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Abstract

Dynamic policy games feature a wide range of equilibria. The goal of this paper

is to provide a methodology for obtaining robust predictions. We focus on a model of

sovereign debt, although our methodology applies to other settings, such as models of

monetary policy or capital taxation. Our main result is a characterization of outcomes

that are consistent with a subgame perfect equilibrium conditional on the observed

history. As an application of our methodology, given a data on observed play, we

compute: (a) the set of possible continuation prices of debt and comparative statis-

tics regarding this set (b) the probability of crises (c) bounds on means and variances

across all equilibria.

∗We would like to thank Robert Townsend, George-Marios Angeletos, Alp Simsek, and specially Iván
Werning, for continous support, guidance, and helpful comments on various stages of this project. We also
would like to thank Dilip Abreu, Mark Aguiar, Adrien Auclert, Saki Bigio, Juan Block, Arnaud Costinot,
Nicolas Caramp, Sebastian Di Tella, Christian Hellwig, Hugo Hopenhayn, Stephen Morris, Wolfgang Pe-
sendorfer, Matthew Rognlie, Andres Sarto, Dejanir Silva, Christopher Sims, Marco Tabellini, Robert Ul-
bricht, and participants in MIT Macro Lunch, MIT International Lunch, MIT Macro seminar, Princeton
Theory seminar and Toulouse Macro seminar for helpful comments. All errors are our own. First Version:
November 2014.
†Einaudi Institute for Economics and Finance. Email: juan.passadore@eief.it
‡Princeton University, Deptartment of Economics. Email: jxandri@princeton.edu.

1

mailto:juan.passadore@eief.it
mailto:jxandri@princeton.edu


1 Introduction

Following Kydland and Prescott (1977) and Calvo (1978) the literature on optimal govern-
ment policy without commitment has formalized these situations by employing dynamic
game theory, finding interesting applications for capital taxation (e.g. Chari and Kehoe,
1990, Phelan and Stacchetti, 2001, Farhi et al., 2012), monetary policy (e.g. Ireland, 1997,
Chang, 1998, Sleet, 2001) and sovereign debt (e.g. Calvo, 1988, Eaton and Gersovitz, 1981,
Chari and Kehoe, 1993, Cole and Kehoe, 2000). This research has helped us understand
the distortions introduced by the lack of commitment and the extent to which govern-
ments can rely on a reputation for credibility to achieve better outcomes.

One of the challenges in applying dynamic policy games is that these settings typ-
ically feature a wide range of equilibria with different predictions over outcomes. For
example, for “good” equilibria the government may achieve, or come close to achiev-
ing, the optimum with commitment, while there are “bad” equilibria where this is far
from the case, and the government may be playing the repeated static best response. In
studying dynamic policy games, which of these equilibria should we employ? One ap-
proach is to impose refinements, such as various renegotiation-proof notions, that select
an equilibrium or significantly reduce the set of equilibria. Unfortunately, no consensus
has emerged on the appropriate refinements.

Our goal is to overcome the challenge multiplicity raises by providing predictions in
dynamic policy games that are not sensitive to any equilibrium selection. The approach
we offer involves making predictions for future play that depend on past play. The key
idea is that, even when little can be said about the unconditional path of play, quite a
bit can be said once we condition on past observations. To the best of our knowledge,
this simple idea has not been exploited as a way of deriving robust implications from
the theory. Formally, we introduce and study a concept which we term “equilibrium
consistent outcomes”: outcomes of the game in a particular period that are consistent
with a subgame perfect equilibrium, conditional on the observed history.

Although it will be clear that the notions we propose and results we derive are general
and apply to any dynamic policy game, we first develop them for a specific application,
using a model of sovereign debt along the lines of Eaton and Gersovitz (1981). This model
constitutes a workhorse in international economics. In the model, a small open economy
faces a stochastic stream of income. To smooth consumption, a benevolent government
can borrow from international debt markets, but lacks commitment to repay. If it defaults
on its debt, the only punishment is permanent exclusion from financial markets; it can
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never borrow again.1

Our main result provides a characterization of equilibrium consistent outcomes in any
period (debt prices, debt issuance, and default decisions). Aided by this characterization,
as a first application, we obtain bounds for equilibrium consistent debt prices that are
history dependent. The highest equilibrium consistent price is the best Markov equilibria
and, thus, independent of past play. The lowest equilibrium consistent price is strictly
positive and depends on past play. In our baseline case, due to the recursive nature of
equilibria, only the previous period play matters and acts as a sufficient statistic for the
set of equilibrium consistent prices. The fact that the last period is a sufficient statistic
may seem surprising. This result is a direct expression of robustness: the expected pay-
off rationalizing a decision may have been realized for histories that have not occurred.
When income is continuous, any particular history has probability zero, so the realized
expected payoff rationalizing past behavior can always been expected for those realiza-
tions that did not materialize. This intuition was first introduced by Gul and Pearce (1996)
to show that Forward induction has much less predictive power as a solution concept if
there are correlating devices.

In our sovereign debt application, equilibrium consistent debt prices improve when-
ever the government avoids default under duress. In particular, if the country just repaid
a high amount of debt, or did so under harsh economic conditions, for example, when
output was low, the lowest equilibrium consistent price is higher. The choice to repay
under these conditions reveals an optimistic outlook for bond prices that narrows down
the set of possible equilibria for the continuation game. This result captures the idea that
reputation is built for the long run by short-run sacrifices.

The first part of the paper characterized equilibrium outcomes for the model as in
Eaton and Gersovitz (1981). This model is usually utilized to study default due to fun-
damentals. We then turn to study a variation of the model that allows for coordination
failures and crisis. For this we introduce a sunspot variable after the government chooses
its policy. Our main result characterizes equilibrium consistent distribution over out-

1Given that our approach tries to overcome the challenges of multiplicity, as a starting point we first
ensure that there is multiplicity in the first place. We show that in the standard Eaton and Gersovitz (1981)
model, restrictions on debt, often adopted in the quantitative sovereign-debt literature, imply the existence
of multiple equilibria. Our multiplicity relies on the existence of autarky as another Markov equilibrium.
This result may be of independent interest, since it implies that rollover crises are possible in this setting.
The quantitative literature on sovereign debt following Eaton and Gersovitz (1981) features defaults on the
equilibrium path, but to shocks to fundamentals. A recent exception is Stangebye (2014) that studies the
role of non fundamental shocks in sovereign crises in a model as in Eaton and Gersovitz (1981). Another
strand literature studies self-fulfilling debt crises following the models in Calvo (1988) and Cole and Kehoe
(2000). Our results suggest that crises, defined as episodes where the interest rates are very high but not
due to fundamentals, are a robust feature in models of sovereign debt.
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comes. As in the baseline model, building on these results we perform four applications.
First, we study comparative statistics over the set of equilibrium consistent distributions.
Second, we apply our results to bound the probability of a rollover debt crises. As we ar-
gued above, rollover debt crises may occur on the equilibrium path for any fundamentals.
However, the probability of a rollover crisis, after a certain history, may be constrained.
We derive these constraints, showing that rollover crises are less likely if the borrower
has recently made sacrifices to repay. This result may be contrasted with Cole and Kehoe
(2000). In their setting the potential for rollover crises induces the government to lower
debt below a threshold that rules rollover crises out. Thus, the government’s efforts have
no effect in the short run, but payoff in the long run. In our model, an outside observer
will witness that rollover crises are less likely immediately after an effort to repay. Third,
we study bounds on moments of distributions over outcomes. In particular, we charac-
terize bounds over the expected value of debt prices given a history for any equilibrium.
Fourth, and finally, we characterize bounds on variances.

As we argue in the first Sections of the paper, our characterization of equilibrium
consistent outcomes extends to other dynamic policy games. In order to show this, in the
last Section of the paper, we provide a general model of credible government policies that
follows the seminal contribution of Stokey (1991). The key features that the general setup
tries to capture are: lack of commitment, a time inconsistency problem, infinite horizon
that creates reputation concerns in the sense of trigger-strategy equilibria, and short run
players that form an expectation regarding the policies of the government. Most dynamic
policy games, such as applications to capital taxation and monetary policy, share these
features. After proposing the general model, and showing that widely used frameworks
such as Eaton and Gersovitz (1981) and the New Keynesian model as in Woodford (2011),
fit in the setup, we prove the main results of the paper for this general model.

Literature Review. Our paper relates to several strands of the literature. First, to the
literature on credible government policies. The seminal papers on optimal policy with-
out commitment are Kydland and Prescott (1977) and Calvo (1978).2 Recent applications
range from from capital taxation as in Phelan and Stacchetti, 2001 and Farhi et al., 2012;
monetary policy a in Ireland, 1997, Chang, 1998, Sleet, 2001; and sovereign debt Arellano
(2008), Aguiar and Gopinath (2006), and Cole and Kehoe (2000). Recent applications are
Farhi et al., 2012, Bocola and Dovis (2016), and Waki et al. (2015). We feel that our paper is
more closely related to Chari and Kehoe (1990) and Stokey (1991). These two papers Chari

2Atkeson (1991) extends the approach to the case with a public state variable. Phelan and Stacchetti
(2001) and Chang (1998) extend the approach to study models where individual agents hold stocks (capital
and money respectively).
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and Kehoe (1990) and Stokey (1991) adapt the techniques developed in Abreu (1988) to
dynamic policy games. We contribute this literature in two ways. First, by providing a
characterization of equilibrium that focus on outcomes in a particular period instead of
the whole sequence of play. Second, we provide a methodology to obtain robust predic-
tions across all equilibria, instead of focusing in one particular equilibrium.

Second, our paper shares the objective with the papers in the literature on robust pre-
dictions. The two papers more closely related to our work are Angeletos and Pavan (2013)
and Bergemann and Morris (2013). The first paper obtains predictions that hold across ev-
ery equilibrium in a global game with an endogenous information structure. The second
paper obtains restrictions over moments of observable endogenous variables that hold
across every possible information structure in a class of coordination games. Our paper
relates to them in that we obtain predictions that hold across all equilibria. In a sense, our
results are weaker than Angeletos and Pavan (2013) because our predictions are regarding
the equilibrium set. However, it is also true that our problem has the additional challenge
of being a (repeated) dynamic complete information game. The latter is precisely the root
of weaker predictions.

Third, this paper studies robust predictions in a model dynamic policy game where a
government borrows from international investors as in Eaton and Gersovitz (1981). This
framework has been extensively used to study sovereign borrowing.

One direction, the quantitative literature on sovereign debt, focuses on a model where
asset markets are incomplete and there is limited commitment for repayment, following
Eaton and Gersovitz (1981), to study the quantitative properties of spreads, debt capacity,
and business cycles. The aim of this strand of the literature is to account for the observed
behavior of the data. The seminal contributions in this literature are Aguiar and Gopinath
(2006) and Arellano (2008) which study economies with short term debt. The quantita-
tive literature of sovereign debt has already been successful in explaining the most salient
features in the data.3 Our paper shares with this literature the focus on a model along
the lines of Eaton and Gersovitz (1981) but rather than characterizing a particular equilib-
rium, it tries to study predictions regarding the set of equilibria.

Another direction of the literature focuses in equilibrium multiplicity, and in partic-
ular, in self fulfilling debt crises. The seminal contribution is Calvo (1988). Cole and
Kehoe (2000) introduce self-fulfilling debt crises in a full-fledged dynamic model where
the equilibrium selection mechanism is a sunspot that is realized simultaneously with

3Other examples in this literature are Hatchondo and Martinez (2009), Arellano and Ramanarayanan
(2012), Chatterjee and Eyigungor (2012). Yue (2010), Bai and Zhang (2012), Pouzo and Presno (2011), Borri
and Verdelhan (2009), D Erasmo (2008), Bianchi et al. (2012).
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output. Lorenzoni and Werning (2013) study equilibrium multiplicity in a dynamic ver-
sion of Calvo (1988). Our paper studies multiplicity but in the Eaton and Gersovitz (1981)
setting; the crucial difference between the setting in Calvo (1988) and the one Eaton and
Gersovitz (1981) is that in the latter the government issues debt (with commitment) and
then the price is realized. This implies that equilibrium multiplicity is coming from the
multiplicity of beliefs regarding continuation equilibria. Stangebye (2014) also studies
multiplicity in a setting as in Eaton and Gersovitz (1981), but focuses on a Markov equi-
librium. Our contribution to this strand of the literature is again to study predictions
regarding the set of equilibria. Moreover, by providing sufficient conditions for equilib-
rium multiplicity in a model as in Arellano (2008), that are novel in the literature. These
conditions show that, once we introduce coordination devices, coordination failures are
robust feature of models of sovereign borrowing.

Outline. The paper is structured as follows. Section 2 introduces the model. Section
E studies equilibrium multiplicity in our model of sovereign borrowing. Section 3 char-
acterizes equilibrium consistent outcomes. Section 4 discusses the characterization of
equilibrium consistent outcomes when there are correlating devices available after debt
is issued. Section 5 spells out the general model and states the main results of the paper
in this setup. Section 6 concludes.

2 A Dynamic Policy Game

Our model of sovereign debt follows Eaton and Gersovitz (1981). Time is discrete and
denoted by t ∈ {0, 1, 2, ....}. A small open economy receives a stochastic stream of income
denoted by yt. Income follows a Markov process with c.d.f. denoted by F(yt+1 | yt). The
government is benevolent and seeks to maximize the utility of the households. It does so
by selling bonds in the international bond market. The household evaluates consumption
streams according to

E

[
∞

∑
t=0

βtu(ct)

]
where β < 1 and u is increasing and strictly concave. The sovereign issues short term
debt at a price qt. The budget constraint is

ct = yt − bt + qtbt+1.
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Following Chatterjee and Eyigungor (2012) we assume that the government cannot save

bt+1 ≥ 0.

This helps focus our discussion on debt and may implicitly capture political economy
constraints that make it difficult for governments to save, as modeled by Amador (2013).

There is limited enforcement of debt. Therefore, the government will repay only if
it is more convenient to do so. We assume that the only fallout of default is that the
government will remain in autarky forever after. We also do not introduce exogenous
costs of default. As we will show below, our assumptions are sufficient for autarky to be
an equilibrium. If the government cannot save, and there are no output costs of default,
if the government expects a zero bond price for its debt now and in every future period,
then it will default its debt. To guarantee multiplicity we need to introduce conditions
to guarantee that best Markov equilibrium, the one usually studied in the literature of
sovereign debt, has a positive price of debt. In Section E we characterize subgame perfect
equilibrium and equilibrium consistent outcomes when the government can save and
when defaults do not need to be punished.

Lenders. There is a competitive fringe of risk neutral investors that discount the future
at rate r > 0. This implies that the price of the bond is given by

qt =
1− δt

1 + r

where δt if the default probability on bonds bt+1 issued at date t.

Timing. The sequence of events within a period is as follows. In period t, the gov-
ernment enters with bt bonds that it needs to repay. Then income yt is realized. The
government then has the option to default dt ∈ {0, 1}. If the government does not de-
fault, the government runs an auction of face value bt+1. Then, the price of the bond qt

is realized. Finally, consumption takes place, and is given by ct = yt − bt + qtbt+1. If the
government decides to default, consumption is equal to income, ct = yt. The same is true
if the government has ever defaulted in the past. We adopt the convention that if dt = 1
then dt′ = 1 for all t′ ≥ t.

Histories and Outcomes. An income history is a vector yt = (y0, y1, . . . , yt) of all in-
come realizations up to time t. A history is a vector ht = (h0, h1, ..., ht−1), where ht =

(yt, dt, bt+1, qt) is the description of all realized values of income and actions, and h = h′h′′
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is the append operator. A partial history is an initial history ht concatenated with a part
of ht. For example, h =

(
ht, yt, dt, bt+1

)
is a history where we have observed ht, output yt

has been realized, the government decisions (dt, bt+1) have been made, but market price
qt has not yet been realized. We will denote these histories h = ht+1

− . The set of all partial
histories (initial and partial) is denoted by H, and Hg ⊂ H are those where the govern-
ment has to make a decision; i.e., h =

(
ht, yt

)
. Likewise, Hm ⊂ H is the set of partial

histories where investors set prices; i.e., ht+1
− =

(
ht, yt, dt, bt+1

)
. An outcome path is a

sequence of measurable functions4

x =
(
dt
(
yt) , bt+1

(
yt) , qt

(
yt))

t∈N

The set of all outcomes is denoted by X . To make explicit that the default, bond policies
and prices are the ones associated with the path x, sometimes we will write

(
dx

t
(
yt) , bx

t+1
(
yt) , qx

t
(
yt))

t∈N
.

An outcome xt (the evaluation of a path at a particular period) is a description of the
government’s policy function and market pricing function at time t where the functions
in xt are dt : Y → {0, 1}, bt+1 : Y → R+, and qt : Y → R+. Our focus will be on a shifted
outcome, xt− ≡ (qt−1, dt (·) , bt+1 (·)). The reason to do this is that the prices in qt−1 will
only be a function of the next period default decision.

Strategies, Payoffs, Equilibrium. A strategy profile is a complete description of the
behavior of both the government and the market, for any possible history. Formally, a
strategy profile is defined as a pair of measurable functions σ =

(
σg, qm

)
, where σg :

Hg → {0, 1} ×R+ and qm : Hm → R+. The government decision will usually be written
as

σg
(
ht, yt

)
=
(

dσg
t
(
ht, yt

)
, bσg

t+1

(
ht, yt

))
so that dσg

t (·) and bσg
t+1 (·) are the default decision and bond issuance decision for strategy

σg. Σg is the set of all strategies for the government, and Σm is the set of market pricing
strategies. Σ = Σg × Σm is the set of all strategy profiles. Given a history ht, we define the
continuation strategy induced by ht as

σ|ht (hs) = σ
(
hths) .

4For our baseline case, where after default the government is permanently in autarky, the functions have
the restriction that bond issues and prices are not defined after a default has been observed: bt+s+1

(
ytys) =

qt+s
(
ytys) = ∅ for all ys and yt such that dt

(
yt) = 1.
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Every strategy profile σ generates an outcome path x := x (σ).5 Given a set S ⊆ Σ of
strategy profiles, we denote x (S) = ∪σ∈Sx (σ) for the set of outcome paths of profiles
σ ∈ S. For any strategy profile σ ∈ Σ, we define the continuation at ht ∈ Hg

V(σ | ht) = Et

{
∞

∑
s=t

βs [dsu(ys − bs + qsbs+1) + (1− ds)u(ys)]

}

where (ys, ds, bs+1, qs) are on the path x = x(σ|ht).6 A strategy profile σ =
(
σg, qm

)
consti-

tutes a Subgame Perfect Equilibrium (SPE) if and only if, for all partial histories ht ∈ Hg

V(σ | ht) ≥ V(σ′g, qm | ht) for all σ′g ∈ Σg, (2.1)

and for all histories ht+1
− = (ht, yt, dt, bt+1) ∈ Hm

qm

(
ht+1
−

)
=

1
1 + r

∫
(1− dσg(ht+1, yt+1)dF(yt+1 | yt). (2.2)

That is, the strategy of the government is optimal given the pricing strategy of the lenders
qm (·), and likewise qm (·) is consistent with the default policy generated by σg. The set of
all subgame perfect equilibria is denoted as E ⊂ Σ.

