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Abstract

I study a one-sided o�ers bargaining game in which a fully rational seller

is making repeated o�ers to a rationally inattentive buyer (Sims, 1998). The

quality of the good is random and is known to the seller. The buyer needs to

pay attention to both the quality of the good and the seller's o�ers. I show

that the buyer attains half of the uncertain portion of the surplus as attention

costs become negligible and o�ers are frequent. With infrequent o�ers and

positive attention costs an equilibrium exists both in the �nite and the in�nite

horizon games. This equilibrium involves the buyer paying more for, but also

obtaining a higher surplus from, higher quality goods. Trade occurs with delay

that is decreasing with the quality of the good and persists even when o�ers

are frequent. Finally, I show that revealing the quality of the good to the buyer

reduces both the buyer's surplus and overall e�ciency.
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1 Introduction

Consider a seller who is making repeated o�ers to a buyer in an attempt to sell an

indivisible good. It is well known that if the buyer perfectly observes the good's

price and quality the unique equilibrium involves immediate agreement with the

seller obtaining all of the gains from trade. This stark outcome stands in contrast

with our day to day experience. In most transactions, the buyer is much more likely

to be satis�ed or disappointed with her purchase than indi�erent about it. Similarly,

merchants rarely manage to instantly sell their merchandise to every potential buyer

that comes their way. This gap between the full information model and reality has

been the subject of much of the bargaining literature.

My main contribution is to incorporate limited attention into non-cooperative

bargaining. Many studies show that the way people allocate their attention can

have a substantial economic impact. For instance, a study conducted by Chetty et

al. (2009) found that shoppers often overpay for products because they fail to pay

attention to sales tax. In the used cars market, Lacetera et al. (2012) showed that

buyers only pay attention to the left-most digit of the odometer. The goal of my

paper is to evaluate the e�ects of partial inattention on the outcomes one-on-one

buyer-seller interactions.

I do so by substituting the fully informed buyer with one who is rationally inat-

tentive (Sims, 1998). Such a buyer needs to pay attention to information in order to

take advantage of it. Paying attention to more information results in better decision

making, but also involves more e�ort, which is costly. Being rational, the buyer

achieves the optimal balance, paying attention only to those pieces of information

that are worth the e�ort.

The rational inattention model serves as a natural way of extending utility max-

imization to include costly attention. The �exibility of the model, its focus on infor-

mation, and its emphasis on optimality make rational inattention especially suitable

for this purpose. Indeed, rational inattention abstracts from the speci�c process

behind attention just as utility maximization abstracts away from the agent's op-

timization procedure. Thus, we use the rational inattention model as a device for
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studying how incentives shape the bargaining outcomes of a partially inattentive

agent.

In my model, the rationally inattentive buyer bargains with a fully rational seller

over a good of random quality. The quality of the good, v, is observable to the seller

and is drawn once and for all at the beginning of game. Each period, the seller makes

an o�er. The buyer then chooses which discrete signal structure to use; that is, how

much attention to pay to v, the seller's past o�ers and the current proposal. The

signal structure, the buyer's prior, and the seller's possibly random o�er together

determine the buyer's attention cost. Once the buyer chooses her signal structure

for the period, nature draws a signal conditional on the seller's current proposal,

past o�ers, and the good's quality. Upon observing the signal, the buyer updates

her prior and chooses whether to accept or reject. If she accepts, trade occurs and

the game ends. Otherwise, the game proceeds to the next period.

I focus my analysis on equilibria that satisfy three conditions. The �rst condition

is that the buyer is attentive. That is, there are no periods in which the buyer

automatically rejects every o�er regardless of the history. The second condition

disciplines the buyer's response to o�-equilibrium o�ers. Speci�cally, for each o�-

equilibrium o�er, I require the buyer's strategy to be a limit of best responses to some

sequence of perturbations that put positive probability on that o�er. This condition

is in the spirit of the perfect equilibrium of Selten (1975), and is needed to avoid

non-credible attention threats. I motivate and explain these conditions in section 3.

Theorem 1 shows that the set of equilibria that satis�es these conditions in the �nite

horizon version of the game is non-empty. In the in�nite horizon version, I focus on

equilibria to that also arise as limits of �nite horizon equilibria. I prove that such a

limit exists, and is indeed an equilibrium of the in�nite horizon game in Theorem 2.

My �rst major result establishes that in an environment with frequent o�ers,

the buyer obtains a signi�cant portion of the surplus even when attention costs are

negligible. More precisely, let v be the realized quality of the good, and take vl to be

the lowest possible quality the good can attain. When o�ers are frequent, Theorem

4 in section 6 establishes that as the cost of attention go to zero, trade is e�cient
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and the buyer's expected surplus, E [Ub], becomes

E [Ub] =
1

2
(E [v]− vl)

My results rely on a few structural properties of the players' equilibrium strate-

gies. In particular, I show that in equilibrium the players' strategies must be simple.

Simple strategies are independent of the seller's past o�ers and involve the seller

using a deterministic strategy. Thus, the seller's o�er in period m is deterministic

and does not depend on what the seller o�ered periods m
′
< m. Analogously, the

probability that the buyer accepts an o�er x in period m depends only on x and on

v, but not on the seller's past o�ers.

I show that in equilibrium a rationally inattentive buyer gets what she pays

for (Proposition 2). More precisely, both the buyer's surplus and the price of the

good are increasing with the good's quality. These features are accompanied by

the buyer overpaying for the good when the quality is low (rip-o�s at the bottom),

and underpaying when the quality is high (bargains at the top). The intuition behind

these features comes from the buyer obtaining imperfect information about the good's

quality. If the buyer had no information, the seller's price would have been equal

to the good's expected value for the buyer. As such, there would be rip-o�s at the

bottom, bargains at the top, and the buyer's surplus would increase with the good's

quality. With full information, the price of the good always equals to v, making prices

increasing with quality. However, with full information the buyer always obtains a

surplus of zero. Thus, the equilibrium with a rationally inattentive buyer lies between

the full and the no information extremes.

The intuition for Theorem 4 comes from the long run dynamics of rip-o�s and

bargains. Being partially attentive, the likelihood that the buyer accepts good o�ers

is higher relative to the likelihood she accepted bad o�ers. Since the worse o�ers

are made when the seller has a low quality product, the buyer's belief that the seller

has a bad product increases over time. Consequently, the passage of time makes it

harder for the seller to rip-o� the buyer when he has a low quality product. Similarly,

in later periods a seller of a high quality product must o�er the buyer a low price
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to account for the buyer's worse belief over the good's quality. In the long run, this

dynamic results in substantial bargains at the top, while the rip-o�s at the bottom

disappear completely. Theorem 4 shows that taking the cost of attention to zero in

an environment with frequent o�ers results in the parties immediately jumping to

the long run state. As a result, the buyer retains a signi�cant portion of the surplus

even when the cost of attention is negligible.

My second major result is that with signi�cant attention costs there is delay in

agreement even when o�ers are frequent (Proposition 3). Delay emerges due to the

seller's equilibrium optimization problem. In the one-shot game, this problem is sim-

ilar to that of a monopolist facing a logit demand function (see Mat¥jka and McKay,

2012). As such, the seller's o�er will be the one that equates his marginal revenue to

his marginal cost. The seller's dynamic problem has a similar structure, but with the

seller's marginal cost being the opportunity cost of forgoing next period's pro�ts. It

turns out that these future pro�ts in equilibrium do not depend on the seller's current

o�er. Because of this, future pro�ts enter the seller's current objective function as a

�xed cost. When o�ers are frequent, future pro�ts loom larger, motivating the seller

to increase his o�er. However, in equilibrium, o�ers cannot be too high, or else the

buyer will not pay attention. Therefore, the seller's marginal revenue must decrease.

The buyer's costly attention, though, limits the change in the buyer's demand with

respect to higher o�ers. As a result, the only way to lower the seller's marginal

revenue is by decreasing the level of demand; that is, the probability of agreement.

The result is delay that persists even when o�ers are made arbitrarily frequently.

I conclude by exploring the e�ects of uncertain quality on bargaining outcomes.

I show that revealing the quality of the good to the buyer results in a unique equilib-

rium (Proposition 4). This equilibrium preserves the delay that arises in the baseline

model, but leads to e�ortless attention on the equilibrium path and to the buyer get-

ting zero surplus. The reason the buyer's attention is e�ortless is because the seller

uses a deterministic strategy. Since in equilibrium the buyer knows both the seller's

strategy and v, the buyer's knowledge includes all there is to know about the seller's

o�ers. As such, the buyer's signals carry no information in equilibrium, resulting in

zero attention costs. However, the fact that attention is e�ortless on the equilibrium
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path does not mean that the buyer perfectly observes the seller's o�ers. In particu-

lar, my equilibrium re�nement requires the buyer to take into account the marginal

cost of noticing any o�er, including zero probability ones. As such, the buyer only

partially adjusts the probability of agreement in reaction to zero probability o�ers.

Proposition 5 asserts that revealing the quality of the product to the buyer reduces

both overall e�ciency and the buyer's surplus. From the buyer's perspective, being

ignorant of v results in a variation in the value of the seller's o�ers, which generates

positive attention costs. Since attention costs are strictly convex and the buyer

is attentive, she earns a strictly positive surplus. As for overall e�ciency, keeping

the buyer ignorant of v reduces delay, but creates positive attention costs. Still,

Proposition 5 shows that the reduction in delay more than compensates for the

increase in the cost of attention. Hence, my analysis suggests that more information

can be harmful in the presence of costly attention.

Related Literature

The current paper sits in the intersection of rational inattention and bargaining. The

rational inattention literature �nds its origins in Sims (1998). A large portion of this

literature is based on the linear-quadratic framework (e.g. Sims (2003), Mackowiak

and Wiederholt (2009), Van Nieuwerburgh and Veldkamp (2010) and Dessein et al.

