MACRO SHOCKS AND FIRM DYNAMICS WITH OLGOPOLISTIC FINANCIAL INTERMEDIARIES

JOB MARKET TALK

Alessandro T. Villa

Duke University

September 2020
Motivation

Macro-finance with Financial Intermediaries (FIs)

- 2008 Great Recession → more attention to FIs
- Intermediation frictions, but FIs perfectly competitive

Observation

- The 5 largest banks own more than 50% of the market share (e.g. JP Chase, Bank of America, Citigroup, Wells Fargo & Co., Goldman Sachs)
- Market share has doubled in the last 20 years

Question

- How does banking concentration affect the transmission of macro shocks?

 (Aggregate shock to firms’ default probability & Lehman shock)
Model features

• Production sector
 » Heterogeneous firms with financial frictions
 (tax shield, equity issuance cost)
 » Optimal capital structure
 (debt & equity)

• Financial sector
 » Few strategic banks
 (raise financial resources & issue defaultable loan to firms)
 » Dynamic oligopoly

• Equilibrium
 » Relation between banks’ mkt. structure & firm dynamics
Approach

- Stationary equilibrium
 (stochastic life-cycle model of firm dynamics)
 » Calibrate model using FDIC data
 (commercial & industrial loans)

- Macro shocks
 (more versus less concentrated oligopoly)
 1. Aggregate shock to firms’ default probability
 2. Lehman shock

- Extension: stationary equilibrium with firms’ endogenous default
 (credit spreads & default rates of commercial & industrial loans)

- Novel algorithm to solve for general equilibrium, heterogeneous firms, macro shocks and banks’ strategic interactions
Firms are heterogeneous

- More concentrated banking sector extracts ↑ markups out of small firms
- Small firms endogenously financially constrained

Novel mechanism: because smaller firms have higher credit demand banks exert higher market power and charge higher mark-ups on loans to small firms

Novel implications: ↓ Investment ↓ Capital ↑ σ(MPK) ↓ TFP
Mechanism in words: aggregate default shock

- Aggregate increase to firms’ default probability
- Larger proportion of small firms \implies ↑ credit demand
- Markups are endogenous in the cross-section \implies to remain more profitable (in the face of higher default losses) banks extract higher mark-ups out of small firms
- In equilibrium credit contracts (“credit crunch”) \implies
 - ↑ interest rates \implies ↓ investment & capital
 - \implies ↑ credit spreads
Mechanism in words: Lehman shock

One bank fails

- Surviving banks start to extend more credits to the firms in order to recover the portion of the market left uncovered by the bank that defaulted

- This happens slowly because of the effect of the strategic interactions among banks

- Implications: the aggregate availability of credits drops sharply, reducing investments and pushing output to a dynamic similar in magnitude and persistency to the one of the great recession
Bank failure

Aggregate increase to firms’ default probability
(+1.44% yearly in 2008 Great Recession)

Calibrated oligopoly

vs.

Perfect competition

Credit Spread

Output

Perfect competition
Calibrated oligopoly
Lehman shock
Data

(2008 Great Recession)

+0.40%
+0.72%
+0.96%
+0.92%

-1.40%
-2.51%
-4.00%
-4.50%

FIRM DYNAMICS AND/OR MACRO-FINANCE (FINANCIAL FRICTIONS)

MACRO/IO - BANKING

MACRO - MONETARY POLICY TRANSMISSION

Drechsler et al. (2017), Li et al. (2019), Scharfstein & Sunderam (2016), Wang et al. (2019)
• Simple two periods model
• Quantitative model
 » Calibration (Stationary Equilibrium)
 - Data
 - Stationary equilibrium key features
 » Macro shocks
 - Increase in aggregate firms’ default risk
 - Lehman shock
• Extension: idiosyncratic TFP shocks & endogenous default
• Conclusion
Simple Model
Given an initial distributions of firms with pdf $\phi(k_0, z_0)$

