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Abstract

Markets for lending and insurance incentivize good behavior by forecasting risk on

the basis of past outcomes. As “big data” expands the set of covariates used to predict

risk, how will these incentives change? We show that “attribute” data which is in-

formative about consumer quality tends to decrease effort, while “circumstance” data

which predicts idiosyncratic shocks to outcomes tends to increase it. When covariates

are independent, this effect is uniform across all consumers. Under more general forms

of correlation, this effect continues to hold on average, but observation of a new co-

variate may lead to disparate impact—increasing effort for some consumer groups and

decreasing it for others. A regulator can improve social welfare by restricting the use

of either attribute or circumstance data, and by limiting the use of covariates with

substantial disparate impact.

1 Introduction

Lenders and insurers have long personalized the terms offered to individual customers based

on an estimate of the customer’s risk level. Historically, these estimates have taken into

account some personal demographic data, such as age and gender, but have also placed
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significant weight on the customer’s past record (e.g. his history of loan repayments or

insurance claims). When a customer’s record shapes the market’s perception of his risk,

he is incentivized to exert effort to improve that record and establish a good reputation,

for instance by driving carefully to avoid auto accidents or budgeting expenditures to repay

loans. This reputational incentive for effort plays an important role in mitigating moral

hazard.

Increasingly, big data is reshaping risk forecasting. For example, financial technology

startups evaluate creditworthiness based on personal data such as the frequency with which

a potential borrower changes residence1; health insurers collect data on insurees’ hobbies to

forecast healthcare costs2; and automobile insurers condition rates on detailed data about

traffic, weather, and environmental factors near the driver’s address.3 In other domains,

such as college admissions or workplace promotion decisions, “big data” is not yet widely

used, but may very well be in the future.

We propose a model of how increasing access to fine-grained consumer data changes

incentives for effort. The core of our model is the well-known Holmström (1999) framework:

An agent has a private type (e.g. driving ability) which is unknown to both him and the

market. This type, along with a random shock (encountering icy roads) and a choice of effort

(how carefully to drive), jointly determine a publicly observed outcome (claims rate). The

market updates its beliefs about the agent’s type based on this outcome. Under suitable

regularity assumptions on type and shock distributions, higher effort levels lead the market

to raise its expectations of the agent’s type. As a result, an agent who benefits from a good

type reputation will be incentivized to exert costly effort.

Our contribution is to model the agent’s type and shock as predictable from observable

covariates, some of which are attributes correlated with the agent’s type, and others of which

are circumstances predictive of the agent’s shock. For example, an agent’s driving ability

may be predicted from their attention span and hand-eye coordination, while the shock to

1See for example https://wapo.st/35bWgDZ.
2“[Aetna] had obtained personal information from a data broker... The data contained each person’s

habits and hobbies, like whether they owned a gun, and if so, what type... The goal was to see how people’s
personal interests and hobbies might relate to their health care costs.” https://www.propublica.org/

article/health-insurers-are-vacuuming-up-details-about-you-and-it-could-raise-your-rates
3The data analytics firm Verisk includes these datasets in the “environmental module” of

its auto risk analyzer: https://www.verisk.com/insurance/products/iso-risk-analyzer-suite/

iso-risk-analyzer-personal-auto/. At least one major US auto insurance company has announced
its use of the Verisk environmental module: https://www.nbcnews.com/id/wbna41990026
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their accident probability on a given day may be correlated with current weather conditions

near their home. The market has access to some, but not all, of these covariates, which it

uses to group consumers into categories. We model “big data” as an expansion of the set of

covariates available to the market, leading to finer partitioning of consumers.

Our main results characterize how access to new covariates impacts consumer incentive for

effort. We show that new attributes tend to decrease effort, while new circumstances tend to

increase it. We first establish this result for a class of “mean-shifter” covariates, encompassing

models with statistically independent covariates and correlated Gaussian settings, among

others. Within this class, any new attribute reduces effort for all individuals (regardless of

the individual’s value for the newly acquired attribute), while any new circumstance increases

effort for all agents.

Outside of the class of mean-shifters, we show by example that access to a new covariate

can lead to disparate impact, increasing effort for some consumer groups and decreasing it

for others. Even so, we prove that if covariates satisfy a positive dependence condition, then

conditioning forecasts on new attributes reduces effort on average across each consumer cat-

egory, while conditioning forecasts on new circumstances increases effort on average. Thus,

attributes and circumstances differ qualitatively in their impact on a population of con-

sumers, although the direction of their impact on specific consumers is ambiguous.

Besides their implications for the use of new data in lending and insurance, our results

make an important theoretical contribution to the career concerns literature (Holmström,

1999), by characterizing how incentives for effort vary with the amount of prior information

about the agent. In particular, we are able to analyze this force in general informational

environments, in which the “amount of information” cannot be reduced to the precision

of beliefs about the agent’s type and shock. These results complement the analyses of

Dewatripont et al. (1999) and Rodina (2018), which consider how effort incentives vary when

a forecaster observes an additional non-output signal after the agent has exerted effort. (We

discuss on this relationship further in Section 3.2.)

We apply our results to examine how a social planner should regulate access to new

covariates. We show that if existing reputational incentives for effort are inefficiently weak,

then a regulator optimally bans access to new attribute data, but may improve welfare by

allowing access to new circumstance data. The opposite conclusion holds when reputational

incentives are inefficiently strong. These results indicate that it is important to distinguish
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between attribute and circumstance data when regulating data usage, a dichotomy that is

obscured in popular discussions of “big data.”

Additionally, we show that all else equal, the regulator optimally exhibits a bias against

access to covariates which have a heterogeneous impact across agents. This implies that

the regulator should penalize covariates which identify some consumers as belonging to

well-understood categories while pooling others into a poorly-understood group exhibiting

substantial heterogeneity.

The remainder of this paper proceeds as follows. Section 1.1 discusses related literature;

Section 2 describes our model; Section 3 establishes our main results about the impact of

covariates on effort; Section 4 describes the implications of our findings for data regulation;

Section 5 discusses extensions; and Section 6 concludes. Supporting discussion and all proofs

are collected in the Appendix.

1.1 Related Literature

Our paper contributes to an emerging literature regarding how consumer behavior responds

to the use of big data for forecasting. A central concern is the possibility that consumers

may be able to distort the data being used, opening the door to strategic interaction between

consumers and forecasting mechanisms.

One set of papers in this literature examine incentives for “gaming” forecasts, by misre-

porting private information or exerting effort to distort an observed outcome; see, e.g., Eliaz

and Spiegler (2019), Hu et al. (2019), Ball (2020), Eliaz and Spiegler (2020), Frankel and

Kartik (2020), and Hennessy and Goodhart (2020). These papers treat gaming as intrinsi-

cally inefficient, either because it reduces the precision of forecasts, or because effort is costly

and signal distortion generates no social value. In another set of papers (e.g. Frankel and

Kartik (2019) and Haghtalab et al. (2020)), effort improves the agent’s covariates, or signals

a type which the market wishes to forecast. Effort is therefore not intrinsically wasteful,

though outcomes may still be inefficient if too little or too much effort is incentivized in

equilibrium.

Both sets of papers treat the data environment as fixed, and focus on equilibrium out-

comes or design of an optimal forecasting mechanism. Our paper instead considers how

outcomes change as the forecaster gains access to richer data. We model applications in

which effort is productive, as in the second set of papers, and characterize the effect of ob-
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serving additional covariates. Tirole (2020) similarly considers the consequences of varying

the information available to forecasters in an environment with productive effort. While we

focus on how information impacts effort on a task of interest to the market, Tirole (2020)

considers whether a designer might wish to muddle a signal in one domain to induce effort

in another.

More broadly, our work joins a set of recent papers studying the economic consequences of

big data. Data usage has been recognized as having important implications for price discrim-

ination (Bergemann et al., 2020; Ichihashi, 2019; Bonatti and Cisternas, 2019; Yang, 2020;

Hidir and Vellodi, 2020; Elliott et al., 2020); targeted advertising (Jullien et al., 2020; Gomes

and Pavan, 2019); adverse selection in insurance markets (Brunnermeier et al., 2020; Braver-

man and Chassang, 2020); and privacy (Acemoglu et al., 2020; Acquisti et al., 2015; Dwork

and Roth, 2014; Fainmesser et al., 2020; Eilat et al., 2020). In addition, the widespread col-

lection and sale of big data has motivated the study of optimal data bundling (Bergemann

et al., 2018; Segura-Rodriguez, 2020) and data market design (Agarwal et al., 2019).

Finally, a leading application of our model is to insurance markets. Jin and Vasserman

(2020) show empirically that in the auto insurance market, a short-term monitoring program

which collects data on driving behavior incentivizes drivers to substantially increase driving

effort. Notably, this behavior change occurs even though the insurer does not directly reward

better driving, and instead collects data only in order to forecast future accident risk and

adjust insurance premiums. Their study indicates that incentives for effort deriving from

reputational concerns are of significant practical relevance in this market.

2 Model

In this section we describe our model of data and reputational incentives for effort. Our

model takes as a starting point the classic Holmström (1999) framework, which we review in

Section 2.1. In Section 2.2, we build on that framework by modeling the dependence of the

agent’s type and shock on a set of underlying covariates, some of which will be observable

to the market. In Section 2.3 we provide specific examples of what those covariates might

be across different applications, and in Section 2.4 we discuss key modeling assumptions.
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2.1 Review of Holmström (1999)

An agent participates in a market across two periods t = 1, 2.4 He possesses a quality type

θ ∼ Fθ, which is persistent across time and unknown to himself and the market. In period

1, the agent generates an observable outcome

Y = e+ θ + ε,

which is determined by the agent’s quality θ, a transient shock ε ∼ Fε independent of the

agent’s type, and an effort level e ∈ R+ privately chosen by the agent.

The agent incurs a cost to exert effort, which we take to be C(e) = 1
2
e2 for expositional

simplicity. (We extend our results to general cost functions in Section 5.3.) We suppose that

any payment to the agent to enter the market is sunk,5 so the agent’s period-1 payoff from

participation is just his total cost of effort:

U1 = −C(e) = −1

2
e2

In period 2, the agent receives a reputational payoff standing in for returns from future

participation in the market. This payoff is equal to the market’s expectation of his quality

conditional on the outcome variable Y .6 Since the agent’s effort choice is private, the market’s

forecast is based on a conjectured level of effort ê. Letting Y ê ≡ ê+θ+ε be output supposing

the market’s effort conjecture is correct, the agent’s second-period payoff conditional on

realized output Y = y is

U2 = Eê [θ | Y = y] ≡
∫
θdFθ(θ | Y ê = y) (1)

where Eê[θ | Y = y] denotes the market’s (potentially misspecified) expectation of θ, updat-

4In general, strong parametric assumptions are needed to make a many-period version of this model
tractable. We focus on a 2-period model to permit study of more general information structures, but our
main results continue to hold in a many-period version of the model with Gaussian uncertainty (see Section
5.4).

5This assumption does not imply that the agent would prefer not to participate in the period-1 market.
It entails only that the agent’s utility from participation is independent of his period-1 outcome, as is true,
for instance, for a driver who is fully insured against accidents in that period.

6None of our results would be impacted if the agent’s reputational payoff were instead the market’s expec-
tation of any strictly increasing function of θ. Our model therefore accommodates a variety of interpretations
for the source of reputational returns from effort.
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ing to realized output assuming that Y = Y ê.