(2013)). In these models, the rational inattentive agent optimizes over a continu-

ous variable, has a quadratic objective function and the exogenous uncertainty is

normally distributed. Under these assumptions, it is optimal for the agent to use a

normally distributed signal structure. My model di�ers from this literature in that

the buyer chooses a discrete action. Moreover, my buyer needs to pay attention to

the seller's o�ers which are determined in equilibrium and therefore are not normally

distributed.

A strand of the rational inattention literature that is more relevant to my analy-

sis is one that deals with agents whose action is discrete. One example is Woodford

(2009) who studies a rationally inattentive �rm that chooses when to review its cur-

rent pricing strategy. Using a similar framework, Yang (2014) studies coordination
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games with rationally inattentive players in a global games setup. Dasgupta and

Mondria (2014) apply the discrete action framework to analyze the decisions of im-

porters. In the context of individual behavior, the studies of Caplin and Dean (2013),

Mat¥jka and McKay (2013), Oliveira et al. (2013) and Woodford (2014) analyze the

observable implications of rational inattention on choice among discrete alternatives.

As explained earlier, my main contribution is to consider a seller who is making

repeated o�ers to a rationally inattentive buyer. Yang (2013), Mat¥jka and McKay

(2012) and Martin (2012) also consider one or more rational sellers making o�ers to

one or more rationally inattentive buyers. However, unlike my model, the aforemen-

tioned papers study models in which the seller is making a single, take-it or leave-it,

o�er. Thus, theirs are static models.

A dynamic model is essential for my analysis. Without repeated o�ers, it would

be impossible to study ine�ciencies that arise due to bargaining frictions, such as

delay. Moreover, the possibility of repeated o�ers is crucial for the buyer to obtain

a positive surplus when attention costs are negligible. To put it di�erently, one can

show that in the one period version of my model all of the surplus goes to the seller

as the cost of attention goes to zero. Hence, my model suggests that dynamics play

an important role in understanding the e�ect of rational inattention on bargaining.

In addition to being dynamic, my model di�ers from the models of Yang (2013),

Mat¥jka and McKay (2012) and Martin (2012) in other respects. While I focus

on bargaining, Mat¥jka and McKay (2012) focus on competition between multiple

sellers. In their model, each seller attempts to sell their good to a rationally inatten-

tive buyer with a unit demand by making simultaneous take-it or leave-it o�ers. The

quality of each seller's good is random and known to all sellers. Similar to my model,

the buyer needs to simultaneously pay attention to each good's price and quality.

The authors calculate an equilibrium and conduct comparative statics. Thus, while

I focus on a single seller who is making repeated o�ers, Mat¥jka and McKay (2012)

study multiple sellers, each making a single o�er. In other words, mine is a model of

dynamic bargaining while theirs is a model of static competition.

Martin (2012) studies a one-shot model in which a seller attempts to sell a single

good of random quality to a rationally inattentive buyer. The quality of the good is
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either low or high, and the seller is restricted to one of two possible prices. My model,

therefore, di�ers from that of Martin (2012) in that I allow for repeated interactions,

a continuous range of o�ers and a more general distribution of qualities. Another

di�erence is that in Martin (2012) the buyer gets to observe the seller's o�er perfectly

at zero cost, and only needs to pay attention to the good's quality. Letting the buyer

observe the good's price before choosing her attention strategy results in multiple

equilibria due to the buyer's ability to threaten with beliefs. I avoid some of this

multiplicity thanks to my re�nement and my assumption that the buyer also needs

to pay attention to the seller's o�er.

Yang (2013) considers a slightly di�erent set-up to study security design. In

his model, the seller makes a take it or leave it o�er in the form of an asset based

security. Both the seller and the buyer are uninformed about the asset's future

dividends when the o�er is made. The buyer gets to observe the seller's o�er, and

may use her attention to learn about the asset's future dividends. Yang (2013) shows

that the seller will o�er the buyer a debt contract to minimize attention costs. My

model di�ers from that of Yang (2013) not just by the virtue of being dynamic but

also in that I abstract from the structure of the seller's o�er. In my model, the seller's

o�ers are one dimensional. However, this is without loss of generality as long as the

player's utility is linear in money. Moreover, unlike in Yang (2013), my seller has

private information about the value of the good. Finally, I assume that the buyer

needs to pay attention also to the content of the seller's o�er, while in Yang (2013)

the buyer gets to observe that content for free. Thus, while I wish to study the

outcomes of bargaining, Yang (2013) is concerned with the structure of securities.

In the bargaining literature, the natural starting point are models that use the

one-sided repeated o�ers bargaining protocol. Most of the papers using this protocol

considered bargaining with one-sided incomplete information in a private values set

up (e.g. Fudenberg et al. (1985), Gul et al. (1986), Ausubel and Deneckere (1989)).

Unlike the model studied in my paper, such models involve an informed buyer and

an uninformed seller. A classic result in this literature is the Coase conjecture. This

result states that there is no delay when o�ers are frequent and the gains from trade

are positive with probability 1. My model di�ers from this literature in that I assume
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that it is the seller, not the buyer, that has private information. Moreover, my model

exhibits delay even when o�ers are frequent and gains from trade are known to be

strictly positive.

A model more closely related to mine is the one due to Deneckere and Liang

(2006). They consider an uninformed buyer making repeated o�ers to an informed

seller. However, the information available to the seller is also relevant for the buyer.

Thus, their model is one of interdependent values. Deneckere and Liang (2006) show

that under certain conditions, the equilibrium involves bursts of trade followed by

periods of delay. In my model, trade occurs continuously rather than in bursts, and

it is the informed party that makes the o�ers. Moreover, I assume that the buyer is

rationally inattentive and that values are private.

Several studies looked at one-sided repeated o�ers bargaining models in which

both parties have private information about the gains from trade (Cramton, 1984;

Cho, 1990). When o�ers are frequent, such models often result in no trade or a large

multiplicity of equilibria with various predictions (Ausubel and Deneckere, 1992).

A similar multiplicity was �rst pointed out by Rubinstein (1985) who studied an

alternative o�ers model in which the discount rate of one of the players was private

information. He showed that one can support a large set of equilibrium outcomes by

constructing belief-based threats o� the equilibrium path.

Another model in which the informed party gets to make o�ers is the one due

to Gul and Sonnenschein (1988). Theirs is an alternating o�ers bargaining model

between a buyer and a seller who is uncertain about the buyer's valuation of the

good. They show that taking the time between o�ers to zero results in immediate

trade in all equilibria satisfying their re�nement. As in Gul and Sonnenschein (1988),

my re�nement does not identify a unique equilibrium. However, my model generates

delay and a potentially negative ex-post surplus to the buyer, outcomes that cannot

arise in the analysis of Gul and Sonnenschein (1988).

My work also relates to Abreu and Gul (2000). They study a bargaining model

with general two sided o�ers in which each player is uncertain about the rationality

of the other. In particular, players may be irrational and insist on receiving a �xed

portion of the surplus. Thus, their model is one of two-sided o�ers, no uncertainty
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about gains from trade, and irrationality. In contrast, mine is a model of one-sided

o�ers in which one side is uncertain about the gains from trade, the seller is fully

rational and buyer is rationally inattentive.

2 The Cost of Attention

I study bargaining between a fully rational seller and a buyer with limited attention.

Each period, the seller makes an o�er which the buyer either accepts or rejects; if she

accepts, the game ends, otherwise the period ends and the seller makes a new o�er in

the next period. Unlike in standard bargaining models, in my model the buyer makes

her decision to accept or reject with less than perfect information about the seller's

o�ers. How much information the buyer has depends on her attentiveness; that is,

on how much e�ort she devotes to understanding both the value of the object and

the seller's o�ers. The buyer knows that attention is costly and therefore, allocates

her attention rationally, which I interpret to mean optimally. The model of rational

inattention that describes my buyer is due to Sims (1998). My contribution is the

application of the model to non-cooperative bargaining.

2.1 The Extensive Form

The extensive form game is as follows: before the seller makes his �rst o�er, he

observes the quality of the good, v; a random variable that takes on values according

to the distribution µ0 from a �nite set V = {vl, . . . , vh}, where vl ≤ v ≤ vh for all

v ∈ V . The seller makes the buyer o�ers in periods m = 1, . . . . The number of

periods can be �nite or in�nite. An o�er is a number, xm ∈ X = [0, x̄]1, where

x̄ > vh. I interpret x as a reduced form of the seller's o�ers. For example, a payment

plan o�ered by a car dealer to a potential buyer will be represented by its expected

present value. In other words, x serves as a summary of the monetary value that the

o�er transfers from the buyer to the seller.

1The upper bound, x̄, plays no role in the equilibrium strategies, and is needed only to ensure
compactness of the seller's strategy space.
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Each period, the buyer decides whether to accept or reject the current o�er. If the

buyer accepts an o�er at some period m, she gets the good, pays the seller xm and

the game ends. Otherwise, the game continues to the next period. If no agreement

is reached, the game ends with no transaction taking place. The seller's payo� when

the buyer accepts an o�er xm in period m is:

Us := e−r∆(m−1)xm (1)

where r > 0 is the (common) discount rate and ∆ is the time di�erence between

o�ers. If no transaction takes place, the seller's payo� is 0, independent of the

good's quality.

Let h ∈ Xm := X×· · ·×X denote an m-period history of o�ers and for Y ⊂ Rn,

let ∆(Y ) denote the set of all Borel probability measures on Y . Then, a behavioral

strategy, σ, for the seller is a sequence of functions2 σm : Xm−1 × V → ∆(X) for

m = 1, . . . . Thus, σm(h, v) is the random o�er that the seller makes after history

h ∈ Xm−1 given that the value of the object is v ∈ V .
The buyer is rationally inattentive and as such, neither observes the seller's o�ers

nor the quality of the good. Instead, she chooses a period m signal structure, which

is a likelihood function: lm : S × Xm × V → [0, 1], where S = {0, 1, 2, . . .} is the
discrete set of possible signal realizations. The signal structure lm satis�es:

(1)
∑

s∈S lm (s, h, v) = 1 for every h, v, and

(2) lm (s, ·, ·) is measurable for all s.

