function of the

state variables and fundamental shocks of the model. This is precisely where rational expectations

break under learning.

The learning equilibrium is summarized by the following three equations:

Pt =
β
(
Rk (Kt, At)−R

)
Kt

1− β exp
(
µ̂t + 1

2σ
2
z

) (33)

Kt =
ξx

1− ξPt (34)

µ̂t+1 = µ̂t −
σ2
ν

2
+ g (∆ logPt − µ̂t) (35)

The first equation is the determination of the equilibrium stock price as a function of the capital

stock and the belief of stock price growth. The second equation is the borrowing constraint, which

is always binding in equilibrium for any ξ < 112 The third equation is the updating equation of

the Kalman filtering problem. Here, the forecast error zt that agents perceive as random noise has

been substituted out by its equilibrium value.

Figure 2 depicts the dynamics of stock prices after a positive productivity innovation ε1 > 0.

The initial shock at t = 1 raises stock prices and the capital stock proportionally to productivity

through Equations (33) and (34), just as under rational expectations. Learning investors observe

the rise in P1 and are unsure whether their positive forecast error z1 it is due to a transitive shock

(η1 > 0) or a permanent increase in the growth rate of stock prices (ν1 > 0). They therefore revise

their beliefs µ̂2 upward in Equation (35). In the next period t = 2, the more optimistic beliefs

increase the demand for stocks, and the market clearing price in Equation (33) has to be higher,

in turn relaxing credit constraints and fueling investment. Beliefs continue to rise in subsequent

12To see this, assume that Pt were sufficiently high so that the borrowing constraint didn’t bind. Then Rk (Kt, At) =
R and therefore Pt = 0, a contradiction.
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periods as long as observed asset price growth (dashed black line in Figure 2) is higher than the

current belief µ̂t (solid red line). The differences between observed and expected price growth are

the subjective forecast errors (dotted red lines). In the figure, the increase in prices and beliefs ends

at t = 3, when the forecast error is zero. There is no need for a further belief revision. But in the

absence of subsequent shocks, no change in µ̂t implies no change in the price Pt, so that realized

asset price growth is zero at t = 4, at a time when agents expect strongly positive price growth.

This triggers a downward revision in beliefs and an endogenous reversal in prices. Ultimately

prices return to their steady-state levels. These learning dynamics produce return volatility and

predictability.

Asset price learning affects economic activity because it influences current stock prices and

therefore the tightness of the borrowing constraint. But the feedback in this model is two-sided, as

real activity affects stock prices through dividend payments. The strength of this channel depends

on general equilibrium effects. Equation (33) shows that Kt enters the expression for expected

dividends twice. The multiplying factor Kt captures a partial equilibrium effect that is internalized

by the firm. The internal rate of return on capital is higher than the cost of debt and the firm

therefore wants to increase its capital stock until it exhausts the borrowing constraint, increasing

expected dividends. At the same time though, higher levels of capital lower its marginal return

Rk (Kt, At) because of decreasing returns to scale at the aggregate level, increasing wages and

decreasing expected dividends.

When financial frictions are severe enough (ξ is low), the difference between the return on capital

Rk and the return on debt R is high, and the partial equilibrium effect dominates: An expansion

of firm investment increases expected dividends. This case is depicted in Panel (a) of Figure 3.

The figure plots the stock pricing equation (33) and the credit constraint (34). When the degree

of financial frictions is high, the credit constraint line is steep. Consider the effect of a positive

productivity shock at t = 1 as before, when the initial equilibrium is at P1 and µ̂1. The immediate

effect will be a proportionate rise in stock prices and capital, together with a rise in beliefs from µ̂1

to µ̂2. This leads to higher stock prices at t = 2 and allows the firm to invest more and increase its

expected profits—the partial equilibrium effect dominates. This adds to the rise in realized stock

prices, further relaxing the borrowing constraint and increasing next period’s beliefs. Stock prices,

investment, and output all rise more than proportionally to productivity.

When financial frictions are not sever (ξ is high), the difference between Rk R is low and

the general equilibrium effect dominates: An expansion of firm investment decreases expected

dividends, as in Panel (b). A relaxation of the borrowing constraint due to a rise in µ̂2 still allows

the firm to invest and produce more, but in general equilibrium wages rise by so much that dividends

fall. This response of dividends dampens rather than amplifies the dynamics of investment and

asset prices.

This dampening effect can be so strong as to eliminate the effects of learning altogether. The

appendix shows that in the limit of vanishing financial frictions, stock prices become a pure random
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Figure 3: Endogenous response of dividends.
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walk again:

logPt − logPt−1
ξ→1−→ εt. (36)

As a consequence, the entire dynamics of the model become identical to those under rational

expectations. As financial frictions disappear, the general equilibrium effects offset any dynamics

from stock price learning. This shows that sizable amplification arises neither from learning nor

from credit frictions alone, but only from their interaction.

5 Quantitative results

The general model is solved using a second-order approximation around the non-stochastic steady

state (described in the appendix). First, I discuss the parameterization. I then review standard

business cycle statistics. Learning and asset price volatility account for a third of the volatility of

output, pointing to the strength of the endogenous amplification mechanism. Next, I look at asset

pricing moments and find that the model with learning closely matches the volatility of stock prices

(which is targeted by the estimation), but also the predictability of stock returns, skewness and

kurtosis. Impulse response functions confirm the presence of a strong amplification mechanism.

The main channel is the endogenous volatility of asset prices induced by learning. Finally, I show

that stronger financial friction amplify the effects of learning, confirming the intuition from the

simplified version of the model above.
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5.1 Choice of parameters

I partition the set of parameters into two groups. The first set of parameters is calibrated, and the

second set is estimated by simulated method of moments (SMM) on moments of US quarterly data

(1962Q1–2012Q4).

5.1.1 Calibration

The capital share in production is set to α = 0.33. The depreciation rate δ = 0.025 corresponds

to ten percent annual depreciation. The trend growth rate of productivity is set to 1.5 percent

annually so that g = 0.0037, and the persistence of productivity shocks is set to ρ = 0.95.13

The household discount factor is set such that the steady-state real interest rate equals two

percent per year, implying a discount factor β = 0.9951. The elasticity of substitution between

varieties of the final consumption good, as well as that among varieties of labor used in production,

is set to σ = σw = 4. The Frisch elasticity of household labor supply is set to 3, implying φ = 0.33,

and risk aversion is set to θ = 1 (log utility in consumption).

The strength of the monetary policy reaction to inflation is set to φπ = 1.5, and the degree of

nominal rate smoothing is set to ρi = 0.85.

Three parameters describe the structure of financial constraints: x, the probability of restruc-

turing after default; ξ, the tightness of the borrowing constraint; and γ, the rate of firm exit. I

calibrate the restructuring rate to x = 0.093. This is the fraction of US business bankruptcy fil-

ings in 2006 that filed for Chapter 11 instead of Chapter 7, and that subsequently emerged from

bankruptcy with an approved restructuring plan.14 The remaining two parameters are chosen such

that the non-stochastic steady state of the model jointly matches the US average investment share

in output of 18 percent and an average ratio of debt to assets of one (the sample average in the

Fed flow of funds). The corresponding parameter values are γ = 0.0155 and ξ = 0.3094.

5.1.2 Estimation

The remaining parameters are the standard deviations of the technology and monetary shocks

(σA, σi), the degree of nominal price and wage rigidities (κ, κw), the size of investment adjustment

costs (ψ), the fraction of dividends paid out as earnings by continuing firms (ζ), and the learning

gain (g). I estimate these six parameters to minimize the distance to a set of eight moments

pertaining to both business cycle and asset price statistics: The standard deviation of output; the

standard deviations of consumption, investment hours worked, and dividends relative to output;

13The results are similar if one assumes permanent shocks to productivity, ρ = 1, which is more common in the
asset pricing literature.

142006 is the only year for which this number can be constructed from publicly available data. Data on bankruptcies
by chapter are available at http://www.uscourts.gov/Statistics/BankruptcyStatistics.aspx. Proprietary data
on Chapter 11 outcomes are analyzed in various samples by Flynn and Crewson (2009), Warren and Westbrook
(2009), Lawton (2012), and Altman (2014). The results in this paper are robust to choosing alternative values as
long as x is not too low. For values lower than about x = 0.05, the link between stock market value and investment
through the borrowing constraint is too weak to generate sizeable amplification through learning.
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Table 1: Estimated parameters.

parameter σa σi κ κw ψ ζ g

learning .00726 .000101 .362 .956 17.22 .684 .00483

(.00112) (.00210) (.137) (.024) (2.44) (.013) (.00005)

RE .01029 .001028 .704 .779 .451 .251 -

(.00242) (.000302) (.065) (.230) (.765) (.407)
Parameters as estimated by simulated method of moments. Asymptotic standard errors in parentheses. Targeted
data moments and estimated standard errors in Tables 2 and 3.

and the standard deviations of inflation, the nominal interest rate, and stock returns (see Tables

2 and 3 for the value of the data moments and estimated standard errors; all variables are in logs

and all variables except stock returns are HP-filtered). The set of estimated parameters θ solves

min
ϑ∈A

(m (θ)− m̂)′W (m (θ)− m̂) ,

where m (θ) are moments obtained from model simulation paths with 50,000 periods, m̂ are the

estimated moments in the data, and W is a weighting matrix.15 I also impose that θ has to lie

in a subset A of the parameter space which rules out deterministic oscillations of stock prices.16

Such oscillations are not observed in the data, but can emerge in the learning equilibrium when the

learning gain is large. The restriction effectively constrains the degree of departure of subjective

beliefs from rational expectations.

