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Abstract

In a recent paper, Kitamura, Otsu, and Evdokimov (2013) introduce the minimum
Hellinger Distance (HD) estimator as a computationally convenient estimator that is
semiparametrically efficient when the model assumption holds (correct specification) and
robust to small deviations from the model (local misspecification). In this paper, we eval-
uate the performance of inference procedures of interest under two complementary types
of misspecification, local and global.

First, we show that HD is not robust to global misspecification (or model misspecifica-
tion) in the sense that HD may cease to be root n convergent when the functions defining
the moment conditions are unbounded (even when their expectations are bounded). Sec-
ond, in the spirit of Schennach (2007), we propose a new estimator called ETHD. Our
estimator shares the same desirable asymptotic properties as HD under correct specifica-
tion and local misspecification, and remains well-behaved under model misspecification.
ETHD is therefore the first estimator that is efficient under correct specification, and ro-
bust to both global and local misspecification.

Keywords: misspecified models; local misspecification; higher-order asymptotics; semi-
parametric efficiency.

∗We would like to thank Susanne Schennach and Pierre Chaussé for helpful discussions.
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1 Introduction

Economic models can often be understood as simplifications of the real world and, as such,
are intrinsically misspecified (see e.g. Maasoumi (1990), Hall and Inoue (2003), Schennach
(2007)). As a result, the choice of an inference procedure should not solely be based on its
performance under correct specification, but also on its robustness to deviations from the correct
specification, so-called misspecification.

For example, modern asset pricing models rely on moment condition models that depend
on a pricing kernel (or stochastic discount factor) and data. Unlike what the economic theory
suggests, it is long recognized that no pricing kernel can correctly price all financial securities.
As a result, the pricing kernel used in applications is the one that is the least misspecified; see
e.g. Hansen and Jagannathan (1997), Kan, Robotti, and Shanken (2013), and Gospodinov,
Kan, and Robotti (2014).

In this paper, we consider economic models defined by moment restrictions, and evaluate
the performance of inference procedures of interest under two complementary types of misspec-
ification: global and local misspecification. Global misspecification (also referred to as model
misspecification) occurs when one cannot find a parameter value such that the population mo-
ment restriction is satisfied. Local misspecification captures the case where the population
moment condition is invalid for any finite sample size, but the size of the violation is so small
that it disappears asymptotically.

Economic models may indeed suffer from both types of misspecification (Hall and Inoue
(2003)). However, since the extent and nature of the misspecification is always unknown in
practice, it appears ideal to rely on inference procedures that are efficient in correctly specified
models, and somewhat robust to both types of misspecification. To our knowledge, such an
inference procedure is not currently available, and the main contribution of this paper is to fill
this gap. An estimator robust to global misspecification remains asymptotically normal with
the same rate of convergence as when the model is correctly specified. The appeal of such an
estimator comes from the fact that its asymptotic distribution that is valid under both global
misspecification and correct specification can be derived. As a result, inference immune to
global misspecification becomes routinely possible. By contrast, local misspecification is only
noticeable in small samples (and not at the limit). Since the true distribution of the data
is expected to match the one postulated by the researcher as the sample size gets large, one
can define the true parameter value as the value that solves the assumed model. An efficient
estimator is robust to local misspecification when its worse mean squared error (computed over
all possible small deviations of data distribution) remains the smallest compared to (admissible)
competitors. Estimators that are robust to local misspecification remain consistent (for the
true parameter value) so long as the true data-distribution is sufficiently close to the postulated
distribution.

Maasoumi and Phillips (1982) and Gallant and White (1988) provide an early analysis of in-
ference in globally misspecified models estimated by instrumental variables and the Generalized
Method of Moments (GMM), respectively. Hall and Inoue (2003) extend their asymptotic anal-
ysis to the two-step and iterated GMM estimators. They establish that it remains convergent
at the standard rate and asymptotically normal. They also derive its asymptotic distribution
under global misspecification. Among competitive procedures, we highlight the following three
estimators which belong to the class of Cressie-Read (CR) minimum discrepancy estimators:
the Continuously Updated (CU) GMM, the Exponentially Tilting (ET), the Empirical Likeli-
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hood (EL), and the three-step Euclidean EL estimator (3S-EEL) introduced by Antoine, Bonnal
and Renault1 (2007). These estimators rely on implied probabilities to re-weight the sample
observations in order to guarantee that the moment condition is exactly satisfied (in sample).
The CR estimator is then chosen as the estimator that minimizes the discrepancy between the
implied probabilities and the uniform weights (1/n). Kitamura (2000) studies ET under global
misspecification and establishes its robustness, while Dovonon (2015) shows the robustness of
3S-EEL in globally misspecified models. Schennach (2007) studies EL under global misspeci-
fication and shows that it is not robust. She identifies some singularity issues in the implied
probability function of EL that are responsible for its lack of robustness. Then, observing that
ET’s implied probabilities do not display any such singularity, she proposes the Exponentially
Tilted Empirical Likelihood (ETEL) estimator that combines EL’s discrepancy function with
ET’s implied probabilities. The ETEL estimator is quite appealing: it is efficient and shares
the higher-order bias properties of EL in correctly specified models, and remains as stable as
ET in globally misspecified models.

The study of inference in locally misspecified models has a long tradition in economics
as it is often used to provide insights into the local power properties of test statistics. It
was first applied in the context of GMM by Newey (1985). In a recent paper, Kitamura,
Otsu and Evdokimov (KOE hereafter, 2013) illustrate the lack of robustness of GMM to local
misspecification. Building on the pioneering work of Beran (1977a,b), they introduce a new
estimator that minimizes the Hellinger Distance (HD). This estimator is quite appealing: it is
easy to implement and reconciles efficiency and local robustness for moment restrictions models.

In this paper, we build on Schennach (2007) and KOE to deliver an estimator that is
efficient under correct specification, and robust to both local and global misspecification. To
motivate the need for a new estimator, we first show that HD is not well-behaved under global
misspecification. The intuition for such a lackluster performance follows from the conjecture of
Schennach (2007, p641) that connects the poor performance of estimators from the CR family
to the negative value of their indexing parameter (such as HD and EL). Accordingly, the only
candidate from the CR family that retains good properties under global misspecification is ET.
In the hope of delivering an estimator that combines the desirable properties of ET under global
misspecification and HD under both correct specification and local misspecification, we build
on Schennach (2007) to show that ET and HD can easily be combined to define a new estimator
called ETHD that is efficient and robust to both local and global misspecification.

This paper is organized as follows. In section 2, we briefly review the excellent properties
of HD estimator under correct and local mispecification, and present a simple result that char-
acterizes its lackluster behavior under (global) misspecification. In section 3, we introduce our
estimator called exponentially tilted Hellinger distance (ETHD) that naturally combines ET
and HD. The ETHD estimator is shown to be efficient when the model is correctly specified,
and well-behaved under model misspecification. In section 4, we show that it is robust to local
mispecification. In section 5, we show that ETHD is well-behaved and robust to global mis-
specification. In section 6, Monte-Carlo simulations illustrate the usefulness of our estimator.
All proofs can be found in the Appendix.

1The 3S-EEL estimator is computationally friendly (e.g. much more than EL), and shares the same desirable
bias properties as EL in correctly specified models.
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2 The HD estimator under global misspecification

2.1 Definition and properties

Let θ∗ be a vector of unknown parameters of interest that belongs to a compact subset Θ ∈ Rp.
Let xi be an iid vector of random variables, and g(.) a vector of m(≤ p) real functions such
that

Eg(xi, θ
∗) = 0 .

The HD estimator is defined as:

θ̂ ≡ arg inf
θ∈Θ

inf
π
H2(π, Pn), s.t.

n∑
i=1

πig(xi, θ) = 0, (1)

where H(.) is the Hellinger distance between two probability measures π and Pn,

H(π, Pn) =

(∫ (
dπ1/2 − dP 1/2

n

)2) 1
2

=

(
n∑

i=1

(√
πi − 1/

√
n
)2)1/2

, (2)

and Pn is the discrete uniform distribution on {xi : i = 1, . . . , n}.

Under some mild conditions, it can be shown using arguments based on convex duality that
the HD estimator is also equal to

θ̂ = argmin
θ∈Θ

max
γ∈Rm

− 1

n

n∑
i=1

1

1 + γ′g(xi, θ)
. (3)

The definition (3) is the one adopted by Kitamura, Otsu and Evdokimov (hereafter KOE,
2013). The HD estimator also belongs to the class of generalized empirical likelihood (GEL)
estimators2 and can be characterized using the function ρ(v) = −1/(1 + v) on the domain
V = (−1,+∞); see Newey and Smith (2004). Even though the definition (3) used by KOE
does not explicitly require that,

1 + γ̂′g(xi, θ̂) ≥ 0 for (θ̂, γ̂) solving (3) and for all i = 1, . . . , n,

such (non-negativity) condition is however essential for the two definitions of the HD estimator,
respectively (1) and (3), to be equivalent. This is due to the fact that the first order condition
associated with the Lagrangian of the inner program in (1) is

1− 1
√
nπi

+ γ′g(xi, θ) = 0,

for all i = 1, . . . , n in the direction of π. Hence, admissible solutions for π exist only if

2The HD estimator is also a member of the empirical Cressie-Read class of estimators that is defined through
the following discrepancy function indexed by a

h(πi) = ((nπi)
a+1 − 1)/(a(a+ 1)) . (4)

The HD estimator is associated with the index a = −1/2.
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1 + γ̂′g(xi, θ̂) ≥ 0 , for all i = 1, . . . , n.

In correctly specified models, this condition can be overlooked since the Lagrange multiplier γ̂
associated to θ̂ obtained from (3) converges sufficiently fast to 0 (under regularity conditions)
to guarantee that γ̂′g(xi, θ̂) is uniformly negligible for n large enough. However, in possibly
misspecified models, this condition may matter. In what follows, we shall keep it to guarantee
the interpretation of the “pseudo” true value θ∗ of θ as the parameter value associated with the
set of induced distributions3 the closest to the true distribution of the data in terms of Hellinger
distance. In other words, and from now on, we will consider the HD estimator defined by (3)
with the additional admissibility condition 1 + γ′g(xi, θ) ≥ 0 for all i = 1, . . . , n; as explained
above, such admissibility condition can also be seen as a restriction on the domain.
In our simulation study below (see section 6.2), we explore the consequences of the relaxation of
the above admissibility condition. As already mentioned, such condition may not be innocuous
under misspecification. Without any surprise, we find that the unconstrained HD (HD-unc)
estimator performs slightly better than the (constrained) HD estimator under (local) misspec-
ification. However, it loses its interpretation.

As a member of the GEL class of estimators, under Assumptions 1 and 2 of Newey and Smith
(2004), Theorem 3.2 of the same paper applies to HD. Letting G = E(∂g(x, θ∗)/∂θ′), Ω =
E(g(x, θ∗)g(x, θ∗)′) and Σ = [G′Ω−1G]

−1
, we have

√
n(θ̂ − θ∗)

d→ N (0,Σ) . (5)

2.2 Behavior under global misspecification

In this section, we study the behavior of the HD estimator under global misspecification. In
our framework, global misspecification means that one cannot find a value of the parameter
such that the moment condition is satisfied, that is:

Eg(xi, θ) ̸= 0, ∀θ ∈ Θ.

When the asymptotic distribution of an estimator derived under global misspecification coin-
cides with its asymptotic distribution under correct specification in absence of misspecification,
this estimator is said to be robust to global misspecification. Such robustness is desirable be-
cause it allows for valid and reliable inference (using the misspecification-robust asymptotic
distribution) whether the model is correctly specified or not. For example, Hall and Inoue
(2003) show that GMM is robust to global misspecification.
Schennach (2007, Theorem 1) shows that the empirical likelihood (EL) estimator is not robust
to global misspecification by showing that the EL estimator is not

√
n convergent. We now

show a similar result for the HD estimator.

Theorem 2.1 (Lack of robustness of the HD estimator under global misspecification)
Let xi be an iid sequence. Assume g(x, θ) to be twice continuously differentiable in θ for all x
and all θ ∈ Θ and such that

sup
θ∈Θ

E
[
|g(xi, θ)|2

]
< ∞ .

3For a given value θ ∈ Θ, we call “induced distribution” any distribution P satisfying
∫
g(x, θ)dP = 0.
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If
inf
θ∈Θ

|E[g(xi, θ)]| ̸= 0 and sup
x∈X

u′g(x, θ) = ∞

for any θ ∈ Θ and any unit vector u, then there does not exist any θ∗ ∈ Θ such that

|θ̂HD − θ∗| = Op

(
1√
n

)
.

Comments:
(i) The above result shows that the HD estimator is not

√
n convergent. Hence, it is not robust

to global misspecification. Our simulation study in section 6 illustrates this result.
(ii) The lack of robustness of the HD estimator to global misspecification is not surprising. The
intuition for such a lackluster performance follows from Schennach’s (2007, p641) conjecture
that connects the poor performance of estimators from the Cressie-Read family to the negative
value of their indexing parameter. As recalled in (4), the HD estimator is associated with index
a = −1/2. Accordingly, the only Cressie-Read estimator that is well-behaved under global
misspecification is the exponentially tilted (ET) estimator. In the next section, we combine ET
and HD to define an estimator that is well-behaved in all situations.

3 The Exponentially Tilted Hellinger Distance (ETHD)

estimator

In this section, we build on Schennach (2007) and KOE to deliver an estimator that is efficient
under correct specification, and robust to both local and global misspecification. More specif-
ically, we show that ET and HD can easily be combined to define our new estimator called
ETHD that is efficient and robust to both forms of misspecification.

3.1 Definition and characterization of the ETHD estimator

The Exponentially Tilted Hellinger Distance (ETHD) estimator is defined as:

θ̂ = argmin
θ∈Θ

H(π̂(θ), Pn), (6)

where π̂(θ) are the solution of

min
{πi}ni=1

n∑
i=1

πi log nπi

(
= Eπ log

dπ

dPn

)
(7)

subject to

Eπg(x, θ) = 0 and
n∑

i=1

πi = 1. (8)

The ETHD estimator combines the discrepancy function H(.) of the HD estimator (defined in
(2)) with the implied probabilities of the ET estimator. An alternative definition of ETHD is
given by:

θ̂ = argmax
θ∈Θ

∆n

(
λ̂(θ), θ

)
. (9)
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where

∆n(λ, θ) =

∫
exp (λ′g(x, θ)/2) dPn(∫
exp (λ′g(x, θ)) dPn

) 1
2

,

and

λ̂(θ) = arg max
λ∈Rm

−
∫

exp (λ′g(x, θ)) dPn . (10)

The equivalence between the two definitions (6) and (9) of the ETHD estimator follows
from the fact that the sequence {π̂i(θ)}ni=1 defined as the solution to (7)-(8) are equal to (see
Kitamura (2006)):

π̂i(θ) =
exp

(
λ̂(θ)′g(xi, θ)

)
∑n

j=1 exp
(
λ̂(θ)′g(xj, θ)

) . (11)

It follows then that

H2(π̂(θ), Pn) = 2− 2
1√
n

n∑
i=1

√
π̂i(θ) = 2− 2

1
n

∑n
i=1 exp

(
λ̂(θ)′g(xi, θ)/2

)
(

1
n

∑n
i=1 exp

(
λ̂(θ)′g(xi, θ)

)) 1
2

yielding the alternative definitions.