The agent’s ex post payoff from participating in the market in both periods is a discounted

sum of period payoffs:

U = U1 + β · U2,

where β > 0 denotes the agent’s discount factor. (We allow β to be greater than 1 to reflect

the relative importance of the agent’s future reputation over a long time horizon; see Section

4 for further discussion). The agent’s expected payoff under effort level e is therefore

Ee[U ] = β · Ee[Eê[θ | Y ]]− 1

2
e2

where Ee denotes the agent’s expectation over output given the true effort level e.

In equilibrium, the agent must have no incentive to deviate from the market’s conjectured

level of effort. That is, the marginal value of effort at the equilibrium level e∗ must equal its

marginal cost:

β · ∂E
e[Ee∗ [θ | Y ]]

∂e

∣∣∣∣∣
e=e∗

= e∗ (2)

The left-hand side of this equation is independent of e∗ due to the additive impact of effort

on output, so there is a unique solution to the first-order condition. Throughout this paper,

we will assume that the first-order approach is valid, so that this solution constitutes the

unique equilibrium effort level.

2.2 Model of Covariates and Beliefs

We view the agent’s type θ and shock ε as predictable from data about the agent’s charac-

teristics, some of which may be available to the market. In this section we propose a model

of this dependence. Data about the agent is summarized by a set of real-valued covariates,

which are initially unknown and so are formally random variables, drawn according to a

joint distribution to be specified in more detail later. These covariates are divided into two

categories: attributes a = (a1, a2, . . . , aJ), and circumstances c = (c1, c2, . . . , cK). Attributes

are predictive of the agent’s quality type θ, while circumstances are predictive of his shock

ε. To maintain independence of the agent’s type and shock, we assume that a ⊥⊥ c.
In the main text we assume that covariates impact types and outcomes additively. (We

extend our results to a general nonlinear model in Section 5.1.) The impact of each covariate
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is captured by the deterministic effect size functions Ψj and Λk. Specifically, the variables θ

and ε are decomposable as

θ = µ+
J∑
j=1

Ψj(aj) + θ⊥

ε =
K∑
k=1

Λk(ck) + ε⊥,

where µ is a deterministic scalar. The random variables θ⊥ and ε⊥ are independent of each

other and all attributes and circumstances, and represent the unlearnable components of

the agent’s type and shock. Without loss we assume that each of the random components

contributing to type and shock has mean zero, i.e. E[Ψj(aj)] = E[Λk(ck)] = E[θ⊥] = E[ε⊥] =

0 for every j and k. Thus Ψj(aj) and Λk(ck) represent the de-meaned impacts of the covariates

on outcomes, while the scalar µ captures the mean outcome.

We assume that the agent and market commonly observe the distributions of qualities and

shocks within certain subpopulations of agents, as identified by a set of observed covariates.

Definition 1. A subpopulation S is a quadruple (J ,K,α,γ), where:

• J ⊂ {1, . . . , J} is a set of observed attributes, K ⊂ {1, . . . , K} is a set of observed

circumstances, and

• α ∈ RJ and γ ∈ RK are realizations of the covariate vectors aJ and cK.

Given a set of covariates (J ,K), a (J ,K)-subpopulation is any subpopulation whose ob-

served covariates are (J ,K).

We will subsequently suppose that the agent’s covariates in a set (J ,K) are known to

both the agent and the market, and that the distributions of θ and ε within the agent’s

(J ,K)-subpopulation are common knowledge. When J = K = ∅, this assumption amounts

to the standard one that the distributions of θ and ε are commonly known. For more refined

subpopulations, we interpret this assumption as reflecting “big data” not only in the sense

of many covariates, but also in the sense of past outcomes for a large number of agents.

These records allow insurers and lenders to infer the aggregate distribution of qualities and
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shocks within observed subpopulations.7 It is not necessary for our subsequent results that

actors in the model possess any additional information about the joint distributions of a

and c or the shapes of the effect size functions (Ψj)Jj=1 and (Λk)Kk=1. Given knowledge of the

conditional distributions of θ and ε in a subpopulation, forecasts of θ do not change with

additional information about these parameters.

We impose the following weak technical conditions on the distributions of latent variables,

which are maintained throughout the paper. The first ensures that the agent’s utility function

is differentiable, while the second ensures that types and shocks have full support on R.8

Assumption 1 (Differentiability). For every set of observed covariates (J ,K), each (J ,K)-

subpopulation S, and every effort level e, ∂
∂y
Ee [θ | Y = y,S] exists and is uniformly bounded

across all realizations y of Y .

Assumption 2 (Residual Noise). The random variables θ⊥ and ε⊥ have full support on R.

Interactions proceed according to the model described in Section 2.1: In period t = 1,

the agent chooses effort e ∈ R+ and incurs the cost of effort. In period t = 2, the agent’s

outcome Y is realized, and the agent receives the market’s forecast of his type. Our main

results describe how an agent’s effort depends on which sets of covariates (J ,K) are observed,

and on the realized values of those covariates.

2.3 Motivating Examples

Below we describe leading applications of our model, with accompanying interpretations of

model parameters and possible covariates:

Automobile Insurance. The agent is a fully insured driver.9 Effort e corresponds to more

attention to careful driving, and the outcome −Y is the driver’s insurance claim rate. His

7This interpretation may be less realistic in the short-run, if the population becomes finely partitioned
into groups with small memberships. We abstract away from estimation considerations in this paper (see
Braverman and Chassang (2020) for related work that tackles this question more explicitly), but note that
in practice firms can choose the number of covariates used to segment agents, and may do so in a way that
preserves subpopulations of sufficient size.

8We expect that our results continue to hold in a more general setting without full support. We impose
this assumption to simplify proofs which establish affiliation of sets of random variables, by allowing us to
rely on characterizations of affiliation for probability distributions with strictly positive densities.

9If the driver has partial insurance, so that he is exposed to some of the downside of any accident, our
subsequent results extend straightforwardly whenever the agent must pay a fixed fraction of any damages
incurred. We expect the forces we identify here to also play a role in a richer model of nonlinear insurance
contracting, but do not pursue that more complex analysis here.
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type θ is his driving ability, which may be predicted from attributes such as distractability,

aggression, or hand-eye coordination. The shock ε may be predicted from circumstances

such as traffic incidents, abnormal road conditions (e.g. construction), or weather events.

The driver’s period-2 payoff is his insurance premium in the next claims cycle.

Health Insurance. The agent is a fully insured patient. Effort e corresponds to exercising

regularly and eating well, and the outcome −Y is the patient’s insurance claim rate. His

type θ is his health, which may be predicted from attributes such as his social media activity,

online purchases, or hobbies (e.g. gun ownership). The shock ε captures a transient health

shock, and may be predicted from circumstances such as food contamination outbreaks,

COVID incidence, or air quality. The patient’s period-2 payoff is his insurance premium in

the next coverage cycle.

Lending. The agent is a borrower with a credit card. Effort e corresponds to actions

taken to help pay off his credit card balance (such as budgeting expenses or earning ad-

ditional income), and the outcome Y is the borrower’s repayment rate. His type θ is his

creditworthiness, and may be predicted from attributes such as the agent’s social network

size, financial literacy, and political affiliation. The shock ε captures transient financial

shocks, and may be predicted from circumstances such as one-time expenses (e.g. a wed-

ding), windfall gains (such as a lawsuit settlement), and work furloughs. The borrower’s

period-2 payoff is the rate of interest charged on future credit card balances.

Admissions/internship. The agent is a student applying to college or an internship. Effort

e corresponds to how hard he studies, and the outcome Y is his GPA. His type θ is his intrinsic

ability, and may be predicted from attributes such as parental background, reading habits,

and interview scores. The shock ε is an idiosyncratic shock to GPA, and may be predicted

from circumstances such as illness, injury, financial hardship, and school disruptions. The

student’s period-2 payoff is the quality of the university he attends/internship he obtains.

Labor markets. The agent is a worker. Effort e corresponds to how hard he works,

and the outcome Y is the worker’s output. His type θ is his intrinsic ability, and may

be predicted from attributes such as personality metrics or professional certifications. The

shock to output ε may be predicted from circumstances such as the industry growth rate

and employer restructurings. The worker’s period-2 payoff is his future wage.
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2.4 Discussion of Modeling Choices

We now briefly discuss and interpret important features of the model.

Symmetric uncertainty. In our model, agents do not possess private information about

their type beyond what the market knows. This assumption does not require that agents are

unaware of covariate values unobserved by the market, but does require that they cannot

forecast how those covariates impact outcomes. While agents may be able to learn how a

firm’s current statistical model classifies their subpopulation, they are much less likely to

know how that model would change when augmented with additional covariates.10 Nonethe-

less, Section 5.2 demonstrates a related extension to model uncertainty on one side, and we

conjecture that our main results would extend also given asymmetric information advantag-

ing either side. We leave exploration of this question to future work.

The agent’s reputational payoff. As in Holmström (1999), we suppose that the agent’s

second-period payoff is the market’s expectation of his type conditional on his period-1

outcome. This specification may be directly microfounded by assuming that the agent par-

ticipates in the market twice; the agent’s type is persistent across periods, while his shock is

drawn anew; and competition between firms to serve the agent results in his being paid his

expected output in each period. We formalize this interpretation in Appendix A, and show

that it reduces to the model described above.

The reputational payoff can also be understood as a reduced-form stand-in for future

benefits accrued by the agent (in this and other markets) by being perceived as high-quality.

From this perspective, the discount factor β can be interpreted as the weight of the discounted

reputational rewards across multiple time periods or markets, accounting for changes in the

scale of service over time.

Interpretation of effort, outcome, and attributes. Our model contrasts attributes—

which are fixed characteristics of the agent—and the outcome Y , which is susceptible to

manipulation by effort. While not all covariates are truly fixed,11 we view this separation as

10Brunnermeier et al. (2020) emphasize the possibility that big data may actually give insurers an in-
formational advantage over insurees regarding how covariates map to outcomes. We abstract from such
considerations of “inverse selection” in our analysis.

11See Haghtalab et al. (2020) for a complementary analysis in which the agent cannot directly influence
Y , but can manipulate individual attributes.
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a useful one for the following reasons: First, our view is that in general θ and ε are determined

by the aggregation of many covariates, each of which individually plays only a small role. Our

exercise focuses on the agent’s incentives to influence the relatively informative output signal

Y , while abstracting from any costly distortion of individual less-informative covariates.

Second, to compute the value of manipulating a covariate, the agent must know something

about the shape of the effect size function describing how different covariate values impact

the market’s beliefs. Such knowledge requirements are substantially more demanding than

the ones we have imposed.

3 Main Results

Our main results characterize how equilibrium effort changes as the market gains access

to new covariates. Section 3.1 establishes necessary notation and definitions. Section 3.2

considers a benchmark setting with independent covariates, and establishes the main result

that attributes deterministically reduce effort while circumstances deterministically increase

it. Section 3.3 generalizes this result to a class of “mean-shifter” covariates. Finally, Section

3.4 demonstrates that in a larger class of affiliated covariates, attributes reduce effort and

circumstances increase effort on average.

3.1 Preliminary Definitions and Notation

Fix a baseline set of observed covariates (J ,K) and a subpopulation S = (J ,K,α,γ), which

we will use as the reference point for all results in this section. Henceforth, we will say that

a property holds “on S” as shorthand for “conditional on the realizations aj = αj for all

j ∈ J and ck = γk for all k ∈ K.”

To streamline exposition, we define type components and shock components to capture

the impact of a given covariate an agent’s type or shock. We also define residual type

components and residual shock components to capture the part of the agent’s type or shock

that is unexplained by a given set of covariates.