The �rst of these conditions ensures that lm(·, h, v) is a probability distribution

for all h, v; the second is a technical condition necessary for evaluating payo�s.

After the seller chooses xm and the buyer chooses lm, nature draws the signal s with

probability lm (s, xm, v). The buyer observes only the signal s, not the value of object

v nor the seller's current or past o�ers. Based on s the buyer decides whether to

accept or reject the seller's o�er. I assume the seller observes neither lm nor s.

The signal structures represent the buyer's choice to pay more or less attention

2De�ne X0 := {∅}.
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to the good's quality and the seller's o�ers. The �exibility of the signal structure

captures the possibility of focusing on some information that is easy to process but is

only a proxy of v and h. For instance, a buyer of a used car may pay attention only

to the left most digit of the odometer (Lacetera et al., 2012). Similarly, shoppers

may compare prices without checking which prices include sales tax and which do

not (Chetty et al., 2009).

The rational inattention modeling approach makes three implicit assumptions

about the way the buyer allocates her attention. First, it assumes the buyer has a

large collection of easily accessible data at her disposal which is related the good's

quality and the seller's o�er. Second, her attention is selective in that she picks and

chooses which parts of the data to pay attention to and which to ignore. Third, the

buyer is aware of the stochastic relationship between the data, the good's quality

and the seller's o�ers, and uses this stochastic relationship to optimallty allocate her

attention.

The buyer's payo� depends on when she gets the the good, its value and the cost

of attention that she incurs. More precisely, the buyer's payo� if she accepts an o�er

xm in period m, and uses the signal structures lj in each period j ≤ m is:

Ub = e−r∆(m−1) (v − xm)−
m∑
j=1

e−r∆(j−1)κ I (lj, µj) (2)

where κ ∈ (0, vl) is a constant, µm is the buyer's belief at the start of period m about

the value of the object and the seller's current and past o�ers. The term κ I is the

�ow cost of attention; as I explain in the next subsection, I is the average decrease

in the entropy of the buyer's beliefs. I interpret I as a measure of the buyer's level

of attention and hence, κ is the constant marginal cost of attention.

An outcome of the game is the period in which agreement is reached, m, the

accepted o�er, xm, the signal structures that the buyer has chosen in each period,

(l1, . . . , lm), and the buyer's beliefs at the beginning of each period, (µ1, . . . , µm).

The seller's payo�s are simply his transaction payo�s, while the buyer's payo� is her

transaction payo�s minus the discounted sum of attention costs in each period. In

the next subsection, I de�ne I.
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2.2 Shannon's measure of mutual information

Shannon (1948) was the �rst to suggest the use of entropy to measure information.

The idea is to measure the amount of information there is to learn about a random

variable by the entropy of its distribution. Learning the outcome of the variable,

therefore, corresponds to obtaining information equal to its distribution's entropy.

Shannon (1948) also suggested a way of measuring how much one can learn about

a variable by observing a random signal. His answer was the expected di�erence

between the entropy of the variable's unconditional and conditional distributions

upon observing the signal. This quantity is now known as Shannon's measure of

mutual information (Cover and Thomas, 2006).

Formally, let µ ∈ ∆(Y ) be a prior on Y ; that is, µ is a Borel probability measure

on Y ⊂ Rk. In periodm of my bargaining game, Y is Xm×V . Take l : S×Y → [0, 1]

to be a signal structure where S = {0, 1, . . .}, l is measurable in its second argument

and l(·, y) is a discrete probability. First, assume µ has a �nite support {y1, . . . , yn}.
Then, H, the entropy of µ is:

H (µ) = −
n∑
i=1

µ(yi) lnµ(yi)

To ensure continuity, I let 0 ln 0 = 0, b ln b
0

= ∞ if b > 0, and 0 ln 0
0

= 0.3 In

information theory, entropy is interpreted as a measure of the information one can

learn about a random variable. Here, I interpret it as the level of exertion needed to

understand or process the information in question. That is, it is the level of attention

that the buyer needs to fully understand the o�er and the value of the good.

Let π be the prior distribution of the signal:

π(s) =

ˆ
Y

l(s, y)dµ

3For analytical convenience, I measure entropy in nats; that is, I am using the natural logarithm
in the formula above rather than to more common log2.
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Then, given the signal s ∈ Sµl := {s ∈ S |µ · l(s) > 0}, the posterior on Y is:

µs(E) =

´
E
l(s, y)dµ´

Y
l(s, y)dµ

for any Borel set E ⊂ Y . Then, Shannon's measure of mutual information, I(l, µ),

is the expected change in entropy between the prior µ and the posterior given µ and

the signal structure l. Hence,

I (l, µ) =
∑
s∈Sµl

[H (µ)−H (µs)] π(s) (3)

which is the average change in entropy between the prior and the posterior distribu-

tion that results from seeing the signal structure l.

By assuming that the buyer's information cost is proportional to Shannon's mea-

sure of mutual information, I am assuming that the buyer already understands the

prior joint distribution of the o�ers and the value but can pay further attention to

these variables and understand more. Thus, she incurs attention costs at the margin.

For the general case; that is, if µ is not discrete, one can de�ne Shannon's measure

of mutual information as:

I(l, µ) =
∑
s∈Slµ

ˆ
l(s, y) ln

(
l (s, y)

π (s)

)
dµ (4)

which becomes the same as equation 3 when µ is discrete.

Note that the cost of attention depends on the buyer's prior. To illustrate, sup-

pose the buyer only needs to pay attention to the seller's o�ers, and that the value

of the good is 2. Let l be the signal structure that sends 0 if the seller's �rst of-

fer is strictly above 2, and 1 otherwise. If the buyer's prior about the seller's �rst

o�er is uniform over [0, 2], then l will send 1 for sure. In this case, l is completely

uninformative and therefore has a cost of 0. In contrast, l's cost would have been

positive had the buyer's prior been a uniform distribution over [1, 3]. Hence, the

informativeness, and therefore the attention cost of every signal structure depends
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on the buyer's prior information.

The fact that prior information in�uences attention costs captures the idea that

one needs to pay less attention to familiar information. For example, it is easier to

understand papers that use more common methodologies than it is to understand

papers that employ innovative techniques. In the model, familiar information is one

that has already been absorbed into the buyer's prior. Examining a familiar piece

of information is therefore equivalent to acquiring a signal that results in little to

no updating i.e. barely provides the buyer with any new information. Such signals

have very low attention costs, which expresses the ease with which the buyer can

pay attention to familiar information.

2.3 Recommendation Strategies

My �rst goal is to show that an optimal strategy for the buyer can be found within

a class of simple strategies that I call recommendation strategies. A recommendation

strategy is de�ned by two properties: there are only two signals; call them 0 and 1,

and the buyer does not randomize; she accepts for sure if and only if she observes

1. Recommendation strategies can be described by a sequence of mappings: β =

(βm)m≥1, where βm (xm, v) ∈ [0, 1] is the probability that the buyer receives an

accept recommendation. Thus, for every m, βm is some (measurable) mapping from

Xm × V into [0, 1].

Equation 4 of subsection 2.2 implies that Shannon's measure of mutual infor-

mation between βm and the prior distribution, µm over Xm × V has the following

convenient form:

I (βm, µm) =

ˆ
βm ln

(
βm´
βmdµm

)
+ (1− βm) ln

(
1− βm´

(1− βm)dµm

)
dµm

The following proposition ensures that I can focus on recommendation strategies.

Proposition 1. For every strategy for the buyer there exists an outcome equivalent

recommendation strategy β with weakly lower attention costs.

Proof. See appendix.
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For the one-period version of my game, Proposition 1 is easy to prove. One

can show that I (l, µ) ≥ I (l′, µ) whenever l is more informative than l
′
in the sense

of Blackwell (1953) (see Cover and Thomas (2006), for example). Replacing any l

with the resulting distribution over actions induced by the buyer's strategy creates

a new signal structure that is less informative than l, without changing the terms

or probability of agreement. Since a less informative signal costs less, Proposition 1

follows.

The argument above is not enough for proving Proposition 1 for multi-period

bargaining games. With multiple periods, information gained in period 1 can be

useful in period 2. If, for some reason, the cost of processing information in period

2 were higher than in period 1, it might make sense to process that information in

period 1 rather than wait until period 2. To prove Proposition 1 for the general

case, I invoke the chain rule for mutual information which states that the expected

sum of information that is gained by observing two signals consecutively is equal to

the amount of information that results from observing both signals simultaneously.

To use this property, I view each signal structure as including two di�erent signals:

an action recommendation and a residual. The chain rule then assures me that

processing this residual simultaneously with any future signal instead of processing

it with today's recommendation does not increase the total cost of information.

Therefore, one can delay the processing of this residual to the time in which this

residual is used.

I appeal to Proposition 1, and assume henceforth that the buyer only uses rec-

ommendation strategies4.

3 Recommendation Perfect Equilibria

In this section I de�ne, characterize and prove existence of an equilibrium satisfying

a re�nement which I call recommendation perfect equilibrium. This re�nement's

4In fact, I will treat the buyer as if she is using a pure recommendation strategy. This is without
loss of generality since the buyer's objective function is concave and the seller does not observe the
buyer's signal structure.
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purpose is to address some of the unique issues that arise when the buyer is rationally

inattentive. Theorem 1 establishes that recommendation perfect equilibria exist in

the �nite horizon game. Moreover, the theorem shows that in equilibrium players

use simple strategies; i.e. strategies that do not depend on the past. In the in�nite

horizon game I focus on limits of �nite horizon equilibria. Theorem 2 establishes that

such a limit exists, is an equilibrium of the in�nite horizon game, and involves simple

strategies. These simple strategies have a useful characterization which I present in

Lemma 1.

3.1 Attentive Strategies and Credible Best Responses

In this subsection I provide a formal de�nition of recommendation perfect equilibrium

and state the existence result for my �nite horizon game. My re�nement is composed

of two parts. First, I assume that the buyer is attentive, meaning that there are no

periods in which the buyer automatically rejects every o�er regardless of the history.

