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Abstract

Data is nonrival: a person’s location history, medical records, and driving data

can be used by any number of firms simultaneously. Nonrivalry leads to increasing

returns and implies an important role for market structure and property rights.

Who should own data? What restrictions should apply to the use of data? We

show that in equilibrium, firms may not adequately respect the privacy of consu-

mers. But nonrivalry leads to other consequences that are less obvious. Because of

nonrivalry, there may be large social gains to data being used broadly across firms,

even in the presence of privacy considerations. Fearing creative destruction, firms

may choose to hoard data they own, leading to the inefficient use of nonrival data.

Instead, giving the data property rights to consumers can generate allocations that

are close to optimal. Consumers balance their concerns for privacy against the

economic gains that come from selling data to all interested parties.
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1 Introduction

In recent years, the importance of data in the economy has become increasingly appa-

rent. More powerful computers, the growth of networks, and advances such as machine

learning have led to an explosion in the usefulness of data. Examples include self-

driving cars, real-time language translation, medical diagnoses, product recommen-

dations, and social networks.

This paper develops a theoretical framework to study the economics of data. We

are particularly interested in how different property rights for data determine its use

in the economy, and thus affect output, privacy, and consumer welfare. The starting

point for our analysis is the observation that data is nonrival. That is, at a technological

level, data is infinitely usable. Most goods in economics are rival: if a person consumes

a kilogram of rice or an hour of an accountant’s time, some resource with a positive

opportunity cost is used up. In contrast, existing data can be used by any number of

firms or people simultaneously, without being diminished. Consider a collection of a

million labeled images, the human genome, the U.S. Census, or the data generated by

10,000 cars driving 10,000 miles. Any number of firms, people, or machine learning

algorithms can use this data simultaneously without reducing the amount of data avai-

lable to anyone else.

The key finding in our paper is that policies related to data have important econo-

mic consequences. When firms own data, they may not adequately respect the pri-

vacy of consumers. But nonrivalry leads to other consequences that are less obvious.

Because data is nonrival, there are potentially large gains to data being used broadly.

Markets for data provide financial incentives that promote broader use, but if selling

data increases the rate of creative destruction, firms may hoard data in ways that are

socially inefficient.

An analogy may be helpful. Because capital is rival, each firm must have its own

building, each worker needs her own desk and computer, and each warehouse needs

its own collection of forklifts. But if capital were nonrival, it would be as if every auto

worker in the economy could use the entire industry’s stock of capital at the same time.

Clearly this would produce tremendous economic gains. This is what is possible with

data. Obviously there may be incentive reasons why it is inefficient to have all data used

by all firms. But the equilibrium in which firms own data and sharply limit its use by
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other firms may also be inefficient. Our numerical examples suggest that these costs

can be large.

Another allocation we consider is one in which a government — perhaps out of

concern for privacy — sharply limits the use of consumer data by firms. While this

policy succeeds in generating privacy gains, it may potentially have an even larger

cost because of the inefficiency that arises from a nonrival input not being used at the

appropriate scale.

Finally, we consider an institutional arrangement in which consumers own the data

associated with their behavior. Consumers then balance their concerns for privacy

against the economic gains that come from selling data to all interested parties. This

equilibrium results in data being used broadly across firms, taking advantage of the

nonrivalry of data. For a broad range of parameter values in our numerical example,

this allocation generates consumption and welfare that are close to optimal.

To put this concretely, suppose doctors use software to help diagnose skin cancer.

An algorithm can be trained using images of potential cancers labeled with pathology

reports and cancer outcomes. Imagine a world in which hospitals own data and each

uses labeled images from all patients in its network to train the algorithm. Now com-

pare that to a situation in which competing algorithms can each use all the images

from all patients in the United States, or even the world. The software based on larger

samples could help doctors everywhere better treat patients and save lives. The gain

to any single hospital from selling its data broadly may not be sufficient to generate

the broad use that is beneficial to society, either because of concerns related to creative

destruction or perhaps because of legal restrictions. Consumers owning their medical

data and selling it to all interested researchers, hospitals, and entrepreneurs may result

in a world closer to the social optimum in which such valuable data is used broadly to

help many.

The remainder of the paper is structured as follows. The introduction continues

with a discussion of how we model data and on the similarities and differences between

data and ideas — another nonrival good — and provides a literature review. Section 2

provides a simple model to demonstrate the link between nonrivalry and scale effects.

Section 3 turns to the full model and presents the economic environment. Section 4

examines the allocation chosen by the social planner. Section 5 turns to a decentralized
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equilibrium in which firms own data and shows that it may be privately optimal for a

firm to both overuse its own data and to sharply limit data sales to other firms. Section 6

instead considers an allocation in which consumers own data and, weighing privacy

considerations, sell some of it to multiple firms. Section 7 shows what happens if the

government outlaws the selling of data. Section 8 collects and discusses our main

theoretical results while Section 9 presents a numerical simulation of our model to

illustrate the various forces at work.

1.1 Data versus Ideas

We find it helpful to define information as the set of all economic goods that are nonri-

val. That is, information consists of economic goods that can be entirely represented as

bit strings, i.e., as sequences of ones and zeros. Ideas and data are types of information.

Following Romer (1990), an idea is a piece of information that is a set of instructions for

making an economic good, which may include other ideas. Data denotes the remai-

ning forms of information. It includes things like driving data, medical records, and

location data that are not themselves instructions for making a good but that may still

be useful in the production process, including in producing new ideas. An idea is a

production function whereas data is a factor of production.

Some examples distinguishing data from ideas might be helpful. First, consider a

million images of cats, rainbows, kids, buildings, etc., labeled with their main subject.

Data like this is extremely useful for training machine learning algorithms, but these

labeled images are clearly not themselves ideas, i.e., not blueprints. The same is true of

the hourly heart-rate history of a thousand people or the speech samples of a popula-

tion. It seems obvious at this level that data and ideas are distinct.

Second, consider the efforts to build a self-driving car. The essence is a machine

learning algorithm, which can be thought of as a collection of nonlinear regressions at-

tempting to forecast what actions an expert driver will take given the data from various

sensors including cameras, lidar, GPS, and so on. Data in this example includes both

the collection of sensor readings and the actions taken by expert drivers. The nonli-

near regression estimates a large number of parameters to produce the best possible

forecasts. A successful self-driving car algorithm — a computer program, and hence an

idea — is essentially just the forecasting rules that come from using data to estimate
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the parameters of the nonlinear model. The data and the idea are distinct: the software

algorithm is the idea that is embedded in the self-driving cars of the future; data is an

input used to produce this idea.

Another dimension along which ideas and data can differ is the extent to which they

are excludable. On the one hand, it seems technologically easier to transmit data than

to transmit ideas. Data can be sent at the press of button over the internet, whereas

we invest many resources in education to learn ideas. On the other hand, data can be

encrypted. Engineers change jobs and bring knowledge with them; people move and

communicate causing ideas to diffuse, at least eventually. Data, in contrast, especially

when it is “big,” may be more easily monitored and made to be highly excludable.

The “idea” of machine learning is public, whereas the driving data that is fed into the

machine learning algorithm is kept private; each firm is gathering its own data.

1.2 Relation to the Literature

The “economics of data” is a new but rapidly-growing field. In this paper we provide

a macro perspective. Since we emphasize nonrivalry, there are parallels between how

data appears in our model and how ideas appear in the growth literature. Compared to

the growth literature, the most distinctive features of our model are

1. The use of nonrival goods: our setup features the simultaneous broad use of data

by many firms; in Romer (1990) and Aghion and Howitt (1992) style models, each

firm produces using a single idea.

2. The market for nonrival goods: our setup features markets through which each

firm decides on a quantity of data to buy and sell; in idea-based models, typically

the inventing firm produces itself or sells a single blueprint to a single monopoly

producer.

3. Property rights: in idea-based models, property rights for ideas are always held

by firms; in our setup, comparing consumer versus firm ownership of data is

fundamental.

At the core of our analysis of decentralized equilibria is a market for data. This

feature is related to the market for ideas in Akcigit et al. (2016). In their setup the idea is

used by only one firm at a time and the market helps to allocate the idea to the firm who
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could best make use of it. In contrast, our market for data allows multiple firms to use

the nonrival good simultaneously. The literature on patent-licensing would be the clo-

sest to our paper since it studies legal arrangements under which multiple firms can use

a given idea at the same time. From a more micro perspective, see Ali et al. (2019) who

study the sale of nonrival information in a search and matching decentralized market

and emphasize that nonrivalry generates inefficiency due to the under-utilization of

information. Ichihashi (2019) studies competition among data intermediaries. Akcigit

and Liu (2016) show in a growth context how the information that certain research

paths lead to dead ends is socially valuable and how an economy may suffer from an

inefficient duplication of research if this information is not shared across firms.

Given our macroeconomic perspective, we remain silent on many of the interesting

related topics in industrial organization. Varian (2018) provides a general discussion of

the economics of data and machine learning. He emphasizes that data is nonrival and

refers to a common notion that “data is the new oil.” Varian notes that this nonrivalry

means that “data access” may be more important than “data ownership” and sugge-

sts that while markets for data are relatively limited at this point, some types of data

(like maps) are currently licensed by data providers to other firms. Our paper explores

these and other insights in a formal model. Our results suggest that data ownership is

likely to influence data access. In addition to thinking about property rights granted to

firms who can sell their nonrival goods, we consider granting property rights to data

to consumers. The fact that consumer interaction is necessary to create data in our

setup makes the consumers-own-data property right regime a natural consideration,

whereas the growth literature almost exclusively focuses on property rights granted to

firms.

Data as a byproduct of economic activity also has analogues in the information

economics literature. For example, see Veldkamp (2005), Ordonez (2013), Fajgelbaum

et al. (2017), and Bergemann and Bonatti (2019). Arrieta Ibarra, Goff, Jimenez Hernan-

dez, Lanier and Weyl (2018) and Posner and Weyl (2018) emphasize a “data as labor”

perspective: data is a key input to many technology firms, and people may not be

adequately compensated for the data they provide, perhaps because of market power

considerations.

Acquisti, Taylor and Wagman (2016) discuss the economics of privacy and how con-
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sumers value the privacy of their data. In the context of medical records, Miller and

Tucker (2017) find that approaches to privacy that give users control over redisclosure

encourage the spread of genetic testing, consistent with the mechanism that we high-

light in this paper. See Ali et al. (2018) who study consumer disclosure of personal

information to firms and the consequent pricing and welfare implications. Goldfarb

and Tucker (2011) highlight a tradeoff between privacy and the effectiveness of online

advertising. Chiou and Tucker (2017) study how the length of time that search engines

keep their server logs affects the accuracy of their subsequent searches and find little

evidence of a large impact. Abowd and Schmutte (2019) emphasize that privacy isn’t

binary; there is an intensive margin to privacy with a choice of how much data to use.

They propose a differential privacy framework to produce the socially optimal use of

data that respects privacy concerns. Our paper features such an intensive margin of

data use with corresponding tradeoffs.

Farboodi and Veldkamp (2019) is a paper complimentary to ours. We focus on

property rights and how the associated sale and use of nonrival data can affect effi-

ciency. They emphasize that data is information that can be used to reduce forecast

errors, suggesting a production function with bounded returns to data. We suspect that

our main results about the productivity benefits (“level effects”) from the broad use of

nonrival data would survive even with bounded returns; our Cobb-Douglas specifica-

tion is helpful for tractability. Farboodi and Veldkamp (2017) study the implications

of expanding access to data for financial markets. Begenau, Farboodi and Veldkamp

(2017) suggest that access to big data has lowered the cost of capital for large firms

relative to small ones, leading to a rise in firm-size inequality.

