Asymmetric Inventory Dynamics and Product Market Search

Linxı Chen

October 1, 2017
“...indeed, to a great extent, business cycles are inventory fluctuations.”

Alan Blinder, 1981

“This is a sad day. The only people I have met who are doing well are those who are not doing anything.”

André Gide
Importance of Inventory Investment

Real GDP Decomposition, 1954–2007

Figure: Importance
Introduction

- Document two stylized facts:
 1. Inventory investment accounts for much larger share of GDP change in recessions but not in expansions.
 2. Inventory-Sales ratio: lagging GDP for 4 quarters.

- Fact 1:
 - That’s what makes inventory relevant.
 - Partially known to the lit. but is not accounted for.

- Fact 2:
 - Important conclusions drawn from countercyclicality (Bils Kahn 2000, Midrigran Krytsov 2013, Sarte et al. 2015)
 - Not countercyclical for the last 3 decades.
 - Stylized fact to discipline most models.
Introduction

- Standard inventory models (e.g. Wen 2011) generates no such asymmetry (positive skewness) in importance of inventory investment and the lagging relationship.
- This paper:
 - Based on stockout-avoidance motive for inventory (Kahn 1987).
 - Augment with product market search
 - Disciplined by micro empirical findings on both product market search and inventory.
 - Matches the two facts while consistent with inventory stylized facts.
 - Consistent with data asymmetry: sym. output, neg. skewed employment, pos. skewed markup
HH’s search for variety introduce endogenous stock-out risk:

- HH’s procyclical demand for varieties enhances nonlinearity in firms’ trade-off between markup and buffer stock size.
- In recessions, firms are more inclined to lower markup than to expand inventory, vice versa in expansions.
- HH responds to lowered income by reduce varieties first then reduce.
- Prob. of matching and inventory holding return prolonged firms’ hump-shaped stocking response.
Asymmetric Importance

Figure: Asymmetry
Asymmetric Importance

Billions of 2009 Dollars, Trough to Peak 1981–90

Figure: Asymmetry
Peak-to-trough Declines in All Postwar Recessions

<table>
<thead>
<tr>
<th>Peak</th>
<th>Trough</th>
<th>CIPI Decline</th>
<th>GDP Decline</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>1948:4</td>
<td>1949:4</td>
<td>-40.66</td>
<td>-30.68</td>
<td>132%</td>
</tr>
<tr>
<td>1953:2</td>
<td>1954:2</td>
<td>-24.47</td>
<td>-62.77</td>
<td>39%</td>
</tr>
<tr>
<td>1957:3</td>
<td>1958:2</td>
<td>-21.19</td>
<td>-84.98</td>
<td>25%</td>
</tr>
<tr>
<td>1969:4</td>
<td>1970:4</td>
<td>-35.84</td>
<td>-7.19</td>
<td>498%</td>
</tr>
<tr>
<td>1973:4</td>
<td>1975:1</td>
<td>-80.06</td>
<td>-169.95</td>
<td>47%</td>
</tr>
<tr>
<td>1980:1</td>
<td>1980:3</td>
<td>-67.26</td>
<td>-142.02</td>
<td>47%</td>
</tr>
<tr>
<td>1981:3</td>
<td>1982:4</td>
<td>-120.51</td>
<td>-169.73</td>
<td>71%</td>
</tr>
<tr>
<td>1990:3</td>
<td>1991:1</td>
<td>-46.87</td>
<td>-118.38</td>
<td>39%</td>
</tr>
<tr>
<td>2001:1</td>
<td>2001:4</td>
<td>-24.09</td>
<td>-40.20</td>
<td>59%</td>
</tr>
<tr>
<td>2007:4</td>
<td>2009:2</td>
<td>-213.07</td>
<td>-636.23</td>
<td>33%</td>
</tr>
</tbody>
</table>

Avg*: 72%

Table: Peak-to-Trough Declines in All Postwar Recessions.