Second, I impose a perfection requirement similar to that of Selten (1975). More

precisely, for each o�-equilibrium o�er, I require the buyer's strategy to be a limit

of best responses to some sequence of perturbations that put positive probability on

that o�er. This condition is needed to avoid non-credible attention threats that may

arise when the buyer is rationally inattentive.

The �rst issue I address in my re�nement is the possibility of the buyer auto-

matically rejecting every o�er. To illustrate what I mean by automatic rejections,

take any sequential equilibrium and adjust it in the following way. In period 1 have

the buyer reject every o�er, regardless of its content. At the same time, have the

seller's �rst o�er always be equal to x̄. From period 2 onwards, let the players play

according to the original equilibrium as if period 1 never happened. Clearly, this is a

sequential equilibrium. In fact, I can extend this kind of logic to obtain the following

observation5:

Observation There is a sequential equilibrium without trade after any history.

5One can actually show that for every set of periods A ⊂ {1, 2, . . .} there exists an equilibrium
where trade occurs in period m if and only if m ∈ A.
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I wish to avoid periods in which the buyer automatically rejects the seller's o�ers

regardless of their content. Formally, I say that the buyer's strategy β is attentive

if for every period m there exists some price history and some quality of the good,

(xm, v), such that βm (xm, v) > 0. Assumptions of similar �avor are often made in

bargaining models. For example, Rubinstein (1985) assumes that the uninformed

player never makes irrelevant o�ers. Similarly, Gul and Sonnenschein (1988) assume

away the possibility of periods in which all o�ers rejected for sure and are only made

to allow one party to send a signal to the other.

There are reasons to want to avoid trade break downs based on the buyer being

inattentive. First, the model describes two parties that are engaged in active bar-

gaining. It is unreasonable to assume that one party can completely ignore the other

when the two are directly facing each other. Second, one of my goals is to show that

inattention can lead to delay. Clearly delay can be created by interspersing periods of

trade shut downs resulting from automatic rejections. What is more interesting is to

know whether inattention can cause delay even when the buyer is at least somewhat

attentive to the seller's o�ers.

A second and more subtle issue that arises in my model is that a rationally

inattentive buyer can make non-credible attention threats. Such threats involve the

buyer committing to pay close attention to o�-equilibrium o�ers. With suitably

chosen o�-path beliefs, one can sustain a very large number of sequential equilibria.

These threats are possible because the rational inattention cost function does not

depend on o�-path signals.

Non-credible attention threats matter in my model because the buyer is paying

attention to another player's choice variable. In most of the current rational inatten-

tion literature, agents are paying attention only to exogenous or aggregate variables.

For example, in Yang (2013) agents need to pay attention to the fundamental value

of an asset, while in Mackowiak and Wiederholt (2009) producers need to pay atten-

tion to macroeconomic outcomes. Such variables are outside the control of any other

agent. As such, the variable's equilibrium distribution is not in�uenced by possible

attention threats6.

6One exception is Mat¥jka and McKay (2012), who focus on an equilibrium with particular
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Consider the one-shot version of my model in which the seller makes the buyer

a take-it or leave-it o�er. I will show that one can construct an extreme equilibrium

in which the buyer obtains a large surplus. Assume that V = {2, 4}, κ = 1 and

that both qualities can occur with strictly positive probability. Suppose further that

the seller o�ers 2 for sure regardless of the realized quality of the good. Let µ be

the buyer's beliefs given the seller's strategy, σ. One can show that a necessary

and su�cient condition for β to be optimal for the buyer in this setting is to have

β (x, v) = 1 µ-almost surely7. Therefore, the strategy de�ned by β (x, v) = 1 if x

equals to 2 and 0 otherwise is optimal for the buyer. Clearly, it is also optimal for the

seller to o�er 2 for sure given β. Thus, (µ, β, σ) is a sequential equilibrium. Turns

out that by using a similar construction one can support the seller o�ering for sure

any x in [2, 2 + δ], where δ > 0 depends on the probability of v = 2.

In the above equilibrium the rejects for sure any o�er that is above 2. In this

strategy the buyers reacts very di�erently to zero probability o�ers compared to pos-

itive probability ones. Such an extreme change in behavior towards zero probability

o�ers is non-credible. In particular, the buyer never chooses to react in this way

towards o�ers that are made with strictly positive probability. I formalize this idea

in my de�nition of a credible best response for the buyer.

Let Em [Ub|µm, β, σ] be the buyer's expected utility conditional on arriving to

period m, the buyer's beliefs over Xm×V being µm and future play being conducted

according to (β, σ). I'll say that the beliefs µ and strategies (β, σ) are consistent if

µ is updated according to Bayes rule whenever possible.

The following de�nition formalizes my requirement that the buyer's strategy be

credible. In particular, for every (xm, v) I identify a belief perturbation µ∗ that puts

positive probability on (xm, v). I then use µ∗ to create a sequence of perturbations

of µm. To create this sequence one mixes µ∗ into µm by putting a diminishing weight

on µ∗. As written in the de�nition below, the buyer's strategy is credible if it is a

assumptions on the buyer's behavior towards zero probability prices. Their assumptions preclude
the possibility of non-credible attention threats.

7I solve for the buyer's general optimal strategy in the dynamic game in appendix C. To obtain
that β (x, v) = 1 µ-almost surely is optimal here one can also use the results of Woodford (2008),
Yang (2014) and Mat¥jka and McKay (2013).
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limit of best responses to at least on such sequence of perturbations for every (xm, v).

De�nition 1. For a consistent (µ, β, σ), β is a credible best response to σ given µ if:

1. β maximizes Em [Ub|µm, β, σ] for all m.

2. For every (xm, v) there is a µ∗ ∈ ∆ (Xm × V ) with µ∗ (xm, v) > 0 and a

{µn, βn, εn}∞n=1 with µ
n = εnµ∗ + (1− εn)µm, ε

n ↓ 0 and βn → β, such that βn

maximizes Em [Ub|µn, βn, σ] for all n.

The �rst part of De�nition 1 is standard. This part requires that the buyer's

strategy maximizes her expected utility after every history. The second part of

the de�nition rules out non-credible attention threats. Similar to Selten (1975)'s

perfect equilibrium, I require the buyer's strategy to be robust to mistakes. In my

formulation, the buyer is aware of possible mistakes in her beliefs. While I do so

for analytical convenience, the di�erence between mistakes in beliefs and mistakes in

strategies is insubstantial in my setup. This is because by the time the buyer chooses

her period m signal structure, the seller's m-th o�er has already been determined.

Therefore all that matters for the buyer is her beliefs over that o�er, i.e. µm. As

such, it does not matter whether we use beliefs that are consistent with perturbed

strategies, or whether we perturb beliefs directly.

To understand how the above de�nition rules out non-credible attention threats,

consider my previous example. Suppose we perturb the buyer's belief from the

example by adding a probability of ε that the seller o�ers 6 whenever the quality

of the good is 4. Let µε denote the buyer's perturbed beliefs. Assume further for

concreteness that the probability of v = 4 is 1
2
. Calculating the buyer's expected

utility from using β given µε (see equation 2 from section 2.1) gives8:

E [Ub|β, µε] = 1− ε− 1

2
ln

(
2

2− ε

)
− 1

2

(
(1− ε) ln

(
2− 2ε

2− ε

)
+ ε ln

(
2

ε

))
8In the one shot game µ is su�cient for calculating the buyer's expected utility. This is because

µ is a distribution over both V and the seller's o�er. In the multi-period version I need σ to specify
the seller's future play.
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where 1 − ε is the buyer's expected transaction payo�s, while the remainder is the

buyer's attention costs.

Compare β to the following alternative strategy: β
′
(x, v) = 1 for all x and v.

That is, the buyer accepts every x o�ered by any quality with probability 1. The

buyer's expected transaction payo� under β
′
is 1−2ε. Moreover, since β

′
is completely

uninformative, it has an attention cost of 0. Therefore the buyer's expected utility

from β
′
given µε is:

E
[
Ub|β

′
, µε
]

= 1− 2ε

Therefore, β
′
is strictly better for the buyer than β if and only if:

1

ε
ln

(
2

2− ε

)
+

1

ε
ln

(
2− 2ε

2− ε

)
− ln

(
2− 2ε

2− ε

)
+ ln

(
2

ε

)
> 2

As ε goes to zero, an application of L'Hopital's rule reveals that the left hand side

goes to in�nity. Therefore, for all small enough ε, the buyer prefers β
′
over β. One

can prove that this kind of logic will extend to all perturbations involving the buyer

o�ering 6.

I now present the de�nition of a perfect recommendation equilibrium. This def-

inition is somewhat di�erent than the more familiar notions of perfect equilibrium

due to Selten (1975) and proper equilibrium due to Myerson (1978). In perfect and

proper equilibria one needs to perturb all information sets simultaneously using a

single set of full support trembles. In my de�nition, I perturb information sets one at

a time and allow di�erent o�-path histories to be evaluated using di�erent trembles.

Moreover, in the de�nitions of Selten (1975) and Myerson (1978) one introduces per-

turbation to both players. In my formulation, I introduce the perturbations only on

buyer's side, since only she can make attention threats.

De�nition 2. A consistent (µ, β, σ) is a perfect recommendation equilibrium if:

1. β is a credible best response to σ given µ.

2. σ is a best response to β after every history.
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If, in addition, β is attentive, then I say that (µ, β, σ) is an attentive perfect recom-

mendation equilibrium.

From now on I will reserve the term equilibrium to mean attentive perfect recom-

mendation equilibrium, unless speci�ed otherwise. In the next subsection, I establish

that an equilibrium exists, and that it admits a recursive structure.

I now turn to state Theorem 1, which shows two things. First, there exists an

equilibrium in the �nite horizon version of the game. Second, equilibrium strategies

are simple. For the seller, a strategy is simple if it prescribes a single deterministic

o�er, zm,v, for every period m and every v. A v type seller makes this o�er in period

m regardless of the seller's realized o�ers in periods m
′
< m. As for the buyer, her

strategy is simple if for every m, the probability that the buyer accepts an o�er xm

made by a v type seller is bm (x, v), regardless of the seller's o�ers in previous periods.