3 Equilibrium Consistent Outcomes

This section contains the main result of the paper, a characterization of equilibrium con-
sistent outcomes. We work with the baseline case where income is a continuous random
variable as in Eaton and Gersovitz (1981). After stating our main result, we apply it to
obtain predictions for bond prices across all equilibria.

Equilibrium Prices, Continuation Values. For any history ht+1
− we define the highest

and lowest prices equilibrium prices:

q(ht+1
− ) := max

σ∈E(ht+1
− )

qm

(
ht+1
−

)
5It can be defined recursively as follows: at t = 0 jointly define (d0(y0), b1(y0), q1(y0)) ≡

(d
σg
0 (y0), b

σg
1 (y0), qm(y0, b

σg
1 (y0)) and h1 = (y0, d0(y0), b1(y0), q1(y0)). For t > 0, we define

(dt(yt), bt+1(yt), qt(yt)) ≡ (d
σg
0 (ht, yt), b

σg
1 (ht, yt), qm(ht, yt)) and ht+1 = (ht, yt, dt(yt), bt+1(yt), qt(yt))

6The utility of a strategy profile that specifies negative consumption is −∞.
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q(ht+1
− ) := min

σ∈E(ht+1
− )

qm

(
ht+1
−

)
.

In the Online Appendix, Section E, we provide necessary and sufficient conditions for
equilibrium multiplicity.7 We also show that the worst SPE price is zero and the best
SPE price is the one of the Markov equilibrium that is characterized in the literature of
sovereign debt as in Arellano (2008) and Aguiar and Gopinath (2006) with no role for
coordination failures. The lowest price q(ht+1

− ) will be attained by a fixed strategy for all
histories ht+1

− . It will deliver the utility level of autarky for the government. Thus, the
lowest price is associated with the worst equilibrium, in terms of welfare. Likewise, the
highest price q(ht+1

− ) is associated with a, different, fixed strategy for all histories (the
maximum is attained by the same σ for all ht+1

− ) and delivers the highest equilibrium
level of utility for the government. Thus, the highest price is associated with the best
equilibrium in terms of welfare. The expected autarky continuation is

Vd(y) ≡
∫

u(y′)dF
(
y′ | y

)
,

and the autarky utility (conditional on defaulting) is simply

Vd (y) ≡ u (y) + βVd(y). (3.1)

The continuation utility (conditional on not defaulting) of a choice b′ given bonds (b, y) is

Vnd (b, y, b′
)
= u

(
y− b + b′q

(
y, b′

)
b′
)
+ βW

(
y, b′

)
, (3.2)

where q (b′) is the bond price schedule under the best continuation equilibrium (the
Markov equilibrium that we just characterized), if yt = y and the bonds to be paid to-
morrow are bt+1 = b′. Finally, the continuation value of the best equilibrium is:

W(y, b′) = Ey′|y

[
max

{
Vnd(b, y′), VD(y′)

}]
.

Consistent Histories. We first define the notion of consistent histories. A history
h is consistent with (or generated by) an outcome path x if and only if ds = dx

s (ys),
bs+1 = bx

s+1 (y
s) and qs = qx

s (ys) for all s < l (h) (where l (h) is the length of the history).
If a history h is consistent with an outcome path x we denote it as h ∈ H (x). Intuitively,

7Our analysis may be of independent interest, providing conditions under which there are multiple
Markov equilibria in a sovereign debt model along the lines of Eaton and Gersovitz (1981). The importance
of this result is that it opens up the possibility of confidence crises in models as in Eaton and Gersovitz
(1981). Thus, confidence crises are not necessarily a special feature of the timing in Calvo (1988) and Cole
and Kehoe (2000) but a robust feature in most models of sovereign debt.
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consistency of a history with an outcome means that, given the path of exogenous vari-
ables, the endogenous observed variables coincide with the ones that are generated by the
outcome. A history h is consistent with strategy profile σ if and only if h ∈ H (x (σ)). If
a history h is consistent with a strategy σ we denote it as h ∈ H (σ). Intuitively, a history
is consistent with a strategy if the history is consistent with the outcome that is gener-
ated by the strategy. Given a set S ⊆ Σ of strategy profiles, we use x (S) = ∪σ∈Sx (σ)
to denote the set of outcome paths of profiles σ ∈ S. The inverse operator for H (·) are
respectively X (·) for the outcomes consistent with history h. We use Σ (h) to denote the
strategy profiles consistent with h. For a given set of strategy profiles S ⊆ Σ, we write
H (S) =

⋃
σ∈SH (σ) as the set of S−consistent histories. When S = E , we call H (E) the

set of equilibrium consistent histories. The set of equilibria consistent with history h is
defined as E|h := E ∩ Σ (h).8 An outcome path x = (dt (·) , bt+1 (·) , qt (·))t∈N is consistent
with history ht ⇐⇒ ∃ σ ∈ E ∩ Σ

(
ht) such that x = x (σ).

3.1 Main Result

Suppose that we have observed so far ht
− =

(
ht−1, yt−1, dt−1, bt

)
an equilibrium consistent

history (where price at time t has not yet been realized), and we want to characterize the
set of shifted outcomes xt− = (qt−1, dt (·) , bt+1 (·)) consistent with this history9. Propo-
sition 1 provides a full characterization of the set of equilibrium consistent outcomes
xt−

(
E|ht
−

)
, showing that past history only matters through the opportunity cost of not

defaulting at t− 1, u (yt−1)− u (ct−1).

Proposition 1 (Equilibrium Consistent Outcomes). Suppose ht
− =

(
ht−1, yt−1, dt−1, bt

)
is

an equilibrium consistent history, with no default so far. Then xt− = (qt−1, dt (·) , bt+1 (·)) is
equilibrium consistent with ht

− if and only in the following conditions hold:
a. Price is consistent

qt−1 =
1

1 + r
(1−

∫
dt(yt)dF(yt | yt−1)), (3.3)

b. IC government

(1− d(yt))
[
u(yt − bt + q(yt, bt+1)bt+1) + βW(yt, bt+1)

]
+ d(yt)Vd(yt) ≥ Vd(yt), (3.4)

8This notation is useful to precisely formulate questions such as: “Is the observed history the outcome
of some subgame perfect equilibria?” In our notation “h ∈ H (SPE)”.

9An outcome in period t was given by xt =
(
dx

t (·) , bx
t+1 (·) , qx

t (·)
)
; the policies and prices of period t.

xt− has the policies of period t but the prices of period t− 1. The focus in xt− as opposed to xt simplifies
the characterization of equilibrium consistent outcomes.
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c. Promise keeping

β

[∫
dt=0

Vnd
(bt, yt, bt+1(yt)) dF(yt | yt−1) +

∫
dt=1

Vd (yt) dF(yt | yt−1)

]
≥

[u (yt−1)− u (yt−1 − bt−1 + qt−1bt)] + βVd(yt−1). (3.5)

Proof. See Appendix A.

If conditions (a) through (c) hold, we write simply

(qt−1, dt (·) , bt+1 (·)) ∈ ECO (bt−1, yt−1, bt) ,

where ECO stands for “equilibrium consistent outcomes”.
First, note that conditions (3.3) and (3.4) in Proposition 1 provide a characterization of

the set of SPE outcomes. Condition (3.3) states that the price qt−1 needs to be consistent
with the default policy dt(·). Condition (3.4) states that a policy dt (·) , bt+1 (·) is imple-
mentable in an SPE if it is incentive compatible given that following the policy is rewarded
with the best equilibrium and a deviation is punished with the worst equilibrium. The
argument in the proof follows Abreu (1988).

Second, Equilibrium consistent outcomes are characterized by an additional condi-
tion, (3.5), which is the main contribution of this paper. This condition characterizes how
past observed history (if assumed to be generated by an equilibrium strategy profile) intro-
duces restrictions on the set of equilibrium consistent policies. In our setting, condition
(3.5) will guarantee that the government’s decision at t− 1 of not defaulting was optimal.
That is, on the path of some SPE profile σ̂, the incentive compatibility constraint from
government’s utility maximization in t− 1 is

u (ct−1) + βV
(
σ̂ | ht) ≥ u (yt−1) + βVd(yt−1), (3.6)

where V
(
σ̂ | ht) is the continuation value of the equilibrium, as defined before. One in-

terpretation of (3.6) is that the net present value (with respect to autarky) that the govern-
ment must expect from not defaulting, must be greater (for the choice to have been done
optimally) than the opportunity cost of not defaulting: u (yt−1)− u (ct−1). This must be
true for any SPE profile that could have generated ht

−.
The intuition for why (3.5) is necessary for equilibrium consistency is as follows. No-

tice that the previous inequality also holds for the case the continuation equilibrium is
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actually the best continuation equilibrium. Therefore, for any equilibrium consistent pol-
icy (d (·) , b′ (·)) it has to be the case that

V
(
σ̂ | ht) = ∫

yt :dt(yt)=1
Vd(yt)dF(yt | yt−1)+

∫
yt :d(yt)=0

[
u
(
yt − bt + b′ (y) q̂m

(
ht, yt, dt, bt+1 (yt)

))
+ βV

(
σ̂ | ht+1

)]
dF(yt | yt−1)

≤
∫

yt :dt(yt)=1
Vd (yt) dF(yt | yt−1) +

∫
yt :d(yt)=0

Vnd
(bt, yt, bt+1) dF(yt | yt−1). (3.7)

Equations (3.6) and (3.7) imply

[u (yt−1)− u (yt−1 − bt−1 + qt−1bt)] + βVd(yt−1)

≤ β

[∫
dt=0

Vnd
(bt, yt, bt+1(yt)) dF(yt | yt−1) +

∫
dt=1

Vd(yt)dF(yt | yt−1)

]
. (3.8)

This is condition (3.5). So if the policies do not satisfy (3.5), they are not part of an SPE
that generated the history ht

−; in other words, there is no SPE consistent with ht
− with

policies (dt (·) , bt+1 (·)) for period t.
We also show that this condition is sufficient, so if (dt (·) , bt+1 (·)) satisfy conditions

(3.3), (3.4), and (3.5), we can always find at least one SPE profile σ̂ that would generate
xt− on its equilibrium path. Even after a long history the sufficient statistics to forecast
the outcome xt− are

(bt−1, bt, yt−1).

Thus, effectively
ECO(ht

−) = ECO(bt−1, yt−1, bt).

This result may seem surprising, but it is where robustness of the analyst (uncertainty
about the equilibrium selection) is expressed. Because income y is a continuous random
variable, any promises (in terms of expected utility) that rationalized past choices are
“forgotten” each period; the reason is that the outside observer needs to take into account
that promises could have been be realized in states that did not occur.

Third, finally, notice that even though the outside observer is using just a small fraction
of the history, the set of equilibrium consistent outcomes exhibits history dependence
beyond that of the set of SPE. The set of equilibrium consistent outcomes is a function
variables (bt−1, yt−1, bt). Thus, there is a role for past actions to signal future behavior.
In contrast the set of subgame perfect equilibria after any history only depends on the

13



Markovian states yt−1, bt.10

3.2 Application: Equilibrium Consistent Prices

we provide answer the following question: The question that we would like to answer
now is the following: given an observed history ht

−, which are the possible continuation
prices? Aided with the characterization of equilibrium consistent outcomes in Proposi-
tion 1 we will characterize the set of equilibrium debt prices that are consistent with the
observed history ht

− =
(
ht−1, yt−1, dt−1, bt

)
. There are two objects of interest. The highest

equilibrium consistent price solves

q
(
ht
−
)
= max

(q̂,dt(·),bt+1(·))
q̂

subject to
(q̂, dt (·) , bt+1 (·)) ∈ ECO (bt−1, yt−1, bt) .

The lowest equilibrium consistent price solves

q
(
ht
−
)
= min

(q̂,dt(·),bt+1(·))
q̂ (3.9)

subject to
(q̂, dt (·) , bt+1 (·)) ∈ ECO (bt−1, yt−1, bt) .

Now we make these two definition operational.

Highest Equilibrium Consistent Price. The highest equilibrium consistent price is the
one of the Markov Equilibrium that we characterized in Section E. Note that the expected
value of the incentive compatibility constraint (3.4), is the value of the option to default
W(yt, bt+1), for the best equilibrium. The promise-keeping will be generically not binding
for the best equilibrium (given that the country did not default). For these two reasons,
the best equilibrium consistent price is the one obtained with the default policy and bond
policy that maximize the value of the option. Thus,

q
(
ht
−
)
= q (yt−1, bt) . (3.10)

10Notice that this role contrasts the dependence of the quantitative literature for sovereign debt that
follows Eaton and Gersovitz (1981) as in Arellano (2008) and Aguiar and Gopinath (2006) where the fact
that a country has just repaid a high quantity of debt, does not affect the future prices that will obtain.
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Lowest Equilibrium Consistent Price. Our focus will be on the characterization of the
lowest equilibrium consistent price. Note that the lowest SPE price is zero. This follows
because default is implementable after any history if we do not take into account the
promise keeping constraint (3.5). On the contrary, we will show that lowest equilibrium
consistent price is positive, for every equilibrium history. Furthermore, because the set of
equilibrium consistent outcomes after history ht

− depends only on (bt−1, yt−1, bt), it holds
that

q
(
ht
−
)
= q (bt−1, yt−1, bt) . (3.11)

Proposition 2 establishes the main result of this subsection: a full characterization of
q (b, y, b′) (we drop time subscripts) as a solution to a convex minimization program,
which can be reduced to a one equation/one variable problem.

Proposition 2. Suppose (b, y, b′) are such that Vnd (b, y, b′) > Vd (y) (i.e., not defaulting was
feasible under the best continuation equilibrium). Then there exists a constant γ = γ (b, y, b′) ≥
0, such that

q
(
b, y, b′

)
=

1−
∫

d (y′) dF (y′ | y)
1 + r

,

where
d
(
y′
)
= 0 ⇐⇒ Vnd (b′, y′

)
≥ Vd (y′)+ γ for all y′ ∈ Y;

γ is the minimum solution to the equation:

β
∫

∆nd≥γ
∆nddF̂

(
∆nd
)
= u (y)− u

(
y− b +

1− F̂ (γ | y)
1 + r

b′
)

(3.12)

where ∆nd ≡ Vnd
(b′, y′)− Vd (y′) and F̂

(
∆nd) its conditional cdf. If dF (·) is absolutely con-

tinuous, then γ is the unique solution to equation 3.12.

Proof. See Appendix A.

The proof is in the appendix. We provide a sketch of the argument. First, note that,
by choosing the bond policy of the best equilibrium, all of the constraints imposed by
equilibrium consistency are relaxed because the value of no default increases. So, finding
the lowest ECO price will amount to finding the default policy that yields the lowest price
and is consistent with equilibrium. Second, notice that the promise keeping constraint
needs to be binding in the optimum. If not, the minimization problem has as its only
constraint the incentive compatibility constraint, and the minimum price is zero (with a
policy of default in every state). But, if the price is zero, the promise keeping constraint
will not be satisfied. Third, notice that the incentive compatibility constraint will not
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be binding. Intuitively, imposing default is not costly in terms of incentives, and for
the lowest equilibrium consistent price, we want to impose default in as many states as
possible.

From these observations, note that the trade-off of the default policy of the lowest price
will be: imposing defaults in more states will lower the price at the expense of a tighter
promise keeping constraint. This condition pins down the states where the government
defaults; as many defaults as possible, but not so many that no default in the previous
period was not worth the effort. This, implies that the policy is pinned down by

d
(
y′
)
= 0 ⇐⇒ Vnd (b′, y′

)
≥ Vd (y′)+ γ

where γ is a constant to be determined. This constant solves a single equation: is the
minimum value such that the promise keeping holds with equality, with the optimal bond
policy, evaluated at the best continuation

β
∫

∆nd≥γ
∆nddF̂(∆nd | y) = u(y)− u(y− b +

1− F̂(γ | y)
1 + r

b′). (3.13)

Note also how policies are tilted in the best and worst continuation equilibrium. For
the best equilibrium default policy at t, it holds that d(yt) = 0 if and only if Vnd

(bt, yt) ≥
Vd(yt). On the other hand, for the lowest equilibrium consistent price is Vnd

(bt, yt) ≥
Vd(yt) + γ, where γ is the constant that solves (3.13) and depends on (bt−1, yt−1, bt). The
default policy is shifted to create more defaults, to lower the price, but not so many that
the promise-keeping was not satisfied (i.e., we cannot rationalize previous choices). Equi-
librium consistent outcomes uncovers a novel tension that is not present in SPE. At a par-
ticular history ht

−, implementing default is not costly because it is always as good as the
worst equilibrium. However, implementing default today lowers the prices that the gov-
ernment was expecting in the past and makes it harder to rationalize a particular history.

Comparative Statistics. The next Corollary describes how the set of equilibrium consis-
tent prices changes with the history of play.

Corollary 1. Let q (b, y, b′) be the lowest ECO (b, y, b′) price. It holds that: (a) q (b, y, b′) is
decreasing in b′; (b) q (b, y, b′) is increasing in b; (c) For every equilibrium (b, y, b′), −b +

b′q (b, y, b′) ≤ 0; if income is i.i.d., q is decreasing in y, and so is the set Q =
[
q (b, y, b′) , q (y, b′)

]
.

Proof. See Appendix A.

First, note that as in the best equilibrium, the lowest equilibrium consistent price is
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decreasing in the amount of debt issued b′. The intuition is that higher amounts of debt
issued imply a more relaxed promise keeping constraint. In other words, the past choices
of the government can be rationalized with a lower price. A similar intuition holds for b;
if the country just repaid a high amount of debt (i.e., made an effort for repaying), past
choices are rationalized by higher prices. Second, note that if there is a positive capital
inflow with the lowest equilibrium consistent price, it implies that

u (y)− u
(

y− b + b′q
(
b, y, b′

))
< 0.

Intuitively, the country is not making any effort in repaying the debt. Therefore, it need
not be the case that the country was expecting high prices for debt in the next period.
Mathematically, when there is a positive capital outflow with the lowest equilibrium con-
sistent price, γ is infinite. This implies that 1−F̂(γ)

1+r∗ = q (b, y, b′) = 0, which contradicts a
positive capital inflow. Finally, because there are no capital inflows with the lowest equi-
librium consistent price, repaying debt at this price will become more costly as income
is lower; this due to the concavity of the utility function.11 Mathematically, because of
concavity,

u (y)− u
(

y− b + b′q
(
b, y, b′

))
,

is12 increasing as income decreases, and therefore, the promise keeping constraint tight-
ens as income decreases. Note that, in the non i.i.d. case, this property will not hold,
because, even though the burden of repayment is higher, the value of repayment in terms
of the continuation value can be increasing.

4 Sunspots

We are now interested in adding a sunspot variable. Adding a sunspot that is realized
together with output adds nothing to the analysis. Effectively, output could already act-
ing as a random coordination device. Thus, the interesting question is to add a sunspot
variable after the bond issuance, but before the price is determined. As we shall see,
conditional on any single realization, the set of equilibrium consistent outcomes then co-
incides with the set of subgame perfect equilibria. Despite this we can obtain relevant

11This observation is used in the literature of sovereign debt. For example, to show that default occurs
in bad times, as in Arellano (2008), or to show monotonicity of bond policies with respect to debt, as in
Chatterjee and Eyigungor (2012).