Table 1 summarizes the SMM estimates for both the learning and rational expectations version

of the model. The first row presents the results under learning. Exogenous shocks come mainly

from productivity shocks, since σi is estimated to be relatively small. The second row contains the

parameters estimated under rational expectations. The size of the shocks σa and σi is larger than

under learning, despite the fact that the degree of investment adjustment costs is much smaller,

implying a larger degree of endogenous amplification of the shocks under learning.

The Calvo price adjustment parameter κ implies retailers adjust their prices about every 2

months on average, while they do so about every 7 months in the rational expectations estimation.

By contrast, the SMM procedure selects a high degree of nominal wage rigidities κw and of adjust-

ment costs ψ under learning. These values are somewhat undesirable, but it is intuitive why they

are needed to fit the data. A high degree of wage rigidity is needed in order to match the volatility

of employment, which is about as high as the volatility of output. High wage rigidities help to

match it by suppressing the wealth effect on labor supply that would otherwise dampen the rise

of employment during asset price booms. High adjustment costs are needed because the high as-

set price volatility would otherwise translate into counterfactually large fluctuations in investment

15I choose W = diag
(

Σ̂
)−1

where Σ̂ is the covariance matrix of the data moments, estimated using a Newey-West

kernel with optimal lag order. This choice of W leads to a consistent estimator that places more weight on moments
which are more precisely estimated in the data.

16θ /∈ A if there exists an impulse response of stock prices with positive peak value also having a negative value of
more than 20% of the peak value.
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Table 2: Business cycle statistics in the data and across model specifications.

(1) (2) (3) (4) (5)

moment data learning RE no fin. fric. RE re-estimated

output

volatility

σhp (Yt) 1.43%

(0.14%)

1.51%* 0.82 0.65 1.66%*

volatility rel.

to output

σhp (It) /σhp (Yt) 2.90

(.12)

2.99* 0.41 0.25 2.71*

σhp (Ct) /σhp (Yt) .60

(.035)

.58* 1.00 1.36 .60*

σhp (Lt) /σhp (Yt) 1.13

(.061)

1.11* 0.45 0.25 1.24*

σhp (Dt) /σhp (Yt) 3.00

(.489)

2.97* 2.21 - 1.41*

correlation

with output

ρhp (It, Yt) .95

(.0087)

.75 0.91 0.24 0.96

ρhp (Ct, Yt) .94

(.0087)

.81 0.97 0.99 0.80

ρhp (Lt, Yt) .85

(.035)

.93 0.83 0.30 0.84

ρhp (Dt, Yt) .56

(.080)

.60 0.51 - 0.45

inflation σhp (πt) .27%

(.047%)

.31%* 0.28% 0.31% .21%*

nominal rate σhp (it) .37%

(.046%)

.10%* 0.10% 0.12% .09%*

Quarterly U.S. data 1962Q1–2012Q4. Standard errors in parentheses. πt is quarterly CPI inflation. it is the federal
funds rate. All following variables are in logarithms. Lt is total non-farm payroll employment. Consumption Ct
consists of services and non-durable private consumption. Investment It consists of private non-residential fixed
investment and durable consumption. Output Yt is the sum of consumption and investment. Dividends Dt are
four-quarter moving averages of S&P 500 dividends. σhp (·) is the standard deviation and ρhp (·, ·) is the correlation
coefficient of HP-filtered data (smoothing coefficient 1600). Moments used in the SMM estimation are marked with
an asterisk.

relative to output. In a sense, the amplification through asset price learning is so powerful that it

needs to be dampened again to fit the data.

The fraction of earnings paid out as dividends ζ under learning is fitted to 68 percent, somewhat

higher than the historical average for the S&P500 (about 50 percent). Finally, the learning gain g

implies that agents believe the amount of predictability in stock price growth to be small: When

stock prices today rise by 10 percent more than they expected, they update their belief about

predictable future price growth by 0.05 percent.

5.2 Business cycle and asset price moments

I now review the key business cycle and asset pricing moments in the data and across model

specifications. Table 2 starts with business cycle statistics. Moments in the data are shown in

Column (1). Moments for the estimated learning model are shown in Column (2), while Columns
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(3) and (4) contain the corresponding moments for the model under rational expectations and a

comparison rational expectations model without financial frictions.17 The model parameters are

held constant at the estimated values for the learning model in Columns (2) to through (4). Column

(5) presents the moments under rational expectations when the parameters are re-estimated to fit

the data.

The first row reports the standard deviation of detrended output. By construction, it is matched

well by the learning model in Column (2). When learning is shut off in Column (3), it drops almost

one half. This shows the great degree of amplification that learning adds to the model. The

standard (rational expectations) financial accelerator mechanism is present in the model as well,

since the volatility of output drops further in Column (4) when financial frictions are shut off. But

it is not as powerful as when it is combined with asset price learning. Of course, it is also possible

to match output volatility with rational expectations, using larger shock sizes, as in Column (5).

The next set of rows report the standard deviation of consumption, investment, hours worked

and dividends relative to output. Moving from Column (2) to (3), the removal of learning leads

to a drop in the relative volatility of investment and hours worked. This is because the estimated

learning model features a high level of investment adjustment costs to match investment volatility.

Without large asset price fluctuations generated by learning, investment becomes too smooth, as

does the marginal product of capital and hence labor demand. The volatility of dividends is well

matched by the learning model, which is a prerequisite for stock prices in the model and in the

data to be comparable.

Next, I report the contemporaneous correlations of consumption, investment, hours worked and

dividends with output. The values in the model with learning are broadly in line with the data.

The last two rows report the volatility of inflation and the nominal interest rate. Inflation volatility

is also roughly in line with the data, but the nominal interest rate is less volatile across all model

specifications.

Next, I present asset price statistics in Table 3.18 The statistics correspond to some well-known

asset price puzzles. In an endowment economy, Adam et al. (2015) show that a learning model is

able to match these statistics well, and the table makes it clear that this carries over into a general

equilibrium model with production.19 Starting with excess volatility in Column (2), the model with

learning reproduces the standard deviation of excess returns in the data and also comes close to

the volatility of the P/D ratio.20 By contrast, the model re-estimated under rational expectations

17In the economy without financial frictions, intermediate goods producers are owned directly by households and
face no financial constraint. The model then reduces to a standard New-Keynesian model with adjustment costs and
price and wage rigidities. The stock price in this economy is defined as the value of the capital stock, QtKt.

18I omit a comparison to the frictionless economy benchmark as presented in Table 2 as the asset price statistics
are very similar to those in Column (3).

19It is also worth noting that these statistics are produced using only a second-order approximation to the model
equations, whereas Adam et al. (2015) and Adam et al. (2016) use global methods to solve their model.

20The P/D ratio is not as high as in the data is because the P/D ratio correlates somewhat too strongly
with dividends. The Campbell-Cochrane decomposition rt ≈ κ0 + κ1pdt − pdt−1 + ∆dt implies that V [rt] ≈(
1− 2κ1ρ (pdt, pdt−1) + κ2

1

)
V [pdt]+V [∆dt]+2Cov (∆dt,∆pdt). Since the learning model matches both the volatility

of dividends and returns, and has an autocorrelation of pdt that is low relative to the data, the low volatility of pdt
results from the covariance term of price and dividend growth.
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Table 3: Asset price statistics in the data and across model specifications.

(1) (2) (3) (4) (5)

moment data learning RE no fin. fric. RE re-estimated

excess

volatility

σ
(
Ret,t+1

)
32.56%

(2.44%)

33.99%* 0.61% 2.02% 0.97%*

σ
(
Pt

Dt

)
41.08%

(6.11%)

32.62% 2.42% 2.48% 3.86%

return

predictability

ρ
(
Pt

Dt
, Ret,t+4

)
-.297

(.092)

-.486 -.14 .05 -.28

ρ
(
Pt

Dt
, Ret,t+20

)
-.585

(.132)

-.752 -.09 .43 -.17

ρ
(
Pt

Dt
, Pt+4

Dt+4

)
.904

(.056)

.54 .19 .32 .58

negative

skewness

skew
(
Ret,t+1

)
-.897

(.154)

-.188 -.031 .003 -.008

heavy tails kurt
(
Ret,t+1

)
1.57

(.62)

3.33 0.07 0.00 -0.05

risk-free rate E
(
Rft

)
1.99%

(.61%)

1.99% 1.99% 1.99% 1.99%

σ
(
Rft

)
2.34%

(.29%)

0.74% 0.58% .62% 0.86%

equity

premium

E
(
Ret,t+1

)
4.06%

(1.93%)

0.01% 0.00% 0.00% -0.04%

price

correlation

with output

ρhp (Pt, Yt) .458

(.115)

.700 .979 .996 .748

Quarterly U.S. data 1962Q1–2012Q4. Standard errors in parentheses. Dividends Dt are four-quarter moving averages
of S&P 500 dividends. The stock price index Pt is the S&P 500. Excess returns Ret are annualized quarterly excess re-
turns of the S&P 500 over 3-month Treasury yields. σ (·) is the standard deviation; ρ (·, ·) is the correlation coefficient;
ρhp (·, ·) is the correlation coefficient of HP-filtered data (smoothing coefficient 1600); skew (·) is skewness;kurt (·) is
excess kurtosis. Moments used in the SMM estimation are marked with an asterisk.

in Column (5) cannot produce a similar amount of volatility, despite the fact that return volatility

is explicitly targeted by the SMM estimation.21

Stock returns also exhibit considerable predictability by the P/D ratio at business-cycle fre-

quency. The same is true in the model with learning. Predictability is not targeted by the esti-

mation, and in fact it is somewhat stronger than in the data, reflected in a persistence of the P/D

ratio that is somewhat lower than in the data. Again, the rational expectations model is not able

to produce sizable return predictability.