Agrawal, Gans and Goldfarb (2018) provide an overview of the economics of ma-

chine learning. Bajari, Chernozhukov, Hortacsu and Suzuki (2018) examine how the

amount of data impacts weekly retail sales forecasts for product categories at Amazon.

They find that forecasts for a given product improve with the square-root of the number

of weeks of data on that product. However, forecasts of sales for a given category do not

seem to improve much as the number of products within the category grows. Azevedo,

Deng, Montiel Olea, Rao and Weyl (2019) suggest that the distribution of outcomes in

A/B testing in internet search may be fat-tailed: rare outcomes can have very high re-

turns. Carriere-Swallow and Haksar (2019) note that credit bureaus are a long-standing
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market institution that facilitates the broad use of nonrival data, at least in one context.

Hughes-Cromwick and Coronado (2019) view government data as a public good and

study its value to U.S. businesses.

In order to emphasize the relationship between nonrivalry and scale effects and

to study different property right regimes in a simple environment, our model omits

some interesting features prevalent in the literature on data. In our model, data does

not affects a firm’s ability to discriminate against consumers via price or quantity. For

example, we do not model firms that are able to learn whether the degree to which

individuals are price sensitive or to refuse to sell insurance to people with high health

risks. These considerations are important, so we view our paper as emphasizing an

underappreciated channel relevant to the design of data property rights, but it does

not provide a complete accounting of the pros and cons of the widespread availability

and use of data.

A question that comes up immediately in this paper is why the Coase (1960) theo-

rem does not apply: why does it matter whether firms or consumers own data initially?

With trade and monetary transfers, why isn’t the allocation the same in either case? One

could certainly set up the model so that this would be true. However, to illustrate the

importance of data sharing, we assume that the Coase theorem fails. In particular, we

assume that consumers cannot commit to sell their data to only a single firm. Notice

that this issue arises solely because of nonrivalry: a given apple can only be eaten

once. This lack of commitment serves to illustrate various properties of an economy

with data; similar assumptions are typically made in growth models with knowledge

spillovers and creative destruction. How it plays out in the real world is a distinct

and interesting question, but we simply note that there are many recent episodes in

the news in which firms display a remarkable inability to avoid selling or using data

that they have access to, often at odds with public statements on data-use policy, so

this assumption — in addition to its pedagogical role — may actually have real-world

relevance. Dosis and Sand-Zantman (2019) provide a micro-founded model of the

failure of the Coase theorem in studying the property rights over the use of data. They

emphasize that whether it is better for firms or consumers to own data depends on

the overall value of the data to the firm and on the extent to which consumers can

monetize their data. They do not consider the nonrivalry of data, however. See also
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Chari and Jones (2000) for some of the problems in implementing the Coase theorem

in economies with public goods.

2 A Simple Model

Suppose the economy consists of N varieties. To be concrete, think of self-driving cars

(e.g. Tesla, Uber, Waymo, and so on). Consumption of each variety combines in a CES

fashion to produce a utility aggregate Y , which we also think of as aggregate output.

With symmetry, Y is given by

Y =

(∫ N

0
Y

σ−1
σ

i di

) σ
σ−1

= N
σ
σ−1Yi.

Variety i is produced using labor Li and data Di:

Yi = Dη
i Li = Dη

i L/N = Dη
i ν

where L is the total amount of labor in the economy, allocated symmetrically across

varieties, and ν ≡ L/N is firm size measured by employment. The nonrival nature of

data means there are constant returns to labor and increasing returns to labor and data

together; this parallels the Romer (1990) insight that the nonrivalry of ideas gives rise to

increasing returns. The parameter η measures the importance of data and the degree

of increasing returns. Intuitively, a given amount of data can be used to train a machine

learning algorithm to help make cars safer. With a little data, this may allow the car to

apply emergency braking when needed. A machine learning algorithm trained on even

more data may be able to drive on highways and in bumper-to-bumper traffic. In other

words, data can be viewed as improving the quality of an idea.

Importantly, a given amount of data trains a machine learning algorithm that can

then be used in 1 car, 1000 cars, or 1 million cars simultaneously; this is the nonrivalry

of the idea that is produced by the data. The nonrivalry of data will make its appea-

rance shortly, when we note that the same data can be used by many different firms to

produce their own trained machine learning algorithms.

Whenever a variety is consumed, it generates one piece of data: each mile driven
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generates data that raises the productivity of future trips. Data generated by Tesla cars

is useful to Tesla. But data generated by Uber and Waymo could also potentially be

useful to Tesla. We formalize this as

Di = αxYi + (1− α)Bi

= αxiYi + (1− α)x̃NYi

= [αx+ (1− α)x̃N ]Yi (1)

In the first line, Yi is the amount of data generated by Tesla trips, and x is the fraction of

that data that Tesla is allowed to use. Bi is the bundle of data from other varieties that

Tesla gets to use. The parameter αmeasures the importance of Tesla’s own data relative

to the data bundle from other firms.

The second line in this expression uses the fact that Bi ≡ x̃NYi. The quantity

NYi is the amount of data generated by Uber, Waymo, and the other varieties in the

economy (because variety i is infinitesimal and because firms are symmetric), and x̃

is the fraction of other firms’ data that Tesla gets to use. Both x and x̃ are endogenous

allocations in our richer model, chosen subject to privacy considerations. For now,

though, we just treat them as parameters. The third line above just factor outs Yi.

Substituting this expression for data back into variety i’s production function gives

Yi = ([αx+ (1− α)x̃N ]ην)
1

1−η .

There is a multiplier associated with data. The more people consume your product,

the more data you have. This raises productivity and generates more output and con-

sumption and hence more data, completing the circle. The sum of this geometric series

is 1
1−η , which is the key exponent in this production function.

Finally, substituting into the CES aggregator,

Y = N
σ
σ−1 ([αx+ (1− α)x̃N ]ην)

1
1−η .

Or, in terms of output per person y ≡ Y/L:

y = N
1

σ−1 ([αx+ (1− α)x̃N ]ν)
η

1−η , (2)
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where we’ve used L = νN on the right side.

Income per person in this economy depends on the number of firms in two ways.

The first is through the traditional expanding variety effect, associated with the 1
σ−1

exponent, well-known since Dixit and Stiglitz (1977). What is new here is the second

role of N , entering through the data term and raised to the power η
1−η . To understand

this term, consider two allocations. In one, we prohibit the use of data by other firms

by setting x̃ = 0. In this case, each firm learns only from its own consumers. For the

second case, suppose x̃ > 0. In this case, each firm learns from every other firm in the

industry: Tesla learns from the customers of Uber and Waymo as well as from its own

customers. In this case, there is an additional scale effect: the more firms there are in

the economy, the more data is created, so the more Tesla is able to learn, which raises

Tesla’s productivity.1 But every firm benefits similarly, and so overall output per person

is higher. This is one of the basic insights of the paper: because data is nonrival, there

are social gains to having data be used broadly instead of narrowly.

The richer model we develop in the rest of the paper builds on this simple frame-

work. We endogenize the number of firms by allowing for free entry, and we endogenize

the allocation in the economy, including x and x̃, by incorporating concerns for privacy

into the utility function.

3 Economic Environment

The economic environment that we work with throughout the paper builds on the sim-

ple model above and is summarized in Table 1. There is a representative consumer with

log utility over per capita consumption, ct. There are Nt varieties of consumer goods

that combine to enter utility with a constant elasticity of substitution (CES) aggregator.

There are Lt people in the economy and population grows exogenously at rate gL.

Privacy considerations also enter flow utility in two ways, as seen in equation (4).

The first is via xit, which denotes the fraction of an individual’s data on consumption of

variety i that is used by the firm producing that variety. The second is through x̃it, which

denotes the fraction of an individual’s data on variety i that is used by other firms in the

1We are holding firm size ν constant in this comparative static, which meansLmust be rising asN rises.
This is exactly the source of the scale effect we are considering. In the full model, this is micro-founded
through entry.
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Table 1: The Economic Environment

Utility

∫ ∞
0

e−ρtLtu(ct, xit, x̃it)dt (3)

Flow Utility u(ct, xit, x̃it) = log ct −
κ

2

1

N2
t

∫ Nt

0
x2
it di−

κ̃

2

1

Nt

∫ Nt

0
x̃2
it di

(4)

Consumption per person ct =

(∫ Nt

0
c
σ−1
σ

it di

) σ
σ−1

with σ > 1 (5)

Data creation Jit = citLt (6)

Variety resource constraint cit = Yit/Lt (7)

Firm production Yit = Dη
itLit with η ∈ (0, 1) (8)

Data used by firm i Dit ≤ αxitJit + (1− α)Bt (9)

Data on variety i shared with others Dsit = x̃itJit (10)

Data bundle Bt =

(
N
− 1
ε

t

∫ Nt

0
D

ε−1
ε

sit di

) ε
ε−1

with ε > 1 (11)

Innovation (new varieties) Ṅt =
1

χ
· Let (12)

Labor resource constraint Let + Lpt = Lt where Lpt ≡
∫ Nt

0
Lit di (13)

Population growth (exogenous) Lt = L0e
gLt (14)

Aggregate output Yt ≡ ctLt (15)

Creative destruction δ(x̃it) =
δ0

2
x̃2
it (16)
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economy. For example, xit could denote the fraction of data generated by Tesla drivers

that is used by Tesla, while x̃it is the fraction of that Tesla driving data that is used by

Waymo and GM. Privacy costs enter via a quadratic loss function, where κ and κ̃ capture

the weight on privacy versus consumption. Because there are Nt varieties, we add up

the privacy costs across all varieties and then assume the utility cost of privacy depends

on the average. There is an additional 1/Nt scaling of the xit privacy cost. Because

x̃it reflects costs associated with data use by all other (Nt) firms in the economy, it is

natural that there is a factor of Nt difference between these costs, and this formulation

generates interior solutions along the balanced growth path.

A simplifying assumption is that the unweighted average of xit and x̃it enters utility.

A more natural alternative would be to weight by the share of good i in the consumption

bundle. In the more natural case, consumers would be tempted to buy more of a variety

from a firm that better respects privacy. Our unweighted average shuts down this force,

which simplifies the algebra without changing the spirit of the model.

Where does data come from? Each unit of consumption is assumed to generate one

unit of data as a byproduct. This is our “learning by doing” formulation and is captured

in equation (6): Jit = citLt = Yit, where Jit is data created about variety i.

Firm i produces variety i according to equation (8) in the table, just as in the simple

model:

Yit = Dη
itLit, with η ∈ (0, 1)

where Dit is the amount of data used in producing variety i and Lit is labor. As be-

fore, the parameter η captures the importance of data. We will show some evidence in

Section 9 suggesting that η might take a value of 0.03 to 0.10; we think of it as a small

positive number.2

Data used by firm i is the sum of two terms:

Dit ≤ αxitJit + (1− α)Bt.

The first term captures the amount of variety i data that is used to help firm i produce.

In some of our allocations, firm iwill be able to use all the variety i data — for example if

firms own data. However, if consumers own data, they may restrict the amount of data

2We require η < 1/σ. For firm size to be finite, the increasing returns from data must be smaller than
the price elasticity with respect to size coming from CES demand.