12The change in this expression will depend on the sign of u (y)− u
(

y− b + b′ 1−F̂(γ)
1+r∗

)
, that is positive

due to the result of no capital inflows with the lowest equilibrium consistent price.
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history dependent predictions. In this section we do three things. First, we characterize
what we term are equilibrium consistent distributions. Those are distributions over prices
that consistent with a subgame perfect equilibrium given history. Second, aided with this
characterization we obtain bounds of the expectation over prices that hold across all equi-
librium. This provides a way to obtain set identification of the set of structural parameters
in our particular application. Finally, we provide an intuitive application of our results,
and we find a bound on the probability of a non-fundamental debt crises; by crisis we
mean an event where the realized price falls below a given threshold q̂, which we treat as
a parameter.

4.1 Main Results: Equilibrium Consistency

Denote the sunspot by ζt, realized after the bond issue of the government but before the
price qt; i.e, a sunspot is realized after ht

−. Without loss of generality13 we will assume
ζt ∼ Uniform [0, 1] i.i.d. over time. If we assume that the game is on the equilibrium path
of some subgame perfect equilibrium, then the government strategy before the realization
of the sunspot was optimal; that is∫

[u (yt − bt + qt (ζt) bt+1) + βv (ζt)] dζt ≥ Vd (yt) .

The government ex-ante preferred to pay the debt and issue bonds bt+1 than to default,
where q (ζt) and v (ζt) are the market price and continuation equilibrium value condi-
tional on the realization of the sunspot ζt. The main difference in the characterization of
equilibrium consistent distributions, is that now we cannot rely on the best continuation
price, because it might not be realized.

Define the maximum continuation value function v (b, q) given bonds b and price q as

v (b, q) = max
σ∈SPE(b)

V (σ | b0 = b)

subject to
E(1− d(y0))

1 + r
= q

This gives the best possible continuation value if we start at bonds b and we restrict prices
to be equal to q. In Appendix C we provide a method to compute the function v (b, q) and

13This is because of robustness: we will try to map all equilibria that can be contingent on the randomiz-
ing device, and hence as long as the random variable remains absolutely continuous, any time dependence
in ζt can be replicated by time dependence on the equilibrium itself.
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show that is non-decreasing and concave in q. is v (b, q) non-decreasing in b and concave
in q. The fact that the function is non-decreasing in q follows from the fact that better
prices are associated with better continuation equilibrium, as well as higher contempora-
neous consumption (since bt+1 ≥ 0). This follows from the fact that defaults are punished
but when the government does not default, it obtains the best continuation equilibrium
(under the strategy associated with value v (bt+1, qt)). Concavity, follows from the the
fact that v (b, q) solves a linear programming problem. We use both properties to obtain
sharper characterizations of the set of equilibrium consistent distributions and to obtain
testable predictions.

For a given equilibrium σ at history h =
(
ht, yt, dt, bt+1

)
the equilibrium price distri-

bution is defined by
Pr (q ∈ A) = Pr (ζt : qσ (h, ζt) ∈ A)

Let Q (h) be the family of price distributions from history consistent equilibria. The fol-
lowing Proposition provides a characterization of this family.

Proposition 3. Suppose h =
(
ht, yt

)
is equilibrium consistent. Then, a distribution P ∈ ∆ (R+)

is an equilibrium consistent price distribution; i.e. P ∈ Q (h) if and only if Supp (P) ⊆
[0, q (bt+1)] and ∫

{u (yt − bt + qbt+1) + βv (bt+1, q)} dP (q) ≥ Vd (yt) (4.1)

Proof. See Appendix B.

Condition 4.1 parallels equation (3.5) in Proposition 1. There are some differences.
We are now characterizing distribution over prices consistent with a decision of not de-
faulting dt = 0 and issuing debt bt+1. Note that we are taking an expectation with re-
spect to q: the government does not know what particular price will be realized after
it chooses a particular policy. Necessity, again, comes from the fact that we can always
implement outcomes promising the best continuation equilibrium. On the other hand,
the idea of sufficiency is again coming from the fact that both output and the sunspot are
non-atomic. How this condition related to the case without sunspots? Note that the case
without sunspots that we analyzed in the previous section, the conditions for equilibrium
consistency will be

{u (yt − bt + qbt+1) + βv (bt+1, q)} dP (q) ≥ Vd (yt) .

The lowest equilibrium consistent price that we characterized in the previous section will
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be pinned down by this condition with equality. Note that the set of equilibrium consis-
tent distributions will be given byQ (h) = Q (bt, yt, bt+1).

We now delve into four applications of the main result. The first application will study
comparative statistics for the set of equilibrium consistent distributions Q (bt, yt, bt+1).
Second, we characterize the maximum probability of a crisis. Third, we provide bounds
over expectation of prices, across all equilibria. Finally, we also provide bound for the
variance of prices.

4.2 Application: Comparative Statistics

We start by providing comparative statistics over the set of distributions.

Proposition 4. The set of equilibrium price distributions Q (bt, yt, bt+1) is non-increasing (in
set order sense) with respect to bt; if income is i.i.d, it is non-decreasing in yt. Suppose that
P ∈ Q (bt, yt, bt+1) and P′ ∈ ∆ ([0, q (bt+1)]). If P′ D P ( i.e. it first order stochastically
dominates P), then P′ ∈ Q (bt, yt, bt+1).

Proof. See Appendix B.

The intuition of the first part of this comparative statistics is again coming from the re-
vealed preference argument. If the government repaid a higher amount of debt, then the
distribution of prices that they could be expecting needs to shift towards higher prices. If
the set does not change, then there will be some distribution that will be inconsistent with
equilibrium because it will violate the promise keeping constraint. For the second part,
if Q′ D Q denote the relationship “Q′ first order stochastically dominates Q”, the propo-
sition shows that once that a distribution is consistent with equilibrium, any distribution
that first order stochastically dominates it will be an equilibrium consistent distribution.
Intuitively, higher prices give both higher consumption and higher continuation equilib-
rium values for the government, since both are weakly increasing in the realizations of
debt price qt.

4.3 Application: Probability of Crises

Our goal in this subsection will be to infer the maximum probability (across equilibria)
that the government assigns to the market setting a price q (ζ) = q̂; i.e., a financial crises.
Formally,

P (q̂) ≡ max
P∈Q(bt,yt,bt+1)

PrP (q ≤ q̂) (4.2)
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where PrP (q ≤ q̂) :=
∫ q̂

0 dP (q). These bounds are independent of the nature of the
sunspots (i.e. the distribution of sunspots, its dimensionality, and so on), in the same way
as the set of correlated equilibria does not depend on the actual correlating devices.14 Fur-
thermore this bound will yield a necessary condition for a distribution to be an element
in Q (bt, yt, bt+1).

We start by constructing an Upper bound on Pr (q = 0). To construct the maximum
equilibrium consistent probability that qt = 0, we make the promise keeping constraint be
as relaxed as possible. We do this by considering continuation equilibria with two prop-
erties: first, assign the best continuation equilibria if q 6= 0 (i.e, under price q (yt, bt+1)).
Second, note that autarky is the best continuation equilibria feasible with q = 0; if the
government receives a price of zero, in equilibrium, it will default with probability one in
the continuation equilibrium15. The IC constraint is now:

P (q̂ = 0)
[
u (yt − bt + bt+1 × 0) + βVd(yt)

]
+(1− P (q̂ = 0))

[
Vnd

(bt, yt, bt+1)
]
≥ Vd (yt) .

Then

P (q̂ = 0) =
∆nd (bt, yt, bt+1)

∆nd (bt, yt, bt+1) + u (yt)− u (yt − bt)
< 1,

where ∆nd (·) denotes the maximum utility difference between not defaulting and de-
faulting (under the best equilibrium)

∆nd (bt, yt, bt+1) ≡ Vnd
(bt, yt, bt+1)−Vd (yt) .

Thus, the probability of q = 0 is bounded away from 1 from an ex-ante perspective (i.e.
before the sunspot is realized, but after the government decision). So we obtain a history
dependent bound on the probability of a financial crises.

Following this approach, we can generalize it, and characterize an upper bound for
general price q̂ such that q̂ < q (bt, yt, bt+1). Denote this bound by P (q̂). Using the
same strategy as before, to get the less tight the incentive compatibility constraint for
the government we need to: for ζ : q (ζ) > q̂, we consider equilibria that assign the best
continuation equilibria; maximize equilibrium utility for q : q ≤ q̂. Thus:

P (q̂) =
∆nd (bt, yt, bt+1)

Vd (yt)− [u (yt − bt + q̂bt+1) + βv (bt, q̂)] + ∆nd (bt, yt, bt+1)
.

14As long as out interest is in characterizing all correlated equilibria.
15The default decision in equilibrium needs to be consistent with the price: a price of zero is only consis-

tent with default in every state of nature. And we assume that after default the government is in autarky
forever.
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Note that this is not an innocuous constraint only when the right hand side is less than 1.
This happens only when

u (yt − bt + q̂bt+1) + βv (bt, q̂) ≥ Vd (yt) .

This constraint holds when and this holds if q̂ ≥ q (bt, yt, bt+1) The last inequality comes
from the characterization of q (bt, yt, bt+1). The following Proposition summarizes the
results of this section:

Proposition 5. Take an equilibrium consistent history h =
(
ht, yt, dt, bt+1

)
and let ∆nd =

Vnd
(bt, yt, bt+1)−Vd (yt). For any q̂ < q (bt, yt, bt+1)

P (q̂) =
∆nd

∆nd −
[
u (yt − bt + q̂bt+1) + βv (bt, q̂)− u(yt)− βVd

] < 1

For any q̂ ≥ q (bt, yt, bt+1), P (q̂) = 1.

Proof. See Appendix B.

In Proposition 5 we find the ex-ante probability (before ζt is realized) of observing
qt = q̂ is less than P (q̂) < 1 for any equilibrium consistent outcome. Note that if the in-
come realization is such that Vnd

(bt, yt) = Vd (yt) (i.e. under the best continuation equi-
librium, the government was indifferent between defaulting or not, and still did not de-
fault), then P (q̂) = 0 for any q̂ < q (bt, yt, bt+1) = q (yt, bt+1), which implies that at such
income levels, even with these kind of correlating devices available, only q = q (yt, bt+1)

is the equilibrium consistent price. We also show that any price q ∈
[
q (·) , q (·)

]
could

be observed with probability 1, since they are part of the path of a pure strategy SPE pro-
file. When adding sunspots, any price in [0, q (·)] can be observed ex-post, and since the
econometrician has no information about the realization of the sunspot (or the particular
equilibrium selection and use of the correlating device) any price is feasible ex ante. How-
ever, before more information is realized, the econometrician can place bounds on how
likely different prices are, which can not be 1, so that the government incentive constraint
is satisfied.

Aided with the characterization of Proposition 5 we find a restriction satisfied by
equilibrium consistent distributions: they stochastically dominate P, in the first order
sense. Note that it is a cumulative distribution function on q: it is a non-increasing, right-
continuous function with range [0, 1], hence implicitly defining a probability measure
over debt prices. 16

16The distribution P (·) is the maximum lower bound (in the FOSD sense) of the set equilibrium consistent
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4.4 Application: Bounding Expectations

One application that is of particular interest is bounding moments across all equilibrium.
The importance of this bounds comes from the fact that permit us to obtain restrictions
that can be used to recover structural parameters, as in Chernozhukov et al. (2007).. The
set of equilibrium consistent expected prices is given by

E (bt, yt, bt+1) = {a ∈ R+ : a = EP (q) for some P ∈ Q (bt, yt, bt+1)}

where EP (q) ≡
∫

qdP. The following Proposition shows that in fact, the set of expected
values is identical to the set of equilibrium consistent prices when there are no sunspots.

Proposition 6. Suppose history h =
(
ht, yt, dt = 0, bt+1

)
is equilibrium consistent. Then the set

of expected prices is equal to the set of prices without sunspots Q (bt, yt, bt+1); i.e.

E (bt, yt, bt+1) =
[
q (bt, yt, bt+1) , q (bt+1)

]
Moreover, if bt+1 > 0 then the minimum expected value is achieved uniquely at the Dirac distri-
bution P̂ that assigns probability one to q = q (bt, yt, bt+1).

Proof. See Appendix B.

The result comes from the concavity of the value function v (bt+1, q̂) and the fact that
q (·) is the minimum price that satisfies:

u
(

yt − bt + qbt+1

)
+ βv

(
bt+1, q

)
= Vd (yt) (4.3)

The equality at q = q (·) follows from the strict monotonicity in q of the left hand side
expression: if the inequality was strict, then we can find a lower equilibrium consistent
price, which contradicts the definition of q (·). Therefore, the integrand in 4.1 is bigger
than Vd (yt) only when q ≥ q (bt, yt, bt+1). Concavity of v (b, q) and Jensen’s inequality
then imply that for any distribution P ∈ Q (bt, yt, bt+1) :

u (yt − bt + EP (q) bt+1)+ βv (bt+1, EP (q)) ≥
∫
{u (yt − bt + qbt+1) + βv (bt+1, q)} dP (q)

≥ Vd (yt)

and therefore EP (qt) ≥ q (bt, yt, bt+1).

distributions; i.e. for every P ∈ Q (bt, yt, bt+1) we have P D P, and if P′ is some other lower bound, then
P′ D P. Moreover, P 6/∈ Q (bt, yt, bt+1)
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As we just mentioned, the previous Proposition actually provides testable implica-
tions for the model. In particular, it yields a necessary and sufficient moment condition
for equilibrium consistency at histories h =

(
ht, yt, dt, bt+1

)
,

Eqt

{
u (yt − bt + bt+1) + βv (bt+1, qt)−Vd (yt) | h

}
≥ 0 (4.4)

The bounds that we just derived yields moment inequalities that are easier to check

Eqt {qt | h} ∈
[
q (bt, yt, bt+1) , q (bt+1)

]
(4.5)

Aided with these bounds we can perform estimation of the structural set of parameters
as in Chernozhukov et al. (2007).

4.5 Application: Bounding Variances

Proposition 7 (Variance restrictions). Suppose Vnd (bt, yt, bt+1) ≥ Vd (yt) and that yt ≤ bt.
Then

Var (qt | h) ≤ λ
(
1− λ

)
[q (bt+1)]

2

where
λ := min

{
1
2

,
u (yt)− u (yt − bt)

Vnd (bt, yt, bt+1)−Vd (yt) + u (yt)− u (yt − bt)

}

5 General Model

We will follow the notation in Stokey et al. (1989). There are two players: an infinitely
lived player (the policy maker) and “agents” (price setters) that set expectations according
to a particular rule. At each period t, agents play a extensive form stage game, with 4 sub
periods (t, τi)i∈{1,4} . The payoff relevant states will be an exogenous random shock yt−1,
and an endogenous state variable xt. The timeline of the stage game is as follows (all sets
are subsets of some euclidean real vector space).

• τ = τ1 : A publicly observable random variable yt ∈ Y ⊆ Rl is realized, which
follows a (controlled) markov process: yt ∼ f (y | yt−1, bt). Sometimes, we will that
say y includes a sunspot if ∃ {y∗t , zt} such that (1) y∗t ⊥ zt for all t, (2) y∗t is a controlled
markov process; i.e. y∗t ∼ g

(
y∗t | y∗t−1, bt

)
and (3) zt ∼i.i.d Uniform [0, 1].

• τ = τ2 : The long lived player chooses a control dt ∈ D ⊆ Rd and a next period
state variable bt+1 ∈ B ⊂ Rb (where both D and B are compact sets) that are jointly
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feasible, given (bt, yt). This we will write by imposing the constraint (dt, bt+1) ∈
Γ (bt, yt), where Γ : B × Y ⇒ D × B is a non-empty, compact valued , continuous
correspondence.

• τ = τ3 : Agents set expectations about future play. This is modeled in reduced form,
with the market choosing qt ∈ Rk to satisfy:

qt = Et

{
∞

∑
s=t

δs−tT (bs+1, ys+1, ds+1, bs+2)

}

where δ ∈ (0, 1) and T : B× Y × D × B → Rk is a continuous, bounded function.
The expectation is taken over future shocks {yt+s}∞

s=1, knowing the strategy profile
of the policy maker.

• τ = τ4 : Payoffs for the policy maker are realized, given by a continuous utility
function u (bt, yt, dt, bt+1, qt). Lifetime utility is given then by

U0 := E0

{
∞

∑
t=0

βtu (bt, yt, dt, bt+1, qt)

}

where β ∈ (0, 1).

Example 1. This model incorporates the sovereign debt model studied above, where yt

is national income, bt ≥ 0 is the outstanding public debt to be replayed (we assume no
savings in this example), d ∈ {0, 1} is the default decision and qt = Et {1− yt+1/R∗}
is the risk neutral price set by lenders in equilibrium. Flow utility is given by U =

(1− dt) u (yt − bt + qtbt+1) + dtu (yt), assuming that when the government defaults on
its debt, she gets to consume its income, but cannot issue debt in that period.

Example 2. It also incorporates new Keynesian models, as in Woodford (2003) and more
recently Waki et al. (2015), with no endogenous state, and the control is dt = πt where
πt is inflation. Agents set inflation expectations to match future inflation, as qt := πe

t =

Et (πt+1). Inflation and output are related according to a forward looking Phillips curve
gt = πt − βπe

t + εt, where gt is the output gap and εt is a supply shock. Also, let π∗t be
a random variable that gives the optimal natural level of inflation (absent inflation gap).
The random shocks are then yt = (εt, π∗t ), and the government is assumed to minimize a
loss function

L (π, πe, εt, π∗t ) =
1
2

g2
t +

1
2

χ (πt − π∗t )
2 =

1
2
(πt − βπe

t + εt)
2 +

1
2

χ (πt − π∗t )
2

25



5.1 Definition of Equilibrium Consistency

In this section we describe the basic notation for the dynamic game setup, and introduce
the main concept of the paper: equilibrium consistency, which is the class of equilibrium
paths of the game. A history is a vector ht = (h0, h1, ..., ht−1), where ht = (yt, dt, bt+1, qt)

is the description of the outcome of the stage game at time t. A partial history is an
initial history ht concatenated with a history of the stage game at period t. For example,
h =

(
ht, yt, dt, bt+1

)
is the typical history after which price setters must choose qt. The set

of all partial histories (initial and partial) is denoted by H, and Hp ⊂ H are those where
the policy maker has to choose (dt, bt+1); i.e., h =

(
ht, yt

)
. Likewise, Hm ⊂ H is the set of

partial histories where expectation setters (or “market”) ; i.e., h =
(
ht, yt, dt, bt+1

)
.

