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Abstract

For infinitely mixed moment equality models, this paper proposes a θ-dependent self

map, whose fixed point exists if and only if θ belongs to the identified set. Its contraction

property in large sample is discussed. This method provides a computationally attractive

way to implement the ELVIS, especially when the number of moment equalities is not

small as is often the case with panel data. Applying this method to the PSID, I directly

obtain set estimates for the average counterfactual effects of an exogenous birth and

an exogenous child on female labor supply, accounting for multi-dimensional continuous

heterogeneity, state-dependence, and endogenous fertility decisions in observed data.
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1 Introduction

Consider the infinitely mixed model represented by the dg equality restrictions

Eπ̃×µ̃ [g(U,Z; θ)] = 0, (1.1)

where µ̃ is the probability measure of the continuous unobservables U supported on U ⊂ Rdu ,

and π̃ is the conditional probability measure of observables Z given U , where Z is supported on

Z ⊂ Rdz . A researcher is interested in θ, which may be a structural primitive or a counterfactual

outcome. Reversely let π denote the probability measure of Z and let µ denote the conditional

probability measure of U given Z. Then, π̃ × µ̃ = µ× π is true, and (1.1) can be rewritten as

Eµ×π [g(U,Z; θ)] = 0. (1.2)

With PU|Z denoting a collection of absolutely continuous regular conditional probability mea-

sures supported on U ⊂ Rdu given measurable subsets of Z, the identified set for θ is

Θ0 =

{
θ ∈ Θ

∣∣∣∣ inf
µ∈PU|Z

∥Eµ×π [g(U,Z; θ)]∥ = 0

}
(1.3)

for a compact set Θ ⊂ Rdθ .

The optimization problem in (1.3) is practically challenging as µ is nonparametric. Schen-

nach (2014) proposes a finite-dimensional optimization problem (ELVIS) to characterize the

identified set Θ0, and therefore substantially alleviates the dimensionality problem. While a

variety of computational methods are available to implement the ELVIS, this paper proposes

a practically appealing contraction fixed point approach. The proposed method has an advan-

tage especially when the number dg of moment equalities is not small, as is often the case with

panel data. While the Newton-Raphson method, for example, could be also used to implement

the ELVIS, it requires to execute du-fold numerical integration as many as 2d2g + dg times per
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each iteration step. On the other hand, the contraction fixed point method proposed in this

paper requires to execute du-fold numerical integration only dg times per each iteration step.

For not so small dg and/or du, this difference may well matter for even the most patient empir-

ical researcher sitting to wait for dozens of empirical estimates. This practical computational

procedure was feasible to derive due to a specific form of the first-order condition for the ELVIS.

In Section 2, I propose a θ-dependent self map, whose fixed point exists if and only if θ

belongs to the identified set Θ0. In order to ensure convergence of the iterative procedure

to fixed points in large sample, I adapt the innovations of Kasahara and Shimotsu (2012a)1

to my methodological framework in Section 3. I apply this method to partial identification of

marginal effects for the binary choice dynamic panel model (Honoré and Tamer, 2006) extended

with correlated random coefficients. After presenting simulation studies in Section 4, I take

this model to the Panel Survey of Income Dynamics (PSID) with the empirical framework

of Hyslop (1999) and Keane and Sauer (2009) together with correlated random coefficients in

Section 5. The counterfactuals of my interest are the marginal effects of an exogenous birth or an

exogenous child on female labor supply decisions, accounting for continuous heterogeneity and

state dependence as well as the endogeneity of the fertility decisions in observed data. I directly

obtain partial identification of counterfactual marginal effects without having to identify the

heterogeneous primitives and without having to impose a full structural model in a similar spirit

to Bhattacharya (2015) and Hausman and Newey (2014). Obtained set estimates are consistent

with plausible economic stories of female labor supply. The empirical framework of this paper

is situated in the middle ground between the full structural approach and the IV approach – it

flexibly allows for policy-relevant counterfactual analysis that is not instrument-dependent, it

1Kasahara and Shimotsu (2012a) analyze contraction properties and propose the relaxation method to rein-

force the effectiveness of the iterative procedure of Aguirregabiria and Mira (2007).
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accommodates infinite heterogeneous types in a structural framework, and it is robust against

model mis-specifications.

2 The Fixed-Point Characterization

In this section, I construct a θ-dependent self map whose fixed point exists if and only if θ ∈ Θ0.

Section 2.1 provides the fixed point characterization in population. Section 2.2 provides the

fixed point characterization in a random sample.

2.1 In Population

Provided the moment functions g, the observed probability measure π, auxiliary functions

hj : U × Z × Θ → R for j ∈ {1, · · · , dg}, and an auxiliary conditional probability measure

ρ ∈ PU|Z , we define the self map Ψ( · , θ; g, h, ρ, π) : Rdg → Rdg for each θ ∈ Θ by

Ψ(γ, θ; g, h, ρ, π) ≡


∫ ∫ h1(u,z;θ)∫

h1(υ,z;θ)dρ(υ|z;θ)g(u, z; θ)
′dρ(u | z)dπ(z)

...∫ ∫ hdg (u,z;θ)∫
hdg (υ,z;θ)dρ(υ|z;θ)

g(u, z; θ)′dρ(u | z)dπ(z)



−1

× (2.1)


∫ ∫ (

1 + ln
(

eγ
′g(u,z;θ)∫

eγ
′g(υ,z;θ)dρ(υ|z;θ)

))(
h1(u,z;θ)∫

h1(υ,z;θ)dρ(υ|z;θ) −
eγ

′g(u,z;θ)∫
eγ

′g(υ,z;θ)dρ(υ|z;θ)

)
dρ(u | z)dπ(z)

...∫ ∫ (
1 + ln

(
eγ

′g(u,z;θ)∫
eγ

′g(υ,z;θ)dρ(υ|z;θ)

))(
hdg (u,z;θ)∫

hdg (υ,z;θ)dρ(υ|z;θ)
− eγ

′g(u,z;θ)∫
eγ

′g(υ,z;θ)dρ(υ|z;θ)

)
dρ(u | z)dπ(z)

 ,

where h = (h1, · · · , hdg)
′. This function Ψ has a convenient property to indicate the identified

set. In short, it will be claimed that θ belongs to the identified set Θ0 if and only if this

self map Ψ( · , θ; g, h, ρ, π) has a fixed point. A researcher may select any auxiliary functions

hj : U × Z × Θ → R and any auxiliary conditional probability measure ρ ∈ PU|Z , subject to

the following conditions.
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Condition 1. (i) Eρ×π

[
g(U,Z; θ)

(
h1(U,Z;θ)∫

h1(υ,Z;θ)dρ(υ|Z;θ)
, · · · , hdg (U,Z;θ)∫

hdg (υ,Z;θ)dρ(υ|Z;θ)

)]
is non-singular.

(ii) suppρ( · | z) = U for each z ∈ Z. (iii) Eπ [ln Eρ [exp(γ
′g(U,Z; θ) | Z]] exists and is

twice differentiable in γ.

Condition (i) makes sense of the definition of the self map Ψ containing the inverse of

Eρ×π

[
g(U,Z; θ)

(
h1(U,Z;θ)∫

h1(υ,Z;θ)dρ(υ|Z;θ)
, · · · , hdg (U,Z;θ)∫

hdg (υ,Z;θ)dρ(υ|Z;θ)

)]′
. Since both h and ρ are known to

the researcher as her choices, it is simply a matrix that consists of moments with respect to

the probability measure π of observables Z. Therefore, this condition (i) is empirically testable

with the standard matrix rank tests (e.g., Kleibergen and Paap, 2006). The last two conditions,

(ii) and (iii), are the same as the requirements for ρ by Schennach (2014), and are discussed

therein. Define the function g̃ : Z ×Θ× Rdg → Rdg by

g̃(z; θ, γ) ≡
∫
g(u, z; θ)eγ

′g(u,z;θ)dρ(u | z; θ)∫
eγ′g(u,z;θ)dρ(u | z; θ)

and we obtain the following lemma characterizing the solutions γ to Eπ [g̃(Z; θ, γ)] = 0 by a

fixed point of the self map Ψ( · , θ; g, h, ρ, π) : Rdg → Rdg .

Lemma 1. Suppose that the auxiliary functions h and the auxiliary measure ρ are chosen

subject to Condition 1. The moment equality Eπ [g̃(Z; θ, γ)] = 0 holds if and only if γ is a fixed

point of the self map Ψ( · , θ; g, h, ρ, π) : Rdg → Rdg .

Combining the ‘iff’ statement in this lemma with the ‘iff’ statement of Schennach (2014),

we can characterize the identified set Θ0 via the existence of a fixed point of the self map

Ψ( · , θ; g, h, ρ, π). In Schennach, it is shown that infµ∈PU|Z ∥Eµ×π [g(U,Z; θ)]∥ = 0 holds if

and only if infγ∈Rdg ∥Eπ [g̃(Z; θ, γ)]∥ = 0 under Condition 1 (ii) and (iii). Furthermore, the

minimizing γ exists in Rdg as we focus on the collection PU|Z of absolutely continuous conditional

probability measures µ. Therefore, the following theorem follows from Lemma 1.
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Theorem 1 (Fixed-Point Characterization of Identified Set). Suppose that the auxiliary func-

tions h and the auxiliary measure ρ are chosen subject to Condition 1. Then, θ ∈ Θ0 is true if

and only if the self map Ψ( · , θ; g, h, ρ, π) : Rdg → Rdg has a fixed point.

We emphasize that the auxiliary functions h and the auxiliary probability measure ρ can

be freely chosen by researchers as far as Condition 1 is satisfied. The existence of a fixed point

does not rely on the choice of them. By the theorem, a researcher can make decisions about

θ ∈ Θ0 by checking if Ψ( · , θ; g, h, ρ, π) has a fixed point.

2.2 In A Random Sample

To make decisions on the existence of a fixed point in a random sample, consider the sample-

counterpart self map Ψ( · , θ; g, h, ρ, π̂N), where π̂N denotes the empirical probability measure

of Z with sample size N drawn from the population probability measure π. For a small ε > 0,

consider the set of ε-fixed points defined by

γ∗
ε (θ; g, h, ρ, π̂N) ≡ {γ ∈ Γ | ∥Ψ(γ, θ; g, h, ρ, π̂N)− γ∥ < ε}

for a compact subset Γ ⊂ Rdg . Practically, we reach one of the points in γ∗
ε (θ; g, h, ρ, π̂N)

by stopping iterations after finite steps based on the small tolerance level ε under a suitable

contraction property to be discussed in the next section. The current section argues that this

approximation set γ∗
ε (θ; g, h, ρ, π̂N) of ε-fixed points may be used in a large sample to make

decisions on the existence of a fixed point of the population self map Ψ( · , θ; g, h, ρ, π) under a

given θ ∈ Θ. The following sampling process is assumed.

Assumption 1. (U,Z) is i.i.d. following µ× π.

In addition to Condition 1, we also require that the choice of the auxiliary functions h and

the auxiliary conditional probability measure ρ satisfies the following conditions.
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Condition 2. (i) Eρ×π [gj(U,Z; θ)hk(U,Z; θ)] exists for each coordinate pair j, k ∈ {1, · · · , dg}.

(ii) (γ, z) 7→
∫ (

1 + ln
(

eγ
′g(u,z;θ)∫

eγ
′g(υ,z;θ)dρ(υ|z;θ)

))(
hj(u,z;θ)∫

hj(υ,z;θ)dρ(υ|z;θ) −
eγ

′g(u,z;θ)∫
eγ

′g(υ,z;θ)dρ(υ|z;θ)

)
dρ(u | z) is con-

tinuous for each coordinate j ∈ {1, · · · , dg}.