Definition 2. For each attribute j, define θj ≡ Ψj(aj) to be the corresponding type compo-
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nent. For each set of attributes J , define

θ−J ≡
∑
j /∈J

θj + θ⊥

to be the corresponding residual type component. Similarly, for each circumstance k, define

εk ≡ Λk(ck) to be the corresponding shock component. For each set of circumstances K,
define

ε−K ≡
∑
k/∈K

εk + ε⊥

to be the corresponding residual shock component.

When the observed covariates are (J ,K), the agent’s type θ and the shock ε to his

outcome can be decomposed as

θ = µ+
∑
j∈J

θj + θ−J ε =
∑
k∈K

εk + ε−K

where µ+
∑

j∈J θj and
∑

k∈K εk are known to the agent and market while θ−J and ε−K are

not.

In our main results, we impose regularity log-concavity conditions on the distributions

of type and shock components. Log-concavity of latent variables in an additive model is a

standard assumption ensuring that higher outputs lead to larger inferred types and shocks,

so that higher effort leads to better perceptions of quality. (See Appendix E.1 for a list of

examples of covariate distributions and effect size functions which generate log-concave type

and shock components.)

Definition 3. A random variable X is log-concave if the distribution function of X admits

a log-concave density function. A conditional random variable X|Y is log-concave if condi-

tional on any realization of Y, the distribution function of X admits a log-concave density

function.

Definition 4 (Regularity). Fix a set of covariates (J ,K) and a (J ,K)-subpopulation S.

Say that S is regular if θ−J and ε−K are log-concave on S.

Definition 5 (S-Regularity). Fix a set of covariates (J ,K) and a (J ,K)-subpopulation

S. An attribute j′ /∈ J is S-regular if θ−J∪{j
′} | aj′ is log-concave on S. Similarly, a

circumstance k′ /∈ K is S-regular if ε−K∪{k
′} | ck′ is log-concave on S.
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Regularity requires that in the baseline setting, higher realizations of the outcome lead to

higher inferences about the unobserved components of type and shock. S-regularity imposes

the same condition in the setting where an additional attribute or circumstance is observed.

For all of the results of this section, we maintain the following assumption on the baseline

subpopulation:

Assumption 3. The subpopulation S is regular.

3.2 Independent Covariates

Our first result applies to environments in which all covariates are independent. In this case,

observing an additional attribute leads deterministically to a decrease in equilibrium effort,

while observing an additional circumstance leads deterministically to an increase in effort.

Proposition 1. Fix any S-regular attribute j′ /∈ J and S-regular circumstance k′ /∈ K. If

all covariates are mutually independent, then:

(a) Observing the additional attribute j′ reduces the agent’s effort.

(b) Observing the additional circumstance k′ increases the agent’s effort.

Further, the magnitude of the effort change is independent of the observed value of the addi-

tional covariate.

Our result is stated from a single-agent perspective. There is an alternative populational

interpretation: If the market gains access to a new attribute, then effort decreases for all

agents in subpopulation S; if the market gains access to a new circumstance, then effort

increases for all agents in S.

The key to this result is that—under the assumption of independence—observing an

additional covariate reduces the market’s uncertainty about the corresponding component

of output, regardless of the realized value of the covariate. Therefore if a new attribute is

acquired, the market’s uncertainty about θ drops, and so there is less to learn about θ from

the realization of the agent’s outcome Y . This effect reduces the marginal value of exerting

effort to improve the realization of Y . By contrast, acquisition of an additional circumstance

reduces uncertainty about the shock ε, making the outcome Y a more informative signal of

the agent’s type. This effect increases the marginal value of improving the realization of Y .

14



By the first-order condition (2), these changes in the marginal value of effort are directly

inherited by the level of equilibrium effort.

This result is closely related to Proposition 5.1 in Dewatripont et al. (1999), with the key

difference that our result concerns ex-post effort in an environment where the agent knows

his subpopulation before choosing effort, while Dewatripont et al. (1999) analyzes ex-ante

effort when the agent does not. A key difference is that under the ex post perspective,

agents may react differently to acquisition of the same covariate, depending on their value

of that covariate. As Proposition 1 shows, the ex post and ex ante outcomes coincide when

covariates are mutually independent. That is, the ex post effect is equal to the ex ante effect

realization by realization. More generally, the two outcomes can diverge.

3.3 Mean-Shifter Covariates

We now examine the extent to which our findings for the independent-covariate baseline gen-

eralize when covariates are correlated. In this section, we define a class of correlated-covariate

models with the property that, when a new covariate is observed, posterior uncertainty does

not depend on the realization of the new covariate. We show that Proposition 1 can be

extended to cover this class.

Definition 6. Given a set of attributes J , the de-meaned residual type component θ̃−J is

the part of the residual type component θ−J not explained by the observed attributes aJ :

θ̃−J ≡ θ−J − E[θ−J | aJ ].

Similarly, given any set of circumstances K, the de-meaned residual shock component ε̃−K

is the part of the residual shock component ε−J not explained by the observed circumstances

cK :

ε̃−K ≡ ε−K − E[ε−K | cK].

Definition 7 (Mean shifters). Fix any attribute j′ /∈ J and circumstance k′ /∈ K.

(a) Attribute j′ is an S-mean shifter if the de-meaned residual type component θ̃−J
′

is

independent of the random variable aj′ on S, where J ′ = J ∪ {j′}.

(b) Circumstance k′ is an S-mean shifter if the de-meaned residual shock component ε̃−K
′

is independent of the random variable ck′ on S, where K′ = K ∪ {k′}.
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The assumption that a particular covariate is a mean shifter is a substantive restriction

on permitted correlation structures. The de-meaned type and shock components θ̃−J
′

and

ε̃−K
′

must, by construction, have mean zero conditional on any realization of the observed

covariates aJ ′ = (aJ , aj′) and cK′ = (cK, ck′). However, the higher moments of θ̃−J
′
and ε̃−K

′

may depend on the realizations of aj′ and ck′ . The substance of the mean shifter property

is to assume away such variation. While it is certainly restrictive, this class encompasses a

diverse range of examples:12

Example 1. Suppose the vectors of type and shock components each follow multivariate

normal distributions.13 Then the mean-shifter property is satisfied globally—that is, for any

set of observed covariates (J ,K) and each (J ,K)-subpopulation S, every attribute j′ /∈ J
is an S-mean shifter and every circumstance k′ /∈ K is an S-mean shifter. (See Appendix

E.2 for details.)

Example 2. Suppose attribute a1 is uniformly distributed on [a, b] with Ψ1(a1) =
√
a1. Define

a2 ≡ a1 ·X, where X is a random variable that follows an exponential distribution, and let

Ψ2(a2) = log(a2). Then a1 is a mean shifter when no covariates are observed in the baseline.

Example 3. Suppose Ψ1 and Ψ2 are both affine functions, and a1 is a log-concave random

variable. Let a2 ≡ a1 +X for any log-concave random variable X that is independent of a1.

Then a1 is a mean-shifter when no covariates are observed in the baseline.

The following theorem extends Proposition 1 to settings in which the markets observes

an additional mean shifter.

Theorem 1. Fix any S-regular attribute j′ /∈ J and S-regular circumstance k′ /∈ K. Then:

(a) If j′ is an S-mean shifter, observing the additional attribute j′ reduces the agent’s

effort.

(b) If k′ is an S-mean shifter, observing the additional circumstance k′ increases the agent’s

effort.

Further, the magnitude of the effort change is independent of the observed value of the addi-

tional covariate.

12These examples also satisfy all of our standing technical assumptions, including regularity.
13This special case of our model closely corresponds to models studied in Meyer and Vickers (1997),

Acemoglu et al. (2020), and Bergemann et al. (2020).
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We prove this result by “de-meaning” the model’s covariates, which transforms the setting

back into one of independent covariates. We briefly sketch our approach for the case of an

additional attribute, with the case of an additional circumstance following from similar

arguments. The key idea is to decompose the residual component θ−J into the sum of

two parts: the expectation of θ−J conditional on the new covariate aj′ , and the de-meaned

residual component θ̃−J
′

which captures all remaining variation. In the baseline, both are

random variables from the perspective of the market. When the new attribute aj′ is observed,

it perfectly reveals the former variable but is independent of the latter. Thus we return a

setting that resembles that of the previous section, where Y is decomposed into the sum

of independent parts, and the new attribute aj′ reveals one of these. The main technical

challenge is that we are not guaranteed that regularity holds in this transformed setting:

That is, the assumption that j′ is S-regular implies that higher realizations of Y lead to

higher inferences of θ−J
′
, but does not immediately imply that higher realizations of Y leads

to higher inferences about the de-meaned residual θ̃−J
′
. To complete the proof, we establish

regularity for this transformed environment.

3.4 General Covariates

Beyond the class of mean-shifter covariates, new forces emerge. First, we demonstrate that

uniformity of impact can break in a strong sense: Not only does effort generally vary with

the realization of the new covariate, but even the directional effect may differ, so that the

new covariate raises effort for some agents while decreasing it for others.

Example 4 (Disparate Impact). Suppose −Y is a driver’s automobile claims amount, which

is modeled as

Y = e+ Ψ1(a1) + Ψ2(a2) + ε, ε ∼ N (0, 1)

where a1 ∈ [0, 10] is the age of the car, while a2 ∈ [0, 1] is the driver’s education quantile.

The effect size functions are Ψ1(a1) = −a1 and Ψ2(a2) = −(1 − a2)/10, so risk levels (i.e.

outcomes are lower) are higher for drivers of older cars, and drivers with lower levels of

education.

The driver’s education level and car age are correlated. The education quantile a2 is uni-

formly distributed on [0, 1], while the distribution of the age of the driver’s car a1 conditional
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on a2 is:

a1|a2 ∼

 U([0, 1]) ∀a2 ≥ 0.05

U([0, 10]) ∀a2 < 0.05

Under this distribution, individuals in the bottom 5% of educational attainment—i.e. those

without a high-school diploma—drive cars whose ages are both higher on average as well as

significantly more variable.

If the market observes neither attribute, then all individuals exert the same amount of

effort e∗ ≈ 0.16.14 If educational attainment is observed, equilibrium effort for individuals

with a high-school diploma declines to e∗∗ ≈ 0.077, while equilibrium effort for individuals

without a high-school diploma rises to ẽ∗∗ ≈ 0.82. The collection of data on educational

attainment thus affects individuals in the population unequally.

In this example, access to a new attribute does not uniformly decrease effort across the

population. It therefore demonstrates that the monotonicity result of Theorem 1 may fail in

the presence of correlated covariates. However, the example does exhibit a weaker form of

monotonicity: When educational attainment is observed, average effort across the population

falls to approximately 0.11, compared to the baseline of 0.16. Thus, the finding of Theorem

1 does generalize in the sense that access to the new attribute reduces effort on average.

This property turns out to hold across a large class of correlated covariates, which we now

define.

Definition 8 (Affiliation). An attribute j′ /∈ J is S-affiliated if Ψj′ is one-to-one and

(θj′ , θ
−J∪{j′}) are affiliated on S. Similarly, a circumstance k′ /∈ K is S-affiliated if Λk′ is

one-to-one and (εk′ , ε
−K∪{k′}) are affiliated on S.

Affiliation is a well-known form of positive dependence between random variables.15 If a

covariate satisfies S-affiliation, then “good news” about that covariate’s contribution to the

outcome is also good news about the contribution of all unobserved covariates. For example,

suppose in the context of auto insurance that the total shock to a driver’s insurance claim

14The marginal value of effort in this example does not have an analytical closed form, but may be
calculated numerically. The code used to perform the calculation is available upon request.