- each firm produces output $y_0 = z_0 k_0^\alpha$
- each bank finances loans issuing equity and/or debt $\int l_b(k_0, z_0) \, d\Phi(k_0, z_0)$
- each bank and firm jointly decide on a contract: loan $l_b(k_0, z_0)$, interest rate $R_l(k_0, z_0)$ and investment $k_1(k_0, z_0)$
- firms distribute dividends $d_0 = z_0 k_0^\alpha + (1 - \delta)k_0 - k_1 + \sum_b l_b$
- some firms might need to issue equity ($d_0 < 0$) at a cost $\lambda(d_0)$
Defaulting mass of firms $1 - \rho$ exit, for the surviving firms z_1 is realized and

- each firm produces output $y_1 = z_1 k_1^\alpha$
- each firm repays its outstanding debt plus interest $R_l(k_0, z_0) \cdot \sum_b l_b(k_0, z_0)$
- each bank distributes profit $\int \rho R_l(k_0, z_0) l_{1,b}(k_0, z_0) \, d\Phi(k_0, z_0)$
- each firm distributes dividend $d_1 = z_1 k_1^\alpha + (1 - \delta)k_1 - R_l \sum_b l_{1,b}$
Simple model: contracting

Firm and banks owners optimality conditions require

\[R_l = \mathbb{E} \left[1 + \alpha z_1 k_1^{\alpha-1} - \delta \right] \quad \text{(Firm's debt)} \] \quad (1)

\[\rho \beta R_l = 1 - \lambda'(d_0) \quad \text{(Firm's investment)} \] \quad (2)

\[\rho \beta \mathbb{E} \left[\frac{d_1}{p} \right] = 1 - \lambda'(d_0) \quad \text{(Firm's equity)} \] \quad (3)

Given all other banks choices \(l_{-b} \), each bank \(b \) chooses a function \(l_b \) such that

\[
\max_{l_b(k_0,z_0)} \left\{ - \int l_b(k_0,z_0) \ d\Phi(k_0,z_0) + \beta \int \rho R_l(k_0,z_0) l_b(k_0,z_0) \ d\Phi(k_0,z_0) \right\}
\]

subject to \(\forall (k_0,z_0) \) (1), (2) and (3)

Each bank’s best response is characterized by the following GEE

\[
\rho \beta \left(1 + \frac{\partial R_l}{\partial l_b} \cdot \frac{l_b(k_0,z_0)}{R_l(k_0,z_0)} \right) R_l(k_0,z_0) = 1
\]
Firms NOT financially constrained \((d_0 > 0)\): these firms are not affected by the banks market concentration; in equilibrium \((k_1^*, R_l^*, l_b^*, p^*)\) satisfy

1. \(k_1^* = \left(\frac{\rho^{-1} \beta^{-1} - 1 + \delta}{\alpha \mathbb{E}[z_1]} \right)^{\frac{1}{\alpha - 1}}\)

2. \(R_l^* = \rho^{-1} \beta^{-1}\)

3. \(l_b^*\) indetermined (Modigliani-Miller holds)

4. \(p^* = \rho \beta \mathbb{E} \left[d_1^* \right] \)

Firms financially constrained \((d_0 \leq 0)\): for these firms the degree of imperfect competition \((B)\) matters; in equilibrium

1. \(\rho \beta \left(1 + \frac{\partial R_l}{\partial l_b} \cdot \frac{l_b^*}{R_l^*} \right) R_l^* = 1\)

2. \(R_l^* = 1 + \alpha \mathbb{E}[z_1] k_1^{\alpha - 1} - \delta\)

3. \(\rho \beta R_l^* = 1 - \lambda'(d_0^*)\)

4. \(p^*(1 - \lambda'(d_0^*)) = \rho \beta \mathbb{E} \left[d_1^* \right] \)
Simple model: analytical insights

Proposition

As B increases:

- aggregate leverage $\int \sum_{b}^{B} \frac{l_{b}^{*}}{k_{1}^{*}} \, d\Phi$ increases;
- variance of capital $\int k_{1}^{*2} \, d\Phi - (\int k_{1}^{*} \, d\Phi)^2$ decreases;
- variance of loan interest rates $\int R_{l}^{*2} \, d\Phi - (\int R_{l}^{*} \, d\Phi)^2$ decreases;
- aggregate TFP $\int k_{1}^{*\alpha} \, d\Phi / (\int k_{1}^{*} \, d\Phi)^{\alpha}$ increases.
Simple model: mechanism dispersion

1. **Perfect competition** \(B \to \infty \), all firms "jump" to the efficient \(k^*_1 \)

