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Abstract

We examine linear-quadratic signaling games in continuous time between a long-run

player that has a normally distributed type and a myopic player who privately observes

a noisy signal of the former’s actions. A public signal of the myopic player’s behavior

is observed (i.e., there is two-sided signaling) and shocks are Brownian. We construct

linear Markov equilibria using belief states up to the long-run player’s second-order

belief. The latter state is an explicit function of past play, reflecting that past behavior

is used to forecast the continuation game. Via this higher-order belief channel, the

informativeness of the long-run player’s action is not only driven by the weight that

the linear strategy attaches to her type, but also by how aggressively she signaled in

the past. Applications to models of leadership, reputation, and trading are examined.

1 Introduction

The phenomenon of signaling—that is, the transmission of information through actions—is

pervasive in economics, influencing areas as diverse as education (Spence, 1973), finance

(Kyle, 1985) and leadership (Hermalin, 1998). Despite this breadth, the great majority of

signaling games have a commonality: the sender is certain of the receiver’s belief about the

former’s type at the moment of acting—the receiver’s belief is public.1 That economic agents
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Kolb: Indiana University Kelley School of Business, 1309 E. Tenth St., Bloomington, IN 47405
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1We review the related literature later in this section.
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operate under perfect knowledge of what others believe is questionable in many situations. In

particular, imperfect private signals of behavior can arise in many ongoing interactions: when

employers subjectively assess workers’ performances (MacLeod, 2003; Levin, 2003); when

traders handle others’ orders (Yang and Zhu, 2019); or when data brokers collect consumer

data (Bonatti and Cisternas, 2019). In those settings, receivers’ beliefs over fundamentals

such as a worker’s ability, an asset’s value, or a consumer’s willingness to pay, are private.

Allowing for private monitoring of an informed player’s actions in dynamic settings can

open the way for a whole new set of applied-theory questions to be analyzed. How do leaders

influence their followers when they don’t know how their actions have been interpreted? Is

an agent’s ability to manage a reputation hindered by not observing the signals generated

by her actions? How is trading behavior affected by the possibility of hidden leakages to

other traders? A comprehensive treatment of these questions is an important agenda, yet

it presents at least three challenges. First, higher-order beliefs can arise: in most settings,

senders will have to form a non-trivial belief about their receivers’ beliefs. Second, such games

are inherently asymmetric: when facing a sender of a fixed type, the receiver develops evolving

private information in the form of a belief. Third, most analyses will be non-stationary due

to ongoing learning effects. Are there settings where the ‘beliefs about beliefs’ problem is

manageable? Can we develop methods for a tractable treatment of asymmetric signaling

games? What are the implications on behavior and economic outcomes?

Towards answering these questions, in this paper we examine linear-quadratic-Gaussian

games of one-sided incomplete information and private monitoring. A long-run player (she)

and a myopic one (he), both with linear-quadratic preferences, interact over a finite horizon.

The long-run player has a normally distributed type. The key departure from the existing

models lies in the myopic player privately observing a noisy signal of the long-run player’s

action. To make this departure minimal, we let the long-run player learn about the myopic

player’s private inferences from an imperfect public signal of the latter’s behavior. The shocks

in both signals are additive and Brownian. Using continuous-time methods, we construct

linear Markov perfect equilibria (LME) in which the players’ beliefs are the relevant states.

Equilibrium construction and signaling. The construction of non-trivial equilibria in

games of private monitoring can be a daunting task. In fact, to estimate rivals’ continuation

behavior under any strategy, players usually have to make an inference of the private histories

of their rivals. Not knowing what their rivals have seen, the players will then rely on their

past play; but this implies that players’ inferences will in turn vary with their own private

histories. Thus, (i) probability distributions over histories must be computed, and (ii) the

continuation game at an off-path history may differ from any on-path counterpart.
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With incomplete information, one expects this statistical inference problem to become

one of estimation of belief states that summarize the payoff-relevant aspects of the players’

private histories—our setup offers a parsimonious treatment of this issue. Specifically, the

quadratic preferences open the possibility of our players using strategies that are linear

in their beliefs’ posterior means (henceforth, beliefs). Conjecturing such linear strategies,

learning is (conditionally) Gaussian: the myopic player’s belief is linear in the history of her

private signals, and the long-run player’s second-order belief —her belief about the myopic

player’s belief—is linear in the histories of the public signal and her past play. The estimation

of histories described in (i) is thus simplified by the fact that these are aggregated linearly.

The long-run player’s second-order belief is private—even in equilibrium—as her actions

depend on her type; hence, the myopic player must forecast this state. The problem of the

state space expanding is circumvented by a key representation (Lemma 1) that expresses

the (candidate, on path) second-order belief in terms of the long-run player’s type and the

belief about it based on the public signal exclusively (and that makes this “public state” a

relevant one). Thus, our analysis uses a novel additional state—a controlled second-order

belief—that is redundant on the path of play (part (ii) above). Equipped with Markov belief

states as sufficient statistics, we can write the long-run player’s best-response problem as

one of stochastic control, and use dynamic programming for finding LME.2

Despite the complexities it introduces, private monitoring has natural implications for

signaling. In fact, the notion that individuals rely on their past behavior to forecast what

others currently know strongly resonates with reality: a leader relying on her past behavior

for estimating an organization’s understanding of the environment in which it operates; a

politician relying on her past actions for gauging people’s perception of her reputation; a

trader using her past trades for estimating other investors’ perception of her private infor-

mation. By contrast, in the knife-edge case in which all the signals are public, past behavior

becomes irrelevant: current beliefs are fully determined by the realized public history.

Our representation result encodes the signaling implications of this explicit use of past

play. Namely, since actions are used to forecast the myopic player’s belief, and different types

behave differently in equilibrium, different types expect their “receivers” to have different

beliefs. Consequently, the equilibrium informativeness of the long-run player’s action is

determined not only by the weight that her strategy places on her type, but also by her

past signaling behavior via the second-order belief channel. We refer to this as the history-

inference effect on signaling. The potential amplitude of this effect is largest when the public

signal is pure noise (the no-feedback case), and thus the reliance on past play to forecast the

continuation game is strongest; conversely, it disappears when beliefs are public.

2The same states apply if the “receiver” is not myopic. The public state creates signal-jamming motives.
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Applications. A key asset of our analysis is that we can compute behavior that explicitly

conditions on beliefs. (This is done partly via ordinary differential equations (ODEs), which

we discuss shortly.) To leverage this advantage, we examine one instance of our main model

of Section 3, and two applications based on extensions of it.

In Section 2, we illustrate the history-inference effect and its implications for outcomes

by means of a coordination game inspired by the linear-quadratic team theory of Marschak

and Radner (1972)—this framework, along with its generalizations allowing for misaligned

preferences, has become the canonical laboratory for studying organizations.3

In the setting we examine, a team is comprised of a leader and a follower. The team’s

performance increases with the proximity of its members’ actions (coordination) and with

the proximity of the leader’s actions to a newly realized state of the world (adaptation).

The leader’s and team’s payoffs coincide, while the follower simply attempts to match the

leader’s action at all times. Recognizing the existence of important structural barriers to the

transmission of knowledge within organizations, we assume that the leader can convey the

state of the world only gradually via an imperfect signal of her behavior privately observed by

the follower (e.g., a subjective evaluation). In such a context, we show that the coordination

motive leads the history-inference effect to result in more information being transmitted

relative to the case in which the follower’s belief is public; yet the team’s performance is

lower. Thus, organizations with a more shared understanding of the economic environment

can in fact underperform their more heterogenous counterparts.

Uncertainty about others’ beliefs also arises in reputational settings. In Section 5.1, we

examine a model of horizontal reputation based on an extension allowing for terminal payoffs:

the long-run player suffers a terminal quadratic loss that increases in the distance between

the myopic player’s belief and the type’s prior (e.g., a politician facing reelection trying to

build a reputation for neutrality). In such a context, we show that not directly observing

her reputation can benefit the long-run player—this is despite the negative direct effect

from increased uncertainty over a concave objective. Indeed, since higher types take higher

actions due to their larger biases, those types must offset higher beliefs to appear unbiased;

the history-inference effect then reduces the informativeness of the long-run player’s action,

making beliefs less sensitive to new information, a strategic effect that can dominate.

Finally, in Section 5.2 we exploit the presence of the public belief state in a trading

model in which an informed trader faces both a myopic trader who privately monitors her

orders and a competitive market maker who only observes the public total order flow. In

this context, we show that there is no linear Markov equilibrium for any degree of noise of

the private signal. Intuitively, the myopic player introduces momentum into the price, as the

3Dessein and Santos (2006), Alonso et al. (2008) and Rantakari (2008) are prominent recent examples.
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information he obtains now gets distributed to the market maker through all future order

flows. This causes prices to move against the insider and creates urgency—with an infinite

number of opportunities to trade, the insider trades away all information in the first instant.

Existence of LME and technical contribution. The setting we examine is asymmetric,

both in terms of the players’ preferences and their private information (a fixed state versus

a changing one). In particular, the players can signal at substantially different rates, which

is in stark contrast to a small literature on symmetric multi-sided learning. With different

rates of learning, however, the equilibrium analysis can become severely complicated.

Specifically, our belief states depend on the myopic player’s posterior variance, which

determines the sensitivity of the myopic player’s belief, and on the weight attached to the

long-run player’s type in the representation result, which affects signaling via the history-

inference effect. Moreover, both functions are deterministic due to the Gaussian learning.

Using dynamic-programming, one can then show that the problem of existence of LME

reduces to a boundary value problem (BVP) including ODEs for the two aforementioned

functions of time and for the weights in the long-run player’s strategy. The two learning

ODEs endow the BVP with exogenous initial conditions, while the rest carry terminal con-

ditions arising from myopic play at the end of the game.

Determining the existence of a solution to such a BVP is challenging because it involves

multiple ODEs in both directions. For this reason, we distinguish among two types of

environments. In a private value setting, the myopic player’s best response does not directly

depend on his belief about the type, but only indirectly via his expectation of the latter

player’s action. In that context, we show that there is a one-to-one mapping between the

solutions to the learning ODEs (Lemma 4), a consequence of the ratio of the signaling

coefficients being constant. This, in turn, makes traditional shooting methods based on the

continuity of the solutions applicable. Via this method, we show the existence of LME in the

leadership model of Section 2 when the public signal is of intermediate quality for horizon

lengths that are decreasing in the prior variance about the state of the world (Theorem 1).

In common value settings, the multidimensionality issue must be confronted. Building on

the literature on BVPs with intertemporal linear constraints (Keller, 1968), we can show the

existence of LME to our BVP with intratemporal nonlinear (terminal) constraints. Specifi-

cally, the multidimensional shooting problem can be formulated as a fixed-point problem for

a suitable function derived from the BVP, which we tackle for a variation of the leadership

model in which the follower cares about the state of the world directly (Theorem 2). Criti-

cally, the method is general: we show how to apply to the whole class of games under study,

and it can open a way for examining other settings exhibiting learning and asymmetries.
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Related Literature Early analyses of static noisy signaling are Matthews and Mirman

(1983), Carlsson and Dasgupta (1997) and Maggi (1999). Recent dynamic signaling models

with public beliefs include Dilmé (2019), Gryglewicz and Kolb (2019), Kolb (2019) and

Heinsalu (2018). Feltovich et al. (2002) and Voorneveld and Weibull (2011) incorporate an

exogenous private signal of the sender’s type in static contexts.

Foster and Viswanathan (1996) and Bonatti et al. (2017) examine multisided signaling in

symmetric settings with imperfect public monitoring and dispersed fixed private information.

In those models, beliefs are private, but the presence of a commonly observed public signal

permits a representation of first-order beliefs that eliminates the need for higher-order ones.4

Bonatti and Cisternas (2019) in turn examine two-sided signaling in a setting where firms

privately observe a summary statistic of a consumer’s past behavior to price discriminate;

via the prices they set, however, firms perfectly reveal their information to the consumer.

An additional difference from these papers is that we study a class of games.

Multisided private monitoring has been explored mostly in the context of repeated games,

and hence with a focus on non-Markovian incentives. Ely et al. (2005) and Hörner and Lovo

(2009) (the latter allowing for incomplete information) study equilibria in which inferences

of others’ private histories are not needed. By contrast, Mailath and Morris (2002), Hörner

and Olszewski (2006) and Phelan and Skrzypacz (2012) construct belief-based equilibria,

the first two of these with almost-perfect information structures. In turn, Levin (2003) and

Fuchs (2007) examine one-sided private monitoring in repeated principal-agent interactions.

Regarding our applications, the stage game of our leadership model is a simplified version

of Dessein and Santos (2006).5 In turn, the value of public information has been studied in

coordination games among infinitesimal agents, such as Morris and Shin (2002), Angeletos

and Pavan (2007), and Bolton et al. (2012), the latter studying leader resoluteness. Amador

and Weill (2012) study the gradual diffusion of private information when players see private

signals of aggregate actions; with infinitesimal players, individual histories are irrelevant for

forecasting aggregate behavior. Regarding trading models, Yang and Zhu (2019) show, in a

richer two-period version of our model, that a linear equilibrium ceases to exist if a signal of

an informed player’s last trade is too precise and privately observed by another player.

To conclude, this paper contributes to a growing literature employing continuous-time

techniques to the analysis of dynamic incentives. Sannikov (2007) examines two-player games

of imperfect public monitoring; Faingold and Sannikov (2011) reputation effects with behav-

ioral types; Cisternas (2018) games of ex ante symmetric incomplete information; and Hörner

and Lambert (2019) information design in career concerns settings.

4Likewise in He and Wang (1995), where infinitely many agents privately see dynamic exogenous signals.
5See Bolton and Dewatripont (2013) for such a static analysis with one round of pre-play communication.
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2 Application: Leading Coordinated Adaptation

A team consisting of a leader (she) and a follower (he) operates in a setting parametrized

by a state of the world θ ∼ N (µ, γo). The leader’s (and team’s) payoff is given by

ˆ T

0

e−rt{−(at − θ)2 − (at − ât)2}dt, (1)

where at denotes the leader’s action at time t ∈ [0, T ] and ât the follower’s counterpart, both

taking values over R; in turn, r ≥ 0 is a discount rate, and T <∞. In this specification, the

team’s performance increases with the proximity of the leader’s action to the state of the

world (adaptation) and with the proximity of both players’ actions (coordination).6

We assume that the leader knows the value of θ, and that the follower only knows its

distribution (and this is common knowledge). Critically, if leaders were able to easily induce

their followers to take the right actions (in this case, θ), organizations would incur no losses

while adapting to change. In reality, this does not occur largely for two reasons: misaligned

objectives and information frictions. The former has been extensively studied strategic

communication models (e.g., cheap talk). We are interested in the latter.

In this line, a vast literature on organizations has documented the importance of spe-

cialized knowledge as an input to production, and that much of that knowledge has a tacit

form: “know-how” that resides in people’s minds and that is hard to codify and transfer.7 To

focus on this transmission friction, we start by assuming that (i) the follower acts myopically

by minimizing Êt[(at − ât)2] at all times, and that (ii) direct communication is shut down.

The first assumption is for expositional purposes: it partially aligns the players’ objectives

to avoid confounding structural transferability barriers from strategic counterparts.8 The

second is a modeling choice: it is a dimensionality constraint that aims to capture knowledge

that is richer than the communication channel or code available, thereby placing a barrier

on an easy transfer via talk.

The leader’s knowledge of θ is then short for know-how relevant to the current economic

conditions. The follower gradually learns about this know-how from privately observing a

6Achieving a coordinated adaptation to new economic conditions is a major concern in organizations;
see, for instance, Chapter 4 in Milgrom and Roberts (1992) and Section 4.2 in Williamson (1996).

7Within economics, Garicano (2000) models tacit knowledge as a person’s ability to carry out complex
tasks that is not transferable to others. Seminal articles in strategic management are Kogut and Zander
(1992) and Grant (1996). Regarding coordination, the latter paper emphasizes the difficulties of integrating
such knowledge across complementary divisions, such as marketing and R&D.

8In strict terms, the divergence in the players’ time preferences takes us away from Marschak and Radner’s
framework. The analysis introduced in Section 3 can accommodate general forms of misalignment.

7



noisy signal of the leader’s actions of the form

dYt = atdt+ σY dZ
Y
t

where σY > 0 is a volatility parameter and ZY a Brownian motion. That the leader’s know-

how is transferred via her actions is consistent with the key property of tacit knowledge

“only being observed through its application”9 or being “deeply rooted in action and in an

individual’s commitment to a specific context.”10 Finally, that the signal Y is hidden from

the leader captures that leaders rarely know exactly how their messages or actions regarding

change come across, which is a real and substantial concern for management.11

We now revisit a classic topic in organizations: the impact of information channels on

behavior and outcomes. We do so by varying the quality of the information fed to the leader

while keeping the signal Y fixed (i.e., the difficulty in transferring knowledge is given). In

the perfect feedback case, the leader observes the follower’s action, while in the no-feedback

case, she observes nothing. These are two limit cases of the model studied in Section 3. Let

E[·] and Ê[·] denote the leader’s and follower’s expectation operator, respectively.

Perfect feedback (“public”) case. If the leader perfectly observes the follower’s action

she can potentially infer the follower’s belief, rendering the environment essentially public.

In a linear Markov equilibrium (LME), therefore, the leader chooses actions that are

linear in her type θ and the follower’s contemporaneous belief M̂t := Êt[θ], and that encode

her adaptation and coordination motives; the coefficients on those states are deterministic,

and we discuss them shortly. In turn, the follower’s action is his best prediction of the

leader’s action, and hence it is a linear function of M̂t exclusively.12

The next result establishes the existence of a unique LME and its key properties. For

consistency throughout the paper, we write β3t for the weight on the type at t ∈ [0, T ].

Proposition 1 (LME—Public Case). For all r ≥ 0 and T > 0:

(i) There exists a unique LME: at = β3tθ + (1 − β3t)M̂t and ât = Êt[at] = M̂t, where

(β3t)t∈[0,T ] is deterministic.

9Grant (1996), p. 111.
10Nonaka (1991), p. 98. He also discusses business examples of a slow transfer of tacit knowledge via

example, and of a subsequent slow codification of it; he highlights the role of innate ability, intuition and
experience at the origin of such knowledge. Nadler et al. (2003) provide experimental evidence on the
advantages of example versus other means of communication.

11Subjective interpretations and private experiences are key in this respect. In fact, Williamson (1996)
points out, that “failures of coordination can arise because autonomous parties read and react to signals
differently, even though their purpose is to achieve a timely and compatible combined response.”

12This notion of LME is perfect when Y is public, but only Nash when Y is private but the follower’s
action is observed. We keep the LME abbreviation, despite the implicit ‘perfection’ qualifier used later on.
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(ii) β3t ∈ (1/2, 1) for t < T , β3T = 1/2, and β3 is strictly decreasing.

(iii) γt := Êt[(θ − M̂t)
2] evolves according to γ̇t = −

(
γtβ3t
σY

)2

.

The coefficients on θ and M̂t in the leader’s strategy are positive: leaders with higher

types want to match higher states, and the coordination motive forces all types to take

higher actions when facing followers with higher beliefs. From this perspective, the leader

sacrifices adaptation to improve contemporaneous coordination: the weight on the type, β3t,

falls below 1 (its counterpart value in the full-information benchmark at = ât = θ) to increase

the weight assigned to M̂ by the same magnitude.13

The weight β3 is the signaling coefficient, as it determines the follower’s learning (part

(iii)). Importantly, it remains above 1/2—its counterpart value in the static equilibrium

(1
2
θ + 1

2
M̂, M̂)—except until the end of the game. In fact, by signaling her know-how more

aggressively, the leader steers the follower’s behavior toward the first-best action faster via the

latter’s learning. In other words, more adaptation today brings more coordination tomorrow.

This incentive falls deterministically (β3t is decreasing) because there is less time to enjoy

future coordination and steering behavior is harder as the follower’s learning progresses.14

No feedback case. Absent any information, the leader must perform an inference of the

follower’s private histories to forecast his belief and coordinate with him. Let Mt := Et[M̂t]

denote the leader’s second-order belief.

In the public case, upon conjecturing a linear Markov strategy by the leader, the follower’s

learning is Gaussian. In particular, the follower’s belief can be written as

M̂t = A1(t) +

ˆ t

0

A2(t, s)dYs (2)

for some A1 and A2 deterministic. Crucially, the leader’s past behavior is irrelevant for

forecasting the follower’s belief: when Y or M̂ are observable, the leader’s forecast Mt is

uniquely pinned down by the history Y t := (Ys : 0 ≤ s < t) via the linear formula above.

In the absence of feedback, the leader’s forecasting problem becomes nontrivial. However,

to the extent that M̂ is as above (for potentially different A1 and A2) the fact that Et[dYt] =

atdt yields a second-order belief of the form

Mt = A1(t) +

ˆ t

0

A2(t, s)asds. (3)

13It is easy to see that their sum is always one because of the follower always attempting to coordinate
with the leader. In particular, the follower’s belief can always be inverted from the action.

14In fact, Êt[dM̂t] =
γtβ

2
3t

σ2
Y

(θ − M̂t)dt, so the sensitivity of the belief is lower as γ falls.
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Unlike the public case, this forecast is now an explicit function of the leader’s past actions:

in the absence of any information, the leader must reflect on how much she has emphasized

her knowledge to assess how much of it has been transferred to the follower. By contrast, in

the public case, a perfect feedback channel or a public signal Y perfectly reveal the follower’s

knowledge at all times, rendering past play irrelevant.

The similarity between the cases is clear. Via (2) or (3), the leader evaluates how future

beliefs respond to different continuation strategies, and in both cases this relationship is

linear. This forward-looking exercise allows her to pin down her best response for fixed

behavior of the follower. But the follower’s best response will depend on her assessment of

the informational content behind the leader’s actions, and this is a backward-looking exercise:

how do different types behave given their observed histories? Whether beliefs are an explicit

function of commonly observed versus private information then makes a difference.

Critically, M is hidden from the follower in any equilibrium in which the leader’s actions

carry her type—the follower must then forecast this second-order belief. Along the path of

play of a linear strategy, however, (3) suggests a linear relationship between θ and M . To

this end, suppose that the follower conjectures that, in equilibrium, M satisfies

Mt =

(
1− γt

γo

)
θ +

γt
γo
µ (4)

when the leader follows a strategy

at = β0tµ+ β1tMt + β3tθ, (5)

for some deterministic coefficients βit, i = 0, 1, 3 (potentially different from those in the

public case), and where (γt)t∈[0,T ] encodes the follower’s posterior variance under (4)–(5).