NONRIVALRY AND THE ECONOMICS OF DATA 13

that firms are able to use (xit < 1). The second part of the equation incorporates data

from other varieties that is used by firm i. Shared data on other varieties is aggregated

into a bundle,Bt. For example, xitJit is the data from Tesla drivers that Tesla gets to use

while Bt is the bundle of data from other self-driving car companies like Waymo, GM,

and Uber that is also available to Tesla. The weights α and 1−α govern the importance

of own versus others’ data. The way the aggregate bundleBt enters the individual firm’s

constraint in equation (9) is the most important feature of the model. This expression

incorporates the key role of the nonrivalry of data: the bundle Bt can be used by any

number of firms simultaneously; hence it does not have an i subscript.

How is the bundle of data created? Let Dsit ≡ x̃itJit denote the data about variety i

that is “shared” (hence the “s” subscript) and available for use by other firms to produce

their varieties. Shared data is bundled together via a CES production function with

elasticity of substitution ε:

Bt =

(
N
− 1
ε

t

∫ Nt

0
D

ε−1
ε

sit di

) ε
ε−1

.

We divorce the returns to variety from the elasticity of substitution in this CES function

using the method suggested by Benassy (1996). In particular, this formulation implies

that B will scale in direct proportion to N and is given by B = NDsi in the symmetric

allocation, which simplifies the analysis.

For tractability, we set up the model so that data produced today is used to produce

output today, i.e., roundabout production. We think of this as a within-period timing

assumption. We also assume that data depreciates fully every period. These two as-

sumptions imply that data is not a state variable, greatly simplifying the analysis.

The creation of new varieties is straightforward: χunits of labor are needed to create

a new variety. Total labor used for entry, Let, plus total labor used in production, Lpt,

equals total labor available in the economy, Lt.

Equation (15) in Table 1 is simply a definition. Aggregate output in the economy, Yt,

equals aggregate consumption; there is no capital.

Notice that in our environment, ideas and data are well-defined and distinct. An

idea is a blueprint for producing a distinct variety, and each new blueprint is created

by χ units of labor. Data is a byproduct of consumption, and each time a good is
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consumed, one unit of data is created that is in turn useful for improving productivity,

which can be thought of as the quality of the idea. A new idea is a new production

function for producing a variety while data is a factor of production.

Finally, equation (16) is not actually part of the economic environment, but it is

an important feature of the economy. We’ve already mentioned one downside to the

broad use of data — the privacy cost to individuals. Data sharing also increases the rate

of creative destruction: ownership of variety i changes according to a Poisson process

with an arrival rate δ(x̃it). The more that competitors know about an incumbent firm,

the greater the chance that the incumbent firm is displaced by an entrant. Because this

is just a change in ownership, it is not part of the technology that constrains the social

planner.

Discussion. There are alternative assumptions we could make about our economic

environment. For example, instead of having data be generated as a byproduct of

consumption, we could instead assume firms have access to a separate production

function for data (“learning or doing” instead of “learning by doing”). Both occur in

the world: Tesla gathers data while people drive their cars, while Waymo sets up its

own artificial towns in which they test-drive cars to generate data. Second, economic

growth (gL > 0) is not necessary to make most of the main points of the paper; our

results are almost entirely “level effects” rather than “growth effects” and would exist

even with no aggregate growth. The presence of growth helps bring out the distinction

between ideas and data and also simplifies the algebra. Third, we model privacy costs

as a direct utility loss. We see this as a stand in for the many reasons people may not

want firms to have their data. The main point of our paper is to highlight a way in which

the broad use of data is beneficial, not to explore the precise nature of privacy costs. We

include them to show that even when privacy costs are large, our mechanism can still

be quantitatively important.

4 The Optimal Allocation

The optimal allocation in our environment is easy to define and characterize. Using

symmetry, the production structure of the economy can be simplified considerably.
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Consumption per person is

ct = N
σ
σ−1

t cit = N
σ
σ−1

t

Yit
Lt
. (17)

Moreover, the production of a variety is

Yit = Dη
itLit = Dη

it ·
Lpt
Nt

. (18)

Combining these two expressions, aggregate output in the symmetric economy is

Yt = N
1

σ−1

t Dη
itLpt. (19)

Next, symmetry allows us to further simplify the data component:

Dit = αxitYit + (1− α)Ntx̃itYit

= [αxit + (1− α)x̃itNt]Yit (20)

This expression can be substituted into the production function for variety i in (18) to

yield

Yit = [(αxit + (1− α)x̃itNt)
ηLit]

1
1−η . (21)

The increasing returns associated with data shows up in the 1/(1 − η) exponent. Also,

the term αxit+(1−α)x̃itNt will appear frequently whenever data is shared. This deriva-

tion shows that the αxit piece reflects firms using data from their own variety while the

(1−α)x̃itNt piece reflects firms using data from other varieties. Moreover, when data is

shared, this data term scales with the measure of varieties,Nt. This ultimately provides

an extra scale effect associated with data nonrivalry.

Finally, substituting the expression for Dit into the aggregate production function

in (19) and using Lit = Lpt/Nt yields

Yt = N
1

σ−1

t

(
αxit
Nt

+ (1− α)x̃it

) η
1−η

L
1

1−η
pt . (22)

This equation captures the two sources of increasing returns in our model. The N
1

σ−1

t
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is the standard increasing returns from love-of-variety associated with the nonrivalry

of ideas. The L
1

1−η
pt captures the increasing returns associated with data. In the optimal

allocation, both play important roles.

We can now state the social planner problem concisely. The key allocations that

need to be determined are how to allocate labor between production and entry and

how much data to share. The optimal allocation solves

max
{Lpt,xit,x̃it}

∫ ∞
0

e−ρ̃tL0u(ct, xit, x̃it) dt, ρ̃ ≡ ρ− gL (23)

s.t.

ct = Yt/Lt

Yt = N
1

σ−1

t

(
αxit
Nt

+ (1− α)x̃it

) η
1−η

L
1

1−η
pt

Ṅt =
1

χ
(Lt − Lpt)

Lt = L0e
gLt

The planner wants to share variety i data with firm i because that increases pro-

ductivity and output. Similarly, the planner wants to share variety i data with other

firms to take advantage of the nonrivalry of data, increasing the productivity and out-

put of all firms. Tempering the planner’s desire for sharing are consumers’ privacy

concerns. Finally, the planner weighs the gains from new varieties against the gains

from producing more of the existing varieties when allocating labor to production and

entry. The optimal allocation is given in Proposition 1.

Proposition 1 (The Optimal Allocation): Along a balanced growth path, as Nt grows

large, the optimal allocation converges to

x̃it = x̃sp =

(
1

κ̃
· η

1− η

)1/2

(24)

xit = xsp =
α

1− α
· κ̃
κ

(
1

κ̃
· η

1− η

)1/2

(25)

Lspi = χρ · σ − 1

1− η
≡ νsp (26)
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N sp
t =

Lt
χgL + νsp

≡ ψspLt (27)

Lsppt = νspψspLt (28)

Y sp
t =

[
νsp(1− α)ηx̃ηsp

] 1
1−η (ψspLt)

1
σ−1

+ 1
1−η (29)

cspt =
Yt
Lt

=
[
νsp(1− α)ηx̃ηsp

] 1
1−η ψ

1
σ−1

+ 1
1−η

sp L
1

σ−1
+ η

1−η
t (30)

gspc =

(
1

σ − 1
+

η

1− η

)
gL (31)

Dsp
i = [(1− α)x̃spνspψspLt]

1
1−η (32)

Dsp = NDi = [(1− α)x̃spνsp]
1

1−η (ψspLt)
1+ 1

1−η (33)

Y sp
i =

[
νsp(1− α)ηx̃ηsp

] 1
1−η (ψspLt)

η
1−η (34)

U0 =
1

ρ̃
L0

(
log c0 −

κ̃

2
x̃2
sp +

gc
ρ̃

)
(35)

Proof See Appendix A.

The most important result in the proposition is the solution for aggregate output

per person in equation (30). In particular, that solution shows that output per person is

proportional to the size of the economy raised to some power. The exponent, 1
σ−1 + η

1−η ,

captures the degree of increasing returns to scale in the economy and is the sum of

two terms. First is the standard “love of variety” effect that is smaller when varieties

are more substitutable. The second term is new and reflects the increasing returns

associated with the nonrivalry of data. It is increasing in η, the importance of data

to the economy. A larger economy is richer because it produces more data which then

feeds back and makes all firms more productive. This equation also makes clear why

we require η < 1; if η ≥ 1, then the degree of increasing returns to scale is so large that

the economy becomes infinitely rich: more output leads to more data, which leads to

more output, and the virtuous circle explodes.

The next equation, (31), expresses the implications for growth: the growth rate of

consumption per person, in the long run, is proportional to the growth rate of popula-

tion, where the factor of proportionality is the degree of increasing returns to scale.

The remaining results in the optimal allocation break down in a simple way. First,

optimal data sharing x̃sp and xsp are decreasing in the privacy costs (κ̃ and κ) and
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increasing in the importance of data in the economy (η), as shown in equations (24)

and (25).

Next, equation (27) shows that optimal variety N sp
t is proportional to the popula-

tion in the economy, and the factor of proportionality is defined to be the parameter

ψsp. Higher entry costs, a higher rate of time preference, and faster population growth

all reduce variety along the balanced growth path. A higher elasticity of substitution

between varieties makes new varieties less valuable and reduces N sp
t . Finally, if data

is more important (↑ η) the economy devotes less resources to entry (which does not

create data) and more resources to production (which does).

This is even more apparent in equation (26), which shows employment per firm,

Lspit , which equals a combination of parameters that we define to be νsp. The compa-

rative statics for firm size are essentially the opposite of those for variety. Optimal firm

size is constant along a balanced growth path and invariant to the overall population of

the economy. This reflects the assumption that the entry cost is a fixed amount of labor

that does not change as the economy grows. The fact that the size distribution of firms

seems stationary in the U.S. suggests this may be a reasonable assumption as Bollard,

Klenow and Li (2016) document. We show later that the key findings of our paper are

robust to variations of this assumption.

We will return to these results after discussing other ways to allocate resources in

this environment. The ν and ψ parameters for the different allocations will be an im-

portant part of that comparison.

5 Firms Own Data

We now explore one possible way to use markets to allocate resources. In this equi-

librium, we assume that firms own data and decide whether or not to sell it. Data is

bought and sold via a data intermediary that bundles together data from all varieties

and resells it to each individual firm. Throughout the paper, buyers of data are always

price takers and sellers of data always set prices.
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5.1 Decision Problems

Household Problem. Households have one unit of labor that they supply inelastically

in exchange for the wage wt. They hold assets that pay a return rt (these assets are

claims on the value of the monopolistically competitive firms). The representative

household solves

U0 = max
{cit}

∫ ∞
0

e−ρ̃tL0u(ct, xit, x̃it) dt (36)

s.t. ct =

(∫ Nt

0
c
σ−1
σ

it di

) σ
σ−1

(37)

ȧt = (rt − gL)at + wt −
∫ Nt

0
pitcit di (38)

Notice that households do not choose how data is used or sold (xit and x̃it) since firms

are the ones who own data in this allocation. The price of ct is normalized to one so

that all prices are expressed in units of ct.

Firm Problem. Each incumbent firm chooses how much data to buy and sell and how

much labor to hire. Each sale generates data: Jit = Yit. The firm uses the fraction xit of

this data itself and sells a fraction x̃it to the data intermediary at a price psit that it sets

via monopolistic competition. Because of nonrivalry, the firm can both use and sell the

same data simultaneously. In addition, the firm buys bundles of data Dbit at price pbt,

which it takes as given. Finally, each firm takes demand for its variety (aggregating the

FOC from the Household Problem) as given:

pit =

(
ct
cit

) 1
σ

=

(
Yt
Yit

) 1
σ

. (39)

Recall our simplifying assumption that thexit that enters the consumer’s utility function

is an unweighted average, so that households do not demand more from a firm that

uses or sells less of its data.