2. **\(B \) finite**, firms \((d_0 < 0)\) grow slower (can't jump to \(k^*_1 \) directly)

3. **\(B \) finite**, firms \((d_0 \geq 0)\) "jump" to \(k^*_1 \)

\[\uparrow B \implies \uparrow TFP \downarrow \sigma(MPK) \downarrow \sigma(R_1) \]
Quantitative Model
Dynamic game

In the simple 2-periods game banks choices are one shot

In the ∞-horizon game each bank faces a dynamic problem which:

- depends on the same bank future strategies and other banks current and future strategies
- is subject to firms dynamic demand for loans and both current and future distribution of firms matter

\Rightarrow Markov-perfect equilibrium

I borrow tools from the optimal fiscal policy literature Klein & Rios-Rull (2003), Krusell et al. (2004), Klein et al. (2008), Lanteri & Clymo (2019)

Other features

i. Tax-shield
ii. All households are risk-averse
iii. Inter-bank market
Each firm maximizes NPV of dividends:

\[V_F(x, X) = \max_{\{l'_b\}_b, k'} \tilde{d} + \mathbb{E} \left[\mathcal{J}' \cdot M'_E \cdot V_F(x', X') \right] \]

- \(\tilde{d} \) is dividend at net of equity issuance cost \(d - \lambda(d) \)
- \(d = (1 - \tau) [zk'^{\alpha} - \sum_b r_l l_b] + \tau \delta k - \tilde{i} \)
- \(k' = k(1 - \delta) + i \)
- Investment \(i \) is
 - internal \(\tilde{i} \) plus
 - external \(\sum_b (l'_b - l_b) \)

State space \(\{x, X\} \):
- idiosyncratic \(x = \{\{l_b\}_b, r_l, k\} \)
- aggregates
 \(X = \{\{D\}_b, r_D, \{M_b\}_{b=0}, r_M, B, \rho, \phi(\sum_b l_b, r_l, k)\} \)

Firms optimality conditions determine the dynamic demand for loans.
Banks: overview

Bank 1

\[
V_1(X) = \max_{\{D_1', r_D', M_1', \{l_1'(.), r_1'(.), \} \}} \pi_1 + M_S' \cdot V_1(X')
\]

subject to HH and Firms FOCs

Bank 2

\[
V_2(X) = \max_{\{D_2', r_D', M_2', \{l_2'(.), r_2'(.), \} \}} \pi_2 + M_S' \cdot V_2(X')
\]

subject to HH and Firms FOCs

HH FOCs

Equity Supply

Deposits Supply

D'(X), \tilde{d}

Firms FOCs

Equity Demand

Loans Demand

l'(x, X)

D'(X), \tilde{d}

\{D_1', l_1'(.)\}

\{D_2', l_2'(.)\}

\uparrow
Markov-perfect equilibrium (fixed-point of all banks best responses)

\[
V_b(X) = \max_{\{D'_b, r'_D\}, M'_b, \{l'_b(x,X), r'_l(x,X)\}} \pi_b + M'_S(X, X') \cdot V_b(X')
\]

subject to:

\[
\pi_b = \rho \int r_l \cdot l_b \, d\Phi + r_M M_b - r_D D_b - F \quad \text{(Bank’s dividend)}
\]

\[
F + \Delta D'_b = \Delta M'_b + \rho \int \Delta l'_b(x, X) \, d\Phi \quad \text{(Law of motion)}
\]

HH & Firms’ FOCs (D supply & L demand)

\[
C_S + C_E + \int i(x, X) + \lambda(x, X) \, d\Phi + T = \int z k^\alpha \, d\Phi \quad \text{(Resource constraint)}
\]
Fix $D'_{-b}(X)$ and $l'_{-b}(x, X)$. Each bank b chooses its deposit amount $D'_{b}(X)$ and its loans’ portfolio $l'_{b}(x, X)$.