The learning model also produces a distribution of returns that is negatively skewed and heavy-

21The poor asset pricing performance of the rational expectations model is due to the very simple preferences and
moderate risk aversion. Other models exist that can address asset pricing puzzles in a production economy at least
as well, e.g. for habit and for long-run risk. However, these alternative ways of modelling asset prices would miss the
disconnect of survey expectations from statistically expected stock returns discussed in the introduction and later in
Section 6.
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tailed as in the data, underlining the non-linearities in the asset price dynamics that arise from

the learning mechanism. At the same time, the model delivers a low and smooth risk-free rate.

Even though realized stock returns are very volatile, expected stock returns are not very volatile

because discount factors are fairly stable under learning. However, the learning model is not able

to produce a sizable average equity premium. The reason is that, even though returns are highly

volatile, this volatility is not priced because it stems from the subjective updating of beliefs, and

this problem has been encountered previously in the learning literature (Barberis et al., 2015).

Finally, the model has a rather large degree of comovement between stock prices and real

activity. While stock prices are procyclical in the data, too, the correlation is only about 0.45, while

in the learning model it is 0.70. One could think that this high correlation arises because of the

link between stock prices and investment in the borrowing constraint, but in fact the correlation

is even higher in the rational expectations economy without financial frictions in Column (3).

Rather, the high correlation arises because the model is driven only by two business cycle shocks

(productivity and monetary policy) that simultaneously move output and firm value. In the data,

many movements in stock prices occur without immediate changes in fundamentals, and the model

in this paper is not set up to capture those movements. Adding news shocks or discount factor

shocks could bring the correlation in line with the data, but is beyond the scope of this paper.

5.3 Impulse response functions

Impulse response functions reveal the amplification mechanism at play. Figure 4 plots the impulse

responses to a persistent productivity shock. Red solid lines represent the learning equilibrium,

blue dashed lines represent the rational expectations version, and black thin lines represent the

comparison model without financial frictions. The impulse responses are averaged across states

and therefore mask the non-linearities present with learning, but they are nevertheless instructive.

Looking at the first row of impulse responses, output rises persistently after the shock due to both

the increased productivity and the relaxation of credit constraints from higher asset prices. The

increase in output is larger under rational expectations than under the frictionless comparison; this

is the standard financial accelerator effect. But the strength of the financial accelerator is magnified

considerably under learning. This also translates into amplification of the responses of investment,

consumption, and employment. The amplification is due to two channels: First, learning leads to

higher stock prices. The increase in firms’ market value allows them to borrow more and invest

and produce more. Second, agents under learning are not aware of the mean reversion in stock

prices and predict the stock price boom to last for a long time. Consequently, they overestimate the

availability of credit and therefore production in the future, leading to an aggregate demand effect

that increases output today (see also 7.1). The rise in stock prices in the second row of Figure 4 is

large under learning and accompanied by an initial spike in dividend payments, although dividends

subsequently fall below their counterpart under rational expectations. The price-dividend ratio

(not shown) also rises after the shock. The nominal interest rate falls less under learning as the

monetary authority reacts to the inflationary pressures stemming from the relaxation in credit
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Figure 4: Impulse responses to a persistent productivity shock.
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constraints.

Figure 5 plots the response to a temporary reduction in the nominal interest rate. Again,

all macroeconomic aggregates rise substantially more under learning than under both rational

expectations and the frictionless benchmark.

5.4 Interaction between learning and financial frictions

The analysis of the simplified model in Section 4 revealed that there can be an important interaction

between learning and the financial friction. More precisely, in the simplified model the effects of

learning are amplified by a tighter financial constraint, and conversely disappear in the limit when

the constraint stops binding. Here, I show that a similar interaction is also present in the full model.

Figure 6 plots the volatility of output and stock prices for different values of ξ, which parameterizes

the overall tightness of the borrowing constraint in Equation (8).

As can be seen in the upper panel of the figure, the volatility of stock prices is decreasing in the

tightness of the financial friction, just as in Section 6.22 A tighter constraint implies a higher wedge

between the return on capital and the return on debt, which means that a temporary relaxation

22Unlike in the simplified version of the model, the limit of the financial friction not binding cannot be reached
here. For values of ξ higher than those shown in the figure, the borrowing constraint is still binding in steady state
but the equilibrium becomes locally unstable.
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Figure 5: Impulse responses to a monetary shock.
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of the borrowing constraint due to changes in beliefs under learning increases the firm’s expected

dividend payouts and raises stock prices by more, strengthening the positive feedback loop between

stock prices and real activity in the model.

The lower panel of the figure shows that a tighter credit constraint also increases output volatility

under learning, unless ξ is very small. When ξ is near zero, almost no collateral is pledgeable and

firms have to finance their capital stock almost entirely out of retained earnings. In this case,

fluctuations in stock prices only have small effects on allocations, which brings the dynamics of

output under learning and rational expectations closer together (indeed, they coincide perfectly at

ξ = 0). But otherwise, the amount of amplification from learning is decreasing with ξ, just like in

the simplified version of the model.

6 Survey data on expectations

The rational expectations hypothesis asserts that “outcomes do not differ systematically [...] from

what people expect them to be” (Sargent, 2008). Put differently, a forecast error should not be

systematically predictable by information available at the time of the forecast. If it were, then

agents would quickly detect this predictability and improve their forecasts accordingly. Yet the
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Figure 6: Interaction between the financial friction and learning.
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absence of predictability is easily rejected in the data, which is a longstanding challenge for rational

expectations.

By contrast, agents in this model also make systematic, predictable forecast errors. This is

true not only for stock prices but also for other endogenous model variables, despite the fact

that, conditional on stock prices, agents’ beliefs are model-consistent. A systematic mistake in

predicting stock prices will spill over into a corresponding mistake in predicting the tightness of

credit constraints, and hence investment, output, and so forth. Owing to the internal consistency

of beliefs, I can compute well-defined forecast errors made by agents in the model at any horizon

and for any model variable.

Despite the parsimonious departure from rational expectations, the model fits several patterns

of forecast predictability in the data. Since survey data can be used to put quantitative discipline

on models of expectation formation (Manski, 2004), the evidence presented here favors the use of

learning models such as this one over rational expectations models.

Figure 7 repeats the scatter plot of the introduction, contrasting expected and realized one year-

ahead returns in a model simulation. The same pattern as in the data emerges: When the P/D ratio

is high, return expectations are most optimistic while realized returns will be low on average. This

deviation of beliefs from rational expectations is easy to detect even in a small sample like the one

generated in Figure 7, yet it is exactly this detectable pattern that is consistent with survey data. In

the learning model, the discrepancy between expected returns and return expectations has a causal

interpretation: High return expectations drive up stock prices. At the same time, realized future
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Figure 7: Return expectations and expected returns in a model simulation.
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returns are, on average, low when the P/D ratio is high. This is because the P/D ratio is mean-

reverting (which agents do not realize, instead extrapolating past price growth into the future): At

the peak of investor optimism, realized price growth is already reversing and expectations are due

to be revised downward, pushing down prices toward their long-run mean.

Figure 8 compares the predictability of forecast error in the Federal Reserve’s Survey of Pro-

fessional Forecasters (SPF) as well as the CFO survey to that obtained from simulated model

data. Each red dot corresponds to a correlation of the error of the mean survey forecast with a

variable that is observable by respondents at the time of the survey. Under the null of rational

expectations, all correlation coefficients should be zero. The blue crosses show the corresponding

correlation coefficient in the model (obtained using a long simulation of 50,000 periods), while the

blue bands represent 95% confidence intervals of the model correlation coefficient in small samples

of the same length as those in the data. The model-data comparison is also tabulated in Table 4.

The table additionally shows the p-values from the corresponding regression of the forecast errors

on the predictors. It is immediate that the null of no predictability is often rejected in the data.

Panel (a) of the figure and Columns (1) and (2) of the table contain the correlations of future

forecast errors with the P/D ratio. When stock prices are high, people systematically over-predict

future stock returns and economic activity. For stock returns the model reproduces this pattern, as

was already shown in the scatter plot above. But the model also reproduces this pattern for output,

investment, consumption and unemployment (proxied for by one minus employment in the model).

Where the model fails to replicate the data is for inflation: When stock prices are high, forecasters

under-predict future inflation, while in the model the opposite result obtains. This discrepancy

arises essentially because stock market booms are inflationary in the model, which seems not to be
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Figure 8: Forecast error predictability.
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(b) Correlation of forecast error with ∆ logPDt.

R
t+4

stock Y
t+3

I
t+3

C
t+3

u
t+3

i
t+3

π
t+3

-1

-0.5

0

0.5

1

Model

Data

RE

(c) Correlation of forecast error with forecast revision.
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Red dots show correlation coefficients for mean forecast errors on one year-ahead nominal stock returns (Graham-
Harvey survey) and three quarters-ahead real output growth, investment growth, consumption growth, unemployment
rate, CPI inflation and 3-month treasury bill (SPF). Regressors: Panel (a) is the S&P 500 P/D ratio and Panel
(b) is its first difference. Panel (c) is the forecast revision as in Coibion and Gorodnichenko (2015). Data from
Graham-Harvey covers 2000Q3–2012Q4. Data for the SPF covers 1981Q1–2012Q4. Blue crosses show corresponding
correlation coefficients in the model, computed using a simulation of length 50,000, where subjective forecasts are
computed using a second-order approximation to the subjective belief system on a path in which no more future
shocks occur, starting at the current state in each period. Unemployment in the model is taken to be ut = 1 − Lt.
Stock returns in the model Rstockt,t+4 are quarterly nominal aggregate market returns. Blue lines show 95% confidence
bands of the correlation coefficients in the model in small samples of the same size as the data (123 quarters in the
SPF and 49 quarters in the Graham-Harvey survey) from 5,000 simulations with a burn-in period of 1,000 periods.
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true in the data (Christiano et al., 2010).