Letting Vit denote the market value of firm i, the incumbent firm problem is:

rtVit = max
{Lit,Dbit,xit,x̃it}

(
Yt
Yit

) 1
σ

Yit − wtLit − pbtDbit + psitx̃itYit + V̇it − δ(x̃it)Vit (40)

s.t. Yit = Dη
itLit (41)
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Dit = αxitYit + (1− α)Dbit (42)

xit ∈ [0, 1], x̃it ∈ [0, 1] (43)

psit = λDIN
− 1
ε

t

(
Bt
x̃itYit

) 1
ε

(44)

where the last equation is the downward-sloping demand curve for firm i’s data from

the data intermediary, which is described next. Firm i takes the aggregates λDI , Bt, Nt,

and Yt as given in solving this problem.

Each firm wants to use all the data on its own variety: it owns the data already

and does not consider consumers’ privacy concerns. The firm may also want to sell

some of the data on its variety to other firms, but this desire is limited by the threat

of creative destruction. When more information about the firm’s variety is available

to competitors, the firm is more likely to be replaced by a competitor. The firm may

want to buy some of the bundle of other firms’ data, weighing the cost of purchase

against the gains from increased productivity and sales. Finally, the firm hires labor to

reach its desired scale, recognizing the downward sloping demand curve for its variety

as governed by the elasticity of substitution across varieties, σ, and that more sales

generates more data.

Data Intermediary Problem. The “b” and “s” notation for buying and selling beco-

mes tricky with the data intermediary: Dbit is the amount that firm i buys from the data

intermediary, so it is the amount the data intermediary sells to firm i. Similarly, psit is

the price at which firm i sells data to the data intermediary, so it is the price at which

the data intermediary purchases data.

We originally hoped to model the data intermediary sector as perfectly competitive.

However, the nonrival nature of data makes this impossible: if agents could buy non-

rival data at a given price and then sell data at a given price, they would want to buy

one unit and sell it an infinite number of times. Nonrivalry poses problems for perfect

competition, as in Romer (1990).

Our alternative seeks to minimize frictions in data intermediation. We assume that

the data intermediary is a monopolist subject to free entry at a vanishingly small cost,

so that the data intermediary earns zero profits. Moreover, we assume the actual and

potential data intermediaries take the price at which they buy data from firms, psit, as
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given. This setup delivers a limit pricing condition with zero profits even though data

is nonrival.

The data intermediary takes its purchase price of data psit as given and maximizes

profits by choosing the quantity of data to purchase from each firm and the price at

which it sells bundles of data to firms:

max
{pbt,Dsit}

pbt

∫ Nt

0
Dbit di−

∫ Nt

0
psitDsit di (45)

s.t.

Dbit ≤ Bt =

(
N
− 1
ε

t

∫ Nt

0
(Dsit)

ε−1
ε di

) ε
ε−1

∀i (46)

pbt ≤ p∗bt (47)

subject to the demand curve pbt(Dbit) from the Firm Problem above, where p∗bt is the

limit price associated with the zero profit condition that comes from free entry.

This expression for profits combined with the resource constraint on data in (46)

incorporates the fact that the data intermediary can “buy data once and sell it multiple

times,” i.e., the nonrivalry of data. This is shown in the first term of profits, where

revenue essentially equalsNtpbtBt — the firm is able to sell the same bundleBt multiple

times. For example, location data from consumers can, technologically, be sold to every

firm in the economy, not just to the store in which consumers happen to be shopping

at the moment.

Firm Entry and the Creation of New Varieties. A new variety can be designed and

created at a fixed cost of χ units of labor. In addition, new entrants are the beneficiaries

of business stealing: they obtain the property rights to the varieties that suffer from

creative destruction.3 The free entry condition is then

χwt = Vit +

∫ Nt
0 δ(x̃it)Vit di

Ṅt

. (48)

3We could alternatively assume that existing firms get these benefits or that they are split in some
proportion. How the rents from business stealing are assigned is not the main focus of our paper, and
this assumption simplifies the analysis.
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The left side χwt is the cost of the χ units of labor needed to create a new variety. The

right side has two terms. The first is the value of the new variety that is created. The

second, is the per-entrant portion of the rents from creative destruction.

5.2 The Equilibrium when Firms Own Data

The equilibrium in which firms own data consists of quantities {ct, Yt, cit, xit, x̃it, at,

Yit, Lit, Dit, Dbit, Bt, Dsit, Nt, Lpt, Let, Lt} and prices {pit, pbt, psit, wt, rt, Vit} such that

1. {ct, cit, at} solve the Household Problem

2. {Lit, Yit, pit, psit, Dbit, Dit, xit, x̃it, Vit} solve the Firm Problem

3. (Dsit, Bt) Data markets clear: Dbit = Bt and Dsit = x̃itYit

4. (pbt) Free entry into data intermediation gives zero profits there (constrains pb as

a function of ps)

5. (Let) Free entry into producing a new variety leads to zero profits, as in equa-

tion (48)

6. Definition of Lpt: Lpt =
∫ Nt

0 Lit di

7. wt clears the labor market: Lpt + Let = Lt

8. rt clears the asset market: atLt =
∫ Nt

0 Vit di

9. Nt follows its law of motion: Ṅt = 1
χ(Lt − Lpt)

10. Yt ≡ ctLt denotes aggregate output

11. Exogenous population growth: Lt = L0e
gLt

In Section 8, we compare the allocation that results from this equilibrium with the

optimal allocation as well as with alternative allocations. Before that, we define the

alternative allocations, allowing us to efficiently make the comparisons all at once. For

this reason, we turn next to an equilibrium in which consumers own data.
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6 Consumers Own Data

We now consider an allocation in which consumers own data associated with their

purchases. They can sell data to a data intermediary and choose how much data to

sell to balance the gain in income versus the cost to privacy. Firms own zero data as it

is created but can purchase data from the data intermediary. As we discussed earlier,

consumers cannot commit to sell their data to only a single firm. Thus, it is not possible

for firm i to charge consumers a lower price in exchange for the consumers agreeing not

to sell their data to others.

Why is this departure from the Coase theorem helpful? Motivated by concerns

about creative destruction, firm i would like to strike a deal with consumers: we will

pay you for exclusive access to your data. At the right price, individual consumers

would accept, and firms would be better off. But this would reproduce the “firms own

data” allocation that limits data sales. Instead, we assume here that such deals cannot

be struck (for example, either because of a law that prohibits exclusive contracts or

because of a commitment problem). This allows us to study an equilibrium in which

data is used more widely across firms.

6.1 Decision Problems

Household Problem. The household problem is similar to when firms own data, ex-

cept now the household chooses how much data to sell. Consumers license the same

data in two ways when selling it: they sell data on variety i with a license that allows

firm i to use it and, separately, they sell data on variety i with a license that allows it to

be bundled and sold to all other firms. Because data can be sold in two ways, there are

two different prices: data on variety i that will be used only by firm i sells at price past,

while data on variety i that can be bundled and sold to any firm sells at price pbst. The

representative household solves

U0 = max
{cit,xit,x̃it}

∫ ∞
0

e−ρ̃tL0u(ct, xit, x̃it) dt (49)

s.t. ct =

(∫ Nt

0
c
σ−1
σ

it di

) σ
σ−1

(50)

ȧt = (rt − gL)at + wt −
∫ Nt

0
pitcit di+

∫ Nt

0
xitp

a
stcit di+

∫ Nt

0
x̃itp

b
stcit di
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= (rt − gL)at + wt −
∫ Nt

0
qitcit dt (51)

where qit ≡ pit − xitp
a
st − x̃itp

b
st is the effective price of consumption, taking into ac-

count that the fractions xit and x̃it of each good consumed generate income when the

associated data is sold.

Firm Problem. Each incumbent firm chooses how much data to buy. Two types of

data are available for purchase: data from the firm’s own variety (Dait) and data from

other varieties (Dbit). Each firm sees the downward-sloping demand for its variety

(aggregating the FOC from the Household Problem):

qit =

(
ct
cit

) 1
σ

=

(
Yt
Yit

) 1
σ

= pit − xitpast − x̃itpbst (52)

so that

pit =

(
Yt
Yit

) 1
σ

+ xitp
a
st + x̃itp

b
st. (53)

Letting Vit denote the market value of firm i, the incumbent firm problem is:

rtVit = max
Lit,Dait,Dbit

[(
Yt
Yit

) 1
σ

+ xitp
a
st + x̃itp

b
st

]
Yit − wtLit − patDait − pbtDbit

+ V̇it − δ(x̃it)Vit (54)

s.t. Yit = Dη
itLit

Dit = αDait + (1− α)Dbit (55)

Dait ≥ 0, Dbit ≥ 0

Firms no longer face a simple constant elasticity demand curve because the ef-

fective price that consumers pay is different from the price that firms receive (because

consumers sell data). From the perspective of the firm,Dait andDbit are perfect substi-

tutes: the firm is indifferent between using its own data versus an appropriately-sized

bundle of other firms’ data. This fact will help pin down the relative price of the two

kinds of data.
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Data Intermediary Problem. Because we have two types of data, we now introduce

two different data intermediaries: one handles the sale of “own” data and the other

handles the bundle. Each is modeled as earlier, i.e., as a monopolist who is constrained

by free entry into data intermediation.

Taking the price past of data purchased from consumers as given, the data interme-

diary for own data solves the following problem at each date t:

max
{pait,Dacit}

∫ Nt

0
paitDait di−

∫ Nt

0
pastD

a
cit di (56)

s.t.

Dait ≤ Da
cit ∀i (57)

pait ≤ p∗ait (58)

subject to the demand curve pait(Dait) from the Firm Problem above, where p∗ait is the

limit price associated with the zero profit condition that comes from free entry.

Similarly, taking the price pbst of data purchased from consumers as given, the data

intermediary for bundled data solves

max
{pbit,Dbcit}

∫ Nt

0
pbitDbit di−

∫ Nt

0
pbstD

b
cit di (59)

s.t.

Dbit ≤ Bt =

(
N
− 1
ε

t

∫ Nt

0
(Db

cit)
ε−1
ε di

) ε
ε−1

∀i (60)

pbit ≤ p∗bit (61)

subject to the demand curve pbit (Dbit) from the Firm Problem above, where p∗bit is the

limit price associated with the zero profit condition that comes from free entry.

The two data intermediaries are monopolists who choose the prices pait and pbit

of data as well as how much data to buy from consumers of each variety and type,

taking the prices past and pbst as given. From the standpoint of the consumer, one unit

of consumption generates one unit of data and data from all varieties sell at the same

price, while each type of license may sell at a different price.

The constraints on the data intermediary problems are critical. Equation (57) says

that the largest amount of own data the intermediary can sell to firm i is the amount
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of variety i data that the data intermediary has purchased. In contrast, equation (60)

recognizes that data from all varieties can be bundled together and resold to each indi-

vidual firm.

We assume free entry into the data intermediary sector at zero cost. This constrains

the prices pa and pb that the data intermediaries can charge and implies that the mo-

nopolist earns zero profits. This condition together with the fact that the two types of

data are perfect substitutes in the firm production function pin down the prices.

