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Abstract

We investigate how households choose where to live, how neighborhoods affect
the ability of children, and the sensitivity of optimal neighborhood choices to rents.
We use data from the Federal Reserve Bank of New York Consumer Credit Panel to
estimate a discrete dynamic model of location choice among renters in Los Angeles
county. We allow for over 100 “types” of people in our sample, and estimate utility
of every tract in Los Angeles County for each type. We then use panel data from the
Los Angeles Family and Neighborhoods Survey to estimate the impact of each Census
tract in Los Angeles county on child ability. We find that neighborhoods vary greatly
in their impact, and that neighborhoods in low poverty areas providing the highest
benefits to child ability are generally the most expensive. We conclude by estimating
the sensitivity of neighborhood choice to rents for each type of person in the Consumer
Credit Panel. Importantly, the most price-sensitive types tend to live in Census tracts
with the highest poverty concentrations. We simulate a “Moving to Opportunity” type
experiment in our data, in which people residing in high poverty neighborhoods are
given a rental voucher to move to a low-poverty neighborhood. Child outcomes do
not improve in these simulations; households receiving vouchers tend to move to the
least expensive and lowest value-added eligible neighborhoods. We show if households
receiving vouchers had been less price sensitive, or had chosen neighborhoods randomly
among the eligible set, child outcomes would have improved significantly.
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1 Introduction

In this paper, we investigate how households choose a neighborhood to live, how neigh-

borhoods affect the cognitive ability of children, and how sensitive the neighborhood-choice

decision is to changing rents and the impact of neighborhoods on child ability. These topics

have been studied before, but our approach and our data are new. Our bottom line is that

neighborhoods vary in their impact on child ability and parents differ in the amount they

are willing to pay to live in a high value-added neighborhood. Ultimately, we reconcile the

apparently contradictory findings of the “neighborhood effects” literature and the “MTO”

literature. Researchers in the neighborhood effects literature tend to estimate a sizable po-

tential impact of neighborhoods on child ability; but the Moving-to-Opportunity (MTO)

experiment, which randomly subsidized families to move to low poverty and presumably

high impact neighborhoods, show no such neighborhood effects. Neighborhood selection is

the key. We show the type of people targeted in the MTO experiment are extremely sensitive

to rents. Once they receive a housing voucher, they typically choose among the lowest cost

neighborhoods from the eligible set. Perhaps not surprisingly, low cost neighborhoods in

low poverty areas tend to have a relatively low impact on child achievement, explaining the

result.

Our paper has three sections. In the first, we specify and estimate a dynamic model of

location choice, in the spirit of Kennan and Walker (2011) and Bayer, McMillan, Murphy, and

Timmins (2015). There are only a few such studies due to lack of detailed panel data. In our

case, we use panel data from the Federal Reserve Bank of New York Consumer Credit Panel.

This is a 5% random sample of U.S. adults with an active credit file and any individuals

residing in the same household; to our knowledge this is the first paper to use these data to

estimate a location choice model. We restrict our sample to renters residing in Los Angeles

County; we study renters to mitigate the influence of availability of credit on location choice,

and we focus on Los Angeles County because we have detailed data on neighborhood quality

in Los Angeles at the Census tract level. The advantage of our data, and unlike all previous

studies that we are aware of, is that we have a very large sample (more than 1.75 million

person-year observations), allowing us to estimate a full vector of parameters for 144 “types”

of people. Included in this vector of parameters is a set of 100 parameters that determines the

net utility for each Census tract in Los Angeles county. We show for any type of household,

preferences (net utility) for Census tracts vary greatly; and, for any given Census tract, net

utility of living in that tract varies across types. These differences in preferences are key

to understanding how people adjust their optimal neighborhood choices in the event they

receive subsidies to live in one of a fixed set of neighborhoods.
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In our second section, we estimate the impact of neighborhoods, in our case specific

Census tracts in Los Angeles county, on the cognitive ability of children. There is a large

literature in the social sciences studying these “neighborhood effects” on child ability, ado-

lescent behavior, health, labor earnings, and other individual level outcomes. Empirical

studies using observational data often find strong associations between neighborhood qual-

ity, broadly defined, and positive individual-level outcomes: See Leventhal and Brooks-Gunn

(2000) and Durlauf (2004) for recent surveys. While these studies typically attempt to ac-

count for selection issues,1 the fact that individuals endogenously sort into neighborhoods

leaves open the possibility of non-causal explanations for these patterns.2

Relative to the existing literature, we make two contributions. First, in our estimation

we use a new longitudinal dataset, the Los Angeles Family and Neighborhood Survey (LA

FANS). These data allow for substantially richer controls than are typically available in

observational studies of neighborhood effects. Second, unlike other papers in the literature

of which we are aware, we estimate the impact of neighborhoods on child ability using a

“value added” approach, in which student outcomes are regressed on neighborhood fixed

effects and a set of individual-level controls including, most importantly, lagged child ability

scores. This approach has been applied widely in assessing teacher quality (for ex. Kane and

Staiger (2008) and Chetty, Friedman, and Rockoff (2014)). A key advantage of this approach

for our application is that the method recovers estimates of the quality of specific units,

neighborhoods in our case, instead of the average quality of neighborhoods with particular

observable characteristics (average income level, racial composition, etc.), which is the typical

approach in the neighborhood effects literature. We find that there is economically important

variation in neighborhood value-added across census tracts in Los Angeles County: Variation

in the neighborhood value-added that children are exposed to between LA FANS waves

explains about 5% of the cross-sectional variance in child ability. In support of a causal, as

opposed to selection-driven, interpretation of our neighborhood value-added estimates, we

find that after one has controlled for children’s lagged (Wave 1) test scores and demographics,

controlling additionally for variables such as parental ability, parental demographics, and

household income and assets, which are strongly predictive of child ability in the cross-

section, adds very little in the way of explaining Wave 2 test scores in the value-added

framework.

1For example, Cutler and Glaeser (1997) study the impact of segregation on outcomes of African-
Americans using topographical features of cities as instruments for location choice and Aaronson (1998)
measures neighborhood effects by studying outcomes of siblings at least three years apart in age after a
move.