(iii) Eπ

[
supγ∈Γ

∣∣∣Eρ

[(
1 + ln

(
eγ

′g(U,Z;θ)∫
eγ

′g(υ,Z;θ)dρ(υ|Z;θ)

))(
hj(U,Z;θ)∫

hj(υ,Z;θ)dρ(υ|Z;θ)
− eγ

′g(U,Z;θ)∫
eγ

′g(υ,Z;θ)dρ(υ|Z;θ)

)∣∣∣Z]∣∣∣]<
∞ for each coordinate j ∈ {1, · · · , dg}.

These conditions, together with Condition 1 and Assumption 1, guarantee that the sample-

counterpart self map Ψ( · , θ; g, h, ρ, π̂N) converges almost surely to the population self map

Ψ( · , θ; g, h, ρ, π) uniformly over Γ ⊂ Rdg (see Proposition 3 in Section B.1 in the appendix).

Using this uniform consistency result in turn yields the following proposition, showing that

the set γ∗
ε (θ; g, h, ρ, π̂N) of ε-fixed points is informative for the existence of a fixed point of

Ψ( · , θ; g, h, ρ, π) in a large sample.

Proposition 1. Suppose that Assumption 1 holds and that the auxiliary functions h and the

auxiliary measure ρ are chosen subject to Conditions 1 and 2. If Ψ( · , θ; g, h, ρ, π) has a fixed

point γ∗ ∈ Γ, then

lim
N→∞

P (γ∗
ε (θ; g, h, ρ, π̂N) ̸= ∅) = 1 for all ε ∈ (0,∞).

Conversely, if Ψ( · , θ; g, h, ρ, π) has no fixed point in Γ, then for some ε̄ > 0

lim
N→∞

P (γ∗
ε (θ; g, h, ρ, π̂N) ̸= ∅) = 0 for all ε ∈ (0, ε̄).

The first part of this proposition shows that, if there indeed exists a fixed point γ∗ ∈ Γ,

then γ∗
ε (θ; g, h, ρ, π̂N) is non-empty with probability approaching one in a large sample for

any tolerance level ε > 0. The second part shows that, if there exists no fixed point in Γ,

then γ∗
ε (θ; g, h, ρ, π̂N) is empty with probability approaching one in a large sample for small
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tolerance levels.2 Combining this proposition with the fixed point characterization by Theorem

1 in population, we can make decisions about θ ∈ Θ0 using the set γ∗
ε (θ; g, h, ρ, π̂N) of ε-fixed

points in a large sample with small values of ε > 0. The following section proposes contraction

mapping methods for finding an ε-fixed point.

3 The Iterative Procedure

3.1 Contraction Properties

In this section, we assume the null hypothesis that Ψ( · , θ; g, h, ρ, π) has a fixed point γ∗ ∈ intΓ

under θ ∈ Θ, and study the convergence properties of the iteration algorithm with the sample

counterpart self map Ψ( · , θ; g, h, ρ, π̂N). We let γ̂N denote the fixed point of Ψ( · , θ; g, h, ρ, π̂N),

if any exists. As a first auxiliary step, we show that this sample-counterpart fixed point γ̂N

converges almost surely to the population fixed point γ∗ under Assumption 1 and the follow-

ing assumption, as well as Conditions 1 and 2 for a choice of the auxiliary measure ρ – see

Proposition 4 in Section B.2 in the appendix.

Assumption 2. (i) infγ:∥γ−γ∗∥>r ∥Ψ(γ, θ; g, h, ρ, π)− γ∥ > 0 is true for each r > 0. (ii)

∂
∂γj

Ψ(γ∗, θ; g, h, ρ, π) ̸= ej for each coordinate j ∈ {1, · · · , dg}, where ej ∈ Rdg denotes the

j-th unit vector.

Part (i) states that γ∗ is the unique fixed point of the population self map Ψ( · , θ; g, h, ρ, π)

in Γ. Part (ii) in addition requires that the population self map Ψ( · , θ; g, h, ρ, π) in Γ is

“regular” at this fixed point γ∗, in the sense that it is not tangent to the identity map γ 7→ γ

2Apparently, the second result of Proposition 1 may sound vacuous if Γ is convex, in light of Brouwer’s Fixed

Point Theorem. However, I note that the self map Ψ( · , θ; g, h, ρ, π) with the domain restricted to Γ does not

necessarily map into Γ. As such, it is possible that Ψ( · , θ; g, h, ρ, π) has no fixed point in Γ even if Γ is convex.
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at γ = γ∗. One can imagine that, if the population self map were tangent at the fixed point,

then a sample counterpart fixed point γ̂N can even fail to exist with non-vanishing probability.

To study contraction properties of the sample counterpart self map Ψ( · , θ; g, h, ρ, π̂N),

it is convenient to have the uniform convergence of its first and second derivatives. In the

following condition, we strengthen Condition 2 (ii) and (iii) of the requirements for a choice

of the auxiliary functions h and the auxiliary conditional probability measure ρ, in order to

have the first and second derivatives of Ψ( · , θ; g, h, ρ, π̂N) converge almost surely to those of

Ψ( · , θ; g, h, ρ, π) uniformly over Γ ⊂ Rdg (see Proposition 5 in Section B.3 in the appendix).

Condition 3. For any partial derivation operator Dα
γ ≡ ∂|α|

∂γα with α ∈ Zdg
+ and |α| 6 2:

(i) (γ, z) 7→ Dα
γ

∫ (
1 + ln

(
eγ

′g(U,Z;θ)∫
eγ

′g(υ,Z;θ)dρ(υ|Z;θ)

))(
hj(U,Z;θ)∫

hj(υ,Z;θ)dρ(υ|Z;θ)
− eγ

′g(U,Z;θ)∫
eγ

′g(υ,Z;θ)dρ(υ|Z;θ)

)
dρ(u | z)

is continuous for each coordinate j ∈ {1, · · · , dg}.

(ii) Eπ

[
supγ∈Γ

∣∣∣Dα
γ Eρ

[(
1 + ln

(
eγ

′g(U,Z;θ)∫
eγ

′g(υ,Z;θ)dρ(υ|Z;θ)

))(
hj(U,Z;θ)∫

hj(υ,Z;θ)dρ(υ|Z;θ)
− eγ

′g(U,Z;θ)∫
eγ

′g(υ,Z;θ)dρ(υ|Z;θ)

)∣∣∣Z]∣∣∣]
< ∞ for each coordinate j ∈ {1, · · · , dg}.

We let γ̂0 ∈ Γ denote the initial point of iterations, and let γ̂ι = Ψ(γ̂ι−1, θ; g, h, ρ, π̂N)

denote the point of γ obtained after the ι-th iteration of the sample counterpart self map

Ψ( · , θ; g, h, ρ, π̂N). We also introduce the notation σ(M) to denote the largest eigenvalue of the

dg×dg matrixM ∈ M(dg, dg). The following proposition shows that, if σ(DγΨ(γ∗, θ; g, h, ρ, π)) <

1 is true where Dγ denotes the gradient operator, then the sample counterpart self map

Ψ( · , θ; g, h, ρ, π̂N) has a local contraction property in large sample.

Proposition 2. Suppose that Assumptions 1 and 2 hold and that the auxiliary functions h and

the auxiliary measure ρ are chosen subject to Conditions 1, 2 and 3. If σ(DγΨ(γ∗, θ; g, h, ρ, π)) <

1 is true, then there exists a neighborhood N ⊂ Γ of γ∗ such that for any initial value γ̂0 ∈ N

we have limι→∞ γ̂ι = γ̂N almost surely.
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When Ψ( · , θ; g, h, ρ, π̂N) does not have a contraction property, we can resort to the re-

laxation method (Başar, 1988; Ljungqvist and Sargent, 2004; Kasahara and Shimotsu, 2012a).

Consider the self map Ψ̃λ( · , θ; g, h, ρ, π) : Rdg → Rdg defined by the log linear combination of

Ψ( · , θ; g, h, ρ, π) and the identity map γ 7→ γ, i.e.,

Ψ̃λ(γ, θ; g, h, ρ, π) ≡ Ψ(γ, θ; g, h, ρ, π)λγ1−λ

Kasahara and Shimotsu (2012a; Proposition 5) show that there exist values λ such that the

property σ(DγΨ̃
λ(γ∗, θ; g, h, ρ, π)) < 1 holds under alternative cases depending on the eigenval-

ues of DγΨ(γ∗, θ; g, h, ρ, π).

In practice, there are a few caveats regarding the numerical implementation of the re-

laxation method. First, since γ is not positive in general, the computer program should be

designed appropriately to handle this feature.3 Second, since we do not know the true eigenval-

ues σ(DγΨ̃
λ(γ∗, θ; g, h, ρ, π)) in empirical applications, one needs to implement the relaxation

method over a list of values for the relaxation parameter λ in order not to miss a possible fixed

point – see Section 5 for a demonstration of this approach in our empirical application. This

feature of the proposed method may sound inconvenient, but it is not unique to this particular

method. For example, the Newton-Raphson method also lets a researcher choose a step size

parameter (or take its default value) in standard software packages. Third, note that the point

γ = 0⃗ is an absorbing state under the relaxation method, and hence starting iterations near

the origin had better be avoided.

In light of the first and third points listed in the previous paragraph, we ideally want

the contraction mapping to start from a point that is close to the fixed point γ̂N . I use

3There are a couple of alternative ways to handle this problem. The first approach is to let the iteration

procedure operate on complex numbers. The second approach is to fix the sign, and to let the iteration procedure

operate on absolute values. The latter approach works well only when the initial value γ̂0 has the correct signs.
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γ̂0 = −
[

1
N

∑N
i=1 V arρ(g(U,Zi; θ) | Zi)

]−1 [
1
N

∑N
i=1 Eρ [g(U,Zi; θ) | Zi]

]
as the initial point. This

expression is derived from a linear approximation of the sample counterpart of the first-order

conditions used in the proof of Lemma 1, and thus may be reasonably close to the fixed point

γ̂N . With all these devices, the contraction and fixed point approach are shown to perform well

with Monte Carlo simulations and the empirical application in Sections 4 and 5.

3.2 Computational Advantage of the Proposed Method

What is a practical advantage of using our contraction fixed point approach over alternative

methods? An answer to this question can be found in the components

(I)


∫ ∫ h1(u,z;θ)∫

h1(υ,z;θ)dρ(υ|z;θ)g(u, z; θ)
′dρ(u | z)dπ̂N(z)

...∫ ∫ hdg (u,z;θ)∫
hdg (υ,z;θ)dρ(υ|z;θ)

g(u, z; θ)′dρ(u | z)dπ̂N(z)

 and

(II)


∫ ∫ (

1 + ln
(

eγ
′g(u,z;θ)∫

eγ
′g(υ,z;θ)dρ(υ|z;θ)

))(
h1(u,z;θ)∫

h1(υ,z;θ)dρ(υ|z;θ) −
eγ

′g(u,z;θ)∫
eγ

′g(υ,z;θ)dρ(υ|z;θ)

)
dρ(u | z)dπ̂N(z)

...∫ ∫ (
1 + ln

(
eγ

′g(u,z;θ)∫
eγ

′g(υ,z;θ)dρ(υ|z;θ)

))(
hdg (u,z;θ)∫

hdg (υ,z;θ)dρ(υ|z;θ)
− eγ

′g(u,z;θ)∫
eγ

′g(υ,z;θ)dρ(υ|z;θ)

)
dρ(u | z)dπ̂N(z)


in the definition of our sample-counterpart self map Ψ( · , θ; g, h, ρ, π̂N). The first component

(I) is a dg×dg matrix, and the second component (II) is a dg×1 matrix. Every entry in each of

these matrices involves a du-fold integral. A useful feature of our self map is that its larger part

(I) does not involve γ at all. By this property, when we implement iterations of our self map

or its relaxed version, we do not need to compute this dg × dg matrix in each iteration step as

γ evolves through contraction mapping. Instead, it is sufficient to compute this dg × dg matrix

only once before the first iteration of contraction mapping starts. Therefore, our computational

procedure needs to implement the du-fold numerical integration only for each of the dg elements

of part (II) in each iteration step.