6.2 Equilibrium when Consumers Own Data

An equilibrium in which consumers own data consists of quantities {ct, Yt, cit, xit, x̃it, at,

Yit, Lit, Dit, Dait, Dbit, D
a
cit, D

b
cit, Bt, Nt, Lpt, Let, Lt} and prices {qit, pit, pait, pbit, past, pbst, wt,

rt, Vit} such that

1. {ct, cit, xit, x̃it, at} solve the Household Problem

2. {Lit, Yit, pit, Dait, Dbit, Dit, Vit} solve the Firm Problem

3. (qit) The effective consumer price is qit = pit − xitpast − x̃itpbst

4. Da
cit, D

b
cit, Bt, pait, and pbit solve the Data Intermediary Problem subject to the

constraint that there is free entry into this sector, so it makes zero profits

5. past clears the data market so that supply equals demand: Da
cit = xitcitLt

6. pbst clears the data market so that supply equals demand: Db
cit = x̃itcitLt

7. (Let) Free entry into producing a new variety leads to zero profits (including the

entrant’s share of the rents from creative destruction): χwt = Vit +
∫Nt
0 δ(x̃it)Vit di

Ṅt

8. Definition of Lpt: Lpt =
∫ Nt

0 Lit di

9. wt clears the labor market: Lpt + Let = Lt

10. rt clears the asset market: atLt =
∫ Nt

0 Vit di

11. Nt follows its law of motion: Ṅt = 1
χ(Lt − Lpt)

12. Yt ≡ ctLt denotes aggregate output

13. Exogenous population growth: Lt = L0e
gLt
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6.3 Understanding the Equilibrium when Consumers Own Data

While Section 8 will discuss the key features of this allocation, it is worth pausing here

to highlight some smaller results.

First, because own data and the bundle of other-variety data are perfect substitutes

(see equation (55)), in equilibrium

pat =
α

1− α
pbt (62)

where we’ve dropped the i subscript because of symmetry. At any other price ratio,

firms would buy only one type of data and not the other. Similarly, the consumer prices

for each type of data satisfy

past = pat and pbst = Ntpbt. (63)

Second, consider the inequality constraints in the Data Intermediary problems. In

equilibrium, the data intermediary will sell any data that it buys. Moreover, because

of nonrivalry, data can be bought once and sold multiple times. This means that both

inequality constraints will bind. First, Dait = Da
cit = xitYit; that is, all data on variety

i that the data intermediary purchases will be sold to firm i. Second, Dbit = Bt =

NDb
cit = Nx̃itYit (using symmetry); that is, all data that is licensed for sharing that the

data intermediary buys will be sold to all firms as bundled data.

7 Outlaw Data Sales

The final allocation that we consider is motivated by recent concerns over data privacy.

In the world in which firms own data, suppose the government, in an effort to protect

privacy, limits the use of data. In particular, it mandates that

x̃it = 0

xit ≤ x̄ ∈ (0, 1].

That is, firms are not allowed to sell their data to any third parties: x̃it = 0. A similar

allocation without the broad use of data may arise from an opt-out law that grants con-
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sumers the right to prevent firms from selling their data, since there are privacy costs

to the consumer and no counteracting direct income gain. Moreover, the government

may restrict firms to use less than 100 percent of their own-variety data, parameterized

by xit = x̄. We require x̄ > 0 in our setting — otherwise output of each firm would be

zero because data is an essential input to production.

With this determination of x̃it and xit, the rest of the equilibrium looks exactly like

the firms-own-data case, so we will not repeat that setup here. Instead, we turn next to

comparing the equilibrium outcomes across these different allocations.

8 Key Insights from Comparing the Different Allocations

This section delivers the payoff from the preparation we’ve made in the previous secti-

ons: we see how the different allocation mechanisms we’ve studied lead to different

outcomes. We compare the allocations on the balanced growth path for the social

planner (sp), when consumers own data (c), when firms own data (f ), and when the

government outlaws the selling of data (os). When firms restrict the sale of data to limit

their exposure to creative destruction, what are the consequences? When consumers

own data and can sell it, is the allocation optimal? What if selling data is banned out of

a concern for privacy?

Privacy and Data Sales. The steady-state fraction of data that is used by other firms

is given by4

x̃sp =

(
1

κ̃
· η

1− η

)1/2

(64)

x̃c =

(
1

κ̃
· η

1− η
· σ − 1

σ

)1/2

(65)

x̃f =

(
2Γρ

(2− Γ)δ0

)1/2

where Γ ≡ η(σ − 1)
ε
ε−1 − ση

(66)

x̃os = 0. (67)

Interestingly, even when consumers own and sell their data, the equilibrium allocation

features inefficiently low data sales because of the σ−1
σ < 1 term in equation (65). The

4We assume ε
ε−1

> ση and ε
ε−1

> 3
2
ση − 1

2
η so that Γ ∈ (0, 2) holds in equation (66).
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equilibrium price of data that consumers receive in exchange for selling is influenced

by this same factor:

pbst =
η

1− η
· σ − 1

σ
· 1

x̃c
(ψcLt)

1
σ−1 .

Recall that σ
σ−1 is the standard monopoly markup in the goods market, so the intuition

is that the monopoly markup distortion leads data to sell for a price that is inefficiently

low, causing consumers to sell too little data.

The strong similarity between the consumer and optimal x̃ can be contrasted with

data sales when firms own data, given in equation (66). First, the utility cost associated

with privacy κ̃ does not enter the firm solution, as firms do not inherently care about

privacy. Second, x̃f depends on δ0, capturing the crucial role of creative destruction

— which does not enter the planner or consumer solutions for x̃. As we will see in our

numerical examples, reasonable values for δ0 mean that creative destruction concerns

are first-order for firms, so they may sell little data to other firms and choose a small x̃f .

Thus, firms inadvertently deliver privacy benefits to consumers. But as we will see, this

aversion to selling data has other consequences. An extreme version of this allocation

is the one that outlaws data sales entirely, so that x̃os = 0.

The privacy considerations that involve only firm i and consumption of variety i are

similar. In particular,

xsp =
α

1− α
κ̃

κ
· x̃sp (68)

xc =
α

1− α
κ̃

κ
· x̃c (69)

xf = 1 (70)

xos = x̄ ∈ (0, 1]. (71)

These equations show that when firms own data, they overuse it. That is, firms set

xf = 1, while the social planner and consumers take into account the privacy costs

associated with κ and generally choose less direct use of data, xc < xsp < 1.

Firm Size. Because of symmetry, firm size Lit equals the ratio of production employ-

ment to varieties, Lpt/Nt. This quantity plays an important role in all of the allocations
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and is denoted by the parameter ν:

Lallocit =

(
Lpt
Nt

)alloc
≡ νalloc, for alloc ∈ {sp, c, f, os} (72)

where

νsp ≡ χρ ·
σ − 1

1− η
(73)

νc ≡ χgL ·
ρ+ δ(x̃c)

gL + δ(x̃c)
· σ − 1

1− ση
(74)

νf ≡ χgL ·
ρ+ δ(x̃f )

gL + δ(x̃f )
· σ − 1

1− ση ε−1
ε

(75)

νos ≡ χρ ·
σ − 1

1− ση
. (76)

For all allocations, firm size as measured by employees is constant. This is because

the entry cost technology is such that a fixed number of workers can create a new

variety. Several economic forces determine firm size. First, notice how similar νsp and

νos are. That is, steady-state firm size in the allocation with no data sales features a firm

size that looks superficially similar to the optimal firm size. Both are increasing in χ

(the entry cost) and ρ (the rate of time preference). Higher values of these parameters

deter entry, and since the two uses for labor are entry and production, this increases

labor used in production.

The only difference between the two expressions is that the optimal firm size de-

pends on 1 − η where the equilibrium firm size depends on 1 − ση. This difference is

subtle and important to understand, as this same difference plays an important role

throughout the allocations. To understand this difference, we rewrite the optimal allo-

cation as (
Lpt
Nt

)sp
= νsp = Const · 1/(1− η)

1/(σ − 1)
. (77)

The left-hand side of this expression is the ratio of production labor to the amount

of varieties, and variety is closely related to entry. The right-hand side is the ratio of

two elasticities. The numerator, 1/(1− η), is the degree of increasing returns to scale at

the firm level that results from the nonrivalry of data. The denominator, 1/(σ − 1), is

the degree of increasing returns to scale associated with the love of variety. Perhaps not
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surprisingly, the planner makes the ratio of production labor to the amount of varieties

proportional to the ratio of these two elasticities, which capture the social value of

production labor and entry.

In contrast, consider the equilibrium allocation when selling data is outlawed. Flip-

ping the numerator and denominator, equation (76) can be expressed as(
Nt

Lpt

)os
=

1

νos
= Const · 1− ση

σ − 1
. (78)

As shown in Appendix equation (A.67), this expression derives from the free entry con-

dition for firms, i.e., χwt = Vit (since there is no creative destruction in the outlaw-

sales equilibrium). The value of a firm is the present discounted value of future profits.

The number of firms in the economy, Nt, depends on profits relative to entry costs.

Aggregate profits as a share of aggregate output equals (1 − ση)/σ · 1/(1 − η), while

aggregate payments to production labor as a share of output equals (σ−1)/σ ·1/(1−η).

Equation (78) says that equilibrium variety is proportional to this ratio. And the inverse

of this expression gives νos.

Equations (73) and (76) imply that firm employment is larger in the equilibrium

with no data sales than in the optimal allocation since σ > 1. This occurs because

of the profit share term. Intuitively, the equilibrium allocation creates varieties based

on profits, while the social planner creates varieties based on the full social surplus.

Because profits are less than social surplus — the standard appropriability problem

— the outlaw-sales equilibrium features too few firms. The flip side is that firms in

equilibrium are inefficiently large.

We will discuss the equations for νc and νf after considering the number of firms

and varieties, next.

Number of Firms and Varieties. The effect of the appropriability problem on the

measure of varieties can be seen more directly in our next set of equations. The number

of firms (varieties) in an allocation is proportional to the labor force:

Nalloc
t = ψallocLt where ψalloc ≡

1

χgL + νalloc
. (79)
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Notice that the last half of the denominator of the ψ expression is just the ν term itself.

For gL small, variety is basically inversely proportional to firm size, verifying intuition

provided above about firm size and variety.

Next, we compare firm size and variety between the equilibrium in which consu-

mers own data and the outlaw-sales equilibrium in which firms own data. Equati-

ons (74) and (76) show that firm sizes differ in these two allocations only because of

creative destruction, which enters in two ways. In the numerator of (74), there is a

ρ+δ(x̃c) term. This captures the extent to which creative destruction raises the effective

rate at which firms discount future profits. In the denominator, however, there is an

additional term involving δ(x̃c). This term captures the rents from destroyed firms as

they flow to new entrants — business stealing — essentially raising the return to entry.

If ρ = gL, then these two terms cancel and creative destruction does not influence firm

size and variety creation.

A similar effect impacts firm size and the number of firms in the equilibrium when

firms own data and can legally buy and sell it, as seen in equation (75). However, in that

allocation, data sales are typically lower than when consumers own data, implying that

creative destruction is also lower, reducing the role of this term.