An increase of one units in $l'_{b}(x, X)$:

At time t:
- needs to be covered by equity F and/or $\Delta D'_{b}(X)$
- less consumption units to the saver

At time $t+1$:
- produces a future marginal income of $\mathbb{E} \left[\mathcal{I}' \cdot R'_{l}(x, X) \right]$
- decreases future loan market rate $R'_{l}(x, X)$ by $\mathbb{E} \left[\mathcal{I}' \cdot \frac{\partial R'_{l}}{\partial l'_{b}} \right]$
Generalized Euler Equation:

\[1 = \mathbb{E} \left[\mathcal{F}' \cdot M'_S(X, X') \cdot R'_l(x, X) \left(1 + \eta'_l(x, X, x', X') \right) \right] \]

where \(\eta'_l(x, X, x', X') \equiv \frac{\partial R'_l}{\partial l'_b} \cdot \frac{l'_b(x, X)}{R'_l(x, X)} < 0. \]
Loan intermediation margin

Inter-bank rate:

\[R'_M = \mathbb{E} \left[\mathcal{J}' \cdot R'_l(x, X) \cdot (1 + \eta'_l(x, X, x', X')) \right] \]

\[R'_l(x, X) - R'_M = \left(\frac{\eta'_l(x, X, x', X')}{1 + \eta'_l(x, X, x', X')} \right) \cdot \frac{1}{M'_S(X, X')} + \frac{1 - \rho}{\rho} \cdot \frac{1}{1 + \eta'_l(x, X, x', X')} \cdot \frac{1}{M'_S(X, X')} \]

1. Rents
2. Risk Premia

(1) Rents

(2) Risk Premia

\[R'_M \quad \mathbb{E} \left[\mathcal{J}' \cdot R'_l(x, X) \right] \quad R'_l(x, X) \]
Calibration
Commercial & Industrial Loans FDIC \((Maturity \sim 1.4 \text{ yrs})\)

Quarterly loan rate: \(r_L \approx 1.01\%\) \((Interest \ Income/Loans)\)

\(\rho = \mathbb{E} [J'] = 1 - 0.21\%\) \((Net \ Charge-Off \ Rate)\)

\(\mathbb{E} [J' \cdot R'_L - 1] = \rho \cdot R'_L - 1 \approx 0.80\%\)

Quarterly inter-bank rate: \(r_M \approx 0.54\%\) \((FED \ funds \ rate)\)
Stationary equilibrium calibration: monopoly

Banks Moments *(Target)*

Data: 0.264%

\[r'_M \]

\[\mathbb{E} \left[\mathcal{J}' \cdot R'_L - 1 \right] \]

Model: 0.323%

\[r'_{L,\text{data}} = 1.010\% \]

\[r'_{L,\text{model}} = 1.071\% \]

Firms aggregate moments

<table>
<thead>
<tr>
<th>Moments</th>
<th>Number of Banks</th>
<th>Data (1997-2018)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(K/Y)</td>
<td>10.46</td>
<td></td>
</tr>
<tr>
<td>(I/Y)</td>
<td>27.3%</td>
<td></td>
</tr>
<tr>
<td>(\Delta L/K)</td>
<td>0.03%</td>
<td></td>
</tr>
<tr>
<td>(L/K)</td>
<td>14.3%</td>
<td></td>
</tr>
</tbody>
</table>
Stationary equilibrium calibration: duopoly

Banks Moments *(Target)*

- Data: 0.264%
- Model: 0.283%

Firms aggregate moments

<table>
<thead>
<tr>
<th>Moments</th>
<th>Number of Banks</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>K/Y</td>
<td>10.46</td>
<td>10.43</td>
</tr>
<tr>
<td>I/Y</td>
<td>27.3%</td>
<td>25.2%</td>
</tr>
<tr>
<td>$\Delta L/K$</td>
<td>0.03%</td>
<td>0.05%</td>
</tr>
<tr>
<td>L/K</td>
<td>14.3%</td>
<td>25.2%</td>
</tr>
</tbody>
</table>
Stationary equilibrium calibration: three banks

Banks Moments *(Target)*

\[
\mathbb{E} \left[\mathcal{F} \cdot R_L' - 1 \right]
\]