11



In contrast, the Newton-Raphson method, a popular alternative numerical method which

could also be used to implement the ELVIS, requires more computation. The Newton-Raphson

method uses (I′) the Jacobian matrix of the ELVIS criterion, as well as (II′) the criterion itself,

which are displayed below.

(I′)


∂

∂γ1

∫ ∫
g1(u,z;θ)eγ

′g(u,z;θ)dρ(u|z)∫
eγ

′g(u,z;θ)dρ(u|z;θ) dπ̂N(z) · · · ∂
∂γdg

∫ ∫
g1(u,z;θ)eγ

′g(u,z;θ)dρ(u|z)∫
eγ

′g(u,z;θ)dρ(u|z;θ) dπ̂N(z)

...
...

∂
∂γ1

∫ ∫
gdg (u,z;θ)e

γ′g(u,z;θ)dρ(u|z)∫
eγ

′g(u,z;θ)dρ(u|z;θ) dπ̂N(z) · · · ∂
∂γdg

∫ ∫
gdg (u,z;θ)e

γ′g(u,z;θ)dρ(u|z)∫
eγ

′g(u,z;θ)dρ(u|z;θ) dπ̂N(z)



(II′)


∫ ∫

g1(u,z;θ)eγ
′g(u,z;θ)dρ(u|z)∫

eγ
′g(u,z;θ)dρ(u|z;θ) dπ̂N(z)

...∫ ∫
gdg (u,z;θ)e

γ′g(u,z;θ)dρ(u|z)∫
eγ

′g(u,z;θ)dρ(u|z;θ) dπ̂N(z)


Similarly to our self map components, part (I′) is a dg × dg matrix, and part (II′) is a dg ×

1 matrix. Notice that every element in each of these matrices contains γ in a non-trivial

manner. Therefore, both (I′) and (II′) need to be computed in each iteration step as γ evolves.

Computation of part (I′) requires d2g numerical derivatives of the criterion function,4 each of

which in turn contains a du-fold numerical integral. Computation of part (II′) requires du-fold

numerical integration dg times. Thus, in total, the Newton-Raphson method needs to execute

du-fold numerical integration as many as 2d2g + dg times in each iteration step.

In summary, our approach has much computational advantage over popular alternative

methods. Our method requires du-fold numerical integrals to be executed only dg times in

each iteration step. On the other hand, the Newton-Raphson method, for example, requires to

compute du-fold numerical integrals as many as 2d2g + dg times in each iteration step. When

the number dg of moment equalities is not small as is often the case with panel data models,

4Numerical computation of the first order derivative (e.g., Judd, 1998; Section 2.5) requires double compu-

tation of the criterion.
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these two numbers, dg and 2d2g+dg, of times to implement du-fold numerical integration make a

huge difference.5 In such cases, the convenient feature of our self map will therefore have much

practical appeal to even the most patient empirical researchers sitting to wait for a large number

of empirical results. I remark that the Newton-Raphson method I picked for comparison in

this subsection is perhaps one of the most favorable alternative, and other methods that I did

not pick for comparison may require even more computation – see Judd (1998; Section 4.2) for

a list of alternative methods. Finally, since it uses a specific form of the first-order condition

of the ELVIS, our computationally attractive method may not be generalizable to non-ELVIS

objective functions.

4 Monte Carlo Simulations

Consider the binary choice dynamic panel model with correlated random coefficients:

Yi,t = 1 {Ui,1 + Ui,2Yi,t−1 + Ui,3Xi,t > ϵi,t} t = 2, · · · , T.

Econometricians observe the choice outcomes Yi = (Yi,1, · · · , Yi,T )
′ and covariates Xi = (Xi,1,

· · · , Xi,T )
′ for T time periods for each individual i = 1, · · · , N . Write Zi = (Y ′

i , X
′
i)

′ for

a short-hand notation. Econometricians do not observe correlated random coefficients Ui =

(Ui,1, Ui,2, Ui,3)
′, and do not know their distribution.6 The remaining unobserved variable ϵi,t

is a random shock following a known distribution with its cdf denoted by Φ. An unknown

5See Judd (1998; Section 7.5) for details of computational complexity for multivariate quadrature.
6Whereas a rich set of results are available for random-coefficient linear panel models (e.g., Hsiao and Pesaran,

2008), relatively less is known for random-coefficient binary choice models. Ichimura and Thompson (1998)

and Gautier and Kitamura (2013) develop conditions (including independence and large support restrictions) to

obtain point identification of the distribution of random coefficients for binary choice models. In this paper, I take

the position to be agnostic on these restrictions, but instead only obtain set estimates for certain counterfactuals.
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infinite-dimensional parameter governs the joint distribution of (Z ′
i, U

′
i)

′, and it in particular

features the initial conditions problem addressed by Wooldridge (2005) and Honoré and Tamer

(2006) in a closely related context. Provided the standard independence (predeterminedness)

condition ϵi,t ⊥⊥ (U ′
i , Yi,t−1, Xi,t)

′ for the random shocks, we can form the moment equalities

Eµ×π [(1, Yi,t−1, Xi,t)
′ (Yi,t − Φ (Ui,1 + Ui,2Yi,t−1 + Ui,3Xi,t))] = 0 (4.1)

for all t ∈ {2, · · · , T}, where π is the probability measure of Zi and µ is the conditional

probability measure of Ui given Zi.

Suppose that a researcher is interested in the marginal effect (cf. Honoré and Tamer,

2006; Section 3) of Xi,t on Yi,t, i.e., θ ≡ Eµ×π [Ui,3 · Φ′ (Ui,1 + Ui,2Yi,t−1 + Ui,3Xi,t)] where Φ′

denotes the first derivative of Φ. In this case, she may concatenate the moment equality

Eµ×π [θ − Ui,3 · Φ′ (Ui,1 + Ui,2Yi,t−1 + Ui,3Xi,t)] to (4.1) and form the moment equality of the

generic form (1.2), or Eµ×π [g(Ui, Zi; θ)] = 0⃗, where

g(Ui, Zi; θ) ≡



(1, Yi,1, Xi,2)
′ (Yi,2 − Φ (Ui,1 + Ui,2Yi,1 + Ui,3Xi,2))

...

(1, Yi,T−1, Xi,T )
′ (Yi,T − Φ (Ui,1 + Ui,2Yi,T−1 + Ui,3Xi,T ))

θ − Ui,3 · Φ′ (Ui,1 + Ui,2Yi,t−1 + Ui,3Xi,t)


.

This formulation conveniently allows one to directly partially identify the counterfactual effects

θ = Eµ×π [Ui,3 · Φ′ (Ui,1 + Ui,2Yi,t−1 + Ui,3Xi,t)] of marginal increase in Xi,t without having to

identify the heterogeneous primitives. This approach shares a similar spirit to Bhattacharya

(2015) and Hausman and Newey (2014), where they point- and partially identify the equiv-

alent variation and the compensating variation without having to identify the nonparametric

primitive structure.

We generate data by Ui ∼ N(µ,Σ), where µ = (−1.0, 0.0, 1.0)′ and Σ is a 3 × 3 matrix
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with 1.02 at the diagonal positions and 0.4 · 1.02 at the off-diagonal positions.7 The covariates

are generated endogenously by Xi,t =
1
3
(Ui,1 + Ui,2 + Ui,3) + ηi,t with an independent random

shock ηi,t ∼ N(0, 1). The random shock ϵ is generated independently from the standard logistic

distribution with its cdf denoted by Φ. Based on this specification, we run 100 time periods of

simulated binary choices before the initial time period t = 1 in order to have an approximately

stationary distribution of (Yi,t−1, Xi,t) | Ui by t = 1. By construction, therefore, there is a

non-trivial statistical dependence of (Yi,1, Xi,2) on Ui, which is the source of the aforementioned

initial conditions problem. The panel data sets of size N = 1, 000 and T ∈ {3, 4, 5, 6, 7, 8, 9, 10}

are generated. For each size, we run 1,000 Monte Carlo iterations. Like Honoré and Tamer

(2006), we aim to observe how the identified set becomes more informative as the data length

T increases.

To construct our self map Ψ, we use the auxiliary functions h ≡ exp(g) and use the prob-

ability measure of N((0, 0, 0)′, I3) for the auxiliary conditional probability measure ρ, where

I3 is the 3 × 3 identity matrix. For this artificial model, negative values of the parameter λ

allow for contraction of the relaxation method. It would be necessary to run iterations with

various values of λ ∈ R for actual empirical data for which a researcher does not know the true

eigenvalues. In the current section, on the other hand, we set λ = −1.0 throughout simulations

in the interest of time in finishing thousands of simulations.8

Table 1 displays the Monte Carlo probabilities of convergence to an ε-approximate fixed

point for the tolerance level ε = 0.0001. The probabilities are computed based on 1,000 Monte

Carlo iterations. In each Monte Carlo iteration, we run up to 100 self map iterations. The

7These numbers are selected in order to have the population mean marginal effects to have the approximate

value Eµ×π[Ui,3 · Φ′ (Ui,1 + Ui,2Yi,t−1 + Ui,3Xi,t)] ≈ 0.10 in the stationary distribution of (Z ′
i, U

′
i)

′.
8For the empirical application presented in Section 5, I do not know the true eigenvalues. Therefore, I will

use a list of various relaxation parameter values λ in order to avoid missing any potential fixed point.
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T = 3 T = 4 T = 5 T = 6 T = 7 T = 8 T = 9 T = 10

θ = 0.00 0.018 0.018 0.039 0.024 0.023 0.038 0.040 0.029

θ = 0.02 0.398 0.262 0.202 0.163 0.151 0.117 0.087 0.088

θ = 0.04 0.884 0.770 0.722 0.688 0.621 0.589 0.563 0.536

θ = 0.06 0.985 0.961 0.927 0.905 0.908 0.853 0.864 0.840

θ = 0.08 0.996 0.984 0.966 0.953 0.922 0.944 0.922 0.920

θ = 0.10 0.996 0.987 0.958 0.959 0.942 0.952 0.941 0.929

θ = 0.12 0.996 0.977 0.962 0.947 0.945 0.938 0.932 0.943

θ = 0.14 0.996 0.967 0.973 0.924 0.944 0.941 0.917 0.926

θ = 0.16 0.995 0.980 0.948 0.930 0.905 0.895 0.871 0.856

θ = 0.18 0.998 0.968 0.914 0.859 0.840 0.833 0.797 0.781

θ = 0.20 0.993 0.945 0.864 0.799 0.747 0.739 0.712 0.672

θ = 0.22 0.984 0.882 0.764 0.679 0.624 0.600 0.518 0.497

θ = 0.24 0.980 0.813 0.661 0.554 0.446 0.408 0.376 0.341

θ = 0.26 0.958 0.708 0.504 0.363 0.291 0.244 0.220 0.203

θ = 0.28 0.922 0.577 0.296 0.219 0.171 0.138 0.108 0.103

θ = 0.30 0.859 0.381 0.178 0.101 0.068 0.073 0.049 0.036

θ = 0.32 0.748 0.211 0.077 0.046 0.038 0.019 0.023 0.013

θ = 0.34 0.524 0.089 0.022 0.021 0.013 0.008 0.008 0.002

Table 1: Monte Carlo probabilities of achieving an ε-fixed point. The results are based on

the sample size of N = 1, 000, the tolerance level of ε = 0.0001, the relaxation parameter

of λ = −1.0, and 1,000 Monte Carlo iterations. The approximate true value, θ = E[Ui,3 ·

Φ′ (Ui,1 + Ui,2Yi,t−1 + Ui,3Xi,t)] ≈ 0.10, is indicated by a pair of border lines.
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T = 3 T = 4 T = 5 T = 6 T = 7 T = 8 T = 9 T = 10