Aggregate Output and Economic Growth. The key finding of the paper is how data

use influences living standards. The next set of equations shows aggregate output in

the various allocations. For the allocations that feature some data sharing, the equation

for aggregate output is

Y alloc
t =

[
νalloc(1− α)ηx̃ηalloc

] 1
1−η (ψallocLt)

1+ 1
σ−1

+ η
1−η for alloc ∈ {sp, c, f}. (80)

There are essentially three key terms in this expression, and all have a clear interpre-

tation. First, νalloc captures the size of each individual firm, and it is raised to the

power 1/(1 − η) because of the increasing returns to scale at the firm level associated

with data. Second, the term (1 − α)x̃alloc captures data. In particular, recall (e.g., from

equation (33)) that

Dit = [αxit + (1− α)x̃itNt]Yit = Nt

[
αxit
Nt

+ (1− α)x̃it

]
Yit. (81)



NONRIVALRY AND THE ECONOMICS OF DATA 33

As Nt grows large, the own use term αxit/Nt disappears, and data is ultimately pro-

portional to (1 − α)x̃alloc. This is raised to the power η because of the usual Dη
it term

in the production function for output, and it is further raised to the power 1/(1 − η)

because of the feedback effect through Yit. Finally, the last term in equation (80) is

Nt = ψallocLt raised to the power 1 + 1
σ−1 + η

1−η . This exponent captures the overall

degree of increasing returns to scale in the economy: 1/(σ−1) comes from the standard

variety effect associated with the nonrivalry of ideas while η/(1 − η) comes from the

extra degree of increasing returns associated with the nonrivalry of data. This last effect

enters directly because of theNt term associated with broad data use in (81) that we just

discussed.

Aggregate output when there is some data sharing can be contrasted with output

when selling data is outlawed:

Y os
t = [νosα

ηxηos]
1

1−η (ψosLt)
1+ 1

σ−1 . (82)

Two main differences stand out. The first is related to the ν and ψ terms and the diffe-

rences in the allocations in these two economies. But the second is perhaps surprising

and potentially even more important: there is a fundamental difference in the role of

scale between the allocations that involve data sharing and the outlaw-sales equili-

brium. In the allocations with broad data use, the exponent onLt is 1+ 1
σ−1 + η

1−η , while

in the outlaw-sales equilibrium, the additional returns associated with broad data use
η

1−η are absent. The reason for this can be seen directly in equation (81) above: when

x̃ = 0, the additional scale term associated with (1−α)x̃Nt disappears and the amount

of data just depends on αxos. That is, firms learn only from their own production and

not from the Nt other firms in the economy.

The results for per capita income illustrate this even more clearly. In this economy,

consumption per person equals output per person, Yt/Lt. Dividing the equations above

by Lt gives

calloct ∝ L
1

σ−1
+ η

1−η
t for alloc ∈ {sp, c, f} (83)

cost ∝ L
1

σ−1

t . (84)

This effect can be seen by taking logs and derivatives of these equations to obtain
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the growth rate of income and consumption per person along a balanced growth path:

gallocc =

(
1

σ − 1
+

η

1− η

)
gL for alloc ∈ {sp, c, f} (85)

gosc =

(
1

σ − 1

)
gL. (86)

Even though this is a semi-endogenous growth setup in which standard policies have

level effects but not growth effects, we see that data use is different. Allocations in

which data is used broadly feature faster long-run rates of economic growth.

Notice that the nature of data use matters for this result. If every firm sells to 10

others, then this mimics the “outlaw selling” equilibrium because the number of firms

benefiting from the data does not grow with the economy. Conversely, if all firms sell

their data to one quarter of the other firms, then this economy features the additional

scale effect: the number of firms benefiting from data increases as the economy grows

larger.

In an economy in which firms do not sell data, firms learn only from their own

production. Because the entry cost is a fixed number of units of labor, the number

of firms is directly proportional to the amount of labor in the economy. But this is

just another way of saying that firm size is invariant to the overall population of the

economy: a bigger economy has more firms but not larger firms. This means that in the

outlaw-sales economy, there is no additional data benefit to having a larger economy,

so the growth rate does not incorporate a boost from the increasing returns associated

with the nonrivalry of data. Contrast this with an economy in which data is used more

broadly. In that case, the amount of data that each firm can learn from is an increa-

sing function of the size of the economy. Therefore, the scale of the economy and the

increasing returns associated with the nonrivalry of data interact.5

Data and Firm Production. This difference in the returns to scale shows up throug-

hout the allocations. This can be seen, for example, in the comparisons of data used by

5Notice that this finding is robust to specifying the entry cost differently. For example, if the entry cost
is such that the number of firms is N = Lβ , then firm size will be L

N
= L1−β and firm data will grow

in proportion. Notice that β could be less than one or greater than one: it is possible that firm size is
decreasing in the overall scale of the economy if varieties are easy to create. Contrast that with the data
sharing case, in which each firm benefits from all data in the economy: Di ∝ NYi ∝ N · L

N
= L. That is,

regardless of β, the full scale effect is passed through.



NONRIVALRY AND THE ECONOMICS OF DATA 35

each firm and aggregate data use:

Dalloc
it = [νalloc(1− α)x̃allocψallocLt]

1
1−η for alloc ∈ {sp, c, f} (87)

Dos
it = [νosαxos]

1
1−η (88)

and

Dalloc
t = NDi = [νalloc(1− α)x̃alloc]

1
1−η (ψallocLt)

1+ 1
1−η for alloc ∈ {sp, c, f} (89)

Dos
t = [νosαxos]

1
1−η ψosLt. (90)

The scale difference also shows up in firm production. While firm size measured by

employment is invariant to the size of the economy, firm production is not invariant

when data is used broadly. In that case, firm production grows with the overall size of

the economy because of the nonrivalry of data:

Y alloc
it =

[
νalloc(1− α)ηx̃ηalloc

] 1
1−η (ψallocLt)

η
1−η for alloc ∈ {sp, c, f} (91)

Y os
it = [νosα

ηxηos]
1

1−η . (92)

Wages, Profits, and Pricing. In the equilibrium allocations, i.e., alloc ∈ {c, f, os}, the

factor income share of production labor and profits in aggregate output add to one and

are given by

(
wtLpt
Yt

)c
=

(
wtLpt
Yt

)os
=

σ − 1

σ(1− η)
,

(
wtLpt
Yt

)f
=

σ − 1

σ(1− η ε−1
ε )

(93)(
Ntπt
Yt

)c
=

(
Ntπt
Yt

)os
=

1− ση
σ(1− η)

,

(
Ntπt
Yt

)f
=

1− ση ε−1
ε

σ(1− η ε−1
ε )

. (94)

By comparison, recall from equation (19) that the aggregate production function for

the economy is

Yt = N
1

σ−1

t Dη
itLpt. (95)

Therefore, the marginal product of production labor multiplied by Lpt as a share of

aggregate output from the social planner’s perspective is equal to one. That is, as is

standard in models with varieties, labor is underpaid relative to its social marginal
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product so that the economy can provide some profits to incentivize the creation of

new varieties.

It is also interesting to compare the monopoly markup and pricing in the different

equilibrium allocations. The price of a variety is

qcit = N
1

σ−1

t = (ψcLt)
1

σ−1 (96)

pcit =

(
1 + η · σ − 1

σ(1− η)

)
N

1
σ−1

t =

(
1 + η · σ − 1

σ(1− η)

)
(ψcLt)

1
σ−1 (97)

pfit = N
1

σ−1

t = (ψfLt)
1

σ−1 (98)

posit = N
1

σ−1

t = (ψosLt)
1

σ−1 . (99)

Two points are worth noting. First, the effective price paid by consumers (i.e., incor-

porating the fact that they can sell their data) in the consumers-own-data allocation —

qcit — and the actual price paid by consumers in the other allocations — pfit, p
os
it — are

both equal to N
1

σ−1

t . Of course, Nt will differ across these allocations, but the point is

that the consumer prices are both the same function of the number of firms. Moreover,

there is no “markup” term that shows up in this expression. This is a feature of the

exogenous labor supply in our environment. One way or the other, labor can only be

used to produce goods and so the monopoly markup does not result in a misallocation

of labor. This is true even though firms internalize that they have increasing returns

because of the learning-by-doing associated with data.

Second, notice that the price that firms receive for their sales in the consumers-

own-data equilibrium, pcit, does involve a markup term given by 1 + η · σ−1
σ(1−η) . If η = 0,

this term would drop out. Instead, it captures the fact that firms know that consumers

can sell their data. Therefore, firms charge an additional markup over marginal cost to

capture this revenue.

The Value of Data. The value of data as a share of GDP is given by(
Nt(patDat + pbtDbt)

Yt

)c
=

η

1− η
σ − 1

σ
(100)(

Nt(patYit + pbtDbt)

Yt

)f
=

η

1− η ε−1
ε

· σ − 1

σ
. (101)
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We will use these expressions in the numerical examples shortly.6

9 Numerical Examples

We now provide a set of numerical examples to illustrate the forces in the model. This

should not be viewed as a formal calibration that can be compared quantitatively to

facts about the U.S. economy. For example, our model assumes that all firms benefit

from data equally and that each firm’s data is equally useful. In this sense, the model

might more naturally be compared to a particular industry, such as radiology or auto-

nomous cars. Nevertheless, we find it useful to think about how large the various forces

in the model might possibly be.

How Large is η? We have two approaches to gaining insight into the value of η. First,

from equation (100), in the equilibrium allocation in which consumers own data, the

share of GDP spent on data is given by η
1−η

σ−1
σ (and when firms own data, this formula

provides an excellent approximation to the value of own and purchased data).7 Taking

a standard value of σ = 4, this equals .75 · η
1−η . How important is data as a factor of

production? A casual guess is that it accounts for no more than 5 percent of GDP, which

would imply a value of η = .0625. And 10 percent of GDP seems like a solid upper

bound, implying a value of η = .1176. With this as motivation, we take a benchmark va-

lue of η = .06 and consider robustness to values of 0.03 and 0.12, with some preference

for the two lower values.

An alternative way to gain insight into η is to look at machine learning error rates

and how they change with the quantity of data. Sun, Shrivastava, Singh and Gupta

(2017) study how the error rate in image recognition applications of machine learning

changes with the number of images in the learning sample. They examine four different

approaches with a number of images that ranges from 10 million to 300 million. If we

assume that the error rate is proportional to M−β where M is the number of images,

then we can compute an estimate of β. Using their data, together with a related exercise

from Facebook from Joulin, van der Maaten, Jabri and Vasilache (2015), we obtain 5

6When firms own the data, the total value above is the sum of own and purchased data. Since own data
is not purchased, we price it at its shadow value pat = α

1−αpbt, driven by perfect substitutability.
7We choose a large value of ε equal to 50, so that ε−1

ε
≈ 1; plugging this into equation (101) gives the

result.
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Figure 1: Estimating β from Image Recognition Algorithms

Note: The parameter β comes from a model in which the error rate is proportional to M−β . More
specifically, β is estimated by regressing the log of the error rate 1−mAP on the log number of images
using data from Sun, Shrivastava, Singh and Gupta (2017) in the first three panels and from Joulin,
van der Maaten, Jabri and Vasilache (2015) in the last panel. A fifth estimate from Figure 4a of Sun,
Shrivastava, Singh and Gupta (2017) with fine tuning is omitted but yields an estimate of β = 0.040.
The data are plotted in blue while the fitted log-linear curve is shown in green.

different estimates of β, ranging from 0.033 to 0.143, with a mean of 0.082, as shown in

Figure 1.8 At this mean value, a doubling of the amount of data leads the error rate to fall

by 5.9 percent. Notably, the power function fits well and there is no tendency (at least in

the Google study) for the error rate to flatten at a high number of images. Furthermore,

as data proliferates, firms will develop new algorithms and applications that make even

better use of more data. Posner and Weyl (2018) suggest that this can delay or even

offset sharp diminishing returns to data. Obviously, it would be valuable to use a bro-

ader set of applications in order to estimate η in different contexts; Hestness, Narang,

Ardalani, Diamos, Jun, Kianinejad, Patwary, Yang and Zhou (2017) provide estimates

ranging from 0.07 to 0.35 for a variety of applications, including speech recognition,

language translation, and image classification.