Note: Units in billions of 2009 dollar, annualized quarterly rate.
Trough-to-peak

<table>
<thead>
<tr>
<th>Trough</th>
<th>Peak</th>
<th>CIPI Increase</th>
<th>GDP Increase</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>1949:4</td>
<td>1953:2</td>
<td>33.28</td>
<td>588.80</td>
<td>6%</td>
</tr>
<tr>
<td>1954:2</td>
<td>1957:3</td>
<td>20.94</td>
<td>345.24</td>
<td>6%</td>
</tr>
<tr>
<td>1958:2</td>
<td>1960:2</td>
<td>22.89</td>
<td>320.36</td>
<td>7%</td>
</tr>
<tr>
<td>1961:1</td>
<td>1969:4</td>
<td>30.15</td>
<td>1613.21</td>
<td>2%</td>
</tr>
<tr>
<td>1970:4</td>
<td>1973:4</td>
<td>76.25</td>
<td>754.12</td>
<td>10%</td>
</tr>
<tr>
<td>1975:1</td>
<td>1980:1</td>
<td>33.01</td>
<td>1232.47</td>
<td>3%</td>
</tr>
<tr>
<td>1980:3</td>
<td>1981:3</td>
<td>115.93</td>
<td>279.97</td>
<td>41%</td>
</tr>
<tr>
<td>1982:4</td>
<td>1990:3</td>
<td>84.35</td>
<td>2490.81</td>
<td>3%</td>
</tr>
<tr>
<td>1991:1</td>
<td>2001:2</td>
<td>7.16</td>
<td>3844.74</td>
<td>0.1%</td>
</tr>
<tr>
<td>2001:4</td>
<td>2007:4</td>
<td>120.34</td>
<td>2286.52</td>
<td>5%</td>
</tr>
</tbody>
</table>

Avg: 8%

Table: Trough-to-Peak Increases in All Postwar Expansions

Note: Units in billions of 2009 dollar, annualized quarterly rate.
Asymmetric Importance

Figure: Asymmetry, Skewness = -0.33
Stylized No More?

Figure: HP Filtered, 40 Quarters Moving Window

corr = -0.24 before 1992, corr = 0.23 after 1992
Figure: HP Filtered (1600)
Model

- Intermediate good producer: identical good produced with labor only.
- Variety good producer: differentiated good, produced with intermediate goods.
- Final good producer: pack many varieties into consumption good.
- Household: “love for variety”
Matching

- Search and match protocol similar to labor search framework (Pissrides 1994).
- Measure 1 of HH (search intensity d) matches with measure 1 of varieties.
- Each variety is produced by one monopolistic firm.
- Generate x matches (varieties consumed)

$$x = M(d, 1)$$

and thus the rate at which HH finds varieties

$$\Psi_D \equiv \frac{x}{d} = M(1, \frac{1}{d})$$
Household

- Solves the following Bellman’s equation:

\[
H(a, x) = \max_{c, d, n, a', x} u(x^\rho c, d, n) + \beta \mathbb{E} H(a', x')
\]

s.t. \(a' = Wn + a(1 + \Pi) - \bar{P}cx \)
\(x = \Psi_D d \)

- Consume \(x \) varieties with average level \(c \), search for varieties with effort \(d \), work for wage \(W \), receive profit from all firms \(\Pi \), save with stock purchase \(a' \) (numeraire).

- \(\Psi_D \) exogenous variety finding rate.
Final Good Producer

- Perfectly competitive. Unit measure.
- Produces final good with x varieties dictated by HH, subject to good availability z_i and aggregation technology with idiosyncratic demand shock v_i (to the variety producer)

\[
\max_{c_i} \ P x c - \int_0^x P_i c_i di \\
\text{s.t.} \quad c_i \leq z_i \\
\]

\[
c = \left(\frac{1}{x} \int_0^x v_i \frac{1}{\rho} \ c_i^\rho \ di \right)^\rho
\]

- Demand for variety i:

\[
c_i = \min \left\{ z_i, v_i \left(\frac{P_i}{\bar{P}} \right)^{1-\rho} \ c \right\}
\]
Variety Producer

- Monopolistic competitive, unit measure.
- Faces discrete shock demand x and continuous demand shock v_i.
- v_i is i.i.d. across time and across varieties. Drawn once by all final good producers.
- Have to decide on pricing and production before knowing these shocks.
- Thus generate the incentive to hold inventories.
- With prob. x, the variety producer have access to final good producer’s demand ("matched").
Variety Producer

- Solves the following problem:

\[
\mathcal{V}(e_i) = \max_{y_i, p_i, n_i, e_i} \left(-P_M y_i + x \int \left\{ c_i p_i + \mathbb{E} m' \mathcal{V}(e'_i) \right\} F^v(dv_i) \right) \\
+ (1 - x) \mathbb{E} m' \mathcal{V}(e'_i)
\]

s.t.