15An n-vector of random variables Z with joint density function f(z) is affiliated if for every z, z′ ∈ Rn,
f(z ∧ z′)f(z ∨ z′) ≥ f(z)f(z′), where z ∧ z′ and z ∨ z′ are the componentwise minimum and maximum
of z and z′. When f is strictly positive and twice-differentiable everywhere, this condition is equivalent to
∂2 log f/∂zizj ≥ 0 everywhere for every pair of components i and j 6= i.
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may be decomposed as ε = Λ1(c1) + Λ2(c2) + Λ3(c3) + ε⊥, where c1 is precipitation, c2 is

the amount of ice on the ground, and c3 is the stress level of the driver, with each Λk an

increasing function. The precipitation covariate satisfies affiliation if a higher realization of

Λ1(c1) is associated with a higher belief about the sum Λ2(c2) + Λ3(c3) + ε⊥. The additional

requirement that the associated effect size functions be one-to-one simplifies statement of

the property, by ensuring that type and shock components θj and εk are a sufficient statistic

for the underlying covariate values aj and ck.

One setting satisfying affiliation is Example 4, where the attribute a2, representing edu-

cational attainment, satisfies affiliation when no covariates are observed in the baseline. The

following example illustrates another environment with affiliated covariates.16

Example 5. Suppose that all effect size functions Ψj are one-to-one, and type components

are independent exponentially distributed random variables conditional on a common rate

parameter: θj|λ ∼iid Exp(λ). Suppose further that the rate parameter λ is distributed as

λ ∼ Gamma(α, β) with α ≥ 1. Then the affiliation property is satisfied globally—for any

set of covariates (J ,K) and (J ,K)-subpopulation S, each attribute j′ /∈ J is S-affiliated.

(See Appendix E.3 for a proof.) An analogous statement holds for circumstance variables

exhibiting this correlation structure.

We now establish that our characterization of the directional effect of new covariates

extends on average to settings with affiliated covariates.

Theorem 2. Fix any S-regular attribute j′ /∈ J and S-regular circumstance k′ /∈ K. Then:

(a) If j′ is S-affiliated, observing the additional attribute j′ reduces the agent’s effort on

average.

(b) If k′ is S-affiliated, observing the additional circumstance circumstance k′ increases the

agent’s effort on average.

We defer the details of the proof to the appendix, but provide a brief intuition here

for why affiliation has implications for effort. Consider observation of a new attribute j′.

The desired result holds if can we show that the posterior forecast of the residual unknown

θ−J = θj′ + θ−J
′

is (in expectation) less responsive to the realization of the outcome Y

16Any positively correlated multivariate normal model also satisfies affiliation, although this case is already
covered by the stronger result of Theorem 1.
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when conditioned on θj′ . Whether or not attribute j′ is observed, improving the realization

of Y directly improves inferences about θ−J
′
. In the baseline where θj′ is not observed,

an increase in Y has a further direct effect of improving inferences about θj′ , as well as an

indirect effect: a larger inferred θj′ shifts up the posterior distribution of θ−J
′

(by affiliation

of θj′ and θ−J
′
). When θj′ is observed, these latter two effects are eliminated, since the

distribution of θj′ is unresponsive to manipulation of Y . As a result, the agent faces weaker

incentives to manipulate Y when j′ is observed.

4 Welfare and Regulation of Data

We now apply our main results to study the welfare implications of access to new covariates.

Our welfare criterion is the expected total social surplus generated by the agent’s effort. As

in Holmström (1999), we assume that the outcome variable Y directly measures social value

generated by the agent in period 1, while the effort costs incurred by the agent are socially

dissipative. Therefore, the contribution to welfare by an agent exerting equilibrium effort e

is

W (e) ≡ Ee[Y ]− C(e) = µ+ e− C(e).

(We do not include the agent’s equilibrium reputational payoff in the welfare calculation

because, as noted in Section 2.1, that payoff is fixed at Ee[Ee[θ | Y ]] = µ, independent

of the available covariates and the equilibrium effort level.) This welfare function is strictly

concave and maximized at the first-best effort level eFB satisfying C ′(eFB) = 1. It is therefore

possible for equilibrium effort to be too high or too low, depending on how the discounted

marginal value of effort compares to 1.

Our main finding is that when the weight the agent places on future reputation is low

(small β), observing additional attributes decreases welfare, while observing new circum-

stances increases it. These statements are reversed when the agent’s concerns for future

reputation are significant (large β). A regulator can therefore improve welfare by prohibit-

ing use of one kind of data while encouraging the other.

Formally, fix a baseline subpopulation S = (J ,K,α,γ). Suppose a regulator can choose

whether to permit access by the market to a novel covariate for forecasting.17 If the new

17Similar regulations already exist at the level of individual covariates (e.g. banks are not permitted to
use race to set credit limits), although the motivations for existing regulations are different from the ones
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covariate is not permitted, agents in subpopulation S exert some (common) effort level e∗.

Suppose first that the conditions of Theorem 1 apply and the new covariate is a mean-

shifter. Then following observation of the covariate, effort shifts to the new (common) level

e∗∗, where e∗∗ ≤ e∗ if the new covariate is an attribute, and the inequality is reversed if the

new covariate is a circumstance. We therefore obtain the following result as a straightforward

corollary of Theorem 1:

Corollary 1. Suppose the new covariate is an S-mean shifter. Then:

(a) If the covariate is an attribute, there exists a threshold discount factor β∗ such that it

is (weakly) optimal for the regulator to permit access if and only if β ≥ β∗.

(b) If the covariate is a circumstance, there exists a threshold discount factor β∗ such that

it is (weakly) optimal for the regulator to permit access if and only if β ≤ β∗.

That is, the regulator should prohibit use of circumstance data when the weight on

the future is (sufficiently) high, and should prohibit use of attribute data when the weight

on the future is (sufficiently) low. The intuition for this result is as follows: The welfare-

maximizing effort level eFB is characterized by C ′(eFB) = 1. Equilibrium effort, in contrast,

is characterized by the first-order condition

C ′(e) = β ·MV (S)

where MV (S) denotes the marginal value of effort in subpopulation S. Thus if β ·MV (S) <

1, then effort is lower than the first-best level. Basing the forecast on an additional attribute

decreases effort, and so makes equilibrium effort even more inefficient. In contrast, access to

a new circumstance increases effort, which potentially moves effort closer to the first-best.

An analogous line of reasoning applies when β ·MV (S) > 1, reversing the roles of attributes

and circumstances.

For any subpopulation S, the marginal value of effort MV (S) is bounded above by 1

under our regularity conditions, reflecting the fact that a 1-unit increase in output must lead

to no more than a 1-unit inferred increase in θ. As a result, for any S and any new covariate,

the bounds β∗ and β∗ appearing in Corollary 1 are both greater than 1. Given that our

discount factor β is a reduced-form stand-in for any factors that may impact the value of

we consider here.
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future reputation, we view both β larger and smaller than 1 as relevant in applications. In

particular, β may be very large if the agent expects to enjoy reputational benefits over many

future periods of service, or if he expects the scale of transactions to increase in the future.

Conversely, β may be small if the agent participates in the market infrequently, or is unsure

whether he will continue requiring service.

Suppose now that the new covariate is not a mean shifter, but satisfies the conditions

of Theorem 2. Introduction of such a covariate moves the average effort level, but also

introduces dispersion in effort across the subpopulation. This latter effect always lowers

welfare due to the concavity of W (e). On the other hand, the first effect can improve welfare,

depending on whether the average effort level moves towards first best. When it does, the

overall welfare change depends on which of these two opposing forces wins out, and it is not

possible to systematically sign the effect of the new covariate.

When the average effect moves away from first-best, then introduction of the new covari-

ate is always welfare-reducing. As a result, a regulator should disallow use of a new attribute

when β is too low and disallow use of a new circumstance when β is high:

Corollary 2. Suppose the new covariate is S-affiliated. Then:

(a) If the covariate is an attribute, there exists a threshold β∗ such that it is (weakly)

optimal for the regulator to forbid access when β ≤ β∗.

(b) If the covariate is a circumstance, there exists a threshold β∗ such that it is (weakly)

optimal for the regulator to forbid access when β ≥ β∗.

We conclude with two final remarks. First, holding fixed a change in average effort,

covariates that induce very heterogeneous changes in effort across individuals are worse for

welfare than ones that induce similar effort changes.18 Second, although the analysis of this

section has focused on a regulator’s treatment of a single new covariate in isolation, in some

cases the regulator may have the opportunity to jointly evaluate a set of new covariates.

Attributes could then potentially be paired with circumstances to calibrate the overall effect

of the approved covariates on effort. In particular, there may exist covariates which, on their

own, reduce welfare, but which move effort closer to its first-best level when used jointly.19

18This result is complementary to findings of Frankel and Kartik (2020) and Ball (2020) that increased
effort dispersion may reduce forecasting accuracy. In both their setting and ours, uncertainty about effort is
bad for welfare.

19One risk of such a strategy is that the market may not actually use all approved covariates, so the
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5 Extensions

5.1 Nonlinear Models

Our results so far have been developed in the context of an additive model, but they have

natural analogues in a more general model that we now briefly outline.

Suppose θ and ε decompose as

θ = µ+ Ψ(a) + θ⊥

ε = Λ(c) + ε⊥.

where Ψ : RJ → R and Λ : RK → R are general (not necessarily additive) effect size

functions. Without loss, again suppose E[Ψ(a)] = E[Λ(c)] = 0, taking Ψ(a) and Λ(c) to

represent the de-meaned impact of the covariates on outcomes, and µ ∈ R to represent the

mean outcome. We generalize the notion of type and shock components as follows:

Definition 9. Given a set of observed attributes J , define

θJ ≡ E[Ψ(a) | aJ ], θ−J ≡ Ψ(a)− θJ + θ⊥

to be the associated observed type component and residual type component. Similarly, given

a set of observed circumstances K, define

εK ≡ E[Λ(c) | cK], ε−K ≡ Λ(c)− εK + ε⊥

to be the associated observed shock component and residual shock component.

Given a set of observed covariates (J ,K), the agent’s type and the shock to his outcome

can be decomposed as

θ = µ+ θJ + θ−J

ε = εK + ε−K,

where µ + θJ and εK are observed while θ−J and ε−K are not. Note that in this general

covariates that are incorporated into market forecasts may not improve welfare. By contrast, a case-by-case
evaluation of new covariates avoids negative outcomes even if approved covariates are not actually used.
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nonlinear framework, residual type and shock components are automatically “de-meaned”,

in a manner similar to the model with mean shifters.

For any new covariates j′ /∈ J and k′ /∈ K, define

θJj′ ≡ θJ∪{j
′} − θJ

and

εKk′ ≡ εK∪{k
′} − εK

to be the market’s updates to the agent’s expected type and shock when the additional

attribute j′ and circumstance k′ are observed. Then θ and ε may be further decomposed as

θ = µ+ θJ + θJj′ + θ−J∪{j
′}

ε = εK + εKk′ + ε−K∪{k
′}.

Fix a (J ,K)-subpopulation S. In the general nonlinear model, we may define notions

of regularity and S-regularity exactly as in the additive environment, with type and shock

components in those definitions interpreted according to the definitions just given. We may

further define an attribute j′ /∈ J to be S-affiliated if θJj′ is a one-to-one-function of aj′

(holding aJ fixed) and (θJj′ , θ
−J∪{j′}) are affiliated on S. The notion of S-affiliation for a

circumstance is defined analogously. With these definitions in hand, the following result

holds:

Theorem 3. Fix any S-regular attribute j′ /∈ J and S-regular circumstance k′ /∈ K. Then:

• If j′ is S-affiliated, further observing the attribute j′ reduces the agent’s effort on av-

erage.