Remark 1 Thanks to the Jensen’s inequality, the concavity of the square root function implies
that ∆n(λ, θ) ≤ 1 for all (λ, θ) ∈ Rm ×Θ. This feature will be used to prove the consistency of
the ETHD estimator in the next section.

The ETHD estimator is characterized by the following first-order conditions.

Theorem 3.1 (First-order conditions of the ETHD estimator)
If The first-order conditions for the ETHD estimator θ̂ can be written as

1√
n

(
n∑

i=1

√
πi(θ̂)

)(
n∑

j=1

d(λ̂′(θ̂)g(xj, θ̂))

dθ
πj(θ̂)

)
− 1√

n

n∑
i=1

√
πi(θ̂)

d(λ̂′(θ̂)g(xi, θ̂))

dθ
= 0 ,

where λ̂(θ) is such that

1

n

n∑
i=1

exp(λ̂′(θ)g(xi, θ))g(xi, θ) = 0 .

3.2 First-order asymptotic properties of ETHD

In this section, we study the first-order asymptotic properties of the ETHD estimator θ̂. Con-
sistency and asymptotic normality are established for this estimator. In particular, ETHD is
shown to be efficient and also enjoy some invariance properties. We also show that the minimum
of ∆n(λ̂(θ), θ) can be used for moment condition specification testing.

We first show that it is consistent for the true parameter value θ∗ under the following
regularity conditions.
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Assumption 1 (Regularity conditions)
(i) xi forms an i.i.d. sequence;
(ii) g(x, θ) is continuous at each θ ∈ Θ with probability one and Θ compact;
(iii) E(g(x, θ)) = 0 ⇔ θ = θ∗;
(iv) E(supθ∈Θ |g(x, θ)|α) < ∞ for some α > 2 ;
(v) V ar(g(x, θ)) is nonsingular and finite for every θ ∈ Θ with smallest eigenvalues ℓ bounded
away from 0;
(vi) E

(
supθ∈Θ,λ∈Λ exp(λ

′g(x, θ)
)
< ∞, where Λ is a compact subset of Rm containing an open

neighborhood of 0.

Assumptions 1(i)-(iv) are standard in the literature on inference based on moment con-
dition models. Newey and Smith (2004) have established the consistency of the generalized
empirical likelihood class of estimators under this set of assumptions. Assumption 1(v) is not
particularly restrictive whereas Assumption 1(vi) is useful because of the two-step nature of our
estimation procedure. Schennach (2007) has also made use of a similar assumption to establish
the consistency of ETEL.

Under this assumption, we shall consider, instead of (10), the following alternative definition
of λ̂(θ):

λ̂(θ) = argmax
λ∈Λ

−
∫

exp (λ′g(x, θ)) dPn . (12)

The definition of λ̂(θ) in (12), is theoretically more tractable in the proof of consistency, thanks
to the compactness of Λ. Besides, it does not alter the asymptotic properties of θ̂ since Λ
contains 0 which is the population value of λ as an interior point.

Theorem 3.2 (Consistency of the ETHD estimator)
Under Assumption 1, we have:

(i) θ̂
P→ θ∗; (ii) λ̂(θ̂) = OP (n

−1/2); and (iii)
∫
g(x, θ̂)dPn = OP (n

−1/2).

We now turn to the derivation of the asymptotic distribution of the ETHD estimator. We
make the following additional regularity assumptions for this purpose.

Assumption 2 (Regularity assumptions 2)
(i) θ∗ ∈ int(Θ); there exists a neighborhood N around θ∗ such that g(x, θ) is continuously
differentiable a.s. on N and E

(
supθ∈N |∂g(x, θ)/∂θ′|2

)
< ∞;

(ii) Rank(G) = p, with G = E(∂g(x, θ∗)/∂θ′).

Similarly to the two-step GMM procedure, the maximum of ∆n(λ̂(θ), θ), reached at θ̂ can
be used to test for the validity of the moment condition model. We consider the specification
test statistic:

Sn = 4nH2(π̂(θ̂), Pn) = 8n(1−∆n(λ̂(θ̂), θ̂)).

The asymptotic distribution of Sn along with that of the estimator are derived in the following
theorem:

Theorem 3.3 (Asymptotic distribution of the ETHD estimator)
Let λ̂ = λ̂(θ̂). Under Assumptions 1 and 2, we have:
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(i)
√
n

(
θ̂ − θ∗

λ̂

)
d→ N

(
0,

(
Σ 0
0 Ω−1/2MΩ−1/2

))
,

with Ω = E(g(x, θ∗)g(x, θ∗)′), Σ = [G′Ω−1G]
−1

and M = Im − Ω−1/2GΣG′Ω−1/2.
(ii)

Sn
d→ χ2

m−p.

Comments:
The above result shows that, under correct specification, the ETHD estimator has the same
limiting distribution as efficient two-step GMM, which also corresponds to the limiting distri-
bution of the HD estimator as recalled in (5). The specification test statistic Sn has the same
asymptotic distribution as the Hansen’s J-test statistic. The proof actually reveals that both
statistics are asymptotically equivalent under the conditions of the theorem.

4 ETHD under local misspecification

Local misspecification occurs when the true data generating process deviates from the postu-
lated one within a distance that vanishes as the sample size grows. KOE have proposed an
estimation theory for moment condition models that is robust to local misspecification in the
following sense.
Consider the family of Fisher consistent and regular estimators (see Definition 1 in Appendix
C). KOE derive the asymptotic minimax bound of a large class of loss functions over this family
of estimators. These bounds reflect the minimum worst loss that an estimator can be exposed
to, when small discrepancies exist between the true and the assumed probability distribution
of the data. KOE also show that the HD estimator reaches that bound. It is therefore robust
to local misspecification in the sense that it incurs the minimum worst loss following small
deviations from true probability distribution, compared to other Fisher-consistent and regular
estimators.

In this section, we establish a similar result for the ETHD estimator. Let M be the set of all
probability measures on the Borel σ-field (X ,B(X )) of X ⊂ Rd, g : X × Θ → Rm and Λ a
subset of Rm.

A natural account of the ETHD estimator suggests that we consider the functionals T1 :
M×Θ → Λ and T : M → Θ defined by:

T (P ) = argmax
θ∈Θ

∫
exp (T ′

1(P, θ)g(x, θ)/2) dP(∫
exp (T ′

1(P, θ)g(x, θ)) dP
) 1

2

, (13)

with

T1(P, θ) = argmax
λ∈Λ

(
−
∫

exp(λ′g(x, θ))dP

)
. (14)

With Pn the empirical measure, T (Pn) shall correspond to the ETHD estimator θ̂. However,
the definition of T (P ) causes some technical difficulties when g(x, θ) is unbounded for some
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θ ∈ Θ and P ∈ M that have been overcome by KOE via trimming. Let

Xn =

{
x ∈ X : sup

θ∈Θ
|g(x, θ)| ≤ mn

}
and

gn(x, θ) = g(x, θ)I(x ∈ Xn).

We define:

T̄ (Q) = argmax
θ∈Θ

∫
exp{T1(Q,θ)′gn(x,θ)/2}dQ

(
∫
exp{T1(Q,θ)′gn(x,θ)/2}dQ)

1/2

T1(Q, θ) = argmax
λ

−
∫
exp{λ′gn(x, θ)}dQ.

(15)

T̄ (·) then defined is simply the value of θ ∈ Θ that minimizes the Hellinger distance between
P (θ) and Q, where P (θ) is the distribution that minimizes the Kullback-Leibler information
criterion distance between Q and the set of distributions P that satisfy EP (gn(x, θ)) = 0; see
Lemma C.1 for a proof.

As one can also expect, the definition of T1(Q, θ) also poses some difficulties when exp(λ′gn(x, θ)
is not bounded for some θ ∈ Θ, λ ∈ Rm and Q ∈ M. We overcome this by solving (15) optimiz-
ing over λ ∈ Λn, a convex subset of Rm containing 0 as interior point and such that |λ′gn(x, θ)|
is bounded over (λ, θ) ∈ Λn ×Θ. Our estimator is therefore defined by:

T̄ (Q) = argmax
θ∈Θ

∫
exp{T̄1(Q, θ)′gn(x, θ)/2}dQ∫ exp{T̄1(Q, θ)′gn(x, θ)/2}dQ

1/2

T̄1(Q, θ) = argmax
λ∈Λn

−
∫

exp{λ′gn(x, θ)}dQ.

(16)

We consider Λn =
{
λ ∈ Rm : |λ| ≤ C/m1+ζ

n

}
, for some constant C > 0. The alternative

estimator functional in (16) does not depart substantially from that in(15) since if we can show
that T̄1(Q, T̄ (Q)) = O(n−1/2) and, imposing that mn does not grow to infinity as fast as n1/2

makes T̄1 an interior solution of Λn, for n large enough.
It is worthwhile to mention that T̄ in (16) is well-defined in the neighborhood of P∗, the

true probability distribution. Indeed, under Assumption 1(v) and for n large enough, λ →∫
exp(λ′gn(x, θ))dQ is strictly convex over Λn for any Q in the Hellinger ball BH(P∗, r/

√
n), r >

0. Hence, by convexity of Λn, T̄1(Q, θ) exists and is unique for all θ ∈ Θ and Q ∈ BH(P∗, r/
√
n).

The existence of T̄ (Q) is guaranteed by the continuity of the map θ →
∫
exp{T̄1(Q,θ)′gn(x,θ)/2}dQ

(
∫
exp{T̄1(Q,θ)′gn(x,θ)}dQ)1/2

for each Q. Lemma C.2 in Appendix establishes the upper-hemicontinuity of T̄ (Q) at each Q
in a neighborhood of P∗.

Let τ : Θ → R be a possibly nonlinear transformation of the parameter that is differentiable
in a neighborhood of θ∗. Following KOE, we will

(1) investigate the behavior of the bias term τ ◦ T (Q)− τ(θ∗) in a (
√
n-shrinking) Hellinger

ball with radius r > 0 around P∗:

BH(P∗, r/
√
n) = {Q ∈ M : H(Q,P∗) ≤ r/

√
n}.
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(2) investigate the mean squared error (MSE) of the ETHD estimator in the set

B̄H(P∗, r/
√
n) = BH(P∗, r/

√
n) ∩

{
Q ∈ M : EQ

(
sup
θ∈Θ

|g(x, θ)|α < ∞
)}

.

(3) investigate the robustness of ETHD with respect to a general class of loss functions.

We make the following regularity assumptions:

Assumption 3 (Regularity assumptions 3)
(i) There exists a neighborhood N of θ∗ such that g(x, θ) is twice continuously differentiable
a.s. on N , EP∗ (supθ∈N |g(x, θ)|4) < ∞, supx∈Xn,θ∈N |∂g(x, θ)/∂θ′| = o(n1/2) and
supx∈Xn,θ∈N ,1≤k≤m |∂2gk(x, θ)/∂θ∂θ

′| = o(n).

(ii) {mn}n≥0 satisfies mn → ∞, nm−α
n → 0, and n−1/2m1+ϵ

n = O(1) for some 0 < ϵ < 2 as
n → ∞ and 0 < ζ < ϵ.
(iii) τ is continuously differentiable at θ∗.

Theorem 4.1 Under Assumptions 1, 2 (with expectation and variance taken under P∗), and
Assumption 3, the mapping T̄ is Fisher consistent and satisfies:

lim
n→∞

sup
Q∈BH(P∗,r/

√
n)

n(τ ◦ T̄ (Q)− τ(θ∗))2 = 4r2B∗, (17)

for each r > 0, where B∗ =
(

∂τ(θ∗)
∂θ

)′
Σ
(

∂τ(θ∗)
∂θ

)
.

This is an analogue of Theorem 3.1(ii) of KOE for the ETHD estimator. It establishes that
the worst bias of T̄ (Q) with Q lying in a Hellinger neighborhood of P∗ reaches the lower bound
derived by KOE for any Fisher consistent estimator.

Theorem 4.2 Under Assumption 1(i)-(iii), (v), Assumption 2 (with expectation and variance
taken under P∗), and Assumption 3, the mapping T is Fisher consistent and regular, and the
ETHD estimator, θ̂ = T (Pn), satisfies:

lim
b→∞

lim
n→∞

sup
Q∈B̄H(P∗,r/

√
n)

∫
b ∧ n(τ ◦ T (Pn)− τ(θ0))

2dQ⊗n = (1 + 4r2)B∗,

for each r > 0.

Assumption 4 The loss function ℓ : R̄p → [0,∞] is (i) symmetric subconvex (i.e., for all
z ∈ Rp and c ∈ R, ℓ(z) = ℓ(−z) and {z ∈ Rp : ℓ(z) ≤ c} is convex); (ii) upper semicontinuous
at infinity; and (iii) continuous on R̄p.

Theorem 4.3 Under Assumption 1(i)-(iii), (v), Assumption 2, with expectation and variance
they contain taken under P∗, Assumption 3, and 4, the mapping T is Fisher consistent and the
ETHD estimator, θ̂ = T (Pn), satisfies:

lim
b→∞

lim
r→∞

lim
n→∞

sup
Q∈B̄H(P∗,r/

√
n)

∫
b ∧ ℓ

(√
n(τ ◦ T (Pn)− τ ◦ T (Q)

)
dQ⊗n =

∫
ℓdN(0, B∗).

for each r > 0.
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Theorems 4.2 and 4.3 are the analogues for ETHD estimator of Theorems 3.2(ii) and 3.3(ii)
of KOE. Theorem 4.2 derives the worst possible MSE of ETHD when the true distribution is in
any

√
n-shrinking vicinity of the postulated distribution P∗. The derived quantity amounts to

the minimum reachable by any Fisher consistent and regular estimator as obtained by Theorem
3.2(ii) of KOE. This result makes ETHD locally asymptotically minimax optimal in terms of
MSE just as is MHDE.

Theorem 4.3 extends Theorem 4.2 to a more general class of loss functions. Theorem 3.3(i)
of KOE establishes the mean loss of N(0, B∗) as the smallest maximum loss of any Fisher
consistent estimator in large samples. We establish here that ETHD does not incur more loss
asymptotically making once more this estimator asymptotically minimax optimal with respect
to these loss functions. This result makes ETHD equivalent to MHDE in that respect.

5 ETHD under global misspecification

Our preliminary simulation study (see section 6.1 below) reveals that HD is much more affected
by global misspecification than other estimators such as the one proposed in this paper ETHD,
and standard estimators (e.g. GMM, ET, and ETEL).

We now derive the asymptotic distribution of ETHD under global misspecification, and
under the following regularity assumptions.

Assumption 5 (Regularity conditions under global misspecification)
(i) xi forms an i.i.d. sequence;
(ii) The objective function ∆n(θ, λ(θ)) is maximized at a unique ”pseudo-true” value θ∗ with
θ∗ ∈ int(Θ) and Θ compact; in addition, λ∗ ≡ λ(θ∗);
(iii) g(x, θ) is twice continuously differentiable in a neighborhood N of θ∗;
(iv) E

(
supθ∈Θ,λ∈Λ exp(λ

′g(x, θ))
)
< ∞ where Λ is a compact subset of Rm such that λ∗ ∈

int(Λ);
(v) infθ∈Θ |E[g(xi, θ)]| ̸= 0.