2See Aaronson (1998) for examples of instruments used by other researchers in this field and their potential
limitations.
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In the third section, we reconcile the results of the neighborhood effects literature, in

which neighborhoods meaningfully influence child outcomes, and the results of the MTO

experiment. Similar to Todd and Wolpin (2006), we run counterfactual simulations of our

decision model to understand the implications of a controlled experiment. Moving to Oppor-

tunity (MTO) was a randomized control trial beginning in the 1990s that randomly assigned

a group of households eligible to live in low income housing projects in five U.S. cities to three

different groups; (i) a treatment group that received a Section 8 housing voucher that in the

first year could be applied only in Census tracts with a poverty rate under 10% and could

be applied unconditionally thereafter, (ii) a second treatment group that received a compa-

rable Section 8 housing voucher with no location requirement attached, and (iii) a control

group that received no voucher. Summarizing the medium to long term impacts of MTO,

Sanbonmatsu, Kling, Duncan, and Brooks-Gunn (2006), Kling, Liebman, and Katz (2007)

and Ludwig, Duncan, Gennetian, Katz, Kessler, Kling, and Sanbonmatsu (2013) show that

on average the MTO treatment successfully reduced exposure to crime and poverty and im-

proved the mental health of female children, but failed to improve child ability, educational

attainment, or physical health.3

Many view the results from MTO as evidence against the hypothesis that neighborhoods

can have large effects on a child’s development of skills and educational attainment. How-

ever, the results are open to multiple interpretations. One interpretation is that, indeed,

the findings of large neighborhood effects from earlier observational studies are driven en-

tirely by selection and that true neighborhood effects are small. A second interpretation

is that because treated families chose their neighborhoods endogenously in response to the

MTO subsidy, the ITT (intent to treat) effect of the MTO subsidy offer differs substantially

from the true ATE (average treatment effect) of lower poverty neighborhoods on outcomes:

See Aliprantis (2015), Clampet-Lundquist and Massey (2008) and Pinto (2014) for related

discussions.

Using our estimated model, we first perform baseline simulations replicating the MTO

experiment, and then perform counterfactual experiments to better understand why MTO

did not improve child outcomes if neighborhood effects are in fact important. We start

by estimating the price sensitivity of each of our estimated types of households using the

instrumental variables approach of Bayer, Ferreira, and McMillan (2007). This estimate is

required for our simulations because the MTO experiment changes the relative price of var-

ious neighborhoods. Then we simulate the neighborhood choices of households that begin

in neighborhoods with public housing developments but are offered the choice of taking a

rental voucher that is only valid in low poverty-rate neighborhoods, as in MTO. Importantly,

3Recent work by Chetty, Hendren, and Katz (2015) argues that MTO positively affected adult wages.
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in our simulations we show that households that take the subsidy move to the low poverty

neighborhoods with the lowest neighborhood value-added, on average. This occurs because

the households that receive an MTO voucher are very sensitive to prices, and the highest-

value-added neighborhoods in low poverty tracts are also the most expensive. We next cut

through the issue of non-random neighborhood choice by directly simulating the impact that

MTO would have had on exposure to neighborhood value-added households had been ran-

domly assigned to neighborhoods with similar poverty rates as those chosen by subsidized

households. Under this simulation we find child cognitive ability meaningfully improved.

As a final check that our results are driven entirely by selection based on prices, and not

systematically different preferences for neighborhoods, we simulate choices of MTO-eligible

households receiving a voucher after assigning to these households the average price sensitiv-

ity of households currently living in low poverty tracts. The results are almost identical to

those when households choose eligible tracts randomly: Child cognitive ability meaningfully

improved.

2 Location Choice Model

We consider the decision problem of a household head deciding where his or her family

should live. As in Kennan and Walker (2011) and Bayer, McMillan, Murphy, and Timmins

(2015), we model location choices in a dynamic discrete choice setting. For purposes of

exposition, we write down the model describing the optimal decision problem of a single

family which enables us to keep notation relatively clean. When we estimate the parameters

of this model, we will allow for the existence of many different “types” of people in the data.

Each type of person will face the same decision problem, but the vector of parameters that

determines payoffs and choice probabilities will be allowed to vary across types of people.

The family can choose to live in one of J locations. Denote j as the family’s current

location. We write the value to the family of moving to location ` given a current location

of j and current value of a shock ε` (to be explained later) as

V (` | j, ε`) = u (` | j, ε`) + βEV (`) (1)

In the above equation EV (`) is the expected future value of having chosen to live in ` today.

We assume the household problem does not change over time, explaining the lack of time

subscripts.

u is the flow utility the agent receives today from choosing to live in ` given a current
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location of j and a value for ε`. We assume u is the simple function

u (` | j, ε`) = δ` − κ · 1`6=j + ε` (2)

δ` is the flow utility the household receives this period from living in neighborhood `, net of

rents and other costs; κ is the sum of all costs (utility and financial) a household must pay

when it moves to a different neighborhood i.e. when ` 6= j; and ε` is a random shock that is

known at the time of the location choice. ε` is assumed to be iid across locations, time and

people. The parameters δ` and κ may vary across households, but for any given household

δ` and κ are assumed fixed over time. ε` induces otherwise identical households living at the

same location to optimally choose different future locations.

Denote ε1 as the shock associated with location 1, ε2 as the shock with location 2, and

so on. In each period after the vector of ε are revealed (one for each location), households

choose the location that yields the maximal value

V (j | ε1, ε2, . . . , εJ) = max
`∈1,...,J

V (` | j, ε`) (3)

EV (j) is the expected value of (3), where the expectation is taken with respect to the vector

of ε.

While this model looks simplistic, it is the workhorse model used to study location choice.

Differences in models reflect specific areas of study and availability of data. For example,

in their study of migration across states, Kennan and Walker (2011) replace δ with average

wages after adjusting for cost of living and allow κ to vary with distance. Bishop and

Murphy (2011) and Bayer, McMillan, Murphy, and Timmins (2015) specify δ as a linear

function of spatially-varying amenities with the aim of recovering individuals’ willingness to

pay for those amenities. We allow the δ’s to vary flexibly across neighborhoods and across

households, with the aim of realistically forecasting the substitution patterns that are likely

to occur in response to government policies that change the relative prices of neighborhoods.