Theorem 1. There exists an equilibrium of the �nite horizon game, and every such

equilibrium is in simple strategies.

Proof. See appendix.

Given the theorem, I will often identify equilibrium strategies β and σ by their

corresponding simple counterparts, b and z. To put it di�erently, I will often write

bm (xm, v) instead of βm (x1, . . . , xm, v), and say that the seller uses the strategy z

rather than σ.

The proof of Theorem 1 is partially constructive and partially dependent on a

�xed point argument. The main di�culty is to ensure that b is attentive. The

observation made at the beginning of this section showed that the game admits a

fully inattentive equilibrium. Requiring β to be a credible best response to σ is

insu�cient to rule such an equilibrium out. As such, to prove the theorem I derive a

set of necessary and su�cient conditions for (µ, β, σ) to be an attentive equilibrium.

I then use a �xed point argument to show that there is some (µ, β, σ) that satis�es

these conditions. To derive these conditions, I �rst prove that equilibrium strategies

must admit a speci�c recursive structure, which I present below.

At this stage the reader may wonder about uniqueness of equilibrium. The fol-

lowing corollary states that in the one-shot game the equilibrium is unique.
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Corollary 1. There exists a unique equilibrium in the one-shot game.

Proof. See appendix.

When there are more than two periods, one can obtain multiple equilibria. Intu-

itively, the multiplicity comes from the interdependency of current and future periods.

Future periods are in�uenced by the buyer's posterior over the quality of the good at

the end of the current period. However, behavior at the current period, and therefore

the buyer's posterior, depend on both player's continuation values, which depend on

the future. Combined these can result in multiple equilibrium paths.

3.2 In�nite Horizon Bargaining

In the in�nite horizon game I focus my analysis on equilibria which arise as a limit

of �nite horizon equilibria. Such equilibria exist and are simple, just like �nite

horizon equilibria (Theorem 2). These equilibria also satisfy some useful structural

properties, which I present in Lemma 1.

Early papers in the bargaining literature also focused on limits of �nite hori-

zon equilibria (e.g. Cramton (1984) and Sobel and Takahashi (1983)). I do so in my

analysis to exclude the players' strategies from exhibiting complicated history depen-

dence. Other studies often avoid complicated dependencies on the past by focusing

on stationary equilibria (see for example Gul et al. (1986), Gul and Sonnenschein

(1988), Ausubel and Deneckere (1989) and Gul (2001)). Stationarity in its standard

form will not be possible under rational inattention. The fact that a rationally inat-

tentive buyer does not get to perfectly observe past o�ers creates a rigidity in the

buyer's strategy that precludes stationary play. Focusing on equilibria that can be

approximated by �nite horizon play allows us to recover some of the simplicity lost

by allowing for non-stationary strategies.

The following theorem establishes that �nite horizon equilibria satisfy a form

of sequential compactness. Therefore one can attain a sequence of equilibria that

converges as the horizon becomes in�nite. The theorem also states that any in�nite

horizon limit of �nite horizon equilibria is, in fact, an equilibrium of the in�nite
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horizon game. Finally, the theorem establishes that the strategies in the resulting

in�nite horizon equilibrium are simple.

Theorem 2. For any sequence of �nite horizon equilibria with the horizon going

to in�nity, there exists a convergent sub-sequence. Moreover, every in�nite horizon

limit of �nite horizon equilibria is simple and is an equilibrium of the in�nite horizon

game.

Proof. See appendix.

The proof of Theorem 2 is rather technical. The equilibrium in the �nite horizon

game satis�es properties similar to the ones stated in Lemma 1 below. Using these

properties, one can connect the convergence of bm (x, v) and zm,v to the convergence

of zm+1,v and bm+1 (zm+1,v, v). Since these are members of a countable product of

compact subsets of R, one can assure the existence of a converging subsequence.

Similar to Theorem 1, the tricky part of the proof is to ensure that the buyer's limit

strategy is attentive. However, this ends up being ensured by the structure of the

�nite horizon equilibria. Once attentiveness is established, I prove optimality of the

buyer's limiting strategy via su�cient conditions derived in appendix C. Optimality

of the seller's strategy is then attained via standard continuity at in�nitey arguments.

The equilibrium in the in�nite horizon game satis�es some structural properties,

which are used throughout the analysis. To present these properties, let (µ, b, z) be

an equilibrium of the game with in�nite periods. Denote the marginal of µm over V

by µ̄m. Given an equilibrium, (µ, b, z), take bm,v to be the probability that the buyer

accepts the v-seller's period m o�er conditional on arriving to period m. That is, let

bm,v := bm (zm,v, v). De�ne πm as the prior probability that the buyer accepts the

m-th o�er conditional on arriving to period m, i.e.

πm :=
∑
v

µ̄m,vbm,v (5)

and let wm,v be the seller's expected pro�ts in equilibrium conditional on v and on

arriving to m in period m terms. Note that, since the buyer's strategy is simple,

wm,v is well-de�ned and does not depend on the seller's past o�ers.
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Lemma 1 does two things. First, it shows that the equilibrium involves ine�ciency

due to delay, which This delay is implied by πm being strictly below 1 for all m.

Second, the lemma provides a characterization of the player's equilibrium strategies

in the in�nite horizon game.

Lemma 1. Let (µ, b, z) be the equilibrium in the in�nite horizon game. Then for

every m = 1, . . . and every v:

0 < πm < 1 and wm,v = zm,v − κ (6)

moreover, for every m, x and v:

(
bm (x, v)

1− bm (x, v)

)
=

(
πm

1− πm

)
e

1
κ

(
v−x+κ

∑∞
j=m+1 e

−r∆(j−m) ln

(
1−bj,v
1−πj

))
(7)(

bm,v
1− bm,v

)
=

(
zm,v − κ

κ

)
− e−r∆

(
zm+1,v − κ

κ

)
(8)

The derivation of the buyer's optimal strategy is somewhat lengthy, and is dele-

gated to appendix C. For a partial intuition, consider the following way of rewriting

equation 7 when x equals zm,v:

v − zm,v − κ ln

(
bm,v
πm

)
= −κ

∞∑
j=m

e−r∆(j−m) ln

(
1− bj,v
1− πj

)
(9)

The above equation comes from the buyer's �rst order condition for bm,v. On the left

hand side there is the buyer's marginal utility from accepting the m-th o�er condi-

tional on (zm,v, v). Accepting conditional on (zm,v, v) gives the buyer a transaction

utility of v − zm,v. However, accepting involves seeing an accept signal, which has

a cost. When considering whether to increase or decrease the probability of accept-

ing, what matters is the cost of increasing the signal's probability at the margin.

Turns out that the marginal attention costs conditional on v depend only on the

change in the probability the buyer assigns to v9. Following an accept signal, these

9In general, the buyer's marginal attention costs depend on the change in the probability of the
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beliefs change from µ̄m,v to µ̄m,v (bm,v/πm), resulting in a marginal attention cost of

κ ln (bm,v/πm).

On the right hand side of equation 9 is the marginal utility from rejecting the

current and all future o�ers conditional on (zm,v, v). Note that rejecting forever

gives the buyer a transaction utility of zero. Because of this, only the total present

value of the marginal attention costs from observing an in�nite sequence of reject

signals in�uences the buyer's marginal utility. As in the case of accept, the marginal

attention costs of rejecting forever conditional on (zm,v, v) depend only on the change

in the probability the buyer assigns to v. This leads to the expression on the right

hand side of equation 9.

Equation 9 therefore says that the buyer's marginal utility from accepting is equal

to that of rejecting forever. Intuitively, the equality holds because every period the

buyer chooses to observe both an accept and a reject signal with positive probability.

As such, the marginal utility of accepting the m-th o�er is equal to the marginal

utility of seeing reject in period m and moving to period m + 1. However, upon

ariving to period m + 1 the buyer is again indi�erent at the margin between an

accept signal and a reject signal. Continuing along this sequence of ind�erences

leads to equation 9.

The conditions that characterize the seller's side are easier to derive. Since the

buyer's strategy is simple, the value of the seller's period m+ 1 problem conditional

on v does not depend on the seller's o�er in period m. Therefore, the value of the

seller's problem in period m is:

wm,v = max
x

bm (x, v)x+ (1− bm (x, v)) e−r∆wm+1,v (10)

using equation 7 one can derive this problem's �rst order condition:

x− e−r∆wm+1,v =
κ

1− bm (x, v)
(11)

entire history of o�ers and good quality, (xm, v). The reason it depends only on v is come from the
seller using a simple strategy.
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This condition can be rearranged into wm,v = zm,v − κ, where zm,v is the solution to

the seller's problem. One can then substitute wm+1,v = zm+1,v − κ and rearrange to

obtain equation 8.

4 Getting what you pay for, Rip-o�s and Bargains

In this section I highlight two features shared by all equilibria of the bargaining

game with rational inattention (Proposition 2). The �rst feature is that the buyer

gets what she pays for. In other words, the buyer both pays more for, and gets a

higher surplus from, higher quality products. The second feature is that the buyer

gets cheated on low quality products and gets good value when buying goods of

high quality. Thus, there are rip-o�s at the bottom, and bargains at the top. These

features are captured in the following proposition.

Proposition 2. For every m, prices, acceptance probability, and the surplus remain-

ing for the buyer are all strictly increasing in v. That is, zm,v, bm,v and v − zm,v are
increasing in v. Moreover, the buyer makes a negative surplus on vl and a positive

surplus on vh, i.e.

vl − zm,vl < 0 < vh − zm,vh

Proof. Full proof is in the appendix. Here we take as given that bm,v is increasing in

v for all m. Repeated substitution of equation 8 into itself gives:

zm,v − κ
κ

=
∞∑
j=m

e−r∆(j−m)

(
bj,v

1− bj,v

)

Since bj,v is increasing in v for all j, the above implies that zm,v is increasing in v.