θ = 0.00 0.024 0.016 0.022 0.033 0.024 0.020 0.028 0.027

θ = 0.02 0.442 0.274 0.200 0.158 0.132 0.103 0.086 0.086

θ = 0.04 0.949 0.870 0.810 0.770 0.742 0.689 0.692 0.668

θ = 0.06 0.995 0.987 0.959 0.937 0.933 0.911 0.905 0.911

θ = 0.08 0.999 0.991 0.974 0.962 0.952 0.940 0.940 0.925

θ = 0.10 0.999 0.990 0.976 0.956 0.958 0.948 0.946 0.929

θ = 0.12 1.000 0.987 0.965 0.964 0.953 0.947 0.953 0.943

θ = 0.14 0.999 0.982 0.966 0.959 0.946 0.927 0.926 0.919

θ = 0.16 0.996 0.985 0.958 0.916 0.886 0.862 0.856 0.851

θ = 0.18 1.000 0.973 0.930 0.845 0.836 0.782 0.749 0.736

θ = 0.20 0.996 0.965 0.881 0.796 0.679 0.665 0.601 0.602

θ = 0.22 0.997 0.924 0.782 0.621 0.555 0.505 0.434 0.347

θ = 0.24 0.990 0.872 0.637 0.467 0.349 0.292 0.266 0.238

θ = 0.26 0.987 0.773 0.469 0.320 0.187 0.165 0.118 0.112

θ = 0.28 0.965 0.613 0.286 0.146 0.089 0.065 0.051 0.037

θ = 0.30 0.940 0.389 0.106 0.057 0.023 0.026 0.021 0.014

θ = 0.32 0.813 0.158 0.039 0.011 0.010 0.013 0.006 0.008

θ = 0.34 0.616 0.058 0.011 0.007 0.006 0.002 0.003 0.003

Table 2: Monte Carlo probabilities of achieving an ε-fixed point. The results are based on

the sample size of N = 2, 000, the tolerance level of ε = 0.0001, the relaxation parameter

of λ = −1.0, and 1,000 Monte Carlo iterations. The approximate true value, θ = E[Ui,3 ·

Φ′ (Ui,1 + Ui,2Yi,t−1 + Ui,3Xi,t)] ≈ 0.10, is indicated by a pair of border lines.
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event of γ̂ι ̸∈ γ∗
ε (θ; g, h, ρ, π̂N) for all ι ∈ {1, · · · , 100} is considered as non-convergence. The

approximate true value, θ ≈ 0.10, is indicated by a pair of border lines in the table. First,

looking at any column in the table, observe that the convergence probability is high at and

around the approximate true value θ ≈ 0.10. Second, looking at the row for the approximate

true value θ ≈ 0.10, observe that the convergence probability does not substantially drop as

T increases in this row. Third, looking at any row far away from the approximate true value

θ ≈ 0.10, observe that the convergence probability substantially drops as T increases. From

these observations, we can see that the set estimates tend to shrink toward the approximate

true value θ ≈ 0.10 as T increases. This pattern of the simulation results is analogous to the

analysis by Honoré and Tamer (2006) on a related model. Table 2 displays the results based

on a larger sample size (N = 2, 000). Not surprisingly, the obtain bounds are approximately

the same as those in Table 1, because the identified sets will not change with the sample size.

On the other hand, we see that the sampling variation of the boundaries in Table 2 is sharper

than that of Table 1.

5 Inter-Temporal Female Labor Supply Decisions

Hyslop (1999) and Keane and Sauer (2009) study Markov models of inter-temporal female labor

supply decisions, where the current decision is modeled to depend on the previous labor force

participation state and individual unobserved heterogeneity as well as observed covariates.

In this framework, the spurious serial correlation of the labor supply decisions is explicitly

distinguished into two causal factors - the state dependence and heterogeneity. It is found that

the decisions are substantially affected by both of the two factors.

In this paper, I consider the Markov model of inter-temporal female labor supply decisions

18



extended with correlated random coefficients to allow for nonseparable interactions between

unobserved heterogeneity and observed explanatory factors. With this model, I aim to obtain

set estimates for the counterfactual marginal effects of an exogenous birth or an exogenous

child on labor supply decisions, controlling for the incidental parameters (heterogeneity) and

lagged labor supply (state dependence) as well as other observed characteristics.

There are two broad approaches used to answer similar empirical questions in the existing

literature. The first approach uses full structural models to allow for identification of all the

economic components of the model and counterfactual implications. While it is useful to answer

various economic and policy questions, this approach may be subject to mis-specifications

biases, and is generally incapable of handling infinite heterogeneous types. The second approach

uses instrumental variables. While it imposes less structural restrictions and allows for infinite

heterogeneous types, this approach obtains causal effects only among certain subpopulations

characterized by the instrumental variables, and may not always be able to answer relevant

economic and policy questions. The method proposed in this paper is situated in the middle

ground, allows for continuous heterogeneity, is robust against model mis-specifications, and is

capable of partially identifying various policy-relevant counterfactual implications of the model.

In studying female labor supply, it is crucial to account for the simultaneity or the endo-

geneity of fertility decisions and labor supply decisions – see Rosenzweig and Wolpin (1980),

Moffitt (1984), Mroz (1987), Hotz and Miller (1988), Jakubson (1988), Browning (1992), An-

grist and Evans (1998), Hyslop (1999), Keane and Sauer (2009) and Keane and Wolpin (2010).

We model the endgeneity through an infinite dimensional nuisance parameter, i.e., µ×π, which

reflects an implicit process where unobserved heterogeneity Ui simultaneously affects the cur-

rent labor supply and fertility decisions Zi,t, given Zi,t−1. One could of course impose an explicit

structural model for this simultaneous decision process. Constructing such a full model may
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certainly help the identified set to shrink, but it may incur a bias in case the shrinkage is due

to model mis-specifications. Because we can allow for fully nonparametric family of nuisance

parameters µ × π, it effectively identifies the counterfactual marginal effects robustly against

concrete structural specifications of the simultaneous decision process.

5.1 Data

Following earlier work (e.g., Hyslop, 1999), I use the Panel Survey of the Income Dynamics

(PSID) for the calendar years 1979-1985. This period contains waves 12–19 of the PSID. I use

the balanced portion of the panel through the period. The households with male heads with

continuously married couples are selected. The data consist of female individuals aged between

25 and 54 all the way from 1979 to 1985. Since the PSID truncates very high numbers for

earnings and income, I drop observations with >99,999 dollars of earnings and/or income at

any year in the period. To compute the “other family income” that is supposed to affect the

female labor supply decision, I take the difference of the total annual family income and the

annual wage income of the female. Since the other family income will be transformed into the

logarithms for the econometric analysis, I drop observations with zero or negative values for

this field. After dropping observations with these attributes and missing values, the sample

size reduces to N = 1, 413.

Table 3 displays summary statistics of the sample. The values indicate the sample means.

The values in parentheses indicate the standard errors. Since the survey asks for labor supply,

income, and earnings for the previous calendar year, we shift the first year from 1979 to 1978,

and the final year from 1985 to 1984, in order to reflect the actual time of their realizations.

The other time-varying variables, such as fertility and family composition, are associated with

the current survey years. The first row shows that the female labor supply rates exhibit an
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Calendar Year

N = 1, 413 1978 1979 1980 1981 1982 1983 1984

Labor Supply 0.692 0.707 0.707 0.702 0.697 0.723 0.752

(0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.011)

Log Other Income 9.738 9.859 9.942 9.995 10.051 10.104 10.179

(Nominal Value) (0.018) (0.015) (0.017) (0.020) (0.018) (0.019) (0.020)

Log Other Income 9.738 9.752 9.708 9.663 9.659 9.681 9.713

(Deflated to 1978 Value) (0.018) (0.015) (0.017) (0.020) (0.018) (0.019) (0.020)

Fertility 0.085 0.061 0.052 0.042 0.042 0.038

(0.007) (0.006) (0.006) (0.005) (0.005) (0.005)

# Children Aged 1–2 0.280 0.271 0.260 0.235 0.187 0.156

(0.013) (0.013) (0.013) (0.012) (0.011) (0.011)

# Children Aged 3–5 0.312 0.316 0.304 0.287 0.281 0.270

(0.014) (0.014) (0.014) (0.014) (0.013) (0.013)

# Children Aged 6–13 0.800 0.816 0.810 0.831 0.841 0.808

(0.025) (0.025) (0.024) (0.025) (0.025) (0.025)

Black 0.230

(0.011)

Education 12.427

(0.059)

Table 3: Summary statistics of the Panel Survey of Income Dynamics (PSID). The displayed

values are the sample means. The values in parentheses indicate the standard errors.
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overall increasing trend over time. The second row shows the logarithm of other family income,

which we assume explains a part of the female labor supply decision. The third row deflates

the values in the second row to the 1978 value using the average annual consumer price index

(CPI) provided by the U.S. Department of Labor, Bureau of Labor Statistics. These real values,

unlike the nominal ones, stay roughly constant over time during the period of interest. The

fourth row shows that fertility, which may well be a partially alternative choice outcome to the

female labor supply, steadily decreases over time during the period of interest. Accordingly,

the number of younger children, shown in the fifth and sixth rows, decrease over time during

the period. On the other hand, the number of children aged 6–13 shown in the seventh row

does not exhibit any monotonic trend over time. The time-constant variables, such as years of

education and race, are displayed in the table for the purpose of providing a better idea about

the underlying population of the sample. However, these constant variables will not be used

in our econometric analysis in the following subsections because any constant variable will be

absorbed by the time-constant heterogeneous parameters.

5.2 Empirical Specifications

With the standard logistic cdf Φ, we consider the following model of female labor supply:

Pr(Yi,t = 1 | Yi,t−1, Xi,t, αi, βi, γi) = Φ
(
αi + βiYi,t−1 +X ′

i,tγi
)

for t = 2, · · · , T.

The outcome variable, Yi,t, is the binary indicator of labor supply by female individual i in year

t. Note that the inclusion of the lagged labor supply indicator allows for state dependence,

while the inclusion of the correlated random coefficients (αi, βi, γ
′
i)

′ allows for heterogeneity.

Distinguishing these two causal factors has long been discussed in a broad literature at least

since Feller (1943), and particularly in economics (e.g., Heckman, 1981ab).
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The covariate vector Xi,t includes the fertility dummy, the logarithm of other family income,

the number of children between 1 and 2, the number of children between 3 and 5, and the

number of children between 6 and 13. For this list of explanatory variables, I follow the

empirical specification of Hyslop (1999; Section 4). As noted in the previous subsection, we

will not include the time-constant variables, such as years of education and race, because they

are anyway absorbed by the time-constant heterogeneous parameter αi.

To have the notations of this model consistent with those in the general formulation of

this paper, we let Ui = (αi, βi, γ
′
i)

′ denote the vector of all the unobserved variables and let

Zi = (Yi,1, · · · , Yi,T , X
′
i,2, · · · , X ′

i,T )
′ denote the vector of all the observed variables. The coun-

terfactual marginal effects of exogenous birth at time t are

Φ
(
αi + βiYi,t−1 +X(1)′i,tγi

)
− Φ

(
αi + βiYi,t−1 +X(0)′i,tγi

)
,

where X(b)i,t is the same as Xi,t except that the coordinate for the fertility dummy is set

exogenously to b for each b ∈ {0, 1}. Note that, with the fertility variable being binary, this

effect is the discrete analog of the counterfactual marginal effect considered in Section 4. We

partially identify the population average of these counterfactual marginal effects using the same

approach as in Section 4. Specifically, we use the moment equality (1.2) where g is defined by

g(Ui, Zi; θ) ≡



(1, Z ′
i,1)

′ (Yi,2 − Φ
(
αi + βiYi,1 +X ′

i,2γi
))

...