When the ε are assumed to be drawn i.i.d. from the Type 1 Extreme Value Distribution,

the expected value function EV (j) has the functional form

EV (j) = log

{
J∑
`=1

exp Ṽ (` | j)

}
+ ζ (4)

where ζ is equal to Euler’s constant and

Ṽ (` | j) = δ` − κ · 1` 6=j + βEV (`) (5)
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That is, the tilde symbol signifies that the shock ε` has been omitted. Additionally, it can

be shown that the log of the probability location ` is chosen given a current location of j,

call it p (` | j), has the solution

p (` | j) = Ṽ (` | j) − log

{
J∑

`′=1

exp
[
Ṽ (`′ | j)

]}
(6)

Subtract and add Ṽ (k | j) to the right-hand side of the above to derive

p (` | j) = Ṽ (` | j)− Ṽ (k | j) − log

{
J∑

`′=1

exp
[
Ṽ (`′ | j)− Ṽ (k | j)

]}
(7)

One approach to estimating model parameters such as Rust (1987) is to solve for the value

functions at a given set of parameters, apply equation (7) directly to generate a likelihood

over the observed choice probabilities, and then search for the set of parameters that maxi-

mizes the likelihood. This approach is computationally intensive because it requires solving

for the value functions at each step of the likelihood, which involves backwards recursions

using equation (4). In cases such as ours, involving many parameters to be estimated, this

approach is computationally infeasible.

Instead, we use the approach of Hotz and Miller (1993) and employed by Bishop (2012)

in similar work to proceed. This approach does not require that we solve for the value

functions. Note that equation (5) implies

Ṽ (` | j)− Ṽ (k | j) = δ` − δk − κ [1`6=j − 1k 6=j] + β [EV (`)− EV (k)] (8)

But from equation (4),

EV (`)− EV (k) = log

{
J∑

`′=1

exp Ṽ (`′ | l)

}
− log

{
J∑

`′=1

exp Ṽ (`′ | k)

}
(9)

Now note that equation (6) implies

p (k | `) = Ṽ (k | `) − log

{
J∑

`′=1

exp
[
Ṽ (`′ | `)

]}
(10)

p (k | k) = Ṽ (k | k) − log

{
K∑
`′=1

exp
[
Ṽ (`′ | k)

]}
(11)
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and thus

log

{
J∑

`′=1

exp
[
Ṽ (`′ | `)

]}
− log

{
K∑
`′=1

exp
[
Ṽ (`′ | k)

]}

is equal to

Ṽ (k | `)− Ṽ (k | k) − [p (k | `)− p (k | k)]

= −κ · 1` 6=k − [p (k | `)− p (k | k)]
(12)

The last line is quickly derived from equation (5). Therefore,

EV (`)− EV (k) = − [p (k | `)− p (k | k) + κ · 1`6=k] (13)

and equation (8) has the expression

Ṽ (` | j)− Ṽ (k | j) (14)

= δ` − δk − κ [1 6̀=j − 1k 6=j] − β [p (k | `)− p (k | k) + κ · 1`6=k]

Combined, equations (7) and (14) show that the log probabilities that choices are observed

are simple functions of model parameters δ, κ and β and of observed choice probabilities. In

other words, a likelihood over choice probabilities observed in data can be generated without

solving for value functions.

We estimate the model using panel data from the Federal Reserve Bank of New York

Consumer Credit Panel. The panel is comprised of a 5% random sample of U.S. adults with

an active credit file and any individuals residing in the same household as an individual from

that initial 5% sample.4 For years 1999 to the present, the database provides a quarterly

record of mortgage and consumer loan balances, payments and delinquencies, a credit score

(specifically the Equifax risk score), and, most important for our application, the Census

block of residence. To match the annual frequency of our location choice model, we use

location data from the first quarter of each calendar year.

We restrict our sample to individuals who, from 1999 through 2013, are never observed

outside of Los Angeles county and who never hold a home mortgage, yielding 1,787,558

person-year observations. We study renters to mitigate any problems of changing credit

conditions and availability of mortgages during the sample window; and we study Los Angeles

4The Consumer Credit Panel includes all individuals with 5 out of the 100 possible terminal 2-digit SSN
combinations. While the leading SSN digits are based on the birth year/location, the terminal SSN digits
are as good as randomly assigned.
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in particular to link our estimates of δ to measures of neighborhood value-added on child

outcomes we have available for Census tracts in Los Angeles (to be discussed later). We

exclude from our estimation Census tracts with fewer than 150 rental units and tracts that

are sparsely populated in the northern part of the county. The panel is not balanced, as

some individuals’ credit records first become active during the sample period.

An advantage of the size of our data is that we can estimate a full set of model pa-

rameters for many “types” of people, where we define a type of person based on observable

demographic and economic characteristics. This stands in contrast to previous studies of

neighborhood choice such as Bayer, McMillan, Murphy, and Timmins (2015) where, due to

lack of data, the authors restrict variation in model parameters across the population.

We stratify households into types using an 8-step stratifying procedure. We begin with

the full sample, and subdivide the sample into smaller “cells” based on (in this order): the

racial plurality of the 1999 Census block of residence (4 bins),5 5 age categories (cutoffs at

30, 45, 55, and 65), number of adults in the household (1, 2, 3, 4+), and then the presence of

an auto loan, credit card, student loan and consumer finance loan. We do not subdivide cells

in cases where doing so would result in at least one new smaller cell with fewer than 20,000

observations. In a final step applied to all bins, we split each bin into three equally-populated

types based on within-bin credit-score terciles. When all said and done, this procedure yields

144 types of households.

Overall, there are 1,748 tracts in our estimation sample. If we were to estimate a separate

value of δ for each tract and for each type, this would require us to estimate more than 250,000

parameters. For parsimony, for each type we specify that the utility of location j, δj, is a

function of latitude (latj) and longitude (lonj) of that location according to

δj =
K∑
k=1

akBk (latj, lonj) (15)

The Bk are parameter-less basis functions. We set K = 100 for each type, such that with

144 types we estimate (100 + 1)× 144 = 14, 544 parameters.

To define the log likelihood that we maximize we need to introduce some more notation.

Let i denote a given person, t a given date (quarter) in the sample, `it as person i′s starting

location in period t and `′it as person i′s observed choice of location in period t. Denote τ as

type and the vector of parameters to be estimated for each type as θτ = (a1, a2, . . . , aK , κ).