Theorem 5.1 (Asymptotics under global misspecification)
Under regularity assumption 5, we have

√
n

(
θ̂ − θ∗

λ̂− λ∗

)
d→ N (0, R−1Ω∗R−1) .

when R and Ω∗ are explicitly defined in the appendix in the proof.

As discussed in section 2.2, an estimator is said to be robust to global misspecification when
its asymptotic distribution derived under global misspecification coincides with its asymptotic
distribution under correct specification. In our case, it remains to show that the above asymp-
totic variance corresponds to the one of Theorem 3.3. With the explicit formulas provided in
the appendix, it is straightforward to show such result.

(To be completed.)

6 Monte-Carlo simulations

We now present the results of our Monte-Carlo simulations that illustrate the finite sample
properties of the different estimators considered in this paper.
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6.1 Study under correct specification and global misspecification

We use the experimental design suggested in Schennach (2007), where we wish to estimate the
mean while imposing a known variance. The two moment conditions are

g(xi, θ) =
[
xi − θ (xi − θ)2 − 1

]′
,

where xi is drawn from either a correctly specified model C, or a misspecified model M,

xi ∼ N (0, 1) (for model C)
xi ∼ N (0, s2) (with s ̸= 1 for model M)

As explained in Schennach (2007), this experiment is carefully designed such that the pseudo-
true value (θ∗ = 0) for the misspecified model is the same for the estimators of interest, thus
enabling a meaningful comparison of their variances.
In table 1, we compute the standard deviations of the HD, EL, ET, ETEL, and ETHD estima-
tors of θ for a sample of size 1,000 and a sample of size 5,000, evaluated with 5,000 replications.
Under correct specification, all the estimators perform equally well. This is not the case under
global misspecification. The variability of HD is clearly larger than that of the other estima-
tors. In addition, the standard deviation of HD does not decrease much when the sample size
increases. By contrast, ETHD displays a much lower variance that decreases when the sample
size increases for 1,000 to 5,000: it may not be shrinking exactly by the expected factor of

√
5,

but much closely it is much better behaved than HD. Figure 1 shows the ratio of standard
deviations for sample sizes 1,000 and 5,000 over a grid of misspecification parameters s.

6.2 Study under local misspecification

We use the experimental design suggested in KOE to explore the robustness of estimators to
local misspecification. Consider x = (x1, x2)

′ ∼ N (0, 0.42I2). This normal law corresponds to
the true DGP P0. The associated moment condition g is

g(x, θ) = [exp(−0.72− θ(x1 + x2) + 3x2)− 1]

(
1
x2

)
.

The moment condition is uniquely solved at θ0 = 3. The goal is to estimate this value using
the above specification of g from contaminated data where we use

x ∼ N (0,Σ(δ,ρ) with Σ(δ,ρ) = 0.42
(

(1 + δ)2 ρ(1 + δ)
ρ(1 + δ) 1

)
.

The unperturbed case corresponds to δ = ρ = 0. In the simulation, we set ρ = 0.1
√
2 cos(2πw)

and δ = 0.1 sin(2πw) where we let w vary over wj = 1/64 with j = 0, 1, · · · , 63. This yields
64 different designs and, for each of them, 5,000 replications are performed. We consider the
following estimator: ETHD, ET, EL, and HD.

Figure 3 shows the RMSE and Pr
(∣∣∣θ̂ − θ0

∣∣∣ > 0.5
)
for several estimators of interest, while the

bias is displayed in figure 4. We see that GMM is affected by perturbations much more than
EL, HD, ET and ETHD, except for the values of w between 0.4 and 0.6. The performance of the
other four estimators are rather close. In particular, our ETHD estimator remains well-behaved

13



throughout the simulation designs, whereas ET seems to perform a little worse than ETHD,
HD and EL.
Figure 5 compares the performance of two version of the HD estimator (as discussed in section
2): the estimator HD and the estimator HD-unc where the constraint maintaining the posi-
tivity of the implied probability is relaxed. Overall, the performance of both estimators are
very close to each other; however, it is interesting to point out for the values of w between 0.5
and 0.7, HD is closer to ETHD, and performs slightly better than HD-unc which is closer to EL.
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A Results of the Monte-Carlo study

A.1 Study under correct specification and global misspecification

Model C with s = 1.0

GMM HD EL ET ETEL ETHD
Sample size T=1000 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320
Sample size T=5000 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139
Model M with s = 0.75

GMM HD EL ET ETEL ETHD
Sample size T=1000 0.0486 0.0485 0.0748 0.0332 0.0466 0.0409
Sample size T=5000 0.0212 0.0377 0.0732 0.0151 0.0257 0.0216

Table 1: Standard deviations of the GMM, HD, ET, EL, ETEL, ETHD estimators for models
C and M with 5,000 replications
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Figure 1: Ratio of standard deviations for sample sizes 1,000 - 5,000; 1,000 - 10,000 and 5,000
- 10,000 over a grid of misspecification parameters s
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Figure 2: Simulated cumulative distribution of HD, ETEL and ETHD under correct specifica-
tion (C(s=1.0)) and global misspecification (M(s=.75))
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A.2 Study under local misspecification
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Figure 3: Local neighborhood of the true model: RMSE (top); Probas (bottom) denotes

Pr
(∣∣∣θ̂ − θ0

∣∣∣ > 0.5
)
.
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Figure 5: Local neighborhood of the true model: RMSE (top); Probas (bottom) denotes

Pr
(∣∣∣θ̂ − θ0

∣∣∣ > 0.5
)
. The estimator D-unc denotes the estimator HD with the additional posi-

tivity constraint for the implied probabilities as discussed in section 2.
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B Proofs of the theoretical results

Proof of Theorem 2.1: Our proof closely follows the steps of the proof of Theorem 1 in Schennach
(2007).
We start from the interpretation of HD estimator as a GEL estimator (see Newey and Smith (2004))
and KOE (2013, p1191).

θ̂HD = argmin
θ

max
γ

− 1

n

n∑
i=1

2

(1− γ′g(xi, θ)/2)
.

The FOC wrt θ and γ write, respectively:

− 1

n

n∑
i=1

n∑
i=1

Ĝ′
iγ̂

[1− γ̂′g(xi, θ̂)/2]2
= 0 where Ĝi =

∂g(xi, θ̂)

∂θ′

− 1

n

n∑
i=1

n∑
i=1

g(xi, θ̂)

[1− γ̂′g(xi, θ̂)/2]2
= 0 .

The asymptotic properties of GEL-type estimators are well known:

√
n

[(
θ̂
γ̂

)
−
(

θ∗

γ∗

)]
d→ N (0,H−1

k SkH
−1
k )

with

Sk = E[ϕ(θ∗, γ∗)ϕ(θ∗, γ∗)′] =

(
E[τ4i G

′
iγγ

′Gi] E[τ4i G
′
iγg

′
i]

E[τ4i giγ
′Gi] E[τ4i gig

′
i]

)
and

τi =
1

1− γ′gi/2

ϕ(θ, γ) =

(
G′

iγ

(1−γ′gi/2)2
gi

(1−γ′gi/2)2

)

Hk = E

(
∂ϕ′(θ∗, γ∗)

∂[θ′ γ′]′

)
= E

(
τ3i Giγγ

′Gi + τ2i
∂(G′

iγ)
∂θ′ τ3i G

′
iγg

′
i + τ2i G

′
i

τ3i giγ
′Gi + τ2i Gi τ3i gig

′
i

)
From the calculations in the dual problem, we have:

√
πi =

1√
n(1− γ′gi/2)

> 0 ⇒ 1

(1− γ′gi/2)
> 0 (18)

Since {g(x, θ∗k), x ∈ X} is unbounded in every direction, the set {g(x, θ∗k) ∈ Ck} becomes unbounded
in every direction as k → ∞, Hence, the only way to have (18) is to have γ∗k → 0 as k → ∞. Since
γ∗k → 0 as k → ∞, Sk and Hk can be simplified by noting that when (H−1

k SkH
−1
k ) is calculated: any

term containing γ∗k will be dominated by terms not containing it. We get:

Sk →
(

0 0
0 E(τ4i gig

′
i)

)
and

H−1
k →

(
0 E(τ2i G

′
i)

E(τ2i Gi) E(τ3i gig
′
i)

)−1

≡
(

B11 B12

B21 B22

)
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Define Σk as the (p, p) top-left submatrix of (H−1
k SkH

−1
k ), that is

Σk = B12E(τ4i gig
′
i)B21

Recall

(
A B
C D

)−1

top-right corner term is −F−1BD−1 with F = A−BD−1C. Thus:

B12 =
[
E(τ2i G

′
i)
(
E(τ3i gig

′
i)
)−1

E(τ2i Gi)
]−1

E(τ2i G
′
i)
(
E(τ3i gig

′
i)
)−1

= B′
21

To show that Σk diverges, we show the following three properties:

(i) E(τ4i gig
′
i) has a divergent eigenvalue;

(ii) |E(τ2i Gi)| = o
([

E(τ4i |gig′i|)
]1/2)

;

(iii) |B12|
[
E(τ4i |gig′i|)

]1/2
diverges.

(i) First, we show that E(τ4i gig
′
i) has a divergent eigenvalue:

gi(1− γ′gi/2)
2 = gi(1− γ′gi + (γ′gi)

2/4)

= gi − gig
′
iγ + gig

′
iγg

′
iγ/4

= gi − gig
′
iγ/2(2− g′iγ/2)

= gi − gig
′
iγ/2− gig

′
iγ/2(1− g′iγ/2)

⇒ gi =
gi

(1− γ′gi/2)2
− gi(g

′
iγ)/2

(1− γ′gi/2)2
− gi(g

′
iγ)/2

(1− γ′gi/2)

⇒ E(gi) = 0−
{
e

[
gig

′
i

(1− γ′gi/2)2

]
+ E

[
gig

′
i

(1− γ′gi/2)

]}
γ

2

⇒ E(gi) ≡ −(Ω1 +Ω2)
γ

2

Since infk≥k̄ E(g(xi, θ
∗
k)) > 0 some k̄ ∈ N, the only way to have γk → 0 is if (Ω1 +Ω2) has a divergent

eigenvalue. Let v be a unit eigenvector associated with such eigenvalue:

v′Ω1v = E

(
v′gi

(1− γ′gi/2)2
v′gi

)
≤

[
E

(
v′gi

(1− γ′gi/2)2

)2
]1/2

v′Ω2v = E

(
v′gi

(1− γ′gi/2)
v′gi

)
≤

[
E

(
v′gi

(1− γ′gi/2)

)2
]1/2

= (v′Ω1v)
1/2[E(v′gi)

2]1/2

Hence,

v′Ωv ≡ v′Ω1v + v′Ω2v ≤ [E(v′gi)
2]1/2


[
E

(
v′gi

(1− γ′gi/2)2

)2
]1/2

+ (v′Ω1v)
1/2


Since

a) E(v′g(xi, θ
∗
k))

2 ≤ sup
θ∈Θ

E|g(xi, θ)|2 < ∞ by assumption,

b) v′Ω1v ≤

[
E

(
v′gi

(1− γ′gi/2)2

)2

E(v′gi)
2

]1/2
diverges as shown above,

c) E

(
v′gi

(1− γ′gi/2)2

)2

= E[τ4i (v
′gi)

2] ,
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we conclude that E(τ4i gig
′
i) has a divergent eigenvalue.

(ii) We now show that |E(τ2i Gi)| = o
([

E(τ4i |gig′i|)
]1/2)

.

τ2i Gi =
1

(1− γ′gi/2)2
Gi =

[
1 + τ2i γ

′gi − τ2i

(
γ′gi
2

)2
]2

Gi

|E(τ2i Gi)| = |E

[
(1 + τ2i γ

′gi − τ2i

(
γ′gi
2

)2

)Gi

]
|

≤ E|Gi|+ E|τ2i γ′giGi|+ E|τ2i
(
γ′gi
2

)2

Gi|

Eτ2i |γ′giGi| = E
(
τ2i |gi||Gi|

)
|γ|

≤
[
E(τ4i |gi|2)

]1/2 [|Gi|2
]1/2 |γ|

where the last inequality follows from CS. Then,

E(τ2i |γ′giGi|)
[E(τ4i |gi|2)]1/2

→ 0 ⇒ E(τ2i |γ′giGi|) = o
(
[E(τ4i |gi|2)]1/2

)

E|τ2i
(
γ′gi
2

)2

Gi| = E(τ2i |gi|2|Gi|)|γ|2 ≤
[
E(τ4i |gi|2)

]1/2 [
E|gi|2|Gi|2

]1/2 |γ|2
⇒ |E(τ2i Gi)| = o

([
E(τ4i |gi|2)

]1/2)
= o

([
E(τ4i |gig′i|)

]1/2)
= o

([
E(τ4i v

′gig
′
iv)
]1/2)

(iii) Finally, we show that |B12|
[
E(τ4i |gig′i|)

]1/2 → ∞.
First, it follows from CS that:

|B12|
[
E(τ4i |gig′i|)

]1/2 ≥ |B12E(τ2i Gi)|
[
E(τ4i |gig′i|)

]1/2
|E(τ2i Gi)|

Then, from the definition of B12, we have:

B12E(τ2i Gi) = Ip ⇒ |B12E(τ2i Gi)| = Op(1)

Finally, we showed in (ii) above that

|E(τ2i Gi)| = o
([

E(τ4i |gig′i|)
]1/2) ⇒ |E(τ2i Gi)|[

E(τ4i |gig′i|)
]1/2 → 0

⇒
[
E(τ4i |gig′i|)

]1/2
|E(τ2i Gi)|

→ ∞

The rest of the proof follows from the proof of Theorem 1 in Schennach (2007). �

Proof of Theorem 3.1: To simplify the notation, we make the dependence of all quantities on
θ̂ implicit and introduce the following notations: π̂i = π̂i(θ̂), λ̂ = λ̂(θ̂), gi = gi(x, θ̂). In addition,∑

i =
∑n

i=1.
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Let us start with the following preliminary computation:

dπ̂i
dθ

=
d

dθ

[
exp(λ̂′gi)∑
j exp(λ̂

′gj)

]

=
1[∑

j exp(λ̂
′gj)
]2
d(exp(λ̂′gi)))

dθ

∑
j

exp(λ̂′gj)− exp(λ̂′gi)
∑
j

d

dθ
exp(λ̂′gj)


=

1[∑
j exp(λ̂

′gj)
]2
d(λ̂′gi)

dθ

∑
j

exp(λ̂′gi)
∑
j

exp(λ̂′gi)− exp(λ̂′gi)
∑
j

d(λ̂′gj)

dθ
exp(λ̂′gj)


=

exp(λ̂′gi)∑
j exp(λ̂

′gj)×
∑

k exp(λ̂
′gk)

d(λ̂′gi)

dθ

∑
j

exp(λ̂′gj)−
∑
j

d(λ̂′gj)

dθ
exp(λ̂′gj)


= π̂i

d(λ̂′gi)

dθ
−
∑
j

d(λ̂′gj)

dθ

exp(λ̂′gj)∑
k exp(λ̂

′gk)


= π̂i

d(λ̂′gi)

dθ
−
∑
j

π̂j
d(λ̂′gj)

dθ


We can now proceed from

H2(π̂, Pn) = 2− 2√
n

∑
i

√
π̂i

The differentiation wrt θ gives:

dH2

dθ
= − 1√

n

∑
i

dπ̂i
dθ

π̂
−1/2
i

= − 1√
n

∑
i

√π̂i
d(λ̂′gi)

dθ
−
√

π̂i
∑
j

d(λ̂′gj)

dθ
π̂j


=

1√
n

∑
i

√
π̂i
∑
j

d(λ̂′gj)

dθ
π̂j −

1√
n

∑
i

√
π̂i
d(λ̂′gi)

dθ

= 0

From (10), the FOC for λ̂ is: ∑
i

gi exp(λ̂
′gi) = 0 .