8We are grateful to Abhinav Shrivastava and Chen Sun for providing the data from their paper and the
Facebook paper and for help interpreting the “mAP” metric.
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In order to map the estimate of β into the parameter η in our model, we need

to make some assumption about how the error rate translates into productivity. If

productivity equals the inverse of the error rate, then η = β. However, there is no

reason why this assumption needs to hold, and one could imagine that productivity is

the error rate raised to some other exponent. Without knowledge of this exponent, we

cannot map the estimates from the machine learning literature directly into η. Hence,

we prefer our earlier approach to calibration based on data’s share of GDP. What we find

most valuable about the machine learning evidence is that it supports the power law

formulation that is assumed in our model.

Other parameters. Other parameter values used in our example are reported in Ta-

ble 2. We consider an elasticity of substitution of 4 implying that the degree of incre-

asing returns in the economy is 1
σ−1 = 0.33 when there are no data sales, rising to

1
σ−1 + η

1−η = 0.40 when data is used broadly; our baseline value of η = 0.06 implies η/(1−

η) = 0.064. Population growth in advanced economies is around 1 percent per year,

but the growth rate of R&D labor is closer to 4 percent; as a compromise, we choose

gL = 0.02. Combined with the returns to scale, this implies steady-state growth rates of

consumption per person of 0.67 percent when selling data is outlawed and 0.79 percent

when data is used broadly. Of course these are lower than what we see in advanced

economies, but our model omits quality improvements within firms/varieties, so we

probably should not match a higher growth rate. We set L0 = 100, corresponding to a

workforce of around 100 million people; labor units are therefore millions of people. We

set the rate of time preference to 2.5 percent (it must be larger than gL). Entry requires

χ = 0.01 workers; because labor units are in millions of people, this corresponds to

10,000 people, and with an R&D share of the population of around 1 percent, this would

mean 100 researchers. We set the weight on own data to α = 0.5; this parameter plays

very little role in our results.

The privacy and creative destruction parameters and less standard, so we choose

baseline values, but also explore a wide range of values in our numerical exercise. Re-

garding the privacy cost parameters, κ and κ̃, Athey, Catalini and Tucker (2017) show

that people express concerns about privacy but are willing to share once incentivized,

even by a relatively small reward: a majority of MIT students in their survey were wil-
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Table 2: Parameter Values

Description Parameter Value

Importance of data η 0.06

Elasticity of substitution (goods) σ 4

Weight on privacy κ = κ̃ 0.20

Population level L0 100

Population growth rate gL 0.02

Rate of time preference ρ 0.025

Labor cost of entry χ 0.01

Creative destruction δ0 0.4

Weight on own data α 1/2

Elasticity of substitution (data) ε 50

Use of own data in OS x̄ 1

Note: Baseline parameter values for the numerical example.

ling to share the email addresses of three close friends in exchange for a free pizza.

Nevertheless, we give an important role to privacy; an individual’s privacy concerns

regarding all their economic activity may be different than that exhibited in the lab. We

set κ̃ = 0.20, implying that having all of one’s data shared with all firms is equivalent

to a reduction in consumption of 10 percent; we explore robustness to values between

0.02 and 0.99. Selling all of a variety’s data increases the rate of creative destruction by

δ0/2, which we calibrate to 20 percent; absent any other death, this corresponds to an

expected lifetime of 5 years. We explore robustness to values of δ0 between 0.02 and

0.99.

9.1 Consumption-Equivalent Welfare

Consumers care about consumption as well as privacy. A consumption-equivalent

welfare measure incorporates both. Along a balanced growth path, welfare is given by

Uallocss =
L0

ρ̃

(
log calloc0 − κ̃

2
x̃2
alloc +

gallocc

ρ̃

)
.
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Notice that the xit “own privacy” term drops out because it is scaled by 1/N ; recall

equation (4). Let Uallocss (λ) denote steady-state welfare when we perturb the allocation

of consumption by some proportion λ:

Uallocss (λ) =
L0

ρ̃

(
log(λcalloc0 )− κ

2
x2
alloc +

gallocc

ρ̃

)
.

Then consumption equivalent welfare λalloc is the proportion by which consump-

tion must be decreased in the optimal allocation to deliver the same welfare as in some

other allocation:

U spss (λalloc) = Uallocss (1).

Moreover, it is straightforward to see that this consumption equivalent welfare measure

is given by

log λalloc = log calloc0 − log csp0︸ ︷︷ ︸
Level term

− κ̃
2

(
x̃2
alloc − x̃2

sp

)
︸ ︷︷ ︸

Privacy term

+
gallocc − gspc

ρ̃︸ ︷︷ ︸
Growth term

. (102)

That is, there is an additive decomposition of consumption-equivalent welfare into

terms reflecting differences in the level of consumption, the extent of privacy, and the

growth rate.

9.2 Quantitative Analysis of Welfare and Property Rights

In this section we compare consumption-equivalent welfare for the consumers-own-

data and firms-own-data property right regimes. The parameters that we have the

most uncertainty over are δ0, κ, and κ̃, so we hold all other parameters at the baseline

calibration and explore the behavior of the model across a wide range values for these

parameters. In the next section, we study the allocations in detail for a particular set of

parameter values.

Figure 2 shows the ratio of consumption-equivalent welfares, λc/λf , for various

combinations of η, δ0, and κ̃ = κ. When this ratio is less than one — the red triangular

region in the plots — the “Firms Own Data” allocation is superior. In the majority of the

plot, however, this ratio is larger than one, indicating that the “Consumers Own Data”
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allocation is generally superior. In fact the result is even stronger. When η = 0.06, the

smallest this ratio gets is 0.998. Moreover, across the three plots (for different values of

η), the lowest value this ratio ever reaches is 0.993. In other words, even in the relatively

rare instances that the “Firms Own Data” allocation generates higher welfare, it does so

by only a small amount. But when the “Consumers Own Data” allocation is superior, it

typically generates substantially higher welfare.

The theory can help us understand the parameter combinations for which the “Firms

Own Data” allocation is better. Recall that when consumers own data, they typically

sell a bit less than is socially optimal, so that x̃c < x̃sp; the reason is that the markup

in the economy means that firms generally value data less than the planner, so the

equilibrium price of data is inefficiently low. In contrast, the amount of data that firms

sell broadly, x̃f , depends on the creative destruction parameter δ0. As shown in equa-

tion (66), the lower is this parameter, the higher is x̃f . So by choosing the parameter

appropriately, the “Firms Own Data” allocation can generate a value of x̃f that is close

to x̃sp. This is what we see in Figure 2: for the right low values of δ0, the “Firms Own

Data” allocation is superior. Of course, as this parameter falls further, this raises x̃f ,

and it eventually leads to x̃f >> x̃sp: if creative destruction is not a problem for firms,

they will sell even more data than the planner desires. In this case, the “Firms Own

Data” allocation becomes inferior once again. This general logic explains why there is

a range of values for δ0, on the low end, where firms owning data is better.9

To summarize, this sensitivity analysis that explores model behavior across the pa-

rameter space suggests that the “Consumers Own Data” allocation typically generates

substantially higher welfare. It is only when the creative destruction force is very weak

and privacy concerns are very large that the “Firms Own Data” policy can be slightly

better.

9.3 The Baseline Numerical Example

Now that we understand that welfare is generally higher when consumers own data,

we explore allocations across property-right regimes in more detail for our baseline

parameterization to understand the sources of the welfare gains. The top panel of

9This is also related to the bulge in the left side of the red region in the η = 0.12 plot in Figure 2. In that
region, the firm would like to sell even more than 100% of its data: unconstrained by technology, it would
choose x̃f > 1.



NONRIVALRY AND THE ECONOMICS OF DATA 43

Table 3: Numerical Example

Summary Statistics

Data Use Firm Consu- Creative
“own” “others” size Variety mption Growth Destr.

Allocation x x̃ ν N/L = ψ c g δ

Social Planner 0.56 0.56 798 1002 45.3 0.79 0.064

Consumers Own Data 0.49 0.49 848 955 44.7 0.79 0.048

Firms Own Data 1 0.13 953 867 40.7 0.79 0.003

Outlaw Sales 1 0 987 843 22.4 0.67 0.000

Consumption-Equivalent Welfare

—— Decomposition ——
Welfare Level Privacy Growth

Allocation λ log λ term term term

Optimal Allocation 1 0 .. .. ..

Consumers Own Data 0.995 -0.005 -0.0128 0.0080 0.0000

Firms Own Data 0.925 -0.078 -0.1078 0.0303 0.0000

Outlaw Sales 0.396 -0.927 -0.7037 0.0319 -0.2553

Note: The table reports statistics from our numerical example for the different allocations using the
parameter values in Table 2. The top panel shows baseline statistics along a balanced growth path. Firm
size is multiplied by 106 and therefore is measured in people. The bottom panel reports consumption
equivalent welfare calculated according to equation (102). In particular, λ is the fraction by which
consumption must be decreased in the optimal allocation to deliver the same welfare as in some
alternative allocation.



44 JONES AND TONETTI

Figure 2: Consumption-Equivalent Welfare Ratio: λc/λf

Note: The plots show the ratio of consumption-equivalent welfare, λc/λf , for various combinations of
η, δ0, and κ̃ = κ. When this ratio is larger than one — which holds for most parameter combinations —
the “Consumers Own Data” allocation is superior. When this ratio is less than one — the red triangular
region in the plots — the “Firms Own Data” allocation is superior. The smallest and average values of
λc/λf in each plot are η Minimum Mean

.03 0.999 1.029

.06 0.998 1.055

.12 0.993 1.082

A black circle in each figure shows our benchmark calibration.

Table 3 shows summary statistics for key variables. The fraction of data that is used

broadly differs dramatically across the allocations. The social planner chooses to share
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56 percent of data, even taking privacy considerations into account. When consumers

own data, they sell less at 49 percent.10 As discussed earlier, the reason for this dif-

ference is the monopoly markup σ
σ−1 = 1.33 that leads the price at which consumers

sell their data to be too low relative to what the planner would want. These “high use”

allocations can be contrasted with the bottom two allocations. When firms own data,

they distort the use of data in two ways. First, they use 100 percent of their own data,

more than what consumers or the planner would desire. In this sense, firms do not

satisfy the privacy concerns of consumers. Second, there is too little sharing with other

firms relative to the planner: firms sell only 13 percent of their data to other firms. The

key factor in this decision is creative destruction. And of course, when selling data is

outlawed, the allocation features no data sales.

The next two columns of the top panel show that firm size and the number of varie-

ties differ across the allocations. When firms own data or when selling is outlawed, the

rate of creative destruction is low (see the last column). Less creative destruction has

two countervailing effects. On the one hand, it raises the present value of profits, which

tends to promote entry. On the other hand, it reduces the boost to entry associated with

business stealing. When ρ > gL the business stealing effect dominates and higher rates

of creative destruction lead to more entry and smaller firms. This can be seen in the

top panel of Table 3, where the number of varieties is higher when consumers own data

than in the two limited-sales allocations. Similarly, firm size is smaller when consumers

own data.

The outlaw-sales equilibrium features a smaller scale effect, which shows up both

in economic growth being slower and in the overall level of consumption being sub-

stantially lower.

The bottom panel of Table 3 shows the welfare decomposition using the baseline

parameter values. The allocation in which data selling is outlawed is stunningly infe-

rior: consumption-equivalent welfare is only 40 percent of that of the social planner.

A small part of this is the growth rate differential, but the bulk comes from distortions

to the level of consumption, most importantly the missing scale effect associated with

broad data use. Laws that prohibit data sales can have dramatic effects, reducing inco-

mes substantially.