The representation (4) encodes two ideas. First, that there is no second-order uncertainty

at time zero: M0 = µ = M̂0 follows from γ0 = γo in the right-hand side of (4). Second, if

enough signaling has taken place, the leader would expect the follower to have learned the

state: γt ≈ 0 in the same expression leads to Mt ≈ θ.

To determine the follower’s learning, γt, we insert (4) into (5) to obtain a weight on θ of

α := β3 + β1χ, where χt := 1− γt
γo
.

The new signaling coefficient, α, consists now of the direct weight that the strategy

attaches to the type, β3, plus the correction β1χ coming from the representation (4): we

refer to this correction as the history-inference effect on signaling. In fact, because the

leader uses her actions to forecast M̂ , the follower needs to infer the leader’s private histories
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to extract the correct informational content of the signal Y . From the follower’s perspective,

how differently would a leader of a marginally higher type behave given a history Y t? In

the public case, the overall effect is β3, as all types agree on the value that M̂ takes (i.e.,

they pool along the belief dimension); this is not the case when there is no feedback, as their

differing past actions also lead them to perceive a different continuation games via M .

Our players therefore need to conjecture the outcome of the game in a self-fulfilling way:

the follower conjectures the second-order belief representation (4) to construct his first-order

belief, from which the leader constructs her second-order belief, which in turn must deliver

(4) under the linear strategy (5)—the proof that our conjecture works is provided in Lemma

A.2 in the Appendix. Importantly, the representation does not hold after deviations from

(5). More generally, the leader controls M as reflected by (3), and (θ,M, µ, t) summarizes

all the payoff-relevant information for the leader’s decision-making.

Proposition 2 (LME—No Feedback Case). For all r ≥ 0 and T > 0:

(i) There exists a LME. In any such equilibrium: β0 + β1 + β3 = 1; β3t > 1/2, t ∈ [0, T );

β3T = 1/2; and β1 > 0 over [0, T ].

(ii) α := β3 +β1χ, where χ = 1−γt/γo satisfies: α > 1/2; αT → 1 as T →∞, and α′t ≥ 0,

t ∈ [0, T ), with strict inequality if and only if r > 0.

(iii) γt := Êt[(θ − M̂)2] evolves as γ̇t = −
(
αtγt
σY

)2

.

Part (ii) is key: private monitoring overturns standard decreasing signaling effects that

we would expect under the traditional logic of public beliefs: the signaling coefficient α is

non-decreasing, and its right endpoint approaches 1 as T grows. See Figure 1.15
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Figure 1: Left r = 0; Right: r = 1. Other parameter values: γo = 1, σY = 1.5, T = 10.

Comparison across cases. Figure 1 plots the signaling coefficients in each LME. In

the no-feedback case, the direct weight attached to the type in the linear strategy (5) is

decreasing, so the fact that α is non-decreasing implies that the history-inference effect

15This a private-value setting—the method for showing existence is discussed in Section 4.3.
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increases over time. Indeed, because higher types take higher actions holding everything else

fixed, they will expect their followers to have higher beliefs. Moreover, this effect compounds

over time as past play becomes more relevant for predicting the continuation game, which

results in M attaching an increasing weight χ to θ in (4). With a positive coordination

motive (β1 > 0), this implies that higher types take even higher actions over time via this

second-order belief channel, enhancing the informational content of the leader’s action.

What are the implications of private monitoring on learning and payoffs? In this coordi-

nation game, being forced to rely on her past actions to forecast the follower’s understanding

essentially imposes discipline on the leader: she does not cater to the follower’s belief as she

would do in the public case. In turn, this suggests that more knowledge is transferred to the

follower. To assess the validity of this conjecture, we take advantage of the model’s analytic

solutions in the patient (r = 0) and myopic (r = ∞) cases. Let γPub and γNF denote the

follower’s posterior variance in the public and no-feedback case, respectively.

Proposition 3 (Learning comparison). For every T > 0:

(i) Patient case: if r = 0, βPub30 > α0 and γPubT > γNFT ;

(ii) Large r case: for every δ ∈ (0, T ), γPubt > γNFt for t ∈ [T − δ, T ] if r is large enough.

Consequently, when the leader is either patient or very impatient, in the no-feedback case

the follower always has learned more by the end of the interaction. When r = 0, this result

is non-trivial due to an inter-temporal substitution effect: the leader, anticipating that the

history-inference effect will eventually take place, decides to reduce α0 = βNF30 below the

public counterpart, βPub30 . Part (ii) then states that the fraction of time over which the

follower has a more accurate belief can converge to 1 as r grows large.16

Regarding payoffs, the leader clearly suffers by losing the ability to perfectly coordinate

with the follower—this direct effect is the consequence of increased uncertainty over a concave

payoff. The next result uncovers the equilibrium effects.

Proposition 4 (Team’s ex ante payoffs).

(i) Patient case: if r = 0, the team’s ex ante payoff is larger in the public case, all T > 0.

(ii) For all r > 0, ex ante undiscounted coordination costs equal σ2
Y log

(
γo

γT

)
in each case.

Part (ii) is essential: the extent of the follower’s learning, as measured by relative entropy,

coincides with a metric of total coordination costs. This is due to information transmission

occurring through actions : a more precise belief that is the consequence of more aggressive

16This also appears to hold for intermediate values of r. See Figure 1 in the online appendix.
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signaling is necessarily the reflection of more transient miscoordination. Indeed, learning

occurs only when Y is informative about the state of the world, and hence only when there

is a mismatch between contemporaneous actions. From that perspective, the equilibrium

effect of private monitoring is that it exacerbates such costs by making the follower’s actions

more volatile in response to more informative, yet stable, behavior by the leader.17 In

particular, the team is worse off in the no-feedback case when the leader is patient.

Organization scholars have stressed the importance to firms of having efficient ways of

integrating knowledge when the transfer of such knowledge is costly and slow.18 The present

setting of action-based information transmission conforms with this view. Specifically, the

value of a better information channel feeding the leader is precisely that it allows the leader

to reduce the amount of knowledge transfer that would otherwise be required to coordinate.

Even more so, the application uncovers that an organization’s better understanding of its

leadership’s goals need not be indicative of past or even future performance: in fact, it can

be reflective of the organization’s painful struggle to coordinate.

The example in this section is just a first attempt at understanding organizations as

dynamic enterprises, where decision makers can signal and learn information at the same

time that decisions are being made, and where severe information frictions can be at play.

From this standpoint, it is important to recognize that the information observed by leaders

usually lies in between the two extreme cases analyzed: i.e., that public feedback channels are

partially informative. This setting poses considerable conceptual and technical challenges;

the next section introduces an operational framework for its analysis.

3 General Model

We consider two-player linear-quadratic-Gaussian games with one-sided private information

and one-sided private monitoring in continuous time. The baseline model considered is

introduced next, and extensions of it are presented in Section 5 via two further applications.

Players, Actions and Payoffs. A forward looking long-run player (she) and a myopic

counterpart (he) interact in a repeated game that is played continuously over a time interval

[0, T ], T <∞. At each instant t ∈ [0, T ], the long-run player chooses an action at, while the

myopic player chooses ât, both taking values over the real line. Given a profile of realized

actions (a, â) chosen at time t, the long-run player’s and myopic player’s realized flow payoffs

17We can show that ex ante flow payoffs can be higher in the absence of feedback. Indeed, for sufficiently
large T and r, the history-inference effect in the no-feedback case can lead to substantially more adaptation
than in the public case, in a way that it dominates the opposite ranking of flow coordination costs.

18See, for instance, Garicano and Prat (2013); in the strategy literature, see Grant (1996).
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are given by

U(a, â, θ) and Û(a, â, θ), (6)

respectively, where U : R3 → R and Û : R3 → R are quadratic functions. In this specifica-

tion, θ denotes the value of a normally distributed random variable that parametrizes the

economic environment; its mean and variance are denoted by µ ∈ R and γo > 0, respectively.

The long-run player discounts the future at a rate r > 0, while myopic player cares only

about her instantaneous payoff at all times.

We now state our assumptions on the functions U and Û . Since these involve strategic

considerations of the game, we introduce some shorthand notation. Specifically, for x, y ∈
{a, â, θ}, define the scalars

uxy :=
∂2U/∂x∂y

|∂2U/∂a2|
and ûxy :=

∂2Û/∂x∂y

|∂2Û/∂â2|
.

Intuitively, best responses carry denominators as the ones above when the players’ flow

payoffs are concave in their respective actions.

Assumption 1.

(i) Strict concavity: uaa = ûââ = −1;

(ii) Non-trivial signaling: uaθ(uaθ + uaâûâθ) > 0;

(iii) Second-order inferences: |ûâθ|+ |ûaâ| 6= 0 and |uaâ|+ |uââ| 6= 0.

(iv) Myopic best-replies intersect: uaâûaâ < 1;

We first require that the players’ objectives are strictly concave in their respective choice

variables. A second minimal requirement is that the long-run player strategically cares about

θ, which is implied by (ii). Equipped with this, part (iii) says that second-order inferences

matter. Specifically, the first condition states that the myopic player’s first-order belief

matters for his behavior, either directly because he cares about θ (ûâθ term) or because he

wants to predict the long-run player’s action (ûaâ). The second condition then says that the

long-run player needs to predict the myopic player’s action, either due to an interaction term

(uaâ) or a nonlinear effect (uââ), which calls for a second-order belief.19

The remaining parts are technical conditions pertaining to the static game with private

beliefs that arises at the end of the interaction. Specifically, part (iv) ensures that a static

19Part (iii) allows us to focus on the more interesting cases; i.e., it is not a limitation of our analysis.
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Nash equilibrium always exists, and part (ii) ensures that any such equilibrium involves

non-trivial signaling. We revisit these in Section 4 when we discuss how to find LME.

Information. The long-run player observes θ before play begins, while the myopic player

only knows its distribution θ ∼ N (µ, γo) (and this is common knowledge). In addition, there

are two signals X and Y that convey noisy information about the players’ actions. In this

baseline model, we work with a product-structure specification

dXt = âtdt+ σXdZ
X
t (7)

dYt = atdt+ σY dZ
Y
t , (8)

where ZX and ZY are independent Brownian motions, and σY and σX are strictly positive

volatility parameters; in particular, the players’ actions affect the signals linearly.20

Our key departure from traditional signaling games with public signals is that Y—which

carries information about the long-run player’s actions—is only observed by the myopic

player, while X remains public. This mixed private-public information structure is important

for our construction, but it is also natural for analyzing sender-receiver games, as it makes

the departure minimal while still economically relevant.

In what follows, we let Et[·] denote the long-run player’s conditional expectation operator,

which can condition on the histories (θ, as, Xs : 0 ≤ s ≤ t) and on her conjecture of the

myopic player’s play. Likewise, Êt[·] denotes the myopic player’s analog, which conditions

on (âs, Xs, Ys : 0 ≤ s ≤ t) and on her belief about the long-run player’s strategy, t ≥ 0.

Strategies and Equilibrium Concept. With full-support monitoring, the only off-path

histories for each player are those in which the player itself deviated from a candidate strategy.

Since this implies that sequential rationality imposes no additional restrictions on the set of

equilibrium outcomes relative to the Nash equilibrium concept, we content ourselves with

the latter notion for defining an equilibrium of the game.

From a time-zero perspective, an admissible strategy for the long-run player is any square-

integrable real-valued process (at)t∈[0,T ] that is progressively measurable with respect to the

filtration generated by (θ,X). The analogous notion for the myopic player involves the

identical integrability condition, but the measurability restriction is with respect to (X, Y ).21

20Thus, flow payoffs do not convey any additional information to the players (i.e., they accrue after time
T , or they can be written in terms of the actions and signals observed by each player).

21Square integrability is in the sense of the time-zero expectations of
´ T
0
a2tdt and

´ T
0
a2tdt being finite.

This ensures that a strong solution to (7)–(8) exists, and thus that the outcome of the game is well-defined.
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Definition 1 (Nash equilibrium.). An admissible pair (at, ât)t≥0 is a Nash equilibrium if,

(i) given (ât)t∈[0,T ], the process (at)t∈[0,T ] maximizes

E0

[ˆ T

0

e−rtU(at, ât, θ)dt

]
among all admissible strategies, and

(ii) ât solves max
â′∈R

Ê0[Û(at, â
′, θ)] for all t ∈ [0, T ].

In the next section, we characterize Nash equilibria that are supported by linear Markov

strategies that are sub-game perfect, i.e., that are sequentially rational on and off the path

of play, thereby specifying optimal behavior after deviations. Such equilibria generalize that

presented in Section 2 for the no-feedback case σX =∞ to the whole range 0 < σX ≤ ∞.

Remark 1 (Extensions). The baseline model can be generalized along two dimensions:

(i) Terminal payoffs: the long-run player’s payoff can also carry a lump-sum component

Ψ(âT ), with Ψ quadratic. See Section 5.1 for a reputation model with this property.

(ii) Long-run player affecting the public signal X: the drift of (7) can be generalized to

ât + νat, where ν ∈ [0, 1] is a scalar.

We exclude these from the baseline model purely for ease of exposition. An insider trading

model with ν = 1 (and ∂2U/∂a2 = 0, as in the literature) is explored in Section 5.2.

4 Equilibrium Analysis: Linear Markov Equilibria

In this section, we construct linear Markov perfect equilibria (henceforth, LME) that rely

on the players’ beliefs as the relevant states. Along the path of play of such equilibria, the

players’ actions are linear in the signals they observe due to the Gaussian structure of the

environment. The appeal of such equilibria is twofold: first, the Markov restriction captures

that behavior depends only on the aspects of the players’ histories that they perceive to

be payoff-relevant; second, the linear aggregation of signals is the natural generalization of

linear equilibria studied in a wide body of applied-theory work of static nature.

The steps are as follows. We first postulate a minimal set of belief states up to the

second order to be used by the players in any equilibrium of this kind. We then derive

a representation of the long-run player’s private second-order belief as a linear function of

a subset of such belief states, when the players use the candidate belief states in a linear
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fashion. This result generalizes the representation (4) obtained in Section 2, and is of major

importance for our analysis: it encodes how the long-run player has relied on her past

behavior to forecast the follower’s belief, and shows that the problem of “beliefs about

beliefs” growing without bound can be circumvented (Section 4.1). Finally, Sections 4.2

and 4.3 are devoted to the question of finding LME. Our main contribution here is to offer

methods for existence in asymmetric two-sided signaling games.

4.1 Belief States and Representation Lemma

The logic behind the need for a second-order belief is as follows. Since the myopic player

must predict the long-run player’s action (and/or her type) to determine his best response,

he will use the private signal Y to learn about θ whenever the long-run player signals her

type. By part (iii) in Assumption 1, the long-run player is then forced to forecast the myopic

player’s belief to determine her current actions, which makes such a forecast payoff-relevant.

The difficulty is that such second-order belief is privately observed by the long-run player.

In fact, because of private monitoring, the long-run player will have to rely to some extent

on her past behavior to forecast the myopic player’s belief. Thus, her second-order belief

will depend explicitly on her past play, and the latter carries her type. The myopic player is

then forced to perform an inference about such hidden second-order belief, and so forth.

Our key observation is that along the path of play of any pure strategy the outcome of

the game should depend only on the tuple (θ,X, Y ). Intuitively, given any rule that specifies

behavior as a function of past actions and information, following such a rule should lead

realized outcomes to depend on the exogenous elements of the model only. In particular,

the long-run player’s second-order belief should be a function of (θ,X). Moreover, in this

Gaussian environment, one would expect the relationship between M and (θ,X) to be linear

if the rule that drives behavior is linear in some suitable belief states.

Let M̂t := Êt[θ] denote the mean of the myopic player’s posterior belief, and Mt := Et[M̂t]

denote the long-run player’s second-order counterpart. The previous discussion suggests the

existence of a deterministic function χ and a process (Lt)t∈[0,T ] that depends on the paths of

the public signal X, such that M admits the representation

Mt = χtθ + (1− χt)Lt (9)

when the players follow linear Markov strategies of the form

at = β0t + β1tMt + β2tLt + β3tθ (10)

ât = δ0t + δ1tM̂t + δ2tLt, (11)
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where βit and δjt, i = 0, 1, 2, 3 and j = 0, 1, 2, are deterministic. The reason for augmenting

the strategies of the no-feedback case in Section 2 by the “public” state L is clear: if true,

the myopic player uses (9) to forecast M , making L a payoff-relevant state for both players.

Lemma 1 below validates (9)–(11) by characterizing the pair (χ, L). Before stating the

result, let us elaborate on the intuition behind (9) and on how it can be derived in a con-

structive way, while abstracting from formal mathematical arguments.

Specifically, the representation (9) is a candidate for how, under linear Markov strategies,

the long-run player has used her past play and the public signal to forecast the myopic player’s

belief. Crucially, such a conjecture must be self-fulfilling: when forming their beliefs, the

players recognize that different types take different actions through (9), which in turn must

result in a second-order belief that coincides with (9) if (10)–(11) is followed.

In particular, the myopic player thinks that the long-run player behaves according to

at = β0t︸︷︷︸
=:α0t

+ (β2t + β1t(1− χt))︸ ︷︷ ︸
=:α2t

Lt + (β3t + β1tχt)︸ ︷︷ ︸
=:α3t

θ. (12)

Because L is public, θ is the only unknown in the previous expression, so the myopic player

can filter θ from observing Y when the latter is driven by (12). This learning problem is

(conditionally) Gaussian, and hence the myopic player’s posterior belief is fully characterized

by a mean process (M̂t)t≥0, and a deterministic variance path

γt := V̂art = Êt[(θt − M̂t)
2],

where we have omitted the “hat” symbol in γt for notational convenience. As in Section 2,

this posterior variance will be determined by the signaling coefficient

α3t := β3t + β1tχt,

with β1χt encoding the history-inference effect : how different types take different actions in

equilibrium because their past actions have lead them to hold different beliefs today.

As is traditional, the long-run player will use the public signal X that carries the myopic

player’s action to forecast M̂ . The novelty is that, due to the private monitoring, she will also

use her past actions: statistically, higher action profiles lead to higher private observations by

the myopic player, and vice versa. Crucially, the linearity of the signal structure renders the

pair (M̂,X) (conditionally) Gaussian again, and so the filtering equations deliver a second-

order belief with (i) a mean Mt that is a linear function of past actions (as)s<t and of past

signals (Xs)s<t, and (ii) a deterministic posterior variance. One can then insert the linear
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Markov strategy (10) into Mt to solve for the latter as a function of {θ, (Xs)s<t}, and then

pin down (χ, L). The precise mathematical steps can be found in the proof of the following:

Lemma 1 (Representation of second-order belief). Suppose that (X, Y ) is driven by (10)–

(11) and that the myopic player believes that (9) holds. Then (9) holds at all times (path-

by-path of X), if and only if

γ̇t = −γ
2
t (β3t + β1tχt)

2

σ2
Y

, γ0 = γo, (13)

χ̇t =
γt(β3t + β1tχt)

2(1− χt)
σ2
Y

− γtχ
2
t δ

2
1t

σ2
X

, χ0 = 0, (14)

dLt = (l0t + l1tLt)dt+BtdXt, L0 = µ, (15)

where l0t and l1t, and Bt are deterministic functions given in (B.6). Moreover, Lt =

E[M̂t|FXt ] = E[θ|FXt ] and γtχt = Vart = Et[(Mt − M̂t)
2].

In light of the lemma, the representation (9) reads

Mt =
Vart

V̂art
θ +

(
1− Vart

V̂art

)
E[θ|FXt ].

Indeed, in forecasting M̂ , the only informational advantage that the long-run player has

relative to an outsider who observes X exclusively is that she knows what actions she has

taken, and such actions carry her type. Under linear strategies, learning is Gaussian, so (i)

Mt is a linear combination of θ and E[M̂t|FXt ], and (ii) the weights are deterministic. By

the law of iterated expectations, E[M̂t|FXt ] = E[θ|FXt ], and the representation follows.

The χ-ODE (14) quantifies the dynamics of the importance of past behavior in this

forecasting exercise. Indeed, by the common prior assumption, Var0 = 0 and E[θ|FX0 ] = µ;

thus, M0 = µ above, and the χ-ODE starts at zero. As signaling progresses, the long-run

player loses track of M̂ (i.e., Vart > 0): this is captured in χ̇ > 0 as soon as α3 > 0 in (14).

In other words, the long-run player expects M̂ to gradually reflect her type θ, and so χt > 0.

The relative importance of past play will naturally depend on the quality of the public

information—this is captured by −γtχ2
t δ

2
1t/σ

2
X in (14). If σX = ∞ or δ1 ≡ 0 (the myopic

player does not signal back) the public signal is uninformative: indeed, Lt = L0 = µ and

χt = 1− γt/γ0 hold at all times as in the no-feedback in Section 2.22 Apart from this case,

the public information is always useful. In particular, observe that as δ2
1/σ

2
X grows, there is

more downward pressure on the growth of χ: as the signal-to-noise ratio in X improves, the

22Setting δ1/σX ≡ 0 in (14) leads to the same ODE that χ satisfies in the no-feedback case. By uniqueness,
the solution is χ = 1− γt/γo. See the proof of Lemma A.2.
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long-run player relies less on her past actions, all else equal. In other words, the no-feedback

case maximizes the potential amplitude of the history-inference effect.

Our subsequent analysis takes the system of ODEs (13)–(14) for (γ, χ) as an input. Thus,

we require (13)–(14) to have a unique solution to ensure that the ODE-characterization is

valid. To this end, notice that the signaling coefficient of the myopic player’s best reply can

be written as δ1t := ûâθ + ûâa[β3t + β1tχt].

Lemma 2. Suppose that β1 and β3 are continuous, β3· 6= 0 and δ1t = ûâθ + ûâa[β3t + β1tχt].

Then there is a unique solution to (13)–(14). The solution satisfies 0 < γt < γo and 0 <

χt < 1, t ∈ (0, T ].

The idea is that, under minimal integrability conditions on the coefficients in the linear

Markov strategies, γt = Êt[(θt − Êt[θ])2] and χt = Vart/V̂art = Et[(Mt − M̂t)
2]/γt are a

solution to the system. A mild strengthening of the conditions ensures that a unique solution

to (13)–(14) exists, and so we are allowed to use the latter system as a primitive object.