�

Lemma B.1 Let (λ̂, θ̂) be a random sequence of Λ×Θ. If Assumption 1-(i), (ii), (iii), (v) and (vi)
hold and ∫

exp
(
λ̂′g(x, θ̂)/2

)
dPn(∫

exp
(
λ̂′g(x, θ̂)

)
dPn

)1/2 P→ 1,

then λ̂
P→ 0.
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Proof of Lemma B.1: From Assumption 1-(i), (ii) and (vi),∫
exp

(
λ′g(x, θ)

)
dPn and

∫
exp

(
λ′g(x, θ)/2

)
dPn

converges in probability towards E (exp (λ′g(x, θ))) and E (exp (λ′g(x, θ)/2)), uniformly over Λ × Θ,
respectively.

In addition, E (exp (λ′g(x, θ))) is positive and continuous in (λ, θ). Hence, its minimum is reached
on that set and is positive. Therefore, letting:

f̂(λ, θ) =

∫
exp

(
λ′g(x, θ)/2

)
dPn; k̂(λ, θ) =

(∫
exp

(
λ′g(x, θ)

)
dPn

)1/2

,

f(λ, θ) = E
(
exp

(
λ′g(x, θ)/2

))
; and k(λ, θ) =

(
E
(
exp

(
λ′g(x, θ)

)))1/2
,

we can use the fact that:

sup
θ∈Θ,λ∈Λ

∣∣∣∣∣ f̂(λ, θ)k̂(λ, θ)
− f(λ, θ)

k(λ, θ)

∣∣∣∣∣ = sup
θ∈Θ,λ∈Λ

∣∣∣∣∣(f̂(λ, θ)− f(λ, θ))k(λ, θ)− (k̂(λ, θ)− k(λ, θ))f(λ, θ)

(k̂(λ, θ)− k(λ, θ))k(λ, θ) + k(λ, θ)2

∣∣∣∣∣
to confirm that f̂(λ,θ)

k̂(λ,θ)
converges in probability towards f(λ,θ)

k(λ,θ) , uniformly over Λ×Θ. Thus,

f̂(λ̂, θ̂)

k̂(λ̂, θ̂)
=

f(λ̂, θ̂)

k(λ̂, θ̂)
+ oP (1) ≡

E
(
exp

(
λ̂′g(x, θ̂)/2

))
(
E
(
exp

(
λ̂′g(x, θ̂)

)))1/2 + oP (1).

Hence,

E
(
exp

(
λ̂′g(x, θ̂)/2

))
(
E
(
exp

(
λ̂′g(x, θ̂)

)))1/2 → 1, (19)

in probability as n → ∞.

We now show that λ̂
P→ 0. For this, let ϵ > 0, N = {λ : |λ| < ϵ} and N̄ its complement. Note

that, by the Jensen’s inequality, E(exp(λ′g(x,θ)/2))

(E(exp(λ′g(x,θ))))1/2
≤ 1 for all λ and θ with equality occurring only if

exp (λ′g(x, θ)) is constant. Under Assumption 1-(v), this is the case only when λ = 0.
By continuity of its objective function and the compactness of the maximization set, there exists

θ̄ ∈ Θ and λ̄ ∈ N̄ ∩ Λ such that:

max
θ∈Θ,λ∈Λ∩N̄

E (exp (λ′g(x, θ)/2))

(E (exp (λ′g(x, θ))))1/2
=

E
(
exp

(
λ̄′g(x, θ̄)/2

))(
E
(
exp

(
λ̄′g(x, θ̄)

)))1/2 ≡ Aϵ.

Since λ̄ ̸= 0, Aϵ < 1. From (19),
E(exp(λ̂′g(x,θ̂)/2))

(E(exp(λ̂′g(x,θ̂))))
1/2 > Aϵ w.p.a.1 for n large enough. Therefore,

λ̂ /∈ N̄ w.p.a.1. Hence, λ̂ ∈ N w.p.a.1. This establishes that λ̂
P→ 0. �

Lemma B.2 If Assumption 1 holds and θ̂ is the ETHD estimator, then

∆n(λ̂(θ̂), θ̂) = 1 +OP (n
−1), λ̂(θ̂) = OP (n

−1/2) and

∫
g(x, θ̂)dPn = OP (n

−1/2).
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Proof of Lemma B.2: We proceed in three steps. In Step 1, we show that ∆n(λ̂(θ̂), θ̂) = 1+OP (n
−1).

This allows, thanks to Lemma B.1 to deduce that λ̂(θ̂) = oP (1). In Step 2, we derive the order of
magnitude of λ̂(θ̂) and that of

∫
g(x, θ̂)dPn in Step 3.

Step 1: We first show that ∆n(λ̂(θ̂), θ̂) = 1 +OP (n
−1).

By definition of θ̂, we have:

∆n

(
λ̂(θ∗), θ∗

)
≤ ∆n

(
λ̂(θ̂), θ̂

)
≤ 1. (20)

Also, by the central limit theorem,
√
n
∫
g(x, θ∗)dPn = OP (1). We can therefore apply Lemma A2

of Newey and Smith (2004) to the constant sequence θ̄ = θ∗ and claim that λ̂(θ∗) = OP (n
−1/2) and∫

exp
(
λ̂(θ∗)′g(x, θ∗)

)
dPn ≥ 1 +OP (n

−1).

Since
∫
exp (λ′g(x, θ∗)) dPn is minimized at λ̂(θ∗) over Λ ∋ 0, we can claim that:

1 +OP (n
−1) ≤

∫
exp

(
λ̂(θ∗)′g(x, θ∗)

)
dPn ≤ 1.

Thus

εn ≡
∫

exp
(
λ̂(θ∗)′g(x, θ∗)

)
dPn − 1 = OP (n

−1).

By definition of λ̂(θ∗),

∫
exp

(
λ̂(θ∗)′g(x, θ∗)

)
dPn ≤

∫
exp

(
λ̂(θ∗)′g(x, θ∗)/2

)
dPn. Hence,

(∫
exp

(
λ̂(θ∗)′g(x, θ∗)

)
dPn

)1/2

≤ ∆n

(
λ̂(θ∗), θ∗

)
≤ 1.

But,
(∫

exp
(
λ̂(θ∗)′g(x, θ∗)

)
dPn

)1/2
= (1+ εn)

1/2 = 1+ 1
2εn+O(ε2n) = 1+OP (n

−1). We deduce that

∆n

(
λ̂(θ∗), θ∗

)
= 1 +OP (n

−1), ensuring also that ∆n

(
λ̂(θ̂), θ̂

)
= 1 +OP (n

−1) via (20).

Step 2: Let us show that λ̂(θ̂) = OP (n
−1/2). By a second order Taylor expansion of ∆n(λ̂(θ̂), θ̂) around

λ = 0 with a Lagrange remainder, we have:

∆n(λ̂(θ̂), θ̂) = ∆n(0, θ̂) +
∂∆n(0, θ̂)

∂λ′ λ̂(θ̂) +
1

2
λ̂(θ̂)′

∂2∆n(λ̇, θ̂)

∂λ∂λ′ λ̂(θ̂), (21)

with λ̇ ∈ (0, λ̂(θ̂)). Letting g denote g(x, θ̂) in the next two equations, we have:

∂∆n(λ,θ̂)
∂λ = 1

2

(∫
exp(λ′g)dPn

)−3/2

×(∫
g exp(λ′g/2)dPn

∫
exp(λ′g)dPn −

∫
g exp(λ′g)dPn

∫
exp(λ′g/2)dPn

)
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and

∂2∆n(λ,θ̂)
∂λ∂λ′ = 1

2

(∫
exp(λ′g)dPn

)−3/2

×(
1
2

∫
gg′ exp(λ′g/2)dPn

∫
exp(λ′g)dPn −

∫
gg′ exp(λ′g)dPn

∫
exp(λ′g/2)dPn

)

+ 1
2

(∫
exp(λ′g)dPn

)−5/2

×(
3
2

∫
exp(λ′g/2)dPn

∫
g exp(λ′g)dPn

∫
g′ exp(λ′g)dPn

−1
2

∫
exp(λ′g)dPn

∫
g exp(λ′g)dPn

∫
g′ exp(λ′g/2)dPn

−1
2

∫
exp(λ′g)dPn

∫
g exp(λ′g/2)dPn

∫
g′ exp(λ′g)dPn

)
.

Hence, ∂∆n(0,θ̂)
∂λ = 0. We also have that:

∂2∆n(λ̇, θ̂)

∂λ∂λ′ = −1

4
V ar(g(x, θ̂)) + oP (1). (22)

To see this, we observe that, thanks to Assumption 1-(i), (ii) and (vi), we can claim, relying on
Lemma 2.4 of Newey and McFadden (1994), that

∫
exp (λ′g(x, θ)) dPn converges in probability towards

E (exp (λ′g(x, θ))), uniformly over Λ×Θ. Thus∫
exp

(
λ̇′g(x, θ̂)

)
dPn = E

(
exp

(
λ̇′g(x, θ̂)

))
+ oP (1).

Assumption 1(vi) ensures that exp
(
λ̇′g(x, θ̂)

)
is dominated by an integrable random variable. We

can therefore apply the Lebesgue dominated convergence theorem. First, observe that, thanks to

Assumption 1-(iv), g(x, θ̂) = OP (1) and since λ̇
P→ 0, we have λ̇′g(x, θ̂) = oP (1). Thus, we can claim

that E
(
exp

(
λ̇′g(x, θ̂)

))
→ 1 in probability as n → ∞. Hence,∫

exp
(
λ̇′g(x, θ̂)

)
dPn

P→ 1.

We can also claim that∫
g(x, θ̂) exp

(
λ̇′g(x, θ̂)

)
dPn = E

(
g(x, θ̂) exp

(
λ̇′g(x, θ̂)

))
+ oP (1) = E

(
g(x, θ̂)

)
+ oP (1).

To see this, let N ⊂ Rm be a small neighborhood of 0. For λ closed to 0, we have

|g(x, θ) exp
(
λ′g(x, θ)

)
| ≤ sup

θ∈Θ
|g(x, θ)| sup

θ∈Θ,λ∈N
exp

(
λ′g(x, θ)

)
.

Applying the Holder inequality with β: 1/α+ 1/β = 1, have:

E
(
supθ∈Θ |g(x, θ)| supθ∈Θ,λ∈N exp (λ′g(x, θ))

)
≤ (E supθ∈Θ |g(x, θ)|α)

1
α
(
E supθ∈Θ,λ∈N exp (βλ′g(x, θ))

) 1
β

≤ (E supθ∈Θ |g(x, θ)|α)
1
α
(
E supθ∈Θ,λ∈Λ exp (λ′g(x, θ))

) 1
β < ∞.

(We use in this conclusion Assumption 1(iv).) The claim follows.
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We can proceed the same way to show that:∫
g(x, θ̂)g(x, θ̂)′ exp

(
λ̇′g(x, θ)

)
dPn = E

(
g(x, θ̂)g(x, θ̂)′

)
+ oP (1);∫

g(x, θ̂)g(x, θ̂)′ exp
(
λ̇′g(x, θ)/2

)
dPn = E

(
g(x, θ̂)g(x, θ̂)

)
+ oP (1);∫

g(x, θ̂) exp
(
λ̇′g(x, θ)/2

)
dPn = E

(
g(x, θ̂)

)
+ oP (1); and

∫
exp

(
λ̇′g(x, θ)/2

)
dPn = 1 + oP (1)

and (22) follows.
Therefore, (21) can be written:

∆n(λ̂(θ̂), θ̂) = 1− 1

8
λ̂(θ̂)′V ar(g(x, θ̂))λ̂(θ̂) + oP (1)|λ̂(θ̂)|2. (23)

Thus
1

8
λ̂(θ̂)′V ar(g(x, θ̂))λ̂(θ̂) + oP (1)|λ̂(θ̂)|2 = OP (n

−1).

From Assumption 1(v), this implies that:

ℓ|λ̂(θ̂)|2/8 + oP (1)|λ̂(θ̂)|2 ≤
1

8
λ̂(θ̂)′V ar(g(x, θ̂))λ̂(θ̂) + oP (1)|λ̂(θ̂)|2 = OP (n

−1)

for some ℓ > 0 and we can conclude that

|λ̂(θ̂)|2(1 + oP (1)) = OP (n
−1)

implying that
|λ̂(θ̂)|2 = OP (n

−1)

or, equivalently, λ̂(θ̂) = OP (n
−1/2), concluding Step 2.

Step 3: Now, we show that
∫
g(x, θ̂)dPn = OP (n

−1/2). Let λ̃ = −
∫
g(x,θ̂)dPn√

n|
∫
g(x,θ̂)dPn|

+ λ̂(θ̂). By definition,∫
exp

(
λ̂(θ̂)′g(x, θ̂)

)
dPn ≤

∫
exp

(
λ̃′g(x, θ̂)

)
dPn.

A second order Taylor expansion of each side around 0 with a Lagrange remainder gives:∫
exp

(
λ̂(θ̂)′g(x, θ̂)

)
dPn = 1 + λ̂(θ̂)′

∫
g(x, θ̂)dPn +

1

2
λ̂(θ̂)′

∫
g(x, θ̂)g(x, θ̂)′ exp

(
λ̇′g(x, θ̂)

)
dPnλ̂(θ̂)

and ∫
exp

(
λ̃′g(x, θ̂)

)
dPn = 1 + λ̂(θ̂)′

∫
g(x, θ̂)dPn − n−1/2

∣∣∣∫ g(x, θ̂)dPn

∣∣∣
+1

2 λ̃
′ ∫ g(x, θ̂)g(x, θ̂)′ exp

(
λ̈′g(x, θ̂)

)
dPnλ̃,

with λ̇ ∈ (0, λ̂(θ̂)) and λ̈ ∈ (0, λ̃). Since λ̂(θ̂) and λ̃ are both OP (n
−1/2), so are λ̇ and λ̈ and, as a

result, the quadratic terms in both expansions are of order OP (n
−1). Thus:

1 + λ̂(θ̂)′
∫

g(x, θ̂)dPn +OP (n
−1) ≤ 1 + λ̂(θ̂)′

∫
g(x, θ̂)dPn − n−1/2

∣∣∣∣∫ g(x, θ̂)dPn

∣∣∣∣+OP (n
−1)

and we can conclude that:
∣∣∣∫ g(x, θ̂)dPn

∣∣∣ = OP (n
−1/2). �
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Proof of Theorem 3.2:
Proofs of (ii) and (iii) follow from Lemma B.2. We show (i). We have∫

g(x, θ̂)dPn =

∫
g(x, θ̂)dPn − E(g(x, θ̂)) + E(g(x, θ̂)).