A policy maker’s strategy is a function σg
(
ht, yt

)
= (dt, bt+1) for all histories, and a

rational expectation strategy is a pricing function qm
(
ht, yt, dt, bt+1

)
∈ Rk. For a strategy

profile σ =
(
σg, qm

)
we write V (σ | h) for the continuation expected utility, after history

h, of the representative consumer if agents play according to profile . We say a strategy
profile σ =

(
σg, qm

)
is a Rational Expectations Equilibrium of the game (REE) if, for all

histories h =
(
ht, yt

)
we have

a. V
(
σ | ht, yt

)
≥ V

(
σ′p, qm | ht, yt

)
for all

(
ht, yt

)
, σ′g ∈ Σg

b. qm
(
ht, yt, dt, bt+1

)
= Et

{
∑∞

s=t δs−tT (bs+1, ys+1, ds+1, bs+2)
}

where (bs+1, ds+1, bs+2)

are generated by σ

and we write σ ∈ REE. The methodology we develop derives statistical predictions
for the data generated by the set of rational expectations equilibria. We know introduce
the concept of equilibrium consistency. Given a REE profile σ =

(
σg, qm

)
, we define its

equilibrium path π = x (σ) as a sequence of measurable functions17

π =
(
dt
(
yt) , bt+1

(
yt) , qt

(
zt))

t∈N

that are generated by following the profile σ. A history h is equilibrium consistent if if is on
some equilibrium path x = x (σ), for some REE σ. Or said differently: a history h is equi-
librium consistent if we can find at least some equilibrium σ that explains the data. This
definition will be instrumental in finding the defining conditions of equilibrium paths, by
providing a recursive representation. A history is part of an equilibrium path if and only

17For our baseline case, where after default the government is permanently in autarky, the functions have
the restriction that bond issues and prices are not defined after a default has been observed: bt+s+1

(
ytys) =

qt+s
(
ytys) = ∅ for all ys and yt such that dt

(
yt) = 1.
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if (a) the history up to t − 1 is part of an equilibrium path and (b) the partial history at
time t is also consistent with it.

The main questions we answer below are: how do we know if a particular history ht

is equilibrium consistent? If so, what are the equilibria that are consistent with it? And
most importantly: what are the forecasting predictions common across the rationalizing
equilibrium profiles of history ht?

5.2 General Model: Main Results

The main object we study is the equilibrium value correspondence, in the spirit of Abreu
et al. (1990); Atkeson (1991). Formally,

E (y−, b) :=

(q, v) ∈ Rk ×R : ∃σ ∈ REE (y−, b) with

v = V (σ | h0 = (y−, b))

q = qm

[
h0,
(

dσg
0 , bσg

1

)
(h0)

]


and let Q (y−, b) ⊆ Rk be its projection over q. In the Appendix we show how one can
characterize E (y−, b) using the concept of self-generation and enforceability in Abreu
(1988); Abreu et al. (1990) and Atkeson (1991), and show it is compact, and convex valued
if (a) y includes a sunspot (and is therefore non-atomic) and (b) u is concave in q (risk
aversion of the policy maker), which are both satisfied in the examples given.

We then consider two important functions: the best value function, and the maxmin
value. The best value function gives the maximum equilibrium value for the policy maker,
if qt = q is realized; i.e.

v (y−, b, q) = max
v∈R

v subject to (q, v) ∈ E (y−, b)

In the Appendix we also show that if E (y−, b) is convex valued and u (·) is concave in q,
then so is v (y−, b, q). The maxmin value is the worst possible value that the policy maker
can obtain in a Rational Expectations Equilibrium, going forward. Formally,

U (y, b) := max
(d,b′)∈Γ(b,y)

{
min

(q,v)∈E(y,b′)
u
(
b, y, d, b′, q

)
+ βv

}

For example, in the sovereign debt model, U (y, b) = Vd (y), the autarky value. In the
online appendix, we show (following Waki et al. (2015)) that v (y−, b, q) can be expressed
as the unique fixed point of a contraction mapping, given U (y, b) (which is natural, given
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that this is a game of perfect monitoring).
The main proposition of this section is to characterize what period t outcomes ht =

(zt, yt, xt+1, qt) are equilibrium consistent.

Proposition 8 (Equilibrium Consistency). Suppose y is non-atomic, and that ht is an equilib-
rium consistent history. Then, an outcome ht = (yt, dt, bt+1, qt) is equilibrium consistent if and
only if

a. Prices are equilibrium consistent, given government decision:

qt ∈ Q (yt, bt+1)

b. Incentive compatibility for policy maker:

u (bt, yt, dt, bt+1, qt) + βv (yt, bt+1, qt) ≥ U (yt, bt) (5.1)

Proof. See Appendix D.

This gives an if and only if condition to check if data is equilibrium consistent. It
replicates the same intuition we had on the sovereign debt model: if the policy maker’s
choice (dt, bt+1) could be rationalized as optimal under some equilibrium σ that predicted
the price to be q = qt, then it should also be rationalizable under an equilibrium that
gives the highest equilibrium value consistent with prices being qt if she chooses pre-
cisely (dt, bt+1), and gives the harshest possible punishment if the policy maker deviates
(giving U (yt, bt) in lifetime utility in the continuation game). Sufficiency of this condi-
tion comes again from the fact that yt is non-atomic, and hence, any particular realization
of yt has no marginal effect on expected lifetime utilities from previous periods; i.e. the
promise keeping constraints can always be satisfied if we change the realization of the
continuation value on a single yt.

Proposition 8 also implies that for equilibrium consistency, we only need to know
whether h = ht is equilibrium consistent or not. However, no information in ht is relevant
to decide whether ht+1 =

(
ht, ht

)
is equilibrium consistent or not, besides the fact that

there exist some equilibrium consistent with it. Therefore, we can characterize all equilib-
rium consistent histories recursively: start with the null history h0 = (y−, b0) (the starting
state) and, ht+1 is equilibrum consistent if and only if ht is equilibrium consistent and
ht = (yt, dt, bt+1, qt) satisfies conditions (1) and (2) of Proposition 8.

Resembling what we did for the model of sovereign debt, how can we use the previous
Proposition to obtain Robust Predictions on prices? Condition (2) defines, given yt and
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the policy maker’s choice (dt, bt+1), a set of equilibrium consistent prices:

Q (bt, yt, dt,, bt+1) := {qt ∈ Q (yt, bt+1) : u (bt, yt, dt, bt+1, qt) + βv (yt, bt+1, qt) ≥ U (yt, bt)}
(5.2)

If v (yt, bt+1, qt) is concave in qt (which happens if E is convex valued and u concave
in q), then the set of equilibrium consistent prices Q (bt, yt, bt+1) will be a convex set as
well. In the case of k = 1, this implies that Q is a compact interval; Q (bt, yt, dt, bt+1) =[

q (bt, yt, dt, bt+1) , q (bt, yt, dt, bt+1)
]

as in the sovereign debt model.

5.3 Case with sunspots

The random variable y is allowed to be multidimensional. Therefore, the above results
include the case with sunspots, by adding an extra absolutely continuous random vari-
able ζt variable (without loss of generality, we can assume ζt ∼ U [0, 1]) and making the
shock ŷ = (y, ζt). The different case is when the sunspot is realized in between the long
lived agent’s decision and the myopic agents expectations setting:

a. At τ = 1 shock yt is realized

b. At τ = 2 long lived agent chooses (dt, bt+1)

c. At τ = 3 sunspot ζt is realized

d. At τ = 4 myopic players choose qt (yt, dt, bt+1, ζt)

Let E s (y−, b) be the equilibrium value correspondence, with sunspots. Note that in gen-
eral, E s (y−, b) ⊇ E (y−, b). As we studied in the sovereign debt model, an outcome given
history h =

(
ht, yt

)
will be a triple xt = (dt, bt+1, Pt) ∈ D× B×∆

(
Rk), predicting the long

lived player decision, and the distribution of q conditional on (dt, bt+1) and the realization
of the sunspot ζt. The main result of this section relies on the assumption that E (y−, b)
(the equilibrium value set without sunspots) is convex-valued. If that is the case, then
E s (y−, b) = E (y−, b) and if u (·) is concave in q, then the maximum continuation value
function v (y−, b, q) coincides with the case without sunspots. Moreover, if E is convex
valued and u is concave in q, then so is v (y, b, q) (the proof is left to the Appendix D).

We can now present the main result of this section, which generalizes the result of
equilibrium consistency with sunspots in the sovereign debt model (its proof is also rele-
gated to Appendix D).
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Proposition 9. Suppose yt is non-atomic, E (y−, b) is convex valued and u is concave in q . If
ht is an equilibrium consistent history, then an outcome xt = (dt, bt+1, Pt) ∈ D× B× ∆

(
Rk) is

equilibrium consistent if and only if

a. Prices with positive probability are equilibrium consistent, given the long-lived player deci-
sion.

Supp (Pt) ⊆ Q (yt, bt+1) (5.3)

b. Incentive compatibility for policy maker:∫
[u (bt, yt, dt, bt+1, q̂) + βv (yt, bt+1, q̂)] dPt (q̂) ≥ U (yt, bt) (5.4)

Proof. See Appendix D.

Clearly Proposition 9 generalizes Proposition 8 when E is convex valued and u is
concave. When this is not the case, the proposition remains valid, only that now we
define the functions v and U over the correspondence E s (y−, b) instead; i.e. vs (y, b, q) =
max {v : (q, v) ∈ E s (y, b)} and Us (y, b) := max(d,b′)∈Γ(b,y) min(q,v)∈E s(y,b) u (b, y, d, b′, q) +
βv.

As in the case without sunspots, conditions (5.3) and (5.4) define now a set of equilib-
rium consistent price distributions

Qs (bt, yt, dt, bt+1) =
{

P ∈ ∆
(

Rk
)

: xt = (dt, bt+1, P) is eqm. consistent
}

and see that this is a convex set of measures (since condition (2) is a linear inequal-
ity on measures Pt). Under the assumptions of Proposition 9 is easy to see that the
function g (q̂ | ht) := u (bt, yt, dt, bt+1, q̂) + βv (yt, bt+1, q̂) − U (yt, bt) is concave in q̂ as
well. Therefore, as in the sovereign debt model, we have that the set of expected prices
E (bt, yt, bt+1) :=

{
q ∈ Rk : q =

∫
q̂dP (q̂) for some P ∈ Qs (bt, yt, dt, bt+1)

}
equals the set

of equilibrium consistent prices without sunspots; i.e. E (bt, yt, dt, bt+1) = Q (bt, yt, dt, bt+1).

6 Conclusion and Discussion

Dynamic policy games have been extensively studied in macroeconomic theory to in-
crease our understanding on how the outcomes that a government can achieve are re-
stricted by its lack of commitment. One of the challenges in studying dynamic policy
games is equilibrium multiplicity. Our paper acknowledges equilibrium multiplicity, and
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for this reason focuses on obtaining predictions that hold across all equilibria. To do this,
we conceptually introduced and characterized equilibrium consistent outcomes. We did
so under different settings, and we found that the assumption that a history was gener-
ated by the path of a subgame perfect equilibrium puts restrictions on current policies,
and therefore on observables. In addition, we found intuitive conditions under which
past decisions place restrictions on future policies; if the past decision occurred far away
in time or in a history where the current history had low probability of occurrence, then
it is less likely that a particular past decision influences current policies. In the extreme
case that every particular history has probability zero, the restrictions of past decisions
in current outcomes die out after one period. At first glance, this is surprising; but as we
showed in the paper, this a direct consequence of robustness.

As we discussed in the text, equilibrium consistency is a general principle. Even
though we focus on a model of sovereign debt that follows Eaton and Gersovitz (1981),
our results generalize to other dynamic policy games. An example is the model of cap-
ital taxation as in Chari and Kehoe (1990). In that model, the entrepreneur invests and
supplies labor, then the government taxes capital, and finally, the entrepreneur receives a
payoff. The worst subgame perfect equilibrium is one where the government taxes all the
capital. Note that, if the government has been consistently abstaining from taxing capital,
then as outside observers we can rule out that the government will tax all capital. Past
behavior, and the sole assumption of equilibrium, is giving information to the outside
observer about future outcomes.

We think equilibrium consistency might have applications beyond policy games. The
reason is that the sole assumption of equilibrium yields testable predictions. For example,
the literature of risk sharing studies barriers to insurance and tries to test among different
economics environments. Two environments that have received a lot of attention are
Limited Commitment and Hidden Income. To test these two environments, a property
of the efficient allocation with limited commitment is exploited: lagged consumption is
a sufficient statistic of current consumption. If this hypothesis is rejected, then hidden
income is favored in the data. However, the test is rejecting two hypotheses at the same
time: efficiency and limited commitment. Our approach could, in principle, be suitable
for a test that is tractable and robust to equilibrium multiplicity.

Over the course of the paper, we have been silent with respect to optimal policy. An
avenue of future research is to relate equilibrium consistent outcomes and forward rea-
soning in dynamic games. Our conjecture is that, the set of equilibrium consistent out-
comes will be intimately related with the set of outcomes if there is common knowledge
of strong certainty of rationality. The reason is that, in the model of sovereign debt that we
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studied, the outside observer and the lenders have the same information set. Even in the
motivating example, equilibrium consistent outcomes and outcomes when the solution
concept is strong certainty of rationality are the same. In that case, our results have a dif-
ferent interpretation: the government is choosing the history to manage the expectations
of the public.
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A Proofs Main Results

Proof. (Proposition 1). (Necessity, =⇒) If (d (·) , b′ (·)) is SPE - consistent, there exists
an SPE profile σ̂ such that ht ∈ H (σ̂) and

d (yt) = dσ̂
t
(
ht, yt

)
and b′ (y) = bσ̂

t+1
(
ht, yt, d = 0

)
That is, there exists a SPE that generated the history ht

−, specifies the contingent policy
d (·) , b′ (·) in period t, and satisfies conditions (3.3) to (3.5). Because σ̂ is an SPE, using the
results of Abreu et al. (1990) we know that if d (y) = 0 at ht =

(
ht
−, qt−1

)
then

u
(

yt − bt + b′ (yt) qσ̂
m
(
ht, dt = 0, b′ (yt)

))
+ βW

(
σ̂ | ht+1

)
≥ u (yt) + βVd(yt) (A.1)

By definition of best continuation values and prices

W
(

σ̂ | ht+1
)
≤W

(
yt, b′ (yt)

)
and qσ̂

m
(
ht, dt = 0, b′ (yt)

)
≤ q

(
yt, b′ (yt)

)
(A.2)

Because b′ (yt) ≥ 0 (no savings assumption), and u (·) is strictly increasing, we can plug
in (A.2) into (A.1) to conclude that

u
(
yt − b + b′ (yt) q

(
yt, b′ (yt)

))
+ βW

(
yt, b′ (yt)

)
≥

u
(

y− bt + b′ (yt) qσ̂
m
(
ht, dt = 0, b′ (yt)

))
+ βW

(
σ̂ | ht+1

)
Proving condition (3.4). Further, since σ̂ generated the observed history, past prices must
be consistent with policy (d (·) , b′ (·)). Formally:

qt−1 = qσ̂
m

(
ht−1, yt−1, dt−1, bt

)
=

1
1 + r∗

(1−
∫

yt∈Y
dσ̂
(
ht, yt

)
dF(yt | yt−1))

=
1

1 + r
(1−

∫
yt∈Y

d(yt)dF(yt | yt−1))

proving also condition (3.3). Condition (3.5) is the same as condition (3.4) but at t − 1,
using the usual promise keeping accounting. Formally, if σ̂ is SPE and ht ∈ H (σ̂) then
the government’s default and bond issue decision at t− 1 was optimal given the observed
expected prices

u(yt−1 − bt−1 + btqt−1︸ ︷︷ ︸)
=ct−1

+ βW
(
σ̂ | ht) ≥ u (yt−1) + βVd(yt−1)
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Using the recursive formulation of W (·) we get the following inequality:

W
(
σ̂ | ht) = ∫

yt :d(yt)=0

[
u(yt − bt + b′(yt)qσ̂

m(h
t, yt, dt = 0, b′(yt))) + W

(
σ̂ | ht+1

)]
dF(yt | yt−1)

+
∫

yt :d(yt)=1

[
u (yt) + βVd(yt)

]
dF(yt | yt−1)

≤
∫

yt :d(yt)=0

[
u
(
yt − bt + b′(yt)q(b′(yt))

)
+ W(b′(yt))

]
dF(yt | yt−1)

+
∫

yt :d(yt)=1

[
u (yt) + βVd(yt)

]
dF(yt | yt−1)

From the previous two inequalities, we show (3.5).

(Sufficiency, ⇐=) We need to construct a strategy profile σ ∈ SPE such that ht
− ∈

H (σ) and d (·) = dσ
t
(
ht, ·
)

and b′ (·) = bσ
t+1
(
ht, ·
)
. Given that ht

− ∈ H (SPE), we know
there exists some SPE profile σ̂ =

(
σ̂g, q̂m

)
that generated ht

−. Let σ (b, y) be the best
continuation SPE (associated with the best price q (·) ) when yt = y and bt+1 = b. Let σaut

be the strategy profile for autarky (associated with qm = 0 for all continuation histories).
Also, let ht+1 (yt) =

(
ht, yt, d (yt) , b′ (yt) , q (yt, b′ (yt))

)
be the continuation history at yt =

y and the policy (d (·) , b′ (·)) if the government faces the best possible prices. Define
(hs, ys) ≺ ht as the histories that precede ht and are not equal to ht. That is, if we truncate
ht to period s, we obtain hs. Denote (hs, ys) 6≺ ht as the histories that do not precede ht.
The symbol � denotes, histories that precede and can be equal. Construct the following
strategy profile σ =

(
σg, qm

)
:

σg (hs, ys) =



σ̂g (hs, ys) for all (hs, ys) ≺ ht

σaut (ys) for all s < tand (hs, ys) 6≺ ht

dt
(
ht, yt

)
= d (yt) and bt+1

(
ht, yt

)
= b′ (yt) for

(
ht, yt

)
for all yt

σg (bs+1, ys) (hs, ys) for all hs � ht+1 (yt)

σaut (ys) for all s > t, hs 6� ht+1 (yt)

and

qm (hs, ys, ds, bs+1) =



q̂m (hs, ys, ds, bs+1) for all (hs, ys) ≺ ht

0 for all s < t and (hs, ys) 6≺ ht

q (ys, b′ (ys)) for all hs �
(
ht, yt, d (yt) , b′ (yt)

)
0 for all h 6s �

(
ht, yt, d (yt) , b′ (yt)

)
36



By construction ht
− ∈ H (σ). This is because, σ = σ̂g for histories (hs, ys) � ht. Also,

the strategy σ, prescribes the policy (d (·) , b′ (·)) on the equilibrium path. Now we need
to show that the constructed strategy profile is indeed an SPE. For this, we will use the
one deviation principle. See that for all histories with s > t the continuation profile is
an SPE (by construction); it prescribes the best continuation equilibrium, that is a SPE by
definition. Now, we need to show that at ht this is indeed an equilibrium. This comes
from the second constraint, the incentive compatibility constraint

(1− d(yt))
[
u(yt − bt + q(yt, bt+1((yt)))bt+1(yt)) + βW(yt, bt+1((yt)))

]
+d(yt)Vd(yt) ≥ Vd(yt)

Note also that the default policy at t − 1 was consistent with σ (and is an equilibrium)
and that qt−1 is consistent with the policy (d (·) , b′ (·)). The promise keeping constraint
(3.5) translates into the exact incentive compatibility constraint for profile σ, showing that
the default decision at t− 1 was indeed optimal given profile σ. The “price keeping” (3.3)
constraint also implies that qt−1 was consistent with policy (d (·) , b′ (·)). The final step in
sufficiency is to show that, s < t− 1 (that is hs ≺ ht). Note that, because y is absolutely
continuous, the particular y that is realized, has zero probability. So, the expected value
of this new strategy is the same

W(σ̂ | hs) = W(σ | ht)

for all hs ≺ ht with s < t − 1; the probability of the realization of ht, is zero. All this
together implies that σ is indeed an SPE and generates history ht

− on the equilibrium
path, proving the desired result.