The belief representation (9) relies on the long-run player following the linear strategy

(10); i.e., it does not hold off the path of play. The next result introduces the law of motion

of M and L for an arbitrary strategy of the long-run player, which will allow us to state

her best-response problem. Importantly, because deviations are hidden, the myopic player

always assumes that (9) holds when constructing his belief. Thus, the pair (γ, χ) appears

explicitly in the evolution of (M,L) through its appearance in the myopic player’s learning.

Lemma 3. Suppose that the long-run player follows (a′t)t≥0 while the myopic player follows

(11) and believes (9)–(10). Then from the long-run player’s perspective

dMt =
γtα3t

σ2
Y

(a′t − [α0t + α2tLt + α3tMt])dt+
χtγtδ1t

σX
dZt (16)

dLt =
χtγtδ1t

σ2
X(1− χt)

[δ1t(Mt − Lt)dt+ σXdZt] (17)

where (γ, χ) solves (13)–(14) and (Zt)t≥0 is a Brownian motion from her standpoint.

The dynamic (16) shows that long-run player’s choice of strategy a′ affects M . In partic-

ular, she will revise her (second-order) belief upward when a′t > Et[α0t +α2tLt +α3tM̂t], i.e.,

when she expects to beat the myopic player’s expectation of her behavior. The intensity of

such a reaction is given by γtα3t/σ
2
Y , i.e., it is higher the more uncertain the myopic player

is (higher γ) and the stronger the myopic player expects the long-run player to signal (larger

α3). Further, M evolves deterministically when δ1/σX ≡ 0, as in Section 2.23

23It is worth noting that (Mt)t≥0 corresponds to a player’s non-trivial belief that is controlled by the same
player. Unless there are experimentation effects, players’ own beliefs are usually affected by other players.
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The drift of (17) demonstrates that the long-run player affects L only indirectly via

changes in M ; this is because her actions do not enter the public signal. More interestingly,

L always moves in the direction of M on average, reflecting that an outsider who only

observes X does get to learn the long-run player’s type over time. From this perspective,

by leading to Lt = µ at all times, the no-feedback case (σX = ∞) misses a signal-jamming

effect : the incentives that arise from the ability to influence a public belief (albeit only

indirectly, in this case), with such incentives being perfectly accounted for in equilibrium.

4.2 Dynamic Programming and the Boundary-Value Problem

The long-run player’s best-response problem. Let ~β := (β0, β1, β2, β3), ~δ := (δ0, δ1, δ2),

and ~α := (α0, α2, α3), the latter defined in (12). Given a conjecture ~β by the myopic player,

the coefficients ~δ are found by matching coefficients in

ât := δ0t + δ1tM̂t + δ2tLt = arg max
â′

Êt[Û(α0t + α2tLt + α3tθ, â
′, θ)]. (18)

Using that Mt = Et[M̂t], the long-run player’s objective can be then written as

E0

[ˆ T

0

e−rtU(at, δ0t + δ1tMt + δ2tLt︸ ︷︷ ︸
Et[ât]

, θ)dt

]
+

1

2

∂2U

∂â2
E0

[ˆ T

0

e−rtδ2
1tEt[(Mt − M̂t)

2]dt

]
.

Importantly, due to the Gaussian learning structure, the variance terms Et[(Mt − M̂t)
2],

t ∈ [0, T ], are independent of the strategy followed.24 Consequently, the relevant problem is

max
(at)t∈[0,T ] admissible

E0

[ˆ T

0

e−rtU(at, δ0t + δ1tMt + δ2tLt, θ)dt

]
(19)

s.t. (16) and (17),

where the laws of motion of M and L, (16) and (17), depend on (γ, χ) satisfying (13)–(14).25

It is clear from (18) and (19) that the Markov states (t, θ, L,M) and (t, L, M̂) summarize

all the payoff-relevant information for our players on and off the path of play, with the time

variable capturing both time-horizon and learning effects, the latter encoded in γ and χ.26

24In particular, by Lemma 1, Et[(Mt − M̂t)
2] = γtχt.

25Formally, the long-run player’s problem is one of stochastic control of an unobserved state (M̂), which
introduces some subtleties in the joint filtering-optimization problem relative to standard control problems.
By the separation principle, however, we can filter first by constructing M as a first step, and then optimize
afterwards with the controlled process M as the state. The proof of Lemma 3 explains the details.

26Deviations by the myopic player do affect L, but his flow payoff is fully determined by the current value
of (t, L, M̂). It is easy to see that the same is true if instead this player is forward looking.
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In particular, we can tackle the best-response problem (19) with dynamic programming.

Specifically, we postulate a quadratic value function

V (θ,m, `, t) = v0t + v1tθ + v2tm+ v3t`+ v4tθ
2 + v5tm

2 + v6t`
2 + v7tθm+ v8tθ`+ v9tm`,

where vi·, i = 0, ..., 9 depend on time only. The Hamilton-Jacobi-Bellman (HJB) equation is

rV = sup
a′

{
U(a′,Et[ât], θ) + Vt + µM(a′)Vm + µLV` +

σ2
M

2
Vmm + σMσLVm` +

σ2
L

2
V``

}
,

where µM(a′) and µL (respectively, σM and σL) are the drifts (respectively, volatilities) in

(16) and (17), and where ât is determined via (18).

A Nash equilibrium in linear Markov strategies arises if β0t + β1tM + β2tL + β3tθ is an

optimal policy for the long-run player. Along the path of play of such an equilibrium, the

representation (9) holds by construction and so the long-run player’s realized actions are

given by at = α0t + α2tLt + α3tθ, where (Lt)t∈[0,T ] is given by (15) in Lemma 1; i.e., actions

are a function of θ and X exclusively. But conditioning explicitly on L and M can be optimal

after deviations. An optimal policy β0t+β1tM +β2tL+β3tθ specifies how to behave at those

off path histories, thereby inducing a linear Markov perfect equilibrium (LME).

The boundary-value problem. We briefly explain how to obtain a system of ordinary

differential equations (ODEs) for ~β. Letting a(θ,m, `, t) denote the maximizer of the right-

hand side in the HJB equation, the first-order condition (FOC) reads

∂U

∂a
(a(θ,m, `, t), δ0t + δ1tm+ δ2t`, θ) +

γtα3t

σ2
Y

[v2t + 2v5tm+ v7tθ + v9t`]︸ ︷︷ ︸
Vm(θ,m,`,t)

= 0. (20)

where γtα3t/σ
2
Y in the second term captures the sensitivity of M to the long-run player’s

action at time t. Solving for a(θ,m, `, t) in the previous FOC, the equilibrium condition

becomes a(θ,m, `, t) = β0t + β1tm+ β2t`+ β3tθ.

Because the latter condition is a linear equation, we can solve for (v2, v5, v7, v9) as a

function of the coefficients ~β. Inserting these into the HJB equation along with a(θ,m, `, t) =

β0t + β1tm+ β2t`+ β3tθ in turn allows us to obtain a system of ODEs that the ~β coefficients

must satisfy. The resulting system is coupled with the ODEs that v6 and v8 satisfy (and that

are obtained from the HJB equation): since M feeds into L, the envelope condition with

respect to M is not enough to determine equations for the candidate equilibrium coefficients.

Finally, since the pair (γ, χ) affects the law of motion of (M,L), it also affects the evolution

of (~β, v6, v8), and so the ODEs (13)–(14) must be included.
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The boundary conditions for the system of ODEs that (β0, β1, β2, β3, v6, v8, γ, χ) satisfies

are as follows. First, there are the exogenous initial conditions that γ and χ satisfy, i.e.,

γ0 = γo > 0 and χ0 = 0. Second, there are terminal conditions v6T = v8T = 0 due to

the absence of a lump-sum terminal payoff in the long-run player’s problem.27 Third, more

interestingly, there are endogenous terminal conditions that are determined by the static

Nash equilibrium that arises from myopic play at time T . In fact, letting

u0 :=
∂U/∂a

|∂2U/∂a2|

∣∣∣∣
(0,0,0)

and û0 :=
∂Û/∂â

|∂2Û/∂â2|

∣∣∣∣
(0,0,0)

we obtain

β0T =
u0 + uaâû0

1− uaâûâa
, β1T =

uaâ[uaθûâa + ûâθ]

1− uaâûâaχT
, β2T =

u2
aâûâa[uaθûâa + ûâθ](1− χT )

(1− uaâûâa)(1− uaâûâaχT )
, β3T = uaθ,

which are all well-defined thanks to part (iv) in Assumption 1 and the fact that χ ∈ (0, 1).

Also, observe that by part (ii) in Assumption 1, α3T = β3T + β1TχT ∝ uaθ + uaâûâθχT never

vanishes for all χT ∈ [0, 1].28

We conclude that b := (β0, β1, β2, β3, v6, v8, γ, χ)′ satisfies a boundary-value problem

(BVP) of the form

ḃt = f(bt), s.t. D0b0 + DTbT = (B(χT )′, γo, 0)′ (21)

where (i) f : R6 × R+ × [0, 1)→ R8, (ii) D0 and DT are the diagonal matrices

D0 = diag(0, 0, 0, 0, 0, 0, 1, 1) and DT = diag(1, 1, 1, 1, 1, 1, 0, 0),

and where (iii) the function B(χ) : [0, 1]→ R defined by

B(χ) :=

(
u0 + uaâû0

1− uaâûâa
,
uaâ[uaθûâa + ûâθ]

1− uaâûâaχ
,
u2
aâûâa[uaθûâa + ûâθ](1− χ)

(1− uaâûâa)(1− uaâûâaχ)
, uaθ, 0, 0

)
∈ R6 (22)

captures the form of the endogenous terminal conditions. The general expression that f(·)
takes for any given generic pair (U, Û) satisfying Assumption 1 is tedious and long, and can

be found in spm.nb on our websites. (There, to simplify notation, we work with normalized

payoffs U/|∂2U/∂a2| and Û/|∂2Û/∂â2|.) In the next subsection, we provide examples that

exhibit all the relevant properties that any such f(·) can satisfy.

27The application studied in Section 5.1 relaxes this assumption.
28This allows us to ensure that there is always non-trivial signaling in the game. Also, it is easy to see

that δ0T = û0 + ûâaβ0T , δ1T = ûâθ + ûâa[β3T + β1TχT ] and δ2T = ûâa[β2T + β1T (1− χT )].
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The question of finding LME is then reduced to finding solutions to the BVP (21) (subject

to the rest of the coefficients of the value function being well-defined). We turn to this issue

in the next section.

4.3 Existence of Linear Markov Perfect Equilibria

In this section, we present two existence results for LME that are based on establishing the

existence of solutions to BVPs. Underlying these results are two approaches that distinguish

between common and private-value environments, and that permit dealing differently with

two types of asymmetries in two-sided signaling games. We state the theorems in the context

of variations of the coordination game of Section 2, and when the leader is patient. The

approaches nevertheless apply to the whole class under study, and one of them is general: it

applies to, and beyond, the whole class analyzed.

The shooting problem. The problem of finding a solution to any instance of the BVP

(21) is complex because there are multiple ODEs in either direction: (β0, β1, β2, β3, v6, v8)

are traced backward from their (endogenous) terminal values, while (γ, χ) are traced forward

using their initial (exogenous) ones—see Figure 2. This means that, one way or another,

some notion of “shooting” must be involved: construct, say, a modified backward initial

value problem (IVP) in which (γ, χ) has a parametrized initial condition at T , and find a

way to ensure that the induced terminal values at 0 exactly match (γo, 0). Attempting to

apply traditional one-dimensional shooting arguments—i.e., tracing the initial parametrized

condition over an interval so that the target is hit by continuity—to higher dimensions is

hopeless: it essentially requires having an accurate knowledge of the relationship between γ

and χ at T for all possible coefficients ~β for finding the right “tracing” path.

γo

0

χ

T

β  (χ  ,γ )
γt

t

i,T T T

v  (χ  ,γ )i,T T T

Static
Nash

.

..

B(χ  ,γ )
T T

Figure 2: In the BVP, (γ, χ) has initial conditions, while (~β, v6, v8) has terminal ones. We have
allowed for non-zero v’s and for a dependence on γT , as this can occur with terminal payoffs.

The reason behind this dimensionality problem is the asymmetry in the environment:
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the rate at which the long-run player signals her private information, α3 := β3 + β1χ, can

be substantially different than the rate at which the myopic player signals his private belief,

δ1. This, in turn, potentially introduces a non-trivial history dependence between γ and

χ, reflected in the coupled system of ODEs they satisfy. Two natural questions then arise:

first, under which conditions such history dependence can be simplified; and second, how to

tackle the issue of existence of LME when this simplification is not possible.

Private values: one-dimensional shooting. We say that an environment is one of

private values if the myopic player’s flow utility satisfies

ûâθ = 0,

i.e., the myopic player’s best-reply does not directly depend on his belief about θ, but only

indirectly via the long-run player’s action. Otherwise, we say that the environment is one of

common values (despite the long-run player always knowing θ).

In a private-value setting, the myopic player’s coefficient on M̂ is δ1 = ûâaα3. In this

case, there is a one-to-one mapping between γ and χ:

Lemma 4. Set σX ∈ (0,∞). Suppose that β1 and β3 are continuous and that δ1 = ûâaα3.

If ûâa 6= 0, there are positive constants c1, c2 and d independent of γo such that

χt =
c1c2(1− [γt/γ

o]d)

c1 + c2[γt/γo]d
.

Moreover, (i) 0 ≤ χt < c2 < 1 for all t ∈ [0, T ] and (ii) c2 → 0 as σX → 0 and c2 → 1 as

σX →∞. If instead ûâa = 0, χt = 1− γt/γo.

Whenever the players signal at proportional rates, there is always a decreasing relation-

ship between χ and γ; in particular, χ0 = 0 when γ0 = γo. By part (i), as long as the

public signal is informative, χ is always strictly below 1, reflecting that the scope for the

history-inference effect is diminished relative to the no-feedback case; also, the public and

no-feedback cases are recovered as we take limits. Further, the characterization of χ obtained

in the latter case (4) is recovered when ûa = 0, as the public signal is then uninformative.

Equipped with this result, the standard one-dimensional shooting method based on the

continuity of the solutions is applicable. We state below the BVP for the leadership appli-

cation of Section 2 for σX ∈ (0,∞) in its undiscounted version: recall that in that setting,

the follower wants to match the leader’s action, and so

ât = Êt[at]⇒ δ1t = α3t ⇔ ûâa = 1.
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We omit the β0–ODE (it is uncoupled from the rest and linear in itself):

v̇6t = β2
2t + 2β1tβ2t(1− χt)− β2

1t(1− χt)2 +
2v6tα

2
3tγtχt

σ2
X(1− χt)

v̇8t = −2β2t − 2(1− 2α3t)β1t(1− χt)− 4β2
1tχt(1− χt) +

v8tα
2
3tγtχt

σ2
X(1− χt)

β̇1t =
α3tγt

2σ2
Xσ

2
Y (1− χt)

{
2σ2

X(α3t − β1t)β1t(1− χt)− α2
3tβ1tγtχtv8t

−2σ2
Y α3tχt(β2t − β1t[1− χt − 2β2tχt])

}
β̇2t =

α3tγt
2σ2

Xσ
2
Y (1− χt)

{
2σ2

Xβ
2
1t(1− χt)2 + 2σ2

Y α3tβ2tχ
2
t (1− 2β2t)− α2

3tγtχt(2v6t + β2tv8t)
}

β̇3t =
α3tγt

2σ2
Xσ

2
Y (1− χt)

{
−2σ2

Xβ1t(1− χt)β3t + 2σ2
Y α3tβ2tχ

2
t (1− 2β3t)− α2

3tβ3tγtχtv8t

}
γ̇t = −γ

2
t α

2
3t

σ2
Y

with boundary conditions v6T = v8T = 0, β1T = 1
2(2−χT )

, β2T = 1−χT
2(2−χT )

, β3T = 1
2

and γ0 = γo,

and where α3 := β3 + β1χ and χt is as in the previous lemma. We have the following:

Theorem 1. Let σX ∈ (0,∞) and r = 0. There exists a strictly positive function T (γo) ∈
O(1/γo) such that, for all T < T (γo), there exists a LME based on the solution to the previous

BVP that satisfies β0t = 0, β1t + β2t + β3t = 1 and α3t > 0, t ∈ [0, T ].

The key step in the proof is to show that (β1, β2, β3, v6, v8, γ) can be bounded uniformly

over [0, T (γo)), some T (γo) > 0, when γt ∈ [0, γo] at all times. This implies that tracing

the (parametrized) initial condition of γ in the (backward) IVP from 0 upwards as in Figure

3 will lead to at least one γ-path landing at γo (while the rest of the ODEs still admit

solutions), due to the continuity of the solutions with respect to the initial conditions.29

γo

0
T

γt

v  (χ(   ),   )i,T

Parametrized
Static Nash

γFγF

β  (χ(   ),   )
i,T

γFγF

χ(   )γF

Fγ

γF

Figure 3: The one-dimensional shooting method.

29See Bonatti et al. (2017) for an application of this method to a symmetric oligopoly model featuring
dispersed fixed private information, imperfect public monitoring, and multiple long-run players.
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The signaling coefficient for interior values σX ∈ (0,∞) lies “in between” those found

for σX = 0 and +∞ in Section 2, which validates the study of those extreme cases. Figure

4 illustrates: as σX increases, the signaling coefficient (dashed line) moves from the public

benchmark to the no-feedback case counterpart.30 With discounting and σX < +∞, α3 is

nonmonotonic. Intuitively, the interior case combines the increasing history-inference effect

of the no-feedback case (dominant early in the game) with the decreasing signaling motive

driving the public case (dominant later): discounting then weakens the latter, while the

former grows over time even with a myopic leader. Finally, as σX increases, the amplitude

of the history inference effect increases, so the maximum of α3 shifts to the right.

2 4 6 8 10
t

0.55

0.60

0.65

0.70

0.75

0.80

β3 Public α NF α Interior

(a) r = 0

2 4 6 8 10
t

0.55

0.60

0.65

0.70

0.75

β3 Public α NF α Interior

(b) r = 1

Figure 4: Signaling coefficients for σX ∈ {0, .1, .75, 2, 10,+∞}; “α Interior” denotes α3.

Common-value settings: fixed-point methods. When α3 and δ are not proportional,

χ can depend on both current and past values of γ, and the dimensionality problem resur-

faces.

Our key observation is that finding a solution to any given instance of the BVP (21) is,

mathematically, a fixed-point problem. Specifically, notice that the static Nash equilibrium at

time T depends on the value that χ takes at that point. The latter value, however, depends

on how much signaling has taken place along the way, i.e., on values of the coefficients ~β at

times prior to T . Those values, in turn, depend on the value of the equilibrium coefficients

at T by backward induction—thus, we are back to the same point where we started.

Our approach therefore applies a fixed-point argument adapted from the literature on

BVPs with intertemporal linear constraints (Keller, 1968) to our problem with intratemporal

nonlinear constraints. Because the method is novel and has the generality required to become

useful in other settings, we briefly elaborate on how it works.31

30To obtain sharper visual effects, we are potentially plotting beyond the interval of existence that the
theorem guarantees (which is a lower bound). The discounted case can be treated with identical methods.

31Our adaptation is inspired by Theorem 1.2.7 in (Keller, 1968), which is stated without a proof.

27



Let t 7→ bt(s, γ
o, 0) denote the solution to the forward IVP version of (21) when the

initial condition is (s, γo, 0), s ∈ R6, provided a solution exists. From Lemma 2, the last two

components of b, i.e., γ and χ, always admit solutions as long as the others do; moreover,

there are no constraints on their terminal values. Thus, for the fixed-point argument, we

can focus on the first six components in b := (β0, β1, β2, β3, v6, v8, γ, χ) by defining the gap

function

g(s) = B(χT (s, γo, 0))−DT

ˆ T

0

f(bt(s, γ
o, 0))dt.

This function measures the distance between the total growth of (β0, β1, β2, β3, v6, v8) (last

term in the display), and its target value, B(χT (s, γo, 0)). By (22), B(χ) is nonlinear: the

static Nash equilibrium imposes nonlinear relationships across variables at time T .

By definition, b0(s, γo, 0) = s. Consequently, it follows that

g(s) = s ⇔ B(χT (s, γo, 0)) = s+ DT

ˆ T

0

f(bt(s, γ
o, 0))dt = DTbT (s, γo, 0),

where the last equality follows from the definition of the ODE-system that DTb satisfies.

Thus, the shooting problem (i.e., finding s s.t. B(χT (s, γo, 0)) = DTbT (s, γo, 0)) can be

transformed to one of finding a fixed point of the function g.32

The bulk of proof consists of finding a time T (γo) and a compact set S of values for s such

that (i) for all s ∈ S, a unique solution (bt(s, γ
o, 0))t∈T (γo) for the IVP with initial condition

(s, γo, 0) exists, and (ii) g is continuous map from S to itself. The natural choice for S is a

ball with center s0 := B(0), the terminal condition of the trivial game with T = 0.33

We can now establish our main existence result for a variation of the leadership applica-

tion in which the follower’s best response is of the form

ât = ûâθÊt[θ] + Êt[at]⇒ δ1t = ûâθ + α3t, where ûâθ > 0,

32A BVP with intertemporal linear constraints differs from ours in that D0b0 + DTbT = (B(χT )′, γo, 0)′

becomes Ab0 + BbT = α, where α3 is a constant vector and, critically, A and B are not necessarily
diagonal matrices—thus, unlike in our analysis, one may not be able to dispense with a subset of the system.
A complication that arises in our setting is that our version of α3 is a nonlinear function of a subset of
components of bT , which requires estimating B(χT (s, γo, 0)) for all values of s over which g(·) is a self-map.