By uniform convergence in probability of
∫
g(x, θ)dPn towards E(g(x, θ)) over Θ, we have:∫

g(x, θ̂)dPn = E(g(x, θ̂)) + oP (1).

From (iii), we can deduce that E(g(x, θ̂)) → 0 in probability as n → ∞. Since E(g(x, θ)) = 0 is
solved only at θ∗, the fact that θ → E(g(x, θ)) is continuous and Θ compact allows us to conclude

that θ̂
P→ θ∗. �

Proof of Theorem 3.3: (i) We essentially rely on mean-value expansions of the first order optimality
conditions for θ̂ and λ̂. Since θ̂ converges in probability to θ∗ which is an interior point, with probability
approaching 1, θ̂ is an interior solution and solves the first order condition:

d∆n(λ̂(θ), θ)

dθ
=

N1(λ̂(θ), θ)

D1(λ̂(θ), θ)
− N2(λ̂(θ), θ)

D2(λ̂(θ), θ)
= 0, (24)

with

N1(λ, θ) =
1

2

∫ (
dλ̂′

dθ
(θ)g(x, θ) +

∂g(x, θ)′

∂θ
λ

)
exp

(
λ′g(x, θ)/2

)
dPn,

N2(λ, θ) =
1

2

∫ (
dλ̂′

dθ
(θ)g(x, θ) +

∂g(x, θ)′

∂θ
λ

)
exp

(
λ′g(x, θ)

)
dPn ×

∫
exp

(
λ′g(x, θ)/2

)
dPn,

D1(λ, θ) =

(∫
exp(λ′g(x, θ)dPn

)1/2

, D2(λ, θ) =

(∫
exp(λ′g(x, θ)dPn

)3/2

.

Also, the fact that λ̂(θ̂) converges in probability to 0 makes it an interior solution so that it solves
in λ the first-order condition: ∫

g(x, θ̂) exp
(
λ′g(x, θ̂)

)
dPn = 0. (25)

We will consider the left hand sides of (24) and (25) and carry out their mean-value expansions
around (0, θ∗). Regarding (24), we have:

N1(0, θ
∗) = N2(0, θ

∗) =
1

2

dλ̂(θ∗)′

dθ

∫
g(x, θ∗)dPn, D1(0, θ

∗) = D2(0, θ
∗) = 1,

so that the first term in the expansion is nil. Hence, the mean-value expansion of (24) is:

0 =
∂

∂θ′

(
N1(λ, θ)

D1(λ, θ)
− N2(λ, θ)

D2(λ, θ)

)∣∣∣∣
(λ̇,θ̇)

(θ̂ − θ∗) +
∂

∂λ′

(
N1(λ, θ)

D1(λ, θ)
− N2(λ, θ)

D2(λ, θ)

)∣∣∣∣
(λ̇,θ̇)

λ̂, (26)
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where λ̇ ∈ (0, λ̂) and θ̇ ∈ (θ∗, θ̂) and both may vary from row to row. We have:

∂N1(λ,θ)
∂θ′ = 1

2

∫ ( m∑
k=1

d2λ̂k(θ)

dθdθ′
gk(x, θ) +

m∑
k=1

∂2gk(x, θ)

∂θ∂θ′
λk +

dλ̂(θ)′

dθ

∂g(x, θ)

∂θ′

+1
2

(
dλ̂(θ)′

dθ g(x, θ) + ∂g(x,θ)′

∂θ λ
)
λ′ ∂g(x,θ)

∂θ′

)
exp (λ′g(x, θ)/2) dPn

∂N2(λ,θ)
∂θ′ = 1

2

∫ ( m∑
k=1

d2λ̂k(θ)

dθdθ′
gk(x, θ) +

m∑
k=1

∂2gk(x, θ)

∂θ∂θ′
λk +

dλ̂(θ)′

dθ

∂g(x, θ)

∂θ′

+
(
dλ̂(θ)′

dθ g(x, θ) + ∂g(x,θ)′

∂θ λ
)
λ′ ∂g(x,θ)

∂θ′

)
exp (λ′g(x, θ)) dPn ×

∫
exp (λg(x, θ)/2) dPn

+1
4

∫ (
dλ̂(θ)′

dθ
g(x, θ) +

∂g(x, θ)′

∂θ
λ

)
exp (λg(x, θ)) dPn ×

∫
λ′∂g(x, θ)

∂θ′
exp

(
λ′g(x, θ)/2

)
dPn

∂D1(λ,θ)
∂θ′ = 1

2

∫
λ′∂g(x, θ)

∂θ′
exp

(
λ′g(x, θ)

)
dPn ×

(∫
exp

(
λ′g(x, θ)

)
dPn

)−1/2

∂D2(λ,θ)
∂θ′ = 3

2

∫
λ′∂g(x, θ)

∂θ′
exp

(
λ′g(x, θ)

)
dPn ×

(∫
exp

(
λ′g(x, θ)

)
dPn

)1/2

.

Also,

∂N1(λ,θ)
∂λ′ = 1

2

∫ (
∂g(x, θ)′

∂θ
+

1

2

(
dλ̂(θ)′

dθ
g(x, θ) +

∂g(x, θ)′

∂θ
λ

)
g(x, θ)′

)
exp

(
λ′g(x, θ)/2

)
dPn

∂N2(λ,θ)
∂λ′ = 1

2

∫ (
∂g(x, θ)′

∂θ
+

(
dλ̂(θ)′

dθ
g(x, θ) +

∂g(x, θ)′

∂θ
λ

)
g(x, θ)′

)
exp

(
λ′g(x, θ)

)
dPn

×
∫
exp (λ′g(x, θ)/2) dPn

+1
4

∫ (
dλ̂(θ)′

dθ
g(x, θ) +

∂g(x, θ)′

∂θ
λ

)
exp

(
λ′g(x, θ)

)
dPn ×

∫
g(x, θ)′ exp

(
λ′g(x, θ)/2

)
dPn

∂D1(λ,θ)
∂λ′ = 1

2

∫
g(x, θ)′ exp

(
λ′g(x, θ)

)
dPn ×

(∫
exp

(
λ′g(x, θ)

)
dPn

)−1/2

∂D2(λ,θ)
∂λ′ = 3

2

∫
g(x, θ)′ exp

(
λ′g(x, θ)

)
dPn ×

(∫
exp

(
λ′g(x, θ)

)
dPn

)1/2

.

Since λ̇ ∈ (0, λ̂(θ̂)), we have that λ̇ = OP (n
−1/2). Hence, by Lemma B1 of Newey and Smith

(2004), max1≤i≤n |λ̇′g(xi, θ̇)| = oP (1). Therefore, we can claim that
∫
f(x) exp

(
λ̇′g(x, θ̇)

)
dPn =∫

f(x)dPn + oP (1) for any f such that E(f(x)) exists. Also, under our assumptions, dλ̂(θ̇)
dθ′ = OP (1)

as well as d2λ̂k(θ̇)
dθdθ′ = OP (1), for all k = 1, . . . ,m. Furthermore, since θ̂− θ∗ = OP (n

−1/2), a mean-value
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expansion of
∫
g(x, θ̇)dPn around θ∗ ensures that

∫
g(x, θ̇)dPn = OP (n

−1/2). Under these observations,
we have:

∂N1(λ̇,θ̇)
∂θ′ = 1

2
dλ̂(θ̇)′

dθ

∫
∂g(x, θ̇)

∂θ′
dPn + oP (1),

∂N2(λ̇, θ̇)

∂θ′
=

1

2

dλ̂(θ̇)′

dθ

∫
∂g(x, θ̇)

∂θ′
dPn + oP (1),

D1(λ̇, θ̇) = 1 + oP (1), D2(λ̇, θ̇) = 1 + oP (1),
∂D1(λ̇,θ̇)

∂θ′ = oP (1),
∂D2(λ̇,θ̇)

∂θ′ = oP (1).

Also,

∂N1(λ̇,θ̇)
∂λ′ = 1

2

∫
∂g(x, θ̇)′

∂θ
dPn +

1

4

dλ̂(θ̇)′

dθ

∫
g(x, θ̇)g(x, θ̇)′dPn + oP (1),

∂N2(λ̇,θ̇)
∂λ′ = 1

2

∫
∂g(x, θ̇)′

∂θ
dPn +

1

2

dλ̂(θ̇)′

dθ

∫
g(x, θ̇)g(x, θ̇)′dPn + oP (1),

∂D1(λ̇,θ̇)
∂λ′ = oP (1),

∂D2(λ̇,θ̇)
∂λ′ = oP (1).

As a result,

∂
∂θ′

(
N1(λ,θ)
D1(λ,θ)

− N2(λ,θ)
D2(λ,θ)

)∣∣∣
(λ̇,θ̇)

= oP (1)

∂
∂λ′

(
N1(λ,θ)
D1(λ,θ)

− N2(λ,θ)
D2(λ,θ)

)∣∣∣
(λ̇,θ̇)

= −1
4
dλ̂(θ̇)′

dθ

∫
g(x, θ̇)g(x, θ̇)′dPn + oP (1).

Note that

dλ̂(θ)
dθ′ = −

(∫
g(x, θ)g(x, θ)′ exp

(
λ̂(θ)′g(x, θ)

)
dPn

)−1

×
∫ (

∂g(x, θ)

∂θ′
+ g(x, θ)λ̂(θ)′

∂g(x, θ)

∂θ′

)
exp

(
λ̂(θ)′g(x, θ)

)
dPn.

Again, since θ̇ = θ∗+OP (n
−1/2) and

∫
g(x, θ̇)dPn = OP (n

−1/2), Lemma A2 of Newey and Smith (2004)

ensures that λ̂(θ̇) = OP (n
−1/2). Thus, thanks to their Lemma A1, we also have max1≤i≤n |λ̂(θ̇)′g(xi, θ̇)| =

oP (1). We can therefore claim that:

dλ̂(θ̇)

dθ′
= −

(∫
g(x, θ)g(x, θ)′dPn

)−1 ∫ ∂g(x, θ)

∂θ′
dPn + oP (1) = −Ω−1G+ oP (1).

Hence,
∂

∂λ′

(
N1(λ, θ)

D1(λ, θ)
− N2(λ, θ)

D2(λ, θ)

)∣∣∣∣
(λ̇,θ̇)

=
1

4
G′ + oP (1)

and the expansion of (24) yields: √
nG′λ̂ = oP (1). (27)

The expansion of (25) around (θ∗, 0) yields:

0 =

∫
g(x, θ∗)dPn +

∫ (
∂g(x, θ̇)

∂θ′
+ g(x, θ̇)λ̇′∂g(x, θ̇)

∂θ′

)
exp

(
λ̇′g(x, θ̇)

)
dPn(θ̂ − θ∗)

+
∫
g(x, θ̇)g(x, θ̇)′ exp

(
λ̇′g(x, θ̇)

)
dPnλ̂,
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with (λ̇, θ̇) ∈ (0, λ̂(θ̂)) × (θ∗, θ̂) and may differ from row to row. By similar arguments to those
previously made, this expression reduces to:

G
√
n(θ̂ − θ∗) + Ω

√
nλ̂ = −

√
n

∫
g(x, θ∗)dPn + oP (1). (28)

Together, (27) and (28) yield:

(
Ω G
G′ 0

)√
n

(
λ̂

θ̂ − θ∗

)
=

 −
√
n

∫
g(x, θ∗)dPn

0

+ oP (1) (29)

By the standard partitioned inverse matrix formula (see Magnus and Neudecker (1999, p.11)), we have(
Ω G
G′ 0

)−1

=

(
Ω−1/2MΩ−1/2 Ω−1GΣ

ΣG′Ω−1 −Σ

)
.

Hence,
√
n

(
λ̂

θ̂ − θ∗

)
= −

(
Ω−1/2MΩ−1/2

ΣG′Ω−1

)
1√
n

n∑
i=1

g(xi, θ
∗) + oP (1)

and the statement (i) of the theorem follows easily.

To establish (ii), we use the fact that

√
nλ̂ = −Ω−1/2MΩ−1/2 1√

n

n∑
i=1

g(xi, θ
∗) + oP (1)

and Equation (23). This equation implies that

8n
(
1−∆n(λ̂, θ̂)

)
= nλ̂′Ωλ̂+ oP (1) =

1√
n

n∑
i=1

g(xi, θ
∗)′Ω−1/2MΩ−1/2 1√

n

n∑
i=1

g(xi, θ
∗) + oP (1)

and the result follows since
(

1√
n

∑n
i=1Ω

−1/2g(xi, θ
∗)
)′

M
(

1√
n

∑n
i=1Ω

−1/2g(xi, θ
∗)
)
is asymptotically

distributed as a χ2
m−p.

C Local misspecification

This section first introduces the definition of (asymptotic) Fisher consistency and then provides proofs
to the main results in Section 4 of the main text. The following definition of Fisher consistency and
regularity can be found in KOE (2013, Definition 3.1).

Let Ta(Pn) be an estimator of θ∗ based on a mapping Ta : M → Θ. Let P be the set of all
probability measures P for which there exists θ ∈ Θ satisfying EP (g(x, θ)) = 0 and let Pθ,ζ be a
regular parametric submodel of P such that Pθ∗,0 = P∗ and such that Pθ∗+t/

√
n,ζn ∈ BH(P∗, r/

√
n)

holds for ζn = O(n−1/2) eventually.

Definition 1 (Fisher consistent and regular estimator)

(i) Ta is asymptotically Fisher consistent if for every (Pθ∗+t/
√
n,ζn)n∈N and t ∈ Rp,

√
n
(
Ta(Pθ∗+t/

√
n,ζn)− θ∗

)
→ t.
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(ii) Ta is regular for θ∗ if, for every (Pθn,ζn)n∈N with θn = θ + O(n−1/2) and ζn = O(n−1/2), there
exists a probability measure M such that:

√
n(Ta(Pn)− Ta(Pθn,ζn))

d→ M, under Pθn,ζn ,

where the measure M does not depend on the sequence (θnζn).

Proof of Theorem 4.1: The proof follows similar lines as those of Theorem 3.1(ii) in KOE (2013).
To establish Fisher consistency, let Pθ,ζ be a regular sub-model such that for t ∈ Rp, Pθn,ζn ∈
BH(P0, r/

√
n) for n large enough, with θn = θ∗ + t/

√
n and ζn = O(n−1/2). We have to show

that √
n(T̄ (Pθn,ζn)− θ∗) → t,

as n → ∞. From Lemma C.5,

√
n(T̄ (Pθn,ζn)− θ∗) = −ΣG′Ω−1√n

∫
gn(x, θ

∗)dPθn,ζn + o(1).

By a mean-value expansion, we have:

√
n

∫
gn(x, θ

∗)dPθn,ζn =
√
n

∫
gn(x, θn)dPθn,ζn −

∫
∂gn(x, θ̇)

∂θ′
dPθn,ζnt,

with θ̇ ∈ (θ∗, θn) and may vary from row to row. Noting that
∫
g(x, θn)dPθn,ζn = 0, by the similar

argument to (A.16) of KOE (2013, proofs), we have
∫
gn(x, θn)dPθn,ζn = o(n−1/2). The convergence

follows by applying their Lemma A.4(i) to
∫ ∂gn(x,θ̇)

∂θ′ dPθn,ζn .