Panel (b) of the figure and Columns (3) and (4) of the table repeat the exercise for the first

difference of the P/D ratio, and here the model replicates the patterns in the data across all variables

remarkably well. Price-dividend ratio growth positively predicts forecast errors, suggesting that

agents’ expectations adjust slowly: They under-predict an expansion in its beginning but then

overshoot and over-predict it when it is about to end. In the model, this pattern also emerges

because expectations about asset prices adjust slowly.

Finally, Panel (b) of the figure and Columns (5) and (6) report the results of a particular test of

rational expectations devised by Coibion and Gorodnichenko (2015). Since for any variable xt, the

SPF asks for forecasts at one- through four-quarter horizons, it is possible to construct a measure of

agents’ revision of the change in xt as Êt [xt+3 − xt]−Êt−1 [xt+3 − xt]. Forecast errors are positively

predicted by this revision measure across all variables. Coibion and Gorodnichenko take this as

evidence for sticky information models in which information sets are gradually updated over time,

but concede that “deviations from FIRE [full information rational expectations] may exist above

and beyond those captured by simple models of information rigidities” (p. 2655). It turns out that

a learning model can capture the predictability of forecast errors by forecast revisions as well, and

furthermore also be consistent with additional patterns of predictability in the data.

7 Discussion

7.1 Does learning matter?

In this model, large swings in stock prices lead to large swings in real activity through their effect

on credit constraints. But maybe all that matters for amplification is asset price volatility, and

learning is but one way of getting there. Here, I show that learning does have create amplification

beyond its effect on asset price volatility. Extrapolative expectations about asset prices also cause

procyclical movements in aggregate demand that do not obtain under rational expectations, leading

to additional amplification in the presence of nominal rigidities.

To this end, I replace the stock market value Pt in the borrowing constraint (20) with an

exogenous process Vt that has the same law of motion as the stock price under learning. More

precisely, I fit a linear ARMA(10,5) process for Vt such that its impulse responses are as close

as possible to those of Pt under learning (the exogenous shock in the ARMA process are the

productivity and monetary shocks). I then solve this model, but with rational expectations. If

learning only matters because it affects stock price dynamics, then this hypothetical model should

have identical dynamics to the model under learning.23

Figure 9 shows that this is not the case. The ARMA process fits stock prices well: The

impulse response of Pt under learning and Vt in the counterfactual experiment are practically

indistinguishable. But after a positive productivity shock, output, investment, and consumption

23For this exercise I only compute a first-order approximation to the model equations, so that an ARMA process
has a fair chance of fitting the learning dynamics.
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Table 4: Forecast error predictability, tabulated.

(1) (2) (3) (4) (5) (6)

logPDt ∆ logPDt forecast revision

forecast variable data model data model data model

Rstockt,t+4 -.44 -.49 .06 .33 - -.47

[-.000] [.566]

Yt,t+3 -.32 -.37 .22 .10 .29 .20

[.021] [.068] [.004]

It,t+3 -.33 -.48 .25 .29 .31 .44

[.060] [.028] [.001]

Ct,t+3 -.26 -.09 .21 .12 .23 .13

[.062] [0.057] [.103]

ut,t+3 .22 .50 -.27 -.12 .43 .25

[.135] [.043] [.000]

πt,t+3 .62 -.43 -.01 .02 .24 .08

[.000] [.910] [.008]

it+3 -.03 -.40 .08 .27 .29 -.05

[.874] [.399] [.002]

Correlation coefficients for mean forecast errors on one year-ahead nominal stock returns (Graham-Harvey survey)
and three quarters-ahead real output growth, investment growth, consumption growth, unemployment rate, CPI
inflation and 3-month treasury bill (SPF). Newey-West adjusted p-values from least squares regressions in brackets.
Regressors: Column (1) is the S&P 500 P/D ratio and Column (2) is its first difference. Column (3) is the forecast
revision, as in Coibion and Gorodnichenko (2015). Data from Graham-Harvey covers 2000Q3–2012Q4. Data for the
SPF covers 1981Q1–2012Q4. For the model, correlations are computed using a simulation of length 50,000, where
subjective forecasts are computed using a second-order approximation to the subjective belief system on a path in
which no more future shocks occur, starting at the current state in each period. Unemployment in the model is taken
to be ut = 1− Lt. Stock returns in the model Rstockt,t+4 are quarterly nominal aggregate market returns.

still increase by more under learning, even though the counterfactual model has the same stock

price dynamics by construction. The reason is that expectations of future asset prices matter

beyond their direct impact on current prices. Under learning, agents do not fully internalize mean

reversion in stock prices and therefore predict that credit constraints are loose for longer than they

turn out to be. This leads to a wealth effect on households that increases their consumption, raising

aggregate demand, and it leads to higher future expected prices of capital goods EtQt+1, which

enters the liquidation value of firms and hence relaxes borrowing constraints, even if stock prices

are the same as under rational expectations. These effects are powerful enough to create significant

endogenous amplification through the departure of subjective beliefs from rational expectations.

7.2 Do non-stationary beliefs matter?

This section considers a generalized belief system which allows agents’ subjective belief about stock

prices to be mean-reverting. I show that expectations about the expected long-run dynamics of

stock prices do not affect the equilibrium dynamics, as long as expectations about price growth

remain persistent in the short run.
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Figure 9: Effects of learning beyond asset prices.
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Solid red line: Impulse response to a one standard deviation positive productivity shock under learning. Black dash
dotted line: Impulse response to a hypothetical rational expectations model with stock price dynamics fitted to those
under learning by a linear ARMA(10,5) process. All impulse responses in the figure are produced using a first-order
approximation to the model equations.

Consider extending the belief system (22)–(23) as follows:

logPt = logPt−1 + µ̂t−1 + zt (37)

µ̂t = ρµµ̂t−1 − a0 log
Pt−1

P̄
+ gzt. (38)

This specification nests the simpler belief system when ρµ = 1 and a0 = 0. Now if ρµ < 1 and

a0 = 0, agents believe stock price growth to be mean-reverting, although they still believe the level

of stock prices to follow a random walk. If ρµ < 1 and a0 > 0, then agents’ also believe that the

level of stock prices is mean reverting to some long-run value P̄ . Figure 10 plots the volatilities of

output and stock prices as functions of each of the three parameters of this extended belief system.

The left panel of the figure shows the sensitivity to the learning gain when ρµ = 1 and a0 = 0.

This parameter governs the speed with which expectations adjust to recent observations of price

growth. Asset price volatility as well as the amount of amplification obtained under learning are

very sensitive to this parameter. In the estimated learning model, it is set to g = 0.00483 in order

to match the return volatility observed in the data.

In the middle panel, the learning gain is fixed at its estimated value, a0 = 0 and ρµis being

varied. The strength of the effects of learning are increasing in the persistence of the perceived
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Figure 10: Sensitivity to the specification of the belief system.

0 0.002 0.004 0.006 
0

10

20

30

40

s
d

. 
%

Stock prices

0 0.002 0.004 0.006 
0

0.5

1

1.5

2

s
d

. 
%

Output

learning

RE

(a) Learning gain parameter g.
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(b) Belief persistence parameter ρµ.
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(c) Mean reversion parameter a0.

Simulated model data HP-filtered with smoothing parameter 1600, sample length 50,000 periods. The dashed black
line indicates the parameter value in the estimated learning model.

predictable component of prices. However, the value ρµ = 1 is not special. Even if agents believe

that price growth eventually returns to a stable mean in the long run, the effects of learning remain

sizable: At ρµ = 0.9 (an expected yearly mean reversion of price growth by about 35 percent),

the volatility of stock prices under learning is still about eight times larger than under rational

expectations.

In the right panel, I setρµ = 0.99 and vary the value for a0, the strength of perceived mean

reversion in levels. The effects of learning decrease but remain sizable as a0 increases. Again, the

value a0 = 0 is not special. Whether agents believe in mean reversion in the long run or not is not

important as long as short-run expected price growth remains persistent.

In sum, the effects of learning do not depend on subjective long run expectations about prices

and can be modified to incorporate mean reversion in the growth rate or even the level of prices.

What is important though is that agents overestimate the persistence of price growth relative to

the data. The fact that measured stock return expectations comove positively with past returns

supports such a misperception.24

7.3 Do nominal rigidities matter?

The model includes nominal rigidities. These allow for an investigation of the role of monetary

policy in the next section, but they are also crucial for the quantitative fit of the model. It is

difficult to obtain comovement of consumption, investment and employment in response to changes

24Adam et al., 2016 provide further evidence of the persistence of expected price growth by comparing stock price
survey forecasts across multiple horizons.
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in investment demand that are unrelated to TFP (Beaudry and Portier, 2007). Nominal rigidities

help with this problem, as shown by Kobayashi and Nutahara (2010) in the context of news shocks

and Ajello (2016) in the context of credit shocks, and they also help here.