33It is useful to work with a change of variables that eliminates 1−χt from the denominator in the original
system, and which reflects play when the state variable L is replaced by (1−χ)L. In the new system, part (i)
can be accomplished by bounding solutions uniformly as in the one-dimensional shooting method, but now
over [0, T (γo)] × S; in turn, the continuity requirement of (ii) is guaranteed by the regularity of f(·), while
the self-map condition can be ensured due to the system scaling with γo and T . Equipped with existence, we
can then recover a solution to our original BVP by reversing the change of variables and applying Lemma 2
(which ensures that 1− χt > 0 for all t ∈ [0, T ], and hence that the right-hand side of our system of interest
is well-defined). This approach sidesteps finding a uniform upper bound for χ that is strictly less than 1,
which would be required at the moment of bounding the system uniformly. In all cases, γt ∈ [0, γo] due the
IVP under consideration being in its forward version (Lemma 2).
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i.e., the follower now has a positive bias relative to the original setting. The positivity

constraint ensures that (ii) in Assumption 1 is satisfied, and clearly the rest of the assumption

holds too. The associated BVP is given by (B.25)-(B.31) in the Appendix.

Theorem 2. Set σX ∈ (0,∞), ûâθ > 0 and r = 0 in the leadership model. There is a strictly

positive function T (γo) ∈ O(1/γo) such that if T < T (γo), there exists a LME based on the

BVP (B.25)-(B.31). In such an equilibrium, α3 > 0.

There are three immediate observations from this theorem. First, the self-map condition,

while not affecting the order of T (γo) relative to a traditional one-dimensional shooting case,

is not vacuous either. In fact, since s0 = B(0) is the center of S, we have that

g(s)− s0 = B(χT (s, γo, 0))−B(0)−DT

ˆ T

0

f(bt(s, γ
o, 0))dt.

Thus, bounding B(χT (s, γo, 0)) − B(0) imposes an additional constraint relative to those

that ensure that the system is uniformly bounded (which in turn bound the last term in the

previous expression), thereby shrinking the constant of proportionality in T (γo) ∈ O(1/γo).

Second, the set of times for which a LME is guaranteed to exist increases without bound

as γo ↘ 0: indeed, f(·) naturally scales with this parameter, so the solutions converge to the

full-information counterpart (v6, v8, β0, β1, β2, β3, χ, γ) = (0, 0, 0, 1/4, 1/4, 1/2, 0, 0), which is

defined for all T > 0. Finally, the bound T (γo) is obtained under minimal knowledge of the

system: it imposes crude bounds that only use the degree of the polynomial vector f(b), and

that do not exploit any relationship between the coefficients. Thus, the proof technique is

both general and improvable, provided more is known about the system in specific settings.

In Appendix B.3 we sketch how the steps used in the proof of Theorem 2 apply to the

whole class of games satisfying Assumption 1. Moreover, observe that this method, by

being able to “shoot” multiple ODEs in either direction, is potentially applicable to other

asymmetric games of learning beyond the class under study.

5 Extensions

As noted in Remark 1, our model can be generalized to accommodate a quadratic terminal

payoff or to allow the long-run player to affect the public signal. To demonstrate, we first

explore a career-concerns model, and then a trading model a la Kyle (1985) exhibiting private

monitoring of an insider’s trades.
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5.1 Reputation for Neutrality

Suppose that the long-run player is now an expert or politician with career concerns. This

agent has a hidden ideological bias θ and takes repeated actions—for example, adopting

positions on critical issues34 or making campaign promises.35 She receives utility from taking

actions that conform to her bias but also from attaining a neutral reputation at the end of

the horizon; hence, she must trade off her ideological desires with her career concerns.

The long-run player’s payoff is given by

−
ˆ T

0

(at − θ)2dt− ψâ2
T ,

where ψ > 0 is a commonly known parameter, while the myopic player’s flow payoff is

Û(at, ât, θ) = −(ât − θ)2. In this specification, the myopic player chooses ât = M̂t at all

times, and so the termination payoff −ψM̂2
T is effectively a measure of career concerns; the

parameter ψ > 0 governs the intensity of such motives.36

We interpret the myopic player as a news outlet; Y defined in (8) is interpreted as the

outlet having access to imperfect private sources regarding the long-run player’s actions. In

turn, the outlet’s news process is given by dXt = M̂tdt + σXdZ
X
t : the reporting on the

perceived bias is fair on average, but imperfect.

When does the politician fare better? In settings where the reporting is precise (i.e., low

σX), and hence she can tailor her actions to her reputation? Clearly, noisier environments

as measured by σX entail a direct cost: they introduce increased uncertainty over a con-

cave objective. The next result shows that increasing an agent’s uncertainty over her own

reputation, thereby undermining her ability to take appropriate actions, can be beneficial:

Proposition 5. (i) Suppose that σX ∈ {0,+∞}. Then, for all ψ, T > 0 there exists an

LME. Moreover, if ψ < σ2
Y /γ

o, the LME is unique, and learning is lower and ex ante

payoffs higher in the no feedback case.

(ii) If σX ∈ (0,∞), there exists T (γo) ∈ O(1/γo) such that a LME exists for all T < T (γo).

All else equal, the long-run player prefers higher actions when her type is higher, and

hence her equilibrium strategy attaches positive weight to her type. But because of career

34Mayhew (1974) in a classic political science text describes the dynamic nature of position taking by
congresspeople: “[. . . ] it might be rational for members in electoral danger to resort to innovation. The form
of innovation available is entrepreneurial position taking, its logic being that for a member facing defeat with
his old array of positions, it makes good sense to gamble on some new ones.”

35Campaign promises could be costly due to politicians’ honesty (Callander and Wilkie, 2007; Kartik
et al., 2007; Kartik, 2009) or the electorate’s refusal to reelect politicians who renege (Aragonès et al., 2007).

36A linear model a la Holmström (1999) makes the quality of feedback irrelevant. See Bouvard and Lévy
(2019) for quadratic-based horizontal reputations under symmetric uncertainty.
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concerns, the greater the perceived value of M̂ , the greater the long-run player’ incentive

to manipulate it downward. With private monitoring, higher types therefore must offset

higher beliefs from their perspectives, leading to a history-inference effect that dampens the

signaling coefficient α3. The belief is then less responsive from an ex ante perspective, which

facilitates maintaining a reputation for neutrality.37 Indeed, provided the objective is not

too concave and the environment not too uncertain (which strengthen the direct cost), this

strategic effect dominates.

Regarding part (ii), because the present environment is one of common values, one can

establish the existence of a LME with minimal modifications to the method presented in

Section 4.3. Indeed, the only difference is that our baseline model had terminal conditions

that were a function of χT exclusively, whereas now we have an extra dependence on γT via

β1T = − ψγT
σ2
Y + ψγTχT

,

reflecting last-minute incentives to manipulate the myopic player’s belief that decrease in

the precision of such belief. Our approach does not vary with this extra dependence.

5.2 Insider Trading

An asset with fixed fundamental value θ, is traded in continuous time until date T , the

time at which its true value is revealed, ending the game. A patient insider (the long-run

player) privately observes θ prior to the start of the game. As in Yang and Zhu (2019), a

second trader has a technology which allows him to privately observe imperfect signals of

the insider’s trades; this player is myopic. Both players and a flow of noise traders submit

orders to a market maker who then executes those trades at a public price Lt = E[θ|FXt ].

We depart from the baseline model along three dimensions. First, the players’ flow

payoffs depend directly on L, interpreted as the action taken by the market maker: the

myopic player’s flow payoff is given by ξ(θ − L)â − â2

2
, where ξ ≥ 0, while the long-run

player’s flow payoff is (θ − Lt)at; we interpret the inverse of the parameter ξ as a measure

of transaction costs for the myopic player.38 Second, observe that the long-run player’s flow

payoff is linear in her action at at all instants t ∈ [0, T ]. Finally, the public signal (total

order flow) now includes the long-run player’s action: dXt = (at + ât)dt + σXdZ
X
t . Hence,

the myopic player learns from both the private monitoring channel and the public price.

37It is easy to show that the ex ante expectation of M̂2
T is γo−γT , so that greater learning by the myopic

player results in larger terminal losses for the long-run player. This reverses for slightly negative ψ, but so
does the history-inference effect: there is more learning but again a higher payoff in the no feedback case.

38The use of a quadratic loss term strengthens our non-existence result, as it limits the myopic player’s
ability to exploit the private information he acquires.
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Following the literature, we seek an equilibrium in which the informed trader reveals her

private information gradually over time through a linear strategy of the form (10). Hence,

we require that the coefficients of the insider’s strategy be C1 functions over strict compact

subsets of [0, T ).39 We can then apply Lemmas 1 and 2 to such sets.40

Clearly, when ξ = 0 (or σY =∞), the model reduces to the classic model of Kyle (1985)

(see also Back (1992)), and hence a LME with trading strategy of the form β3(θ−L) always

exists. This is not the case when ξ > 0.

Proposition 6. Fix ξ > 0. For all σY > 0, there does not exist a linear Markov equilibrium

of the insider trading game.

With linear Markov strategies, the myopic player acquires private information about θ

over time by observing signals of the insider’s trades. Consequently, the myopic player’s

own repeated trades carry further information to the market maker, beyond that which the

market maker learns from the insider alone. This introduces momentum into the law of

motion for the price from the insider’s perspective, measured by a term ξ(m− l) in the drift

of L; future trades then become less attractive to the insider, thereby putting the insider

in a race against herself which results in all her information being traded away in the first

instant, regardless of the amount of noise in the private signal Y .41

In an intimately related result, Yang and Zhu (2019) show that a linear equilibrium

ceases to exist in a two-period setting where a trader who only participates in the last

round receives a sufficiently precise signal of an informed player’s first-period trade; a mixed-

strategy equilibrium then emerges. More generally, the existence problem relates to how,

with common information, an informed player’s rush to trade depends on the number of

trading opportunities. The analysis of Foster and Viswanathan (1994) is illuminating in this

respect: in a setting with nested information structures, the better informed trader quickly

trades a commonly known piece of information (and exploits her superior information only

later on). While there are important differences between our setups (the belief of the less

informed player is, in their model, always known to the first, and their common information

exogenous) there is a unifying theme: once common information is created, there is a pressure

to trade quickly on it. Such pressure increases with the number of trading opportunities.42

39By not imposing this requirement over [0, T ], we maintain the possibility of full revelation of information
near the end of the game, as is standard in insider trading models. In addition, this requirement ensures
that the total order can be “inverted” from the price, and hence it is without loss to make X public.

40Specifically, the proof of Lemma 1 provides the learning ODEs for the case ν > 0, and it is easy to see
that the steps of Lemma 2 (with ûâθ = ξ, ûâa = 0) also go through for this case.

41Because this environment is linear, there is no well-defined Nash equilibrium at T . Thus, our argument
is not based on a non-existence result for a BVP, but rather on an impossibility of indifference conditions
for the long-run player to hold.

42In symmetric settings, Holden and Subrahmanyam (1992) show that intense trading occurs in early pe-
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6 Conclusion

We have examined a minimal departure from an extensive literature on signaling games:

namely, allowing for imperfect private monitoring on the receiver’s side. In such settings,

a “beliefs about beliefs” problem arises due to the private information obtained by the

receiver and the sender’s need to rely on her past play to forecast the former’s belief. A key

contribution of our analysis is to offer a framework where this problem is manageable, at the

core of which is a novel and tractable representation of a second-order belief under linear

Markov strategies. We explored the implications that such conditioning on past play has on

signaling behavior and economic outcomes in applications, and we introduced an approach

for establishing the existence of LME in asymmetric signaling games.

Let us conclude with a discussion of three assumptions of the model. First, the public-

private signal structure studied indeed provides us with sufficient tractability: via the repre-

sentation, it allows us to “close” the set of states at the second order. If instead the long-run

player had a stochastic type, or access to an imperfect private signal, beliefs of even higher

order would be payoff-relevant. While some economic environments may feature these as-

sumptions, a natural question is whether we believe that economic behavior in such settings

is substantially affected by those higher-order inferences.

Second, the presence of a myopic player is not a major limitation. In fact, most of the

results are derived for, or can be generalized to, continuous coefficients ~δ in the myopic

player’s strategy. With a forward-looking receiver, such coefficients solve ODEs capturing

optimal dynamic behavior, but crucially (i) no additional states are needed, and (ii) the

fixed-point argument is applicable to an enlarged boundary value problem.

Finally, the linear-quadratic-Gaussian class is clearly a stylized one. Yet, its advantage

lies in its tractability for uncovering economic effects that are likely to be key in other, more

nonlinear, environments. From this perspective, (i) the way in which the history-inference

effect interacts with payoffs and (ii) the time-effects arising from ongoing learning, seem to

exhaust the effects expected to be of first-order importance when behavior depends on the

payoff-relevant aspects of the players’ histories.

riods between two identically informed traders, and Back et al. (2000) obtain the corresponding nonexistence
result with infinitely many rounds of trade directly in continuous time.
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Appendix A: Proofs for Section 2

A.1: Preliminary Results

We begin by stating several standard results on ordinary differential equations which we use

heavily in the proofs that follow. Let f(t, x) be a continuous function from [0, T ] × Rn to

Rn, where T > 0. For any fixed x0 ∈ Rn, define an initial value problem (IVP)

ẋ = f(t, x), x(0) = x0.

We have the following.

• Peano’s Theorem (Teschl, 2012, p. 56, Theorem 2.19): For some T ′ ∈ (0, T ), there

exists at least one solution to the IVP for t ∈ [0, T ′).

If, moreover, f is locally Lipschitz continuous in x, uniformly in t, then the following apply:

• The Picard-Lindelöf Theorem (Teschl, 2012, p. 38, Theorem 2.2): For some T ′ ∈ (0, T ),

there is a unique solution to the IVP for t ∈ [0, T ′).

• “The” comparison theorem (Teschl, 2012, p. 27, Theorem 1.3): If x(t), y(t) are two

differentiable functions satisfying x(t0) ≤ y(t0) for some t0 ∈ [0, T ) and ẋt−f(t, x(t)) ≤
ẏt − f(t, y(t)) for all t ∈ [t0, T ), then x(t) ≤ y(t) for all t ∈ [t0, T ). If, in addition,

x(t) < y(t) for some t ∈ [t0, T ), then x(s) < y(s) for all s ∈ [t, T ).

A.2: Proofs for Public Case

Proof of Proposition 1. We aim to characterize a LME of the form

at = β0t + β1tM̂t + β3tθ and ât = Êt[at] = β0t + (β1t + β3t)M̂t (A.1)

where M̂t := Êt[θ], and βit, i = 0, 1, 3, are functions of time satisfying β1t+β3t 6= 0, t ∈ [0, T ].

Since the follower attempts to match the leader’s action, we have

ât = Êt[β0t + β1tMt + β3tθ] = β0t︸︷︷︸
δ0t

+ (β1t + β3t)︸ ︷︷ ︸
δ1t

Mt

in any equilibrium in which β1t + β3t 6= 0 at all times (and thus the follower’s belief can

be inferred from the observation of the follower’s action, which leads to M ≡ M̂). From

standard results in filtering theory, if the follower expects (at)t≥0 as in (A.1), then whenever
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he is on path43 (even if the long-run player is not) his time-t beliefs are θ ∼ N (M̂t, γt), where

dM̂t =
β3tγt
σ2
Y

[dYt − {β0t + (β1t + β3t)M̂t}︸ ︷︷ ︸
Êt[at]=

dt] and γ̇t = −
(
γtβ3t

σ2
Y

)2

, (A.2)

and where M̂0 = µ and γ0 = γo.

Let V : R2 × [0, T ]→ R denote the leader’s value function. The HJB equation is

rV (θ,m, t) = sup
a

{
−(a− θ)2 − (a− ât)2 + Λtµt(a)VM(θ,m, t) +

Λ2
tσ

2
Y

2
VMM(θ,m, t) + Vt(θ,m, t)

}
,

(A.3)

where Λt := β3tγt
σ2
Y

and µt(a) := a− β0t − (β1t + β3t)m.

We guess a quadratic value function V (θ,m, t) = v0t+v1tθ+v2tm+v3tθ
2 +v4tm

2 +v5tθm.

To obtain the maximizer of the RHS of (A.3), we impose the first-order condition

0 = −2(a− θ)− 2(a− β0t − (β1t + β3t)m) +
β3tγt[v2t + 2mv4t + θv5t]

σ2
Y

=⇒ 0 = −2(β0t + β1tm+ β3tθ − θ)− 2β3t(θ −m) +
β3tγt[v2t + 2mv4t + θv5t]

σ2
Y

, (A.4)

where in the second line we have used that the maximizer must be a∗ := β0t + β1tm+ β3tθ.

Since (A.4) must hold for all (θ,m, t) ∈ R2 × [0, T ], the coefficients on θ and m and the

constant term must vanish, and we obtain

(v2t, v4t, v5t) =

(
2σ2

Y β0t

β3tγt
,
σ2
Y (β1t − β3t)

β3tγt
,
2σ2

Y (2β3t − 1)

β3tγt

)
. (A.5)

Since viT = 0 for all i ∈ {0, 1, . . . , 5}, (A.5) implies the terminal values

(β0T , β1T , β3T ) = (0, 1/2, 1/2), (A.6)

which are also the myopic equilibrium coefficients, that is, the coefficients that would arise

were the players to act myopically at any instant of time.

43If instead of σX = 0, Y is public, this holds also after deviations by the myopic player; see footnote 12.
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Substituting a∗ as above into (A.3) yields

0 = −r[v0t + v1tθ + v2tm+ v3tθ
2 + v4tm

2 + v5tθm]

− [β0t +mβ1t + θ(β3t − 1)]2 − (m− θ)2β2
3t −

(m− θ)[v2t + 2mv4t + θv5t]β
2
3tγt

σ2
Y

+
v4tβ

2
3tγ

2
t

σ2
Y

+ v̇0t + v̇1tθ + v̇2tm+ v̇3tθ
2 + v̇4tm

2 + v̇5tθm,

(A.7)

which again must hold for all (θ,m, t) ∈ R2×[0, T ]. Using (A.5), we can replace (v2t, v4t, v5t, v̇2t, v̇4t,

v̇5t) in (A.7) and obtain a new HJB equation as a function of ~β := (β0, β1, β3) and ~̇β. As the

constant term and the coefficients on θ,m, θ2,m2 and θm in this new equation must vanish,

we obtain the following system of ODEs for (v0, v1, v3, β0, β1, β3):

v̇0t = rv0t + β3tγt(β3t − β1t) (A.8)

v̇1t = rv1t − 2β0tβ3t (A.9)

v̇3t = 1 + rv3t − 2β2
3t (A.10)

β̇0t = 2rβ0tβ3t (A.11)

β̇1t = β3t

[
r(2β1t − 1) +

β1tβ3tγt
σ2
Y

]
(A.12)

β̇3t = β3t

[
r(2β3t − 1)− β1tβ3tγt

σ2
Y

]
(A.13)

with conditions (v0T , v1T , v3T , β0T , β1T , β3T ) = (0, 0, 0, 0, 1/2, 1/2). Observe that γ appears

in all the previous equations, and its dynamic is given by (A.2). Furthermore, observe that

solving the subsystem (β0, β1, β3, γ) delivers the remaining vi: their ODEs (A.8)-(A.10) are

uncoupled from one another and linear in themselves, and thus they have unique solutions.

Hence, proving the existence of a linear Markov equilibrium reduces to solving the boundary

value problem (A.2) and (A.11)-(A.13) with conditions γ0 = γo and (A.6).

We now show that a solution to this boundary value problem always exists. To do so, it

is useful to transform this problem into backward form, i.e., reversing the direction of time

and parameterizing the initial value of γ in that system. Specifically, we obtain

β̇0t = −2rβ0tβ3t (A.14)

β̇1t = β3t

[
r(1− 2β1t)−

β1tβ3tγt
σ2
Y

]
(A.15)

β̇3t = β3t

[
r(1− 2β3t) +

β1tβ3tγt
σ2
Y

]
(A.16)
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γ̇t =
β2

3tγ
2
t

σ2
Y

, (A.17)

with initial conditions β00 = 0, β10 = β30 = 1
2

and γ0 = γF ≥ 0.

Define Bpub
t := β1t + β3t.

Lemma A.1. If a solution to the backward system exists over some interval [0, T ], then

any such solution must have the following properties. If γF > 0, then (i) Bpub
t = 1 for all

t ∈ [0, T ], (ii) β3t ∈ (1/2, 1) and β1t ∈ (0, 1/2) for all t ∈ (0, T ], (iii) β3 is monotonically

increasing while β1 is monotonically decreasing, and (iv) γ is strictly increasing. If γF = 0,

then β1t = β3t = 1
2

and γt = 0 for all t ∈ [0, T ]. For any γF ≥ 0, β0 = 0.

Proof of Lemma A.1. We first claim that if a solution exists over some interval [0, T ], then

β3t > 0 for all t ∈ [0, T ]. To see this let fβ3(t, β3t) denote the RHS of (A.16). Letting xt := 0

for all t ∈ [0, T ], we have β30 = 1/2 > x0 and β̇3t − fβ3(t, β3t) = 0 = ẋt − fβ3(t, xt). By the

comparison theorem in Teschl (2012, Theorem 1.3), the claim holds.

Next, we define Bpub
t := β1t+β3t and show that Bpub = 1. Adding (A.15) and (A.16) yields

Ḃpub
t = 2rβ3t(1−Bpub

t ) which, given any β3t, has solution of the form Bpub
t = 1−C̃e−

´ t
0 2rβ3sds.

Using the initial condition Bpub
0 = 1 = 1− C̃, we have C̃ = 0 and Bpub = 1.

Hence we can rewrite the β3 ODE as

β̇3t = β3t

[
r(1− 2β3t) +

β3t(1− β3t)γt
σ2
Y

]
. (A.18)

We now show that β3 < 1. Let fβ3(t, β3t) now denote the RHS of (A.18), and define

xt := 1 for all t ∈ [0, T ]. Then x0 = 1 > β30 = 1
2
, and β̇3t−fβ3(t, β3t) = 0 ≤ r = ẋt−fβ3(t, xt),

so by the comparison theorem, the claim holds. Since β1t = 1− β3t, we have β1 > 0.

Consider the case γF = 0. Since β3 > 0, γt = 0 is the unique solution to (A.17). Letting

zt := β3t− β1t, we have żt = −2rβ3tzt. As this is a linear ODE with initial condition z0 = 0,

the unique solution is zt = 0 for all t ∈ [0, T ]. Since β1t + β3t = 1, we have β1t = β3t = 1/2

for all t ∈ [0, T ], proving the claim in the proposition statement.

Next consider the case γF > 0. Since β3 > 0, (A.17) implies γ is strictly increasing, and

hence γt > 0 for all t ∈ [0, T ]. Now whenever β3t = 1
2
, we have β̇3t = 1

2

[
0 + γt

4σ2
Y

]
> 0, and

thus β3t > 1/2 for all t ∈ (0, T ]. Since β1t = 1− β3t, we have β1t < 1/2 for all such t.