(1, Z ′
i,T−1)

′ (Yi,T − Φ
(
αi + βiYi,T−1 +X ′

i,Tγi
))

θ − 1
T−1

∑T
t=2

(
Φ
(
αi + βiYi,t−1 +X(1)′i,tγi

)
− Φ

(
αi + βiYi,t−1 +X(0)′i,tγi

))


where Zi,t−1 is (a subvector of) (Yi,1, · · · , Yi,t−1, X

′
i,2, · · · , X ′

i,t)
′. With this device, we directly

identify the counterfactual marginal effects, without having to identify the heterogeneous prim-

itives in a similar spirit to Bhattacharya (2015) and Hausman and Newey (2014). It is reported
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in the literature that, even if bounds for structural parameters may be wide, bounds for coun-

terfactuals tend to be narrow enough to be informative – see Norets and Tang (2014) for

example.

5.3 Empirical Results

Table 4 displays set estimates for the average counterfactual marginal effects of exogenous births

on female labor supply. The displayed numbers indicate the maximum values of the relaxation

parameter λ ∈ {−1,−1
2
, · · · ,− 1

27
,− 1

28
} ∪ { 1

28
, 1
27
, · · · , 1

2
, 1} at which the contraction mapping

converged to an ε = 0.0001-fixed point.9 The blank cells indicate that a convergence did not

occur for any λ ∈ {−1,−1
2
, · · · ,− 1

27
,− 1

28
} ∪ { 1

28
, 1
27
, · · · , 1

2
, 1}. In other words, the set estimate

in each column of the table includes all the values of θ for which there is a non-empty row

entry. These cells are shaded for visual convenience.

Columns (1) through (5) show results for the population average counterfactual marginal

effects θ = E
[
Φ
(
αi + βiYi,t−1 +X(1)′i,tγi

)
− Φ

(
αi + βiYi,t−1 +X(0)′i,tγi

)]
using various combi-

nations of included regressors (Yi,t−1, X
′
i,t)

′. When we include nothing but the fertility decision,

the set estimate is [−1.0,−0.4] as shown in column (1). When we in addition include the state

dependence or the first lag of the labor supply indicator Yi,t−1, the set estimate expands to

[−1.0,−0.1] as shown in column (2). It is wide, but the zero effect is still excluded from the set

estimate. This expansion of the set features the general difficulties in identifying the models

where heterogeneity and state dependence co-exist (e.g., Feller,1943, Heckman, 1981ab, Honoré

and Tamer, 2006). Including other income sources does not change the set estimate much – see

9In Monte Carlo simulations in Section 4, we used a fixed relaxation parameter λ due to our knowledge of

the true data generating process. In the current empirical application, we do not know the data generating

process. Therefore, I use various values of λ in order to avoid missing possible fixed points.
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Average Marginal Effects of Exogenous Births on Female Labor Supply: Set Estimates

(1) (2) (3) (4) (5) (6) (7)

Subpopulation All Individuals Births No Birth

Lag Labor Supply N Y Y Y Y Y Y

Other Income N N Y Y Y Y Y

Children N N N Y Y Y Y

Time N N N N Y Y Y

θ = −1.00 2−0 2−0 2−0 2−0 2−0 2−0 2−1

θ = −0.90 2−0 2−0 2−0 2−0 2−0 2−0 2−1

θ = −0.80 2−0 2−0 2−0 2−0 2−0 2−0 2−1

θ = −0.70 2−0 2−0 2−0 2−0 2−0 2−0 2−3

θ = −0.60 2−0 2−0 2−0 2−0 2−1 2−0

θ = −0.50 2−0 2−0 2−0 2−0

θ = −0.40 2−0 2−0 2−0 2−0

θ = −0.30 2−0 2−0 2−1

θ = −0.20 2−0 2−1 2−1

θ = −0.10 2−2 2−2

θ = 0.00

Table 4: Set estimates for the counterfactual marginal effects of exogenous births on female

labor supply indicated by the maximum contractionary relaxation parameter λ. Columns (1)–

(5) show results for the population average marginal effects. Column (6) shows results for the

average marginal effects in the subpopulation of those who actually gave births. Column (7)

shows results for the average marginal effects in the subpopulation of those who did not.
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column (3). When we include the three age categories of children, however, the set estimate

now shrinks down to [−1.0,−0.6] as shown in column (4). Finally, adding time trends10 does

not change the set estimate much – see column (5). With this full specification, we obtain that

the set estimate for the population average counterfactual marginal effects of exogenous birth

on female labor supply is [−1.0,−0.6].

While the first five columns show results for the population average, we can also obtain

set estimates for subpopulation averages in a similar spirit to the “treatment on the treated”

used in the literature of causal inference. Because female individuals endogenously do or do

not self-select into pregnancy, the causal effects of fertility on labor supply may well be differ-

ent between the subpopulation of individuals with births and the subpopulation of individuals

without births. Column (6) shows the set estimate for the average counterfactual marginal

effects of exogenous birth among the subpopulation of females who actually gave births, i.e.,

θ = E
[
Φ
(
αi + βiYi,t−1 +X(1)′i,tγi

)
− Φ

(
αi + βiYi,t−1 +X(0)′i,tγi

)
| Birthi,t = 1

]
.11 The set es-

timate, [−1.0,−0.2], for this subpopulation is wider than that for the population, [−1.0,−0.6].

This result is consistent with plausible economic stories. For example, those females who

actually made the endogenous decisions to give births may tend to have types of skills and

occupations for which work is more feasible during maternity than the others. As such, this

subpopulation may well have smaller (in absolute value) effects of births on labor supply. In

contrast, the set estimate, [−1.0,−0.7], shown in column (7) for the subpopulation of females

who actually did not give births is narrower toward −1.0. Those females who endogenously

decided not to give births may tend to have types of skills and occupations for which work is

10The time trends are linear in time. But the trend slopes are heterogeneous across individuals i, as are γi.

11Insert 1 {Birthi,t = 1}
[
θ − 1

T−1

∑T
t=2

(
Φ
(
αi + βiYi,t−1 +X(1)′i,tγi

)
− Φ

(
αi + βiYi,t−1 +X(0)′i,tγi

))]
in

stead of just θ − 1
T−1

∑T
t=2

(
Φ
(
αi + βiYi,t−1 +X(1)′i,tγi

)
− Φ

(
αi + βiYi,t−1 +X(0)′i,tγi

))
in the last row in

the definition of g(Ui, Zi; θ) in order to obtain set estimates for the subpopulation average effects.
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more difficult during maternity, and hence the average effects of birth on labor supply may well

be large in absolute value for this subpopulation.

Table 5 shows set estimates for the average counterfactual marginal effects among various

subpopulations defined by observed characteristics. As a reference, the first column in Table 5

displays the set estimate for the population average effects copied from column (5) of Table 4.

Columns (8) and (9) compare set estimates between the subpopulations defined by the presence

of a child aged 1 through 5. Likewise, columns (10) and (11) compare set estimates between

the subpopulations defined by the presence of a child aged 1 through 13. In both of these pairs

of columns, the bound for the subpopulation of females who have a child is closer to −1.0. In

other words, the average marginal effects of exogenous birth on labor supply may be larger in

absolute value if it is the first birth, or if it is the first birth after many years of no birth.

Columns (12) and (13) compare set estimates between the subpopulations defined by the

amount of household income other than the earnings by the female individual. Two income

categories are constructed using the borderline of 20,000 US dollars in the 1978 value. The

bound for the subpopulation with larger amounts of other income is closer to −1.0. This

is consistent with economic stories. If one has enough income from other sources, then the

marginal benefit from labor supply during maternity may well be smaller. Therefore, it is

natural for this subpopulation to have larger (in absolute value) average marginal effects of

exogenous birth on female labor supply.

While all the results presented so far concern about the marginal effects of exogenous fer-

tility, it is also of interest to study the causal effects of an exogenous child on female labor

supply. As a related matter, one may be interested in how the magnitude of such effects change

with the age of a child. Table 6 shows set estimates for the average counterfactual effects of

exogenously having a child of various age categories. Specifically, column (14) shows the set
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Average Marginal Effects of Exogenous Births on Female Labor Supply: Set Estimates

(5) (8) (9) (10) (11) (12) (13)

Infant Child Other Income

Subpopulation All Y N Y N <20K >20K

Lag Labor Supply Y Y Y Y Y Y Y

Other Income Y Y Y Y Y Y Y

Children Y Y Y Y Y Y Y

Time Y Y Y Y Y Y Y

θ = −1.00 2−0 2−2 2−4 2−1 2−2 2−1 2−3

θ = −0.90 2−0 2−2 2−5 2−2 2−2 2−2 2−3

θ = −0.80 2−0 2−3 2−6 2−2 2−2 2−2 2−4

θ = −0.70 2−0 2−4 2−3 2−2 2−2

θ = −0.60 2−1 2−4 2−4 2−2

θ = −0.50 2−4

θ = −0.40

θ = −0.30

θ = −0.20

θ = −0.10

θ = 0.00

Table 5: Set estimates for the counterfactual marginal effects of exogenous births on female

labor supply indicated by the maximum contractionary relaxation parameter λ. Column (5),

copied from Table 4, shows the result for the population average marginal effects as a reference.

Columns (8)–(13) show results for the average marginal effects among various subpopulations.
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Average Marginal Effects of Exogenous Child on Female Labor Supply: Set Estimates

(5) (14) (15) (16) (17)

Child Aged 0 (Birth) 1 – 0 1 – 0 0 – 0 0 – 0 0 – 0

Child Aged 1–2 Sample 0 – 0 1 – 0 0 – 0 0 – 0

Child Aged 3–5 Sample 0 – 0 0 – 0 1 – 0 0 – 0

Child Aged 6–13 Sample 0 – 0 0 – 0 0 – 0 1 – 0

θ = −1.00 2−0 2−0 2−0 2−1 2−0

θ = −0.90 2−0 2−0 2−0 2−1 2−0

θ = −0.80 2−0 2−1 2−1 2−1 2−0

θ = −0.70 2−0 2−1 2−3 2−2 2−0

θ = −0.60 2−1 2−0

θ = −0.50 2−0

θ = −0.40 2−0

θ = −0.30 2−2

θ = −0.20 2−5

θ = −0.10

θ = 0.00

Table 6: Set estimates for the counterfactual marginal effects of exogenous child on female

labor supply indicated by the maximum contractionary relaxation parameter λ. Column (5)

is copied from Table 4. Column (14) shows the population average marginal effects of having

a birth in the presence of no other child. Column (15) shows the population average marginal

effects of having a child aged 1–2 against no child. Column (16) shows the population average

marginal effects of having a child aged 3–5 against no child. Column (17) shows the population

average marginal effects of having a child aged 6–13 against no child. Xi,t includes everything.
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estimate for the population average of

Φ
(
αi + βiYi,t−1 +X(1, 0, 0, 0)′i,tγi

)
− Φ

(
αi + βiYi,t−1 +X(0, 0, 0, 0)′i,tγi

)
,

where X(b0, b1, b2, b3)i,t is the same as Xi,t except that the coordinate for the fertility dummy

is set exogenously to b0, the coordinate for a child of age 1–2 is set exogenously to b1, the

coordinate for a child of age 3–5 is set exogenously to b2, and the coordinate for a child of age

6–13 is set exogenously to b3 for each (b0, b1, b2, b3) ∈ {0, 1}4. Likewise, columns (15), (16) and

(17) show the results for the population average of

Φ
(
αi + βiYi,t−1 +X(0, 1, 0, 0)′i,tγi

)
− Φ

(
αi + βiYi,t−1 +X(0, 0, 0, 0)′i,tγi

)
,

Φ
(
αi + βiYi,t−1 +X(0, 0, 1, 0)′i,tγi

)
− Φ

(
αi + βiYi,t−1 +X(0, 0, 0, 0)′i,tγi

)
, and

Φ
(
αi + βiYi,t−1 +X(0, 0, 0, 1)′i,tγi

)
− Φ

(
αi + βiYi,t−1 +X(0, 0, 0, 0)′i,tγi

)
,

respectively. Note that columns (14), (15), and (16) show the same set estimates, [−1.0,−0.7],

i.e., the set estimate for the average causal effects of an exogenous child of age 0 is the same

as the set estimate for the average causal effects of an exogenous child of age 1–2 or 3–5. On

the other hand, column (17) shows that the set estimate, [−1.0,−0.2], for the average causal

effects of an exogenous child of age 6–13 is much wider. This pattern of the results is natural,

as female individuals may find it more feasible to work after her child reaches the school age.