An increase in stock prices relaxes credit constraints and allows firms to invest more and pay

out higher dividends. But general equilibrium effects can dampen or even overturn these effects,

as has already been discussed in the simplified model of Section 4. Higher demand for investment

implies higher labor demand and therefore an increase in the real wage. It also tends to crowd out

consumption today, implying higher real interest rates through the consumption Euler equation.

Both channels dampen the rise in firm profits and investment.

Wage rigidities will counteract the dampening effects of real wage responses to changes in the

tightness of credit constraints, allowing for a larger response of employment and dividends. Price

rigidities, together with a relatively loose monetary policy rule, render the price of intermediates qt

pro-cyclical, implying larger dividend responses. They also dampen real interest rate movements

in response to changes in investment demand, mirrored by less crowding out of consumption.

Together, nominal rigidities help the comovement of investment, consumption and employment,

and they also amplify the response of dividends to changes in borrowing constraints, reinforcing

the learning dynamics in the stock market.

To illustrate this point, I re-compute impulse responses of the model with learning, but without

nominal rigidities (setting κ = κw = 0). I also reduce the size of investment adjustment costs

to ψ = 0.1. With the high degree of adjustment costs in the baseline version, the model would

include an explosive two-period oscillation and reducing ψ ensures stability. Lowering adjustment

costs also gives the real version a better chance at delivering strong impulse responses. Even then,

the nominal version delivers greater amplification in output and consumption. Figure 11 plots

impulse responses to a positive productivity shock for both the nominal and real version of the

model. Owing to lower adjustment costs, the initial response of investment is expectedly stronger

in the real version. However, the real wage wt rises more and dividends rise less. This considerably

dampens the learning dynamics and also mutes the response of stock prices.

8 Implications for monetary policy

If belief distortions from asset price learning have important consequences for the real economy,

then the question arises whether policy should intervene to mitigate them. Here, I specifically ask

whether it would be beneficial for the central bank in the model to “lean against the wind”, i.e. to

systematically raise interest rates in response to asset price increases.

Consider extending the interest rate rule (9) as follows:

it = ρiit−1 + (1− ρi) (1/β + φππt + φY ∆ log Yt + φP∆ logPt) (39)

In addition to raising interest rates when inflation is above its target level (taken to be zero), the

monetary authority can raise interest rates φ∆Y percentage points when real GDP growth increases
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Figure 11: Counterfactual impulse responses without nominal rigidities.
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Solid red line: Impulse response to a one-standard deviation positive productivity shock for the model with learning
and price and wage rigidities (“nominal” baseline). Black dash-dotted line: Impulse response to a productivity shock
for the model with learning but without nominal rigidities, re-estimated as in Section 5.1.2 to fit the data (“real”
comparison). The size of the shock shown is the same as in the nominal model.

one percentage point and φ∆P percentage points when stock price growth increases one percentage

point. Conditionally model-consistent expectations imply that under learning, agents have full

knowledge of the policy rule as well as the monetary transmission mechanism, but continue to

believe in the misspecified law of motion for stock prices.

Table 5 shows numerically computed policy rules that maximize expected conditional welfare

at the non-stochastic steady state. Welfare calculations in the model are complicated by the fact

that there are two types of households in the model. I compute25 a weighted average of household

and firm owner utility, expressed in units of steady state consumption and weighed by their share

in aggregate consumption:

χ =
C̄welfare + C̄fwelfare

C̄SS + C̄fSS
− 1 (40)

25To compute conditional welfare, I run 4,000 model simulations of length 1,000 periods, each starting at the
non-stochastic steady state, and compute series for Ct, C

f
t and Lt using the exact formulas given in the appendix. I

then evaluate the discounted sum of utility in each simulation and compute conditional welfare as the average across
simulations.
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Table 5: Optimized interest rate rules.

learning RE (re-estimated)

(1) (2) (3) (4) (5) (6)

baseline w/o ∆P w/ ∆P baseline w/o ∆P w/ ∆P

φπ 1.50 1.36 2.84 1.50 4.82 3.59

φ∆Y 3.48 2.63 1.10 0.85

φ∆P 1.82 -1.00

σhp (Y ) 1.51% .30% .51% 1.66% .93% .93%

σhp (P ) 12.14% 3.12% 1.17% .10% .10% .10%

σhp (π) .31% .43% .32% .21% .14% .14%

σhp (i) .10% .09% .04% .09% .05% .05%

welfare gain

relative to baseline

- 1.244% 1.381% - .314% .314%

welfare gain χ

relative to steady

state

0.084% 1.187% 1.289% -0.092% 0.222% 0.222%

Standard deviations of output, stock prices, inflation, and interest rates (unfiltered) under learning in percent. The
welfare gain is computed relative to the respective baselines in Columns (1) and (4) and expressed in percent of
steady-state consumption (see Footnote 25). The interest rate smoothing coefficient is kept at ρi = 0.85 and interest
rate shocks are absent in all rules considered.

where

u
(
C̄welfare, L̄SS

)
= (1− β)E

[ ∞∑
t=0

βtu (Ct, Lt)

]

C̄fwelfare = (1− β)E

[ ∞∑
t=0

βtCft

]
.

In both the learning and the rational expectations versions of the model, steady-state consumption

of the risk-averse households is about 9 times larger than that of risk-neutral firm owners, implying

a welfare weight of households of about 90 percent. The results in this section are qualitatively

unchanged if the conditional welfare measure is replaced by unconditional expected utility or a

simple quadratic loss function of output and inflation volatility. Also, note that the expectation

is evaluated under the actual equilibrium distribution of model outcomes, rather than under the

subjective probability measure P. Under learning, this welfare measure is therefore paternalistic,

in that maximizing it does not neccessarily maximize agents’ subjectively expected welfare.

Column (1) shows the baseline calibration under learning. The welfare measure is slightly

higher than in steady-state, owing to the fact that the steady state itself is inefficient and no mean

correction has been applied to the exogenous driving processes. Column (2) displays optimized
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coefficients φπ and φY without a reaction to stock prices. The resulting rule implies a large welfare

gain of 1.19% of steady state consumption. Column (3) additionally allows for a reaction to stock

prices prices. The optimal coefficient on stock prices is computed as φP = 1.82. Allowing for a

reaction to stock prices increasing the volatility of output but further reduces the volatility of asset

prices and inflation. Overall, the welfare gain relative to the baseline is larger than without the

reaction to stock prices, at 1.29%. It is worth noting that despite a strong reaction of interest

rates to stock prices, the volatility of the nominal interest rate in Column (3) is lower than without

the reaction. In the model with learning, leaning against the wind reduces endogenous asset price

volatility so that equilibrium rates do not end up being excessively volatile. Intuitively, raising rates

when asset prices are rising (and vice-versa) acts to stabilize expectations in financial markets. In

the model, this stabilization works mainly through changes in firms’ borrowing costs and dividend

payouts, offsetting the self-amplifying learning dynamics in the stock market.

By contrast, under rational expectations this benefit of stabilizing financial market expectations

is absent. Columns (4) to (6) repeat the discussed calculations for the rational expectations version

of the model, re-estimated to fit the moments in the data. The optimal coefficient φP found by the

numerical optimization is in fact negative, but to be precise, the optimal combination of coefficients

in Column (6) is not uniquely determined: Higher values of φP together with lower values for φY

lead to identical allocations and welfare gains relative to the (rational expectations) baseline. In

other words, the optimal allocations and welfare gains cannot be improved upon by reacting to

stock prices when expectations are rational. This result is similar in spirit to Faia and Monacelli

(2007) or Cúrdia and Woodford (2016) who find the benefits of reacting to financial conditions to

be small.

These results on optimal policy rules come with several caveats. First, the results presented

here are meant to illustrate that optimal policy prescriptions in a model depend on the underlying

asset pricing theory, rather than to provide a comprehensive evaluation of the merits of leaning

against the wind. Second, because risk aversion is relatively low, the welfare cost of business cycles

is small to start with. This low risk aversion is also reflected in the small equity premium that the

model produces. Higher risk aversion could potentially affect how agents react to changes in policy.

Finally, it was implicitly assumed that the subjective model that agents use to forecast stock prices

under learning is invariant to policy, which can be legitimately questioned even in the absence of

fully rational expectations.

9 Conclusion

In this paper, I have analyzed the implications of learning-based asset pricing in a business cycle

model with financial frictions. When firms’ borrowing constraints depend on their market value,

learning in the stock market interacts with credit frictions to form a two-sided feedback loop between

stock prices and firm profits that amplifies the learning dynamics. At the same time, it makes the

financial accelerator mechanism more powerful, amplifying standard business cycle shocks. The
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model jointly matches business cycle and asset pricing moments. One interesting avenue to explore

in further research is to incorporate firm heterogeneity into the model, taking into account the fact

that some firms are less credit-constrained than others;

The model also replicates the predictability of forecast errors in survey data across a range

of variables, as agents’ forecast errors on stock prices spill over into their forecasts of economic

activity. The fact that many patterns of predictability match up with the data is strong evidence

in favor of the expectation formation mechanism laid out in this paper.

An innovation in developing the model was to introduce a belief system that combines learning

about stock prices with a high degree of rationality and internal consistency. Beliefs are restricted

in a way such that forecast errors conditional on future prices and fundamentals are zero. This

differs from most of the existing adaptive learning literature where every forward-looking equation

is parameterized separately. The method is general and can be applied in other models of the

business cycle.

