ECONOMETRICS
Intuition, Theory and Applications

Instructor: Duncan Thomas
Office: 314 Social Sciences
Email: dthomas@econ.duke.edu
Lectures: Monday and Wednesday 11.45am-1:00pm, Old Chemistry 116
Office hours: Monday 2:00-4:00 pm or by appointment
Class web site: http://ipl.econ.duke.edu/dthomas/ec208d (or log on through sakai)

Graduate teaching assistants
Name Email
Maria Laurito Maria.Laurito@duke.edu
Jeremy Lebow Jeremy.Lebow@duke.edu
Gina Turrini Gina.Turrini@duke.edu

Sections Day/time Place
01 Wednesday 6:15-7:05 pm Social Psychology 126
02 Thursday 4:55-5:45 pm Social Psychology 126

Attendance at lectures is required. Attendance at sections is very strongly recommended. Sections are led by outstanding PhD students who have considerable expertise in applying econometric methods to data and also have experience teaching the material in this course. In addition to sections, the TAs will hold office hours on Thursdays and Fridays from 1.15-3.15 in Social Sciences Conference Room 03 (down the stairs next to the door leading to classrooms 105, 107 and 109).

Undergraduate teaching assistants
The class is also supported by two excellent undergraduate teaching assistants, Hunter Baehren (Hunter.Baehren@duke.edu) and Maya Durvasula (Maya.Durvasula@duke.edu) who are available to assist you with material from the course and problem sets. They will hold office hours from 3:00-4:30 pm on Sundays in Social Sciences Conference Room 03.

Examinations
There will be two examinations: a midterm and a final. Both examinations are required.

Midterm: Monday October 2, 11:45am-1:00pm (Old Chem 116)
The in-class mid-term will be open book. You may bring any materials you need to the exam. You may not communicate with anyone inside or outside the room during the examination.

Final: Thursday December 14, 7:00pm-10:00pm
The final will be closed book. You may bring one two-sided 8.5”*11” page of formulae and notes that you construct and that you think will be of use to you during the exam. The sheet must be handed in with your exam. The exam will not include questions that require the use of STATA. Please bring a calculator to the exam.

(c) Duncan Thomas 2017
If you have substantive questions about the course material you want to ask me, please see me during my office hours. Emailed questions about the material are very hard for me to answer effectively. It has been my experience that I typically need to know more about the problems you are encountering than you tell me in your email. In addition, I have no way to assess whether my e-mail response has cleared up the problem for you. I will, therefore, not attempt to answer substantive questions sent to me by email. If you cannot attend my office hours, we can make an appointment to meet at a time that is convenient for you.

All the material you need for this course will be available on the class web page. The material is copyrighted which means you cannot re-distribute any material such as notes, slides, problem sets, exams or answer keys that I have created. Re-distributing includes posting material on a website or shared electronic site or providing the material to someone who is not enrolled in the class this term.

**Course Objectives**

The goal of this course is to provide an introduction to both the theory and application of modern econometric methods to address questions in economics and the behavioral sciences. Mastery of the material is intended to provide you with sufficient knowledge of statistical and econometric methods to enable you to think critically when you evaluate the quality of evidence in support of a claim about how individuals behave, markets work, firms make money or societies operate. You will develop the skills to be an effective consumer and producer of empirical research in economics. Throughout the class, emphasis is placed on intuitive understanding of underlying concepts with more rigorous arguments serving to strengthen the foundation of your knowledge. Central concepts are illustrated with applications.

**Course Requirements**

You are required to have passed Probability and Statistical Inference (Stat 111). This class builds on the foundation laid in that class. Ideally you will have taken Stat 111 in the semester immediately preceding this class or at least within the twelve months preceding enrolling in this class. It will be assumed that you have a good understanding of the material covered in Stat 111. With my permission, you may substitute Stat 130, 203, 250 Math 230 or 342 for Stat 111. In addition, it is assumed that you have a good grasp of calculus.

Building on the foundation laid in the pre-requisite classes, this class will begin with an introduction to the linear regression model. Core statistical concepts that you have covered in your statistics preparation will be applied to the regression model to provide a fuller understanding of the value of these tools to better understand economic phenomena and the world around us. This class will evaluate extensions to the linear regression model that are designed to address real world problems that arise in the study of economic behavior and provide rigorous tests of hypotheses in the economics and related literatures. In addition to understanding the theoretical concepts that underlie modern regression analysis, you should develop the practical skills necessary for good data analysis as well as learn how to interpret the results of your analyses. You will be required to do econometric analysis with real data from actual applications. You may use whatever computer hardware and software you like. Instruction will be provided for using STATA which you are strongly encouraged to learn. The product will serve you well in this class and other classes, research at Duke and beyond Duke. We will use STATA in this class. You may download a copy of STATA/SE for your own Mac, Windows or Linux computers. Instructions are on the class web site, [http://ipl.econ.duke.edu/dthomas/ec208d/statalinks.html](http://ipl.econ.duke.edu/dthomas/ec208d/statalinks.html).