To obtain that v − zm,v is increasing in v, note that one can rewrite equation 7 as:

e
1
κ

(v−zm,v) =

(
bm,v (1− πm)

πm (1− bm,v)

)
e
∑∞
j=m+1 e

−r∆(j−m) ln

(
1−πj

1−bj,v

)

v − zm,v being increasing follows.
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Proposition 2 stands in contrast with the classic full information model. When the

buyer is fully informed about the seller's product and o�ers, the seller obtains all of

the surplus. Thus, in the full information model, the buyer is always indi�erent about

the transaction. In contrast, Proposition 2 says that a rationally inattentive buyer is

much more likely to be disappointed or satis�ed with her purchase than indi�erent

about it. Moreover, a rationally inattentive buyer feels ripped o� after buying cheap

products, and is satis�ed with expensive ones. Thus, prices are representative not

only of a good's quality but also the buyer's satisfaction, features that are abscent

from the classic full information bargaining game.

5 Frequent O�ers and Delay

This section shows that introducing costly attention into bargaining results in delay

which is independent of the time between o�ers. Lemma 1 already implies that delay

occurs in equilibrium in an environment with infrequent o�ers. However, as pointed

out by Gul and Sonnenschein (1988), the delay that arises in an environment with

infrequent o�ers can be misleading. In particular, restricting the time between o�ers

to be positive may con�ate the time of agreement with the number of o�ers needed

to reach it. I therefore study what happens in my model as the time between o�ers

goes to zero. Proposition 3 establishes that the model's delay persists even when

o�ers are made in�nitely frequently. Moreover, the proposition shows that this delay

is decreasing with the good's quality. Thus, the more there is to lose from delay, the

smaller it is.

Let B (∆, κ) be the bargaining game with in�nite horizon where the time between

o�ers is ∆ > 0 and the marginal cost of attention is κ. Given ∆ > 0, take T (∆) =

{∆, 2∆, . . .} to be the set of calendar times of the periods of B (∆, κ). Thus, each

period m corresponds to a calendar time of ∆m. A sequence of time between o�ers,

{∆n}∞n=1, is a re�ning sequence if ∆n ↓ 0 and T (∆n) ⊂ T (∆n+1) for all n. The

current section is concerned with the distribution of the calendar time of agreement,

de�ned below.
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De�nition 3. A function F : R × V → [0, 1] a timing distribution function of

B (∆, κ) if there exists an equilibrium (µ, b, z) of B (∆, κ) such that for every v,

Fv (t) is the probability that trade occurred on or before calendar time t conditional

on the quality being equal to v.

Theorem 3 establishes that the timing distribution functions of B (∆, κ) converge

as ∆ goes to zero and κ remains constant. I interpret a lower ∆ as an increase in the

rate in which new information accumulates, but not necessarily as an increase in the

rate in which new information is absorbed. By �xing κ I assume that absorbing the

same amount of information at any given moment results in the same cost of atten-

tion, regardless of ∆. This assumption is inline with the chain rule of information,

which states that observing multiple consecutive signals costs the same as observing

all signals simultaneously (see section 2.3). Thus, what matters is the amount of

information the buyer absorbs, not the number of signals she uses to absorb it.

Theorem 3. Let {∆n}∞n=1 be a re�ning sequence, and take {F n}∞n=1 to be a se-

quence of corresponding timing distribution functions. Then there is a sub-sequence

{∆nk}
∞
k=1 and a cumulative distribution function for every v, Fv, such that F nk

v (t)→
Fv (t) for all t and v.

Proof. See appendix.

Given Theorem 3, I will say that a function F : R × V → [0, 1] is a frequent

o�ers timing function of B0 (κ) if there exists a re�ning sequence {∆n}∞n=1 and a

corresponding sequence of timing distribution functions {F n}∞n=1 of B (∆n, κ) such

that F n
v (t)→ Fv (t) for all v and t.

The following proposition establishes that rational inattention leads to delay in

an environment with frequent o�ers. Moreover, it shows that delay is decreasing with

the quality of the good and that there is always some probability of trade occuring.

The proof of the proposition is rather involved, and is tightly connected to the proof

of Theorem 3. The key step in the proof of Theorem 3 is to approximate each F n by

a distribution Gn that is absolutely continuous over time for every v. In particular,

Gn is chosen in a way that agrees with F n for every t ∈ T (∆n) and every v. To
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construct Gn, I use bm,v to create a time-dependent hazard rate for each v, λt,v. These

hazard-rates can be shown to be uniformly bounded by a number that remains �nite

as ∆ goes to zero. Utilizing this bound I can embed the hazard rates in an L2 space

with the appropriate measure over R+. I then evoke the sequential version of the

Banach-Alaoglo theorem to generate a weakly convergent sub-sequence of the said

hazard rates. This results in an absolutely continuous limit Fv for all v, as stated in

Proposition 3 below.

Proposition 3. Let F be a frequent o�ers timing function of B0 (κ). Then:

1. Fv is an absolutely continuous for every v and satis�es Fv (0) = 0.

2. F (t, v) is strictly increasing in v and in t for all t > 0.

Proof. See appendix.

One can get an intuition for Proposition 3 by examining the game in which the

buyer knows v. For that, let Bv (∆) be the bargaining game in which the quality

of the good is equal to v with probability 1. Proposition 4 below characterizes and

proves uniqueness of the equilibrium of Bv (∆). The equilibrium in Bv (∆) involves

ine�cient delay which persists even when o�ers are made in�nitely frequently, just

like the equilibrium of B (∆, κ). Moreover, the proposition shows that as the time

between o�ers goes to zero, the distribution of agreement time in Bv (∆) converges

to the distribution of the �rst arrival from a Poisson process with a rate of r
(
v−κ
κ

)
.

Proposition 4. There exists a unique equilibrium in the game Bv (∆). In this equi-

librium:

1. The seller o�ers v every period with probability 1 regardless of the history.

2. The buyer accepts v with probability:

π∗∆,v =

(
1− e−r∆

)
(v − κ)

(1− e−r∆) (v − κ) + κ
(12)
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3. Let Fv,∆ to be the cdf of the time of agreement in equilibrium. Then as ∆n → 0:

Fv,∆n (t)→ 1− e−r(
v−κ
κ )t

Proof. Note that since the seller's quality is known to the buyer one has µ̄m,v =

µ̄m+1,v = 1 and bm,v = πm for all m. Equation 7 from lemma 1 then implies that

zm,v = v for all m. Equation 8 from lemma 1 then establishes that bm,v equals to

π∗∆,v for all ∆. Finally, note that 1 − Fv,∆n (t) equals
(
1− π∗∆n,v

)t/∆n
. Part 3 of the

proposition then follows from L'Hoptial's rule.

Delay arises in Bv in order to ensure that the seller's o�er remains equal to v.

Intuitively, if the seller were to make an o�er strictly below v, then the buyer's best

response is to accept the seller's o�er for sure. As suggested by the example in

section 3.1, the only credible way the buyer can do so is to accept for sure every

o�er. But if this were the case, the seller would surely make o�ers much higher

than v. If the seller's price was strictly above v, then the buyer's best response

is to surely reject the seller's o�er. Again, the only way the buyer can do so in a

credible fashion is to reject for sure every o�er in periodm. That, however, will mean

that the buyer is inattentive (section 3.1), which cannot happen in my equilibrium

re�nement. Therefore, the seller must be charging v. The seller's �rst order condition

(see equation 11) then implies that bm,v must be equal to π∗∆,v, thereby leading to

delay.

When the quality of the good is unknown to the buyer, a seller of a v quality

good may set a price di�erent than v. Still, if period m prices are either too high or

too low, the buyer will choose either to automatically reject (i.e. πm = 0) or accept

every o�er for sure (i.e. πm = 1). Since we focus on attentive equilibria, neither of

these can occur in equilibrium. Making sure that prices stay within an acceptable

range then generates delay similarly to how ensuring zm,v = v created delay in Bv.
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6 Negligible Attention Costs and Surplus Splitting

In many situations, it seems unreasonable that the cost of attention is large compared

to the size of the economic surplus. Such situations may appear especially likely in

an environment with frequent o�ers, which can be thought of as representing a face-

to-face interaction between the buyer and the seller. In these environments, one may

presume that the outcome would be very similar to that of the game with a fully

rational buyer. Theorem 4 below shows that this is not the case.

I will say that
(
Ūs, Ūb

)
are frequent o�er utilities of B0 (κ) if there exists a re�ning

sequence {∆n}∞n=1 with a corresponding sequence of equilibria {(µn, bn, zn)}∞n=1 such

that E [Un
i ] converges to Ūi for i ∈ {s, b}. Thus, Ūi is the expected utility of player i

in some frequent o�ers environment. To establish existence of frequent o�er utilities,

I state the following corollary of Theorem 3.

Corollary 2. Let {∆n}∞n=1 be a re�ning sequence, and take {(µn, bn, zn)}∞n=1 to be a

sequence of corresponding equilibria. Then there exists a sub-sequence {(µnk , bnk , znk)}∞k=1

such that E [Unk
i ] converges for all i ∈ {s, b}.

Theorem 4 states that the buyer and the seller split the uncertain portion of the

surplus when o�ers are frequent and attention costs are negligible. The seller still

appropriates the sure portion of the surplus, which is vl. However, the rest of the

surplus is split evenly between the two players. In addition, in the zero κ limit there

is no ine�ciency. Thus, no surplus is lost neither due to delay nor due to costly

attention.

Theorem 4. Let
{(
Ūn
s , Ū

n
b

)}∞
n=1

be a sequence of frequent o�er utilities of B0 (κn)

with κn → 0. Then:

lim
n→∞

Ūn
s =

1

2
(E [v] + vl)

lim
n→∞

Ūn
b =

1

2
(E [v]− vl)

Proof. See appendix.
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While the proof of Theorem 4 is highly technical, the key intuition behind it lies

in the equilibrium's long run state. In the long run, the probability that the buyer

attaches to the quality of the good being vl goes to one. The reason the buyer's beliefs

converge comes from the vl seller consistently o�ering the buyer a lower surplus than

any other seller (Proposition 2). Being partially attentive, the buyer accepts the vl

seller's o�ers less frequently, resulting in the vl seller being the only one remaining in

the long run. Thus, one can show that in the long run the strategies of the vl seller

and the buyer converge to those detailed in Proposition 4.