10In the planner and consumers-own-data allocations x = x̃ because we’ve set κ = κ̃ and α = 1/2.
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One institution that appropriately balances these concerns is assigning ownership

of data to consumers. Data use is close to that of the social planner and consumption-

equivalent welfare falls just short of optimal in this example. Consumers take their own

privacy considerations into account but are incentivized by markets to sell their data

broadly to a range of firms, leading them to nearly-optimal allocations.

In contrast, when firms own data, concerns about creative destruction sharply limit

the amount of data they sell to other firms. While limited sharing generates some

privacy benefits, equal to about 3 percent of consumption, the social loss from nonrival

data not being used by other firms is much larger. Of course, the way we’ve modeled

privacy is ad hoc, as privacy considerations are not the main focus of the paper. Ho-

wever, our baseline parameterization of κ̃ was intentionally set to deliver large utility

costs from lack of privacy, and still the welfare losses are dominated by the use of data

in production.

Equilibrium welfare is just 93% of optimal when firms own data, compared to 99+%

of optimal when consumers own data. Failing to appropriately take advantage of the

nonrivalry of data leads consumption to be lower by more than seven percent along

the balanced growth path, even in this example in which there are sharply diminishing

returns to additional data.

10 Discussion

Implications for IO. Several issues related to antitrust and IO are raised by this fra-

mework. First, because firms see increasing returns to scale associated with data and,

perhaps more importantly, because of the nonrivalry of data, firms in this economy

would like to merge into a single economy-wide firm. Our paper provides a concept

of a firm as the boundary of data usage and the nonrivalry of data may create strong

pressures to increase scale. Return to the example of medical data being used within

hospital networks to improve the accuracy of diagnoses. If hospitals merged, they

would be able to estimate a more accurate algorithm, leading to better service on this

dimension for all of its patients.

Second, data may serve as a barrier to entry. A natural concern about the limited-

sales allocations is that as a firm accumulates data, this may make it harder for other
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firms to enter. In our framework, this force appears somewhat mechanically through

the dependence of the rate of creative destruction δ(x̃) on the amount of data sold. It

would be interesting in future research to consider this force more explicitly, say, in a

quality ladder model.

The Boundaries of Data Diffusion: Firms and Countries. At the beginning of the

paper, we noted that both ideas and data are nonrival. Both can be expressed as bit

strings, and it is natural to wonder about the differences between them. For example,

while ideas give rise to increasing returns and people create ideas, growth theory does

not typically suggest that Luxembourg and Hong Kong should be much poorer than

Germany and China because of their relatively small size. Instead, the view is that ideas

diffuse across countries, at least eventually and in general, so that the relevant scale is

the scale of the global market of connected countries rather than that of any individual

economy.

Data may be different. For example, it seems much easier to monitor and limit the

spread of data than to limit the spread of ideas. Perhaps this is because ideas, in order

to be useful, need to be embodied inside people in the form of human capital (which

makes it inherently hard to keep it from spreading). In contrast, data can be encrypted

and tightly controlled.

This raises an interesting question about whether the quantity of data that an or-

ganization has access to can serve as an important productivity advantage. This could

apply to firms or even to countries. For example, the Chinese economy is large. Could

access to the inherently larger quantities of data associated with a large population

provide an advantage. Lee (2018) suggests “China has more data than the US — way

more. Data is what makes AI go. A very good scientist with a ton of data will beat a

super scientist with a modest amount of data.” Similarly, a government that places a

lower weight on consumer privacy might induce more data sales, leading to a higher

level of aggregate output (but perhaps lower welfare). State-owned enterprises could

be encouraged to share data with each other. Or, in an industry context with trade, this

difference could lead to firms (e.g., in China) having a distinct productivity advantage

in data-intensive products.
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11 Conclusion

The economics of data raises many important questions. Privacy concerns have appro-

priately received a great deal of attention recently. Our framework supports this: when

firms own data, they may overuse it and not adequately respect consumer privacy.

But another important consideration arises from the nonrivalry of data. Because

data is infinitely usable, there are large social gains to allocations in which the same

data is used by multiple firms simultaneously. Consider our own profession. There

are clearly substantial benefits in having data from the PSID, the CPS, and the National

Income and Product Accounts available for all to use. At the heart of these gains is

the fact that data is nonrival. It is technologically feasible for medical data to be widely

used by health researchers and for all driving data to be used by every machine learning

algorithm. Yet when firms own such data, they may be reluctant to sell it because of

concerns over creative destruction. Our numerical examples suggest that the welfare

costs arising from limits to using nonrival data can be large.

Government restrictions that, out of a concern for privacy, outlaw selling data enti-

rely may be particularly harmful. Instead, our analysis indicates that giving data pro-

perty rights to consumers can lead to allocations that are close to optimal. Consumers

balance their concerns for privacy against the economic gains that come from selling

data to all interested parties.



NONRIVALRY AND THE ECONOMICS OF DATA 49

References

Abowd, John M. and Ian M. Schmutte, “An Economic Analysis of Privacy Protection and

Statistical Accuracy as Social Choices,” American Economic Review, 2019, 2019 (1), 171–202.

Acquisti, Alessandro, Curtis Taylor, and Liad Wagman, “The Economics of Privacy,” Journal of

Economic Literature, June 2016, 54 (2), 442–92.

Aghion, Philippe and Peter Howitt, “A Model of Growth through Creative Destruction,” Econo-

metrica, March 1992, 60 (2), 323–351.

Agrawal, Ajay, Joshua Gans, and Avi Goldfarb, Prediction Machines: The simple economics of

artificial intelligence, Harvard Business Press, 2018.

Akcigit, Ufuk and Qingmin Liu, “The Role of Information in Innovation and Competition,”

Journal of the European Economic Association, 2016, 14 (4), 828–870.

, Murat Alp Celik, and Jeremy Greenwood, “Buy, Keep, or Sell: Economic Growth and the

Market for Ideas,” Econometrica, 2016, 84 (3), 943–984.

Ali, S. Nageeb, Ayal Chen-Zion, and Erik Lillethun, “Reselling Information,” working paper,

2019.

, Greg Lewis, and Shoshana Vasserman, “Voluntary Disclosure and Personalized Pricing,”

working paper, 2018.

Arrieta Ibarra, Imanol, Leonard Goff, Diego Jimenez Hernandez, Jaron Lanier, and E. Glen Weyl,

“Should We Treat Data as Labor? Moving Beyond ”Free”,” American Economic Association

Papers and Proceedings, 2018, pp. 38–42.

Athey, Susan, Christian Catalini, and Catherine Tucker, “The Digital Privacy Paradox: Small

Money, Small Costs, Small Talk,” Working Paper 23488, National Bureau of Economic

Research June 2017.

Azevedo, Eduardo M., Alex Deng, Jose Montiel Olea, Justin M Rao, and E Glen Weyl, “A/B Testing

with Fat Tails,” 2019. University of Pennsylvania manuscript.

Bajari, Patrick, Victor Chernozhukov, Ali Hortacsu, and Junichi Suzuki, “The Impact of Big Data

on Firm Performance: An Empirical Investigation,” Working Paper 24334, National Bureau of

Economic Research February 2018.

Begenau, Juliane, Maryam Farboodi, and Laura Veldkamp, “Big Data in Finance and the Growth

of Large Firms,” 2017. NYU manuscript.



50 JONES AND TONETTI

Benassy, Jean-Pascal, “Taste for Variety and Optimum Production Patterns in Monopolistic

Competition,” Economics Letters, 1996, 52 (1), 41–47.

Bergemann, Dirk and Alessandro Bonatti, “Markets for Information: An Introduction,” Annual

Review of Economics, 2019, 11 (1), null.

Bollard, Albert, Peter J. Klenow, and Huiyu Li, “Entry Costs Rise with Development,” 2016.

Stanford University manuscript.

Carriere-Swallow, Yan and Vikram Haksar, “The Economics and Implications of Data: An

Integrated Perspective,” June 2019. IMF unpublished manuscript.

Chari, V. V. and Larry E. Jones, “A Reconsideration of the Problem of Social Cost: Free Riders and

Monopolists,” Economic Theory, 2000, 16 (1), 1–22.

Chiou, Lesley and Catherine Tucker, “Search Engines and Data Retention: Implications for Pri-

vacy and Antitrust,” Working Paper 23815, National Bureau of Economic Research September

2017.

Coase, Ronald H., “The Problem of Social Cost,” The Journal of Law and Economics, 1960, 3,

1–44.

Dixit, Avinash K. and Joseph E. Stiglitz, “Monopolistic Competition and Optimum Product

Diversity,” American Economic Review, June 1977, 67, 297–308.

Dosis, Anastasios and Wilfried Sand-Zantman, “The Ownership of Data,” July 2019. University

of Toulouse, unpublished manuscript.

Fajgelbaum, Pablo D., Edouard Schaal, and Mathieu Taschereau-Dumouchel, “Uncertainty

Traps,” The Quarterly Journal of Economics, 2017, 132 (4), 1641–1692.

Farboodi, Maryam and Laura Veldkamp, “Long Run Growth of Financial Technology,” NBER

Working Papers 23457, National Bureau of Economic Research, Inc May 2017.

and , “A Growth Model of the Data Economy,” working paper, 2019.

Goldfarb, Avi and Catherine E. Tucker, “Privacy Regulation and Online Advertising,” Manage-

ment science, 2011, 57 (1), 57–71.

Hestness, Joel, Sharan Narang, Newsha Ardalani, Gregory F. Diamos, Heewoo Jun, Hassan

Kianinejad, Md. Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou, “Deep Learning Scaling

is Predictable, Empirically,” CoRR, 2017, abs/1712.00409.



NONRIVALRY AND THE ECONOMICS OF DATA 51

Hughes-Cromwick, Ellen and Julia Coronado, “The Value of US Government Data to US

Business Decisions,” Journal of Economic Perspectives, February 2019, 33 (1), 131–46.

Ichihashi, Shota, “Non-Competing Data Intermediaries,” June 2019. Bank of Canada, unpublis-

hed manuscript.

Joulin, Armand, Laurens van der Maaten, Allan Jabri, and Nicolas Vasilache, “Learning Visual

Features from Large Weakly Supervised Data,” CoRR, 2015, abs/1511.02251.

Lee, Kai-Fu, “Tech companies should stop pretending AI won’t destroy jobs,” MIT Technology

Review, February 21 2018.

Miller, Amalia R. and Catherine Tucker, “Privacy Protection, Personalized Medicine, and

Genetic Testing,” Management Science, 2017, 64 (10), 4648–4668.

Ordonez, Guillermo, “The Asymmetric Effects of Financial Frictions,” Journal of Political

Economy, 2013, 121 (5), 844–895.

Posner, Eric A. and E. Glen Weyl, Radical Markets: Uprooting Capitalism and Democracy for a

Just Society, Princeton University Press, 2018.

Romer, Paul M., “Endogenous Technological Change,” Journal of Political Economy, October

1990, 98 (5), S71–S102.

Sun, Chen, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta, “Revisiting Unreasonable

Effectiveness of Data in Deep Learning Era,” CoRR, 2017, abs/1707.02968.

Varian, Hal, “Artificial Intelligence, Economics, and Industrial Organization,” in Ajay K. Agrawal,

Joshua Gans, and Avi Goldfarb, eds., The Economics of Artificial Intelligence: An Agenda,

University of Chicago Press, 2018.

Veldkamp, Laura, “Slow Boom, Sudden Crash,” Journal of Economic Theory, 2005, 124 (2), 230–

257.