In addition, help using STATA is available in the Data and GIS lab in Perkins and at SSRI West. There are many good on-line resources, some of which are linked from the class web page.

*(c) Duncan Thomas 2017*
Grading and Organization

Each week there will be two lectures. You are required to attend every lecture. Please turn off all phones, tablets, laptops etc. before class starts and do not turn them back on until the class has ended; they may not be used during class. Lectures will be supplemented by a weekly section which will cover statistical material that is not covered in this class and should have been covered in your pre-requisite class. You will be responsible for that material. Sections will also review lecture material, discuss problem sets and provide computer instruction. Each week, one TA will be responsible for all sections and the same material will be covered in every section that week. You may attend the section that is most convenient for you. All students are expected to understand and uphold the Honor Code, http://studentaffairs.duke.edu/conduct/about-us/duke-community-standard.

Problem sets

There will be a problem set every second week. The problem sets will help you understand important ideas in the theory and application of econometric methods and help you develop and interpret empirical evidence in a practical, real-world setting. To underscore the importance of taking the problem sets seriously, they will account for 25% of the final course grade. Completed problem sets must be submitted in person at the beginning of the lecture on the due date. Late problem sets will not be accepted. If you cannot hand in your problem set at the beginning of the lecture, with my prior consent, you can hand it in earlier. Problem sets must be handed in on paper, preferably typewritten. Emailed problem sets will not be accepted.

You may work with other students in this class on problem sets. By collaborating with your peers, my expectation is that you will more fully learn the material. Explaining an idea, concept, method or result to a peer is one of the best ways to reinforce your own understanding. However, to be sure that you do understand the work, you must write up your own answers and submit your own work. Please indicate on your problem set answers with whom you collaborated. You may only refer to the answer keys provided for this year’s problem sets which are posted on the class web page after the problem set is due. Prior year answer keys may not be used under any circumstances. A grade of zero will be assigned to all problem sets for the course for any student who violates this policy for any problem set.

For each problem set, the grades will be, 2 if, roughly speaking, you get at least 2/3rd’s of the problem set correct; 1 if you get between 1/3rd and 2/3rd’s correct; and 0 otherwise. Answers to questions that call for intuition or interpretation are given more weight than calculations. A grade of 1 is a signal to you that you need help. A very poor grasp of the material will be assigned a grade of 0. That indicates a very serious problem and you should seek help from the TAs or me immediately. Problem sets handed in late will get a grade of 0. The final problem set grade will be based on the total score over all problem sets. I cannot overstate the value to you of making a good faith attempt to complete every problem set and submit it on time. Each problem set will be graded by one TA. If you have any questions, that TA will be the best person to review your answers after you have submitted your problem set. All questions about grades should be taken up with the TA who graded the problem set.

Answer keys for each problem set will be posted on the class webpage soon after the submission deadline has passed. Each problem set will be reviewed in section. The section will not only go over the answers but also provide insights into how to think about the problems and thereby strengthen your understanding of the material. It is not possible to provide detailed written individual-specific feedback for each student on his/her answer. More importantly from your point of view, it is very difficult for us to identify every instance in which you do not understand something and so it is your responsibility to make sure you understand all the material covered in each problem set.
In-class quizzes

In-class quizzes will be administered to those attending lectures at randomly assigned times during the term. The quizzes are intended to assess your understanding of concepts covered in lectures up to that point and to provide feedback to you regarding your grasp of the material covered in the class. The in-class quizzes will account for 15% of the final grade. If you are absent from class, no matter what the reason, your grade for that in-class quiz will be zero.

Weekly discussion section

Each weekly discussion section will be led by a TA who is a PhD student. The TAs are experienced teachers who have expertise in econometrics. Sections will provide instruction in STATA, including classes on good programming and data management practices that will be helpful for other classes. Sections will review problem sets and extend ideas covered in the problem sets and review and reinforce material covered in this class or Stats 111.

Mid-term exam

There will be one mid-term which will account for 15% of your course grade. The mid-term will be an open book examination. You may bring any books or materials you want to the class. You may not communicate with anyone inside or outside the classroom during the exam; this includes texting, emailing or any other form of electronic communication. There will be no make-up mid-term. If you are unable to take the mid-term, you must provide a written explanation before the mid-term. If the written explanation provides a reason that is clearly beyond your control, and I judge that it is appropriate to do so, then I will substitute your final grade for your midterm grade. In any other instances, your midterm grade will be zero.