We now turn to (iii). Since β̇1t + β̇3t = 0 for all t ∈ [0, T ], it suffices to show that β̇3t > 0

for all t ∈ [0, T ]; in turn, it suffices to show that Ht := r(1 − 2β3t) + β3t(1−β3t)γt
σ2
Y

> 0 for all

t ∈ [0, T ], where β̇3t = β3tHt. Now H0 = γ0
4σ2
Y
> 0, and with algebra it can be shown that if

Ht = 0, Ḣt =
(1−β3t)β3

3tγ
2
t

σ4
Y

> 0. It follows that Ht > 0 for all t ∈ [0, T ], as desired.
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Finally, note that in all cases, we have β3 > 0, so the unique solution to (A.14) consistent

with the initial condition β00 = 0 is β0 = 0.

Now we must show there exists a value of γF such that γT = γo in the backward system

while all the other ODEs admit solutions. As shown in Bonatti et al. (2017), a sufficient

condition for this to occur is that the solutions are uniformly bounded when γt takes values

in [0, γo] when t is in [0, T ]. By Lemma A.1, the following bounds hold as long as γ does not

explode: β0, β1, β3 ∈ [0, 1]. We conclude that there exists a solution to the BVP, and hence

a LME exists.44 Uniqueness is shown in the proof of Lemma A.3 for the case r = 0 and in

the online appendix for the case r ∈ (0,∞).

For part (ii) of the proposition, β3T = 1/2 has already been established, and the remaining

claims have been shown (for the backward system) in Lemma A.1.

A.3: Proofs for No Feedback Case

Lemma A.2 (Belief Representation). Suppose that the follower expects at = [β0t + β1t(1−
χt)]µ+αtθ, where α = β3+β1χ, χ = 1−γ/γo, and γt := Êt[(θt−M̂t)

2]. Then γ̇t = −
(
γtαt
σ2
Y

)2

.

Moreover, if the leader follows (5), Mt = χtθ + (1− χt)µ holds at all times.

Proof of Lemma A.2. Let β0tµ + β1tMt + β3tθ denote the long-run player’s strategy. Thus,

Êt[at] = α0t + αtM̂t, where α0 = [β0 + β1(1 − χ)]µ and α = β3 + β1χ. Then, dM̂t =
αtγt
σ2
Y

[dYt − (α0t + αtM̂t)dt], so letting R(t, s) = exp(−
´ t
s
α2
uγu
σ2
Y
du)

M̂t = µR(t, 0) +

ˆ t

0

R(t, s)
αsγs
σ2
Y

[(as − α0s)ds+ σY dZ
Y
s ]

⇒Mt = µR(t, 0) +

ˆ t

0

R(t, s)
αsγs
σ2
Y

(as − α0s)ds

γ̇t = −γ
2
t α

2
t

σ2
Y

. (A.19)

On the path of play, however, at = β0tµ+ β1tMt + β3tθ, so we obtain

Mt = µR(t, 0) + θ

ˆ t

0

R(t, s)
αsγs
σ2
Y

[−(1− χs)β1sµ+ β1sMs + β3sθ]ds,

where we have used that β0sµ− α0s = −(1− χs)β1sµ. In particular,

dMs =

(
−Ms

[
αsγs
σ2
Y

(αs + β1s)

]
+
αsγs
σ2
Y

[−β1s(1− χs)µ+ β3sθ]

)
ds,

44We elaborate on the specific details of this argument in the proof of Theorem 1.
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and so, letting R̃(t, s) = exp(−
´ t
s
αuγu
σ2
Y

(αu − β1u)du),

Mt = µ

(
R̃(t, 0)−

ˆ t

0

R̃(t, s)
αsγs
σ2
Y

β1s(1− χs)ds
)

+ θ

ˆ t

0

R̃(t, s)
αsγs
σ2
Y

β3sds.

From here

χt =

ˆ t

0

R̃(t, s)
αsγs
σ2
Y

β3sds and 1− χt = R̃(t, 0)−
ˆ t

0

R̃(t, s)
αsγs
σ2
Y

β1s(1− χs)ds.

Critically, observe that the second constraint is a direct consequence of the first. Specifically,

adding and subtracting β3s and noticing that αs − β1s = β3s − β1s(1− χs)we can write

−
ˆ t

0

R̃(t, s)
αsγs
σ2
Y

β1s(1− χs)ds =

ˆ t

0

R̃(t, s)
αsγs
σ2
Y

[αs − β1s]ds− χt

=

ˆ t

0

dR̃(t, s)

ds
ds− χt

= 1− R̃(t, 0)− χt (A.20)

where in the last equality we used that R̃(t, t) = 1.

With this in hand, the relevant constraint is the first. In differential form, and using that

αt = β3 + β1χ,

χ̇t = −αtγt
σ2
Y

[αt − β1t]χt +
αtβ3tγt
σ2
Y

=
(β3t + β1tχt)

2γt
σ2
Y

(1− χt) =
α2
tγt
σ2
Y

(1− χt).

Using the exact same arguments in the proof of Lemma 2, we conclude that the re-

sulting (χ, γ) system admits a unique solution with the same properties as in that lemma.

Furthermore, it is easy to check that 1−γt/γo satisfies the χ-ODE, concluding the proof.

Proof of Proposition 2. From Lemma A.2, given a conjecture by the follower about (β0, β1, β3),

the variance of the follower’s belief evolves deterministically as γ̇t = −α2
tγ

2
t

σ2
Y

and χ ≡ 1−γ/γo.
The follower matches the expectation of the leader’s action by playing

ât = Êt[β0tµ+ β1tMt + β3tθ]

= Êt[β0tµ+ β1t (µ[1− χt] + χtθ) + β3tθ]

= (β0t + β1t[1− χt])µ︸ ︷︷ ︸
δ0t

+ (β1tχt + β3t)︸ ︷︷ ︸
δ1t

M̂t.

Ignoring the â2
t term, the states (θ,Mt, t) capture the leader’s expected flow payoff given

an action a, on and off path. The â2
t term introduces the term Et[M̂2

t ], but this can be
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expressed as (Et[M̂t])
2 + Et[(M̂t −Mt)

2] = M2
t + γtχt.

45

Defining µ1t := αtγt/σ
2
Y , µ0t = −µ1t[β0tµ + β1tµ(1 − χt)] and µ2t = −αtµ1t, where

αt = β1tχt + β3t, the HJB equation is

rV (θ,m, t) = sup
a
{ −

(
a2 − 2a[δ0t + δ1tm] + δ2

0t + 2δ0tδ1tm+ δ2
1t[γtχt +m2]

)︸ ︷︷ ︸
=Et[(a−ât)2]

−(a− θ)2 + (µ0t + aµ1t +mµ2t)Vm(θ,m, t) + Vt(θ,m, t)
}
.

(A.21)

We guess a quadratic value function V (θ,m, t) = v0t+v1tθ+v2tm+v3tθ
2 +v4tm

2 +v5tθm.

Using a similar steps to those in the proof of Proposition 1,46 we obtain a boundary value

problem for (β0, β1, β3, γ). We now express this system in its backward form (the original

system can be recovered by placing a ‘−’ sign in front of the RHS of (A.22)-(A.26) below).

Using a guess γ0 = γF , we formulate an initial value problem parameterized by γF :

β̇0t =
αt

2σ2
Y

{
−rσ2

Y β0t(2− χt) + rσ2
Y (1− χt)− 2γtβ

2
1t(1− χt)

}
(A.22)

β̇1t =
αt

2σ2
Y

{
rσ2

Y − 2β1t[β3tγt + rσ2
Y (2− χt)] + 2β2

1tγt(1− χt)
}

(A.23)

β̇3t =
αt

2σ2
Y

{
rσ2

Y (2− χt) + 2β3t[β1tγt − rσ2
Y (2− χt)]

}
(A.24)

α̇t = rαt[1− αt(2− χt)] (A.25)

γ̇t =
α2
tγ

2
t

σ2
Y

(A.26)

with boundary conditions β00 = 1−χ0

2(2−χ0)
, β10 = 1

2(2−χ0)
, β30 = 1

2
, α0 = 1

2−χ0
> 0 and γ0 = γF .

Let (βm0t , β
m
1t , β

m
3t , α

m
t ) =

(
1−χt

2(2−χt) ,
1

2(2−χt) ,
1
2
, 1

2−χt

)
denote the myopic coefficients, i.e. the

myopic equilibrium given the variance γ induced by the original (dynamic) strategy.

By the comparison theorem, α > 0 in any solution to the IVP. It follows that for γF = 0,

the IVP has a unique solution (β0, β1, β3, γ,χ) = (0, 1/2, 1/2, 0, 1). By continuity, suppose

now that γF > 0 is sufficiently small that there exists a solution to the IVP. By the same

argument as in the proof of Lemma A.1, γ is increasing.

Given such (γt)t∈[0,T ], we can write the right-hand side of the α-ODE as a function of the

form fα(t, α) that is of class C1. Using that χt = 1 − γt/γo, observe that, in the backward

45To see this, from the proof of Lemma A.2, Et[(M̂t − Mt)
2] = Et[(

´ t
0
R(t, s)αsγs

σY
dZYs )2] =´ t

0
R(t, s)2

α2
sγ

2
s

σ2
Y
ds =

´ t
0

exp(−2
´ t
s
γ̇u
γu
du)(−γ̇s)ds =

´ t
0

(γt/γs)
2

(−γ̇s)ds = γ2t (1/γt − 1/γo) = γtχt.
46See the online appendix for the detailed steps.
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system,

d

dt

(
1

2− χt

)
− fα(t, 1/(2− χt)) = − γ̇t

γo(1 + γt/γo)2
< 0 = α̇t − fα(t, αt)

where the first inequality follows from γt being increasing in the backward system. Moreover,

α0 = 1
2−χ0

. The comparison theorem allows us to conclude that αt ≥ 1/(2−χt), and in turn

α̇t ≤ 0 (and hence α̇t ≥ 0 in the forward system), for all t ∈ [0, T ] with both inequalities

strict for t ∈ (0, T ] (t ∈ [0, T ) in the forward system) if and only if r > 0. It follows that for

all t ∈ (0, T ], αt < α0 = 1
2−χ0

< 1.

Now by simple addition of the ODEs, we obtain that BNF
t := β0 + β1 + β3 satisfies

ḂNF
t =

αt
2σ2

Y

{
2rσ2

Y (2− χt)[1−BNF
t ]
}
, with BNF

0 = 1.

It is easy to see that an analogous argument to the one used for Bpub used in the proof of

Lemma A.1 applies, yielding BNF
t = 1 as the unique solution.

Next, we establish uniform bounds on β1 and β3 (and hence β0). Toward showing β1 > 0,

observe that the RHS of the β1 ODE can be written as fβ1(t, β1) of class C1. Letting x := 0,

we have β10 > x0 = 0 and ẋt − fβ1(t, xt) = 0 − αt
2σ2
Y
rσ2

Y ≤ 0 = β̇1t − fβ1(t, β1t) and thus by

the comparison theorem, β1 > x = 0. This implies that β3 = α− β1χ ≤ α < 1.

We now show β3t > 1/2 and β1t < βm1t < 1 for all t ∈ (0, T ]. For the former, recall that

β30 = 1/2, and whenever β3t = 1/2, β̇3t = αβ1γ
2σ2
Y
> 0; it follows that β3t > 1/2 for all t ∈ (0, T ].

Now β10 = βm10 < 1, and since

β̇m1t − fβ1(t, βm1t) =
γt

4σ2
Y (2− χt)4

(β3t[2− χt]− [1− χt]) (2β3t[2− χt] + χt)

> 0 = β̇1t − fβ1(t, β1t),

the comparison theorem implies β1t < βm1t < 1 for all t ∈ (0, T ].

By a one-dimensional shooting argument as in the proof of Proposition 2, we obtain

existence of a solution to the BVP for (β0, β1, β3, γ), from which the value function coefficients

are characterized (see the online appendix), and hence existence of a LME.

The final claim to prove is that as T → ∞, αT → 1, for which we use the forward

system. Recalling that α > 1/2, we have γT → 0 as T → ∞, and thus χT → 1 and

αT = 1/(2− χT )→ 1.
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A.4: Proofs for Comparisons between Public and No Feedback Cases

To prove Propositions 3 and 4 we rely on two sets of results. The first set (Lemmas A.3-

A.4 below) corresponds to closed-form solutions that are obtained in the fully patient and

fully myopic cases. The second set of results establishes the uniform convergence of the

equilibrium coefficients to the myopic counterparts as r ↗ ∞ (Lemmas A.5-A.6). All four

proofs are in the online appendix.

Lemma A.3 (Closed-form solutions when r = 0). For r = 0, the leading by example game

has a unique LME for the public case, and (β0, β1, β3, γ) satisfy β0 ≡ 0, β1 ≡ 1− β3,

γt =
γT
2

+
1

2
γT
− T−t

σ2
Y

, β3t =
1

2− γT (T−t)
2σ2
Y

, and γT =
γoT + 2σ2

Y −
√

(γoT )2 + 4σ4
Y

T
. (A.27)

Lemma A.4 (Closed-form solution no-feedback case r = 0). For r = 0, the leading by

example game has a unique LME for the no feedback case:

β1t =
γo[(γo + γT )2σ2

Y − (T − t)(γo)2γT ]

(γo + γT )[2σ2
Y (γo + γT )2 − (T − t)(γo)2γT ]

, β3t =
σ2
Y (γo + γT )2

2σ2
Y (γo + γT )2 − (T − t)(γo)2γT

αt =
γo

γo + γT
, γt =

γTσ
2
Y (γo + γT )2

σ2
Y (γo + γT )2 − (T − t) (γo)2 γT

,

for all t ∈ [0, T ], where χt = 1 − γt/γo and γT ∈ (0, γo) is the unique solution in (0, γo) to

the cubic q(γ) := γT (γo)3 + (γ − γo) (γ + γo)2 σ2
Y = 0, and β0 ≡ 1− β1 − β3.

Lemma A.5 (Closed-form solutions—myopic case). Suppose the leader is myopic. In the

LME for the public case, β3 = 1/2 and γpubt =
4σ2
Y γ

o

4σ2
Y +γot

. In the LME for the no feedback case,

αt = γo

γ0+γNFt
, where γNFt is defined implicitly as the unique solution in (0, γo] of the equation

f(γ/γo) := 2 ln(γNFt /γo)− γo/γNFt + γNFt /γo = −γot
σ2
Y

.

Lemma A.6 (Uniform Convergence as r →∞). As r →∞, the solutions to the public and

no feedback cases converge uniformly to their corresponding myopic solutions.

Proof of Proposition 3

We first prove the learning comparison in (i). Recall that γNFT is the unique positive root

of the cubic equation q(γ) = 0 defined in Lemma A.4. Now q is increasing over (0, γo), and

hence q(γ) > 0 iff γ > γNFT . Thus to prove the claim, it suffices to show that q(γpubT ) > 0;

the proof of this algebraic result is in the online appendix.
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Now we establish the ranking of signaling coefficients at time zero, i.e., that βpub30 > αNF .

Using the associated expressions from Lemmas A.3 and A.4, this is equivalent to

1

2− γpubT T

2σ2
Y

>
γo

γo + γNFT
⇐⇒ γ̂ := γo

(
1− γpubT T

2σ2
Y

)
< γNFT .

It suffices to show that q(γ̂) = T γ̂(γo)3 + (γ̂ − γo)(γ̂ + γo)2σ2
Y < 0. Using the expression for

γpubT from Lemma A.3, one can show that

q(γ̂) =
(γo)4T [−γoT +

√
(γoT )2 + 4σ4

Y ]

2σ2
Y

[
1−

2σ2
Y − (γoT −

√
(γoT )2 + 4σ4

Y )

2σ2
Y

]

= −T (γo)4

2σ4
Y

[
(Tγo)2 + 2σ4

Y − Tγo
√

(Tγo)2 + 4σ4
Y

]
.

The expression in square brackets can be written as x+y
2
−√xy > 0 where x = (Tγo)2 > 0

and y = (Tγo)2 + 4σ4
Y > 0, and thus q(γ̂) < 0, concluding the proof.

Finally, to prove (ii), observe first that γPubt > γNFt for all t ∈ (0, T ] in the fully myopic

case. Indeed, since γNF0 = γPub0 = γo, solving the ODEs for γPub and γNF by integration

and using that αt ≥ β3t = 1/2 with strict inequality for all t > 0 delivers the result. This

implies that for any δ ∈ (0, T ), 0 < γ̄ := mint∈[T−δ,T ](γ
Pub,∞
t − γNF,∞t ), where we use γx,r

to denote the solution for the case x ∈ {Pub,NF} and r is the discount rate. By Lemma

A.6, γPub,r − γNF,r converges uniformly to γPub,∞ − γNF,∞ as r → ∞, and thus for any

ε ∈ (0, γ̄), there exists r̄ > 0 such that for all r > r̄ and all t ∈ [T − δ, T ], we have

γPub,rt − γNF,rt > γPub,∞t − γNF,∞t − ε ≥ γ̄ − ε > 0, as desired.

Proof of Proposition 4

We begin by calculating expected flow losses in the public and no feedback cases.

Lemma A.7. The expected flow payoffs to the long-run player in LME for the public bench-

mark and no feedback case have magnitudes

upubt = γpubt [(1− β3t)
2 + β2

3t] and uNFt = (1− α3t)
2γo + α2

3tγ
NF
t .

Proof. Recall that Ê0 is equivalent to the long-run player’s ex ante expectation operator.

In the public benchmark, using at = (1− β3t)Mt + β3tθ and ât = Mt, we have

upubt = Ê0

[
(θ − at)2 + (at − ât)2

]
= Ê0

[
(θ −Mt)

2
(
[1− β3t]

2 + β2
3t

)]
= γpubt [(1− β3t)

2 + β2
3t],
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where in the last step we have used the law of iterated expectations and the fact that the

variance is deterministic: Ê0 [(θ −Mt)
2] = Ê0

[
Êt[(θ −Mt)

2]
]

= γpubt .

In the no feedback case, using at = (1− αt)µ+ αtθ and ât = (1− αt)µ+ αtM̂t,

uNFt = Ê0

[
(θ − at)2 + (at − ât)2

]
= (1− αt)2Ê0

[
(θ − µ)2

]
+ α2

t Ê0

[
(θ − M̂t)

2
]

= γo(1− αt)2 + α2
tγ

NF
t

where we have used the definition of γo and Ê0

[
(θ − M̂t)

2
]

= Ê0

[
Êt[(θ − M̂t)

2]
]

= γNFt .

To aid exposition, we subsume part (i) of the proposition in Lemma A.8 below. For

i ∈ {pub,NF}, let V i denote the long-run player’s ex ante expected payoff and define

T̃ i :=
TγFi
σ2
Y

. Define ρ := γNFT /γo.

Lemma A.8. Assume r = 0. Then

(i) V pub = −σ2
Y

{
T̃ pub/2− ln

[
16−8T̃ pub

(4−T̃ pub)2

]}
and V NF = −σ2

Y {ρ(1− ρ)− ln ρ}

(ii) V pub > V NF for all T, γo, σ2
Y > 0.

Proof. See the online appendix.

For part (ii) of the proposition, observe from the calculations in the proof of Lemma A.7

that for i ∈ {pub,NF}, the undiscounted coordination losses are
´ T

0
(xit)

2γit dt, where xpub =

βpub and xNF = αNF . Since γ̇it = −(xitγ
i
t)

2/σ2
Y , such losses are

´ T
0
σ2
Y
γ̇it
γit
dt = σ2

Y ln(γit)|T0 =

−σ2
Y ln(γo/γiT ) as in the proposition.

Appendix B: Proofs for Section 4

In the proofs for this section, we denote the prior by m̂0 := µ.

Proof of Lemma 1. We establish a more general version of the lemma for a drift of the

form ât + νat, ν ∈ [0, 1], in X. We use “p1” and “p2” to refer to the long-run player and

the myopic player, respectively. Without fear of confusion, we also use γ1t for the posterior

variance of p2 (γt in the main body), as this variance appears in the first filtering step of

the proof. Likewise, p1’s posterior variance will be denoted by γ2, as it is obtained from a

second filtering step.

Inserting (9) into (10), we can write at = α0t + α2tLt + α3tθ, with

α0t = β0t, α2t = β2t + β1t(1− χt), and α3t = β3t + β1tχt,
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which p2 conjectures drives Y . (Since α3t plays a key role in the economic analysis and

appears frequently throughout the paper, we sometimes abbreviate it to αt.)

With this in hand, p2’s filtering problem can be obtained using the Kalman filter (Chap-

ters 11 and 12 in Liptser and Shiryaev, 1977). Specifically, define

dX2
t := dXt − [ât + ν(α0t + α2tLt)]dt = να3tθdt+ σXdZ

X
t

dY 2
t := dYt − [α0t + α2tLt]dt = α3tθdt+ σY dZ

Y
t

which are in p2’s information set. Then, by Theorems 12.6 and 12.7 in Liptser and Shiryaev

(1977), p2’s posterior belief is notmally distributed with mean M̂t and variance γ1t), where,

dM̂t =
να3tγ1t

σ2
X

[dX2
t − να3tM̂tdt] +

α3tγ1t

σ2
Y

[dY 2
t − α3tM̂tdt],

˙γ1t = −γ2
1tα

2
3tΣ,

and Σ :=
(
ν2

σ2
X

+ 1
σ2
Y

)
. (These expressions hold for any (admissible) strategies of the players,

as deviations go undetected.)

P1 can affect M̂t via her choice (at)t∈[0,T ]. It is easy to see that, from her perspective,

dM̂t =
να3tγ1t

σ2
X

[(νat − ν{α0t + α2tLt + α3tM̂t})dt+ σXdZ
X
t ]

+
α3tγ1t

σ2
Y

[(at − {α0t + α2tLt + α3tM̂t})dt+ σY dZ
Y
t ]

under any admissible strategy (at)t∈[0,T ]. Rearranging terms we can write

dM̂t = (µ0t + µ1tat + µ2tM̂t)dt+BX
t dZ

X
t +BY

t dZ
Y
t , (B.1)

where

µ1t = α3tγ1tΣ, µ0t = −µ1t[α0t + α2tLt], µ2t = −α3tµ1t, B
X
t =

να3tγ1t

σX
, BY

t =
α3tγ1t

σY
. (B.2)

This dynamic is linear in M̂ . Also, since Lt depends only on the paths of X, µ0t is in p1’s

information set. Similarly with (at)t∈[0,T ], which is measurable with respect to (θ,X).