We next show 17. Let F = ∂τ(θ0)
∂θ′ ΣG′Ω−1. Thanks to Lemma C.2(ii), T̄Qn → θ0 as n → ∞ and

Lemma C.5 guarantees that T̄Qn − θ∗ = O(n−1/2). A Taylor expansion of τ(T̄Qn) around θ∗ ensures
that:

√
n
(
τ ◦ T̄Qn − τ(θ∗)

)
= −

√
nF

∫
gn(x, θ

∗)dQn + o(1)

= −
√
nF

∫
gn(x, θ

∗)
(
dQ1/2

n − dP
1/2
∗

)
dQ1/2

n −
√
nF

∫
gn(x, θ

∗)
(
dQ1/2

n − dP
1/2
∗

)
dP

1/2
∗ + o(1).

By the triangle inequality, we have

n(
(
τ ◦ T̄Qn − τ(θ∗)

)2 ≤ n(A1 +A2 + 2A3) + o(1),

with

A1 =

∣∣∣∣F ∫ gn(x, θ
∗)
(
dQ1/2

n − dP
1/2
∗

)
dQ1/2

n

∣∣∣∣2 , A1 =

∣∣∣∣F ∫ gn(x, θ
∗)
(
dQ1/2

n − dP
1/2
∗

)
dP

1/2
∗

∣∣∣∣2
and A3 =

√
A1 ·A2. By the Cauchy-Schwarz inequality and then by Lemma A.5(i) of KOE (2013,

proofs), we have:

A1 ≤
∣∣∣∣F ∫ gn(x, θ

∗)gn(x, θ
∗)′dQn

∣∣∣∣ ∫ (dQ1/2
n − dP

1/2
∗

)2
≤ B∗ r

2

n
+ o(n−1).

By the same way, we have A2 ≤ B∗ r2
n +o(n−1) and we can deduce that A3 ≤ B∗ r2

n +o(n−1). Therefore,

n
(
τ ◦ T̄Qn − τ(θ∗)

)2 ≤ 4r2B∗ + o(1), (30)
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Besides, we know from Lemma C.2(i) that, for all n ≥ n0, T̄Q exists for all Q ∈ BH(P∗, r/
√
n).

Since T̄Q ∈ Θ compact, there exists C > 0 such that

Ln ≡ sup
Q∈BH(P∗,r/

√
n)

n
(
τ ◦ T̄Qn − τ(θ∗)

)2 ≤ Cṅ < ∞.

Let Qn be a sequence such that Qn ∈ BH(P∗, r/
√
n) for all nn ≥ n0 and

Ln ≤ n
(
τ ◦ T̄Qn − τ(θ∗)

)2
+

1

2n
.

we have:
lim sup
n→∞

Ln ≤ lim sup
n→∞

n
(
τ ◦ T̄Qn − τ(θ∗)

)2
and using (30), we deduce that lim supn→∞ Ln ≤ 4r2B∗. Theorem 3.1(i) of KOE (2013) guarantees
that lim infn→∞ Ln ≥ 4r2B∗ leading to (17). �

Proof of Theorem 4.2: This proof also follows similar lines to the proof of Theorem 3.2(ii) of KOE
(2013). We have:

lim sup
n→∞

sup
Q∈B̄H(P∗,r/

√
n)

∫
b ∧ n (τ ◦ T (Pn)− τ(θ∗))2 dQ⊗n

= lim sup
n→∞

sup
Q∈B̄H(P∗,r/

√
n)

∫
b ∧ n

(
(τ ◦ T (Pn)− τ ◦ T̄ (Pn)) + (T̄ (Pn)− τ(θ∗))

)2
dQ⊗n

≤ A1 + 2A2 +A3,

with

A1 = lim sup
n→∞

sup
Q∈B̄H(P∗,r/

√
n)

∫
b ∧ n

(
τ ◦ T (Pn)− τ ◦ T̄ (Pn)

)2
dQ⊗n,

A2 = lim sup
n→∞

sup
Q∈B̄H(P∗,r/

√
n)

∫
b ∧ n

∣∣τ ◦ T (Pn)− τ ◦ T̄ (Pn)
∣∣ ∣∣τ ◦ T̄ (Pn)− τ(θ∗)

∣∣ dQ⊗n,

A3 = lim sup
n→∞

sup
Q∈B̄H(P∗,r/

√
n)

∫
b ∧ n

(
τ ◦ T̄ (Pn)− τ(θ∗)

)2
dQ⊗n.

We show that A1 = A2 = 0. Note that T (Pn) = T̄ (Pn) if [(x1, . . . , xn) ∈ X n
n ] ∩ [T̄1(Pn) ∈ int(Λn)].

Thus,

A1 ≤ b× lim sup
n→∞

sup
Q∈B̄H(P∗,r/

√
n)

∫
[(x1,...,xn)/∈Xn

n ]∪[T̄1(Pn)/∈int(Λn)]
dQ⊗n

≤ b× lim sup
n→∞

sup
Q∈B̄H(P∗,r/

√
n)

∫
(x1,...,xn)/∈Xn

n

dQ⊗n + b× lim sup
n→∞

sup
Q∈B̄H(P∗,r/

√
n)

∫
T̄1(Pn)/∈int(Λn)

dQ⊗n

≡ A11 +A12.

From KOE(2013, proofs), Equation (A.5), A11 = 0. We show that

lim sup
n→∞

sup
Q∈B̄H(P∗,r/

√
n)

Q⊗n
(
T̄1(Pn) ≥ C/m1+ζ

n

)
= 0.

Since Q⊗n is a probability measure, we have 0 ≤ Q⊗n
(
T̄1(Pn) ≥ C/m1+ζ

n

)
≤ 1. Hence,

sup
Q∈B̄H(P∗,r/

√
n)

Q⊗n
(
T̄1(Pn) ≥ C/m1+ζ

n

)
34



is finite. Let Qn be the sequence of probability measures in B̄H(P∗, r/
√
n) such that:

sup
Q∈B̄H(P∗,r/

√
n)

Q⊗n
(
T̄1(Pn) ≥ C/m1+ζ

n

)
≤ Q⊗n

n

(
T̄1(Pn) ≥ C/m1+ζ

n

)
+

1

2n
.

We have

lim sup
n→∞

sup
Q∈B̄H(P∗,r/

√
n)

Q⊗n
(
T̄1(Pn) ≥ C/m1+ζ

n

)
≤ lim sup

n→∞
Q⊗n

n

(
T̄1(Pn) ≥ C/m1+ζ

n

)
.

But, thanks to Lemma C.8, T̄1(Pn) = OP (n
−1/2) under Qn. Thus, under Assumption 3 (iii), we have:

m1+ζ
n T̄1(Pn) = oP (1) under Qn. It results that Q

⊗n
n

(
T̄1(Pn) ≥ C/m1+ζ

n

)
→ 0 as n → ∞ showing that

lim sup
n→∞

sup
Q∈B̄H(P∗,r/

√
n)

Q⊗n
(
T̄1(Pn) ≥ C/m1+ζ

n

)
= 0.

Consider A3. Note that sup
Q∈B̄H(P∗,r/

√
n)

∫
b ∧ n

(
τ ◦ T̄ (Pn)− τ(θ∗)

)2
dQ⊗n ≤ b < ∞. Therefore,

there exists Q̄n ∈ B̄H(P∗, r/
√
n) such that

A3 ≤ lim sup
n→∞

∫
b ∧ n

(
τ ◦ T̄ (Pn)− τ(θ∗)

)2
dQ̄⊗n

n .

Note that, thanks to Lemma C.8,
√
n(τ ◦T̄ (Pn)−τ ◦T̄ (Q̄n)) converges in distribution towards N(0, B∗)

under Q̄n. Let
∫
b ∧ n

(
τ ◦ T̄ (Pn)− τ(θ∗)

)2
dQ̄⊗n

n be a subsequence of this sequence that converge to
the lim sup (we keep n to denote the subsequence for simplicity). This has a further subsequence along
which

√
n(τ ◦ T̄ (Q̄n)− τ(θ0)) converges towards its lim sup, say t̃. Thanks to Theorem 4.1, |t̃| is finite.

Hence, along this final subsequence,

√
n(τ ◦ T̄ (Pn)− τ(θ∗)) =

√
n(τ ◦ T̄ (Pn)− τ ◦ T̄ (Q̄n)) +

√
n(τ ◦ T̄ (Q̄n)− τ(θ∗))

converges in distribution towards N(t̃, B∗) under Q̄n.
We can deduce that:

A3 ≤
∫

b ∧ (Z + t̃)2dN(0, B∗) ≤ B∗ + t̃2 ≤ B∗ + lim sup
n→∞

n(τ ◦ T̄ (Q̄n)− τ(θ∗))2 ≤ B∗ + 4r2B∗,

where the lim sup is taking over the initial sequence and the last inequality follows from Theorem 4.1.
This concludes the proof. �

Proof of Theorem 4.3: To be completed. �

Lemma C.1 Let Q ∈ M, Pθ = {P ∈ M :
∫
g(x, θ)dP = 0} with θ ∈ Θ and P (θ) solution to

minP∈Pθ

∫
log
(
dP
dQ

)
dP. We have

argmin
θ∈Θ

H(P (θ), Q) = argmax
θ∈Θ

∫
exp(λ(θ)′g(x, θ)/2)dQ(∫
exp(λ(θ)′g(x, θ))dQ

)1/2 ,
with λ(θ) = argmin

λ

∫
exp (λ(θ)′g(x, θ)) dQ.

Proof of Lemma C.1 From Kitamura and Stutzer (1997), the solution P (θ) to minP∈Pθ

∫
log
(
dP
dQ

)
dP

has the Gibbs canonical density with respect to Q given by:

dP (θ)

dQ
=

exp (λ(θ)′g(x, θ))∫
exp (λ(θ)′g(x, θ)) dQ

.
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We can conclude using the fact that:

H(P (θ), Q) =

(
2− 2

∫
dP (θ)1/2dQ1/2

)1/2

=

(
2− 2

∫ (
dP (θ)

dQ

)1/2

dQ

)1/2

.

�

Lemma C.2 If Assumptions 1, 2 (with expectation and variance taken under P∗), and Assumption
3 hold, then:

(i) For each r > 0, there exists n0 such that T̄ (Q) exists and is upper hemi-continuous at each
Q ∈ BH(P∗, r/

√
n) under the Hellinger metric for all n ≥ n0.

(ii) T̄Qn → θ∗ as n → ∞ for each r > 0 and sequence Qn ∈ BH(P∗, r/
√
n).

Proof of Lemma C.2 (i) By the boundedness of the functions (λ, θ) → exp (λ′gn(x, θ)) and (λ, θ) →
exp (λ′gn(x, θ)/2) over Λn ×Θ, the function:

(λ, θ,Q) →
∫

exp
(
λ′gn(x, θ)

)
dQ and (λ, θ,Q) →

∫
exp

(
λ′gn(x, θ)/2

)
dQ

are continuous in their arguments on Λn×Θ×M under the Levy metric for M. Since Λn is compact,
λ → −

∫
exp (λ′gn(x, θ)) dQ reaches its maximum at T̄1(θ,Q) ∈ Λn.

Let r > 0. Assume for now that this function is strictly concave for any Q ∈ BH(P∗, r/
√
n0)

and θ ∈ Θ, for some n0. (This will be established later.) By inclusion, this function is also strictly
concave for any Q ∈ BH(P∗, r/

√
n), for any n ≥ n0. In this case, the convexity of Λn makes T̄1(θ,Q)

unique maximizer. The maximum theorem of Berge guarantees that T̄1(θ,Q) is upper hemi-continuous
meaning that T̄1(θ,Q), as a function, is continuous under the Levy metric for BH(P∗, r/

√
n). As a

result,

(θ,Q) →
∫
exp

(
T̄1(θ,Q)′gn(x, θ)/2

)
dQ∫ (

exp
(
T̄1(θ,Q)′gn(x, θ)

)
dQ
)1/2

is also continuous under the Levy metric. Since Θ is compact, this function reaches its maximum over
Θ at T̄ (Q) ∈ Θ and the maximum theorem of Berge guarantees that T̄ (Q) is upper hemi-continuous
with respect to the Levy metric. Since the Levy metric is dominated by the Hellinger metric, T̄ (Q) is
also upper hemi-continuous under the Hellinger metric on BH(P∗, r/

√
n).

To conclude the proof, we show that there exists n0 such that, for all n ≥ n0, λ → −
∫
exp(λ′gn(x, θ)dQ

is strictly concave on Λn for any Q ∈ BH(P∗, r/
√
n) and θ ∈ Θ. By the boundedness of λ′gn(x, θ) on

Λn, it suffices to find such n0 such that, for all n ≥ n0,
∫
gn(x, θ)gn(x, θ)dQ is positive definite for all

θ and Q in the named sets. For this, it suffices to show that:∣∣∣∣∫ gn(x, θ)gn(x, θ)
′dQ−

∫
gn(x, θ)gn(x, θ)dP∗

∣∣∣∣ and

∣∣∣∣∫ gn(x, θ)gn(x, θ)
′dP∗ −

∫
g(x, θ)g(x, θ)dP∗

∣∣∣∣
converge to 0, uniformly in θ ∈ Θ and Q ∈ BH(P∗, r/

√
n) and Assumption 1(v) will allow us to
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conclude.∣∣∣∣∫ gn(x, θ)gn(x, θ)
′dQ−

∫
gn(x, θ)gn(x, θ)

′dP∗

∣∣∣∣
=

∣∣∣∣∫ gn(x, θ)gn(x, θ)
′
[(

dQ1/2 − dP
1/2
∗

)2
− 2dP

1/2
∗

(
dP

1/2
∗ − dQ1/2

)]∣∣∣∣
≤

∫ ∣∣gn(x, θ)gn(x, θ)′∣∣ (dQ1/2 − dP
1/2
∗

)2
+ 2

(∫ ∣∣gn(x, θ)gn(x, θ)′∣∣2 dP∗

)1/2(∫ (
dQ1/2 − dP

1/2
∗

)2)1/2

≤ m2
n
r2

n + 2m
(4−α)/2
n

r√
n

∫
sup
θ∈Θ

|g(x, θ)|αdP∗ ≤ m2
n

r2

n
+ 2mn

r√
n

∫
sup
θ∈Θ

|g(x, θ)|αdP∗

= o(1).

The first inequality follows from the triangle and the Cauchy-Schwarz inequalities. The second in-
equality uses the definitions of gn and Hellinger balls. The last one uses the fact that α > 2 and the
order of magnitude follows from Assumptions 1(iv) and 3(ii).

∣∣∣∣∫ gn(x, θ)gn(x, θ)
′dP∗ −

∫
g(x, θ)g(x, θ)dP∗

∣∣∣∣ = ∣∣∣∣∫ g(x, θ)g(x, θ)′I(x /∈ Xn)dP∗

∣∣∣∣
≤

∫
|g(x, θ)|2 I(x /∈ Xn)dP∗ ≤

(∫
|g(x, θ)|α dP∗

)2/α(∫
I(x /∈ Xn)dP∗

)1−2/α

≤
(∫

sup
θ∈Θ

|g(x, θ)|αdP∗

)2/α(
P∗

(
sup
θ∈Θ

|g(x, θ)| ≥ mn

))(α−2)/α

≤ C

(
1

mα
n

EP∗

(
sup
θ∈Θ

|g(x, θ)|α
))(α−2)/α

= o(1)

The second inequality follows from the Holder inequality and the third one from the Markov inequality.
The order of magnitude follows from Assumption 3(ii); C > 0 is a generic constant.