Final exam

The final exam will be closed book and will cover all the material in the course. You do not need to memorize formulae for this class. You may bring one 8½*11 page of formulae with you for reference during the final exam; you may use both sides of the page. No other reference material is allowed. You may not communicate with anyone inside or outside the classroom during the exam; this includes texting, emailing or any other form of electronic communication. The final exam score will contribute 45% of the final grade for the course. If you miss the final exam for a reason that is outside of your control, with the approval of the Dean and if I judge that it is appropriate, you may be able to take the final exam the next time it is offered. In that case, I will substitute your grade in that exam for the final exam grade for this class after adjusting the grade so that the mean grade in both exams is the same. The data and time of the final exam is determined by the Registrar and it cannot be rescheduled.

Class document sharing

Please do not upload any of the material provided to you for this class to a server, file host or similar service or share the material with anyone not currently enrolled in the class. The material is copyright protected. This includes problem sets, exams, answer keys, hand outs and slides.

Reading

The recommended text for this class is

I encourage you to purchase this book. You may buy a paper or electronic copy. You do not need access to on-line resources. You may buy an earlier edition of the book. If you find you do not like the presentation in Wooldridge's book, you might consider looking at:


None of these books covers statistical theory in a comprehensive manner. If during the course you feel you need a statistical reference, you should refer to the text you used in your statistics course. The books that I recommend for background are:


If you find that book tough, take a look at


In addition, I will provide handouts throughout the course to supplement the lectures and textbook. There is no shortage of alternative text books and there is a large amount of material on-line that will supplement this course. The class web-site has links to some of the on-line material.

**Course Outline and Required Reading**

Readings from Wooldridge are intended to complement the lectures and I encourage you to read the appropriate chapters before class.

1. *Introduction to econometrics*  
   Wooldridge Chapters 1 and 19
2. *Simple linear regression model*  
   Wooldridge Chapter 2, 9.5, 9.6
3. *Fundamentals of multiple regression*  
   Wooldridge Chapter 3, 9.2 9.3, 9.4
4. *Theory of estimation and inference*  
   Wooldridge Appendices B and C
5. *Linear regression model: Inference*  
   Wooldridge Chapter 4, 5
6. *Linear regression model: Interpretation*  
   Wooldridge Chapter 6
7. *Indicator variables*  
   Wooldridge Chapter 7
8. *Non-spherical errors: Heteroskedasticity and correlated errors*  
   Wooldridge Chapter 8
9. *Limited dependent variable models*  
   Wooldridge Chapter 17
10. *Omitted variables and sample selectivity*  
    Wooldridge Chapter 9
11. *Instrumental variable estimation and two stage least squares*  
    Wooldridge Chapters 15 and 16
12. *Panel data methods*  
    Wooldridge Chapters 13 and 14

(c) Duncan Thomas 2017
If, after class, you have difficulty with the lecture notes and Wooldridge’s presentation, you should consult one of the alternative texts. They are listed, with chapter references, below. Alternative readings are identified only to assist you and are not required.

**Alternative readings**

**Sections 1, 2 and 3: Introduction to regression model**
- Angrist and Pischke: Chapters 1 and 2
- Goldberger: Chapters 1 and 2
- Gujarati: Chapters 1, 5 and 6
- Hill, Griffiths and Lim: Chapters 1, 2 and 4
- Stock and Watson: Chapter 1

**Section 4: Theory of estimation and inference**
- Goldberger: Chapters 2-4
- Gujarati: Chapters 2, 3
- Hill, Griffiths and Lim: Chapters 1P, 3
- Stock and Watson: Chapters 2-3

**Section 5, 6 and 7: Classical multiple regression model**
- Angrist and Pischke: Chapter 2
- Goldberger: Chapters 6-12
- Gujarati: Chapters 7-9
- Hill, Griffiths and Lim: Chapters 5-7
- Stock and Watson: Chapters 4-7

**Sections 8, 9 and 10: Relaxing assumptions of the regression model**
- Goldberger: Chapters 13-17
- Gujarati: Chapters 10-14
- Hill, Griffiths and Lim: Chapter 8
- Stock and Watson: Chapters 8, 9 and 11

**Sections 11: Unobserved heterogeneity and instrumental variable methods**
- Angrist and Pischke: Chapter 3
- Goldberger: Chapters 18 and 20
- Gujarati: Chapter 15
- Hill, Griffiths and Lim: Chapters 10-11
- Stock and Watson: Chapter 12

**Section 12: Panel data methods**
- Angrist and Pischke: Chapter 5
- Gujarati: Chapters 10, 11 and 12
- Hill, Griffiths and Lim: Chapter 15
- Stock and Watson: Chapter 10