6 Concluding Remarks

This paper proposes a contraction fixed point approach to partial identification problems for

a class of incomplete models with continuously distributed endogenous latent variables. This

approach provides a practically appealing method to implement the ELVIS (Schennach, 2014).

In particular, when the number dg of moment equalities is not small as is often the case with
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panel data models, it outperforms alternative methods. While the Newton-Raphson method,

for example, requires to execute du-fold numerical integration as many as 2d2g+dg times per each

iteration step, the contraction fixed point method proposed in this paper requires to execute du-

fold numerical integration only dg times per each iteration step. For not so small dg and/or du,

this difference can hugely affect the efficiency of empirical research. This convenient property

was obtained by using a specific form of the first-order condition for the ELVIS. With the

contraction property of the relaxation method, the proposed approach was shown to perform

well in Monte Carlo simulations and in the empirical application.

I remark some methodological analogies between finite and infinite mixture models. For

finite mixture models, there is a growing literature on identification, e.g., Hall and Zhou (2003),

Hu (2008), Kasahara and Shimotsu (2009) and Henry, Kitamura and Salanié (2014). For

finite mixture models, Heckman and Singer (1984) and Arcidiacono and Jones (2003) propose

optimization-based methods of estimation, and Aguirregabiria and Mira (2007) and Kasahara

and Shimotsu (2012a) propose a contraction-based method of estimation. In contrast, I focus

on infinite unobserved types U . For infinite mixture models, Hu and Schennach (2008) present

an identification result. For infinite mixture models, Schennach (2014) proposes optimization-

based methods of estimation, and no paper to my knowledge has ever proposed a contraction-

based method of estimation.12 This paper fills the last part in the methodological parallel

between the finite and infinite mixture frameworks.

Turning to the empirical application, we allow a large extent of model flexibility accounting

12If an infinite mixture model could be represented by a certain class of contraction operator equation (e.g.,

Rust, Traub, and Wozniakowski, 2002), then a contraction approach may be practically feasible. Furthermore,

the extremal characterization of Schennach (2014) can be also technically translated into a fixed point problem

through the Newton-Raphson method.
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for heterogeneity, state dependence, and endogenous fertility decisions in observed data. I

obtain set estimates without having to specify a distribution assumption and without having

to impose a specific simultaneous decision model in a similar manner to Honoré and Tamer

(2006). Furthermore, I directly obtain counterfactual effects without having to identify the

structural primitives in a similar manner to Bhattacharya (2015) and Hausman and Newey

(2014). The cost of imposing less assumptions certainly is the width of the identified set.

However, as reported by Norets and Tang (2014) in a different context, identified sets for

counterfactuals tend to be informative even if those for structural primitives may be wide. The

identified sets for the counterfactuals obtained in this paper was indeed informative enough to

fit plausible economic stories of female labor supply.

A Proofs of the Main Results

A.1 Proof of Lemma 1

First, note that as the first-order conditions for the constrained entropy minimization problem,

we have

1 + ln f(u | z) = γ′g(u, z) + ϕ(z), (A.1)

where f(u | z) ≡ dµ(u | z)/dρ(u | z) for all u ∈ U and z ∈ Z, γ is the Lagrange multiplier vector

for the equality constraints Eµ×π [g(U,Z; θ)] = 0, and ϕ is the Lagrange multiplier function for

the equality constraints
∫
f(u | z)dρ(u | z) = 1 for all u ∈ U and z ∈ Z. Solving the system of

these equations yields

f(u | z) = f̃(u | z; θ, γ) (A.2)
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for all u ∈ U and z ∈ Z, where f̃(u | z; θ, γ) ≡ eγ
′g(u,z;θ)

/∫
eγ

′g(υ,z;θ)dρ(υ | z; θ). For brevity,

we also use the short-hand notation h̃j(u, z; θ) ≡ hj(u, z; θ)/
∫
hj(υ, z; θ)dρ(υ | z; θ) for each

j ∈ {1, · · · , dg}, and h̃(u, z; θ) ≡
(
h̃1(u, z; θ), · · · , h̃dg(u, z; θ

)′
.

Take the product of (A.1) and h̃j(u, z; θ), and integrate this product with respect to ρ× π

to get

Eρ×π

[
(1 + ln f(U | Z)) h̃j(U,Z; θ)

]
= γ′ Eρ×π

[
g(U,Z; θ)h̃j(U,Z; θ)

]
+ Eπ [ϕ(Z)]

where we use Eρ×π

[
ϕ(Z)h̃j(U,Z; θ)

]
= Eπ

[
ϕ(Z) Eρ

[
h̃j(U,Z; θ) | Z

]]
= Eπ [ϕ(Z)]. Likewise,

take the product of (A.1) and f̃(u | z; θ, γ), and integrate this product with respect to ρ× π to

get

Eρ×π

[
(1 + ln f(U | Z)) f̃(U | Z; θ, γ)

]
= γ′ Eπ [g̃(Z; θ, γ)] + Eπ [ϕ(Z)]

where we use Eρ×π

[
g(U,Z; θ)f̃(U | Z; θ, γ)

]
= Eµ [g̃(Z; θ, γ)] and Eρ×π

[
ϕ(Z)f̃(U | Z; θ, γ)

]
=

Eπ

[
ϕ(Z) Eρ

[
f̃(U | Z; θ, γ) | Z

]]
= Eπ [ϕ(Z)]. Taking the difference of the above two equations

yields

Eρ×π

[
(1 + ln f(U | Z))

(
h̃j(U,Z; θ)− f̃(U | Z; θ, γ)

)]
= γ′

{
Eρ×π

[
g(U,Z; θ)h̃j(U,Z; θ)

]
− Eπ [g̃(Z; θ, γ)]

}
Substituting (A.2) thus yields

Eρ×π

[(
1 + ln

(
eγ

′g(U,Z;θ)∫
eγ′g(υ,Z;θ)dρ(υ | Z; θ)

))(
h̃j(U,Z; θ)−

eγ
′g(U,Z;θ)∫

eγ′g(υ,Z;θ)dρ(υ | Z; θ)

)]
= γ′

{
Eρ×π

[
g(U,Z; θ)h̃j(U,Z; θ)

]
− Eπ [g̃(Z; θ, γ)]

}
Now, in order to prove the lemma, observe from the last equation that Eπ [g̃(Z; θ, γ)] = 0

holds if and only if

Eρ×π

[(
1 + ln

(
eγ

′g(U,Z;θ)∫
eγ′g(υ,Z;θ)dρ(υ | Z; θ)

))(
h̃j(U,Z; θ)−

eγ
′g(U,Z;θ)∫

eγ′g(υ,Z;θ)dρ(υ | Z; θ)

)]
= γ′ Eρ×π

[
g(U,Z; θ)h̃j(U,Z; θ)

]
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for each j ∈ {1, · · · , dg}, which is in turn equivalent to

γ = Eρ×π

[
h̃(U,Z; θ)g(U,Z; θ)′

]−1

×

Eρ×π


(
1 + ln

(
eγ

′g(U,Z;θ)∫
eγ

′g(υ,Z;θ)dρ(υ|Z;θ)

))(
h̃1(U,Z; θ)− eγ

′g(U,Z;θ)∫
eγ

′g(υ,Z;θ)dρ(υ|Z;θ)

)
...(

1 + ln
(

eγ
′g(U,Z;θ)∫

eγ
′g(υ,Z;θ)dρ(υ|Z;θ)

))(
h̃dg(U,Z; θ)− eγ

′g(U,Z;θ)∫
eγ

′g(υ,Z;θ)dρ(υ|Z;θ)

)

 ,

under Condition 1 (i). This completes a proof of the lemma.

A.2 Proof of Proposition 1

Suppose that γ∗ ∈ Γ is a fixed point of Ψ( · , θ; g, h, ρ, π). Then,

lim
N→∞

P (γ∗
ε (θ; g, h, ρ, π̂N) ̸= ∅) > lim

N→∞
P (γ∗ ∈ γ∗

ε (θ; g, h, ρ, π̂N))

= lim
N→∞

P (∥Ψ(γ∗, θ; g, h, ρ, π̂N)− γ∗∥ < ε)

= lim
N→∞

P (∥Ψ(γ∗, θ; g, h, ρ, π̂N)−Ψ(γ∗, θ; g, h, ρ, π)∥ < ε)

> lim
N→∞

P

(
sup
γ∈Γ

∥Ψ(γ, θ; g, h, ρ, π̂N)−Ψ(γ, θ; g, h, ρ, π)∥ < ε

)
= 1,

where the first equality is due to the definition of γ∗
ε (θ; g, h, ρ, π̂N), the second equality is due

to the definition of γ∗ as the fixed point of Ψ( · , θ; g, h, ρ, π), and the last equality follows from

Proposition 3 under Assumption 1 and Conditions 1 and 2.

Conversely, suppose that Ψ( · , θ; g, h, ρ, π) has no fixed point in Γ. In this case, we have

∥Ψ(γ, θ; g, h, ρ, π)− γ∥ ̸= 0 for all γ ∈ Γ. Since Ψ( · , θ; g, h, ρ, π) is continuous on Γ and

Γ is compact, there exists minγ∈Γ ∥Ψ(γ, θ; g, h, ρ, π)− γ∥ ∈ (0,∞). In this light, we let ε̄ ≡
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1
2
minγ∈Γ ∥Ψ(γ, θ; g, h, ρ, π)− γ∥ and ε ∈ (0, ε̄). Note that γ ∈ γ∗

ε (θ; g, h, ρ, π̂N) implies

2ε 6 ∥Ψ(γ, θ; g, h, ρ, π)− γ∥

6 ∥Ψ(γ, θ; g, h, ρ, π̂N)−Ψ(γ, θ; g, h, ρ, π)∥+ ∥Ψ(γ, θ; g, h, ρ, π̂N)− γ∥

< ∥Ψ(γ, θ; g, h, ρ, π̂N)−Ψ(γ, θ; g, h, ρ, π)∥+ ε.

In other words, γ∗
ε (θ; g, h, ρ, π̂N) ̸= ∅ implies ε < supγ∈Γ ∥Ψ(γ, θ; g, h, ρ, π̂N)−Ψ(γ, θ; g, h, ρ, π)∥ .

Therefore,

lim
N→∞

P (γ∗
ε (θ; g, h, ρ, π̂N) ̸= ∅) 6 lim

N→∞
P

(
sup
γ∈Γ

∥Ψ(γ, θ; g, h, ρ, π̂N)−Ψ(γ, θ; g, h, ρ, π)∥ > ε

)
= 0

follows from Proposition 3 under Assumption 1 and Conditions 1 and 2.

A.3 Proof of Proposition 2

Given the auxiliary result presented in Proposition 6, I prove this proposition for large parts by

following the arguments in the proof (Kasahara and Shimotsu, 2012b; pp. 1–2) of Proposition

1 of Kasahara and Shimotsu (2012a).