5For individuals who enter the sample after 1999, we classify them based on the racial plurality of the
block where they are first observed.
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The log likelihood of the sample is∑
τ

∑
i∈τ

∑
t

p (`′it | `it; θτ ) (16)

p (.) is the model predicted log-probability of choosing `′it given `it. For each τ we use the

quasi-Newton BFGS procedure to find the vector θτ that maximizes the sample log likelihood.

Due to our large number of types and tracts, it is impossible to report all parameter

estimates. Instead, we summarize the estimates by examining the model’s in-sample fit and

compare the full model’s predictions to the predictions of a more restricted model with fewer

types. Table 1 reports actual annual cross-tract migration rates in our sample. About 8-

1/2 percent of our sample moves to a different tract in each year, and that percentage falls

from just above 11 percent for those under 30 to just above 3 percent for those aged 65

and above. Figure 1.a compares the estimated model’s predicted migration rates to these

values. The model slightly overstates annual migration rates, but replicates the pattern of

declining migration with age. Figure 1.b plots annual average migration flows for each j-to-`

tract pair versus the model-predicted migration flows. The scatter plot falls tightly along

the 45-degree line, showing that the model’s predicted flows fit the data well.

Figure 2 compares the tract to tract flows predicted by our full model to the flows pre-

dicted by an alternative, similarly-estimated version of our model with just four types defined

by race-ethnicity (white, black, Hispanic, and other). Panel 2.a compares the two models’

predicted non-migration shares across tracts. The two model’s predictions along this dimen-

sion are closely, though not perfectly, aligned. Panel 2.b compares the two models’ predicted

shares migrating between various combinations of sample tracts. This comparison shows

that the restricted model’s predictions miss significant variation in tract to tract flows, sub-

stantially over-predicting flows between some tract pairs and substantially under-predicting

flows between other pairs. These patterns suggest that allowing for rich heterogeneity in

preferences over prices and locations within broad demographic groups is crucial if one’s aim

is to recover realistic patterns of substitutability between neighborhoods.6

6 Figures 3 through 6 illustrate the flexibility of our specification across types and across neighborhoods
graphically. Figure 3 shows a map of Los Angeles county for reference, and figures 4, 5 and 6 show spatial
estimates of δ for three different types. Different types place very different relative values on the same
location, which would be consistent with types making very different location decisions. This dramatic
variation across people in the relative value of neighborhoods argues for an estimation approach that allows
for many types, which is only possible with very a large data set such as the consumer credit panel.
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3 Neighborhood Effects

Figures 4, 5, and 6 show the net relative utility three different types receive from neigh-

borhoods (Census tracts) in Los Angeles county when all values of ε are set to zero. A goal

of Urban and Public Economists is to understand the intrinsic value of different neighbor-

hood attributes to different types of people. In this section, we study how neighborhoods

impact child cognitive abilities. We do not take a stand on whether tract-by-tract variation

we uncover arises from differences in school quality, peer effects, or something else. Rather,

we attempt to recover the net effect of location choices on child development.

In the next section of the paper, we match our tract-level estimates of neighborhood

effects to net relative utility we estimated in the previous section. Unlike Bishop (2012) and

Bayer, McMillan, Murphy, and Timmins (2015), we do not attempt to recover households’

willingness to pay for neighborhoods’ contributions to child development separately from

other local amenities. Instead our aim is to forecast the impact of various subsidy schemes

on targeted families’ exposure to these neighborhood contributions. Since we do recover

households’ willingness to pay for each neighborhood’s full amenity bundle, we are able to

forecast the impact of targeted subsidy schemes on recipients’ exposure to neighborhood-

value-added to children, whether households’ value that particular amenity itself or value

other amenities that are correlated with it.

We use confidential panel data from the Los Angeles Family and Neighborhoods Survey

(LA FANS) for this part of our analysis. The LA FANS study was designed specifically

to investigate neighborhood influences on a variety of outcomes for families, adults, and

children; see Pebley and Sastry (2011). The survey stratified 65 census tracts using 1990

boundaries in Los Angeles County. Roughly 50 households in each census tract were selected

at random for inclusion in the survey. A randomly selected adult in the household was

interviewed, as well as a randomly selected child. If the household had more than one child,

a randomly selected sibling was also interviewed. Further, if the selected child’s mother was

in the household, she was interviewed as the primary caregiver. If she was absent, the actual

primary caregiver was interviewed.

The LA FANS data has the advantage of sampling by census tract, so that we observe

many households within a small geographic region.7 The LA FANS oversamples poor neigh-

borhoods, but the 65 census tracts are distributed across much of Los Angeles. 3,085 house-

holds were interviewed between 2000 and 2002 (wave 1), of which 1,242 were re-interviewed

between 2006 and 2008 (wave 2). New households were admitted into the LA FANS sample

7This is in contrast with other geo-coded panel datasets such as the Panel Survey of Income Dynamics
or the National Longitudinal Study of Youth.
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in the second wave. Detailed information on the housing status (rentership versus owner-

ship), family characteristics, and child outcomes were collected from respondents and census

tract information was collected in both waves.

We study two different cognitive skill measures as dependent variables. These measures

are the child’s score on Woodcock Johnson tests as described in Schrank, McGrew, and

Woodcock (2001) for applied problems (“math”) and passage comprehension (“reading”),

tests used in many MTO studies. We restrict our sample to children who had valid measure-

ments for both waves and we eliminate from our sample children with missing observations

in some of our control variables. This reduces our sample to 1, 260 for our math skill measure

and 1, 274 for our reading skill measure.8

We compute measures of neighborhood value added in a manner that is analogous to a

standard technique in the education literature for computing teacher value added. Following,

for instance, Kane and Staiger (2008) and Chetty, Friedman, and Rockoff (2014) we work

with the statistical model for the production of several child ability measures (Ai,j,t),

Ai,j,t = Z ′i,j,t−Tψ + vi,j,t ; vi,j,t = Tµj + εi,j,t , (17)

where i indexes children, j indexes neighborhoods, t indexes time, Zi,j,t−T is a vector of

observable child and family characteristics measured at time t − T , T is the time between

LA FANS waves, µj(i) is a causal (annualized) neighborhood “value-added” effect, and εi,j,t

is an idiosyncratic child/family effect. Consistent with the value-added approach, splines of

lagged values of these variables are inluded as controls along with splines of lagged values

of the Woodcock Johnson test of letter-word identification and a behavioral problems index

as described in (Peterson and Zill, 1986). Our controls include parental cognitive ability

(also captured by Woodcock Johnson tests), education, earnings, and assets. It also includes

family structure (number of children), language spoken, race, and gender of child. We present

descriptive statistics of our key dependent and independent variables in Table 2.