Data: 0.264%

Model: 0.261%

Firms aggregate moments

<table>
<thead>
<tr>
<th>Moments</th>
<th>Number of Banks</th>
<th>Data (1997-2018)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(K/Y)</td>
<td>10.46</td>
<td>10.43</td>
</tr>
<tr>
<td>(I/Y)</td>
<td>27.3%</td>
<td>25.2%</td>
</tr>
<tr>
<td>(\Delta L/K)</td>
<td>0.03%</td>
<td>0.05%</td>
</tr>
<tr>
<td>(L/K)</td>
<td>14.3%</td>
<td>25.2%</td>
</tr>
</tbody>
</table>
Banks’ market power reduces credit availability. Smaller firms are more reliant on banks credits, hence they are harmed more

Stationary life cycle of a firm: inverse elasticity

Mark-ups are endogenous in the cross-section
Stationary life cycle of a firm: inverse elasticity

Mark-ups are endogenous in the cross-section
A constant mark-up approach would shift η_L uniformly
Macro Shocks
Aggregate firms’ default shock

Quarterly default rate \(1 - \rho\) (2008Q1-2012Q2)
Aggregate firms’ default shock: dynamics

$\sum_b B L_b \% \text{ change}$

- **Oligopoly**
- **Perfect competition**

↑ $1 - \rho \Rightarrow$ credit crunch
downward investment
Aggregate firms’ default shock: dynamics

\[Y \text{ [% change]} \]

\[r_L - r_M \text{ [% difference]} \]

↑ 1 − \(\rho \) \(\implies \) ↓ capital \(\implies \) ↑ MPK
WHAT IF THE SHOCK ORIGINATED IN THE FINANCIAL SECTOR?
Lehman shock: loan per bank

Loan per bank L_b [% change]

- Oligopoly
- Perfect competition
- Lehman shock
- Data

Time t
Lehman shock: output

Output Y [% change]

- Oligopoly
- Perfect competition
- Lehman shock
- Data

Time t
Lehman shock: credit spread

Credit spread $r_L - r_M$ [% difference]

- Oligopoly
- Perfect competition
- Lehman shock
- Data
Idiosyncratic TFP shocks and endogenous firms’ default

\[\tilde{V}_F(x, X) = \max_{\{l'_b\}_b, k'} \left(d - \lambda(d) + \mathbb{E} \left[M'_E \cdot V_F(x', X') \right] \right) \]

\[V_F(x, X) = \max \{ \tilde{V}_F(x, X), 0 \} \]

- \(d = (1 - \tau) [zk^\alpha - \sum_b r_l l_b] + \tau \delta k - \tilde{i} - \chi \)
- State space \(\{x, X\} \):
 - idiosyncratic \(x = \{\{l_b\}_b^B, r_l, k, z\} \)
 - aggregates \(X = \{\{D\}_b^B, r_D, \{M_b\}_{b=0}^B, r_M, B, \phi(\sum_b^B l_b, r_l, k, z)\} \)

Each bank needs to dynamically best respond to other banks issuing contracts that consider firms’ exit contingent on \(z \)
Moments

<table>
<thead>
<tr>
<th>Firms</th>
<th>Number of Banks</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>K/Y</td>
<td>10.53</td>
<td>10.44</td>
</tr>
<tr>
<td>I/Y</td>
<td>26.06%</td>
<td>25.99%</td>
</tr>
<tr>
<td>L/K</td>
<td>8%</td>
<td>16%</td>
</tr>
<tr>
<td>Default rate</td>
<td>0.004%</td>
<td>0.051%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Banks</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>r_L</td>
<td>1.34%</td>
<td>1.32%</td>
<td>1.24%</td>
<td>1.05%</td>
<td>0.91%</td>
</tr>
<tr>
<td>$\mathbb{E}[\mathcal{J} \cdot r_L] - r_M$</td>
<td>0.795%</td>
<td>0.773%</td>
<td>0.685%</td>
<td>0.259%</td>
<td>0.065%</td>
</tr>
</tbody>
</table>

Parameters
Conclusion
Methodology
This paper provides a new dynamic framework that relates banks’ market structure to firm dynamics with endogenous mark-ups in time and in the cross-section
(mechanism of endogenous financial frictions)

Experiment
Lehman shock in a oligopoly framework with strategic interaction can explain the magnitude and persistency of the great recession

Policy
Interaction between banks’ market power and firms’ endogenous default opens policy question about optimal banks’ market structure

Future work
Endogenous firms’ entry decisions and relationship loans
THANK YOU
Empirical facts: Lerner index >0 & RWA ↓