(ii) Let r > 0 and Qn ∈ BH(P∗, r/
√
n). Along the same lines as KOE’s (2013) proof of their

Lemma 7.1(ii), we can show that:

sup
θ∈Θ

|EQn(gn(x, θ))− EP∗(g(x, θ))| → 0,

as n → ∞. Also, from Lemma C.3, we have EQn(gn(x, T̄Qn)) = O(n−1/2). From the fact that∣∣EP∗(g(x, T̄Qn))
∣∣ ≤ ∣∣EP∗(g(x, T̄Qn))− EQn(gn(x, T̄Qn))

∣∣+ ∣∣EQn(gn(x, T̄Qn))
∣∣ ,

we deduce that EP∗(g(x, T̄Qn)) → 0 as n → ∞. Since θ → EP∗(g(x, θ)) is continuous and Θ is compact,
Assumption 1(iii) allows us to conclude that T̄Qn → θ∗ as n → ∞. �

Let

∆Q(λ, θ) =

∫
exp(λ′g(x, θ)/2)dQ(∫
exp(λ′g(x, θ))dQ

)1/2 .
Lemma C.3 If Assumptions 1, 2 (with expectation and variance taken under P∗), and Assumption
3 hold, then: for each r > 0 and any sequence Qn ∈ BH(P∗, r/

√
n),
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(i) ∆Qn(T̄1(T̄Qn , Qn), T̄Qn) = 1 +O(n−1),

(ii) T̄1(T̄Qn , Qn) = O(n−1/2), and

(iii) EQn(gn(x, T̄Qn)) = O(n−1/2).

Proof of Lemma C.3
(i) We have ∆Qn(T̄1(θ

∗, Qn), θ
∗) ≤ ∆Qn(T̄1(T̄Qn , Qn), T̄Qn) ≤ 1 where the first inequality follows

by definition and the second by the Jensen’s inequality and the convexity of x → exp(x). We deduce
(i) from Lemma C.4.

(ii) Next, we show that λ̂n ≡ T̄1(T̄Qn , Qn) = O(n−1/2). By a second-order Taylor expansion of
∆Qn(T̄1(T̄Qn , Qn), T̄Qn) in the direction of its first component around λ = 0, we have:

∆Qn(λ̂n, T̄Qn) = ∆Qn(0, θ̂n) +
∂∆Qn(0, θ̂n)

∂λ′ λ̂n +
1

2
λ̂′
n

∂2∆Qn(λ̇, θ̂n)

∂λ∂λ′ λ̂n, (31)

with θ̂n ≡ T̄Qn and λ̇ ∈ (0, λ̂n). This expansion is actually the same as (21) with ∆Qn , λ̂n and θ̂n

replacing ∆n, λ̂ and θ̂, respectively. We have
∂∆Qn (0,θ̂n)

∂λ′ = 0 and
∂2∆Qn (λ,θ̂n)

∂λ∂λ′ is analogue to ∂2∆n(λ,θ̂)
∂λ∂λ′

as derived in the proof of Lemma B.2 with Qn, θ̂n and gn(·) replacing Pn, θ̂ and g(·), respectively.
We observe that

∂2∆Qn(λ̇, θ̂n)

∂λ∂λ′ = −1

4
V arP∗(gn(x, θ̂n)) + o(1). (32)

To see this, observe that, for any λ ∈ Λn,∫
exp(λ′gn(x, θ)dQn =

∫
exp(λ′gn(x, θ))(dQn − dP∗) +

∫
exp(λ′gn(x, θ))dP∗ ≡ (1) + (2).

By the Lebesgue dominated convergence theorem, (2) converges to 1 uniformly over λ ∈ Λn. Also, by
a similar treatment as the one applied to gn(x, θ)gn(x, θ)

′ in the proof of Lemma C.2, we have∫
exp(λ′gn(x, θ))dQn

=

∫
exp(λ′gn(x, θ))

{(
dQ1/2

n − dP
1/2
∗

)2
− 2dP

1/2
∗

(
dP

1/2
∗ − dQ1/2

n

)}
≤ C

(
r2

n
+ 2

r√
n

)
,

where C is a positive constant. Thus

∫
exp(λ̇′gn(x, θ))dQn → 1 as n → ∞.

We also have ∫
gn(x, θ̂n) exp(λ̇

′gn(x, θ̂n))dQn =

∫
gn(x, θ̂n)dP∗ + o(1).

To see this, write:∫
gn(x, θ̂n) exp(λ̇

′gn(x, θ̂n))dQn

=

∫
gn(x, θ̂n) exp(λ̇

′gn(x, θ̂n))(dQn − dP∗) +

∫
gn(x, θ̂n) exp(λ̇

′gn(x, θ̂n))dP∗ ≡ (1′) + (2′).

By similar expression of (dQn−dP∗) as in previous derivations, we can see that (1′) = o(1). Regarding
(2′), write

(2′)−
∫

gn(x, θ̂n)dP∗ =

∫
gn(x, θ̂n)

(
exp(λ̇′gn(x, θ̂n))− 1

)
dP∗
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which, by the Lebesgue dominated convergence theorem converges to 0. Along similar lines, we also
have that ∫

gn(x, θ̂n)gn(x, θ̂n)
′ exp(λ̇′gn(x, θ̂n))dQn =

∫
gn(x, θ̂n)gn(x, θ̂n)

′dP∗ + o(1).

This completes the justification of (32). Thus, the right hand side of (32) yields:

1− 1

8
λ̂′
nV arP∗(gn(x, θ̂n))λ̂n + o(|λ̂n|2) = 1 +O(n−1). (33)

It is not hard to see that V arP∗(gn(x, θ̂n)) = V arP∗(g(x, θ̂n)) + o(1). Hence, (33) implies that:

λ̂′
nV arP∗(g(x, θ̂n))λ̂n + |λ̂n|2o(1) = O(n−1).

We conclude, using Assumption 1(v) that

(ℓ+ o(1))|λ̂n|2 = O(n−1),

that is |λ̂n| = O(n−1/2), or T̄1(T̄Qn , Qn) = O(n−1/2).

(iii) This is obtained along the same lines as Step 3 in the proof of Lemma B.2 with Qn, λ̂n and
T̄Qn replacing Pn, λ̂(θ̂) and θ̂, respectively. �

Lemma C.4 If Assumptions 1, 2 (with expectation and variance taken under P∗), and Assumption
3 hold, then: for each r > 0 and any sequence Qn ∈ BH(P∗, r/

√
n),

(i) T̄1(θ
∗, Qn) = O(n−1/2),

(ii) ∆Qn(T̄1(θ
∗, Qn), θ

∗) = 1 +O(n−1).

Proof of Lemma C.4
(i) Let λ∗

n = T̄1(θ
∗, Qn). By a second-order mean-value expansion and by definition, we have:∫

exp(λ∗′
n gn(x, θ

∗))dQn

= −1− λ∗′
n

∫
gn(x, θ

∗)dQn − 1

2
λ∗′
n

∫
gn(x, θ

∗)gn(x, θ
∗)′ exp(λ̇′gn(x, θ

∗))dQnλ
∗
n ≥ −1,

with λ̇n ∈ (0, λ∗
n). Hence,

λ∗′
n

∫
gn(x, θ

∗)gn(x, θ
∗)′ exp(λ̇′gn(x, θ

∗))dQnλ
∗
n ≤ 2|λ∗

n|
∣∣∣∣∫ gn(x, θ

∗)dQn

∣∣∣∣ .
Using a similar argument as that in the proof of Lemma C.3, we have∫

gn(x, θ
∗)gn(x, θ

∗)′ exp(λ̇′gn(x, θ
∗))dQn =

∫
gn(x, θ

∗)gn(x, θ
∗)′dP∗ + o(1) ≽ V arP∗(gn(x, θ

∗)) + o(1).

Thus we have

(ℓ+ o(1))|λ∗
n|2 ≤ |λ∗

n|
∣∣∣∣∫ gn(x, θ

∗)dQn

∣∣∣∣ .
To conclude (i), we just need to show that

∣∣∣∣∫ gn(x, θ
∗)dQn

∣∣∣∣ = O(n−1/2). This can readily be deduce

from the proof of Lemma 7.1(i) of KOE (2013).
(ii) This is obtained by a second-order Taylor expansion of∆Qn(T̄1(θ

∗, Qn), θ
∗) in its first argument

around λ = 0. The first term in this expansion is 1, the second term in this expansion is nil whereas
the second derivative is, similarly to (32), equal to V arP∗(g(x, θ

∗)) + o(1) which is finite. Using (i),
we can deduce the claim. �
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Lemma C.5 If Assumptions 1, 2 (with expectation and variance taken under P∗), and Assumption
3 hold, then: for each r > 0 and any sequence Qn ∈ BH(P∗, r/

√
n),

√
n(T̄Qn − θ∗) = −ΣG′Ω−1√n

∫
gn(x, θ

∗)dQn + o(1). (34)

Proof of Lemma C.5 Let θ̂n ≡ T̄Qn , λ̂n(θ) ≡ T̄1(θ,Qn) and, for economy of notation, λ̂n ≡
T̄1(θ̂n, Qn). Since θ̂n → θ∗, Lemma C.6 ensures that, θ̂n satisfies the first order optimality condi-
tion:

d

dθ
∆Qn(λ̂n(θ), θ)

∣∣∣∣
θ=θ̂n

= 0,

that is
N1n(λ̂n, θ̂n)

D1n(λ̂n, θ̂n)
− N2n(λ̂n, θ̂n)

D2n(λ̂n, θ̂n)
= 0, (35)

withN1n(λ, θ),D1n(λ, θ), N2n(λ, θ),D2n(λ, θ) defined similarly toN1(λ, θ),D1(λ, θ), N2(λ, θ),D2(λ, θ)
in Equation (24) with λ̂(θ), Pn and g replaced by λ̂n(θ), Qn and gn, respectively.

Note that N1n(0, θ
∗) = N2n(0, θ

∗) = 1
2
dλ̂n(θ∗)

dθ

∫
gn(x, θ

∗)dQn and D1n(0, θ
∗) = D2n(0, θ

∗) = 1.

Hence, a mean-value expansion of (35) around (0, θ∗) yields

0 =
∂

∂θ′

(
N1n(λ, θ)

D1n(λ, θ)
− N2n(λ, θ)

D2n(λ, θ)

)∣∣∣∣
(λ̇,θ̇)

(θ̂n − θ∗) +
∂

∂λ′

(
N1n(λ, θ)

D1n(λ, θ)
− N2n(λ, θ)

D2n(λ, θ)

)∣∣∣∣
(λ̇,θ̇)

λ̂n, (36)

with (λ̇, θ̇) ∈ (0, λ̂n)× (θ∗, θ̂n) and may differ from row to row. The expressions of

∂Njn

∂θ′
,

∂Djn

∂θ′
,

∂Njn

∂λ′ ,
∂Djn

∂λ′ ,

j = 1, 2are analogue to the expressions of the partial derivatives of Nj and Dj as given following (25)

with, again, λ̂(θ), g and Pn replaced by λ̂n(θ), gn and Qn, respectively. Thanks to Lemma C.7, we
have, for j = 1, 2:

∂Njn

∂θ′
(λ̇, θ̇) =

1

2

dλ̂n(θ̇)
′

dθ

∫
∂gn
∂θ′

(x, θ̇)dQn + o(1),

Djn(λ̇, θ̇) = 1 + o(1),
∂Djn

∂θ′
(λ̇, θ̇) = o(1),

∂Djn

∂λ′ (λ̇, θ̇) = o(1),

∂N1n

∂λ′ (λ̇, θ̇) =
1

2

∫
∂g′n
∂θ

(x, θ̇)dQn +
1

4

dλ̂n(θ̇)
′

dθ

∫
gn(x, θ̇)gn(x, θ̇)

′dQn + o(1),

and
∂N2n

∂λ′ (λ̇, θ̇) =
1

2

∫
∂g′n
∂θ

(x, θ̇)dQn +
1

2

dλ̂n(θ̇)
′

dθ

∫
gn(x, θ̇)gn(x, θ̇)

′dQn + o(1).

As a result,
∂

∂θ′

(
N1n(λ, θ)

D1n(λ, θ)
− N2n(λ, θ)

D2n(λ, θ)

)∣∣∣∣
(λ̇,θ̇)

= o(1)

and
∂

∂λ′

(
N1n(λ, θ)

D1n(λ, θ)
− N2n(λ, θ)

D2n(λ, θ)

)∣∣∣∣
(λ̇,θ̇)

= −1

4

dλ̂n(θ̇)
′

dθ

∫
gn(x, θ̇)gn(x, θ̇)

′dQn + o(1).
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Also, from Lemma C.6,

dλ̂n(θ̇)

dθ′
= −

(∫
gn(x, θ̇)gn(x, θ̇)

′dQn

)−1 ∫ ∂gn(x, θ̇)

∂θ′
dQn + o(1).

The expansion in (36) becomes:

G′√nλ̂n = o(1) + o(
√
n|θ̂n − θ∗|). (37)

Turning to the first order condition for λ̂n, we know that λ̂n = O(n−1/2) and therefore is interior to
to Λn for n large enough. Therefore, λ̂n solves:∫

gn(x, θ̂n) exp
(
λ̂′
ngn(x, θ̂n)

)
dQn = 0.

A first-order mean-value expansion of this equation around (0, θ∗) yields:

0 =

∫
gn(x, θ

∗)dQn +

∫ (
Im + gn(x, θ̇)λ̇

′
) ∂gn
∂θ′

(x, θ̇) exp
(
λ̇′gn(x, θ̇)

)
dQn(θ̂n − θ∗)

+

∫
gn(x, θ̇)gn(x, θ̇)

′ exp
(
λ̇′gn(x, θ̇)

)
dQnλ̂n,

with (λ̇, θ̇) ∈ (0, λ̂n) × (θ∗, θ̂n) and may differ from row to row. By similar arguments as previously
made, we get:

G
√
n(θ̂n − θ∗) + Ω

√
nλ̂n = −

√
n

∫
gn(x, θ

∗)dQn + o(1) + o(|
√
n(θ̂n − θ∗)|). (38)

Using (37) and (38), we get

√
n(θ̂n − θ∗) + o(|

√
n(θ̂n − θ∗)|) = −

√
nΣG′Ω−1

∫
gn(x, θ

∗)dQn + o(1)

which is sufficient to deduce the result. �

Lemma C.6 If Assumptions 1, 2 (with expectation and variance taken under P∗), and Assumption
3 hold, then: for each r > 0, for n large enough and any sequence Qn ∈ BH(P∗, r/

√
n), the functions

θ → T̄1(θ,Qn) and θ → ∆Qn(T̄1(θ,Qn), θ) are continuously differentiable in a neighborhood of θ∗

contained in Λn and on that neighborhood,

∂T̄1(θ,Qn)

∂θ′
= −

(∫
∂gn(x, θ)gn(x, θ)

′dQn

)−1 ∫ gn(x, θ)

∂θ′
dQn + o(1).