Proof. Let δ > 0 such that σ(DγΨ(γ∗, θ; g, h, ρ, π)) + 2δ < 1. There exists a matrix norm ∥·∥M

such that ∥DγΨ(γ∗, θ; g, h, ρ, π)′∥M 6 σ(DγΨ(γ∗, θ; g, h, ρ, π)) + δ. Define the vector norm ∥·∥v

on Rdg by ∥γ∥v ≡ ∥[γ 0 . . . 0]∥M . Since γ∗ ∈ intΓ, we have N ≡
{
γ ∈ Rdg : ∥γ − γ∗∥v < δ

}
⊂ Γ (by choosing δ small enough at the beginning). Note that this set N is a neighborhood

of γ∗ because any norm on Rdg induces the equivalent topology. If γ̂ι−1 ∈ N , then we have

∥γ̂ι−1 − γ̂N∥v 6 ∥γ̂ι−1 − γ∗∥v + ∥γ∗ − γ̂N∥v < δ almost surely by Proposition 4 under Assump-

tions 1 and 2 and Conditions 1 and 2. Furthermore, by Proposition 6 under Assumptions 1 and 2

and Conditions 1, 2 and 3, we can write ∥γ̂ι − γ̂N∥v 6 ∥DγΨ(γ∗, θ; g, h, ρ, π)∥M ∥(γ̂ι−1 − γ̂N)∥v+
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∥∥∥Q̂N(γ̂
ι−1 − γ̂N)

∥∥∥
v
. By our choice of the matrix norm ∥·∥M , the first term can be bounded

as ∥DγΨ(γ∗, θ; g, h, ρ, π)∥M ∥(γ̂ι−1 − γ̂N)∥v 6 (σ(DγΨ(γ∗, θ; g, h, ρ, π)) + δ) ∥(γ̂ι−1 − γ̂N)∥v .

From an earlier argument, together with the equivalence of all the norms on Rdg and Propo-

sition 6, the second term can be bounded as
∥∥∥Q̂N(γ̂

ι−1 − γ̂N)
∥∥∥
v

6 o (1) ∥γ̂ι−1 − γ̂N∥v +

O (1) ∥γ̂ι−1 − γ̂N∥2v 6 δ ∥γ̂ι−1 − γ̂N∥v almost surely. Combining the above inequalities to-

gether, we get ∥γ̂ι − γ̂N∥v 6 (σ(DγΨ(γ∗, θ; g, h, ρ, π)) + 2δ) ∥(γ̂ι−1 − γ̂N)∥v almost surely,

where σ(DγΨ(γ∗, θ; g, h, ρ, π)) + 2δ < 1. Therefore, it follows that limι→∞ γ̂ι = γ̂N almost

surely if γ̂0 ∈ N .

B Auxiliary Results and Their Proofs

B.1 Uniform Consistency of Ψ( · , θ; g, h, ρ, π̂N) for Ψ( · , θ; g, h, ρ, π)

The following auxiliary proposition shows the uniform consistency of Ψ( · , θ; g, h, ρ, π̂N) for

Ψ( · , θ; g, h, ρ, π) on compact Γ ⊂ Rdg . This result is used in turn to prove Propositions 1 and

4.

Proposition 3. Suppose that Assumption 1 holds and that the auxiliary functions h and the

auxiliary measure ρ are chosen subject to Conditions 1 and 2. We have the uniform convergence

supγ∈Γ ∥Ψ(γ, θ; g, h, ρ, π̂N)−Ψ(γ, θ; g, h, ρ, π)∥ a.s.−→ 0 as N → ∞ if Γ is a compact subset of Rdg .

Proof. We can rewrite the self map succinctly as

Ψ(γ, θ; g, h, ρ, π) =

[∫
φ(z; θ)dπ(z)

]−1 ∫
Φ(z; θ, γ)dπ(z),
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where φ(z; θ) ≡
[∫

g(u, z; θ)
(

h1(u,z;θ)∫
h1(u,z;θ)dρ(u|z;θ) , · · · ,

hdg (u,z;θ)∫
hdg (u,z;θ)dρ(u|z;θ)

)
dρ(u | z)

]′
and

Φ(z; θ, γ) ≡


∫ (

1 + ln
(

eγ
′g(u,z;θ)∫

eγ
′g(υ,z;θ)dρ(υ|z;θ)

))(
h1(u,z;θ)∫

h1(u,z;θ)dρ(u|z;θ) −
eγ

′g(u,z;θ)∫
eγ

′g(υ,z;θ)dρ(υ|z;θ)

)
dρ(u | z)

...∫ (
1 + ln

(
eγ

′g(u,z;θ)∫
eγ

′g(υ,z;θ)dρ(υ|z;θ)

))(
hdg (u,z;θ)∫

hdg (u,z;θ)dρ(u|z;θ)
− eγ

′g(u,z;θ)∫
eγ

′g(υ,z;θ)dρ(υ|z;θ)

)
dρ(u | z)

 .

First, note that
∫
φr,c(z; θ)dπ̂N(z)

a.s.−→
∫
φr,c(z; θ)dπ(z) holds for each row and column

r, c ∈ {1, · · · , dg} under Assumption 1 and Condition 2 (i) by Kolmogorov’s strong law of large

numbers. Second, we show the uniform consistency of
∫
Φj(z; θ, · )dπ̂N(z) to

∫
Φj(z; θ, · )dπ(z)

for each coordinate j ∈ {1, · · · , dg}. To this end, we note that Γ is compact, that Φj( · ; θ, · )

is continuous under Condition 2 (ii), and that Φj( · ; θ, γ) is dominated by an L1(π) function

uniformly for all γ ∈ Γ under Condition 2 (iii). Therefore, by the uniform law of large num-

bers, we have supγ∈Γ
∣∣∫ Φj(z; θ, γ)dπ̂N(z)−

∫
Φj(z; θ, γ)dπ(z)

∣∣ a.s.−→ 0 under Assumption 1. An

application of the continuous mapping theorem under Condition 1 (i) completes a proof of the

proposition.

B.2 Almost Sure Convergence of γ̂N for γ∗

The following auxiliary proposition shows the almost sure convergence of the fixed point esti-

mate γ̂N for the population fixed point γ∗. This auxiliary result is in turn used to prove the

iteration expansion in Proposition 6. Furthermore, this result, together with Proposition 6, is

also used to prove the contraction property in Proposition 2.

Proposition 4. Suppose that Assumptions 1 and 2 hold and that the auxiliary functions h

and the auxiliary measure ρ are chosen subject to Conditions 1 and 2. We have γ̂N
a.s.−→ γ∗ as

N → ∞.

Proof. Let ε > 0. Because ∂
∂γj

Ψ(γ∗, θ; g, h, ρ, π) ̸= ej for each j ∈ {1, · · · , dg} under As-
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sumption 2 (ii) and Ψ( · , θ; g, h, ρ, π) is continuously differentiable on Γ, there exist r, c ∈

(0,∞) such that ∥Ψ(γ, θ; g, h, ρ, π)− γ∥ > c ∥γ − γ∗∥ holds for all γ ∈ Br(γ
∗) ≡ {γ ∈ Γ :

∥γ − γ∗∥ < r}. Furthermore, since Γ is compact, Γ\Br(γ
∗) is also compact, and there exists

δ(r) ≡ minγ∈Γ\Br(γ∗) ∥Ψ(γ, θ; g, h, ρ, π)− γ∥. By Assumption 2 (i), δ(r) > 0 is true. Therefore,

it follows that {γ ∈ Γ : ∥Ψ(γ, θ; g, h, ρ, π)− γ∥ < min{cε, δ(r)}} ⊂ {γ ∈ Γ : ∥γ − γ∗∥ < ε}

holds. This implies

{
ω ∈ Ω : sup

γ∈Γ
∥Ψ(γ, θ; g, h, ρ, π̂N(ω))−Ψ(γ, θ; g, h, ρ, π)∥ < min{cε, δ(r)}

}
⊂ {ω ∈ Ω : ∥Ψ(γ̂N(ω), θ; g, h, ρ, π̂N(ω))−Ψ(γ̂N(ω), θ; g, h, ρ, π)∥ < min{cε, δ(r)}}

= {ω ∈ Ω : ∥γ̂N(ω)−Ψ(γ̂N(ω), θ; g, h, ρ, π)∥ < min{cε, δ(r)}} ⊂ {ω ∈ Ω : ∥γ̂N(ω)− γ∗∥ < ε} ,

where the equality Ψ(γ̂N , θ; g, h, ρ, π̂N) = γ̂N , that follows from the definition of γ̂N as the fixed

point of Ψ( · , θ; g, h, ρ, π̂N), is used. Therefore, we obtain

P
(
lim inf
N→∞

{ω ∈ Ω : ∥γ̂N(ω)− γ∗∥ < ε}
)
>

P

(
lim inf
N→∞

{
ω ∈ Ω : sup

γ∈Γ
∥Ψ(γ, θ; g, h, ρ, π̂N(ω))−Ψ(γ, θ; g, h, ρ, π)∥ < min{cε, δ(r)}

})
= 1,

where the last equality follows from Proposition 3 under Assumption 1 and Conditions 1 and

2. This completes a proof that γ̂N
a.s.−→ γ∗ as N → ∞.

B.3 Uniform Consistency of Dα
γΨ( · , θ; g, h, ρ, π̂N) for Dα

γΨ( · , θ; g, h, ρ, π)

The following auxiliary proposition shows the uniform consistency of Dα
γΨ( · , θ; g, h, ρ, π̂N) for

Dα
γΨ( · , θ; g, h, ρ, π) for any partial derivation operator Dα

γ = ∂|α|

∂γα with α ∈ Zdg
+ and |α| 6 2

on compact Γ ⊂ Rdg . This auxiliary result is in turn used to prove the iteration expansion in

Proposition 6.
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Proposition 5. Suppose that Assumption 1 holds and that the auxiliary functions h and the

auxiliary measure ρ are chosen subject to Conditions 1, 2 (i) and 3. We have the uniform

convergence supγ∈Γ
∥∥Dα

γΨ(γ, θ; g, h, ρ, π̂N)−Dα
γΨ(γ, θ; g, h, ρ, π)

∥∥ a.s.−→ 0 as N → ∞ for any

partial derivation operator Dα
γ = ∂α

∂γα with α ∈ Zdg
+ and |α| 6 2 if Γ is a compact subset of Rdg .

Proof. Let Dα
γ = ∂α

∂γα denote a partial derivation operator with α ∈ Zdg
+ and |α| 6 2. We can

rewrite the derivative of the self map with respect to γ succinctly as

Dα
γΨ(γ, θ; g, h, ρ, π) =

[∫
φ(z; θ)dπ(z)

]−1 ∫
Dα

γΦ(z; θ, γ)dπ(z)

under Condition 3 (ii), where φ and Φ are defined in the same way as in the proof of Proposition

3.

Note first that we have the consistency
∫
φr,c(z; θ)dπ̂N(z)

a.s.−→
∫
φr,c(z; θ)dπ(z) holds for

each row and column r, c ∈ {1, · · · , dg} under Assumption 1 and Condition 2 (i) by the same

lines of the argument as in the proof of Proposition 3. Note second that Γ is compact, that

Dα
γΦj( · ; θ, · ) is continuous under Condition 3 (i), and that Dα

γΦj( · ; θ, γ) is dominated

by an L1(π) function uniformly for all γ ∈ Γ under Condition 3 (ii). Therefore, we have

supγ∈Γ
∣∣∫ Dα

γΦj(z; θ, γ)dπ̂N(z)−
∫
Dα

γΦj(z; θ, γ)dπ(z)
∣∣ a.s.−→ 0 by the uniform law of large num-

bers under Assumption 1 for each coordinate j ∈ {1, · · · , dg}. An application of the continuous

mapping theorem under Condition 1 (i) completes a proof of the proposition.

B.4 Iteration Expansion

The following auxiliary proposition shows an iteration expansion of the sample counterpart self

map. This result, together with Proposition 4, is used in turn to prove the contraction property

in Proposition 2.
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Proposition 6. Suppose that Assumptions 1 and 2 hold and that the auxiliary functions h and

the auxiliary measure ρ are chosen subject to Conditions 1, 2 and 3. Let γ̂ι denote the vector

obtained in the ι-th iteration of Ψ( · , θ; g, h, ρ, π̂N) starting from γ̂0 ∈ Γ. If γ̂ι−1 ∈ Γ, then

we have γ̂ι − γ̂N = [DγΨ(γ∗, θ; g, h, ρ, π)]′ (γ̂ι−1 − γ̂N) + Q̂N(γ̂
ι−1 − γ̂N), where Dγ denotes

the gradient operator and
∥∥∥Q̂N(γ̂

ι−1 − γ̂N)
∥∥∥ = o (1) ∥γ̂ι−1 − γ̂N∥ + O (1) ∥γ̂ι−1 − γ̂N∥2 almost

surely.