On the other hand, because p1 always thinks that p2 is on path, the public signal follows

dXt = (νat + δ0t + δ1tM̂tdt+ δ2tLt)dt+ σXdZ
X
t ,

from her perspective. This dynamic is also affine in the unobserved state M̂ , with an
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intercept that is again measurable with respect to (θ,X). The hidden state M̂ along with

the observation state (θ,X) is thus conditionally Gaussian. In particular, applying the

filtering equations in Theorem 12.7 in Liptser and Shiryaev (1977) yields that Mt := Et[M̂t]

and γ2t := Et[(Mt − M̂t)
2] satisfy

dMt = (µ0t + µ1tat + µ2tMt)dt︸ ︷︷ ︸
=Et[(µ0t+µ1tat+µ2tM̂t)dt]

+
σXB

X
t + γ2tδ1t

σ2
X

[dXt − (νat + δ0t + δ1tMt + δ2tLt)dt] (B.3)

γ̇2t = 2µ2tγ2t + (BX
t )2 + (BY

t )2 −
(
σXB

X
t + γ2tδ1t

σX

)2

, (B.4)

and where dZt := [dXt−(νat+δ0t+δ1tMt+δ2tLt)dt]/σX is a Brownian motion with respect to

the long-run player’s standpoint. (For notational simplicity, we have omitted the dependence

of M and Z on the strategy (at)t∈[0,T ] that is being followed.) Crucially, because (B.3) is

linear, one can easily solve for Mt as an explicit function of past actions (as<t) and past

realizations of the public history (Xs)s<t.

Inserting at = β0t + β1tMt + β2tLt + β3tθ into the right-hand side of (B.3), and collecting

terms we obtain

dMt = [µ̂0t + µ̂1tMt + µ̂2tLt + µ̂3tθ]dt+ B̂tdXt,

where

µ̂0t = −α3tγ1tα0tΣ︸ ︷︷ ︸
constant in µ0t

+α3tγ1tβ0tΣ︸ ︷︷ ︸
µ1tβ0t

+
να3tγ1t + γ2tδ1t

σ2
X︸ ︷︷ ︸

=[σXB
X
t +γ2tδ1t]/σ2

X

[−νβ0t − δ0t]

µ̂1t = α3tγ1tβ1tΣ︸ ︷︷ ︸
µ1tβ1t

+−α2
3tγ1tΣ︸ ︷︷ ︸
µ2t

+
να3tγ1t + γ2tδ1t

σ2
X

[−νβ1t − δ1t]

µ̂2t = −α3tγ1tα2tΣ︸ ︷︷ ︸
Lt term in µ0t

+α3tγ1tβ2tΣ︸ ︷︷ ︸
µ1tβ2t

+
να3tγ1t + γ2tδ1t

σ2
X

[−νβ2t − δ2t]

µ̂3t = α3tγ1tβ3tΣ︸ ︷︷ ︸
µ1tβ3t

+
να3tγ1t + γ2tδ1t

σ2
X

[−νβ3t] =

[
α3tγ1t

σ2
Y

− νγ2tδ1t

σ2
X

]
β3t

B̂t =
να3tγ1t + γ2tδ1t

σ2
X

.

Let R(t, s) = exp(
´ t
s
µ̂1udu), and suppose and denote the prior distribution of θ by

N (m̂0, γ10); in particular, M0 = m̂0. Path-by-path of X, therefore,

Mt = R(t, 0)m̂0 + θ

ˆ t

0

R(t, s)µ̂3sds+

ˆ t

0

R(t, s)[µ̂0s + µ̂2sLs]ds+

ˆ t

0

R(t, s)B̂sdXs.
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Imposing that this expression must coincide with (9) then yields a system of two equations:

χt =

ˆ t

0

R(t, s)µ̂3sds,

Lt =
R(t, 0)m̂0 +

´ t
0
R(t, s)[µ̂0s + µ̂2sLs]ds+

´ t
0
R(t, s)B̂sdXs

1− χt
.

The validity of the construction boils down to finding a solution to the previously stated

equation for χ that takes values in [0, 1). In fact, when this is the case,

(1− χt)dLt − Ltdχt = [µ̂0t + (µ̂1t(1− χt) + µ̂2t)Lt]dt+ B̂tdXt

=⇒ dLt =
Lt[µ̂1t + µ̂2t + µ̂3t]dt+ µ̂0tdt+ B̂tdXt

1− χt
.

Thus, letting R2(t, s) := exp
(´ t

s
µ̂1u+µ̂2u+µ̂3u

1−χu du
)

, we obtain that

Lt = R2(t, 0)m̂0 +

ˆ t

0

R2(t, s)
µ̂0s

1− χs
ds+

ˆ t

0

R2(t, s)
B̂s

1− χs
dXs, (B.5)

i.e., L is a (linear) function of the paths of X as conjectured. Moreover, in the particular

case of ν = 0, it is easy to verify that dLt = (`0t + `1tLt)dt+BtdXt, where

l0t = − γtχtδ0tδ1t

σ2
X(1− χt)

, l1t = −γtχtδ1t(δ1t + δ2t)

σ2
X

, Bt =
γtχtδ1t

σ2
X(1− χt)

. (B.6)

We will ultimately find a solution to the equation for χ that is of class C1 and that takes

values in [0, 1). In particular, if χ is differentiable,

χ̇t = µ̂1tχt + µ̂3t

= α3tγ1tΣ [χtβ1t − α3tχt]︸ ︷︷ ︸
=α3t(1−χt)−β3t

+χt
να3tγ1t + γ2tδ1t

σ2
X

[−νβ1t − δ1t]

+α3tγ1tβ3tΣ +
να3tγ1t + γ2tδ1t

σ2
X

[−νβ3t]. (B.7)

Using that α3t = β3t + β1tχt, we obtain the following system of ODEs

γ̇1t = −γ2
1t(β3t + β1tχt)

2Σ

γ̇2t = −2γ2tγ1t(β3t + β1tχt)
2Σ + γ2

1t(β3t + β1tχt)
2Σ−

(
νγ1t(β3t + β1tχt) + γ2tδ1t

σX

)2
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χ̇t = γ1t(β3t + β1tχt)
2Σ(1− χt)− (ν[β3t + β1tχt] + δ1tχt)

(
νγ1t(β3t + β1tχt) + γ2tδ1t

σ2
X

)
.

In the proof of the next lemma we establish that χ = γ2/γ1 ∈ [0, 1). After replacing ν = 0

and γ2 = χγ in the third ODE, and writing γ for γ1, the first and third equations of the

previous system correspond to (13)–(14) as desired. The representation Lt = E[θ|FXt ] is

proved in the Online Appendix. �

Proof of Lemma 2. Consider the system (γ1, γ2, χ) from the proof of the previous lemma

when ν = 0 (in particular, Σ becomes 1/σ2
Y ). Also, let δ1t := ûâθ + ûaâα3t.

47 The local

existence of a solution follows from continuity of the associated operator. Suppose that the

maximal interval of existence is [0, T̃ ), with T̃ ≤ T .

Since the system is locally Lipschitz continuous in (γ1, γ2, χ) uniformly in t ∈ [0, T ] for

given continuous coefficients, it solution is unique over the same interval (Picard-Lindelöf).

In particular, observe that (γ1t, γ2t, χ) = (γo, 0, 0) solves the system as long as β3 = 0.

Without loss of generality then, assume β30 6= 0.

Observe that γ1 is (weakly) decreasing over [0, T̃ ), so γ1t ≤ γo. Suppose there is a time

at which γ1 is strictly negative. Let s < t be the first time γ1 crosses zero, and notice that

for t > s close to s,

0 > γ1t =

ˆ t

s

γ̇1udu = −
ˆ t

s

γ2
1u[β3u + β1uχu]

2Σds ≥ 0,

which is a contradiction. Thus, γ1t ∈ [0, γo] for all t ∈ [0, T̃ ). Moreover, if γt > 0, straight-

forward integration shows that

γ1t =
γo

1 +
´ t

0
[β3s + β1sχs]2Σds

.

Since ~β is continuous over [0, T ], if γ ever vanishes in [0, T̃ ) we must have that χ diverges

at such a point; by definition of T̃ , however, that point must be T̃ . Thus, γ1t > 0 in [0, T̃ )

(regardless of whether χ diverges at T̃ or not). Also, by continuity of ~β and the strict

positivity of (β30 + β10χ0)2 = β2
30, we get γt < γo from the previous expression for γt.

We now show that 0 < γ2t < γ1t for t > 0. In fact, since γ20 = 0, γ10 > 0 and β30 > 0, we

47All the results in this proof extend to a generic continuous function δ1 over [0, T ] in which the explicit

dependence on ~β and χ is not recognized, which happens when the myopic player becomes forward looking.
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have γ2t > 0 for t ∈ (0, ε) for small ε > 0. Consider now [ε, t̃] with t̃ ∈ (ε, T̃ ). Then

fγ2(t, x) := −2x
γ1t(β3t + β1tχ1t)

2

σ2
Y

+
γ2

1t(β3t + β1tχ1t)
2

σ2
Y

−
(
xδ1t

σX

)2

is locally Lipschitz continuous with respect to x uniformly in t ∈ [ε, t̃]. Since 0− fγ2(t, 0) ≤
0 = γ̇2t − fγ2(t, γ2t) and 0 < γ2ε, we obtain that γ2t > 0 for all t ∈ [0, t̃] by the comparison

theorem, and hence over (0, T̃ ) as well.

Now, let zt := γ2t − γ1t, t < T̃ . Using the ODEs for γ1 and γ2 we deduce that

żt < −
2γ1t(β3t + β1tχ1t)zt

σ2
Y

, z0 = γ20 − γ10 = −γo < 0.

It is then easy to conclude that by Grönwall’s inequality,

zt < z0 exp

(
−
ˆ t

0

2γ1s(β3s + β1sχ1s)

σ2
Y

ds

)
< 0, t < T̃ ,

as γ1t(β3t + β1tχ1t) is continuous over [0, t], t < T̃ . Thus, γ2t < γ1t for all t ∈ [0, T̃ ).

With this in hand, γ2t/γ1t ∈ (0, 1) for all t ∈ (0, T̃ ), and γ20/γ10 = 0. Moreover, it is easy

to verify that the previous ratio solves the χ−ODE. By uniqueness, χ = γ2/γ1. Replacing

γ2 = χγ1 and ν = 0 in the χ−ODE above yields (14), i.e.,

χ̇t = γ1t(β3t + β1tχt)
2 (1− χt)

σ2
Y

− γ1t
(δ1tχt)

2

σ2
X

, t ∈ [0, T̃ ).

By the previous analysis, (γ1, γ2, χ) is bounded over [0, T̃ ). If T̃ < T , the solution can be

extended strictly beyond T̃ thanks to the continuity of the associated operator, contradicting

the definition of T̃ . Thus, the only option is that T̃ = T ; since the solution remains bounded,

the system admits a continuous extension to T .48 By continuity, such an extension is unique,

and the desired properties (χ = γ2/γ1 stated in Lemma 1; χ solves (14); and χ ∈ (0, 1); and

γo ∈ (0, γo)) hold up to T by the exact same arguments now applied over [0, T ] (as opposed

to over strict compact subsets of [0, T̃ )).49 �

Proof of Lemma 3. The long-run player’s problem is to choose an admissible a := (at)t∈[0,T ]

48For a generic system żt = f(t, zt), if z is bounded over [0, T ) and f continuous, there exists K s.t.
|xt − xs| < K|t − s|; but this implies that (xs)s↗T is Cauchy, and hence the limit exists. Having extended
the solution to [0, T ) ∪ {T}, one can then further extend it to the right by applying Peano’s theorem.

49An alternative way of seeing that χ < 1 is that χ̇ ≤ γ1t(β3t +β1tχt)
2(1−χt)/σ2

Y , and so χt ≤ 1− γt/γo
by the comparison theorem, as the latter function satisfies żt = γ1t(β3t + β1tzt)

2(1 − zt)/σ2
Y , z0 = 0. This

shows that the amplitude of the history-inference effect is maximized in the no-feedback case.
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that maximizes

U(a) := E0

[ˆ T

0

e−rtU(at, δ0t + δ1tM̂t + δ2tLt, θ)dt

]
where (M̂t)t≥0 is given by (B.1) and (Lt)t≥0 by (B.5). Using that the flow is quadratic, we

obtain that

U(a) = E0

[ˆ T

0

e−rtU(at, δ0t + δ1tM
a
t + δ2tLt, θ)dt

]
+

1

2

∂2U

∂â2
E0

[ˆ T

0

e−rtδ2
1tEt[(Ma

t − M̂a
t )2]dt

]
with Ma

t := Et[M̂a
t ], where we have made explicit the dependence of both processes on the

strategy followed. By the proof of Lemma 1, (Ma
t )t∈[0,T ] evolves as in (B.3), i.e.,

dMa
t = (µ0t + µ1tat + µ2tM

a
t )dt+

σXB
X
t + γ2tδ1t

σX
dZa

t

where dZa
t := [dXt−(νat+δ0t+δ1tM

a
t +δ2tLt)dt]/σX is a Brownian motion from the long-run

player’s standpoint, (µ0, µ1, µ2, B
X
t ) are given by (B.2), and where γ2t evolves as in (B.4).

Moreover, from the same filtering equations (B.3)–(B.4) we know that Et[(Ma
t − M̂a

t )2] is

independent of the strategy followed, and that it coincides with γ2t, t ∈ [0, T ]. Thus, the

long-run player’s problem reduces to

max
(at)t≥0 admissible

E0

[ˆ T

0

e−rtU(at, δ0t + δ1tM
a
t + δ2tLt, θ)dt

]
where (Ma

t )t∈[0,T ] is as above, and (Lt)t≥0 is linear in the paths of X according to (B.5). In

differential form, the latter process can be written as

dLt =
1

1− χ1

{
Lt[µ̂1t + µ̂2t + µ̂3t] + µ̂0t + B̂t[νat + δ0t + δ1tM

a
t + δ2tLt]

}
dt+

σXB̂t

1− χt
dZa

t .

where we used that dXt = (νat + δ0t + δ1tM
a
t + δ2tLt)dt+ σXdZ

a
t from the long-run player’s

standpoint. (Refer to the proof of Lemma 1 for the expressions for (µ̂0t, µ̂1t, µ̂2t, µ̂3t, B̂
X
t ).)

So far, we have fixed an admissible strategy (at)t∈[0,T ] (in the sense of Section 3) for

the long-run player, and then obtained processes Ma and Za that potentially depend on

that choice. The above problem thus differs from traditional control problems with perfectly

observed states in that the Brownian motion is, in principle, affected by the choice of strategy.

With linear dynamics, however, the separation principle (e.g., Liptser and Shiryaev, 1977,

Chapter 16), applies. In fact, the solution to the long-run player’s problem can be found

by first fixing a Brownian motion, say, Zt := Z0
t (i.e., Za

t when a ≡ 0), and then solving

the optimization problem that replaces Za by Z in the laws of motion of M̂a and L. The
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method works to the extent that Za ≡ Z for all (at)t≥0: it is easy to conclude from (B.1) and

(B.3) that the process M̂a
t −Ma

t is independent of the strategy followed, and hence so is Za
t ,

given that σXdZ
a
t = dXt − (νat + δ0t + δ1tM

a
t + δ2tLt)dt = δ1t(M̂

a
t −Ma

t )dt+ σXdZ
X
t under

the true data-generating process, thanks to the linearity of the dynamics. In this procedure,

therefore, one filters as a first step, and then optimizes afterwards using the posterior mean

as a controlled state.50

Returning to the ν = 0 case, we can then insert Zt in the dynamic of Ma
t . Omitting the

dependence of the resulting process on a (as any control problem does), it is easy to see that

dMt =
γtα3t

σ2
Y

(at − [α0t + α2tLt + α3tMt])dt+
χtγtδ1t

σX
dZt.

As for the expression for L (display (17)), this one follows from (15) using that dXt =

(δ0t + δ2tLt + δ1tMt)dt+ σXdZt from the long-run player’s perspective. In fact, it is easy to

see from (B.6) that

l0t +Btδ0t + (l1t +Btδ1t)Lt +Btδ1tMt =
γtχtδ1t

σ2
X(1− χt)

(Mt − Lt).

This concludes the proof. �

Proof of Lemma 4. Suppose δ1 = ûaâα3, ûaâ 6= 0. The χ-ODE for ν ∈ [0, 1] boils down to

χ̇1t = γ1tα
2
3t

([
ν2

σ2
X

+
1

σ2
Y

]
(1− χ1t)−

(ν + ûaâχt)
2

σ2
X

)
=: −γ1tα

2
3tQ(χt).

The goal is to find a function f : [0, χ̄) → [0, γo], some χ̄ ∈ (0, 1), such that f(χt) = γt for

all t ≥ 0. When this is the case, and such f is differentiable, f ′(χt)χ̇t = γ̇t. Thus, if α3t > 0,

f ′(χt)

f(χt)
=

Σ

Q(χt)
.

50Relative to Chapter 16 in Liptser and Shiryaev (1977), our problem is more general in that it allows for a
linear component in the flow, and the public signal can be controlled (when ν 6= 0). The first generalization
is clearly innocuous. As for the second, the key behind the separation principle is that the innovations
dXt−Et[dXt] are independent of the strategy followed, which also happens when ν 6= 0. Given any admissible
strategy (at)t≥0, therefore, the fact that the filtrations of Z, Za and Xa satisfy FZt = FZa

t ⊆ FXa

t , t ≥ 0,
means the optimal control found by using Z is weakly better than any such (at)t≥0. See p.183 in section
16.1.4 in Liptser and Shiryaev (1977) for more details in a context of a quadratic regulator problem.
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Thus, we aim to solve the ODE

f ′(χ)

f(χ)
=

Σ

Q(χ)
, χ ∈ (0, χ̄), and f(0) = γo,

over some domain [0, χ̄), with the property that f(χ) > 0 if χ > 0.

To this end, let

c2 =

√
b2 + 4(ûaâ)2/[σXσY ]2 − b

2(ûaâ/σX)2
and − c1 =

−
√
b2 + 4(ûaâ)2/[σXσY ]2 − b

2(ûaâ/σX)2
,

where b := [ν2/σ2
X + 1/σ2

Y ] + 2νûaâ/σ
2
X , be the roots of the quadratic

Q(χ) =

(
ûaâ
σX

)2

χ2 + χ

([
ν2

σ2
X

+
1

σ2
Y

]
+

2νûaâ
σ2
X

)
− 1

σ2
Y

.

Clearly, −c1 < 0 < c2. Also, it is easy to verify that c2 < 1.51 Thus,

Σ

Q(χ)
= − σ2

XΣ

(ûaâ)2(c1 + c2)

[
1

χ+ c1

− 1

χ− c2

]
is well-defined (and negative) over [0, c2) with 1/(χ+ c1) > 0 and −1/(χ− c2) > 0 over the

same domain. We can then set χ̄ = c2 and solve

ˆ χ

0

f ′(s)

f(s)
ds = − σ2

XΣ

(ûaâ)2(c1 + c2)
log

(
χ+ c1

c2 − χ
c2

c1

)
⇒ f(χ) = f(0)

(
c1

c2

)1/d(
c2 − χ
χ+ c1

)1/d

where 1/d = σ2
XΣ/[(ûaâ)

2(c1 + c2)] > 0. We then impose f(0) = γo, thus obtaining a strictly

positive and decreasing function that has the initial condition we look for. Moreover, letting

γ = f(χ), its inverse is decreasing and given by

χ(γ) = f−1(γ) = c1c2
1− (γ/γo)d

c1 + c2(γ/γo)d
.

When γ1 = γo, we have that χ = 0, whereas when γ = 0, it follows that χ = c2 as desired.

We verify that this candidate satisfies the χ-ODE; we do this for the ν = 0 case only. To

this end, it is easy to verify that

d(χ(γt))

dt
=

α2
3tγt

σ2
Y [c1 + c2(γ/γo)d]2

c1c2d[c1 + c2]

(
γt
γo

)d
.

51This follows from squaring both sides of
√
b2 + 4(ûaâ)2/[σXσY ]2 < b + 2(ûaâ)2/σ2

X using that b +
2(ûaâ)2/σ2

X > 0 and b =
[
ν2/σ2

X + 1/σ2
Y

]
+ 2νûaâ/σ

2
X .
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By construction, moreover,

c1c2 = c1 − c2 =
σ2
X

σ2
Y (ûaâ)2

which follows from equating the first- and zero-order coefficients in Q(χ) = û2
aâχ

2/σ2
X +

χ/σ2
Y − 1/σ2

Y = û2
aâ(χ− c2)(χ+ c1)/σ2

X . Thus, dc1c2 = c1 + c2.

On the other hand,

[ûaâχ(γ)]2

σ2
X

=
û2
aâ

σ2
X

[
c1c2

1− (γ/γo)d

c1 + c2(γ/γo]d

]2

=
c2

1(1− c2)

σ2
Y

[
1− (γ/γo)d

c1 + c2(γ/γo)d

]2

where we used that c2
1c

2
2/σ

2
X = c2

1(1−c2)/σ2
Y follows from û2

aâc
2
2/σ

2
X = (1−c2)/σ2

Y by definition

of c2. Thus, the right-hand side of the χ-ODE evaluated at our candidate χ(γ) satisfies

γ1α
2
3

(
1− χ
σ2
Y

− (ûaâχ)2

σ2
X

) ∣∣∣∣∣
χ=χ(γ)

=
α2

3γ1

σ2
Y

(
1− χ− c2

1(1− c2)

[
1− (γ/γo)d

c1 + c2(γ/γo)d

]2
)
.

Thus, using that c1c2d = c1 + c2 in our expression for d(χ(γt))/dt, it suffices to show that

[c1 + c2]2
(
γt
γo

)d
= (1− χ)[c1 + c2(γ/γo)d]2 − c2

1(1− c2)[1− (γ/γo)d]2.