Following the teacher value added literature, we compute empirical Bayes estimates of

neighborhood value added estimates µ̂j. The slope coefficients ψ are estimated in a first

stage by regressing ability scores Ai,j,t on Zi,j,t−T and a set of neighborhood fixed effects.9

8A major reason for a lack of skill measurement in both waves is the child’s age. Only children under
18 were administered the Woodcock Johnson tests. This means that only children who were under 18 in
wave 2, i.e. aged 4 to 14 in wave 1 depending on the interview timing, would be included. Furthermore, new
entrants to the survey would be disqualified since we only see their skills once.

9This approach is important, because the slope coefficients estimated by OLS (without including tract
fixed effects) are likely to attribute a portion of any true neighborhood effects µj to the covariates in the likely
event that endogenous sorting leads some covariates to be correlated with neighborhood effects. Including
neighborhood fixed effects insures that ψ is identified only from within-neighborhood variation in the Z.
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Neighborhood value added measures are then computed in a second stage using,

µ̂j =
1

T

( 1

Nj

∑
i∈j

v̂i,j,t

)( σ̂2
µ

σ̂2
µ + σ̂2

ε/Nj

)
(18)

In the above equation Nj is the number of observations in neighborhood j, σ̂2
µ is the

standard deviation of the estimated neighborhood fixed effects and σ̂2
ε is the standard de-

viation of child outcomes after controlling for all Z terms and neighborhood effects. The

first term in parentheses in the equation above is the average of the estimated residuals

v̂i,j,t = Ai,j,t−Z ′i,j,t−T Ψ̂ within neighborhood j. The second term in parentheses shrinks this

average toward zero as in Chetty, Friedman, and Rockoff (2014). This correction accounts

for extra variation in estimated neighborhood effects arising from sampling uncertainty, i.e.

small sample sizes in each neighborhood.10

Table 3 summarizes our regression results, showing model fit across a number of spec-

ifications.11 The outcome variable is the relevant standardized test score administered in

the second LA FANS wave, and the sample includes all sample children appearing in both

survey waves. Overall, the neighborhood fixed effects and our full set of controls explain 50

percent of the variation in math outcomes and 42 percent of reading outcomes. As the first

row of table 3 shows, neighborhood fixed effects alone explain 18-19 percent of the variation

in test scores across children. Once we add splines for lagged child scores, specification 2, the

regressions explain about 41-48 percent of the variation. We interact demographic informa-

tion about the child with splines of the lagged test scores and with each other, specification

3, which boosts the R2 to 50% for reading and 57% for math. Information about the par-

ents ability and demographics (specification 4) and household income and assets if positive

(specification 5, the full model) explain very little of the child’s outcomes, conditional on the

other variables in the regression.12

Figure 7 shows how our estimated distribution of neighborhood value added changes with

each of the specifications. The black line corresponds to specification 1, the regression with

only neighborhood fixed effects. The dotted red line is for specification 2, the same as 1

10The intuition for the correction is from the measurement error literature. Assuming that the value-
added research design is sound, each estimated neighborhood fixed effect will equal the neighborhood’s
actual value-added plus random noise occurring due to sampling variability. While a child’s neighborhood’s
actual value-added should enter a forecast of the child’s ability one-for-one by definition, noisily measured
neighborhood value-added should enter a forecast less than one-for-one due to attenuation bias. “Shrinking”
the noisily measured estimate appropriately undoes this attenuation bias, leaving a linearly unbiased forecast
of the neighborhood’s contribution.

11A full set of regression results is available on request.
12All demographic variables and income and assets are measured during wave 1 of the LA FANS Survey.
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but with splines in lagged child scores; the dashed-red line adds to that child characteristics

(specification 3); the solid red line adds parental ability and demographics (specification

4); and the dashed blue line is the full model, specification 5, including income and assets.

Consistent with the results in table 3, the neighborhood distributions do not change much

once the model includes lagged test scores and child controls. Using our full specification, we

estimate that the standard deviation of neighborhood value added accumulating between LA

FANS waves accounts for about 5% of the cross-sectional variance in child ability. A non-

causal explanation for these economically important estimated neighborhood value added

effects would require that selection into neighborhoods based on unobservables accounts for

a significantly larger share of observed differences in average ability across neighborhoods

than selection into neighborhoods based on parental education, income, and assets (Altonji,

Elder, and Taber, 2005).

In order to better understand our value-added measures, we correlate them with var-

ious neighborhood characteristics including race, poverty rates, and school quality. The

correlations are shown in Table 4. The size of the correlations are generally small, but the

correlations are typically in the direction we expect, such as the positive correlation of in-

come and negative correlation of unemployment. As expected, our value added measures is

positively correlated with the quality of the attached public schools (specifically, measures of

the schools’ own value added published by the L.A. Times), though fact that this correlation

is relatively weak suggests that most of our measured neighborhood effects are driven by

mechanisms other than the quality of local schools.

The LA FANS data cover 65 of Los Angeles County’s roughly 2000 Census tracts. To

continue, we impute neighborhood value added estimates for the non-LA FANS tracts in Los

Angeles by taking spatial moving averages of the LA FANS-based estimates. Specifically, we

compute:

µ̂j =

∑
j′∈LAFANS

φ
(dist(j, j′)

h

)
µ̂j′

∑
j′∈LAFANS

φ
(dist(j, j′)

h

) (19)

where φ() is a normal kernel, dist(j, j′) is the distance between the centroids of tracts j and

j′, and h is the bandwidth. To select a bandwidth, we first repeatedly implement a leave-one-

out jacknife version of this procedure within the LA FANS sample over a range of bandwidths

and select the bandwidth that minimizes the mean squared deviation of these spatial moving

averages from tracts’ actual value added estimates. We then apply the procedure to all tracts

using this optimal bandwidth. The optimal bandwidth is just above one mile, illustrated by
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8 for the passage comprehension value added estimates.