An examination of the sensitivity of the amplification mechanism to the monetary policy rule

revealed that a reaction of interest rates to stock price growth is beneficial under learning. This

is because such a reaction effectively stabilizes expectations in financial markets. The same is

not true in a rational expectations framework, illustrating that the choice of an asset price theory

can have important normative implications. Further research could examine in detail the policy

implications of learning-based asset pricing and establish whether a policy of “leaning against the

wind” is desirable in more general settings.
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Online Appendix

A Details on the model

A.1 Setup of adjustment costs and nominal rigidities

In the full model, final good producers (indexed by i ∈ [0, 1]) transform a homogeneous intermediate

good into differentiated final consumption goods using a one-for-one technology. The intermediate

good trades in a competitive market at the real price qt (expressed in units of the composite final

good). Each retailer enjoys market power in her output market, and sets a nominal price pit for its

production. A standard price adjustment friction à la Calvo means that a retailer cannot adjust

her price with probability κ. Hence, the retailer solves the following optimization:

max
pit

∞∑
s=0

(
s∏

τ=1

κΛt+τ

)
((1 + τ) pit − qt+spt+s)Yit+s − Tt+s

s.t. Yit+s =

(
pit
pt+s

)−σ
Ỹt+s,

where Ỹt is aggregate demand for the composite final good and pt =
(∫ 1

0 p
1−σ
it

)1/(1−σ)
is the

aggregate price level. I assume that the government sets subsidies such that τ = 1/(σ − 1) so that

the steady-state markup over marginal cost is zero, and levies a lump-sum tax Tt+s on retailers to

finance the subsidy. Since all retailers that can re-optimize at t are identical, they all choose the

same price pit = p∗t . The derivation of the non-linear aggregate law of motion for the retail sector

is standard and the final equations are:

p∗t
pt

=
1

1 + τ

σ

σ − 1

Γ1t

Γ2t

Γ1t = qt + κEPt Λt+1
Ỹt+1

Ỹt
πσt+1

Γ2t = 1 + κEPt Λt+1
Ỹt+1

Ỹt
πσ−1
t+1 .

Inflation πt = pt/pt−1 and the reset price are linked through the price aggregation equation which

can be written as

1 = (1− κ)

(
p∗t
pt

)1−σ
+ κπσ−1

t

and the Tak-Yun distortion term is

∆t = (1− κ)

(
Γ1t

Γ2t

)−σ
+ κπσt ∆t−1.

This term ∆t ≥ 1 is the wedge due to price distortions between the amount of intermediate goods

produced and the amount of the final good consumed. The amount of final goods available for
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consumption and investment is Ỹt = Yt/∆t. Similarly, one can define C̃t = Ct/∆t as the level of

consumption the household could obtain if price distortions were zero.

Similarly to retailers, labor agencies transform the homogeneous household labor input into

differentiated labor goods at the nominal price w̃tpt and sell them to intermediate firms at the

price wht, which cannot be adjusted with probability κw. Labor agency h solves the following

optimization:

max
wht

EPt
∞∑
s=0

(
s∏

τ=1

κwΛt+τ

)
((1 + τw)wht − w̃t+spt+s)Lht+s − Twt+s

s.t. Lht =

(
wht
w̃t

)−σw
L̃t.

Since all labor agencies that can re-optimize at t are identical, they all choose the same price

wht = w∗t . Again, I assume that the government sets wage subsidies τ = 1/(σw − 1) such that

the steady-state markup over marginal cost is zero, and levies a lump-sum tax on labor agency

profits to finance the subsidy. The first-order conditions are analogous to those for retailer, and the

aggregate nominal wage level that firms face is where wt =
(∫ 1

0 w
1−σw
ht

)1/(1−σw)
. Wage inflation is

πwt = wt/wt−1 and the Tak-Yun wage distortion ∆wt is defined analogously to that for final good

producers.

Capital good producers operate competitively in input and output markets, producing capital

goods using final consumption goods. For the latter, they have a CES aggregator just like house-

holds. There is no distinction between new and used capital and depreciation takes place within

intermediate firms. The maximization program of capital producers is entirely intratemporal:

max
It

QtIt −
(
It +

ψ

2

(
It
It−1

− 1

)2
)

In particular, they take past investment levels It−1 as given when choosing current investment

output. This setup is simpler than the one in Bernanke et al. (1999) where the price of used and

new capital goods differ. The first-order condition defines the price for capital goods in the main

text.

All of the profits made by the firms described above accrue to households. Similarly, all subsidies

by the government are financed by lump-sum taxes on households. Taken together, the term Πt

defined in the main text is:

Πt = Ỹt − qtYt + w̃tLt − wtL̃t + (Qt − 1) It −
ψ

2

(
It
It−1

− 1

)2

The market clearing conditions are summarized below. Supply stands on the left-hand side; demand
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on the right-hand side.

Yt =

∫ 1

0
Yjtdj =

∫ 1

0
Yitdi

Ỹt =
Yt
∆t

= Ct + It +−ψ
2

(
It
It−1

− 1

)2

+ Cft

Lt =

∫ 1

0
Lhtdh

L̃t =
Lt

∆wt
=

∫ 1

0
Ljtdj

Kt =

∫ 1

0
Kjtdj = (1− δ)Kt−1 + It

1 = Sjt, j ∈ [0, 1]

0 = Bg
t

A.2 Properties of the rational expectations equilibrium

I consider a rational expectations equilibrium with the following properties that hold in a neigh-

borhood of the non-stochastic steady-state.

1. The expected net discounted return on capital is strictly positive for both firm owners and

households: βEtRkt+1 > 1 and EtΛt+1R
k
t+1 > 1.

2. At any time t, the stock market valuation Pjt of a firm j is linear in its net worth, with a

slope that is strictly greater than one.

3. All firms choose the same capital-labor ratio Kjt/Ljt .

4. All firms can be aggregated. Aggregate debt, capital and net worth are sufficient to describe

the intermediate goods sector.

5. Borrowers never default on the equilibrium path and borrow at the risk-free rate, and the

lender only accepts debt payments up to a certain limit.

6. If the firm defaults and the lender seizes the firm, it always prefers restructuring to liquidation.

7. The firm always exhausts the borrowing limit.

Here, I derive restrictions on the parameters for existence of such an equilibrium. I first take the

first two properties as given and show under which conditions the remaining ones hold, and then

derive conditions for the first two properties be verified.
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Value functions

An operating firm j enters the period with a predetermined stock of capital and debt. It is

convenient to decompose its value function into two stages. The first stage is given by:

Υ1 (Kjt−1, Bjt−1, st) = max
Njt,Ljt,Djt,Yjt

γNjt + (1− γ) (Djt + Υ2 (Njt −Djt, st))

s.t. Njt = qtYjt − wtLjt + (1− δ)QtKjt−1 −Rt−1Bjt

Yjt = Kα
jt−1 (AtLjt)

1−α

Djt = ζ (Njt −QtKjt−1 +Bjt−1)

The aggregate state of the economy is denoted by st. In what follows, I will suppress the time and

firm indices for the sake of notation.

After production, the firm exits with probability γ and pays out all net worth as dividends. The

second stage of the value function consists in choosing debt and capital levels as well as a strategy

in the default game:

Υ2

(
Ñ , s

)
= max

K,B,strategy in default game
βE
[
Υ1

(
K,B, s′

)
, no default

]
+ βE

[
Υ1

(
K,B∗, s′

)
,debt renegotiated

]
+ βE [0, lender seizes firm]

s.t. QK = Ñ +B

Note that, since net worth Ñ is non-negative around the steady state, the firm’s debt B cannot

exceed its capital stock K.

In the first stage, the first order condition with respect to L equalizes the wage with the marginal

revenue. Since there is no firm heterogeneity apart from capital K and debt B and the production

function has constant returns to scale, this already implies Property 3 that all firms choose the

same capital-labor ratio. Hence the internal rate of return on capital is common across firms:

Rk = αq

(
(1− α)

qA

w

) 1−α
α

+ (1− δ)Q

Taking Property 2 as given for now, Υ2 is a linear function

Υ2

(
Ñ , s

)
= υsÑ

with slope νs > 1. Then Υ1 is homogeneous of degree one, and at the steady state (and therefore
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in a neighborhood):

Υ1 (K,B, s) = N + (1− γ) (D −N + Υ2 (N −D, s))
= N + (1− γ) (υs − 1) ((1− ζ)N + ζ (QK −B))

> N = RkK −RB.

Limited commitment problem

The second stage involves solving for the subgame-perfect equilibrium of the default game between

borrower and lender. Pairings are anonymous, so repeated interactions are ruled out. Also, only

the size B and the interest rate R̃ of the loan can be contracted (in equilibrium R̃ = R but this is

to be established first). The game is played sequentially:

1. The firm (F) proposes a borrowing contract
(
B, R̃

)
.

2. The lender (L) can accept or reject the contract.

• A rejection corresponds to setting the contract
(
B, R̃

)
= (0, 0).

Payoff for L: 0. Payoff for F: βE
[
Υ1

(
Ñ , 0, s′

)]
.

3. F acquires capital and can then choose to default or not.

• If F does not default, it has to repay in the next period.

Payoff for L: EΛR̃B −B. Payoff for F: βE
[
Υ1

(
K, R̃RB, s

′
)]

.

4. If F defaults, the debt needs to be renegotiated. F makes an offer for a new debt level B∗.26

5. L can accept or reject the offer.

• If L accepts, the new debt level replaces the old one.

Payoff for L: EΛR̃B∗ −B. Payoff for F: βE
[
Υ1

(
K, R̃RB

∗, s′
)]

.

6. If L rejects, then she seizes the firm. A fraction 1−ξ of the firm’s capital is lost in the process.

Nature decides randomly whether the firm can be “restructured.”