Using that χ[c1 + c2(γ/γo)d] = 1 − (γ/γo), it is easy to conclude that this equality reduces

to three equations

0 = c2
1 − c2

1c2 − c2
1 + c2

1c2

(c1 + c2)2 = 2c1c2 − c1c2(c2 − c1) + 2c2
1(1− c2)

0 = c2
2 + c1c

2
2 − c2

1(1− c2)

capturing the conditions on the constant, (γ/γo)d and (γ/γo)2d, respectively. The first con-

dition is trivially satisfied. As for the third, by the definition of c1 and c2 we have that

c2
2/(1−c2) = σ2

X/(ûaâσY )2 = c2
1/(1+c1). Thus, c1

1(1−c2) = c2
2(1+c1), and the result follows.

For the second, use that c1c2(c2 − c1) = −(c1 − c2)2 and that c1
1(1 − c2) = c2

2(1 + c1) to

conclude

2c1c2−c1c2(c2−c1)+2c2
1(1−c2) = c2

1 +c2
2 +2c2

2(1+c1) = c2
1 +c2

2 +2c2
2 +2c2 c2c1︸︷︷︸

=c1−c2

= (c1 +c2)2.

Thus, χ(γ) as postulated satisfies the χ-ODE. We then conclude by uniqueness of any such

solution.
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Finally, when ûaâ = 0, we have that δ1 ≡ 0, and the χ-ODE reduces to χ̇ = α2
3tγt(1 −

χt)/σ
2
Y , χ0 = 0. It is then easy to verify that χ(γ) = 1− γt/γo satisfy the ODE, and hence

we conclude using the same uniqueness argument.

B.1: Proof of Theorem 1

Our main task is to prove that a solution to the BVP exists, and any solution has the stated

properties; from there we will establish the rest of the solution. Recall that αt = α3t =

β1tχt + β3t. We begin by reversing time and posing the associated IVP, together with the

α-ODE, parameterized by an initial guess γ0 = γF ∈ [0, γo]:

v̇6t = −β2
2t − 2β1tβ2t(1− χt) + β2

1t(1− χt)2 − 2v6tα
2
tγtχt

σ2
X(1− χt)

(B.8)

v̇8t = 2β2t + 2(1− 2αt)β1t(1− χt) + 4β2
1tχt(1− χt)−

v8tα
2
tγtχt

σ2
X(1− χt)

(B.9)

β̇1t =
αtγt

2σ2
Xσ

2
Y (1− χt)

{
−2σ2

X(αt − β1t)β1t(1− χt)

+2σ2
Y αtχt(β2t[1 + 2β1tχt]− β1t[1− χt]) + α2

tβ1tγtχtv8t

} (B.10)

β̇2t =
αtγt

2σ2
Xσ

2
Y (1− χt)

{
−2σ2

Xβ
2
1t(1− χt)2 − 2σ2

Y αtβ2tχ
2
t (1− 2β2t)

+α2
tγtχt(2v6t + β2tv8t)

} (B.11)

β̇3t =
αtγt

2σ2
Xσ

2
Y (1− χt)

{
2σ2

Xβ1t(1− χt)β3t − 2σ2
Y αtβ2tχ

2
t (1− 2β3t)

+α2
tβ3tγtχtv8t

} (B.12)

γ̇t =
γ2
t α

2
t

σ2
Y

(B.13)

α̇t =
α3
tγtχt

2σ2
Xσ

2
Y (1− χt)

{
4σ2

Y β2tχt + αtγtv8t

}
(B.14)

with initial conditions v60 = v80 = 0, β10 = 1
2(2−χ0)

, β20 = 1−χ0

2(2−χ0)
, β30 = 1

2
and γ0 = γF , where

χt = χ(γt) using the function χ : R+ → (−∞, c2) as defined in Lemma 4. Hereafter, we use

the notation χ̄ := c2. Recall also that c2 < 1, and note by inspection that χ(γ) ↘ −c1 < 0

as γ → +∞, and since χ is decreasing, it has range (−c1, x̄). The right hand sides of the

equations above are of class C1 over the domain {(v6, v8, β1, β2, β3, γ) ∈ R5×R+}, and hence,

if a solution exists over [0, T ], it is unique. To solve the BVP, our goal is to show that there

exists γF ∈ (0, γo) such that a (unique) solution to the IVP above exists and it satisfies

γT (γF ) = γo.

Note that if γF = 0, then the IVP has the following (unique) solution: for all t ∈ [0, T ],
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χt = χ̄, β1t = 1
2(2−χ̄)

, β2t = 1−χ̄
2(2−χ̄)

and β3t = 1
2

(so that αt = 1
2−χ̄) and γt = 0, with v6 and v8

obtained from integration of their ODEs. (Clearly, this does not correspond to a solution to

the BVP, since γT (0) = 0 < γo.)

We now consider γF > 0. Given the C1 property mentioned above, and the existence of

a solution to the IVP for γF = 0, there exists ε > 0 such that a (unique) solution to the IVP

exists over [0, T ] for each γF ∈ (0, ε) (see Theorem on page 397 in Hirsch et al. (2004)).

Observe that for γF > 0, we can change variables using ṽi := γvi for i = 6, 8 and create

a new IVP in (ṽ6, ṽ8, β1, β3, β3, γ). We label this System 1, and it consists of (B.10)-(B.13)

(replacing all instances of γvi with ṽi, i = 6, 8) together with

˙̃v6t = γt

{
−β2

2t − 2β1tβ2t(1− χt) + β2
1t(1− χt)2 + ṽ6tα

2
t

[
1

σ2
Y

− 2χt
σ2
X(1− χt)

]}
(B.15)

˙̃v8t = γt

{
2β2t + 2(1− 2αt)β1t(1− χt) + 4β2

1tχt(1− χt) + ṽ8tα
2
t

[
1

σ2
Y

− χt
σ2
X(1− χt)

]}
(B.16)

subject to ṽ60 = ṽ80 = 0 and the remaining initial conditions above. We will argue later that

when this system has a solution over [0, T ], v6 = ṽ6/γ and v8 = ṽ8/γ are well-defined, and

hence a solution to the original IVP can be recovered.

System 1 has the property that in its solution, ṽ6 and β2 can be expressed directly as

functions of the other variables. In anticipation of this property (which we will soon verify),

it is convenient to work with a reduced IVP in (ṽ8, β1, β3, γ), which we call System 2:

˙̃v8t = γt
{

2[1− β1t − β3t] + 2(1− 2αt)β1t(1− χt) + 4β2
1tχt(1− χt)

+ṽ8tα
2
t

[
1/σ2

Y − χt/(σ2
X [1− χt])

]} (B.17)

β̇1t =
αtγt

2σ2
Xσ

2
Y (1− χt)

{
−2σ2

X(αt − β1t)β1t(1− χt)

+2σ2
Y αtχt([1− β1t − β3t][1 + 2β1tχt]− β1t[1− χt]) + α2

tβ1tχtṽ8t

} (B.18)

β̇3t =
αtγt

2σ2
Xσ

2
Y (1− χt)

{
2σ2

Xβ1t(1− χt)β3t − 2σ2
Y αt[1− β1t − β3t]χ

2
t (1− 2β3t)

+α2
tβ3tχtṽ8t

} (B.19)

and (B.13), subject to the initial conditions ṽ80 = 0, β10 = 1
2(2−χ(γF ))

, β30 = 1
2

and γ0 = γF .

Observe that in this system, we have substituted 1 − β1 − β3 for all instances of β2 in the

original ODEs. We will show that there exists a γF ∈ (0, γo) such that a (unique) solution

to System 2 exists and satisfies γT (γF ) = γo, and then we will show that given this solution,

we can construct the solutions to (B.11) (which will be 1 − β1 − β3) and (B.15) directly,

solving System 1 (and hence the BVP).
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Based on System 2, define

γ̄ := sup{γF > 0 | a solution to System 2 with γ0 = γF exists over [0, T ]},

with respect to set inclusion. Since the RHS of the equations that comprise System 2 are

of class C1, the solution is unique when it exists, and there is continuous dependence of the

solution on the initial conditions; in particular, the terminal value γT is continuous in γF

(see Theorem on page 397 in Hirsch et al. (2004)). Hence if there exists γF ∈ (0, γ̄) such

that γT (γF ) ≥ γo, by the intermediate value theorem there exists a γF ∈ (0, γ̄) such that

γT (γF ) = γo, allowing us to construct a solution to System 1. We rule out the alternative case

by contradiction, and then we return to the case just described to complete the construction.

Suppose by way of contradiction that for all γF ∈ (0, γ̄), γT (γF ) < γo. In particular,

because γt is nondecreasing in the backward system for any initial condition, we have that

γt ∈ (0, γo) and by Lemma 4, χt ∈ (0, χ̄) for all t ∈ [0, T ] when γF ∈ (0, γ̄).

To reach a contradiction, it suffices to show that the solution to System 2 can be bounded

uniformly over γF ∈ (0, γ̄), as this would imply that the solution can be extended strictly to

the right of γ̄ in this case, violating the definition of γ̄.

To establish uniform bounds, we decompose β1 and β3 as sums of forward-looking and

myopic components and show that both of these components are uniformly bounded; we

bound ṽ8 without such a decomposition. Specifically, define βm1t := 1
2(2−χt) , β

m
3t = 1

2
and

βfit := βit − βmit for all t ∈ [0, T ], i = 1, 3. Observe that for γF ∈ (0, γ̄), βm1t is uniformly

bounded by [1/4, 1/2] ⊂ [0, 1], as χt = χ(γt) ∈ [0, 1] for all t ∈ [0, T ], and trivially βm3t ∈ [0, 1].

Hence, we define one final system, System 3, in (ṽ8, β
f
1 , β

f
3 , γ) to be (B.13), (B.17), and

β̇f1t = − χ̇t
2(2− χt)2

+
αtγt

2σ2
Xσ

2
Y (1− χt)

{
−2σ2

X(αt − [βf1t + βm1t ])[β
f
1t + βm1t ](1− χt)

+2σ2
Y αtχt

(
[1− (βf1t + βm1t)− (βf3t + βm3t)][1 + 2(βf1t + βm1t)χt]

)
−2σ2

Y αtχt(β
f
1t + βm1t)(1− χt) + α2

t (β
f
1t + βm1t)χtṽ8t

}
,

(B.20)

=: hβ
f
1 (βf1t, β

m
1t , β

f
3t, β

m
3t , ṽ8t, γt)

β̇f3t =
αtγt

2σ2
Xσ

2
Y (1− χt)

{
2σ2

X(βf1t + βm1t)(1− χt)(β
f
3t + βm3t) + α2

t (β
f
3t + βm3t)χtṽ8t

+4σ2
Y αtβ

f
3tχ

2
t [1− (βf1t + βm1t)− (βf3t + βm3t)]

} (B.21)

=: hβ
f
3 (βf1t, β

m
1t , β

f
3t, β

m
3t , ṽ8t, γt)

subject to initial conditions ṽ80 = 0, βf10 = 0, βf30 = 0 and γ0 = γF ∈ (0, γ̄), where αt =

[βf3t+β
m
3t ]+[βf1t+β

m
1t ]χt. Define hṽ8(βf1t, β

m
1t , β

f
3t, β

m
3t , ṽ8t, γt) as the RHS of (B.17) with βfit+β

m
it
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substituted for βit, i = 1, 3.

Given that βm1 and βm2 are uniformly bounded, it suffices to show that the solutions

(ṽ8, β
f
1 , β

f
3 ) are uniformly bounded by some [−K,K]3. (Recall that γ is already bounded by

[0, γo].)

Define ᾱ = (K + 1)χ̄ + (K + 1), where we suppress dependence on K. Next, for x ∈
{ṽ8, β

f
1 , β

f
3 } define h̄x : R2

++ → R++ as follows:

h̄ṽ8(γo;K) := γo {2[1 + 2(K + 1)] + 2(1 + 2ᾱ)(K + 1)

+4(K + 1)2χ̄+Kᾱ2
[
1/σ2

Y + χ̄/(σ2
X [1− χ̄])

]} (B.22)

h̄β
f
1 (γo;K) :=

ᾱ2γo [1/σ2
Y + χ̄/(σ2

X [1− χ̄])]

2(2− χ̄)2
+

ᾱγo

2σ2
Xσ

2
Y (1− χ̄)

{
2σ2

X [ᾱ +K + 1](K + 1)

+2σ2
Y ᾱχ̄([1 + 2(K + 1)][1 + 2(K + 1)χ̄] +K + 1) + ᾱ2K(K + 1)χ̄

}
(B.23)

h̄β
f
3 (γo;K) :=

ᾱγo

2σ2
Xσ

2
Y (1− χ̄)

{
2σ2

X(K + 1)2 + ᾱ2χ̄K(K + 1)

+4σ2
Y ᾱχ̄

2K[1 + 2(K + 1)]
}
,

(B.24)

Define

T (γo) := max
K′>0

min
x∈{ṽ8,βf1 ,β

f
3 }

K ′

h̄x(γo;K ′)
,

and let K denote the arg max.52 We now show that given T < T (γo), (ṽ8, β
f
1 , β

f
3 ) are uni-

formly bounded by [−K,K]3. Suppose otherwise, and define τ = inf{t > 0 : (ṽ8t, β
f
1t, β

f
3t) /∈

[−K,K]3}; by supposition and continuity of the solutions, τ ∈ (0, T ) and |xτ | = K, some

x ∈ {ṽ8, β
f
1 , β

f
3 }. Now by construction of the h̄x(γo;K), for all t ∈ [0, τ ] and for each

x ∈ {ṽ8, β
f
1 , β

f
3 } we have

|ẋt| = |hx(βf1t, βm1t , β
f
3t, β

m
3t , ṽ8t, γt)| < h̄x(γo;K)

and thus by the triangle inequality,

|xτ | < 0 + τ · h̄x(γo;K) < T (γo)h̄x(γo;K) ≤ K,

a contradiction. We conclude that the solutions (ṽ8, β
f
1 , β

f
3 , γ) to System 3 are uniformly

bounded by [−K,K]3 × [0, γo], and by another application of the triangle inequality the

solutions (ṽ8, β1, β3, γ) to System 2 are uniformly bounded by [−K,K]×[−K,K+1]2×[0, γo].

This gives us the desired contradiction on the definition of γ̄ from before, so we conclude

52Note that T (γo),K <∞ as the h̄x grow faster than linearly in K.
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that for T < T (γo), there exists γF ∈ (0, γ̄) such that the solution to System 2 satisfies

γT (γF ) = γo. (Note that any such γF lies in (0, γo), as γ is nondecreasing in the backward

system.)

For the remainder of the proof, assume T < T (γo) and consider any such γF as above

and its induced solution (ṽ8, β1, β3, γ) to System 2 with γT (γF ) = γo.

We claim that α > 0 over [0, T ]. First, we have α0 > 0, as α0 = 1
2−χ(γF )

, and by Lemma 4,

0 ≤ χ(γF ) < χ̄ < 1. Now the RHS of (B.14) is locally Lipschitz continuous in α, uniformly

in t, as the remaining coefficients appearing in that ODE are bounded (being continuous

functions of time over the compact set [0, T ]). By standard application of the comparison

theorem, we have αt > 0 for all t ∈ [0, T ].

Hence, we can define

ṽcand6t :=
σ2
Y [−1 + 2β1t(1− χt) + αt]

αt
− ṽ8t

2
, βcand2t := 1− β1t − β3t.

Observe that in System 2, (B.17)-(B.19) was obtained by replacing β2t with βcand2t in

(B.16), (B.10) and (B.12), so (ṽ8, β1, β
cand
2 , β3, γ) solves (B.16), (B.10), (B.12) and (B.13). It

is tedious but straightforward to verify that ṽcand6t and βcand2t solve (B.15) and (B.11), respec-

tively. Now the RHS of the system (B.15) with (B.11), given the solutions (ṽ8, β1, β3, γ), is lo-

cally Lipschitz continuous (ṽ6, β2), uniformly in t, and thus (ṽcand6 , βcand2 ) are the unique solu-

tions to (B.15) and (B.11) given the other variables. To summarize, (ṽcand6 , ṽ8, β1, β
cand
2 , β3, γ)

solves System 1.

We have γt ≥ γF > 0 for all t ∈ [0, T ]. Thus, we can recover v6 = ṽ6/γ and v8 = ṽ8/γ as

the solutions to (B.8) and (B.9). Hence, we have established the existence of γF ∈ (0, γo) and

solution to the associated IVP posed at the beginning of the proof such that γT (γF ) = γo.

By reversing the direction of time, this is a solution to the BVP in the theorem statement.

For the remainder of the proof, we refer to the forward system. Now in the full system

of equations for the equilibrium learning and value function coefficients, we have

(v2t, v5t, v7t, v9t) =

(
2σ2

Y β0t

γtαt
,−σ

2
Y [β3t − β1t(2− χt)]

γtαt
,
2σ2

Y (2β3t − 1)

γtαt
,
2σ2

Y [β2t − β1t(1− χt)]
γtαt

)
and a system of ODEs for v0, v1, v3, v4, β0:

v̇0t := β2
0t +

αtγtχt
σ2
X(1− χt)2

{
σ2
Y [−2β2tχt(1− χt) + αtχt(1− χt)2]

+αtσ
2
X(1− χt)2 − αtγtχtv6t

}
v̇1t := −2β0t
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v̇3t :=
α2
tγtχtv3t

σ2
X(1− χt)

+ 2β0t[β1t(1− χt) + β2t]

v̇4t := 1− 2β2
3t

β0t := −α
2
tγtχt[αtγt(v3t + β0tv8t) + 4σ2

Y β0tβ2tχt]

2σ2
Xσ

2
Y (1− χt)

,

all of which have terminal values 0. Since the system of ODEs above is locally Lipschitz

continuous in (v0, v1, v3, v4, β0), uniformly in t, it has a unique solution (given a solution to

the BVP), and hence v2, v5, v7 and v9 are well-defined by the above formulas since α, γ > 0.

Furthermore, by inspection, (v3, β0) = (0, 0) solves the pair of ODEs for (v3, β0). We conclude

that for T < T (γo), there exists a LME with the stated properties.

B.2: Proof of Theorem 2

Let

β̃2 = β2/(1− χ); ṽ6 = v6γ/(1− χ)2; ṽ8 = v8γ/(1− χ).

The boundary value problem is

˙̃v6t = γt

{
−β2

1t + 2β1tβ̃2t + β̃2
2t + ṽ6t

(
α2
t

σ2
Y

+
2(ûâθ + αt)

2χt
σ2
X

)}
(B.25)

˙̃v8t = γt

{
(−2 + 4αt)β1t − 2β̃2t +

ṽ8t(ûâθ + αt)
2χt

σ2
X

− 4β2
1tχt

}
(B.26)

β̇1t =
γt

4σ2
Xσ

2
Y (1 + ûâθχt)

×
{

2σ2
Xαt

(
û2
âθ − 2β2

1t + αt(ûâθ + 2β1t)
)

+ṽ8tαt(ûâθ + αt)
2(ûâθ − 2β1t)χt

+4β1tχt
[
û2
âθσ

2
Y +

(
2ûâθσ

2
X + σ2

Y

)
α2
t + ûâθαt

(
ûâθσ

2
X + 2σ2

Y − σ2
Xβ1t

)]
−4σ2

Y (ûâθ + αt)
2β̃2tχt + 4σ2

Y (ûâθ + αt)
2β1t(ûâθ − 2β̃2t)χ

2
t

}
(B.27)

˙̃β2t =
γt

4σ2
Xσ

2
Y (1 + ûâθχt)

×
{

2σ2
Xαt

[
û2
âθ + 2β2

1t + αt(ûâθ + 2β̃2t)
]

+αtχt(ûâθ + αt)
2
[
−4ṽ6t + ṽ8t(ûâθ − 2β̃2t)

]
+4αtχtûâθσ

2
X

[
β2

1t + (ûâθ + 2αt)β̃2t

]
−4(ûâθ + αt)

2
[
ûâθṽ6tαt + σ2

Y β̃2t(−ûâθ + 2β̃2t)
]
χ2
t

}
(B.28)
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β̇3t =
γt

4σ2
Xσ

2
Y (1 + ûâθχt)

×
{
−4σ2

Xα
2
tβ1t

+2αtχt(ûâθ + αt)
[
−ûâθσ2

X + 2ûâθσ
2
Xαt − ṽ8tαt(ûâθ + αt)

]
−2αtχt[2ûâθσ

2
Xαtβ1t − 2σ2

Xβ
2
1t]

−χ2
t [ṽ8tαt(ûâθ + αt)

2(ûâθ − 2β1t) + 4ûâθσ
2
Xαt(ûâθ + αt − β1t)β1t]

+4σ2
Y χ

2
t (ûâθ + αt)

2(−1 + 2αt)β̃2t + 8σ2
Y (ûâθ + αt)

2β1tβ̃2tχ
3
t

}
(B.29)

γ̇t = −α
2
tγ

2
t

σ2
Y

(B.30)

χ̇t = γt
{
α2
t (1− χt)/σ2

Y − (ûâθ + αt)
2χ2

t/σ
2
X

}
. (B.31)

with boundary conditions (γ0, χ0, ṽ6T , ṽ8T , β1T , β̃2T , β3T ) = (γo, 0, 0, 0, 1+2ûâθ
2(2−χT )

, 1+2ûâθ
2(2−χT )

, 1/2).

The proof proceeds in several steps. The main task is to establish the existence of a

solution (ṽ6, ṽ8, β1, β̃2, β3, γ, χ) to the boundary value problem for all T < T (γo); from there,

it is straightforward to verify that the remaining equilibrium coefficients are well-defined, as

we do at the end of the proof.

Step 1: Convert BVP to fixed point problem in terms of a parameterized IVP. It is useful

to introduce z = (ṽ6, ṽ8, β1, β̃2, β3, γ, χ) and write the system of ODEs (B.25)-(B.31) as

żt = F (zt). We write z̃ = (z1, z2, . . . , z5) and F̃ (z) = (F1(z), F2(z), . . . , F5(z)).

Define B : R+ → R5 by B(χ) =
(

0, 0, 1+2ûâθ
2(2−χ)

, (1+2ûâθ)
2(2−χ)

, 1/2
)

, formed by writing the termi-

nal value of z̃ as a function of χ. Define s0 ∈ R5 by s0 = B(0) = (0, 0, 1+2ûâθ
4

, 1+2ûâθ
4

, 1/2).