Figure 9 shows the proximity of non-LA FANS Census tracts to the nearest LA FANS

Census tract separately by poverty category. The solid red line the cumulative density

function for tracts with a poverty rate greater than 30%. About 70% of these tracts in Los

Angeles county are located within two miles of a tract sampled in the LA FANS data, and

the modal tract in this poverty category is located less than one mile from an LA FANS

tract. Reflective of LA FANS’ oversampling of poor tracts, on average low poverty Census

tracts are farther from an LA FANS tract.

4 Reconciling Large Neighborhood Effects with MTO

Our finding of large “neighborhood effects” is squarely in line with an earlier literature

that estimates these effects: See Leventhal and Brooks-Gunn (2000) and Durlauf (2004)

for recent surveys. While these studies typically attempt to account for selection issues,13

the fact that individuals endogenously sort into neighborhoods leaves open the possibility of

non-causal explanations for these patterns.14

Recognizing the limitations of observational studies, the literature on neighborhood ef-

fects has devoted considerable attention recently to the “Moving to Opportunity” randomized

experimental intervention. Moving to Opportunity (MTO) was a randomized control trial

begining in the 1990s that randomly assigned a group of households eligible to live in low

income housing projects in five U.S. cities to three different groups; (i) a treatment group

that received a Section 8 housing voucher that in the first year could be applied only in

Census tracts with a poverty rate under 10% and could be applied unconditionally there-

after, (ii) a second treatment group that received a comparable Section 8 housing voucher

with no location requirement attached, and (iii) a control group that received no voucher.

Summarizing the medium to long term impacts of MTO, Sanbonmatsu, Kling, Duncan, and

Brooks-Gunn (2006), Kling, Liebman, and Katz (2007) and others show that on average

the MTO treatment successfully reduced exposure to crime and poverty and improved the

mental health of female children, but failed to improve child ability, educational attainment,

or physical health.15

13For example, Cutler and Glaeser (1997) study the impact of segregation on outcomes of African-
Americans using topographical features of cities as instruments for location choice and Aaronson (1998)
measures neighborhood effects by studying outcomes of siblings at least three years apart in age after a
move.

14See Aaronson (1998) for examples of instruments used by other researchers in this field and their potential
limitations.

15Recent work by Chetty, Hendren, and Katz (2015) argues that MTO positively affected adult wages.
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But do the MTO results prove that neighborhood effects are small? Perhaps not. Suppose

there is variation in neighborhood value-added in tracts with a poverty rate under 10%;

and, suppose that rents are higher for tracts with greater value-added. Once households

receive a voucher to live in a tract with pverty rate under 10%, they must decide whether to

move to a high-rent, high-value-added tract or a low-rent, low-value-added tract. Figure 10

gives a stylized graphical illustration of the range of possible outcomes after an MTO-style

intervention. In both panels, the x-axis represents neighborhood value-added; the y-axis

represents housing rent; the solid black line shows the set of available combinations for

the high-poverty neighborhoods; the dashed line shows the set of available combinations

for the low-poverty neighborhoods; and the red lines show indifference curves.16 The top

panel shows one possible outcome from MTO: As households move from high-poverty to

low-poverty tracts via the MTO rent subsidy, their rent falls and their child value-add rises.

The bottom panel shows a case where child value-added falls after the MTO rent subsidy.

Ultimately, the change in child outcomes after the rent subsidy is received depends on ideas

from classic microeconomics: Changes to the slope of the budget line, and income and

substitution effects.

Further, a first look at our data suggests relative prices, income and substitution effects

may be of first order importance. Table 5 reports estimates from descriptive hedonic regres-

sions relating these neighborhood value added measures to median monthly housing rents

from the 2000 Decennial Census for each Census tract. The first column reports regressions

for only the 62 LA FANS tracts; the second column reports the same results for all 1,748

Census tracts in Los Angeles county in our neighborhood-choice study; and the third col-

umn is the same as the second but it also includes basic demographic information in the

regression.

These regressions show that the neighborhood rent gradient with respect to child ability

value added is substantially steeper in low poverty Census tracts than in high poverty Census

tracts. Consider two otherwise identical Census tracts, but with one tract offering 1 s.d.

more Math ability of value added than the other over the course of 10 years.17 According

to estimates from the third column, this would be associated with a negligible decrease in

monthly rent of $4 for tracts with a poverty concentration between 10% and 25%. For tracts

with a poverty concentration of less than 10%, the implied difference in monthly rent is a

staggering $659. If a household wants to move into a low poverty neighborhood with high

neighborhood value-added, this will require much higher monthly rent than moving into a

16Households dislike housing rent and like value added, so households are best off in the south-east corner
of the graph.

17Referring to the top panel of Figure 9, think of the first tract as +0.05 and the second tract as -0.05 for
neighborhood value added per year.

15



low poverty neighborhood with low child value-added.

Figure 11) visually tells a similar story. The figure plots neighborhood value added

against median monthly rent for three groups of Census tracts: Low poverty concentration

(0-10%), middle (10-25%), and high poverty (25% and above). These figures show how the

relative price of neighborhood quality changes with tract poverty rates. The change in rent

associated with an increase in neighborhood quality is greatest in low poverty areas; that is,

the slope of the green line (low poverty) is greater than the slope of the blue line (middle),

which is greater than that of the red line (high poverty). At best, in high poverty areas, child

value added appears to be unpriced and, in fact, high child value added may be associated

with lower rents.