Proof of Lemma C.6 From Lemma C.4, T̄1(θ
∗, Qn) = O(n−1/2) therefore, T̄1(θ

∗, Qn) is an interior
point to Λn for n large enough. The fact that |λ′gn(x, θ)| is bounded and Assumption 1(iv) ensure
that λ →

∫
exp(λ′gn(x, θ))dQn is differentiable on Θ and we can claim that (T̄1(θ

∗, Qn), θ
∗) solves the

first order condition:

Hn(λ, θ) ≡
∫

gn(x, θ) exp(λ
′gn(x, θ))dQn = 0.

From the proof of Lemma C.2(i), we know that
∫
gn(x, θ

∗)gn(x, θ
∗)′ exp(λ′gn(x, θ

∗))dQn is positive
definite. The implicit function theorem guarantees that the Hn(λ, θ) = 0 defines an implicit function
λn(θ) in the neighborhood of θ∗ contained in Λn. The fact that λ →

∫
exp(λ′gn(x, θ))dQn is strictly

convex (see proof of Lemma C.2(i)) means that its global minimum solves Hn(λ, θ) = 0. Thus, λn(θ) =
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T̄1(θ,Qn) on that neighborhood. Note that under Assumptions 1(iv) and 2(i), this neighborhood can
be so chosen that (θ, λ) → Hn(λ, θ) is continuously differentiable, property inherited by the implicit
function λn(θ), therefore by θ → T̄1(θ,Qn). We have:

∂T̄1(θ,Qn)
∂θ′ = −

(∫
gn(x, θ)gn(x, θ)

′ exp(λ′gn(x, θ))dQn

)−1

×∫ (
Im + gn(x, θ)λ

′) ∂gn(x, θ)
∂θ′

exp(λ′gn(x, θ))dQn,

with λ = T̄1(θ,Qn). But since |λ′gn(x, θ)| → 0 over (λ, θ) ∈ Λn × Θ, the term in the brackets and

the second term in the product are equal, up to o(1), to
∫
gn(x, θ)gn(x, θ)

′dQn and
∫ ∂gn(x,θ)

∂θ′ dQn,
respectively; yielding the expected result.

The differentiability of θ → ∆Qn(T̄1(θ,Qn), θ) follows from the fact that of (λ, θ) → ∆Qn(λ, θ)
and θ → T̄1(θ,Qn). �

Lemma C.7 Let h(x, θ) be a function measurable on X for each θ ∈ Θ taking value in Rℓ and let
hn(x, θ) = h(x, θ)I(x ∈ Xn). If supθ∈N ,x∈Xn

|h(x, θ)| = o(n) and EP∗

(
supθ∈N |h(x, θ)|2

)
< ∞ for

N ⊂ Θ, we have:

sup
θ∈N

∣∣∣∣∫ hn(x, θ) exp(λ
′gn(x, θ))dQn −

∫
hn(x, θ)dP∗

∣∣∣∣ = o(1),

for any λ ∈ Λn and any sequence Qn ∈ BH(P∗, r/
√
n).

Proof of Lemma C.7 We have:∣∣∣∣∫ hn(x, θ) exp(λ
′gn(x, θ))dQn −

∫
hn(x, θ)dP∗

∣∣∣∣
=

∣∣∣∣∫ hn(x, θ) exp(λ
′gn(x, θ))(dQn − dP∗) +

∫
hn(x, θ)(exp(λ

′gn(x, θ))− 1)dP∗

∣∣∣∣
≤

∣∣∣∣∫ hn(x, θ) exp(λ
′gn(x, θ))(dQn − dP∗)

∣∣∣∣+ ∣∣∣∣∫ hn(x, θ)(exp(λ
′gn(x, θ))− 1)dP∗

∣∣∣∣ ≡ (1) + (2).

Since |λ′gn(x, θ)| → 0, exp(λ′gn(x, θ)) is bounded and we have:

(1) = C

∣∣∣∣∫ hn(x, θ)(dQn − dP∗)

∣∣∣∣
≤ C

∣∣∣∣∫ hn(x, θ)

{(
dQ1/2

n − dP
1/2
∗

)2
+ 2dP

1/2
∗

(
dQ1/2

n − dP
1/2
∗

)}∣∣∣∣
≤ C supθ∈N ,x∈Xn

|hn(x, θ)|
∫ (

dQ
1/2
n − dP

1/2
∗

)2
+2C

(∫
sup
θ∈N

|hn(x, θ)|2dP∗

)1/2(∫ (
dQ1/2

n − dP
1/2
∗

)2)1/2

≤ o(n) r
2

n + const. r√
n
= o(1).

Again, since |λ′gn(x, θ)| → 0, we have |hn(x, θ)(exp(λ′gn(x, θ)) − 1)| ≤ C supθ∈N |hn(x, θ)| which
has finite expectation under P∗. We can therefore deduce by the Lebesgue dominated theorem that
(2) = o(1). �
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Lemma C.8 Let r > 0 and Qn be a sequence contained in BH(P∗, r/
√
n). If Assumptions 1, 2 (with

expectation and variance taken under P∗), and Assumption 3 hold, then we have:

√
n(T̄Pn − θ∗) = −ΣG′Ω−1√n

∫
gn(x, θ

∗)dPn + oP (1) under Qn

√
n(T̄Pn − T̄Qn)

d→ N(0,Σ), under Qn

Proof of Lemma C.8: To be completed. �

Lemma C.9 Let r > 0 and Qn be a sequence contained in BH(P∗, r/
√
n). If Assumptions 1, 2 (with

expectation and variance taken under P∗), and Assumption 3 hold, then, the following statements hold
under Qn:

(i) T̄1(θ
∗, Pn) = OP (n

−1/2),

(ii) EPn

(
gn(x, T̄Pn)

)
= OP (n

−1/2), EPn

(
gn(x, T̄Pn)gn(x, T̄Pn)

′) = Ω+OP (n
−1/2), and

EPn

(
∂gn
∂θ′ (x, T̄Pn)

)
= G+ oP (1),

(iii) T̄1(T̄Pn , Pn) = OP (n
−1/2).

Proof of Lemma C.9: To be completed. �

D Global misspecification

Proof of Theorem 5.1:
The proof is split into two parts: in (i), we show the consistency of θ̂ and λ(θ̂); in (ii), we derive

the asymptotic distribution of the estimators.
(i) First, we show the consistency of λ̂ and θ̂.

Let Λ∗ be an open neighborhood of Λ that contains λ∗. Its complement, Λ \ Λ∗ is a closed subset of
a compact set, and so it is compact as well. The strict convexity of the function E(exp(λ′g(x, θ)))
implies that, for every neighborhood Λ∗ (as above), there exists a constant κ > 0 such that

inf
λ∈Λ(θ)\Λ∗

E
(
exp(λ′g(x, θ)

)
> E

(
exp(λ∗′g(x, θ))

)
+ κ ,

uniformly in θ ∈ Θ; the uniformity follows from the fact that Λ \ Λ∗ is compact. Since,

λ̂ ∈ Λ \ Λ∗ ⇒ E
(
exp(λ̂′g(x, θ))

)
> E

(
exp(λ∗′g(x, θ))

)
+ κ

we have,

P
(
λ̂ ∈ Λ \ Λ∗

)
≤ P

(
E
[
exp(λ̂′g(x, θ))

]
> E

[
exp(λ∗′g(x, θ))

]
+ κ
)
.
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We now show that the above probability on the RHS converges to zero, which implies that λ̂ converges
to λ∗ since the proof was done for any neighborhood Λ∗ containing λ∗.

P
(
E
[
exp(λ̂′g(x, θ))

]
> E

[
exp(λ∗′g(x, θ))

]
+ κ
)

= P

(
E
[
exp(λ̂′g(x, θ))

]
−
∫

exp(λ̂′g(x, θ))dPn

+

∫
exp(λ̂′g(x, θ))dPn −

∫
exp(λ∗′g(x, θ))dPn

+

∫
exp(λ∗′g(x, θ))dPn −E

[
exp(λ∗′g(x, θ))

]
> κ

)
n→ 0

The convergence to zero follows from the uniform convergence of
∫
exp(λ′g(x, θ))dPn to E(exp(λ′g(x, θ)))

(which follows from 5(iv); see also the proof of Lemma B.1) and from the definition of λ̂.
To prove the consistency of θ̂, we will make use of the consistency of λ̂. Similarly to the proof of

Lemma B.1, we can justify a uniform convergence of the objective function ∆n(λ(θ), θ) over (Λ,Θ)
which implies that:

∀ϵ > 0 lim
n

P
(
|∆n(λ(θ̂), θ̂)−∆(λ(θ̂), θ̂)| < ϵ/3

)
= 1

⇒ ∀ϵ > 0 lim
n

P
(
∆n(λ(θ̂), θ̂) < ∆(λ(θ̂), θ̂) + ϵ/3

)
= 1 (39)

Similarly, we can show that

∀ϵ > 0 lim
n

P (∆(λ(θ∗), θ∗) < ∆n(λ(θ
∗), θ∗) + ϵ/3) = 1 (40)

By definition of θ̂, we have:

∀ϵ > 0 lim
n

P
(
∆n(λ(θ

∗), θ∗) < ∆n(λ(θ̂), θ̂) + ϵ/3
)
= 1 (41)

From equations (39) and (41), we get:

∀ϵ > 0 lim
n

P
(
∆n(λ(θ

∗), θ∗) < ∆(λ(θ̂), θ̂) + 2ϵ/3
)
= 1 (42)

We can now use equation (40) to deduce:

∀ϵ > 0 lim
n

P
(
∆(λ(θ∗), θ∗) < ∆(λ(θ̂), θ̂) + ϵ

)
= 1 (43)

We now use the identification assumption and the definition of θ̂ to deduce that, for every neighborhood
N ∗ of θ∗, there exists a constant η > 0 such that

∃η > 0 / sup
θ∈Θ\N ∗

∆(λ(θ), θ) + η < ∆(λ(θ∗), θ∗) .

Then, we have:

θ̂ ∈ Θ \ N ∗ ⇒ ∆(λ(θ̂), θ̂) ≤ sup
θ∈Θ\N ∗

∆(λ(θ), θ) + η < ∆(λ(θ∗), θ∗)

⇒ P
(
θ̂ ∈ Θ \ N ∗

)
≤ P

(
∆(λ(θ̂), θ̂) < ∆(λ(θ∗), θ∗)

)
n→ 0
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where the convergence to 0 follows directly from equation (43) above.
(ii) To derive the asymptotic distribution of ETHD estimator under global misspecification, we

follow the proof of Theorem 3.3 and write a mean-value expansion of the FOC around (θ∗, λ∗).(
0
0

)
=

(
N1(λ

∗, θ∗)/D1(λ
∗, θ∗)−N2(λ

∗, θ∗)/D2(λ
∗, θ∗)∫

g(x, θ∗) exp(λ∗′g(x, θ∗))dPn

)
+Rn

(
θ̂ − θ∗

λ̂− λ∗

)
(44)

where, with θ ∈ (θ∗, θ̂) and λ ∈ (λ∗, λ̂),

Rn =

(
Rθ,θ(θ, λ) Rθ,λ(θ, λ)

Rλ,θ(θ, λ) Rλ,λ(θ, λ)

)
,

Rθ,θ(θ, λ) =
∂

∂θ

(
N1(λ, θ)

D1(λ, θ)
− N2(λ, θ)

D2(λ, θ)

)
Rθ,λ(θ, λ) =

∂

∂λ

(
N1(λ, θ)

D1(λ, θ)
− N2(λ, θ)

D2(λ, θ)

)
Rλ,θ(θ, λ) =

∫ [
∂g′(x, θ)

∂θ
+

∂g′(x, θ)

∂θ
λg(x, θ)′

]
exp(λ′g(x, θ))dPn

Rλ,λ(θ, λ) =

∫
g(x, θ)g′(x, θ) exp(λ′g(x, θ))dPn

and Di, Ni and the above derivatives have been defined and computed in the proof of Theorem
3.3. We then get:

R
√
n

(
θ̂ − θ∗

λ̂− λ∗

)
= −

√
n

(
N1(λ

∗, θ∗)/D1(λ
∗, θ∗)−N2(λ

∗, θ∗)/D2(λ
∗, θ∗)∫

g(x, θ∗) exp(λ∗′g(x, θ∗))dPn

)
+ op(1) (45)

≡
√
nA∗

n + op(1)

with Plim
[
Rn

]
= R and

N1(λ
∗, θ∗)

D1(λ∗, θ∗)
−

N2(λ
∗, θ∗)

D2(λ∗, θ∗)

=
1

2(
∫
exp(λ∗′g(x, θ∗))dPn)1/2

 dλ̂∗′

dθ

∫
g(x, θ

∗
) exp(λ

∗′
g(x, θ

∗
)/2)dPn + λ

∗′
∫

∂g(x, θ∗)′

∂θ
exp(λ

∗′
g(x, θ

∗
)/2)dPn

−
dλ̂∗′

dθ

∫
g(x, θ

∗
)

exp(λ∗′g(x, θ∗))∫
exp(λ∗′g(x, θ∗))dPn

dPn − λ
∗′

∫
∂g(x, θ∗)′

∂θ

exp(λ∗′g(x, θ∗))∫
exp(λ∗′g(x, θ∗))dPn

dPn



And by CLT on An, we have:

√
n

(
θ̂ − θ∗

λ̂− λ∗

)
d→ N (0, R−1Ω∗R−1) with Ω∗ = AVar (A∗

n)

The expected result directly follows.
We now show that under correct specification, the expansion (45) coincides with (29), that

is: (
G′ 0
Ω G

)√
n

(
θ̂ − θ∗

λ̂

)
=

(
0
−
√
n
∫
g(x, θ∗)dPn

)
+ op(1)

After replacing λ∗ by 0, we easily get that

N1(λ
∗, θ∗)

D1(λ∗, θ∗)
− N2(λ

∗, θ∗)

D2(λ∗, θ∗)
= 0
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It remains to show that

PlimRn =

(
0 G
G′ Ω

)
After replacing λ∗ by 0, we easily get that

Rλ,θ(θ
∗, λ∗) =

∫
∂g(x, θ∗)

∂θ
dPn

Rλ,λ(θ
∗, λ∗) =

∫
g(x, θ∗)g′(x, θ∗)dPn

Rθ,λ(θ
∗, λ∗) =

∂N1(λ, θ)

∂λ
− ∂N1(λ, θ)

∂λ
since D1(λ

∗, θ∗) = D2(λ
∗, θ∗) = 1 and ∂D1(λ

∗, θ∗)/∂λ = ∂D2(λ
∗, θ∗)/∂λ = 0

= −1

2

∫
dλ̂′

dθ
g(x, θ∗)g′(x, θ∗)dPn

Rθ,θ(θ
∗, λ∗) =

∂N1(λ, θ)

∂θ
− ∂N1(λ, θ)

∂θ
since D1(λ

∗, θ∗) = D2(λ
∗, θ∗) = 1 and ∂D1(λ

∗, θ∗)/∂θ = ∂D2(λ
∗, θ∗)/∂θ = 0

= 0

And the expected result follows readily.
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