• If k′ is S-affiliated, further observing the circumstance k′ increases the agent’s effort

on average.

The proof of this theorem follows exactly the same lines as the proof of Theorem 2.

Despite its similarity to that theorem, however, Theorem 3 is in fact a generalization of

Theorem 1, because the affiliation condition is applied to residual type and shock components

which are de-meaned. This parallel can be sharpened by considering a related result under a

stronger condition on covariates: say that an attribute j′ /∈ J is S-independent if θ−J∪{j
′} is
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independent of aj′ on S, with an analogous definition of S-independence for circumstances.

Then the following result holds:

Theorem 4. Fix any S-regular attribute j′ /∈ J and S-regular circumstance k′ /∈ K. Then:

• If j′ is S-independent, observing the additional attribute j′ reduces the agent’s effort

deterministically.

• If k′ is S-independent, observing the additional circumstance k′ increases the agent’s

effort deterministically.

Under S-independence, mononotonicity holds not just on average but uniformly across

realizations of the additional covariate, for the same reasons as in Theorem 1. In the special

case where Ψ and Λ are additively separable, Theorems 1 and 4 exactly coincide.

5.2 Model Uncertainty and Misspecification

Our main results are established for an environment in which the agent is aware both of the

covariates used by the market for forecasting, as well as the conditional distributions of types

and shocks for agents with his covariate values. Effectively, the agent is perfectly aware of

the market’s forecasting model. Our results are robust to relaxation of this assumption.

In particular, suppose that the agent is subjectively uncertain about the market’s sta-

tistical model of his subpopulation, where a model is comprised of a joint distribution over

output and types for agents in the subpopulation. This uncertainty may be due to uncer-

tainty over which covariates the market observes, as well as over other aspects of the market’s

perception of the relationship between covariates and outcomes. (It is not important that

the agent’s beliefs be correctly specified, in the sense that the market’s true model need

not be contained in the support of the agent’s beliefs.) We will continue to maintain the

assumption that the agent is not asymmetrically informed about his type, and so his own

subjective belief about the distribution of his type and outcome is just the expectation of

his belief about the market’s model of his subpopulation.20

In this setting, all of our results extend in the following sense: If the agent becomes con-

vinced that the market’s statistical model has become “better-informed” about the agent’s

20Thus, the agent does not attempt to use any private information about his covariates to refine his own
beliefs about the distribution of output, consistent with a view that the agent is less knowledgeable about
the forecasting model than the market.
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type or shock, his effort will move in the direction predicted by our results, so long as the

corresponding statistical assumptions hold for each model in the support of the agent’s be-

liefs. More precisely, an agent believes the market has become “better-informed” if he thinks

that, regardless of what statistical model it is in fact using, the market has gained access

to additional attributes or additional covariates and refined its model accordingly. The ro-

bustness of our result in this environment follows directly from the fact that the marginal

value of effort moves in the same direction conditional on any model in the support of the

agent’s beliefs, and therefore the expected marginal value of effort moves in this direction

as well. Under model uncertainty, the agent’s effort is determined by the discounted ex-

pected marginal value of effort, and so shifts in this quantity lead to effort shifts in the same

direction.

5.3 General Convex Cost Functions

In the main text, we maintained the assumption that effort costs were quadratic: C(e) = 1
2
e2.

Under this cost structure, equilibrium effort is identical to the marginal value of effort,

allowing us to characterize the former by analyzing the latter. More generally, when C is a

strictly convex cost function, equilibrium effort is a uniquely determined, strictly increasing

function of the marginal value of effort:

e∗ = (C ′)−1 (MV ) ,

where MV is the marginal value of effort (which is independent of e∗). As a result, for any

strictly convex cost function, a deterministic shift in the marginal value of effort implies a

change in effort in the same direction. This implies in particular that the results of sections

3.2 (for independent covariates) and 3.3 (for mean-shifters) extend immediately.

Our results for more general correlation structures become slightly more complex under

non-quadratic cost functions. The new force which arises is that average effort may respond

to mean-preserving spreads of the marginal value of effort. To illustrate the idea, consider

any cost function C(e) ∝ ek, where k > 2. Under such a cost function the marginal cost

of effort is convex, so that equilibrium effort is a concave function of the marginal value of

effort. Hence any mean-preserving spread of the marginal value of effort reduces average

effort. Conversely, if 2 > k > 1, effort is a convex function of the marginal value of effort,
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and a mean-preserving spread of the marginal value of effort increases average effort.

In the case of general correlation (under the conditions of Theorem 2), observing an

additional attribute has two effects: it lowers the average marginal value of effort, and ad-

ditionally introduces a spread in the distribution of marginal values (relative to its baseline

value in the subpopulation). If the marginal cost of effort is convex, these two forces work

together to lower average effort; on the other hand, if the marginal cost of effort is suffi-

ciently concave, average effort could increase. Analogous results hold when an additional

circumstance is observed.

We view our results for the quadratic-cost case as a natural baseline for analyzing the

impact of novel covariates which are “small” contributors to an agent’s overall type or shock,

in the sense that they don’t change the marginal value of effort too much regardless of their

realization. In that limit, the marginal cost of effort may be approximated to first order

by a linear function, and the directional effects of adding a covariate identified by our main

results will hold.

5.4 Dynamic Model

We have so far developed our formal results in the context of a 2-period model, in which

the agent exerts effort once in order to influence a single reputational reward. This setup

maps directly onto applications involving a one-shot interaction, such as college admissions.

On the other hand, settings such as auto insurance or lending are more likely to consist

of multiple interactions over time, with the agent receiving service and choosing effort to

impact an outcome in each period.

Our model can be extended to accommodate multiple periods of service by assuming

that, in each period t = 1, ..., T , the agent receives the market’s period-t expectation of

his outcome Et[Yt] as an up-front payment,21 and then exerts effort to impact that period’s

outcome. Each Yt is determined via

Yt = et + θ + εt,

where et is the agent’s period-t effort and the shocks ε1, ε2, ..., εT are identically distributed

and mutually independent, corresponding to new circumstance realizations each period.

21This payment can be microfounded as arising from competition between service providers. See Appendix
A for details.
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Each attribute informs about θ as in the baseline model, while access to a circumstance

means that this covariate is observed each period, and thus informs about each shock εt.

(For example, access to weather data means that weather is observed for each time t.)22 If

T = 2, this model reduces to our baseline setting.

With more than 2 periods, the agent’s effort in a given period t continues to be shaped

by his desire to impact the payment Et+1[Yt+1] = e∗t+1 +Et+1[θ], where e∗t+1 is the equilibrium

effort level in period t + 1. In addition, however, effort in period t impacts payments in

periods beyond t + 1, as a higher forecasted type yields dividends in all future periods.

To formally extend our monotonicity results, it is sufficient to show that the sensitivity of

forecasts at later dates responds to new covariates in the same way as the sensitivity of next

period’s forecast.

When type and shock components follow multivariate normal distributions, this result

can be established by direct computation. In this setting, the type and shock in any sub-

population are ex ante normally distributed. Thus, as demonstrated in Holmström (1999),23

the marginal value of effort in any period t is

MVt = βα
(T−t)
1 + β2α

(T−t)
2 + ...+ βT−tα

(T−t)
T−t ,

where α
(T−t)
s are a series of positive coefficients capturing the marginal value of effort on the

forecast in each period t+ s. Holmström (1999) shows also that each α
(T−t)
s is decreasing in

the precision of the time-t belief about θ and increasing in the precision of the belief about

each shock. Since observing an additional attribute raises the precision of the belief about

θ, while observing an additional circumstance raises the precision of the belief about each

εt, our monotonicity results generalize for arbitrarily many periods.

Outside of the multivariate normal setting, it is technically challenging to determine the

marginal impact of effort on type forecasts multiple periods ahead. We conjecture that the

forces we have identified will continue to ensure monotonicity in a many-period setting, but

leave a full exploration to future work.

22Our results would also extend if the market were able to observe the agent’s circumstances in only a
single period, using arguments similar to the ones outlined here.

23One subtlety of the current setting is that the agent may change subpopulations over time as his cir-
cumstances change. However, when error components are multivariate normal, every subpopulation has an
error term which is identically distributed up to a mean shift, and so this detail does not change the value
of effort.
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6 Conclusion

As firms and governments move towards collecting large datasets of consumer transactions

and behavior as inputs to decision-making, the question of whether and how to regulate the

usage of consumer data has emerged as an important policy question. Recent regulations,

such as the European Union’s General Data Protection Regulation (GDPR), have focused

on protecting consumer privacy and improving transparency regarding what kind of data

is being collected. An important complementary consideration is how data impacts social

and economic behaviors. In the present paper, we analyze one such factor—the effect that

a market’s access to novel covariates has on consumer incentives for effort. We show that

“attribute” covariates, which inform about persistent quality, and “circumstance” covariates,

which inform about an idiosyncratic shock, have opposing implications for effort. Thus it is

important to distinguish between these two classes of covariates when regulating data usage.

We conclude by noting that while we have taken the set of covariates to be exogenously

given, it would be interesting to understand which sets of covariates consumers and firms

might strategically choose to reveal or acquire. For instance, gains from trade in insurance

markets may be increased by limiting the number of attributes acquired by insurers, since this

policy enables consumers to be insured against uncertainty about their long-run risk. But in

a competitive market, firms may feel obliged to acquire all available attributes so as not to

face an adversely selected pool if their competitors acquire such data and use it for screening

purposes (a consideration not present in our framework). In such a situation, it becomes

all the more important for a regulator to place restrictions on use of certain attributes for

forecasting—not because these attributes are intrinsically invasive or unethical, but because

they lead to poor economic outcomes. We leave the formalization of interesting issues such

as these to future work.

29



Appendix

A Microfoundation

In this appendix we show that the model in the main text arises as the reduced form of a

model in which firms compete to serve an agent.

The agent obtains service from a competitive market consisting of J ≥ 2 homogeneous

firms across two periods t = 1, 2. Service in each period generates a surplus equal to Yt,

which is collected by whichever firm serves the agent.24 Each period’s surplus is determined

according to

Yt = et + µ+ θ + εt,

where et is the agent’s effort choice, θ is distributed as in the model in the main text, and

ε1, ε2 are drawn iid and distributed as in the model in the main text.

Firms compete to attract the agent in each period by offering up-front monetary rewards.

The timeline of service in each period is as follows:

I. Firms simultaneously offer rewards.

II. The agent chooses a firm, receives the reward offered by their chosen firm, and exerts

effort.

III. The outcome is realized and collected as profit by the firm providing service.

Rewards cannot be made contingent on the outcome of service, so firms cannot write

incentive contracts. However, realized outcomes are public, and so firms may condition their

offered rewards in period 2 on the realized outcome in period 1.

The agent’s payoff in a given period is the reward he receives from his chosen firm, minus

any effort costs he incurs to impact the outcome of service. That is, the agent’s period-t

payoff from selecting firm j and exerting effort e is

Ut = Rj
t − C(e),

24Nothing would change if the agent instead enjoyed a fixed surplus S from service, and the firm incurred
a cost Dt to serve the agent, with S −Dt = Yt. The key assumption is that all variation in outcomes arising
from the agent’s type and shock impacts the firm’s payoff but not the agent’s.
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where Rj
t is firm j’s offered reward to the agent in period t. The agent’s total ex post payoff

across both periods is a discounted sum of period payoffs:

U = U1 + β · U2.

Each firm j receives a payoff in period t equal to zero if it does not serve the agent, and

Yt −Rj
t otherwise. Firm j’s total payoff across both periods is the discounted sum

Πj = Πj
1 + β · Πj

2.