I now provide a heuristic derivation of the seller's payo� in the long run state.

Suppose that, against all odds, a seller with good of quality v > vl reaches the long

run state. Just as before, the player's strategies in this state must satisfy equations

7 and 8. However, since the buyer believes that the quality of the good is vl with

probability 1, πm is equal to π∗∆,vl from Proposition 4 for all m. These equations have

a unique solution when πm = π∗∆,vl for all m. In this solution, both bm,v and zm,v are

�xed across periods at some level b∗∆,v and z
∗
∆,v. Take λ∆,v to be such that:

b∗∆,v = 1− e−∆λ∆,v

and take λ∆,vl to satisfy the same equation but with π∗∆,vl instead of b
∗
∆,v. Substituting

these quantities into equations 7 and 8 gives the following two conditions:(
1− e−∆λ∆,v

1− e−∆λ∆,vl

)
= e

1
κ

(
v−z∗∆,v−κ

∆

1−e−r∆ (λ∆,v−λ∆,vl)
)

(13)(
e∆λ∆,v − 1

1− e−r∆

)
=

z∗∆,v − κ
κ

(14)

For the sake of illustration, suppose that λ∆,v and λ∆,vl are well de�ned and contin-

uously di�erentiable with respect to ∆ for all ∆ ∈ [0,∞). Suppose further that the

derivative with respect to ∆ of both λ∆,v and λ∆,vl is equal to 1 at ∆ = 0. Given

these assumptions, one can use L'Hopital's rule to show that, as ∆ goes to zero,
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equations 13 and 14 imply the following conditions:

λ0,v

λ0,vl

= e
1
κ(v−z∗0,v−κr (λ0,v−λ0,vl))

λ0,v = r

(
z∗0,v − κ

κ

)
Note that by Proposition 4 we must have that λ0,vl = r

(
vl−κ
κ

)
. Therefore, the above

two equations can be rearranged to give:(
z∗0,v − κ

κ

)
e

2
κ(z∗0,v−κ) =

(
vl − κ
κ

)
e

1
κ

(v+vl−κ)

As κ goes to zero, the exponential term dominates, implying that z∗0,v converges to
1
2

(v + vl). Since agreement is immediate, we obtained that the seller's pro�t in the

long run state conditional on v converges to 1
2

(v + vl).

The above heuristic calculation shows that in the long run state the payo� of a

v quality seller converges to 1
2

(v + vl). As κ goes to zero, one can show that this

long-run state arrives immediately after trade begins. To get an intuition for why

that is true, suppose for simplicity that the quality of the good can be either vh or vl.

When κ is close to zero, the buyer's behavior is very similar to that of a fully rational

agent. Thus, as κ → 0, the probability that a bad o�er is accepted goes to zero,

while good o�ers are accepted with probability one. Using the standard bargaining

logic then implies that trade occurs immediately with the seller giving the buyer a

surplus equal to the buyer's expected future payo� conditional on v. However, the

vl seller's o�er converges to the buyer's continuation value from above, while the vh

seller's o�er converges to its limit from below. Using this fact, one can show that the

buyer accepts the �rst few o�ers of the vh seller in�nitely more frequently than she

accepts the o�ers made by a vl one. As a result, the long run state arrives instantly,

giving the buyer an ex-ante payo� of 1
2

(E [v]− vl).
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7 More Information, Lower Surplus

The current section explores the e�ciency implications of revealing the good's quality

to the buyer. To do so, I compare the equilibrium payo�s in the standard game to the

payo�s when the buyer knows v. As shown in Proposition 4 in section 5, revealing

v to the buyer results in a unique equilibrium. Corollary 3 below establishes that

this equilibrium involves the seller appropriating all of the surplus. Moreover, the

corollary shows that revealing v to the buyer results in an ine�ciency of size κ. The

corollary follows from Proposition 4 and Lemma 1.

Corollary 3. The expected utilities of the buyer and the seller in the equilibrium of

Bv (∆) are 0 and v − κ, accordingly.

Proof. By Proposition , zm,v = v for all v. Therefore, by equation 5 of Lemma 1, the

seller's expected utility is equal to v − κ. To get that the buyer's expected utility is

zero, note that we have both bm,v = πm for all m and zm,v = v for all v. The �rst

implies that the buyer's attention costs are zero, while the second means that her

expected transaction utility is also zero. Thus, the buyer's surplus is zero.

Corollary 7 suggests that in Bv, attention is e�ortless in equilibrium. The reasion

attention is e�ortless is because the seller uses a deterministic strategy. Since in

equilibrium the buyer knows both the seller's strategy and v, the buyer's knowledge

includes all there is to know about the seller's o�ers, resulting in zero attention costs.

The fact that attention is e�ortless on the equilibrium path does not mean that

the buyer perfectly observes the seller's o�ers. Indeed, perfectly observing the seller's

o�ers would constitute a non-credible attention threat. Such threats are ruled out

by my equilibrium re�nement. In particular, my re�nement requires the buyer to

take into account the potential marginal cost of paying attention to o�-equilibrium

o�ers. These marginal costs induce the buyer to only partially adjust her acceptance

probability in reaction to zero probability o�ers. The interaction between this par-

tial adjustment and the seller's incentives that leads to delay in equilibrium, which

remains when the buyer knows the quality of the good.
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Proposition 5 wishes to compare the welfare in the original game, B (∆, κ), to

the welfare obtained by revealing the good's quality to the buyer. For this, consider

a hypothetical game in which both the buyer and the seller get to observe v before

the bargaining stage. By Corollary 3 this hypothetical game will give the seller

an expected utility of E [v] − κ while the buyer's ex-ante surplus will be equal to

zero. Hence, the total surplus when the quality is revealed to the buyer is given by

the expected value of v minus κ. Proposition 5 below shows that both the buyer's

surplus and overall e�ciency are strictly higher when the quality of the good is not

announced to the buyer. Therefore, revealing information in an environment with

rational inattention could have negative consequences on e�ciency and the utility of

the inattentive individuals.

Proposition 5. There exists δ > 0 and τ > 0 such that for every equilibrium the

total expected surplus is larger than E [v] − κ + τ and the buyer's expected utility is

strictly larger than δ.

Proof. See appendix.

Proposition 5 asserts that revealing the quality of the product to the buyer results

in reduced e�ciency and lower surplus for the buyer across all equilibria. From the

buyer's perspective, being ignorant of v results in a variation in the value of the

seller's o�ers. This variation generates positive attention costs. Since attention costs

are strictly convex and the buyer is attentive, she earns a strictly positive surplus.

As for overall e�ciency, keeping the buyer ignorant of v creates positive attention

costs but reduces the overall e�ciency due to delay. The size of the overall ine�-

ciency, however, turns out to be convex in the seller's expected pro�ts conditional

on v. When the buyer is uncertain about the quality of the good, the distribution of

the seller's conditional expected pro�ts becomes more concentrated, thereby reduc-

ing the overall ine�ciency. Thus, keeping the buyer in the dark with respect to the

quality of the good results in less delay that more than compensated for the buyer's

positive attention costs. Thus, when attention is costly, improving the information

of the inattentive buyer
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8 Concluding Remarks

In this paper I showed that introducing rational inattention into one-sided repeated

o�ers bargaining gives rise to many features reminiscent of real-world transactions.

A rationally inattentive buyer earns a strictly positive surplus, even when attention

costs are negligible (Theorem 4). When attention costs are positive, trade occurs with

delay that is decreasing with the value of the good (Proposition 3). The resulting

delay is accompanied by the buyer being unhappy with cheap, low quality products,

and pleased with expensive products of higher quality (Proposition 2). Finally, I've

shown that in the presence of rational inattention, ignorance is bliss in the sense that

both the buyer's and the total surplus are higher when the buyer does not know the

good's quality (Proposition 5).

My starting point was perhaps the simplest of dynamic bargaining models: One-

sided repeated o�ers with full information. It remains an open question how much of

my insights survive the transition to other, more complex bargaining environments.

Examples of such environments include the buyer having private information, two-

sided o�ers, existence of an the outside option, etc. In addition, there are some

questions that remain open even with respect to the simple bargaining protocol

studied in my paper. For example, in the in�nite horizon model, I focused on an

equilibrium which was the limit of �nite horizon equilibria. This re�nement resulted

in equilibria that were completely forward looking and depended very little on past

o�ers (Theorem 2). It remains to be seen whether it is possible to obtain qualitatively

di�erent results in more complicated equilibria .

In addition to exploring variations on the bargaining environment and solution

concept, it would be of interest to study the implications of more structured models

of attention on bargaining. As mentioned in the introduction, I view rational inat-

tention as extending utility maximization to include costly attention. Thus, just as

people study how deviation from utility maximization in�uence economic outcomes,

so it would be of interest to study the interaction of bargaining and other ways of

modeling limited attention.
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A Information Theory Preliminaries

Lemma 2 (Log-Sum inequality). Let (ai)
n
i=1 and (bi)

n
i=1 be non-negative numbers. Then:

n∑
i=1

ai ln
ai
bi
≥

(
n∑
i=1

ai

)
ln

∑n
i=1 ai∑n
i=1 bi

with equality if and only if aibi is constant.

Proof. The function f (c) = c ln c is strictly convex since f
′′

(c) = 1
c > 0. Set ci = ai

bi
and set

αi = bi∑n
i=1 bi

. Then by Jensen's inequality:

n∑
i=1

ai∑
j bj

ln
ai
bi

=
∑
i

αif (ci) > f

(∑
i

αici

)
=

∑n
i=1 ai∑n
j=1 bj

ln

(∑n
i=1 ai∑n
j=1 bj

)

the lemma follows.