Proof. (Proposition 2) By Proposition 1, we can rewrite program (3.9) as,

q(b, y, b′) = min
q,d(·)∈{0,1}Y ,b′′(·)

q

subject to

q =
1−

∫
d(y′)dF(y′ | y)

1 + r
(A.3)

(
1− d

(
y′
)) (

Vnd (b′, y′, b′′
(
y′
))
−Vd (y′)) ≥ 0 (A.4)
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and

β
∫ [

d
(
y′
)

Vd (y′)+ (1− d
(
y′
))

Vnd (b′, y′, b′′
(
y′
))]

dF
(
y′ | y

)
− βVd(y) ≥ u (y)−u

(
y− b + b′q

)
(A.5)

First, note that we can relax the constraint (A.4) and (A.5) by choosing

b′′
(
y′
)
= argmax

b̂≥0
Vnd

(
b′, y′, b̂

)

Second, define the set R (b′) =
{

y′ ∈ Y : Vnd (b′, y′) ≥ Vd (y′)
}

to be the set of income
levels for which the government does not default, under the best continuation equilib-
rium. Note that, if y′ /∈ R (b′), it implies that no default is not equilibrium feasible for any
continuation equilibrium (it comes from the fact that (A.4) is a necessary condition for no
default). The minimization problem can now be written as

q
(
b, y, b′

)
= min

q,d(·)∈{0,1}Y
q

subject to

q =
1−

∫
d (y′) dF (y′ | y)

1 + r(
1− d

(
y′
)) [

Vnd (b′, y′
)
−Vd (y′)] ≥ 0 for all y′ ∈ R (b′) (A.6)

d
(
y′
)
= 1 for all y′ /∈ R (b′) (A.7)

β
∫ [

d
(
y′
)

Vd (y′)+ (1− d
(
y′
))

Vnd (b′, y′
)]

dF
(
y′
)
− βVd(y) ≥ u (y)− u

(
y− b + b′q

)
As a preliminary step, we need to show that this problem has a non-empty feasible set.
For that, choose the default rule that makes all constraints be less binding: i.e. d (y′) =

0 ⇐⇒ Vnd (b′, y′) ≥ Vd (y′). This corresponds to the best equilibrium policy. If this
policy is not feasible, then the feasible set is empty. Under this default policy, the one of
the best equilibrium, the price q is equal to the best equilibrium price q = q (y, b′). The
feasible set is non-empty if and only if

β
∫ [

d
(
y′
)

Vd (y′)+ (1− d
(
y′
))

Vnd (b′, y′
)]

dF
(
y′ | y

)
− βVd(y) ≥ u (y)−u

(
y− b + b′q

(
y, b′

))
u
(
y− b + b′q

(
y, b′

))
+ βW

(
b′
)
≥ u (y) + βVd(y) ⇐⇒

Vnd (b, y, b′
)
≥ Vd (y)

where W (y, b′) is the value of the option of defaulting b′ bonds; this is the initial assump-
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tion of this proposition. Also, note that

Vd(y) =
∫ [

d
(
y′
)

Vd (y′)+ (1− d
(
y′
)
)Vd (y′)] dF

(
y′ | y

)
So, we can rewrite the promise keeping constraint as

β
∫ (

1− d
(
y′
)) [

Vnd (b′, y′
)
−Vd (y′)] dF

(
y′
)
≥ u (y)− u

(
y− b + b′q

)
(A.8)

We focus on a relaxed version of the problem. We will allow the default rule to be
d (y′) ∈ [0, 1] for all y′. Given the state variables (b, y, b′) the relaxed problem is a convex
minimization program in the space (q, d (·)) ∈

[
0, 1

1+r

]
×D (Y), where

D (Y) ≡ {d : Y → [0, 1] such that d (y′) = 1 for all y′ /∈ R (b′)}

is a convex set of default functions. Also, include the constraint for prices

q ≥
1−

∫
d (y′) dF (y′ | y)

1 + r

The intuition for this last constraint is that d (y′) = 1 has to be feasible in the relaxed
problem. The Lagrangian

L (q, δ (·)) = q + µ

(
−q +

1−
∫

d (y′) dF (y′ | y)
1 + r

)
+

λ

(
u (y)− u

(
y− b + b′q

)
− β

∫
(1− d

(
y′
)
)
[
Vnd (b′, y′

)
−Vd (y′)] dF

(
y′ | y

))
The optimal default rule d (·) must minimize the Lagrangian L given the multipliers
(µ, λ) (where µ, λ ≥ 0). Notice that for y′ ∈ R (b′) any d ∈ [0, 1] is incentive constraint
feasible, and

∂L
∂d (y′)

=

(
− µ

1 + r
+ λβ

[
Vnd (b′, y′

)
−Vd (y′)]) dF

(
y′ | y

)
So, because it is a linear programming program, the solution is in the corners (and if it is
not in the corners, it has the same value in the interior), then the values of y′ such that the
country does not default are given by

d
(
y′
)
= 0 ⇐⇒ λ∆nd >

µ

β (1 + r)
(A.9)
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Note that λ > 0 in the optimum. Suppose not; then d (y′) = 1 for all y′ ∈ Y satisfies the
IC and the price constraint. Then, the minimum price is

q ≥ 1− 1
1 + r

So, the minimizer will be zero, q = 0. But, this will not meet the promise keeping con-
straint. Formally,

β
∫

Vd (y′) dF
(
y′ | y

)
− βVd(y)− u (y) + u (y− b) =

= β
(

Vd(y)−Vd(y)
)
+ u (y− b)− u (y) = u (y− b)− u (y) < 0

This implies λ > 0. Note that, λ > 0 implies that q (b, y, b′) > 0. Define

γ ≡ µ

λβ (1 + r)

From (A.9)
d
(
y′
)
= 0 ⇐⇒ ∆nd ≥ γ ⇐⇒ Vnd (b′, y′

)
≥ Vd (y′)+ γ

as we wanted to show. Aided with this characterization, from the promise keeping con-
straint we have an equation for γ as a function of the states

β
∫

Vnd(b′,y′)≥Vd(y′)+γ

[
Vnd (b′, y′

)
−Vd (y′)] dF

(
y′ | y

)
= u (y)− u

(
y− b + b′q

)
(A.10)

where

q =
Pr
(
Vnd (b′, y′) ≥ Vd (y′) + γ

)
1 + r

(A.11)

Define
∆nd(y′) := Vnd (b′, y′

)
−Vd (y′)

So,

q =
F̂
(
∆nd(y′) ≥ γ

)
1 + r

where F̂ is the probability distribution of ∆nd(y′). The last step in the proof involves
showing that the solution is well defined. Define the function

G (γ) = β
∫

∆nd≥γ
∆nddF̂

(
∆nd | y

)
− u (y) + u

(
y− b + b′

1− F̂ (γ | y)
1 + r

)
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First, note that G is weakly decreasing in γ, that G (0) > 0 (from the assumption Vnd (b′, y′)−
Vd (y′) > 0) and limγ→∞ G (γ) = u (y− b)− u (y) < 0. Second, note that G is right con-
tinuous in γ. These two observations imply that we can find a minimum γ : G (γ) ≥ 0. If
income is an absolutely continuous random variable, then G (·) is strictly decreasing and
continuous, implying the existence of a unique γ such that G (γ) = 0. This determines
the solution to the price minimization problem.
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B Sunspot Proofs

Proof of Proposition 3. Necessity (=⇒): Suppose there is an equilibrium strategy σ such
that h ∈ H (σ). This implies that the government decided optimally not to default at
period t; i.e.

∫ 1

0
[u (yt − bt + qσ (h, ζ) bt+1) + βVσ (h, ζ)] dζ ≥ u (yt) + βVd (B.1)

Since σ is a SPE, we have that for all sunspot realizations ζ ∈ [0, 1] we must have

(Vσ (h, ζ) , qσ (h, ζ)) ∈ E (bt+1)

using the self-generation characterization of E (b). This further implies two things:

a. qσ (h, ζ) ∈ [0, q (bt+1)] (i.e. it delivers equilibrium prices)

b. Vσ (h, ζ) ≤ v (bt+1, qσ (h, ζ)) (because v is the maximum possible continuation value
with price q = qσ (h, ζ) )

The price distribution given by σ can be defined by a measure P over measurable sets
A ⊆ R+ as

P (A) =
∫ 1

0
1 {qσ (h, ζ) ∈ A} dζ = Pr {ζ : qσ (h, ζ) ∈ A}

Note that numeral (1) shows that Supp (P) ⊆ [0, q (bt+1)]. To show ??, we change in-
tegration variables in B.1 and using the definitions above and properties (1) and (2), we
get ∫

[u (yt − bt + q̂bt+1) + βv (bt+1, q̂)] dP (q̂) ≥
∫ 1

0
[u (yt − bt + qσ (h, ζ) bt+1) + βVσ (h, ζ)] dζ ≥ u (yt) + βVd

Proving the desired result.

Sufficiency (⇐=). Suppose that P is an equilibrium consistent distribution with cdf FP.
Let

σ∗ (b, q) ∈ argmax
σ∈SPE(bt+1)

Vσ
(

h0
)

s.t. qσ
0 ≤ q
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i.e. it is a strategy that achieves the continuation value v (b, q). As we showed before, the
constraint in this problem will be binding. Because ht is equilibrium consistent, we know
there exist an equilibrium profile σ̂ such that h ∈ H (σ̂). For histories h′ successors of
histories ht+1 =

(
ht, dt, b̂t+1, ζt, q̂t

)
we define the profile σ as

σ
(
h′
)
=

σd (h′) if dt = 1, b̂t+1 6= bt+1 or q̂t /∈ [0, q (bt+1)]

σ∗ (bt+1, q̂t)
(
h′ ∼ ht+1) otherwise

and for histories h′ =
(
ht, dt = 0, bt+1, ζt

)
let

qσ
(
ht, dt, bt+1, ζt

)
= F−1

P (ζt)

where FP (q) = P (q̂) is the cumulative distribution function of distribution P and F−1
P (ζ) =

inf {x ∈ R : FP (q) ≥ ζ} its inverse. It will be optimal to not default at t (if we follow strat-
egy σ for all successor nodes) if

∫ 1

0

[
u
(

yt − bt + F−1
P (ζ) bt+1

)
+ βVσ (bt+1, ζ)

]
dζ ≥ u (yt) + βVd ⇐⇒︸ ︷︷ ︸

(a)∫
[u (yt − bt + q̂bt+1) + βv (bt+1, q̂)] dP (q̂) ≥ u (yt) + βVd (B.2)

using the classical result that F−1
P (ζ) =d P if ζ ∼ Uniform [0, 1] and the fact that Vσ (h′) =

V (σ∗ (h′)) = v (bt+1, qt) from the definition of σ. Conditions B.1 is satisfied, and Supp (P) ⊆
[0, q (bt+1)] imply that, if the government follows profile σ, then h is also on the path of
σ, and σ is indeed a Nash equilibrium at such histories (because both σd and σ∗ (bt+1, q̂)
are subgame perfect profiles). Finally, for histories h′ 6� ht define σ (h′) = σ̂ (h′). There-
fore, σ (h′) is itself a subgame perfect equilibrium profile (since it is a Nash equilibrium
at every possible history) and generates h =

(
ht, dt = 0, bt+1

)
on its path.

Proof of Proposition4. This comes from the fact that the function

U (P) =
∫
{u (yt − bt + q̂bt+1) + βv (bt+1, q̂)} dP (q)

is strictly increasing in yt and strictly decreasing in bt, and the set can be rewritten as

Q (bt, yt, bt+1) =
{

P ∈ ∆ ([0, q]) : U (P) ≥ Vd (yt)
}

The function H (q) := u (yt − bt + qbt+1) + βv (bt+1, q) is strictly increasing in q. There-

43



fore, if P′ D P and P ∈ Q (bt, yt, bt+1) then
∫

H (q) dP′ ≥
∫

H (q) dP ≥ Vd (yt). Using
Proposition ?? together with assumption (1) gives the result.

It also has a greatest element,

P (q ∈ A) =

1 if q (bt+1) ∈ A

0 otherwise

i.e. P is the Dirac measure over the best price q = q (bt+1). It also has an infimum, with
respect to the first order stochastic dominance, given by the Lebesgue-stjeljes measure
associated with the cdf P (·) we characterize in section 3 below. However, this infimum
distribution is not an equilibrium distribution.

Proof of Proposition 5. Upper bound for general q̂ < q (bt, yt, bt+1)Here we replicate the
same strategy: let p = Pr (ζ : q (ζ) ≤ q̂). Using the same strategy as before, to get the
less binding incentive compatibility constraint for the government we need to maximize
equilibrium utility for ζ : q (ζ) ≤ q̂ for ζ : q (ζ) > q̂, we consider equilibria that assign
the best continuation equilibria (to make the incentive constraint of the government as
flexible as possible).

For (2) we just follow the same thing we did for the case where q̂ = 0 and consider
the continuation equilibria where q (ζ) = q (bt+1) and v (ζ) = V (bt+1) (the fact that this
corresponds to an actual equilibria is easy to check). For (1), we see that focusing on equi-
libria that have support q (ζ) ∈ {q̂, q (bt+1)} make the government incentive constraint
as flexible as possible, since utility of the government is increasing in q̂ and moreover,
v (b, q̂) (the biggest continuation utility consistent with q ≤ q̂) is also increasing in q̂ as we
saw before. Therefore, if p is the maximum such probability, we must have

p [u (yt − bt + q̂bt+1) + βv (bt, q̂)] + (1− p)Vnd (bt, yt, bt+1) ≥ Vd (yt) ⇐⇒

p ≤ ∆nd (bt, yt, bt+1)

Vd (yt)− [u (yt − bt + q̂bt+1) + βv (bt, q̂)] + ∆nd (bt, yt, bt+1)

See that this is not an innocuous constraint only when the right hand side is less than 1.
This happens only when

u (yt − bt + q̂bt+1) + βv (bt, q̂) ≥ Vd (yt)
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As we argued
q̂ ≥ q (bt, yt, bt+1)

where the last inequality comes from the characterization of q (bt, yt, bt+1).

Proof of Proposition 6. We already know that max E (bt, yt, bt+1) = q (bt+1) since the
Dirac distribution P over q = q (bt+1) is equilibrium feasible. In the same way, we also
know that the Dirac distribution P̂ that puts probability 1 to q = q (bt, yt, bt+1) is also
equilibrium consistent; it corresponds to a case where both investors and the government
ignore the realization of the correlated device, and the characterization of q (·) is exactly
the only price that satisfies

u
(

yt − bt + q (bt, yt, bt+1) bt+1

)
+ βv

(
bt+1, q (bt, yt, bt+1)

)
= Vd (yt) .

Lemma 3 shows that v (b, q) is a concave function in q, which together with the fact that
u is strictly concave and b′ > 0 implies that the function

H (q) := u (yt − bt + qbt+1) + βv (bt+1, q)

is strictly concave in q. For any distribution P ∈ Q (bt, yt, bt+1), let EP (q) =
∫

q̂dP (q̂).
Jensen’s inequality then implies that

u (yt − bt + EP (q) bt+1)+ βv (bt+1, EP (q)) ≥︸︷︷︸
(1)

∫
[u (yt − bt + q̂bt+1) + βv (bt+1, q̂)] dP (q̂) ≥

≥︸︷︷︸
(2)

Vd (yt)

with strict inequality in (1) if P is not a Dirac distribution. Then, the definition of q(bt, yt, bt+1)

implies that for any distribution P ∈ Q (bt, yt, bt+1) we have

EP (q) ≥ q (bt, yt, bt+1)

and therefore the minimum expected value is exactly q (bt, yt, bt+1), which is achieved
uniquely at the Dirac distribution P̂ (because of strict concavity of u (·)). Finally, knowing
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that E is naturally a convex set, we then get that

E (bt, yt, bt+1) =

[
min

P∈Q(bt,yt,bt+1)

∫
q̂dP (q̂) , max

P∈Q(bt,yt,bt+1)

∫
q̂dP (q̂)

]
=

[
q (bt, yt, bt+1) , q (bt, yt, bt+1)

]
as we wanted to show.

Proof of Corollary . P as defined in equation 4.2 cannot be an equilibrium consistent
price: this implies that the Lebesgue-stjeljes measure associated with P (·) has the prop-
erty that Supp (P) =

[
0, q (bt, yt, bt+1)

]
and P (q = 0) = p0 > 0, which implies that

∫
{u (yt − bt + q̂bt+1) + βv (bt+1, q̂)} dP (q̂) < u

(
yt − bt + q (·) bt+1

)
+ βv

(
bt+1, q (·)

)
= Vd (yt)

where the last equation comes from the definition of q (·) and the function H (q̂) ≡
u (yt − bt + q̂bt+1) + βv (bt+1, q̂) is strictly increasing in q̂.
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Online Appendix to “Robust Predictions in
Dynamic Policy Games”

Juan Passadore and Juan Xandri

C Characterization of v (b, q)

C.1 Characterizing the Equilibrium Set

Define the equilibrium value correspondence as

E (b) =

(v, q) ∈ R2 : ∃σ ∈ SPE (b) :

v = E
{

∑∞
t=1 u

(
cσ
(
ht))}

q = 1
1+r (1−

∫
dσ (y0) dF (y0))


The set E (b) has the values and prices that can be obtained in a subgame perfect equilib-
rium. We need to find a policy that keeps the promise for prices, for one period.

Enforceability

Take a bounded, compact valued correspondence W : R+ ⇒ R2. We will drop the de-
pendence on d, and we will bear in mind that after default the government is not in the
market.