\[
c_i = \min \left(v_i \left(\frac{p_i}{P} \right)^{\frac{1}{1-\rho}} C, z_i \right) \\
z_i = e_i + y_i
\]

\[
e'_i = \begin{cases} (1 - \delta_e) [e_i + F(n_i) - c_i] & \text{"matched"} \\ (1 - \delta_e) [e_i + F(n_i)] & \text{"unmatched"} \end{cases}
\]

- \(z_i \) is the amount of good \(i \) made available to buyers. Inventory + new orders

- \(P_M \) price of intermediate goods, \(y_i \) the order
Variety Producer

- Pricing Decision:

\[p_i = \frac{\epsilon_i}{\epsilon_i - 1} (1 - \delta_e) \mathbb{E} m' P'_M \]

where the price elasticity of expected sales is given by:

\[\epsilon_i = \frac{\rho}{1 - \rho} \frac{\int_0^{v_i^*} c_i(p_i, n_i, v_i) F^v(dv_i)}{\int_0^{v_i^*} c_i(p_i, n_i, v_i) F^v(dv_i) + [1 - F^v(v_i^*)] [e_i + F(n_i)]} \]

- The cut-off point of stockout \(v_i^* \) is given by:

\[c_i(p_i, n_i, v_i^*) = z_i \]
Variety Producer

- Availability decision:

\[(b - r^I)X(1 - F^v(v^*_i)) = 1 - r^I\]

where

\[b = \frac{p_i}{mc_i} = \frac{p_i}{W/F'(n_i)}\]

and

\[r^I \equiv (1 - \delta_e) \mathbb{E}m' \frac{P'_M}{P_M}.\]

- X is endogenous unlike traditional stockout model (constant therein).
- Timing and info. structure -> all variety producers choose the same \(z_i\) and \(p_i\).
Intermediate Producer

- Perfectly competitive, unit measure
- Solves the static problem:
 \[
 \max_n P^M F(n) - Wn
 \]
- Helps with exact aggregation despite heterogeneity in variety producers.
Functional Forms

Production Function:

\[F(n) = An^{1-\alpha} \]

Utility (Generalized GHH 1988, search behavior):

\[u(cx^\rho, d, n) = \log \left(cx^\rho - \zeta \frac{n^{1+\nu_n}}{1+\nu_n} - \xi d \right) \]

Distribution of idio. demand shock Pareto(\(v_{min}, \sigma_v\)):

\[F_v(v) = 1 - \left(\frac{v_{min}}{v} \right)^{\sigma_v} \]

Matching function (den Hann et al. 2000):

\[M(D, 1) = \frac{D}{(D^l + 1^l)^{1/l}} \]
Calibration By Steady State

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Value</th>
<th>Target</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_n</td>
<td>Labor Elasticity</td>
<td>0.75</td>
<td>Frish Elas.</td>
<td>Chetty 2011</td>
</tr>
<tr>
<td>ζ</td>
<td>Labor Disutility</td>
<td>1.5</td>
<td>1/3 time worked</td>
<td>ATUS</td>
</tr>
<tr>
<td>ν_{min}</td>
<td>Loc. ν_i</td>
<td>0.04</td>
<td>Mean 1</td>
<td></td>
</tr>
<tr>
<td>σ_{ν}</td>
<td>Shape ν_i</td>
<td>1.05</td>
<td>S.O. Prob=5%</td>
<td>Bils 2004</td>
</tr>
<tr>
<td>ρ</td>
<td>Elas. of Subs.</td>
<td>1.17</td>
<td>20% markup</td>
<td>Data</td>
</tr>
<tr>
<td>δ_e</td>
<td>Deprec. Inven.</td>
<td>0.015</td>
<td>6% annual</td>
<td>Wen 2011</td>
</tr>
<tr>
<td>ι</td>
<td>Match Elasticity</td>
<td>1.18</td>
<td>0.35 elas.</td>
<td>Broda et al 2011</td>
</tr>
<tr>
<td>ξ</td>
<td>Search Disutility</td>
<td>0.01</td>
<td>1 hr shopping</td>
<td>ATUS</td>
</tr>
<tr>
<td>ρ_A</td>
<td>TFP Pers.</td>
<td>0.96</td>
<td></td>
<td>SF-FED TFP</td>
</tr>
<tr>
<td>σ_A</td>
<td>TFP Vola.</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: Calibration
Performance