Even though neighborhood quality is relatively expensive in low poverty tracts, house-

holds may be willing to pay to live in those neighborhoods conditional on receiving a large

enough rent subsidy. Therefore, within the context of our full model, to understand the

impact of a rent subsidy program such as MTO on neighborhood choice (and thus child out-

comes), we need to understand how utility of each neighborhood varies with rent. Denote

as δ̃jτ our estimate of indirect utility of neighborhood j for given type τ . We specify that

δ̃jτ is a linear function of rent, observables characteristics of tract j, Oj, and unobserved

characteristics of tract j, ζj

δ̃jτ = −ατ · rentj + λτ · Oj + ζj (20)

α – the rate at which indirect utility varies with rents – in equation (20) cannot be

estimated using OLS because equilibrium rents will almost certainly be correlated with

unobserved (but valued) characteristics of neighborhoods, ζj. We use an IV approach to

estimate (20) that is common in the IO and Urban literature, for example Bayer, Ferreira,

and McMillan (2007). In O we include characteristics of the housing stock 0-5 miles from

tract j and our instruments are characteristics of the housing stock 5-20 miles from the tract.

These instruments affect equilibrium rent in j but do not directly affect δj.

We find remarkable variation in our estimates of α by type. We summarize this variation

by reporting the average value of α by initial Census tract of residence for the people in

our Consumer Credit Panel estimation sample. This average value of α varies by Census

tract because the mix of types varies by tract. We restrict our attention to tracts with a

poverty rate less than 40%. There are tracts in our sample with higher poverty rates, but as

Figure 12 shows, the number of types represented in each tract falls dramatically after 40%.

Figure 13 shows our estimates of the variation in the average value of α by poverty tract of

residence. The figure shows that people living in high-poverty tract areas are, on average,
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about twice as sensitive to changes in rent as people living in the lowest poverty tract areas.

Table 5 and figures 11 and 13 foreshadow our results. Figure 13 suggests the types of

people currently living in high poverty tract areas are quite sensitive to the level of rent; and,

Figure 11 and Table 5 suggests the relative price of a high-value-added neighborhood in a low-

poverty-rate neighborhood is much greater than that of a high-poverty-rate neighborhood.

It seems quite possible that child outcomes may not change – or might even worsen – if

we subsidize people to move from high poverty neighborhoods to low poverty neighborhoods

without further restricting which low poverty neighborhood they move to. If this were indeed

the case, it would reconcile the apparent contradiction of large neighborhood effects in the

observational literature and small experimental results of MTO.

Given our type-specific estimates of α, we conduct simulation experiments to better

understand the implications of the MTO experiment. Specifically, we use our estimated

model to simulate location sequences under the following several policy scenarios, restricting

analysis to the households in our sample likely to have been eligible for MTO had they lived

in an MTO area at the time of the experiment.18

• (Baseline) No subsidies or vouchers.

• (MTO-A) MTO style vouchers. Households who move to a Census tract with a poverty

rate under 10% at t = 1 receive a Section 8 housing voucher that may be used in per-

petuity. Households are responsible for paying any excess above the voucher amount,

and that excess is deducted from indirect utility using the type-specific estimate of α,

i.e. utility from tract j is δ̃j − α ·max [rentj − voucher, 0] for all eligible tracts j.

• (MTO-B) Randomly assigned poverty reduction. Assign households to neighborhoods

randomly according to the distribution of neighborhood poverty-rates that arises under

scenario MTO-A.19

• (MTO-A, Price-Inelastic) Identical to MTO-A, but with all targeted households’ value

of α (price sensitivity) set equal to the average value of α among pre-MTO residents

living in tracts with poverty rate of 10% or less.

18Our baseline simulations target households residing at t = 0 in a Census tract with at least 500 public
housing units. Alternative targeting rules (results not shown) targeting eligibility to residents of tracts with
very high poverty rates and/or rates of public assistance yield similar results.

19Specifically, the procedure is; (1) pool the set of MTO-A simulated Census tract choices and the uncondi-
tional list of sample Census tracts. (2) Estimate a probit model predicting the probability that a record comes
from the simulated data using only tract-poverty-rate categories as explanatory variables, and obtain the pre-
dicted probability pj (propensity score) that a record from tract j comes from the simulated data. (3) Draw

MTO-B simulated locations from the full set of Census tract with probability Pr(j) =
1

J

( pj
1− pj

)(1− p
p

)
.
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Figure 14 shows the simulated distribution of the population by Census tract poverty

rate in our baseline case and among MTO-A “compliers,” i.e. those who moved to an under

10% poverty tract at t = 1, during the first 18 years following implementation of the policy.

Comparing the black solid line (baseline) with the blue dashed line (MTO experiment),

our simulations find that most of the people induced by MTO to move to a low poverty

neighborhood choose to remain in a low poverty neighborhood for an extended period of

time. In the MTO-A simulation, only 12% of person-years are spent in a neighborhood with

a poverty rate greater than 10%; whereas in the baseline 74% of person-years are lived in

those neighborhoods.

To summarize the expected impact on child ability of this reduction to poverty exposure,

we compute an expected measure of accumulated neighborhood value-added exposure for a

given individual i under government policy p as,

µ̂TOTi,p =
1

S

S∑
s=1

t∑
τ=1

µ̂`(i,t,s,p) (21)

where `(i, t, s, p) is the location chosen by individual i in year t under policy p and for

given simulation draw s. If, as suggested by Chetty and Hendren (2015), neighborhood

effects are additive over time in the child ability production function (i.e. there are no

complementarities across time periods) and neighborhood quality affects children equally at

all ages, then these measures will characterize actual total neighborhood contributions to

child ability. If child investments exhibit dynamic complementarities and early childhood

investments are especially productive as in Cunha, Heckman, and Schennach (2010), these

measures will understate neighborhoods’ long-term contributions to child ability. In either

case, we view these measures as useful summaries for characterizing policies’ impacts.

Figure 15 plots policy impacts on cumulative reading-scores value-added (top panel) and

math-scores value-added (bottom panel), relative to the baseline scenario. In both panels,

the thick dashed blue line shows the predicted impact of MTO-B, the solid black line shows

the predicted impact of MTO-A, and the thin dashed black line shows the predicted impact

of the price-inelastic MTO-A scenario. One test of the accuracy of our research program is

to see if MTO-A’s predicted impact relative to baseline is consistent with the zero-impact of

the MTO experiment on children’s math and reading ability. Indeed, the solid line on both

plots shows an approximately zero predicted impact for the MTO-A scenario.