• If the firm cannot be restructured, or it can but the lender chooses not to do so, then

the lender has to liquidate the firm.

Payoff for L: E [ΛQ′] ξK −B. Payoff for F: 0.

• If the firm can be restructured and the lender chooses to do so, she retains a debt claim

of present value ξB and sells the residual equity claim in the firm to another investor.

Payoff for L: ξB + βE [Υ1 (ξK, ξB, s′)]−B. Payoff for F: 0.

26That the interest rate on the repayment is fixed is without loss of generality.
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Backward induction leads to the (unique) subgame-perfect equilibrium of this game. Start with

the possibility of restructuring. L prefers this to liquidation if

ξB + βE
[
Υ1

(
ξK, ξB, s′

)]
≥ EΛξQ′K.

This holds true at the steady state, as we have βRk > 1 (Property 1), Λ = β = 1/R and Q′ = 1:

βΥ1 (ξK, ξB, s) > β
(
RkξK −RξB

)
> ξ

(
K − β̃RB

)
> ξ (βK −B) .

Since the inequality is strict, it holds around the steady-state as well. This establishes Property

6.

Next, L will accept an offer B∗ if it gives her a better expected payoff (lenders can diversify

among borrowers so that their discount factor is invariant to the outcome of the game). The

probability of restructuring is given by x. The condition for accepting B∗ is therefore that

E [Λ] R̃B∗ ≥ x
(
ξB + β̃E

[
Υ1

(
ξK, ξB, s′

)])
+ (1− x)E

[
ΛQ′

]
ξK.

Now turn to the firm F. Among the set of offers B∗ that are accepted by L, the firm will prefer

the lowest one which satisfies the above restriction with equality. This follows from Υ1 being a

decreasing function of debt. This lowest offer will be made if it leads to a higher payoff than

expropriation: βE
[
Υ1

(
K, R̃RB, s

′
)]
≥ 0. Otherwise, F offers zero and L seizes the firm.

Going one more step backwards, F has to decide whether to declare default or not. It is

preferable to do so if B∗ can be set smaller than B or if expropriation is better than repaying,

βE
[
Υ1

(
K, R̃RB, s

′
)]
≥ 0.

What is the set of contracts that L accepts in the first place? From the perspective of L, there

are two types of contracts: those that will not be defaulted on and those that will. If F does not

default (B∗ ≥ B), L will accept the contract simply if it pays at least the risk-free rate, R̃ ≥ R. If

F does default (B∗ < B), then L accepts if the expected discounted recovery value exceeds the size

of the loan—i.e., E [Λ] R̃B∗ ≥ B.

Finally, let us consider the contract offer. F can offer a contract
(
B, R̃

)
on which it will not

default. In this case, it is optimal to offer just the risk-free rate R̃ = R. Also note that the payoff

from this strategy is strictly positive for any non-negative B that does not trigger default, since at

the steady-state Rk > 1/β > R and therefore

βE
[
Υ1

(
K,B, s′

)]
> βE

[
RkK −RB

]
= βE

[
RkÑ +

(
Rk −R

)
B
]

> 0.
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F therefore prefers this contract to one that leads to default with expropriation. The payoff is

increasing in the size of the loan B, since

∂

∂B
E

[
Υ1

(
Ñ +B

Q
,B, s′

)]

=βE
[
Rk

Q
−R+ (1− γ) (υs′ − 1)

(
(1− ζ)

(
Rk

Q
−R

)
+ ζ

(
Q′

Q
− 1

))]
>0.

Therefore, of all values for B that do not lead to default, F will want to choose the largest one,

defined as:

B̄ = max

B
∣∣∣∣∣∣ x
(
ξB + βE

[
Υ1

(
ξ
(
Ñ+B
Q , s′

)
, ξB, s′

)])
+ (1− x)E [ΛQ′] ξ Ñ+B

Q −B
≥ 0

 .

In order for the borrowing constraint to be binding, it must be finite. Since the set above contains

B = 0, this amounts to the condition that

x

(
1 + β

∂

∂B
E

[
Υ1

(
Ñ +B

Q
,B, s′

)])
+ (1− x)E

[
ΛQ′

]
<

1

ξ
(41)

which is satisfied for ξ small enough. Because Υ1 is homogenous of degree one, the borrowing limit

is linear in Ñ and can be written as B̄ = υB,sÑ .

F could also offer a contract
(
B, R̃

)
that only leads to a default with debt renegotiation. The

optimal contract of this type is the solution to the following problem:

max
R̃,B,B∗

βE

[
Υ1

(
Ñ +B,

R̃B∗

R
, s′

)]

s.t.
R̃B∗

R
≥ B

R̃B∗

R
= x

(
ξB + βE

[
Υ1

(
ξ
Ñ +B

Q
, ξB, s′

)])

+ (1− x)E
[
ΛQ′

]
ξ
Ñ +B

Q

It is clear that the value of this problem is solved by setting R̃ = R and B = B∗ = B̄, which

amounts to not defaulting. This establishes Properties 5 and 7.
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Linearity of firm value

Since firms do not default and exhaust the borrowing limit B̄, the second-stage firm value is

Υ2

(
Ñ
)

= βE

[
Υ1

(
Ñ + B̄

Q
, B̄, s′

)]

= βE
[
Υ1

(
1 + υB,s

Q
Ñ, υB,sÑ , s

′
)]

= βE
[
Υ1

(
1 + υB,s

Q
, υB,s, s

′
)]

Ñ .

We have therefore verified the linearity of Υ2. To establish Property 2, it remains to show that the

slope of Υ2 is greater than one. At the steady state:

υs = βΥ1 (1 + υB,s, υB,s, s)

= β

Rk + υB,s

(
Rk −R

)
︸ ︷︷ ︸

>0


1 + (1− γ)

>−1︷ ︸︸ ︷
(υs − 1) (1− ζ)


︸ ︷︷ ︸

>0

+ (1− γ) (υs − 1) ζ

> βRk (1 + (1− γ) (υs − 1) (1− ζ)) + (1− γ) (υs − 1) ζ

> 1 + (1− γ) (υs − 1)

> 1.

Finally, the aggregated law of motion for capital and net worth needs to be established (Property

4). Denoting again by Γt ⊂ [0, 1] the indices of firms that are alive at the end of period t, we have

QtKt = Qt

∫ 1

0
Kjtdj =

∫
j∈Γt

(Njt − ζEjt +Bjt) dj

= (1− γ) (Nt − ζEt) +Bt

Nt =

∫ 1

0
Njtdj = RktKt−1 −Rt−1Bt−1

Bt =

∫ 1

0
Bjtdj = xξ (Bt + Pt) + (1− x) ξEtΛt+1Qt+1Kt.

Return on capital

We can now establish a condition under which βRk > 1 holds (Property 1). From the aggregate

equations above, and the definition of earnings E = N −QK +B, it follows that in steady state:

Rk =
RB

K
+

1− ζ (1− γ)

(1− ζ) (1− γ)

(
1− B

K

)
. (42)
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Rearranging the above expression, one obtains that βRk > 1 holds at the steady state if and only

if:

γ > 1− β

1− ζ (1− β)
. (43)

A.3 Conditions to rule out multiple equilibria

Collateral constraints often give rise to multiple equilibria due to their feedback effects: Low asset

prices reduce borrowing constraints and activity, which in depress asset prices and so on. This

multiplicity appears even in the very early literature (Kiyotaki and Moore, 1997). More recently,

Miao and Wang (2011) have shown that when firm borrowing constraints depend on equity value,

multiple steady states are possible. In this section, I give conditions under which this type of

multiplicity does not arise. These conditions are satisfied for the parameter values at which the

model is simulated.

Miao and Wang look for an equilibrium in which firm value Υ2

(
Ñ , s

)
is not linear but affine

in net worth Ñ . Even a firm with zero net worth has positive value. This can be an equilibrium:

The positive equity value enables the firm to borrow, acquire capital and pay dividends from the

returns; those expected dividends can justify the positive equity value.

Suppose that Υ2

(
Ñ , s

)
= υsÑ + ϑs with ϑs ≥ 0 and υs > 1, and that βEtRkt+1 > 1. Then the

proof for the existence of an equilibrium satisfying properties 3–7 above still goes through under

the same conditions (41) and (43). The equation determining the coefficient ϑs is:

υsÑ + ϑs = βE
[
κN,s′Ñ + κB,s′B̄ + (1− γ)ϑs′

]
where

κN,s′ = (1 + (1− γ) (υs′ − 1) (1− ζ))
Rk

Q
− (1− γ) (υs′ − 1) ζ

Q′

Q

κB,s′ = (1 + (1− γ) (υs′ − 1) (1− ζ))

(
Rk

Q
−R

)
− (1− γ) (υs′ − 1) ζ

(
Q′

Q
− 1

)
.

The borrowing limit B̄ depends itself on equity value and therefore on the coefficients υs and ϑs:

B̄ =
E
[
ξxβ (1− γ)ϑs′ + ξÑ

(
(1− x) ΛQ′

Q + xβκN,s′
)]

1− ξE
[
x+ (1− x) ΛQ′

Q + xβκB,s′
] . (44)
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Comparing coefficients, the equations determining υs and ϑs are:

υs = βE
[
κN,s′

]
+ β

ξE
[
(1− x) ΛQ′

Q + xβκN,s′
]

1− ξE
[
x+ (1− x) ΛQ′

Q + xβκB,s′
]E [κB,s′]

ϑs = β (1− γ)

1 +
ξxE

[
κB,s′

]
1− ξE

[
x+ (1− x) ΛQ′

Q + xβκB,s′
]
E [ϑs′ ] .