<table>
<thead>
<tr>
<th>Stat.</th>
<th>Data</th>
<th>Model</th>
<th>Wen 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>corr(II/output, output)</td>
<td>0.66</td>
<td>0.58</td>
<td>0.57</td>
</tr>
<tr>
<td>AR(1) of IS ratio</td>
<td>0.75</td>
<td>0.89</td>
<td>0.77</td>
</tr>
<tr>
<td>corr(ISratio, output)</td>
<td>-0.43</td>
<td>-0.30</td>
<td>-0.68</td>
</tr>
<tr>
<td>skew(II/output)</td>
<td>-0.30</td>
<td>-0.46</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Table: Inventory Performance
Performance

- Examine peak-trough share of inventory investment.
- Dating turning points:
 - Treat the model as generating demeaned growth rates
 - Two consecutive periods with GDP growth < -0.8% (Data)
 - Matches share of recessions in data.
- Model depress avg. 4 quarters and expands 13 quarters.
- Peak to trough, inventory investment = 54% of output decline (data 72%).
- Trough to peak, 25% of output expansion (data 8%).
Cycles ($< -0.8\%$, 20\% of Periods)

Figure: Yellow Denotes Recession
Lead-Lag

Figure: IS Ratio Lags Output by 5 Quarters (Model)
Cross-correlogram

Figure: IS Ratio Lags Output by 5 Quarters (Data)
Figure: IS Ratio Lags Output by 5 Quarters (Data)
Role of Product Market Friction

<table>
<thead>
<tr>
<th>Stat.</th>
<th>$\xi = 0.006$</th>
<th>$\xi = 0.010$</th>
<th>$\xi = 0.012$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{x}</td>
<td>0.91</td>
<td>0.88</td>
<td>0.75</td>
</tr>
<tr>
<td>P2T Share</td>
<td>0.37</td>
<td>0.92</td>
<td>0.95</td>
</tr>
<tr>
<td>T2P Share</td>
<td>2.21</td>
<td>0.09</td>
<td>0.06</td>
</tr>
<tr>
<td>skew(II/output)</td>
<td>-0.21</td>
<td>-0.46</td>
<td>-0.51</td>
</tr>
</tbody>
</table>

Table: Inventory Performance
Intuition: Asymmetric Response
Intuition: Demand Curve

Higher \(v \)

\[
P^* \quad \frac{P^*}{\bar{P}}
\]

Sales

Price
Intuition: Optimal Markup

\[b = \frac{\epsilon}{\epsilon - 1} r^l \]
Intuition: Optimal Buffer

\[(1 - F_v) = (\downarrow \text{ in markup, } \uparrow \text{ in buffer size})\]

\[x(1 - F_v)(b - r^l) = 1 - r^l\]
Intuition: Increases X

\[x(1 - F_v)(b - r^I) = 1 - r^I \]
Intuition: Markup and Buffer TS

In Response to Positive TFP Shock

Markup
Buffer Size

Periods From Shock

-0.02
-0.01
0
0.01
Pct From SS

In Response to Positive TFP Shock

-1
0
1
2
Markup
Buffer Size
Intuition: Increase X at Trough
Intuition: Increase X at Peak
Intuition: Higher r' at Peak
How Product Search Matters

- Nonlinearity exists in stock-out model, but unexplored.
- Allowing movement in x enhances the nonlinearity as peak and trough are further away along markup decision curve.
- Generated quantitatively stronger asymmetry in stocking decision.
- With product search, expansion of varieties peaks first then the inventory holding return peak later.
- Prolonged impact on buffer stock, thus inventories.
Conclusion

- Two new stylized facts poses challenges to popular DSGE inventory models.
- In turn, questions implications based on unstable stylized facts.
- Product market search friction improve a off-the-shelf inventory model’s ability to be consistent with these two facts.
- Additionally consistent with household shopping empirics:
 - Procyclical search effort
 - Expansion of varieties and expenditure.
- Consistent with observed business cycle asymmetry.
- Bridged production market friction with inventory data.
Backup

Figure: Wen 2011
Related Literature

Broda et al. 2010:

1. UPC level data of HH consumption varieties (nondurable, 60% of CPI basket).
2. Large turnover of varieties HH consumes (75% common good in 4 year period).

Suggests that substantial risk of “out-of-favor” for producers when deciding inventory.