Proof. Since γ̂N ∈ Γ is the fixed point of Ψ( · , θ; g, h, ρ, π̂N) and Ψ( · , θ; g, h, ρ, π̂N) is twice

continuously differentiable, we can write the j-th coordinate of the difference γ̂ι− γ̂N by Taylor

expansion as

γ̂ι
j − γ̂N,j = Ψj(γ̂

ι−1, θ; g, h, ρ, π̂N)− γ̂N,j = Ψj(γ̂
ι−1, θ; g, h, ρ, π̂N)−Ψj(γ̂N , θ; g, h, ρ, π̂N)

= [DγΨj(γ̂N , θ; g, h, ρ, π̂N)]
′ (γ̂ι−1 − γ̂N) + (γ̂ι−1 − γ̂N)

′R̂j(γ̂
ι−1, θ; g, h, ρ, π̂N)(γ̂

ι−1 − γ̂N)

where the function R̂j( · , θ; g, h, ρ, π̂N) : Γ → M(dg, dg) is bounded as
∣∣∣R̂j(γ, θ; g, h, ρ, π̂N)(r,c)

∣∣∣ 6
1
2
max|α|=2 supγ̃∈Γ

∣∣Dα
γΨj(γ̃, θ; g, h, ρ, π̂N)

∣∣ for all γ ∈ Γ for each row and column r, c ∈ {1, · · · , dg}.

Furthermore, since DγΨj( · , θ; g, h, ρ, π) is continuously differentiable on Γ, we can use Taylor

expansion to write

DγΨj(γ̂N , θ; g, h, ρ, π) = DγΨj(γ
∗, θ; g, h, ρ, π) +Rj(γ̂N , θ; g, h, ρ, π)(γ̂N − γ∗)

where the function Rj( · , θ; g, h, ρ, π) : Γ → M(dg, dg) is bounded as
∣∣Rj(γ)(r,c)

∣∣ 6 1
2
max|α|=2

supγ̃∈Γ
∣∣Dα

γΨj(γ̃, θ; g, h, ρ, π)
∣∣ for all γ ∈ Γ for each row and column r, c ∈ {1, · · · , dg}, and

γ̂N −γ∗ = o(1) almost surely by Proposition 4 under Assumptions 1 and 2 as well as Conditions

1 and 2.
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Combining all above, we can now express the j-th coordinate of the difference γ̂ι − γ̂N by

γ̂ι
j − γ̂N,j = [DγΨj(γ

∗, θ; g, h, ρ, π)]′ (γ̂ι−1 − γ̂N)

+ [DγΨj(γ̂N , θ; g, h, ρ, π̂N)−DγΨj(γ̂N , θ; g, h, ρ, π)]
′ (γ̂ι−1 − γ̂N)

+ [Rj(γ̂N , θ; g, h, ρ, π)(γ̂N − γ∗)]′ (γ̂ι−1 − γ̂N)

+(γ̂ι−1 − γ̂N)
′R̂j(γ̂

ι−1, θ; g, h, ρ, π̂N)(γ̂
ι−1 − γ̂N).

Note first that we have

∣∣[DγΨj(γ̂N , θ; g, h, ρ, π̂N)−DγΨj(γ̂N , θ; g, h, ρ, π)]r
∣∣ = o(1)

almost surely for each row r ∈ {1, · · · , dg} by Proposition 5 under Assumption 1 and Conditions

1, 2 (i) and 3. Second, note that

∣∣[Rj(γ̂N , θ; g, h, ρ, π)(γ̂N − γ∗)]r
∣∣ = o(1)

almost surely for each row r ∈ {1, · · · , dg} by Proposition 4 under Assumptions 1 and 2 as well

as Conditions 1 and 2. Finally, note that

∣∣∣R̂j(γ̂
ι−1, θ; g, h, ρ, π̂N)(r,c)

∣∣∣ 6 1

2
max
|α|=2

sup
γ∈Γ

∣∣Dα
γΨj(γ, θ; g, h, ρ, π)

∣∣
+
1

2
max
|α|=2

sup
γ∈Γ

∣∣Dα
γΨj(γ, θ; g, h, ρ, π̂N)−Dα

γΨj(γ, θ; g, h, ρ, π)
∣∣ = O(1)

almost surely for each row and column r, c ∈ {1, · · · , dg} by Proposition 5 under Assumption 1

and Conditions 1, 2 (i) and 3. Therefore, letting ∥·∥∞ denote the max norm on Rdg , we obtain

γ̂ι
j − γ̂N,j = [DγΨj(γ

∗, θ; g, h, ρ, π)]′ (γ̂ι−1 − γ̂N) + Q̂N,j(γ̂
ι−1 − γ̂N)

where ∣∣∣Q̂N,j(γ̂
ι−1 − γ̂N)

∣∣∣ = o (1)
∥∥γ̂ι−1 − γ̂N

∥∥
∞ +O (1)

∥∥γ̂ι−1 − γ̂N
∥∥2

∞

almost surely. Using the equivalence of norms on Rdg completes a proof of the proposition.
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C Inference

The literature provide a method of inference for finite dimensional parameters robustly against

non-identification and infinite-dimensional nuisance parameters (e.g., Chen, Tamer and Tor-

govitsky, 2011). The fixed-point approach presented in this paper, on the other hand, re-

duces the infinite-dimensional nuisance parameters to finite-dimensional ones γ. Therefore,

it is readily applicable to existing methods of set inference (e.g., Chernozhukov, Hong and

Tamer, 2007; Romano and Shaikh, 2010) and the existing methods of identification-robust in-

ference (e.g., Stock and Wright, 2000; Kleibergen, 2005; Andrews and Mikusheva, 2014) for sub-

vectors, that are based on zeros of criterion functions. We focus on testing the null hypothesis

H0 : θ ∈ Θ0. By Theorem 1, the null hypothesis H0 : θ0 ∈ Θ0 leads to the fixed point restriction

Ψ(γ∗(θ0; g, h, ρ), θ0; g, h, ρ, π) = γ∗(θ0; g, h, ρ), where γ∗(θ; g, h, ρ) is the fixed point of the con-

traction mapping Ψ( · , θ; g, h, ρ, π). In other words, we have Eπ

[
M̃(Z, γ∗(θ0; g, h, ρ), θ0; g, h, ρ)

]
= 0 under the null hypothesis H0, where

M̃(z, γ, θ; g, h, ρ) ≡


∫ h1(u,z;θ)∫

h1(υ,z;θ)dρ(υ|z;θ)γ
′g(u, z; θ)−

...∫ hdg (u,z;θ)∫
hdg (υ,z;θ)dρ(υ|z;θ)

γ′g(u, z; θ)−(
1 + ln

(
eγ

′g(u,z;θ)∫
eγ

′g(υ,z;θ)dρ(υ|z;θ)

))(
h1(u,z;θ)∫

h1(υ,z;θ)dρ(υ|z;θ) −
eγ

′g(u,z;θ)∫
eγ

′g(υ,z;θ)dρ(υ|z;θ)

)
dρ(u | z)

...(
1 + ln

(
eγ

′g(u,z;θ)∫
eγ

′g(υ,z;θ)dρ(υ|z;θ)

))(
hdg (u,z;θ)∫

hdg (υ,z;θ)dρ(υ|z;θ)
− eγ

′g(u,z;θ)∫
eγ

′g(υ,z;θ)dρ(υ|z;θ)

)
dρ(u | z)

 .

Define GN(γ, θ; g, h, ρ) = 1√
N

∑N
i=1 M̃(Zi, γ, θ; g, h, ρ). Note that GN(γ̂N(θ0; g, h, ρ), θ0; g, h, ρ)

= 0 is true for the sample-counterpart fixed point γ̂N(θ0; g, h, ρ). In particular, this implies

that γ̂N(θ0; g, h, ρ) = argminγ∈Γ GN(γ, θ0; g, h, ρ)
′WGN(γ, θ0; g, h, ρ) for any positive definite

dg × dg matrix W .
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We can thus use Andrews and Mikusheva (2014; Section 5) for inference of the subvector θ

of (γ′, θ′)′ – also see Kleibergen (2005; Section 3.2). The covariance function for the Gaussian

process to which
(
(GN(γ, θ; g, h, ρ)− EGN(γ, θ; g, h, ρ))

′,
√
N(γ̂N(θ; g, h, ρ)− γ∗(θ; g, h, ρ))′

)′

asymptotically converges to can be estimated by

ˆ̃Σ(γ1, θ1, γ2, θ2; g, h, ρ) ≡
(
Idg B̂(γ1, θ1; g, h, ρ)

′
)′

Ω̃(γ1, θ1, γ2, θ2; g, h, ρ)
(
Idg B̂(γ2, θ2; g, h, ρ)

′
)
,

where

B̂(γ, θ; g, h, ρ) ≡ 1√
N

(
[DγGN(γ, θ; g, h, ρ)]

′ W [DγGN(γ, θ; g, h, ρ)]
)−1

[DγGN(γ, θ; g, h, ρ)]
′W

and

Ω̃(γ1, θ1, γ2, θ2; g, h, ρ) ≡ 1

N

N∑
i=1

M̃(Zi, γ1, θ1; g, h, ρ)M̃(Zi, γ2, θ2; g, h, ρ)
′ −[

1

N

N∑
i=1

M̃(Zi, γ1, θ1; g, h, ρ)

][
1

N

N∑
i=1

M̃(Zi, γ2, θ2; g, h, ρ)

]′

.

Thus, the covariance function for the moment function GN(γ̂N(θ; g, h, ρ), θ; g, h, ρ) can be esti-

mated by

Σ̂(θ1, θ2; g, h, ρ) =
(
Idg [DγGN(γ̂N(θ1; g, h, ρ), θ1; g, h, ρ)]

)
×

ˆ̃Σ(γ̂N(θ1; g, h, ρ), θ1, γ̂N(θ2; g, h, ρ), θ2; g, h, ρ)×(
Idg [DγGN(γ̂N(θ2; g, h, ρ), θ2; g, h, ρ)]

)′
,

and we can then construct the quasi-likelihood ratio statistic

QLR(θ0; g, h, ρ) = GN(γ̂N(θ0; g, h, ρ), θ0; g, h, ρ)
′Σ̂(θ0, θ0; g, h, ρ)

−1GN(γ̂N(θ0; g, h, ρ), θ0; g, h, ρ)

− inf
θ
GN(γ̂N(θ; g, h, ρ), θ; g, h, ρ)

′Σ̂(θ, θ; g, h, ρ)−1GN(γ̂N(θ; g, h, ρ), θ; g, h, ρ)

to test the hypothesis H0 : θ = θ0. In order to obtain the quantiles of the QLR statistic,

generate a random sample of QLR statistics using

G∗
N(θ; g, h, ρ) = HN(θ; g, h, ρ) + Σ̂(θ, θ0; g, h, ρ)Σ̂(θ0, θ0; g, h, ρ)

−1ξ∗
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where ξ∗ is drawn fromN(0, Σ̂(θ0, θ0; g, h, ρ)), andHN(θ; g, h, ρ) ≡ GN(γ̂N(θ; g, h, ρ), θ; g, h, ρ)−

Σ̂(θ, θ0; g, h, ρ)Σ̂(θ0, θ0; g, h, ρ)
−1GN(γ̂N(θ0; g, h, ρ), θ0; g, h, ρ). See Andrews and Mikusheva (2014)

for a list of required assumptions for this method of inference.
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