Clearly, ϑs ≡ 0 is a solution to the second equation and corresponds to the equilibrium consid-

ered in this paper. It is the unique solution if the term multiplying E [ϑs′ ] is always strictly smaller

than one. Around a steady state in which ϑs is zero, a sufficient condition to guarantee uniqueness

is that

β (1− γ)

(
1 +

ξxβκB,s
1− ξx+ (1− x)β + xβκB,s

)
< 1. (45)

This always holds for x small enough. It remains to establish conditions under which a steady state

with ϑs > 0 can also be ruled out. Such a steady state would necessarily have the term multiplying

E [ϑs′ ] equal to one at the steady state. From this, it follows that necessarily

κB,s =
1− β (1− γ)

ξβx
(1− ξx− ξ (1− x)β)

υs =
1− β (1− γ)

ξβx

1− ξx
1− γ

Rk = R+
κB,s

1 + (1− γ) (1− ζ) (υs − 1)
(46)

holds at the steady state. Now, note that the values of κB,s and κN,s at the steady-state are do not

depend on ϑs, and that therefore the equilibrium borrowing limit B̄ in (44) is increasing in ϑs for

any level of Ñ . In particular then, equilibrium leverage B/K is also an increasing in ϑs. Since the

equilibrium return on capital is a decreasing function of leverage through Equation (42), the steady

state with ϑs > 0 has a lower Rk than in the steady state with ϑs = 0. A sufficient condition to

guarantee that ϑs = 0 is the unique steady state is therefore that the corresponding steady-state

value of Rk is higher than the one computed in (46).

A.4 Proof of the limit in (36)

Combine Equation (33) and (34) to obtain:

1− ξ
ξ

(
R− exp

(
µ̂t +

1

2
σ2
µ

))
= α

(
At
Kt

)1−α
Et
[
ε1−α
t+1

]
+ 1− δ −R.
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It follows that:

∆ logPt = ∆ logKt

= ∆ logAt −
1

1− α∆ log

(
1− ξ
ξ

(
R− exp

(
µ̂t +

1

2
σ2
µ

))
− 1 + δ +R

)
ξ→1−→ ∆ logAt = εt.

B Solving for the learning equilibrium

This section describes how to construct and solve for the learning equilibrium with conditionally

model-consistent expectations.

B.1 General formulation

To set the notation, I start with the solution of the standard rational expectations equilibrium.

Denote the n endogenous model variables by yt and the nu exogenous shocks by ut. The exogenous

shocks are independent across time with joint distribution Fσ, mean zero and variance σ2Σu. The

solution of a (recursive) rational expectations equilibrium satisfies the equilibrium conditions:

Et [f−P (yt+1, yt, yt−1, ut)] = 0 (47)

Et [fP (yt+1, yt)] = 0 (48)

where fP denotes the stock market clearing condition (16) and f−P collects the remaining n − 1

equilibrium conditions.27 A recursive solution takes the form:

yt = gRE (yt−1, ut, σ) .

By the definition of rational expectations, the expectations in (47)–(47) are taken under the prob-

ability measure induced by gRE and Fσ, so that the policy function gRE itself can be found by

solving:

∫
f−P

(
gRE (gRE (yt−1, ut, σ) , ut+1, σ) ,

gRE (yt−1, ut, σ) , yt−1, ut

)
dFσ (ut+1) = 0 (49)

∫
fP

(
gRE (gRE (yt−1, ut, σ) , ut+1, σ) ,

gRE (yt−1, ut, σ)

)
dFσ (ut+1) = 0. (50)

In the learning equilibrium, the probability measure P used by agents to form expectations

27There are usually n + 1 equilibrium conditions in total, but one of the market clearing conditions is redundant
due to Walras’ law. While under rational expectations, it is immaterial for the computation of the equilibrium
which market clearing condition is left out, this choice can matter when constructing the learning equilibrium with
conditionally model-consistent expectations. Here I choose to omit the market clearing condition for final consumption
goods.
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does not coincide with the actual probability measure describing the equilibrium outcomes. In

particular, agents are not endowed with the knowledge that the stock price is determined by the

market clearing condition fP , and instead they form expectations about future prices using a

subjective law of motion. This law of motion can be summarized in a function:

φ (ỹt, ỹt−1, zt) =

(
∆ logPt − µ̂t−1 − zt

∆µ̂t − gzt

)
= 0

where ỹt = (yt, µ̂t) incorporates the belief state introduced by the learning process, and zt is the

subjective forecast error. In the mind of agents, this forecast error is an exogenous iid shock with

distribution Gσ, mean zero and variance σ2Σz. I assume that agents believe that z and u are

mutually independent as well.

I impose discipline on the expectation formation process by requiring that agents have condi-

tionally model-consistent expectations, as defined in the main text. I find such expectations by

computing a subjective policy function

ỹt = h (ỹt−1, ut, zt, σ)

which satisfies:∫
f−P

(
Ch (h (ỹt−1, ut, zt, σ) , ut+1, zt+1, σ) ,

Ch (ỹt−1, ut, zt, σ) , Cỹt−1, ut

)
dFσ (ut+1) dGσ (zt+1) = 0 (51)

φ (h (ỹt−1, ut, zt, σ) , ỹt−1, zt) = 0. (52)

Here, the matrix C just selects the original model variables yt from the augmented vector ỹt

(yt = Cỹt). Solving for h effectively amounts to solving a different rational expectations model

in which the market clearing condition for the stock market is replaced by the subjective law of

motion for stock prices. Once computed, the policy function h together with Fσ and Gσ defines a

complete internally consistent probability measure P on all endogenous model variables. Under P,

agents believe that the stock price follows the subjective law of motion φ, and P also satisfies the

equilibrium conditions f−P :

EPt [f−P (yt+1, yt, yt−1, ut)] = 0.

This subjective belief is very close to rational expectations and preserves as much as possible of

its forward-looking, model-consistent logic while allowing for subjective expectations about stock

prices.

Now, the subjective policy function h depends on the subjective forecast error zt, which under

P is believed to be a white noise process. In equilibrium however, zt is instead determined endoge-

nously by the equilibrium stock price that clears the stock market. That is, the equilibrium value
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of the subjective forecast error is itself a function of the states and the shocks:

zt = r (ỹt−1, ut, σ) (53)

The function r can be computed by imposing equilibrium in the stock market, represented by the

equation EPt [fP (ỹt+1, ỹt, ỹt−1, zt)] = 0. Substituting the functional forms:

∫
ψ

(
h (h (ỹt−1, ut, r (ỹt−1, ut, σ) , σ) , ut+1, zt+1, σ) ,

h (ỹt−1, ut, r (ỹt−1, ut, σ) , ỹt−1, zt, σ)

)
dFσ (ut+1) dGσ (zt+1) = 0. (54)

Note that while the current value of the forecast error zt was substituted out, the future value zt+1

was not substituted out, as this value is still taken under the subjective expectation P which treats

it as an exogenous random disturbance.

The final equilibrium of the model is described by the objective policy function:

ỹt = g (ỹt−1, ut, σ) = h (ỹt−1, ut, r (ỹt−1, ut, σ) , σ) .

By construction, this policy function satisfies all equilibrium conditions of the model. This function

g together with Fσ defines the equilibrium probability distribution of the model variables. It differs

from the subjective distribution P only in that under P, zt is an unpredictable exogenous shock,

whereas in equilibrium zt is a function of the state variables and the structural shocks ut.

It is straightforward to see that the expectations thus constructed satisfy conditional model-

consistency:

EPt [ỹt+1 | ut+1, Pt+1] = h (ỹt, ut+1, zt+1, σ)

= h (ỹt, ut+1, r (ỹt, ut+1, σ) , σ)

= g (ỹt, ut+1, σ)

= ỹt+1.

B.2 Approximation with perturbation methods

I now describe how to compute an approximation of the objective policy function g around the

non-stochastic steady state ȳ. The procedure has two steps and does not require iteration. The

first step consists in deriving a perturbation approximation of the subjective policy function h.

This can be done using standard methods, as the system of equations (51)–(52) can be solved as if

it were a standard rational expectations model. The second step consists in finding the derivatives

of the function r. Applying the implicit function theorem to Equation (54), one can compute the
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first-order derivatives as:

ry = −A−1

((
∂ψ

∂ỹt+1
hy +

∂ψ

∂ỹt

)
hy +

∂ψ

∂ỹt−1

)
ru = −A−1

(
∂ψ

∂ỹt+1
hy +

∂ψ

∂ỹt

)
hu

rσ = −A−1

(
∂ψ

∂ỹt+1
hy +

∂ψ

∂ỹt

)
hσ

where the matrix A is given by A =
(

∂ψ
∂ỹt+1

hy + ∂ψ
∂ỹt

)
hz+ ∂ψ

∂zt
. This matrix needs to be invertible

for the learning equilibrium to exist. The first-order derivatives of the actual policy function g can

be obtained by applying the chain rule:

g (ỹt−1, ut, σ) ≈ g (ȳ, 0, 0) + gy (ỹt−1 − ȳ) + guut + gσσ

gy = hy + hzry

gu = hu + hzru

gσ = hσ + hzrσ

The certainty-equivalence property holds for the subjective policy function h, hence hσ = 0. This

implies that rσ = 0 and gσ = 0 as well, so certainty equivalence also holds under learning.

Second- and higher-order perturbation approximations of g can be computed analogously. As in

first order, only invertibility of the matrix A is required for a unique local solution under learning.
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