Definition 1. Given b ≥ 0, a government strategy (d (·) , b′ (·)) is enforceable in W (b) if
we can find a pair of functions v (y) and q (y) such that

a. (v (y) , q (y)) ∈W (b′(y)) for all y ∈ Y

b. For all y ∈ Y, the policy (d (y) , b′ (y)) solves the problem

Vv(·),q(·) (b, y) = max
d̂∈{0,1},b̂≥0

(
1− d̂

) {
u
[
y− b + q (y) b̂

]
+ βv (y)

}
+ d̂

{
u (y) + βVd

}

We will refer to the pair (v (·) , q (·)) as the enforcing values of policy (d (y) , b′ (y)) and
we will write (d (·) , b′ (·)) ∈ E (W) (b).
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Definition 2. Given a correspondence W : R+ ⇒ R2, we define the generating corre-
spondence B (W) : R+ ⇒ R2 as

B (W) (b) =

(v, q) ∈ R2 : ∃ (d (·) , b′ (·))∈E (W) (b) :

v = E
{

Vv(·),q(·) (b, y)
}

q = 1
1+r (1−

∫
d (y))


Definition 3. A correspondence W (·) is self-generating if for all b ≥ 0 we have W (b) ⊆
B (W) (b)

Proposition 10. Any bounded, self-generating correspondence gives equilibrium values: i.e. if
W (b) ⊆ B (W) (b) for all b ≥ 0, then W (b) ⊆ E (b)

Proof. The proof follows Abreu et al. (1990) and is constructive; we provide a sketch of
the argument. Take any pair (v−1, q−1) ∈ W (b). We need to construct a subgame perfect
equilibrium strategy profile σ ∈ SPE (b) . Since W (b) ⊆ B (W) (b) we know we can find
functions (d0 (y0) , b1 (y0)) and values (v0 (y0) , q0 (y0)) ∈ W (b) for any b ≥ 0 such that
(d0 (y0) , b1 (y0)) is in the argmax of Vv0(·),q0(·) (·) and

v−1 = E0

{
Vv0(·),q0(·) (y, b)

}
and

q−1 =
1

1 + r

{
1−

∫
d0 (y0) dF (y0)

}
Define

σg

(
h0
)
= (d0 (y0) , b1 (y0))

and
σm

(
h0
−

)
= q0

where h0
− = (b0, q−1). Because (v0 (y0) , q0 (y0)) ∈ W (b1(y0)) and W is self-generating,

we know that for any realization of y0, we can find policy functions (d1 (y1) , b2 (y1))

and values (v1 (y1) , q1 (y1, b2 (y1))) ∈ B (W) (b2 (y1)) such that (d1 (y1) , b2 (y1)) is in the
argmax of Vv1(·),q1(·) (·) and

v0 (y0) = E
(

Vv1(·),q1(·) (·)
)

,

σm

(
h1
−

)
= q1 (y1, b2) =

1
1 + r

(
1−

∫
d1 (y1)

)
Also define

σg

(
h2
−

)
= (d1 (y1) , b2 (y1))
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is clear to see that strategy profiles σm and σg defined for all histories of type h1
0 and h2

0

satisfy the first constraints of being a subgame perfect equilibrium. Doing it recursively
for all finite t, we can then prove by induction (same as APS original proof) that this
profile forms a SPE with initial values (v0, q0) as we stated. The finiteness of the value
function is guaranteed because the set W is bounded. There are no one shot deviations
by construction.

Proposition 11. The correspondence E (b) is the biggest correspondence (in the set order) that is
a fixed point of B. That is, V (·) satisfies:

B (E) (b) = E (b) (C.1)

for all b ≥ 0, and if another operator W (·) also satisfies condition C.1, then W (b) ⊆ E (b) for all
b ≥ 0.

Proof. Is sufficient to show that E (b) is itself self-generating. As in APS, we start with
any strategy profile σ =

(
σg, σm

)
and the values associated with it (v0, q0) with initial

debt b. From the definition of SPE, we know that the policy d1 (y1) = dσg
(
h1, y1

)
and

b′ (y1) = bσg
2
(
h1, y1

)
is implementable with functions q

(
y1, b̂

)
= qσ

m (y1, d (y1) , b′ (y1))

and v
(

y1, b̂
)
= V

(
σ | h2

(
y1, b̂

))
, where h2

(
y1, b̂

)
≡
(

h1, y1, d1 (y1) , b′ (y1) , q
(

y1, b̂
))

.
Moreover, because σ is an SPE strategy profile, it means it also is a subgame perfect equi-
libria for the continuation game starting with initial bonds b = b̂, and hence(

v
(

y1, b̂
)

, q
(

y1, b̂
))
∈ V

(
b̂
)

.

This then means that (v0, q0) ∈ B (V) (b), and hence V (·) is a self-generating correspon-
dence.

Bang Bang Property

Now we are going to relate the APS characterization with the characterization in the main
text .First, notice that the singleton set {(v, q)} =

{(
Vaut, 0

)}
(corresponding to the au-

tarky subgame perfect equilibria) is itself self-generating, and hence an equilibrium value.
Let (v, q) =

(
V (b) , q (b)

)
denote the expected utility and debt price associated with the

best equilibrium.

Proposition 12. Let (d (·) .b′ (·)) be an enforceable policy on V (b) (i.e. they are part of a subgame
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perfect equilibrium). Then, it can be enforced by the following continuation value functions:

v
(

y, d̂
)
=

V (b′ (y)) if d (y) = 0 and d̂ = b′ (y)

Vd otherwise
(C.2)

and

q
(

y, d̂
)
=

q (b′ (y)) if d (y) = 1 and d̂ = b′ (y)

0 otherwise
(C.3)

Proof. Notice that the functions v (·) , q (·) satisfy the restriction
(

v
(

y, d̂
)

, q
(

y, d̂
))
∈

E
(

d̂
)

for all b̂. Since (d (·) , b′ (·)) are enforceable, there exist functions (v̂ (·) , q̂ (·)) such
that for all y : d (y) = 0 we have

u
[
y− b + q̂

(
y, b′ (y)

)
b′ (y)

]
+ βv̂

(
y, b′ (y)

)
≥ u

[
y− b + q̂

(
y, b̂
)

b̂
]
+ βv̂

(
y, b̂
)

(C.4)

for all b̂ ≥ 0. Now, because the left hand side argument is an equilibrium value (since it
is generated by an equilibrium policy), its value must be less than the best equilibrium
value for the government, characterized by q = q (b′ (y)) and v = V

nd
(b′ (y)) (that is,

the best equilibrium from tomorrow on, starting at a debt value of b̂ = b′ (y). This means
that

Vnd (b, y, b′ (y)
)
≡ u

[
y− b + q

(
y, b′ (y)

)
b′ (y)

]
+ βV

(
b′ (y)

)
≥

≥ u
[
y− b + q̂

(
y, b′ (y)

)
b′ (y)

]
+ βv̂

(
y, b′ (y)

)
(C.5)

On the other side, we also have that autarky is the worst equilibrium value (since it coin-
cides with the min-max payoff) which implies

u
[
y− b + q̂

(
y, b̂
)

b̂
]
+ βv̂

(
y, b̂
)
≥ u (y) + βVd for all b̂ ≥ 0 (C.6)

Combining C.4 with the inequalities given in C.5 and C.6 we get

u
[
y− b + q

(
y, b′ (y)

)
b′ (y)

]
+ βV

(
b′ (y)

)
≥ u (y) + βVd (C.7)

which is the enforceability constraint (conditional on not defaulting) of the proposed
functions (v, q) in equations C.2 and C.3. To finish the proof, we need to show that if
it is indeed optimal to choose d (y) = 0 under the functions (v̂ (·) , q̂ (·)) , then it will also
be so under functions (v (·) , q (·)). This is readily given by condition C.7, since punish-
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ment of defaulting coincides with the value of deviating from bond issue rule b̂ = b′ (y).
Hence, (v (·) , q (·)) also enforce (d (·) , b′ (·)).

This proposition greatly simplifies the characterization of implementable policies. Re-
member the definitions of the objects

Vnd (b, y, b′
)
≡ u

(
y− b + q

(
b′
)

b′
)
+ βV

(
b′
)

as the expected lifetime utility under the best continuation equilibrium for any choice of
debt b′, and

Vd (y) ≡ u (y) + βVd

as the expected lifetime utility of autarky.

Corollary 2. A policy (d (·) , b′ (·)) is enforceable on E (b) if and only if d (y) = 0 implies

Vnd (b, y, b′ (y)
)
≥ Vd (y)

C.2 Computing v (b, q)

The function v (b, q) gives the highest expected utility that a government can obtain if
they raised debt at price q and issued b bonds18. This is the Pareto frontier in the set of
equilibrium values. We now discuss how we compute v (b, q), which can be redefined
using the equilibrium correspondence:

v (b, q) := max {v : ∃q̂ ≥ 0 such that (v, q̂) ∈ E (b) and q̂ ≤ q} (C.8)

Note that we focus in a relaxes version, where we replace the equality q̂ = q by the
inequality q̂ ≤ q. We will show a result that will enable us to compute v (b, q).

Proposition 13. For all q ∈ [0, q(b)] the maximum continuation value v (b, q) solves

v (b, q) = max
δ(·)∈[0,1]Y

∫ {
δ (y)Vd (y) + [1− δ (y)]Vnd

(b, y)
}

dF (y)

subject to

q =
1

1 + r

(
1−

∫
δ (y) dF (y)

)
(C.9)

Furthermore, is v (b, q) non-decreasing and concave in q.

18Because this is the best equilibrium given a price q̂ it does not depend on the amount of debt repaid;
we are not characterizing equilibrium consistent outcomes.
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The proof of Proposition ?? follows from the next three Lemmas.

Lemma 1 (Characterization of v). For all q ∈ [0, q (b)) the maximum continuation value
v (b, q) solves

v (b, q) = max
δ(·)∈[0,1]Y

∫ {
δ (y)Vd (y) + [1− δ (y)]Vnd

(b, y)
}

dF (y) (C.10)

subject to

q ≥ 1
1 + r

(
1−

∫
δ (y) dF (y)

)
(C.11)

where the constraint C.11 is always binding for all q > 0.

Proof. Take an enforceable policy (δ (·) , b′ (·)) such that 1
1+r (1−

∫
δ (y) dF (y)) = q. By

definition, there must exist functions (v̂ (y, b′) , q̂ (y, b′)) ∈ E (b′) such that for all y

(
δ (y) , b′ (y)

)
∈ argmax

(δ,b′)
δVd (y) + (1− δ)

{
u
[
y− b + q̂

(
y, b′

)
b′
]
+ βv̂

(
y, b′

)}
with the right hand side value (at the optimum) being the ex ante value of the policy.
We show in Proposition 12 that (1) any enforceable policy can also be enforced by the
“bang-bang values”

v̂
(
y, b′

)
=

V (b′ (y)) if b′ = b′ (y)

Vd otherwise
and q̂

(
y, b′

)
=

q (b′ (y)) if b′ = b′ (y)

0 otherwise

and (2) the continuation value is maximized at this values, since

δ (y)Vd (y) + [1− δ (y)]
{

u
[
y− b + q̂

(
y, b′ (y)

)
b′ (y)

]
+ βv̂

(
y, b′ (y)

)}
≤

δ (y)Vd (y) + [1− δ (y)]
{

u
[
y− b + q

(
b′ (y)

)
b′ (y)

]
+ βV

[
b′ (y)

]}
=

=︸︷︷︸
by def.

δ (y)Vd (y) + [1− δ (y)]Vnd (b, y, b′ (y)
)

(C.12)

Therefore, an enforceable policy (δ (·) , b′ (·)) policy can generate (conditional on y) a
value given by equation C.12. Therefore, we can write the problem of finding the biggest
continuation value consistent with a default price less than q as

v (b, q) = max
(δ(·),b′(·))

∫ {
δ (y)Vd (y) + [1− δ (y)]Vnd (b, y, b′ (y)

)}
dF (y)
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subject to the incentive constraint:

Vnd (b, y, b′ (y)
)
≥ Vd (y) for all y : δ (y) = 0

and that its associated price is less than q:

1
1 + r

(
1−

∫
δ (y) dF (y)

)
≤ q

Finally, notice that b′ (y) only enters the problem through the term Vnd (b, y, b′ (y)), and
that making this object as large as possible makes both (1) the objective function bigger
and (2) the constraints less binding (since it only enters through the incentive compatibil-
ity constraint). Therefore, we choose b′ (y) to solve

Vnd
(b, y) = max

b′≥0
Vnd (b, y, b′ (y)

)
showing then the desired result. Finally, note that v (b, q) is weakly increasing in q, and
that if we remove the price constraint, then the agent would choose the default rule to get
price q (b) (the one associated with the best equilibrium), so for q < q (b) this constraint
must be binding.

Remark 1. See that this is a linear programming problem in δ (·), which we will see is easy
to solve. If tractable, this Lemma will help us mapping the boundaries of the equilibrium
correspondence E (b) for any given q.

The following proposition solves the programming problem shown in Lemma 1, re-
ducing it to solving a problem in one equation in one unknown.

Lemma 2. Given(b, q) there exist a constant γ = γ (b, q) such that

v (b, q) =
∫ [

δ̂ (y)Vd (y) +
(
1− δ̂ (y)

)
Vnd

(b, y)
]

dF (y)

where
δ̂ (y) = 0 ⇐⇒ Vnd

(b, y) ≥ Vd (y) + γ for all y ∈ Y

and γ is the (maximum) solution to the single variable equation:

1
1 + r

Pr
{

y : Vnd
(b, y) ≥ Vd (y) + γ

}
= q

Moreover, γ is also the Lagrange multiplier of constraint C.11 in program C.12, so that ∂v(b,q)
∂q =
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γ (b, q).

Proof. Using the Lagrangian in the relaxed program of letting δ (y) ∈ [0, 1] for all output
levels for which no-default is feasible; i.e. for all y ∈ D (b) ≡

{
y : Vnd

(b, y) ≥ Vd (y)
}

.
The Lagrangian (without the corner conditions for δ) is

L =
∫ [

δ (y)Vd (y) + (1− δ (y))Vnd
(b, y)

]
dF (y) +

+
∫

µ (y) [1− δ (y)]
[
Vnd

(b, y)−Vd (y)
]

dF (y) +

+λ

(
q (1 + r)− 1 +

∫
δ (y) dF (y)

)
so that at a y : Vnd

(y) > Vd (y)

∂L
∂ [δ (y)]

=
[
−Vnd

(b, y) + Vd (y) + λ
]

dF (y) =⇒ δ̂ (y) =

0 if Vnd
(b, y) ≥ Vd (y) + λ

1 otherwise

Defining γ ≡ λ we get the desired result, using the binding property of constraint for
prices.

Lemma 3 (Concavity of v). The function v (b, q) = max {v : ∃q̂ ≤ q such that (v, q̂) ∈ E (b)}
is concave in q.

Proof. From Lemma 1 we know that the feasible set of the program in that Lemma is
convex, having a linear objective function and an affine restriction. Take q0, q1 ∈ [0, q (b)]
and λ ∈ [0, 1]. We need to show that

v (b, λq0 + (1− λ) q1) ≥ λv (b, q0) + (1− λ) v (b, q1)

Let G [δ (·)] =
∫ [

δ (y)Vd (y) + (1− δ (y))Vnd
(b, y)

]
dF (y) be the objective function of

the maximization in C.10. Let δ0 (y) be one of the solutions for the program when q = q0,
and likewise δ1 (y) be one of the solutions of the relaxed program when q = q1. Define

δλ (y) = λδ0 (y) + (1− λ) δ1 (y)

Clearly this is not a feasible default policy as it is, since δλ may be in (0, 1), but it is
feasible in the relaxed program of Lemma 1. Note that it is feasible when q = qλ :=
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λq0 + (1− λ) q1, since

1
1 + r

(
1−

∫
δλ (y) dF (y)

)
= λ

1
1 + r

(
1−

∫
δ0 (y) dF (y)

)
+ ..

+ (1− λ)
1

1 + r

(
1−

∫
δ0 (y) dF (y)

)
≤ λq0 + (1− λ) q1 = qλ

Therefore, the optimal continuation value at q = qλ must be greater than the objective
function evaluated at δλ. The reason is that the optimum will be at a corner even in the
relaxed problem. Then

v (b, qλ) ≥ G [δλ (·)] =︸︷︷︸
(a)

λG [δ0 (·)] + (1− λ) G [δ1 (·)] =︸︷︷︸
(b)

λv (b, q0) + (1− λ) v (b, q1)

using in (a) the fact that G [δ (·)] is an affine function in δ (·) and in (b) the fact that both
δ0 (·) and δ1 (·) are the optimizers at q0 and q1 respectively. This concludes the proof.
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D Proofs General Model

D.1 Equilibrium Consistency without Sunspots

Enforceability And Decomposability

The main object we study is the equilibrium value correspondence, in the spirit of Abreu
et al. (1990); Atkeson (1991). Formally,

E (y−, b) :=

(q, v) ∈ Rk ×R : ∃σ ∈ REE (y−, b) with

v = V (σ | h0 = (y−, b))

q = qm

[
h0,
(

dσg
0 , bσg

1

)
(h0)

]


We will follow the steps in Abreu, Pearce and Stacchetti (1990) and Atkeson (1991) and
define E as a fixed point of a set operator. The notation E (z−, x) serves to remind the
reader that y is not random, but the conditional past value of y that conditions the distri-
bution of the next draw of y. We will see that we cannot apply the results in their papers
directly, and need to adapt their theory for our setup. A pair of functions d : Y → D and
b′ : Y → B satisfying (d (y) , b′ (y)) ∈ Γ (b, y) is defined as a policy function. To simplify
notation, define the set C (b) = {(y, d, b′) ∈ Y× D× B : (d, b′) ∈ Γ (b, y)} .

Definition 4 (Enforceability). Given a compact valued correspondence W : Y × X ⇒
Rk ×R, we say that a policy function (d (·) , b′ (·)) is enforceable in W at (y−, b) if we can
find functions v : C (b)→ R and q : C (b)→ Rk such that

u
[
b, y, d (y) , b′ (y) , q

(
y, d (y) , b′ (y)

)]
+ βv

(
y, d (y) , b′ (y)

)
≥

≥ u
[
b, y, d̂, b̂, q

(
y, d̂, b̂

)]
+ βv

(
y, d̂, b̂

)
for all

(
y, d̂, b̂

)
∈ C (b) (D.1)

and (
q
(
y, d, b′

)
, v
(
y, d, b′

))
∈W

(
y, b′

)
(D.2)

for all (y, d, b′) ∈ C (b).

We call the functions v and q the enforcing functions of policy (d (·) , b′ (·)) over W.
Note that the definition of enforceability is actually only function of the state b: this is
because the feasible set it is only a function of initial state (set up in the previous period)
and current yt.

The next step is to define decomposable values, with respect to a given correspon-
dence. This will allow us to define self-generating correspondences later.
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Definition 5 (Decomposability). A pair (q, v) ∈ Rk ×R is decomposable over W (·) at
state (y−, b) if there exist an enforceable policy (d (y) , b′ (y)) with enforcing functions
(q, v) : C (s)→ Rk ×R such that

v =
∫ {

u
[
b, y, d (y) , b′ (y) , q

(
y, d (y) , b′ (y)

)]
+ βv

(
y, d (y) , b′ (y)

)}
dF (y | y−, b)

(D.3)
and

q =
∫

T
(
b, y, d (y) , b′ (y)

)
dF (y | y−, b) (D.4)

Let W be the class of compact-valued correspondences from S × Y to Rk+1. Define
B :W →W as

B (W) (y−, b) =
{
(q, v) ∈ Rk+1 : (q, v) is decomposable over W (·) at (y−, b)

}
We will write W � W ′ if W (y−, b) ⊆ W ′ (y−, b) for all (y−, b) ∈ Y × B. This order

defines a complete lattice onW . Finally, we give the main definition of this section: Self-
Generating correspondences

Definition 6. Self Generation. We say a correspondence W (·) ∈ W is self-generating if,
for all (y−, b) , we have W (y−, b) ⊆ B (W) (y−, b)

In the following Proposition, we prove an analogous result to the main result in Abreu
et al. (1990); Atkeson (1991): that self-generating and bounded correspondences are in-
cluded in the Equilibrium correspondence.