(Nothing would change if firms discounted the future at any other strictly positive rate.)

Equilibrium outcomes are determined under a mild restriction on off-path beliefs.

Definition A.1. An equilibrium is a pure-strategy perfect Bayesian equilibrium in which

firms believe the agent exerts the same period-1 effort regardless of his period-1 firm choice.

This refinement is necessary because the agent chooses a firm and effort level simultaneously,

and so sequential rationality imposes no restriction on firm beliefs about agent actions follow-

ing an unexpected period-1 firm choice. As a result, there exist perfect Bayesian equilibria

in the agent is “locked-in” to a firm offering an unfavorable reward due to very high conjec-

tured effort following an off-path firm choice. The refinement of Definition A.1 eliminates

such equilibria.

The following lemma, whose proof can be found in the online appendix, establishes

that in this model, the agent’s equilibrium period-2 payoff is exactly the market’s posterior

expectation of the agent’s type. The agent also receives a payment in period 1 equal to his

ex ante expected type plus his equilibrium effort level. Because that payment is independent

of the agent’s effort choice and outcome in period 1, incentives are unchanged if it is left out

of the agent’s utility function. With that normalization, the model just described reduces

to the model in the main text.

Lemma A.1. In equilibrium:

• The agent exerts effort e∗ in period 1 and no effort in period 2,

• The highest rewards offered to the agent in each period are R∗1 = µ + e∗ and R∗2 =

Ee∗ [θ | Y1].
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B Characterization of MV

Given a subpopulation S, let e∗ be equilibrium effort, and define

MV (S) ≡ d

de
Ee
[
Ee∗ [θ | Y,S] | S

]∣∣∣∣
e=e∗

to be the agent’s equilibrium marginal value of effort, where Eê[·] denotes expectations under

the measure in which Y = ê+ θ + ε almost surely.

Lemma B.1. Fix a set of observed covariates (J ,K) and any (J ,K)-subpopulation S. Then

the equilibrium marginal value of effort on S is

MV (S) = E
[
∂

∂Y 0
E[θ−J | Y 0,S] | S

]
,

where

Y 0 ≡ µ+
J∑
j=1

θj + θ⊥ +
K∑
k=1

εk + ε⊥.

Proof. Fix a subpopulation S = (J ,K,α,γ). Let h(y | t, e) be the conditional density of

Y | θ−J , e on S and h(y | e) be the conditional density of Y | e on S. Because effort affects

output as an additive shift, h(y | t, e) = h(y − e | t, 0) and h(y | e) = h(y − e | 0) for every

(y, t, e). So let f(t | y, e) be the conditional distribution of θ−J | Y, e on S, and let f 0(t) be

the conditional distribution of θ−J on S. Then by Bayes’ rule,

f(t | y, e) =
h(y | t, e)f 0(t)

h(y | e)
=
h(y − e | t, 0)f 0(t)

h(y − e | 0)
= f(t | y − e, 0).

Hence

Ee∗ [θ | Y = y,S] =
∑
j∈J

αj + Ee∗ [θ−J | Y = y,S]

=
∑
j∈J

αj +

∫
t h(t | y, e∗) dt

=
∑
j∈J

αj +

∫
t h(t | y − e∗, 0) dt

=
∑
j∈J

αj + E0[θ−J | Y = y − e∗,S].
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Under the measure corresponding to e = 0, the variable Y is equal to Y 0 almost surely. So

E0[θ−J | Y = y − e∗,S] = E[θ−J | Y 0 = y − e∗,S].

Now,

Ee
[
Ee∗ [θ | Y,S] | S

]
=

∫
dy h(y | e)Ee∗ [θ | Y = y,S]

=

∫
dy h(y | e)

(∑
j∈J

αj + E[θ−J | Y 0 = y − e∗,S]

)

=

∫
dy h(y − e | 0)

(∑
j∈J

αj + E[θ−J | Y 0 = y − e∗,S]

)
,

and so by making the variable substitution y′ = y − e we may write

Ee
[
Ee∗ [θ | Y,S] | S

]
=

∫
dy′ h(y′ | 0)

(∑
j∈J

αj + E[θ−J | Y 0 = y′ − e∗ + e,S]

)
.

Differentiating wrt e and invoking Assumption 1 so that the dominated convergence theorem

may be applied yields

∂

∂e
Ee
[
Ee∗ [θ | Y,S] | S

]∣∣∣∣
e=e∗

=

∫
dy′ h(y′ | 0)

∂

∂Y 0
E[θ−J | Y 0,S]

∣∣∣∣
Y 0=y′

.

Recall that Y
d
= Y 0 conditional on e = 0, so h(y′ | 0) is the conditional density of Y 0 on S.

The rhs of the previous expression may therefore be written

∂

∂e
Ee
[
Ee∗ [θ | Y,S] | S

]∣∣∣∣
e=e∗

= E
[
∂

∂Y 0
E[θ−J | Y 0,S]

∣∣∣∣ S] ,
as desired.

C Proof of Theorem 2

We prove part (a) here. The proof of part (b) follows along very similar lines, and is relegated

to Online Appendix F. In Section C.1 we use the assumption that Ψj′ is one-to-one to replace
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observation of attribute aj′ with observation of the corresponding type component θj′ . The

desired result then holds if can we show that the conditional forecast of the residual unknown

θ−J is (in expectation) less responsive to the realization of the outcome Y when conditioned

on θj′ .

In Section C.2, we prove an important intermediate lemma: (θ−J , θj′ , Y ) are affiliated,

so that holding fixed any value of Y , higher realizations of θj′ lead to higher conditional

inferences about θ−J . This result follows from our maintained regularity and affiliation

assumptions. In Section C.3, we consider the effect of effort under the baseline covariates

(where θj′ is not observed) and separate the impact of increasing Y into two effects: a shift

up in the conditional distribution of θj′ and, for each realization of θj′ , a shift up in the

conditional distribution of θ−J . The affiliation lemma tells us that these effects amplify one

another, leading to a higher marginal impact of manipulation of Y . In contrast, when θj′ is

observed, it must follow its true distribution irrespective of the manipulation of Y . Larger

Y still shifts up the conditional distribution of θ−J , but we show that this alone is a smaller

effect.

C.1 Preliminaries

Fix a set of observed covariates (J ,K) and a (J ,K)-subpopulation S = (J ,K,α,γ).

As established in Lemma B.1, the marginal value of effort in subpopulation S is

MV (S) = E
[
∂

∂Y 0
E[θ−J | Y 0,S]

∣∣∣∣ S] ,
where

Y 0 ≡ µ+
J∑
j=1

θj + θ⊥ +
K∑
k=1

εk + ε⊥

is the baseline value of output after subtracting out the agent’s effort.

Now suppose the market additionally observes the additional attribute j′ /∈ J , and let

J ′ = J ∪ {j′}. Under the expanded set of observed covariates, the marginal value of effort

becomes

MV (S, aj′) = E
[
∂

∂Y 0
E[θ−J

′ | Y 0, aj′ ,S]

∣∣∣∣ aj′ ,S] ,
where E[· | aj′ = αj′ ,S] denotes expectations with respect to the distributions of θ and ε in
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the subpopulation of S whose value of covariate j′ is αj′ . Note that on S, MV (S, aj′) is a

random variable whose value is a function of the realization of aj′ .

Because Ψj′ is a one-to-one mapping, the subpopulation of S whose value of covariate

j′ is αj′ is identical to the subpopulation whose type component θj′ has value Ψ(αj′). So

we may equivalently write the agent’s marginal value of effort under the expanded set of

covariates as

MV (S, θj′) = E
[
∂

∂Y 0
E[θ−J

′ | Y 0, θj′ ,S]

∣∣∣∣ θj′ ,S] ,
where E[· | θj′ ,S] is interpreted analogously to E[· | aj′ ,S], and MV (S, θj′) is a random

variable which depends on aj′ only via the type component θj′ .

C.2 Affiliation Lemma

Lemma C.1. (θ−J , θj′ , Y
0) are jointly affiliated on S.

Proof. Let f(u, t, y) be the conditional joint density of (θ−J , θj′ , Y
0) on S. We will show

that f is log-supermodular.

Let fj′(t) be the conditional density of θj′ on S, f−J |j′(u | t) be the conditional density

of θ−J | θj′ on S, and hY |−J (y | u) be the conditional density of Y 0 | θ−J on S. Note that

Y 0 is independent of θj′ conditional on θ−J on S, and so

f(u, t, y) = fj′(t)f−J |j′(u | t)hY |−J (y | u).

It is therefore sufficient to show that hY |−J and f−J |j′ are log-supermodular.

Consider hY |−J . Let µS ≡
∑

j∈J αj +
∑

k∈K γk + θ−J . On S, Y 0 may be written

Y 0 = µS + θ−J + ε−K.

Let g−K(z) be the conditional density of ε−K on S. Then

hY |−J (y | u) = g−K(y − µS − u).

The assumption that S is a regular subpopulation implies that g−K is log-concave, therefore

hY |−J is log-supermodular.

As for f−J |j′ , let f−J ′|j′(w | t) be the conditional density of θ−J
′ | θj′ on S. As θ−J =
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θj′ + θ−J
′
, it follows that

f−J |j′(u | t) = f−J ′|j′(u− t | t).

Hence by the chain rule,

∂2

∂u∂t
log f−J |j′(u | t) =

[
∂2

∂w∂t
log f−J ′|j′(w | t)−

∂2

∂w2
log f−J ′|j′(w | t)

]
w=u−t

.

As attribute j′ is S-regular, the second term is non-negative. Meanwhile since j′ is S-

affiliated, (θ−J
′
, θj′) are affiliated on S and so the first term is also non-negative. Hence

∂2

∂u∂t
log f−J |j′(u | t) ≥ 0,

establishing the desired log-supermodularity.

C.3 Comparison of MV

MV (S, θj′) can be compared to MV (S) as follows. Define

F (t | y) ≡ Pr(θj′ ≤ t | Y 0 = y,S)

to be the conditional distribution function of θj′ given the outcome Y 0, and

φ(y, t) ≡ E[θ−J
′ | Y 0 = y, θj′ = t,S]

to be the conditional expectation of θ−J
′

given Y 0 and θj′ .

By the law of total probability

E[θ−J | Y 0 = y,S] =

∫
dF (t | y) (t+ φ(y, t))

and so the change in the conditional expectation of the unobserved θ−J as Y 0 moves from

y to y′ > y is

E[θ−J | Y 0 = y′,S]− E[θ−J | Y 0 = y,S]

=

∫
dF (t | y′) (t+ φ(y′, t))−

∫
dF (t | y) (t+ φ(y, t)) (C.1)
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This difference can be signed using Lemma C.1: Since (θ−J , θj′) are affiliated, the expres-

sion t + φ(y, t) is increasing in t. Since (θj′ , Y
0) are affiliated, E[π(θj′) | Y 0,S] is increasing

in Y 0 for any increasing function π. Thus∫
dF (t | y′) (t+ φ(y, t))

is increasing in y′, and so the expression in (C.1) can be bounded below by∫
dF (t | y) (φ(y′, t)− φ(y, t)) .

It follows that

∂

∂y
E[θ−J | Y 0 = y,S] ≥

∫
dF (t | y)

∂φ

∂y
(y, t).

The lhs is the marginal improvement in the posterior expectation of θ−J when the realization

of Y 0 is increased. The rhs is the expected marginal improvement in the posterior expectation

of θ−J
′

when it is conditioned on the manipulated realization of Y 0 and the un-manipulated

realization of θj′ .