MTO’s zero impact has been cited as evidence that the “average treatment effect” (ATE)

of lower poverty neighborhoods on children’s cognitive ability is negligible. An advantage of

our framework is that we can directly compute this ATE by studying the impact of the MTO-
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B scenario that randomly assigns lower poverty neighborhoods. The MTO-B simulations find

that, accumulated over a full 18-year childhood, the poverty reduction generated by MTO

would improve both math and reading scores by about 0.2 standard deviations if low-poverty

neighborhoods were assigned at random. These are substantial impacts, equivalent to closing

about 20% of the black/white achievement gap according to Yeung and Pfeiffer (2009).

Taken together, the MTO-A and MTO-B results suggest that MTO subsidized house-

holds selected into especially low value-added tracts among the set of subsidized under 10%

poverty tracts. We hypothesized that this non-random selection occurs because the subsi-

dized households are highly price-sensitive and the rent/value-added gradient is especially

steep among the low-poverty MTO-eligible tracts. Testing this hypothesis directly, the thin

dashed lines in both panels confirm that MTO does recover the ATE of poverty reduction

when targeted households’ price sensitivity is recoded to the average price-sensitivity of the

initial residents of low-poverty areas.

5 Alternative Relocation Subsidies

TBD

6 Conclusion

TBD
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Table 1: Annual Cross-Tract Migration Rates

% Moving Annually
All 8.4
Race:

White 8.0
Black 8.9
Hispanic 8.6
Other 8.9

Age:
Under 30 11.2
30-44 9.3
45-54 7.4
55-64 5.6
65+ 3.2
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Table 2: Descriptive Statistics

Mean S.D. Obs.

Dependent Variables (LAFANS wave 2)

Math (z‐score) 0.153 1.249 1260

Reading (z‐score) ‐0.195 1.199 1274

Control Variables (LAFANS wave 1)

Math (z‐score) 0.197 1.074 1357

Reading (z‐score) 0.229 1.116 1357

Hispanic 0.581 1357

Black 0.120 1357

Male 0.520 1357

Parental IQ 87.851 15.416 1357

Parent dropout 0.326 1357

Parent high school 0.210 1357

Parent some college 0.292 1357

Parent bachelor 0.102 1357

Parent graduate 0.064 1357

Log earnings 9.731 3.052 1283

Log assets 2.727 1.911 1076

Table 3: Fit of Value Added Models

Specification Controls R2 Adj. R2 R2 Adj. R2

(1) Neighborhood Fixed Effects 0.177 0.136 0.186 0.146

(2) + Splines in Lagged Child Scores 0.481 0.446 0.412 0.373

(3) + Splines interacted w/ Child Controls 0.570 0.514 0.503 0.440

(4) + Parent Ability and Demographics 0.581 0.524 0.516 0.451

(5) + Lagged Income and Assets 0.583 0.525 0.519 0.453

(6) Optimal FIC 0.502 0.465 0.423 0.378

Math Reading
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Table 4: Descriptive Correlations

Neighborhood Characteristics   Math VA Reading VA

Share hispanic ‐0.216 ‐0.262

Share black 0.036 0.016

Average household income 0.090 0.147

Welfare ‐0.116 ‐0.119

Poverty ‐0.067 ‐0.077

Unemployment ‐0.073 ‐0.050

School quality 0.100 0.104

Share of elderly 0.077 0.128

Note: The dependent variable in each regression is the Census tract median rent for the
year 2000. The value added measures included in this table are for the Woodcock Johnson
“applied problems” component. For column (1), the sample is restricted to Census tracts
covered by the LAFANS with sufficiently many children sampled to compute neighborhood
value-added estimates. Columns (2) and (3) include all of the Census tracts from Los Angeles
county that we include in our neighborhood-choice analysis. Robust standard errors are in
parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 5: Descriptive Hedonic Regression

Controls LAFANS All All

Value Added 99.31 ‐442.6 ‐616.1**

(1,563) (329.2) (313.1)

Value Added x (Poverty 10%‐25%) 413.7 1,187** 612.0

(2,237) (462.1) (439.6)

Value Added x (Poverty < 10%) ‐3,980 1,533*** 1,275***

(2,469) (447.2) (424.9)

Poverty 10%‐25% 175.6** 153.8*** 76.82***

(71.47) (13.40) (13.71)

Poverty <10% 500.5*** 462.8*** 270.8***

(77.75) (13.86) (18.41)

Pct. Hispanic ‐348.3***

(24.29)

Pct. Black ‐289.4***

(33.90)

Constant 580.2*** 578.3*** 860.4***

(47.47) (10.16) (21.26)

Observations 59 1,916 1,916

R‐squared 0.448 0.401 0.464
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Figure 1: Model Fit
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Figure 2: Predictions of the Full Model vs. the Restricted (4-Type) Model
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Figure 3: Los Angeles County

Figure 4: Example Spatial Spline - Type 93
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Figure 5: Example Spatial Spline - Type 119
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Figure 6: Example Spatial Spline - Type 129
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Figure 7: Estimated Neighborhood Value-Added Distributions by Specification
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Figure 8: Bandwidth Selection Criteria
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Figure 9: Los Angeles Census Tract Locations Relative to LA FANS Census Tracts
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Figure 10: MTO’s Predicted Effect on Child Value-Added when the Hedonic Rent/Value-
added gradient is steeper in low-poverty areas than high poverty areas
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Figure 11: Rent, Neighborhood Value Added, and Poverty Rates
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Figure 12: Counts of α
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Figure 13: Average Value of α by Poverty Rate of Census Tract

Figure 14: Distribution of Residents by Poverty Rate of Census Tract, Baseline and MTO
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Figure 15: Counterfactual Simulations

-.
1

0
.1

.2
C

um
. E

xp
os

ur
e 

E
ffe

ct
 (

R
ea

di
ng

 S
D

’s
)

0 5 10 15
Years Since Subsidy Implementation

MTO-A
MTO-A (Price-Inelastic)
MTO-B

(a) Reading Scores

-.
1

0
.1

.2
C

um
. E

xp
os

ur
e 

E
ffe

ct
 (

M
at

h 
S

D
’s

)

0 5 10 15
Years Since Subsidy Implementation

MTO-A
MTO-A (Price-Inelastic)
MTO-B

(b) Math Scores

36


	Introduction
	Location Choice Model
	Neighborhood Effects
	Reconciling Large Neighborhood Effects with MTO 
	Alternative Relocation Subsidies
	Conclusion