Proposition 14 (Self Generation implies Equilibrium). Suppose W (·) ∈ W is self-generating.
Then W (y−, b) ⊆ E (y−, b) for all (y−, b) ∈ Y× B (or, simply, W � E ). Moreover, E is itself a
self-generating correspondence, implying that E is the biggest fix point of B : i.e. B (E) = E and
if B (W) = W =⇒W � E .

Proof. The proof follows and is constructive; we provide a sketch of the argument. Take
any pair (q, v) ∈ W (y−, b). We need to construct an equilibrium strategy profile σ ∈
REE (y−, b) . Since W (y−, b) ⊆ B (W) (y−, b) we know we can a policy function

(
d̂0 (y0) , b̂1 (y0)

)
and enforcing functions (q̂0, v̂0) : C (b)→W (y−, b) such that

(
d̂ (y0) , b̂1 (y0)

)
maximizes

the policy maker utility given the schedule q̂0 = q̂0 (y, d, b′) and the continuation value
function v̂0 = v̂0 (y0, d, b′) , and moreover

v = Ey0

{
u
(

b, y0, d̂0 (y0) , b̂1 (y0) , q∗0 (y0)
)
+ βv∗ (y0)

}
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where we write q∗0 (y0) := q̂
(

y0, d̂0 (y0) , b̂1 (y0)
)

and v∗0 (y0) := v̂
(

y0, d̂0 (y0) , b̂1 (y0)
)

as
the expectations and continuation values on the equilibrium path of the equilibrium we
are constructing. Moreover

q = Ey0

{
T
[
b, y0, d̂0 (y0) , b̂1 (y0)

]
| y−, b

}
We will now start defining a strategy profile

(
σg, qm

)
recursively, for all possible histories

of length t. At t = 0, we define

σg

(
h0, y0

)
:=
(

d̂0 (y0) , b̂1 (y0)
)

and
qm

(
h0, y0, d0, b1

)
= q̂0 (y0, d0, b1)

for all possible realizations of d0 and b1 (not just the ones prescribed by strategy σg).
Because W is self-generating, we have that (q̂0 (y0, d0, b1) , v̂0 (y0, d0, b1)) ∈ W (y0, b1) ⊆
B (W) (y0, b1) for all (y0, d0, b1) ∈ C (b), and hence we can find a policy function

(
d̂1 (y1) , b̂2 (y1)

)
enforceable over W at (y0, b1) with enforcing functions (q̂1 (y1, d1, b2) , v̂1 (y1, d1, b2)) such
that

(
d̂1 (y1) , b̂2 (y1)

)
maximizes utility given schedule q = q̂1 and continuation value

function v = v̂1, and moreover

v̂0 (y0, d0, b1) = Ey1

{
u
(

b1, y1, d̂1 (y1) , b̂2 (y1) , q∗ (y1)
)
+ βv∗1 (y1) | y0, b1

}
(D.5)

and
q̂0 (y0, d0, b1) = Ey1

{
T
[
b1, y1, d̂1 (y1) , b̂2 (y1)

]
| y0, b1

}
(D.6)

where q∗ (y1) = q̂
(

y1, d̂1 (y1) , b̂2 (y1)
)

and v∗1 (y1) = v̂1

(
y1, d̂1 (y1) , b̂2 (y1)

)
are the equi-

librium path expectations and continuation values. Also note from equation D.6 that
qm
(
h0, y0, d0, b1

)
satisfies rational expectations. Hence, we define the strategy profile for

histories of length t = 1 as

σg

(
h1, y1

)
:=
(

d̂1 (y1) , b̂2 (y1)
)

and
qm

(
h1, y1, d1, b2

)
= q̂1 (y1, d1, b2)

Following in the same fashion for t > 1, we construct the strategies σg and qm for all
histories. Moreover, once we define them for all histories, the continuation value func-
tions v̂t (·) give, in fact, subgame perfect values (because they are the values of following

58



σg if the myopic players follow qm, which itself satisfies the rational expectations condi-
tion at all histories). Therefore, to conclude that

(
σg, qm

)
∈ REE (y−, s), we need to show

that they in fact achieve lifetime value of v for the policy maker. This implied by the set
W (y−, b) being bounded (since W is compact valued). Formally, doing the iterations T
steps, we get that

v = E

{
t=T−1

∑
t=0

βtu (bt, yt, dt, bt+1, qt) + βTv∗T (yT)

}
= E

{
∞

∑
t=0

βtu (bt, yt, dt, bt+1, qt)

}

since v∗ (yT) is bounded.
Moreover, the strategy profile satisfies the single deviation principle (by construction).

Therefore, W (y−, b) ⊆ E (y−, b). Since this construction is true for any initial conditions,
we conclude that W � E .

To finish the proof, we now show that E is a self-generating correspondence. For this,
we only need to show that E (y−, b) ⊆ B (E) (y−, b) for all (y−, b). As in APS, we start with
any strategy profile σ =

(
σg, qm

)
and the values associated with it (q, v) with initial debt

states (y−, b). From the definition of REE, we know that the policy
(

d̂0 (y0) , b̂1 (y0)
)
=

σg
(
h0, y0

)
is implementable with functions q̂ (y0, d0, b1) = qm

(
h0, y0, d0, b1

)
and v̂ (y0, d0, b1) =

V
((

σg, qm
)
| h =

(
h0, y0, d0, b1, q̂ (·)

))
. Moreover, because σ is a REE strategy profile, it

means it also is a REE for the continuation game starting with initial state (y, b) = (y0, b1),
and hence

(q̂ (y0, d0, b1) , v̂ (y0, d0, b1)) =
(

qm

(
h0, y0, d0, b1

)
, V (σ | h)

)
∈ E (y0, b1)

This means that (q, v) ∈ B (E) (y−, b), and hence E (y−, b) ⊆ B (E) (y−, b) is a self-
generating correspondence.

To show E is a fixed point of B, we use monotonicity of B to get that B (E) � B (B (E)),
so the correspondence W = B (E) is also self-generating. But the first part of the Propo-
sition then implies that B (E) � E and since E is self-generating, we have E � B (E).
Since � is a linear partial order, this implies B (E) = E , as we wanted to show. The fact
that E is a fixed point of B follows from the fact that, if E is self-generating, we know
B (E) (y−, s) ⊆ E

Finally, how do we calculate E , and show it is compact? Following Abreu et al. (1990);
Atkeson (1991) we only need a big enough correspondence F such that (1) E � F (2) F is
compact-valued and (3) B (F ) � F (so it is NOT self generating). We do so in the Online
Appendix, also replicating the result that B preserves compactness. If so, then we know
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that the sequence of correspondences W1 = F and Wn = B (Wn−1) for n > 1 is a decreas-
ing sequence of compact valued correspondences (being all uniformly bounded by F ),
so the limit W∞ (y−, s) =

⋂∞
n=1 Wn (y−, s) is compact valued and non-empty (Cantor’s

Intersection Theorem). We then consider the family of correspondences

W =
{

W : Y× S⇒ Rk+1 such that W is compact valued, and W � F
}

This is a complete lattice, and B : W → W is isotone and order continuous. Then, the
Knaster-Tarski Theorem implies that there exist a largest (and smallest) fixed point W∗

of B, and in particular, that the sequence Wn = Bn (F ) has the property that {Wn} is
decreasing, and W∞ =

⋂∞
n=1 Wn = W∗. But since we already showed that E is the largest

fixed point, we know W∗ = E and hence W∞ = E . Moreover, since W∞ is non-empty and
compact valued, and so is E

Necessary and Sufficient conditions for implementability. Equilibrium Consistency

We know are endowed with the technology to find the equilibrium correspondence E (y−, b),
so for this subsection we will assume to be known. When a policy (d (y) , b′ (y)) is enforce-
able with W = E at (y−, b), with enforcing function (q̂ (y, d, b′) , v̂ (y, d, b′)) ∈ E (y, b′), we
will say simply that the outcome (d (y) , b′ (y) , q (y)) is implementable, where q (y) =

q̂ (y, d (y) , b′ (y)) . Intuitively, an implementable outcome is the realization of the equilib-
rium path of a Rational Expectations Equilibrium starting at h0 = (y−, b) . We are in-
terested in characterizing the equilibrium paths of all equilibria, and hence we do not
focus on characterizing behavior off equilibrium; i.e. knowing q (y, d, b′) when (d, b′) 6=
(d (y) , b′ (y)).

Proposition 15 (Implementable outcomes). Take a state (y−, b) ∈ Y × B. An outcome
(d (y) , b′ (y) , q (y)) is implementable at (y−, b) if and only if

a. Equilibrium feasibility:

q (y) ∈ Q
(
y, b′ (y)

)
for all y ∈ Y (D.7)

b. Incentive compatibility for policy maker: for all y ∈ Y

u
[
b, y, d (y) , b′ (y) , q (y)

]
+ βv

(
y, b′ (y) , q (y)

)
≥ U (b, y) (D.8)

Moreover, if E (y−, b) is convex-valued, and u (·) is concave in q, then given d = d (y) and
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b′ = b′ (y), q = q (y) satisfies D.8 if and only if q ∈ Q (b, y, d, b′), a convex-valued and compact
valued correspondence.

This proposition can also be stated with respect to a given value correspondence
W (y−, b). That is, we can adapt Proposition 15 to show if an outcome (d (y) , b′ (y) , q (y))
is implementable in W at (y−, b); being (d (y) , b′ (y)) an enforceable policy in W and q
a decomposable value in W. Proposition 15 generalizes in this case, with the alternative
functions

vW (y−, b, q) := max {v : (q, v) ∈W (y−, b)} (D.9)

and
UW (b, y) := max

(d,b′)∈Γ(b,y)

{
min

(q,v)∈W(y,b)
u
(
b, y, d, b′, q

)
+ βv

}
(D.10)

To prove Proposition 15, we first need to show two easy Lemmas

Lemma 4. If E (y−, b) is convex =⇒Q (y−, b) is a convex set and v is concave in q

Proof. First, see that Q (y−, b) = Pq (E (y−, b)) the orthogonal projection of a convex set,
hence convex. Take q0, q1 ∈ Q (y−, b) and λ ∈ [0, 1]. If the maximum is attained, then
there exist v0 and v1 such that

v (y−, b, q0) = v0 and v (y−, b, q1) = v1

We know then that (q0, v0) ∈ E (y−, b) and (q1, v1) ∈ E (y−, b), and convexity of the
equilibrium value correspondence implies that (qλ, vλ) ∈ E (y−, b) where qλ = λq0 +

(1− λ) q1 and vλ = λv0 + (1− λ) v1. This makes vλ feasible for the maximization prob-
lem:

v (y−, b, λq0 + (1− λ) q1) = v (y−, b, qλ) ≥ vλ = λv0 +(1− λ) v1 = λv (y−, b, q0)+ (1− λ) v (y−, b, q1)

and hence v is concave in q

Lemma 5. Take a state (y−, b) ∈ Y × B. An outcome (d (y) , b′ (y) , q (y)) is implementable at
(y−, b) if and only if we can find a function v : Y → R such that

a. For all y ∈ Y and all
(
d̃, b̃
)
∈ Γ (b, y) there exist (q̃, ṽ) ∈ E

(
y, b̃
)

such that

u
[
b, y, d (y) , b′ (y) , q (y)

]
+ βv (y) ≥ u

(
b, y, d̃, b̃, q̃

)
+ βṽ (D.11)

b. (q (y) , v (y)) ∈ E (y, b′ (y)) for all y ∈ Y
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Proof. Suppose (d (y) , b′ (y) , q (y)) satisfy (1) and (2). Then, we can define price and
continuation value schedules (on and off equilibrium) as

(q̂, v̂)
(
y, d, b′

)
=

(q (y) , v (y)) if (d, b′) = (d (y) , b′ (y))

(q̃, ṽ) if (d, b′) =
(
d̃, b̃
)
6= (d (y) , b′ (y))

which is a well defined function, since the existence of (q̃, ṽ) is known given
(
y, d̃, b̃

)
.

Since (q̃, ṽ) ∈ E
(
y, b̃
)

and (q (y) , v (y)) ∈ E (y, b′ (y)) we have that (d (y) , b′ (y)) is de-
composable in E at (y−, b) and q (y) = q̂ (y, d (y) , b′ (y)) by definition. The other di-
rection is trivial (simply choose (q (y) , v (y)) = (q̂, v̂) (y, d (y) , b′ (y)) and take (q̃, ṽ) =

(q̂, v̂)
(
y, d̃, b̃

)
.

This Lemma is useful because it lets us forget about finding specific schedules of ex-
pected values and continuation values, since we only need to find some values that satisfy
these constraints. What we aim now is to obtain a result akin to the Bang-Bang property,
where in order to check implementability of an outcome, the choices of the schedules and
the equilibrium continuation value are easy.

To prove Proposition 15 we use Lemma 5: take an outcome (d (y) , b′ (y) , q (y)) and
we will prove it satisfies D.8 and D.7. Let us first bound the left hand side of the IC
constraint: see that by definition, (q (y) , v (y, b′ (y) , q (y))) ∈ E (y, b′ (y)) as well, and
hence v (y, s′ (y) , q (y)) ≥ v (y) (being v (y) feasible in the maximization problem defining
v). Therefore

u
(
b, y, d (y) , b′ (y) , q (y)

)
+ βv

(
y, b′ (y) , q (y)

)
≥ u

(
b, y, d (y) , b′ (y) , q (y)

)
+ βv (y)

(D.12)
We turn our attention to the right hand side of D.12. Given

(
b, y, d̃, b̃

)
, condition D.11

implies there exist a pair (q̃, ṽ) ∈ E
(
y, b̃
)

satisfying that constraint. Therefore

u
(
b, y, d̃, b̃, q̃

)
+ βṽ ≥ G

(
b, y, d̃, b̃

)
:= min

(q,v)∈E(y,b̃)
u
(
b, y, d̃, b̃, q

)
+ βv (D.13)

Conditions D.12 and D.13 imply that, for all y ∈ Y and all d̃, b̃ ∈ Γ (b, y) :

u
(
b, y, d (y) , b′ (y) , q (y)

)
+ βv

(
y, b′ (y) , q (y)

)
≥ G

(
b, y, d̃, b̃

)
and see that the left hand side expression is independent of

(
d̃, b̃
)
. Therefore, this condi-
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tion holds for all
(
d̃, b̃
)
∈ Γ (b, y) if and only if

u
(
b, y, d (y) , b′ (y) , q (y)

)
+ βv

(
y, b′ (y) , q (y)

)
≥ max

(d̃,b̃)∈Γ(b,y)
G
(
b, y, d̃, b̃

)
= max

(d̃,b̃)∈Γ(b,y)
min

(q,v)∈E(y,b̃)
u
(
b, y, d̃, b̃, q

)
+ βv := U (b, y)

proving D.8. For the reciprocal, see that if we choose v (y) = v (y, b′ (y) , q (y)) and
given

(
y, d̃, b̃

)
we choose (q̃, ṽ) ∈ argmin

(q,v)∈E(y,b̃)
u
(
b, y, d̃, b̃, q

)
+ βv, this choice satisfies the

conditions of Lemma 5.
For the second result, if E is convex valued, then the function v is concave in q. If u (·)

is also concave at q, then the function g (q) := u (b, y, d, b′, q) + βv (y, b′ (y) , q)−U(b, y)
is concave in q, and then

q (y) ∈ Q
(
b, y, d (y) , b′ (y)

)
⇐⇒ ∆ [q (y)] ≥ 0 and q (y) ∈ Q

(
y, s′

)
which are both convex sets in q. Therefore Q is a convex set, as we wanted to show.
Compactness of Q comes fromQ being a compact set (since it is the projection of E (y, b′),
a compact set) and u, v and U being continuous functions (using Berge’s Theorem of the
maximum).

Equilibrium Consistency - Proof of Proposition 8

Proposition 15 is the main result of this section, characterizing all the possible equilib-
rium outcomes, on and off path. As a corollary, it then implies that since it holds for all
histories, it clearly does for histories on some equilibrium path.

Formally, consider a history ht which is equilibrium consistent. This implies that there
exist some equilibrium profile σ such that ht ∈ Σ (σ). Therefore, σ also generates an
equilibrium outcome xt = (dt, bt+1, qt) = (d (yt) , b′ (yt) , q (yt)) for some implementable
outcome (d (·) , b′ (·) , q (·)) satisfying conditions (1) and (2) of Proposition 8. This then
means that if ht+1 is equilibrium consistent, we must have

qt ∈ Q
(
yt, b′ (yt)

)
= Q (yt, bt+1)

and
u (bt, yt, dt, bt+1, qt) + βv (yt, bt+1, qt) ≥ U (bt, yt)

See that since we have not used the assumption of non-atomicity of yt, Proposition
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15 will always provide necessary conditions for equilibrium consistency. To finish the
proof of Proposition 8, we need to establish sufficiency. For this, we replicate almost
identically the argument in the proof of <<FIXME: SUFFICIENCY IN THE SOVEREIGN
DEBT MODEL>>.

D.2 Equilibrium Consistency with Sunspots

The definition of equilibrium value correspondence is the same. However, we need to
adapt the definition of enforceability with sunspots

Definition 7 (Enforceability with sunspots). Given a correspondence W : Y× B⇒ Rk ×
R, we say that a policy function (d (y) , b′ (y)) ∈ Γ (b, y) for all y is enforceable with
sunspots in W at (y−, b) if we can find functions v̂ : C (b) × [0, 1] → R and q̂ : C (b) ×
[0, 1]→ Rk such that

∫ 1

0

{
u
[
b, y, d (y) , b′ (y) , q̂

(
y, d (y) , b′ (y)

)]
+ βv

(
y, d (y) , b′ (y) , ζ

)}
dζ ≥

≥
∫ 1

0

{
u
[
b, y, d̂, b̂′, q̂

(
y, d̂, b̂, ζ

)]
+ βv

(
y, d̂, b̂, ζ

)}
dζ for all

(
y, d̂, b̂

)
∈ C (b) (D.14)

and (
q̂
(
y, d, b′, ζ

)
, v
(
y, d, b′, ζ

))
∈W

(
y, b′

)
(D.15)

for all (y, d, b′, ζ) ∈ C (s)× [0, 1].

Clearly, enforceability implies enforceability with sunspots (it is just a putting constant
enforcing functions over ζ). We also need to adapt the definition of decomposability.