To complete the proof, rewrite this inequality as:

∂

∂Y 0
E[θ−J | Y 0,S] ≥ E

[
∂

∂Y 0
E[θ−J

′ | Y 0, θj′ ,S]

∣∣∣∣ Y 0,S
]
.

Taking the expectation of each side conditional on S yields

MV (S) ≥ E
[
∂

∂Y 0
E[θ−J

′ | Y 0, θj′ ,S]

∣∣∣∣ S] .
By the law of iterated expectations, the rhs may be expanded as

E
[
∂

∂Y 0
E[θ−J

′ | Y 0, θj′ ,S]

∣∣∣∣ S]
= E

[
E
[
∂

∂Y 0
E[θ−J

′ | Y 0, θj′ ,S]

∣∣∣∣ θj′ ,S] ∣∣∣∣ S]
= E [MV (S, θj′) | S] .
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Therefore

MV (S) ≥ E[MV (S, θj′) | S].

Thus the marginal value of effort in subpopulation S is higher than the expected marginal

value once attribute j′ is additionally observed.

D Proof of Theorem 1

We again prove part (a), leaving the proof of part (b) to Online Appendix F.

The structure of the proof is very similar to that of Theorem 2, but (θ−J , θj′ , Y ) is no

longer guaranteed to satisfy affiliation, so Lemma C.2 may fail.25 This precludes an argument

along identical lines. Instead, in Section D.1, we define a decomposition of the residual

component θ−J into the sum of two random variables θ̃j′ and θ̃−J
′
, where the new attribute

aj′ perfectly reveals the former but is independent of the latter. Rather than studying

the impact of observing the type component θj′ , we characterize the equivalent impact of

observing θ̃j′ . We then show that (θ−J , θ̃j′ , Y ) are affiliated. At this point arguments used

in the proof of Theorem 2 can be applied without modification, and we further strengthen

these to show deterministic impact.

D.1 Decomposition

Fix a set of observed covariates (J ,K) and a (J ,K)-subpopulation S = (J ,K,α,γ). As

established in Lemma B.1, the marginal value of effort in subpopulation S is

MV (S) = E
[
∂

∂Y 0
E[θ−J | Y 0,S]

∣∣∣∣ S] ,
where

Y 0 ≡ µ+
J∑
j=1

θj + θ⊥ +
K∑
k=1

εk + ε⊥

is the baseline value of output after subtracting out the agent’s effort.

Now suppose the market additional observes the additional attribute j′ /∈ J , and let

J ′ = J ∪ {j′}. Under the expanded set of observed covariates, the marginal value of effort

25For a simple example, set θj′ = −θ−J ′
. Then θj′ is an S-mean shifter but it is not S-affiliated.
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becomes

MV (S, aj′) = E
[
∂

∂Y 0
E[θ−J

′ | Y 0, aj′ ,S]

∣∣∣∣ aj′ ,S] ,
where, on S, MV (S, aj′) is a random variable whose value is a function of the realization of

aj′ .

On S, the outcome Y 0 may be decomposed as

Y 0 = µS + Ψj′(aj′) + θ−J
′
+ ε−K, (D.1)

where µS ≡
∑

j∈J aj+
∑

k∈K γk is a known constant while Ψj′(aj′), θ
−J ′ and ε−K are random

variables. We will now de-mean the unknown type residual θ−J
′
.

For each possible realization αj′ of the attribute aj′ , define

ξ(αj′) ≡ E[θ−J
′ | aj′ = αj′ ,S]

to be the conditional expectation of the residual θ−J
′

when aj′ takes value αj′ . Let θ̃j′ ≡
Ψj′(aj′) + ξ(aj′) be the sum of the j-th type component and this posterior mean. Then we

can rewrite (D.1) as

Y 0 = µS + θ̃j′ + θ̃−J
′
+ ε−K

where (by assumption that j′ is a S-mean shifter) the new residual θ̃−J
′

is independent of

aj′ on S, while µS + θ̃j′ is a known constant given aj′ (and hence independent of Y 0). So the

expectation of the type residual θ−J
′

given aj′ is

E[θ−J
′ | Y 0, aj′ ,S] = θ̃j′ + E[θ̃−J

′ | Y 0, aj′ ,S]

= θ̃j′ + E[θ̃−J
′ | Y 0, θ̃j′ ,S]

and MV (S, aj′) may be written

MV (S, aj′) = E
[
∂

∂Y 0
E[θ̃−J

′ | Y 0, θ̃j′ ,S]

∣∣∣∣ aj′ ,S] .
Note that the random variable inside the outer expectation depends on aj′ only through θ̃j′ .

Thus the marginal value of effort after observing j′ depends on the realization of aj′ only
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through θ̃j′ , and so we may denote this marginal value of effort

MV (S, θ̃j′) = E
[
∂

∂Y 0
E[θ̃−J

′ | Y 0, θ̃j′ ,S]

∣∣∣∣ θ̃j′ ,S] .
The desired result holds if can we show that the conditional expectation of θ̃−J

′
is less

responsive to the realization of the outcome Y than the conditional expectation of the original

residual θ−J . Note that θ−J is the sum of the (conditionally) independent variables θ̃j′ and

θ̃−J
′
, so uncertainty about θ̃−J

′
is mechanically lower than uncertainty about θ−J . But

this does not directly translate into a statement that the posterior expectation of θ̃−J
′

is

less sensitive to the realization of Y . In general, we are not even guaranteed that higher

realizations of Y lead to higher inferences about θ̃−J once we have conditioned on the

realization of θ̃j′ .
26 In the next section, we prove a key technical lemma, which will imply

an analogue of regularity for our transformed environment.

D.2 Affiliation Lemma

Lemma D.1. (θ−J , θ̃j′ , Y
0) are jointly affiliated on S.

Proof. Let f̃(u, t, y) be the conditional joint density of (θ−J , θ̃j′ , Y
0) on S. We will show

that f̃ is log-supermodular.

Use f̃j′(t) to denote the conditional density of θ̃j′ on S, f̃−J |j′(u | t) to denote the

conditional density of θ−J | θ̃j′ on S, and hY |−J (y | u) to denote the conditional density of

Y 0 | θ−J on S. Note that Y 0 is independent of θ̃j′ conditional on θ−J on S. So f̃ may be

decomposed as

f̃(u, t, y) = f̃j′(t)f̃−J |j′(u | t)hY |−J (y | u).

It is therefore sufficient to show that hY |−J and f̃−J |j′ are log-supermodular.

First consider hY |−J . Recall that on S, Y 0 may be written

Y 0 = µS + θ−J + ε−K.

26Recall that our regularity assumptions are imposed on the original type component θj′ , and not on the

constructed θ̃j′ .
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Let g−K(z) be the conditional density of ε−K on S. Then

hY |−J (y | u) = g−K(y − µS − u).

The assumption that S is a regular subpopulation implies that g−K is log-concave, therefore

hY |−J is log-supermodular.

As for f̃−J |j′ , let f̃−J ′(w) be the conditional density of θ̃−J
′

on S. Decompose θ−J as

θ−J = θ̃j′ + θ̃−J
′
, and recall that if j′ is an S-mean shifter then θ̃−J

′
is independent of aj′

and hence θ̃j′ on S. It follows that

f̃−J |j′(u | t) = f̃−J ′(u− t),

and hence

∂2

∂u∂t
log f̃−J |j′(u | t) = − ∂2

∂w2
log f̃−J ′(w)

∣∣∣∣
w=u−t

= − ∂2

∂u2
log f̃−J |j′(u | t).

Now, let f 0
−J |j′(u | αj′) denote the conditional density of θ−J | aj′ on S. Define

ζ(αj′) = Ψj′(αj′) + ξ(αj′)

so that

θ−J = ζ(aj′) + θ̃−J
′
,

If j′ is an S-mean shifter,

f 0
−J |j′(u | αj′) = f̃−J ′(u− ζ(αj′)) = f̃−J |j′(u | ζ(αj′)).

Let θ̃ ≡ {t : ζ(αj′) = t for some αj′ ∈ Aj′} denote the support of θ̃j′ . Fix any t ∈ θ̃, and let

αj′ ∈ Aj′ be such that ζ(αj′) = t. Then for all u,

∂2

∂u2
log f̃−J |j′(u | t) =

∂2

∂u2
log f 0

−J |j′(u | αj′).

As attribute j′ is S-regular, this final expression is non-positive, meaning

∂2

∂u∂t
log f̃−J |j′(u | t) ≥ 0

41



for every u and t ∈ θ̃. Hence f̃−J |j′ is log-supermodular, as desired.

D.3 Comparison of MV

Following arguments identical to those used in Section C.3 for the proof of Theorem 2 (with

θ̃−J
′

and θ̃j′ everywhere replacing θ−J
′

and θj′), Lemma D.1 implies

MV (S) ≥ E[MV (S, θ̃j′) | S].

Thus the marginal value of effort in subpopulation S is higher than the expected marginal

value once attribute j′ is additionally observed.

To complete the proof, we must establish that monotonicity holds uniformly across real-

izations of the additional covariate, and not just on average. This follows immediately once

we establish that MV (S, aj′) is independent of the realization of aj′ . On S, when attribute

j′ is additionally observed and is found to have value aj′ = αj′ , Y may be decomposed as

Y = e+ µS + Ψj′(αj′) + ξ(αj′) + θ̃−J
′
+ ε−K.

Because θ̃−J
′

is independent of aj′ on S, αj′ enters the market’s inference problem as a

known additive shift to the agent’s type distribution, and therefore its value does not impact

incentives for effort. So incentives for effort must be independent of αj′ , as claimed.
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Online Appendix

E Additional Material

E.1 Supplementary Material for Section 3.1

We provide some examples below of individual type or shock components that are log-

concave. This list is not meant to be exhaustive.

Example 6. The attribute a is height, it is normally distributed, and Ψ(a) is affine.

Example 7. The attribute a is a one-dimensional location variable which is uniformly dis-

tributed on an interval [c, d], while Ψ(a) = a − x is (signed) distance from a fixed point

x ∈ [c, d].

Example 8. The attribute a is the expected number of friends that one can borrow money

from, and it is exponentially distributed, while Ψ(a) =
√
a.

Example 9. The attribute a is days between social media posts, and it has a gamma distri-

bution, while Ψ(a) = log(a).

Example 10. c is the number of inches of precipitation last month, and it has an exponential

distribution, while Λ(c) = − log(c).

E.2 Supplementary Material for Example 1

We show below that when type components and shock components are jointly normal, then

the mean-shifter property is satisfied globally. First consider the two-attribute model

Y = e+ θ1 + θ2 + ε, ε ∼ N (0, σ2
ε)

with (
θ1

θ2

)
∼ N

((
µ1

µ2

)
,

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

))
Using standard formulas for Bayesian updating to Gaussian signals, the conditional distri-

bution of θ1 given θ2 is

θ1 | θ2 ∼ µ1 + ρ
σ1
σ2

(θ2 − µ2) +N
(
0, σ2

1(1− ρ2)
)
, (E.1)
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which depends on θ2 in mean only. Since the family of normal variables is closed under

conditioning and summation, the above model is without loss: that is, for any J and j′ /∈ J ,

we may set θ1 equal to θ−J
′

and θ2 equal to θj′ , so that (E.1) implies that attribute j′ is an

S-mean shifter. (The argument applies identically for circumstance variables.)

E.3 Supplementary Material for Example 5

A standard result about sums of iid exponential random variables is that they follow a

Gamma distribution. In particular, if there are J total attributes, then θ−J
′|λ ∼ Gamma(J−

|J ′|, λ), and θ−J
′

and θj′ are independent conditional on λ.