Empirical facts: market concentration ↑ since 1995

Source: FDIC Release: Summary of Deposits survey of branch
<table>
<thead>
<tr>
<th>Agents</th>
<th>Description</th>
<th>Parameter</th>
<th>Value</th>
<th>Target/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Household</td>
<td>Discount Factor</td>
<td>β</td>
<td>0.9942</td>
<td>Match deposit rate (Source: FDIC)</td>
</tr>
<tr>
<td></td>
<td>Risk Aversion</td>
<td>γ</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Firms</td>
<td>Depreciation Rate</td>
<td>δ</td>
<td>0.025</td>
<td>Bureau of Economic Analysis</td>
</tr>
<tr>
<td></td>
<td>Effective Capital Share</td>
<td>α</td>
<td>0.39</td>
<td>Bureau of Labor Statistics</td>
</tr>
<tr>
<td></td>
<td>Taxation</td>
<td>τ</td>
<td>0.241</td>
<td>Tax Corp Income/ Corp Profit (Source: FRED)</td>
</tr>
<tr>
<td></td>
<td>Default rate</td>
<td>$1 - \rho$</td>
<td>0.21%</td>
<td>Quarterly Net write-off to loan (Source: FDIC)</td>
</tr>
<tr>
<td></td>
<td>Equity Issuance Cost</td>
<td>λ_0</td>
<td>0.75</td>
<td>Covas & den Haan (2011)</td>
</tr>
<tr>
<td>Banks</td>
<td>Number of Banks</td>
<td>B</td>
<td>3</td>
<td>Calibrated to match intermediation margins</td>
</tr>
<tr>
<td>Agents</td>
<td>Description</td>
<td>Parameter</td>
<td>Value</td>
<td>Target/Source</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Household</td>
<td>Discount Factor</td>
<td>β</td>
<td>0.9942</td>
<td>Match deposit rate (Source: FDIC)</td>
</tr>
<tr>
<td></td>
<td>Risk Aversion</td>
<td>γ</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Firms</td>
<td>Depreciation Rate</td>
<td>δ</td>
<td>0.025</td>
<td>Bureau of Economic Analysis</td>
</tr>
<tr>
<td></td>
<td>Effective Capital Share</td>
<td>α</td>
<td>0.34</td>
<td>Bureau of Labor Statistics</td>
</tr>
<tr>
<td></td>
<td>Taxation</td>
<td>τ</td>
<td>0.241</td>
<td>Tax Corp Income/ Corp Profit (Source: FRED)</td>
</tr>
<tr>
<td></td>
<td>Equity Issuance Cost</td>
<td>λ_0</td>
<td>0.75</td>
<td>Covas & den Haan (2011)</td>
</tr>
<tr>
<td></td>
<td>Persistence TFP</td>
<td>ρ_z</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std TFP</td>
<td>σ_z</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fixed cost</td>
<td>χ</td>
<td>0.058</td>
<td></td>
</tr>
<tr>
<td>Banks</td>
<td>Number of Banks</td>
<td>B</td>
<td>4</td>
<td>Calibrated to match intermediation margins</td>
</tr>
</tbody>
</table>
Additional constraints of the bank’s problem

1. Banks’ equity: \(M_S' \cdot \frac{p_b' + \pi_b'}{p_b} = 1 \)
2. Banks’ debt: \(M_S' \cdot R_D' = 1 \)
3. Firms’ debt: \(\rho \cdot M_E' \cdot (1 + (1 - \tau)r_l') \cdot \mathbb{E} \left[(1 - \lambda'_d) \right] = 1 - \lambda_d \)
4. Firms’ equity: \(\mathbb{E} \left[F' \cdot M_E' \cdot \frac{p' + \tilde{d}'}{p} \right] = 1 \)
5. Firms’ investment: \(\mathbb{E} \left[1 - \lambda'_d \right] r_l' = \mathbb{E} \left[\left(z' \alpha k'^{\alpha-1} - \delta \right) \cdot \left(1 - \lambda'_d \right) \right] \)
Proposition

As \(B \) increases:

- aggregate loans per bank \(\int l_b^* \, d\Phi \) decreases;
- average loan interest rate \(\int R_l^* \, d\Phi \) decreases;
- aggregate share expected returns \(\int \mathbb{E} \left[d_{1}^* \right] / p^* \, d\Phi \) decreases;
- aggregate physical investment \(\int k_1^* - (1 - \delta)k_0 \, d\Phi \) increases;
- aggregate loans \(\int \sum_b^B l_b^* \, d\Phi \) increases;
- aggregate leverage \(\int \sum_b^B l_b^*/k_1^* \, d\Phi \) increases;

\[
\text{variance of capital } \int k_1^{*2} \, d\Phi - \left(\int k_1^* \, d\Phi \right)^2 \text{ decreases;}
\]

\[
\text{variance of loan interest rates } \int R_l^{*2} \, d\Phi - \left(\int R_l^* \, d\Phi \right)^2 \text{ decreases;}
\]

\[
\text{variance of expected returns } \int \left(\mathbb{E} \left[d_{1}^* \right] / p^* \right)^2 \, d\Phi - \left(\int \mathbb{E} \left[d_{1}^* \right] / p^* \, d\Phi \right)^2 \text{ decreases;}
\]

\[
\text{aggregate TFP } \int k_1^{*\alpha} \, d\Phi / \left(\int k_1^* \, d\Phi \right)^{\alpha} \text{ increases.}
\]
Simple model: mechanism

Demand for loan: FOCs of the firms

For each financially constrained firm \((d_0^* < 0)\), the spread between the equilibrium rate and the competitive rate is given by

\[
R_l^*(k_0, z_0) - \frac{1}{\rho \beta} = -\frac{\lambda'(d_0^*(k_0, z_0))}{\rho \beta}
\]

Larger firms borrow at lower rates

\[
R_l^* = 1 + \alpha \mathbb{E}[z_1] k_1^{*\alpha-1} - \delta
\]

Banks strategically interact “through” the inverse elasticity \(\eta\) of the GEE

\[
R_l^* = \left(\frac{1}{1 + \eta} \right) \cdot \frac{1}{\rho \beta}, \quad \eta = \frac{\partial R_l^*}{\partial l_b} \frac{l_b^*}{R_l^*} = \frac{\lambda'(d_0^*)}{\rho \beta}
\]

\[
\uparrow B \implies \downarrow l_b^* \quad \uparrow B \cdot l_b^* \quad \uparrow k_1^* \quad \downarrow \text{MPK} \quad \downarrow R_l^* \quad \downarrow \mathbb{E} \left[d_1^* \right] / p^*
\]
Credit spreads

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial & Industrial Loan Rates Spreads over intended federal funds rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market share of top 5 banks (%)</td>
<td>0.040***</td>
<td>0.053***</td>
<td>0.056***</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.006)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Net Charge-Off Rate (%)</td>
<td>0.337***</td>
<td>0.295***</td>
<td>0.272***</td>
</tr>
<tr>
<td></td>
<td>(0.051)</td>
<td>(0.051)</td>
<td>(0.059)</td>
</tr>
<tr>
<td>Comm. & Ind. Loans ($tn)</td>
<td>-0.391***</td>
<td>-0.345**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.139)</td>
<td>(0.152)</td>
<td></td>
</tr>
<tr>
<td>Maturity</td>
<td></td>
<td>-0.121</td>
<td>(0.157)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.434**</td>
<td>0.384**</td>
<td>0.406**</td>
</tr>
<tr>
<td></td>
<td>(0.183)</td>
<td>(0.177)</td>
<td>(0.179)</td>
</tr>
<tr>
<td>Observations</td>
<td>81</td>
<td>81</td>
<td>81</td>
</tr>
<tr>
<td>R²</td>
<td>0.644</td>
<td>0.677</td>
<td>0.680</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.635</td>
<td>0.664</td>
<td>0.663</td>
</tr>
<tr>
<td>Residual Std. Error</td>
<td>0.291 (df = 78)</td>
<td>0.279 (df = 77)</td>
<td>0.280 (df = 76)</td>
</tr>
<tr>
<td>F Statistic</td>
<td>70.500*** (df = 2; 78)</td>
<td>53.802*** (df = 3; 77)</td>
<td>40.292*** (df = 4; 76)</td>
</tr>
</tbody>
</table>

Note: *p<0.1; **p<0.05; ***p<0.01