Definition 8 (Decomposability with Sunspots). A pair (q, v) ∈ Rk ×R is decomposable
with sunspots over W (·) at state (y−, b) if there exist an enforceable with sunspots policy
(d (y) , b′ (y)) with enforcing functions (q̂, v̂) : C (b)× [0, 1]→ Rk ×R such that

v =
∫

Y

∫ 1

0

{
u
[
b, y, d (y) , b′ (y) , q̂

(
y, d (y) , b′ (y) , ζ

)]
+ βv

(
y, d (y) , b′ (y) , ζ

)}
dζdF (y | y−, b)

(D.16)
and

q =
∫

Y

∫ 1

0
T
(
b, y, d (y) , b′ (y)

)
dζdF (y | y−, b) (D.17)

Let W be the class of compact valued correspondences from Y × B to Rk+1. Define
Bs :W →W as

Bs (W) (y−, b) =
{
(q, v) ∈ Rk+1 : (q, v) is decomposable with sunspots over W (·) at (y−, b)

}
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We clearly have that for all correspondences W, we have B (W) � Bs (W) because
decomposability implies decomposability with sunspots). The question we will analyze
is, under what conditions over the enviroment and the correpondence W we have that
actually, B (W) = Bs (W).

Proposition 16. Suppose W is a non-empty, compact and convex-valued correspondence, and u is
concave in q. Then, any enforceable with sunspots policy (d (y) , b′ (y)) over W at (y−, b) is also
enforceable (without sunspots) and Pq (B (W) (y−, b)) = Pq (Bs (W) (y−, b)) (i.e. have same set
of q′s). Moreover, Bs (W) (y−, b) ⊆ ch (B (W) (y−, b)) , where ch (·) denotes the convex hull of
a set.

Proof. Suppose (d (y) , b′ (y)) is enforceable with enforcing function (q, v) (y, d, b′, ζ) ∈
W (y, b′). Define the enforcing function (q̂, v̂) (y, d, b′) =

∫ 1
0 (q, v) (y, d, b′, ζ) dζ (i.e. it is

the expected value over the realization of the sunspot). Since W is convex valued, we
know (q̂, v̂) (y, d, b′) ∈W (y, b′) as well.

We will first use the fact that (d (y) , b′ (y)) is enforceable with sunspots if and only if

u
[
b, y, d (y) , b′ (y) , q

(
y, d (y) , b′ (y) , ζ

)]
+ βv

(
y, d (y) , b′ (y) , ζ

)
≥

u
[
b, y, d̂, b̂, q̂

(
y, d̂, b̂, ζ

)]
+ βv

(
y, d̂, b̂, ζ

)
for all

(
y, d̂, b̂

)
∈ C (b) , ζ ∈ [0, 1]

and therefore

u
[
b, y, d (y) , b′ (y) , q

(
y, d (y) , b′ (y) , ζ

)]
+ βv

(
y, d (y) , b′ (y) , ζ

)
≥ UW (s, y) for all y ∈ Y

following the same argument as before, where the function UW as in D.10 well defined
because W is compact valued and non-empty. Moreover, using the concavity of u in q, we
know that

u
[
b, y, d (y) , b′ (y) , q̂

(
y, d (y) , b′ (y)

)]
+ βv̂

(
y, d (y) , b′ (y)

)
=

∫ 1

0
u
[
b, y, d̂, b̂′, q̂

(
y, d̂, b̂, ζ

)]
dζ + β

∫ 1

0
v
(

y, d̂, b̂, ζ
)

dζ ≥
∫ 1

0
UW (b, y) dζ = UW (b, y)

so (d (y) , b′ (y)) is enforceable over W without sunspots. This also implies that if
(q, v) ∈ Bs (W) (y−, b) then we can use the enforcing functions to get that

v̂ =
∫

y∈Y

{
u
[
b, y, d (y) , b′ (y) , q̂

(
y, d (y) , b′ (y)

)]
+ βv̂

(
y, d (y) , b′ (y)

)}
dF (y) ≥

∫
y∈Y

{∫ 1

0
u
[
b, y, d̂, b̂, q̂

(
y, d̂, b̂, ζ

)]
dζ + β

∫ 1

0
v
(

y, d̂, b̂, ζ
)

dζ

}
dF (y) = v
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and
q̂ =

∫
y∈Y

T
(
b, y, d (y) , b′ (y)

)
dF (y) = q

so, for any (q, v) ∈ Bs (W) =⇒ ∃v̂ ≥ v : (q, v̂) ∈ B (W) (y−, b). This in par-
ticular means that Q (y−, s) = Qs (y−, s) (the set of equilibrium values take (q, v) ∈
Bs (W) (y−, b). The above result implies that then there exist v̂ ≥ v such that (q, v̂) ∈
B (W). Moreover, see that the extremal point of Bs (W) (y−, b) at q is the point (q, v),
where v := min(q,v)∈Bs(W)(y−,b) v is well defined (from the compactness of W (y−, b)). If
(q, v) ∈ B (W) we are done: if B (W) is convex valued, we know that for any λ ∈ [0, 1] the
element

(qλ, vλ) = λ (q, v̂) + (1− λ) (q, v) = (q, λ (v̂− v) + v) ∈ ch (B (W) (y−, b))

and hence, by choosing λ = (v− v) / (v̂− v) we have (qλ, vλ) = (q, v) ∈ B (W) (y−, b).
But see that v, by construction of UW is simply v =

∫
y∈Y UW (b, y) dF (y), which is itself

also in B (W) (y−, b). This therefore means that Bs (W) (y−, s) ⊆ ch [B (W) (y−, s)] .

Corollary 3. Suppose E is convex valued and u is concave in q, then E s = E

Proof. We know E s � E and that E s is compact and convex valued (because E is con-
vex), and that E s = Bs (E s). If B (E s) is convex valued, Proposition 16 then implies that
E s (y−, b) = B (E s) (y−, b) ⊆ ch (B (E s) (y−, b)) = B (E s) (y−, b) for all (y−, b). This im-
plies E s is a fixed point (and in particular, a self-generating correspondence) of B, which
then implies that E s � E , and hence E = E s

Proposition 16 its corollary are the key ingredients now to show the main result of
this subsection. We define an outcome with sunspots as a triple x = (d (y) , b′ (y) , P | y) ,
where (d (y) , b′ (y)) ∈ Γ (b, y) for all y, and P | y ∈ ∆

(
Rk); i.e. P | y is a conditional

probability over q, given y. We say that the outcome x is implementable if (d (y) , b′ (y)) is
enforceable with sunspots on E s (y−, b), and

(P | y) (A) = Pr (q ∈ A | y) = Pr ({ζ ∈ [0, 1] : q (y, ζ) ∈ A}) (D.18)

for all borel sets A ⊆ Rk and some decomposable price function q (y, ζ) on E s (y−, b).
While one could just work with an outcome being q (y, ζ), it is easier to work with the
induced distribution over prices, given y.

Proposition 17. Suppose E (y−, s) is convex valued and u (·) is concave in . A triple (x (y) , s′ (y) , P | y)
is implementable with sunspots at (y−, b) if and only if
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a. Equilibrium feasibility:
supp (P | y) ⊆ Q

(
y, b′ (y)

)
for all y

b. Incentive compatibility for policy maker: for all y ∈ Y∫ [
u
(
b, y, d (y) , b′ (y) , q̂

)
+ βv

(
y, b′ (y) , q̂

)]
dP (q̂ | y) ≥ U (b, y)

Idea of Proof: Replicate the proof of Proposition 15, with outcome (d (y) , b′ (y) , q (y, ζ)).
One gets the simplified IC constraint

∫ 1

0

[
u
(
b, y, d (y) , b′ (y) , q (y, ζ)

)
+ v

(
y, b′ (y) , q (y, ζ)

)]
dζ ≥ U (b, y)

using in this proposition, the fact that E = E s and hence so are the best continuation
function vs = v and Us = U. We then do a change of variable in the integration, since ζ

only enters through q (y, ζ). This implicitely defines a measure over prices, according to
17, showing the desired result.

E Equilibrium

This Appendix characterizes the best and worst equilibrium prices in the Eaton and
Gersovitz (1981) model and discusses the scope for multiplicity of equilibria and provides
sufficient conditions for equilibrium multiplicity.

Preliminaries. For any history ht+1
− we consider the highest and lowest prices

q(ht+1
− ) := max

σ∈E
qm

(
ht+1
−

)
q(ht+1
− ) := min

σ∈E
qm

(
ht+1
−

)
.

The best and worst equilibria turn out to be Markov equilibria and we find conditions for
multiplicity. The worst SPE price is zero and the best SPE price is the one of the Markov
equilibrium that is characterized in the literature of sovereign debt as in Arellano (2008)
and Aguiar and Gopinath (2006). Thus, our analysis may be of independent interest, pro-
viding conditions under which there are multiple Markov equilibria in a sovereign debt
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model along the lines of Eaton and Gersovitz (1981).19 The importance of this result is
that it opens up the possibility of confidence crises in models as in Eaton and Gersovitz
(1981). Thus, confidence crises are not necessarily a special feature of the timing in Calvo
(1988) and Cole and Kehoe (2000) but a robust feature in most models of sovereign debt.
The lowest price q(ht+1

− ) will be attained by a fixed strategy for all histories ht+1
− . It will

deliver the utility level of autarky for the government. Thus, the lowest price is associ-
ated with the worst equilibrium, in terms of welfare. Likewise, the highest price q(ht+1

− )

is associated with a, different, fixed strategy for all histories (the maximum is attained
by the same σ for all ht+1

− ) and delivers the highest equilibrium level of utility for the
government. Thus, the highest price is associated with the best equilibrium in terms of
welfare.

E.1 Lowest Equilibrium Price and Worst Equilibrium

We start by showing that, after any history ht+1
− , the lowest subgame perfect equilibrium

price is equal to zero.

Proposition 18. Denote by B the set of assets for the government. Under our assumption of
B ≥ 0, the lowest SPE price is equal to zero

q(ht+1
− ) = q(yt, bt+1) = 0

and associated with a Markov equilibrium that achieves the worst level of welfare.

Whenever the government confronts a price of zero for its bonds in the present period
and expects to face the same in all future periods, it is best to default. There is no benefit
from repaying. The proof is simple. We need to show that defaulting after every history
is a subgame perfect equilibrium. Because the game is continuous at infinity, we need
to show that there are no profitable one shot deviations when the government plays that
strategy. Note first that, if the government is playing a strategy of always defaulting, it is
effectively in autarky. In a history ht+1

− with income yt and debt bt, the payoff of such a
strategy is

u(yt) +
β

1− β
Ey′|yt u(y

′).

19Our result complements the results in Auclert and Rognlie (2014); their paper shows uniqueness in the
Eaton and Gersovitz (1981) when the government can save.
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Note also that, a one shot deviation involving repayment today has associated utility of

u(yt − bt) +
β

1− β
Ey′|yt u(y

′).

Thus, as long as bt+1 is non-negative, a one shot deviation of repayment is not profitable.
So, autarky is an SPE with an associated price of debt equal to zero.

Discussion

The equilibrium does not require conditioning on the past history, i.e. it is a Markov
equilibrium. Notice, as well, that we have not yet introduced sunspots. Thus, multiplicity
does not require sunspots. Sunspots may act as a coordinating device to select a particular
continuation equilibrium. We introduce sunspots in Section 4.

Things are different when the government is allowed to save before default and the
punishment is autarky, including exclusion from saving. Under this combination of as-
sumptions, the government might want to repay small amounts of debt to maintain the
option to save in the future. As a result, autarky is no longer an equilibrium and a unique
Markov equilibrium prevails, as shown by Auclert and Rognlie (2014).

A similar result holds when there are output costs of default. The sufficient condition
for multiplicity will be that for the government is dominant to default on any amount of
debt that it is allowed to hold, for all b ∈ B. With default costs, the value of defaulting is
lower. Thus, we need to increase the static gain of defaulting for any history. A sufficient
condition would then be that B > 0. The lower bound on debt will be increasing in the
magnitude of the output costs of default.

E.2 Highest Equilibrium Price and Best Equilibrium

We now characterize the best subgame perfect equilibrium and show that it is the Markov
equilibrium studied by the literature of sovereign debt. To find the worst equilibrium
price, it was sufficient to use the definition of equilibrium and the one shot deviation
principle. To find the best equilibrium price it will be necessary to find a characterization
of equilibrium prices. Denote by W(yt, bt+1) the highest expected equilibrium payoff if
the government enter period t + 1 with bonds bt+1 and income in t was yt. The next
lemma provides a characterization of equilibrium outcomes.

Lemma 6. xt− = (qt−1, dt (·) , bt+1 (·)) is a subgame perfect equilibrium outcome at history ht
−

if and only in the following conditions hold:
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a. Price is consistent

qt−1 =
1

1 + r∗
(1−

∫
dt(yt)dF(yt | yt−1)), (E.1)

b. IC government

(1− d(yt))
[
u(yt − bt + q(yt, bt+1)bt+1) + βW(yt, bt+1)

]
+ d(yt)Vd(yt) ≥ Vd(yt). (E.2)

The proof is omitted; it is a particular case of the main result for the model without
sunspots. Condition (E.1) states that the price qt−1 needs to be consistent with the default
policy dt(·). Condition (E.2) states that a policy dt (·) , bt+1 (·) is implementable in an
SPE if it is incentive compatible given that following the policy is rewarded with the best
equilibrium and a deviation is punished with the worst equilibrium. The argument in
the proof follows Abreu (1988). These two conditions are necessary and sufficient for an
outcome to be part of an SPE.20

Markov Equilibrium. We now characterize the Markov equilibrium that is usually stud-
ied in the literature of sovereign debt. The value of a government that has the option to
default is given by

W(y−, b) = Ey|y−

[
max

{
Vnd(b, y), VD(y)

}]
. (E.3)

This is the expected value of the maximum between not defaulting Vnd(b, y) and the value
of defaulting VD(y). The value of not defaulting is given by

Vnd(b, y) = max
b′≥0

u(y− b + q(y, b′)b′) + βW(y, b′). (E.4)

That is, the government repays debt, obtains a capital inflow (outflow), and from the
budget constraint consumption is given by y− b + q(y, b′)b′; next period has the option
to default b′ bonds. The value of defaulting is

Vd(y) = u(y) + β
Ey′|yu(y′)

1− β
, (E.5)

20Note that at any history (even on those inconsistent with equilibria) SPE policies are a function of only
one state: the debt that the government has to pay at time t (bt). There are two reasons for this. First,
the stock of debt summarizes the physical environment. Second, the value of the worst equilibrium only
depends on the realized income.
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and is just the value of consuming income forever. These value functions define a default
set

D(b) =
{

y ∈ Y : Vnd(b, y) < Vd(y)
}

. (E.6)

A Markov Equilibrium (with state b, y) is a: set of policy functions (c(y, b), d(y, b), b′(y, b)),
a bond price function q(b′) and a default set D(b) such that: c(y, b) satisfies the resource
constraint; taking as given q(y, b′) the government bond policy maximizes Vnd; the bond
price q(y, b′) is consistent with the default set

q(y, b′) =
1−

∫
D(b′) dF(y′ | y)

1 + r
. (E.7)

The next proposition states that the best Markov equilibrium is the best subgame perfect
equilibrium.

Proposition 19. The best subgame perfect equilibrium is the best Markov equilibrium.

Proof. From lemma 6, the value of the best equilibrium is the expectation with respect to
yt, given yt−1, and is given by

max
dt,bt+1

(1− dt)
[
u(yt − bt + q(yt, bt+1)bt+1) + βW(yt, bt+1)

]
+ dtVd(yt).

Note that this is equal to the left hand side of (E.3). The key assumption for the best
subgame perfect equilibrium to be the best Markov equilibrium is that the government is
punished with permanent autarky after a default.

E.3 Multiplicity

Given that the worst equilibrium is autarky, a sufficient condition for multiplicity of
Markov equilibria will be any condition that guarantees that the best Markov equilib-
ria has positive debt capacity, a standard situation in quantitative sovereign debt models.
In general some debt can be sustained as long as there is enough of a desire to smooth
consumption. This will motivate the government to avoid default, at least for small debt
levels. The following proposition provides a simple sufficient condition for this to be
the case. Define Vnd(b, y; B, 1

1+r ) as the value function when the government faces the
risk free interest rate q = 1

1+r and some borrowing limit B as in a standard Bewley in-
complete market model. The government has the option to default. This value is not an
upper bound on the possible values of the borrower because default introduces state con-
tingency and might be valuable. Our next proposition, however, establishes conditions
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under which default does not take place.

Proposition 20. Suppose that for all b ∈ [0, B] and all y ∈ Y, the

Vnd(b, y; B,
1

1 + r
) ≥ u(y) + βEy′|yVd(y′). (E.8)

Then there exist multiple Markov equilibria.

Proof. If the government is confronted with q = 1
1+r for b ≤ B condition (E.8) ensures

that it will not want to default after any history. This justifies the risk free rate for b ≤ B.
A SPE can implicitly enforce the borrowing limit b ≤ B by triggering to autarky and set-
ting qt = 0 if ever bt+1 > B. Since the debt issuance policy is optimal given the risk free
rate, we have constructed an equilibrium. This proves there is at least one SPE sustaining
strictly positive debt and prices. The best equilibrium dominates this one and is Markov,
as shown earlier, so it follows that there exists at least one strictly positive Markov equi-
librium. Finally, note that we only require checking this condition (E.8) for small values of
B. However, the existence result then extends an SPE over the entire B = [0, ∞). Indeed,
it is useful to consider small B and take the limit, this then requires checking only a local
condition. The following example illustrates this condition.

Example. Suppose there are two income shocks yL and yH that follow a Markov chain
(a special case is the i.i.d. case). Denote by λi the probability of transitioning from state
i to state j 6= i. We will construct an equilibrium where debt is risk free, the government
goes into debt B and stays there as long as income is low, and repays debt and remains
debt free when income is high. Conditional on not defaulting, this bang bang solution is
optimal for small enough B. To investigate whether default is avoided, we must compute
the values

vBL = u(yL + (R− 1)B) + β (λLvBH + (1− λL)vBL)

vBH = u(yH − RB) + β (λHv0L + (1− λH)v0H)

v0L = u(yL + B) + β (λLvBH + (1− λL)vBL)

v0H = u(yH) + β (λHv0L + (1− λH)v0H)

where R = 1 + r. Write the solution to this system as a function of B. To guarantee
that the government does not default in any state, we need to check that vBL(B) ≥ vaut,
vBH(B) ≥ vaut, v0L(B) ≥ vaut

L and v0H(B) ≥ vaut
H (some of these conditions can be shown

to be redundant).
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Lemma 7. A sufficient condition for vBL ≥ vaut, vBH ≥ vaut, v0L ≥ vaut
L , v0H ≥ vaut

H to hold
for some B > 0 is v′BL(0) > 0, v′BH(0) > 0. When λH = λL = 1 this simplifies to βu′(yL) >

Ru′(yH).

Note that the simple condition with λH = λL = 1 is met whenever u is sufficiently
concave or if β is sufficiently close to 1. These conditions ensure that the value from
consumption smoothing is high enough to sustain debt.

Proof. (Lemma 7 ) Note that we can rewrite the system of Bellman equations as

A.v(B) = u(B)

Thus, a condition in primitives is

v′(0) = A−1u′(0) ≥ 0

For the special case where λ = 1, note that

vBH =
1

1− β2 (u(yH − RB) + βu(yL + B))

v0L = u(yL + B) + βvBH

Then, v′BH(0) > 0 implies that v′0L(0) > 0. A sufficient condition is βu′(yL) > Ru′(yH).
The intuition is that, the government is credit constrained in the low state, with no debt,
and is willing to tradeoff and have lower consumption in the high state.
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