Define k ≡ λ−1. The joint density of (θj′ , θ
−J ′) conditional on θJ may be written

η(θj′ , θ
−J ′ | θJ ) =

∫
dk η(k | θJ )η(θj′ | k)η(θ−J

′ | k).

As marginalization preserves affiliation, (θj′ , θ
−J ′) are affiliated conditional on θJ if (θj′ , k)

and (θ−J
′
, k) are each affiliated. Note that

log η(θj′ | k) = − log k − θj′

k
,

so that
∂2

∂θj′∂k
log η(θj′ | k) =

1

k2
> 0,

while

log η(θ−J
′ | k) = −N log k − log Γ(N) + (N − 1) log θ−J

′ − θ−J
′

k

for N = J − |J ′|, so that similarly

∂2

∂θ−J ′∂k
log η(θ−J

′ | k) =
1

k2
> 0.

Hence (θj′ , k) and (θ−J
′
, k) are affiliated, as desired.

Meanwhile, the conditional density of θ−J
′

may be written

η(θ−J
′ | θJ ′) =

∫
dλ η(λ | θJ ′)η(θ−J

′ | λ).

Log-concavity is also preserved by marginalization, so η(θ−J
′ | θJ ′) is log-concave wrt θ−J

′
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if η(θ−J
′ | λ) is log-concave wrt (θ−J

′
, λ) and η(λ | θJ ′) is log-concave wrt λ. We have

log η(θ−J
′ | λ) = N log λ− log Γ(N) + (N − 1) log θ−J

′ − λθ−J ′ ,

which is a sum of concave functions of (θ−J
′
, λ), hence itself concave. Meanwhile, note that

the Gamma function is a conjugate prior for the exponential likelihood function, and so

conditional on θJ ′ , λ ∼ Gamma
(
α + |J ′|, β +

∑
j∈J ′

1
θj

)
. The Gamma distribution is log-

concave whenever its shape parameter is at least 1, and as α ≥ 1 it follows that η(λ | θJ ′) is

log-concave wrt λ.

This work establishes that this system of attributes satisfies the conditions of Theorem

2 for the attribute case whenever the conditional distribution of ε−K is log-concave.

F Completing the Proofs of Theorems 1 and 2

F.1 Proof of Theorem 1 Part (b)

Suppose the market observes the additional circumstance k′ /∈ K. Under the expanded set

of observed covariates, the marginal value of effort is

MV (S, ck′) = E
[
∂

∂Y 0
E[θ−J | Y 0, ck′ ,S]

∣∣∣∣ ck′ ,S] .
Let K′ = K ∪ {k′}, and define the function η(γk′) by

η(γk′) ≡ E[ε−K
′ | ck′ = γk′ ,S]

Let ε̃k′ ≡ Λk′(ck′) + η(ck′). On S, Y 0 may be decomposed as

Y 0 = µS + θ−J + ε̃k′ + ε̃−K
′
.

If k′ is a S-mean shifter, then ε̃−K
′

is independent of ck′ on S, and so the distribution of Y 0

depends on ck′ only through ε̃k′ . Thus

E[θ−J | Y 0, ck′ ,S] = E[θ−J | Y 0, ε̃k′ ,S].
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Therefore, in a manner analogous to the attribute case, the marginal value of effort after

observing j′ depends on ck′ only through ε̃k′ and may be written

MV (S, ε̃k′) = E
[
∂

∂Y 0
E[θ−J | Y 0, ε̃k′ ,S]

∣∣∣∣ ε̃k′ ,S] .
Lemma F.1. (ε̃k′ , ε̃

−K, Y 0) are affiliated on S.

Proof. This proof follows along very similar lines to the proof of Lemma D.1, so we omit

the details. Let f−J (u) be the conditional density of θ−J on S and g0−K′|k′(x | z) be the

conditional density of ε−K
′ | ck′ on S. The conditions required for the steps of that proof to

go through are that f−J (u) is log-concave, g0−K′|k′(x | z) is log-concave in x for all z, and ε̃−K
′

is independent of ε̃k′ on S. The first two properties hold by S-regularity of circumstance k′,

while the final property holds because k′ is an S-mean shifter.

We compare MV (S, ε̃k′) and MV (S) in a manner very similar to the attribute case.

Define

G̃(z | y) ≡ Pr(ε̃k′ ≤ z | Y 0 = y,S)

to be the conditional CDF of ε̃k′ given the outcome Y 0.

On S, Y 0 may be written

Y 0 = µS + θ−J + ε−K.

Taking expectations of each side conditional on (Y 0, ε̃k′ ,S) yields

Y 0 = µS + E[θ−J | Y 0, ε̃k′ ,S] + E[ε−K | Y 0, ε̃k′ ,S].

Hence ∫
dG̃(z | y′)E[θ−J | Y 0 = y, ε̃k′ = z,S]

= y − µS −
∫
dG̃(z | y′)E[ε−K | Y 0 = y, ε̃k′ = z,S]. (F.1)

Lemma F.1 directly implies that∫
dG(z | y′)E[ε−K | Y 0 = y, εk′ = z,S]
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is increasing in y′, so (F.1) is decreasing in y′.

Following the same logic as in the attributes case, monotonicity of (F.1) implies that

∂

∂Y 0
E[θ−J | Y 0,S] ≤ E

[
∂

∂Y 0
E[θ−J | Y 0, ε̃k′ ,S]

∣∣∣∣ Y 0,S
]
,

and it follows that

MV (S) ≤ E[MV (S, ε̃k′) | S].

Thus the marginal value of effort in subpopulation S is lower than the expected marginal

value of effort when the circumstance k′ is additionally observed.

The final step in the proof is again establishing that monotonicity holds uniformly across

realizations of the additional circumstance, and not just on average. This follows from nearly

identical work to the argument for the attributes case.

F.2 Proof of Theorem 2 Part (b)

Suppose that the market observes the additional circumstance k′ /∈ K. Under the expanded

set of observed covariates, the marginal value of effort becomes

MV (S, ck′) = E
[
∂

∂Y 0
E[θ−J

′ | Y 0, ck′ ,S]

∣∣∣∣ ck′ ,S] .
Because Λk′ is a one-to-one-mapping, εk′ is a sufficient statistic for the dependence of the

distribution of ε−K
′

on ck′ . We may therefore equivalently write the agent’s marginal value

of effort under the expanded set of covariates as

MV (S, εk′) = E
[
∂

∂Y 0
E[θ−J

′ | Y 0, εk′ ,S]

∣∣∣∣ εk′ ,S] .
Lemma F.2. (εk′ , ε

−K, Y 0) are affiliated on S.

Proof. This is established along nearly identical lines to the proof of Lemma C.1, so we omit

the details. Let f−J (u) be the conditional density of θ−J on S and g−K′|k′(x | z) be the

conditional density of ε−K
′ | εk′ on S. The conditions required for the steps of that proof to

go through are that f−J (u) is log-concave, g−K′|k′(x | z) is log-concave in x for all z, and

(ε−K
′
, εk′) are affiliated on S. The first two properties hold by S-regularity of circumstance

k′, while the final property holds by S-affiliation of circumstance k′.
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We compareMV (S, εk′) withMV (S) in a manner very similar to the case of an additional

attribute. Let K′ = K ∪ {k′}, and define

G(z | y) ≡ Pr(εk′ ≤ z | Y 0 = y,S)

to be the conditional CDF of εk′ given the outcome Y 0. On S, Y 0 may be written

Y 0 = µS + θ−J + ε−K.

Taking expectations of each side conditional on (Y 0, εk′ ,S) yields

Y 0 = µS + E[θ−J | Y 0, εk′ ,S] + E[ε−K | Y 0, εk′ ,S].

Hence ∫
dG(z | y′)E[θ−J | Y 0 = y, εk′ = z,S]

= y − µS −
∫
dG(z | y′)E[ε−K | Y 0 = y, εk′ = z,S]. (F.2)

Lemma F.2 directly implies that∫
dG(z | y′)E[ε−K | Y 0 = y, εk′ = z,S]

is increasing in y′, so (F.2) is decreasing in y′.

Following the same logic as in the attributes case, monotonicity of (F.2) implies that

∂

∂Y 0
E[θ−J | Y 0,S] ≤ E

[
∂

∂Y 0
E[θ−J | Y 0, εk′ ,S]

∣∣∣∣ Y 0,S
]
,

and it follows that

MV (S) ≤ E[MV (S, εk′) | S].

Thus the marginal value of effort in subpopulation S is lower than the expected marginal

value of effort when the circumstance k′ is additionally observed.
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G Proof of Lemma A.1

Fix an equilibrium, and consider the agent’s choice of firm and effort in period 2 following

any history h which firms have posted offers Rj
2(h) (not necessarily on the equilibrium path).

The agent’s payoff from choosing firm j and effort e2 is just Rj
2(h)−C(e2), which is strictly

decreasing in e2 for any choice of j. Thus the agent’s unique optimal effort choice is e2 = 0.

Further, the agent optimally chooses a firm j such that Rj
2(h) ≥ Rj′

2 (h) for every j′ 6= j.

Thus in any equilibrium, following any history the agent must exert zero effort in period 2

and choose a firm offering the highest reward.

Now consider each firm’s reward offers to the agent in period 2 following some period-1

history h of reward offers, firm choice, and outcome. Let e∗1(h) be the equilibrium effort

level in period 1, with R∗,j2 (h) each firm’s equilibrium period-2 reward offer. (In principle

the equilibrium effort level may depend on the set of period-1 reward offers, and the period-

2 rewards may depend on period-1 offers, the agent’s firm choice, and outcomes.) Let

θ(h) ≡ Ee∗1(h)[θ | Y ]. Given that the agent exerts no effort in period 2 no matter what

rewards are posted, the off-path belief refinement imposed in Definition A.1 implies that,

regardless of which firm the agent chose in period 1, a firm winning some the agent in period

2 after posting a reward R believes it will make expected profits R− θ from the agent.

Suppose first that maxj R
∗,j
2 (h) < θ(h). Let firm j be a firm who does not win the agent in

equilibrium, and consider a deviation to R2
j (h) ∈ (maxj R

∗,j
2 (h), θ(h)). This deviation ensures

that firm j wins the agent and makes strictly positive profits from him, strictly improving

on the profits it would have made in equilibrium. So it must be that maxj R
∗,j
2 (h) ≥ θ(h).

Suppose instead that maxj R
∗,j
2 (h) > θ(h). Let firm j be the firm which wins the agent

in equilibrium, and consider a deviation to R2
j (h) < maxj′ 6=j R

∗,j′
2 (h). This deviation ensures

that firm j does not win the agent, strictly improving on the profits it would have made in

equilibrium. So it must be that maxj R
∗,j
2 (h) = θ(h). A corollary is that all firms must make

zero profits in period 2 in equilibrium following any period-1 history.

We now consider period-1 strategies. The work so far has established that, following

any period-1 history h, in period 2 the agent receives a reward equal to R∗2(h) = θ(h) in

equilibrium. Given any set of reward offers and any choice of firm j in period 1, the agent’s

payoff from exerting effort e is therefore

Rj
1 − C(e) + β · Ee[Ee∗1(h)[θ | Y ]].
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This function is maximized at e∗1(h) iff e∗1(h) = e∗, the equilibrium effort level in the model

of the main text.

It follows that regardless of the posted rewards, a firm who wins the agent by offering a

reward R believes it will earn an expected profit of µ+ e∗ −R in this period from doing so.

Further, in equilibrium its period-2 profits are independent of reward offers and firm choices

in the period-1 market. Logic very similar to that used to characterize period-2 rewards then

implies that the agent must receive a reward of R∗1 = µ+ e∗ in period 1 in equilibrium.
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