For x ∈ Rn, let ||x||∞ denote the sup norm, sup1≤i≤n |xi|. For any ρ > 0, let Sρ(s0) denote

the ρ-ball around s0

Sρ(s0) := {s ∈ R5| ||s− s0||∞ ≤ ρ}.

For all s ∈ Sρ(s0), let IVP-s denote the initial value problem defined by (B.25)-(B.31)

and initial conditions (ṽ60, ṽ80, β10, β̃20, β30, γ0, χ0) = (s, γo, 0). Whenever a solution to IVP-s

exists, it is unique as F is of class C1; denote it by z(s), where z(s) = (z̃(s), γ(s), χ(s)) =

(ṽ6(s), ṽ8(s), β1(s), β̃2(s), β3(s), γ(s), χ(s)), where we suppress additional dependence on (γo, 0)

which remain fixed. Note that such a solution solves the BVP if and only if

z̃T (s) = B(χT (s)), (B.32)

as the initial values γ0(s) = γo and χ0(s) = 0 are satisfied by construction. Note also that

z̃T (s) = s +
´ T

0
F̃ (zt(s)) dt; hence (B.32) is satisfied if and only if s is a fixed point of the
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function g : Sρ(s0)→ R5 defined by

g(s) := B(χT (s))−
ˆ T

0

F̃ (zt(s))dt. (B.33)

Note, moreover, that for any solution, we have by Lemma 2 that χt ∈ [0, χ̄) where we

define χ̄ as 1 for the purpose of this proof.

Step 2: Obtain sufficient conditions for IVP-s to have unique and uniformly bounded

solutions for all s ∈ Sρ(s0), any ρ > 0. Specifically, for arbitrary K > 0, we ensure that the

solution z̃t(s) varies at most K from its starting point s for all t ∈ [0, T ], and thus by the

triangle inequality, this solution varies most ρ+K from s0. These bounds will be used later

in the proof.

Lemma B.1. Fix γo > 0, ρ > 0 and K > 0. Then there exists a threshold T SBC(γo; ρ,K) >

0 such that if T < T SBC(γo; ρ,K), then for all s ∈ Sρ(s0) a unique solution to IVP-s exists

over [0, T ]. Moreover, for all t ∈ [0, T ], z̃t(s) ∈ Sρ+K(s0). We call this property the System

Bound Condition (SBC).

Proof. Recall that F̃ is of class C1, and hence given s ∈ Sρ(s0), the solution z(s) is unique

whenever it exists. Toward the SBC, note that it suffices to ensure that for all ||z̃(s)−s||∞ <

K, since then by the triangle inequality, ||z̃(s)− s0||∞ ≤ ||z̃(s)− s||∞ + ||s− s0||∞ < ρ+K.

In what follows, we construct bounds on F̃ by writing F̃ (z(s)) = F̃ (z(s)− s0 + s0) and using

the conjectured bounds ||z̃(s)− s0||∞ < ρ+K, γ ∈ (0, γo], χ ∈ [0, χ̄) for the solution, when

it exists. Using these bounds on F̃ , we identify a threshold T SBC(γo; ρ,K) such that for all

t < T SBC(γo; ρ,K) the solution to IVP-s (exists and) satisfies the conjectured bounds.

Note that the desired component-wise inequalities |zit̂(s)−si0| < ρ+K, i ∈ {1, 2, . . . , 5},
imply the further bounds

|ṽ6t|, |ṽ8t| < ρ+K

|β1t| < β̄1(ρ,K) :=
1 + 2ûâθ

4
+ ρ+K

|β̃2t| < β̄2(ρ,K) :=
1 + 2ûâθ

4
+ ρ+K

|β3t| < β̄3(ρ,K) := 1/2 + ρ+K

|αt| < ᾱ(ρ,K) := β̄1(ρ,K)χ̄+ β̄3(ρ,K).

Hereafter, we suppress the dependence of β̄i, i ∈ {1, 2, 3}, and ᾱ on (ρ,K).
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Define functions hi : R3
++ → R++ as follows:53

h1(γo; ρ,K) := γo
{

(β̄1 + β̄2)2 + v̄6

(
ᾱ2/σ2

Y + 2(ûâθ + ᾱ)2χ̄/σ2
X

)}
h2(γo; ρ,K) := γo

{
(2 + 4ᾱ)β̄1 + 2β̄2 + v̄8(ûâθ + ᾱ)2χ̄/σ2

X + 4β̄2
1 χ̄
}

h3(γo; ρ,K) :=
γo

4σ2
Xσ

2
Y

×
{

2σ2
X ᾱ
(
û2
âθ + 2β̄2

1 + ᾱ(ûâθ + 2β̄1)
)

v̄8ᾱ(ûâθ + ᾱ)2(ûâθ + 2β̄1)χ̄

+4β̄1χ̄
[
û2
âθσ

2
Y +

(
2ûâθσ

2
X + σ2

Y

)
ᾱ2 + ûâθᾱ

(
ûâθσ

2
X + 2σ2

Y + σ2
X β̄1

)]
+4σ2

Y (ûâθ + ᾱ)2
[
β̄2χ̄+ β̄1(ûâθ + 2β̄2)χ̄2

]}
h4(γo; ρ,K) :=

γo

4σ2
Xσ

2
Y

×
{

2σ2
X ᾱ
[
û2
âθ + 2β̄2

1 + ᾱ(ûâθ + 2β̄2)
]

ᾱχ̄(ûâθ + ᾱ)2
[
4v̄6 + v̄8(ûâθ + 2β̄2)

]
+ 4ᾱχ̄ûâθσ

2
X

[
β̄2

1 + (ûâθ + 2ᾱ)β̄2

]
+4(ûâθ + ᾱ)2χ̄2

[
ûâθv̄6ᾱ + σ2

Y β̄2(ûâθ + 2β̄2)
]}

h5(γo; ρ,K) :=
γo

4σ2
Xσ

2
Y

×
{

4σ2
X ᾱ

2β̄1 + 2ᾱχ̄(ûâθ + ᾱ)
[
ûâθσ

2
X + 2ûâθσ

2
X ᾱ + v̄8ᾱ(ûâθ + ᾱ)

]
+2ᾱχ̄[2ûâθσ

2
X ᾱβ̄1 + 2σ2

X β̄
2
1 ]

χ̄2
[
v̄8ᾱ(ûâθ + ᾱ)2(ûâθ + 2β̄1) + 4ûâθσ

2
X ᾱβ̄1(ûâθ + ᾱ + β̄1)

]
+4σ2

Y χ̄
2(ûâθ + ᾱ)2(1 + 2ᾱ)β̄2 + 8σ2

Y (ûâθ + ᾱ)2β̄1β̄2χ̄
3
}
.

Now for arbitrary (ρ,K) ∈ R2
++, define

T SBC(γo; ρ,K) := min
i∈{1,2,...,5}

K

hi(γo; ρ,K)
. (B.34)

We claim that, for any t < T SBC(γo; ρ,K), if a solution exists at time t, then ||z̃t(s) −
s||∞ < K, γt ∈ (0, γo] and χt ∈ [0, χ̄). To see this, suppose by way of contradiction that

there is some s ∈ Sρ and some t < T SBC(γo; ρ,K) at which a solution to IVP-s exists but

either |zit(s) − si| ≥ K for some i ∈ {1, 2, . . . , 5}, γt /∈ (0, γo] or χt /∈ [0, χ̄); let τ be the

infimum of such times. Now by Lemma 2, it cannot be that γt /∈ (0, γo] or χt /∈ [0, χ̄) while

z̃t(s) exists, so (by continuity of z(s) w.r.t. time) it must be that for some i ∈ {1, 2, . . . , 5},
|ziτ (s)− si| ≥ K, and the bounds γt ∈ (0, γo] and χt ∈ [0, χ̄) hold for t ∈ [0, τ ].

By construction of hi(γ
o; ρ,K), for all t ∈ [0, τ ] we have |Fi(zt(s))| ≤ hi(γ

o; ρ,K) and

thus

|ziτ (s)− si| ≤
ˆ τ

0

|Fi(zt(s))|dt ≤ τ · hi(γo; ρ,K) < T SBC(γo; ρ,K)hi(γ
o; ρ,K) ≤ K,

53We use R++ to denote (0,+∞).
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where the last step uses the definition of T SBC(γo; ρ,K); but via the strict inequality, this

contradicts the definition of τ , proving the claim. By the triangle inequality, it follows

that zt(s) ∈ Sρ+K(s0) if a solution exists at time t < T SBC(γo; ρ,K). Together, these bounds

imply that the solution cannot explode prior to time T SBC(γo; ρ,K). In other words, a unique

solution must exist over [0, T ] for any T < T SBC(γo; ρ,K) and it satisfies the SBC.

Step 3: Establish that g is a well-defined, continuous self-map on Sρ when T is below a

threshold T (γo; ρ,K). The expression for the latter in shown in the proof Lemma B.2 below.

Lemma B.2. Fix γo > 0, ρ > 0 and K > 0. There exists T (γo; ρ,K) ≤ T SBC(γo; ρ,K)

such that for all T < T (γo; ρ,K), g is a well-defined, continuous self-map on Sρ.

Proof. First, the inequality T (γo; ρ,K) ≤ T SBC(γo; ρ,K), which holds by construction (as

carried out below), ensures that a unique solution to IVP-s exists for all s ∈ Sρ. Next, we

argue that g is continuous. Note that g(s) can be written as B(χT (s))− [zT (s)− s]. Since F

is of class C1 on the domain Sρ+K × (0, γo]× [0, χ̄), zt(s) (which includes γ and χ) is locally

Lipschitz continuous in s, uniformly in t ∈ [0, T ],54 and B is continuous, and thus continuity

of g follows readily.

To complete the proof, we show that if T < T (γo; ρ,K), g satisfies the condition

||g(s)− s0||∞ ≤ ρ for all s ∈ Sρ,

which we refer to as the Self-Map Condition (SMC).

Note that g(s)− s0 = ∆(s)−
´ T

0
F̃ (zt(s))dt, where

∆(s) := B(χT (s))−B(0)

=

(
0, 0,

1 + 2ûâθ
2

[
1

2− χT (s)
− 1

2

]
,
1 + 2ûâθ

2

[
1

2− χT (s)
− 1

2

]
, 0

)
.

The hi(ρ,K) constructed in the proof of the previous lemma will provide us a bound for

the components of
´ T

0
F̃ (zt(s))dt, but we must also bound ∆(s), and in particular, ∆3(s)

and ∆4(s). Note that ∆3(s) = ∆4(s).

Recalling that χ ∈ [0, 1), the ODE for χ implies that

χ̇t ≤ γt
{
α2
t (1− χt)/σ2

Y

}
≤ γoᾱ2/σ2

Y ,

which depends on (ρ,K) through ᾱ. Hence by the fundamental theorem of calculus, we have

χt =
´ t

0
χ̇sds ≤ (γoᾱ2/σ2

Y ) t.

54See Theorem on page 397 in Hirsch et al. (2004).
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Hence, using χT (s) ≤ 1 to bound (2 − χT (s)) in the denominators from below by 1, we

have the following bound for ∆3(s) = ∆4(s):

|∆3(s)| =
∣∣∣∣1 + 2ûâθ

2

[
1

2− χT (s)
− 1

2

]∣∣∣∣ =
1 + 2ûâθ

2

∣∣∣∣ χT (s)

2(2− χT (s))

∣∣∣∣ ≤ 1 + 2ûâθ
4

(
γoᾱ2/σ2

Y

)
T

For arbitrary (ρ,K) ∈ R2
++, define ∆̄i(γ

o; ρ,K) = 1+2ûâθ
4

(γoᾱ2/σ2
Y ) for i ∈ {3, 4} and define

∆̄i(γ
o; ρ,K) = 0 for i ∈ {1, 2, 5}. Note that for all i ∈ {1, 2, 3, 4, 5}, ∆̄i(ρ,K) is proportional

to γo, and by construction, |∆i(s)| ≤ T ∆̄i(γ
o; ρ,K).

Now for arbitrary (ρ,K) ∈ R2
++, define

T (γo; ρ,K) := min

{
T SBC(γo; ρ,K), min

i∈{1,2,...,5}

ρ

∆̄i(γo; ρ,K) + hi(γo; ρ,K)

}
. (B.35)

To establish the SMC, it suffices to establish for each i ∈ {1, 2, . . . , 5} that |gi(s)−si0| ≤ ρ

for all s ∈ Sρ(s0). We begin by calculating

|gi(s)− si0| = |Bi(χT (s))−Bi(0)︸ ︷︷ ︸
=∆i(s)

−
ˆ T

0

Fi(zt(s))dt|

≤ |∆i(s)|+
ˆ T

0

|Fi(zt(s))|dt ≤ T ∆̄i(γ
o; ρ,K) + Thi(γ

o; ρ,K) < ρ,

where we have used the definition of ∆̄i(γ
o; ρ,K) and that |Fi(zt(s))| ≤ hi(γ

o; ρ,K); and

(ii) in the last line we have used that T < T (γo; ρ,K) ≤ ρ
∆̄i(γo;ρ,K)+hi(γo;ρ,K)

by construction.

Hence, for all i ∈ {1, 2, . . . , 5} we have |gi(s)− si0| ≤ ρ, completing the proof.

Step 4: Apply a fixed point theorem to g to find s such that solution to IVP-s solves the

BVP. Note that by Lemma B.2, g is a well-defined, continuous self-map on the compact set

Sρ. By Brouwer’s Theorem, there exists s∗ such that s∗ = g(s∗), and hence the solution

to IVP-s∗ is a solution to the BVP. To see that T (γo) ∈ O(1/γo), note simply that γo

appears as an outside factor in the denominators of the expressions defining T SBC(γo; ρ,K)

and T (γo; ρ,K). Moreover, since ρ,K have been chosen arbitrarily, we can then optimize

T (γo; ρ,K) over choices of (ρ,K) ∈ R2
++ to obtain T (γo).

Step 5: Show that given a solution to the BVP as above, the remaining coefficients are

well-defined and thus a LME exists. We argue that α is finite and that γ and α are strictly

positive. Finiteness comes directly from the definition α = β1χ+β3 and the finiteness of the
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underlying variables. This implies that γt > 0 for all t ∈ [0, T ]. The ODE for α is

α̇t =
αt(ûâθ + αt)γtχt

2σ2
Xσ

2
Y (1 + ûâθχt)

{
2ûâθσ

2
Xαt − ṽ8tαt(ûâθ + αt)− 4σ2

Y (ûâθ + αt)β̃2tχt

}
. (B.36)

By continuity of the solution to the BVP, the RHS of the equation above is locally Lipschitz

continuous in α, uniformly in t. Moreover, αT = β1T + β3TχT = 1+ûâθχT
2−χT

> 0. By a standard

application of the comparison theorem to the backward version of the previous ODE, it must

be that αt > 0 for all t ∈ [0, T ].

Using the solution to the BVP and the facts above, we solve for the rest of the equilibrium

coefficients. First, we have directly

(v2t, v5t, v7t, v9t) =

(
2σ2

Y β0t

γtαt
,
σ2
Y [β1t(2− χt)− β3t − ûâθ]

γtαt
,−2σ2

Y (1− 2β3t)

γtαt
,
2σ2

Y [β2t − β1t(1− χt)]
γtαt

)
.

The last three are clearly well-defined due to α, γ > 0. The remaining ODEs are

β̇0t = − (ûâθ + αt)γtχt
2σ2

Xσ
2
Y (1− χt)(1 + ûâθχt)

{
4ûâθσ

2
Y β0tβ̃2t(1− χt)χt

+α2
t [ṽ8tβ0t(1− χt) + v3tγt(1 + ûâθχt)]

+αt

[
ûâθv3tγt(1 + ûâθχt) + β0t(1− χt)

(
−2ûâθσ

2
X + ûâθṽ8t + 4σ2

Y β̃2tχt

)]}
, β0T = 0,

v̇0t = β2
0t + (ûâθ + αt)

2γtχt

+
(ûâθ + αt)

2γtχ
2
t

σ2
X

[
−ṽ6t + σ2

Y (ûâθ + αt − 2β̃2t)/αt

]
, v0T = 0,

v̇1t = −2β0t, v1T = 0,

v̇3t = 2β0t(β1t + β̃2t)(1− χt) +
v3t(ûâθ + αt)

2γtχt
σ2
X(1− χt)

, v3T = 0, and

v̇4t = 1− 2β2
3t, v4T = 0.

Observe that the system for (β0, v1, v3) is uncoupled from (v0, v4). By inspection, the former

has solution (β0, v1, v3) = (0, 0, 0), and uniqueness follows from the associated operator being

locally Lipschitz continuous in (β0, v1, v3) uniformly in time. It follows that v2 = 0, and the

solutions for (v0, v4) can be obtained directly by integration, given their terminal values. �

B.3: Existence Proof Sketch for the General Model

In what follows, we refer the reader to the Mathematica file spm.nb available on our websites.

Since scaling flow payoffs by a constant does not affect incentives, the file works under the
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normalization ∂2U/∂a2 = ∂2Û/∂â2 = −1; consequently, Uxy = uxy, for x, y ∈ {a, â, θ} in

that file. We show below that under the conditions of Assumption 1 our method works, and

so the method carries out to any unnormalized version satisfying the assumptions.

As outlined in Section 4, the problem of finding a quadratic value function V character-

ized by time-varying coefficients ~v = (v0, . . . , v9), and optimal policy (10) characterized by

coefficients ~β, reduces to a BVP in (~v, ~β, γ, χ). Under Assumption 1, a static Nash equilib-

rium exists of the static game played at time T after any history, given that players have

conjectured linear strategies as in (9)-(11); hence the terminal conditions of this boundary

value problem are well-defined.55 These terminal conditions are parameterized by χT .

For any payoff specification satisfying Assumption 1, it can be seen from spm.nb that the

vector (v2, v5, v7, v9) can be written in terms of ~β, and that (v2, v5, v7, v9) is well-defined as

long as α 6= 0 and γ > 0. Hence, we eliminate (v2, v5, v7, v9) from the BVP and check after-

ward that any solution to the resulting BVP, which we label BVP′, satisfies the conditions

on γ and α. From spm.nb, the ODEs in BVP′ are well-defined as their denominators are

nonzero; we have χt ∈ [0, 1), and the terms (uaθ + uaâûâθχt) and (1 − uaâûaâ) are nonzero

by Assumption 1 parts (ii) and (iv), respectively. Further, BVP′ contains a subsystem in

(v6, v8, β1, β2, β3, γ, χ), which does not contain any coefficients in {v0, v1, v3, v4, β0}. After the

change of variables (ṽ6, ṽ8, β̃2) = (v6γ/(1−χ)2, v8γ/(1−χ), β2/(1−χ)), defined in the proof

of Theorem 2, we obtain a core BVP which we label BVP′′, in (ṽ6, ṽ8, β1, β̃2, β3, γ, χ). The

ODEs in BVP′′ are again well-defined by Assumption 1, and by the change of variables, the

term (1− χt) is absent from their denominators.

The existence proof now follows the same steps as in the proof of Theorem 2: we show

in Steps 1-4 that there is T (γo) such that, a solution to BVP′′ exists for all T < T (γo) and

then show in Step 5 that we can recover a solution to the original BVP.

In Step 1, we convert BVP′′ to a fixed point problem w.r.t. the initial conditions of an

IVP. Write the system of ODEs as żt = F (zt), and write z̃ = (z1, . . . , z5). Define s0 ∈ R5

as (0, 0, βst10, β
st
20, β

st
30), where (βst10, β

st
20, β

st
30) are the equilibrium coefficients of the static game

played at time 0, and let Sρ(s0) denote the ρ-ball centered at s0 for arbitrary ρ > 0. For

s ∈ Sρ(s0), define the parameterized initial value problem IVP-s by the ODEs in BVP′′

together with initial conditions z0 = (s, γo, 0). We can define a function g : Sρ(s0) → R5 as

in the proof of Theorem 2 such that, if a solution to IVP-s exists and g(s) = s, then this

solution also solves BVP′′.

In Step 2, we construct a function T SBC : R3
++ → R+ such that if T < T SBC(γo; ρ,K),

55To see this, note that the coefficients on the players’ (purported) static equilibrium strategies, displayed
in spm.nb, contain only the terms (1 − uaâûaâ) and (1 − uaâûaâχT ) in their denominators; by Assumption
1 part (iv), and since χT ∈ [0, 1), these terms are nonzero.

66



then for all s ∈ Sρ(s0), a unique solution to IVP-s exists over [0, T ] and has the property

that z̃(s) ∈ Sρ+K(s0). Intuitively, we use these conjectured bounds on z to bound the growth

rate of the system and show that for small T , the conjectured bounds must hold.

In Step 3, we note that g is well-defined when T < T SBC(γo; ρ,K); g is also continuous,

owing to the fact that F is of class C1 and the terminal conditions in BVP′′ are continu-

ous in χT , each on the appropriate domain. We then show that for T below a threshold

T (γo; ρ,K) ≤ T SBC(γo; ρ,K), g is a self-map. We observe here that T (γo; ρ,K) ∈ O(1/γo);

we can then define T (γo) by optimizing over (ρ,K). In Step 4, then, we apply Brouwer’s

Theorem to establish the existence of a fixed point s∗ = g(s∗) for such T < T (γo). By

construction, the unique solution to IVP-s∗, for any such s∗, is a solution to BVP′′.

In Step 5, all that remains is to recover a solution to the original BVP from the solution

to BVP′′. Now α = β1χ+ β3 is well-defined and finite, and hence γ > 0 at all times. Hence,

(v6, v8, β2) is recovered from (ṽ6, ṽ8, β̃2). Moreover, αT 6= 0 by Assumption 1 parts (ii) and

(iv), and since the right hand side of the ODE for α contains a factor of α, we have α 6= 0

by the comparison theorem. Consequently, given a solution to BVP′′, the ODEs for (β0, v3)

are well-defined and form a linear system in (β0, v3) that does not contain any coefficients in

{v0, v1, v4} and has known terminal conditions since χT is known. The associated operator

for this system is Lipschitz continuous in (β0, v3) uniformly in t ∈ [0, T ] (as the solutions

to the previous ODEs are continuous), and so there exists a unique solution (β0, v3). The

coefficients (v2, v5, v7, v9) are also well-defined as α, γ 6= 0. Finally, given a solution for the

coefficients determined thus far, the remaining ODEs for v0, v1 and v4 are linear in themselves

and uncoupled, so they have unique solutions.

Proofs for Section 5: Refer to the online appendix.
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