Lemma 3 (Chain rule for mutual information). Let (Z,F , p) be some probability space, and let

l : S2 × Z → [0, 1] be such that l (s1, s2; ·) is measurable for all s1, s2 and
∑

(s1,s2) l (s1, s2; z) = 1

for all z. De�ne pls1 by setting:

pls1 (E) =

´
E

∑
s2
l (s1, s2; z) dp (z)´

Z

∑
s2
l (s1, s2; z) dp (z)

take:

l̄1 (s1; z) =
∑
s2

l (s1, s2; z)

and for every s1 let l|s1 : S × Z → [0, 1] be:

l2|s1 (s2; z) =
l (s1, s2; z)∑
s
′
2
l
(
s1, s

′
2; z
)

then:

I (l; p) = I
(
l̄1; p

)
+
∑
s1

(ˆ
Z

l̄1 (s1; z) dp

)
I
(
l2|s1 ; pls1

)
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Proof. Note that:

I
(
l2|s1 ; pls1

)
=

ˆ
Z

∑
s2

l2|s1 (s2; z) ln

(
l2|s1 (s2; z)´

l2|s1 (s2; z) dpls1

)
dpls1

=

ˆ
Z

∑
s2

l2|s1 (s2; z) ln


(

l(s1,s2;z)∑
s2
l(s1,s2;z)

)
´ ( l (s1, s2; z)´

Z

∑
s2
l (s1, s2; z) dp (z)

)
dp

dpls1

=

ˆ
Z

∑
s2

l2|s1 (s2; z)


ln

(
l (s1, s2; z)´
l (s1, s2; z) dp

)
− ln

(
l̄ (s1; z)´

Z
l̄ (s1; z) dp

)
 dpls1

=

ˆ
Z

∑
s2

l2|s1 (s2; z) ln

(
l (s1, s2; z)´
l (s1, s2; z) dp

)
dpls1

−
ˆ
Z

ln

(
l̄ (s1; z)´

Z
l̄ (s1; z) dp

)
dpls1

and therefore,
∑
s1

(´
Z
l̄1 (s1; z) dp

)
I
(
l2|s1 ; pls1

)
is equal to:

=
∑
s1

(ˆ
Z

l̄1 (s1; z) dp

)ˆ
Z

∑
s2

l2|s1 (s2; z) ln

(
l (s1, s2; z)´
l (s1, s2; z) dp

)
dpls1

−
∑
s1

(ˆ
Z

l̄1 (s1; z) dp

)ˆ
Z

ln

(
l̄ (s1; z)´

Z
l̄ (s1; z) dp

)
dpls1

=

ˆ
Z

∑
s1

∑
s2

l̄ (s1; z) l2|s1 (s2; z) ln

(
l (s1, s2; z)´
l (s1, s2; z) dp

)
dp

−
ˆ
Z

∑
s1

l̄ (s1; z) ln

(
l̄ (s1; z)´

Z
l̄ (s1; z) dp

)
dp

= I (p; l)− I
(
p; l̄1

)
thereby implying the desired equality.
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B Su�ciency of recommendation strategies

This part of the appendix shows that it is su�cient to focus on recommendation strategies. The

section begins by introducing required notation and the de�nition of general strategies for the buyer.

Then, the section de�nes what it means for two strategies to be outcome equivalent and when we

call a strategy for the buyer as a recommendation strategy. I then present the proof that recom-

mendation strategies are su�cient by showing that for each strategy we can construct a sequence

of outcome equivalent strategies with lower information costs that converge to a recommendation

strategy.

Let Y is some compact subspace of a �nite dimensional Euclidean space. De�ning Zm−1 =

Xm×Y , we take σ0 to be a borel probability measure over Z0 = Y , and (σm)
M
m=1 to be a sequence

of probability transition kernels: σm : Zm−1 → ∆ (X) that give the conditional probability over the

m time fundamental Xm given zm−1 =
(
xm−1, y

)
. For n < m and zm ∈ ZM , we will take zm (n)

to denote the projection of zm on Zn. Throughout we will focus on the peirod 0 problem without

loss of generality. For M ∈ N ∪ {∞}, we let σ ∈ ∆
(
Y ×XM

)
denote the probability measure

derived by repeatedly application of (σm)
M
m=0. Similarly, we will write: σ (·|zn) ∈ ∆ (ZM−n) for the

probability distribution over {zn}×XM−n resulting from repeated application of (σm)
M
m=n+1. For

the sake of brevity, we write σ (Em) instead of σ
(
Em ×XM−m) for any Em ∈ B (Zm).

A strategy for the buyer consists of a pair (λ, β), such that λ = (λm)
M
m=0 and β = (βm)

M
m=0,

where λm : Zm × Sm−1 → ∆ (S) and βm : Sm → [0, 1]. Thus, λm
(
sm|zm, sm−1

)
is the probability

of observing signal sm conditional on past signals being sm−1 and the state up to time m being zm,

while βm (sm) is the probability of the buyer stopping at period m conditional on having observed

the signals sm. Given (λ, β), we let µλ,β (·|sm) be the posterior distribution over ZM conditional

on having reached any period n ≥ m and having observed signals sm from λ.

De�nition 4. Two strategies (λ, β) and
(
λ
′
, β
′
)
are outcome equivalent if for every σ and every

m, the probability that the buyer stops at period m is the same under both (λ, β) and
(
λ
′
, β
′
)
.

De�nition 5. A strategy (λ, β) is a recommendation strategy if for every m:

λm
(
sm|zm, sm−1

)
> 0

implies sm ∈ {0, 1}, and βm (sm) = 0 if sm = 0 and βm (sm) = 1 otherwise.

We will prove here the following proposition:

Proposition 6. For every (λ, β) there exists an outcome equivalent recommendation strategy(
λ
′
, β
′
)
that is weakly better for the buyer than (λ, β).

To prove the proposition �x some (λ, β). We will construct the strategy (λ∗, β∗) in the following

way. Let λ∗0 (0|z0) =
∑
s0
λ0 (s0|z0) (1− β0 (s0)) and λ∗0 (1|z0) =

∑
s0
λ0 (s0|z0)β0 (s0). Set β∗0 (0) =
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0 and β∗0 (1) = 1. De�ne the period 0 likelihood l0 by:

l0 (s0|z0) =
λ0 (s0|z0) (1− β0 (s0))

λ∗0 (0|z0)

and let λ∗1 (s1, s0|z1, 0) = λ1 (s1|z1, s0) l0 (s0|z0). Note that we can let λ∗1 send signals in S×S since

S is countably in�nite and therefore there exists a bijection from S to S × S. For every m ≥ 1, let

β∗m (sm, 0) = βm (sm) and for any m ≥ 2 take λ∗m
(
sm|zm, sm−1, 0

)
= λm

(
sm|zm, sm−1

)
.

Lemma 4. (λ, β) and (λ∗, β∗) are outcome equivalent

Proof. Obviously the probability of stopping in period 0 is the same under both. As for stopping

in period 1, the probability under (λ∗, β∗) given some z1 is:

λ∗0 (0|z0)
∑
s0,s1

λ1 (s1|z1, s0) l0 (s0|z0) (1− β1 (s0, s1)) =

∑
s0,s1

λ1 (s1|z1, s0)λ0 (s0|z0) (1− β0 (s0)) (1− β1 (s0, s1))

which is the same probability of stopping under (λ, β). It therefore follows that the probability at

any period m given any zm is the same under both, hence the two are outcome equivalent.

Lemma 5. The expected present value of the cost of attention is lower under (λ∗, β∗) than under

(λ, β).

Proof. Clearly, µλ∗,β∗ (·|sm, 0) = µλ,β (·|sm) for every m ≥ 1, and therefore

I
(
λm
(
·|sm−1

)
;µλ,β

(
·|sm−1

))
=

I
(
λ∗m
(
·|sm−1, 0

)
;µλ∗,β∗

(
·|sm−1, 0

))
We will now show that:

I (λ∗0;σ)

+e−r∆
ˆ
λ∗0 (0|z0) dσ (15)

×I (λ∗1 (·|0) , µλ∗,β∗ (·|0)) ≤ I (λ0;σ)

+e−r∆
ˆ 

∑
s0

λ0 (s0|z0) (1− β0 (s0))

×I (λ1 (·|s0) , µλ,β (·|s0))

 dσ
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Let:

λ0 (s|z0, λ
∗
0 = 1) =

β0 (s)λ0 (s|z0)∑
s0
β0 (s0)λ0 (s0|z0)

=
β0 (s)λ0 (s|z0)

λ∗0 (1|z0)
≡ l1 (s|z0)

and:

λ0 (s|z0, λ
∗
0 = 0) =

(1− β0 (s))λ0 (s|z0)∑
s0

(1− β0 (s0))λ0 (s0|z0)

=
(1− β0 (s))λ0 (s|z0)

λ∗0 (0|z0)
= l0 (s|z0)

then by the chain rule of mutual information (Lemma 3) and non-negativity of mutual information:

I (λ0;σ) = I (λ∗0;σ) +

ˆ ∑
s∗0=0,1

λ∗0 (s∗0|z0) I
(
ls∗0 ;µλ∗,β∗ (·|s∗0)

)
dσ

≥ I (λ∗0;σ) +

ˆ
λ∗0 (0|z0) I (l0;µλ∗,β∗ (·|0)) dσ

while I (λ∗1 (·|0) , µλ∗,β∗ (·|0)) is equal to:

= I (l0;µλ∗,β∗ (·|0))

+
∑
s0

ˆ (
l0 (s0|z0)×

I (λ1 (·|s0) ;µλ,β (·|s0))

)
dµλ∗,β∗ (z0|0)

= I (l0;µλ∗,β∗ (·|0))

+

ˆ


(
λ∗ (0|z0)´
λ∗ (0|z0) dσ

)
×

∑
s0

(
l0 (s0|z0)

×I (λ1 (·|s0) ;µλ,β (·|s0))

)
 dσ

which is equal to:

= I (l0;µλ∗,β∗ (0))

+

ˆ 
(∑

s0
λ0 (s0|z0) (1− β0 (s0))´

λ∗ (0|z0) dσ

)
×I (λ1 (·|s0) ;µλ,β (·|s0))

 dσ
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therefore:

I (λ0;σ)

+e−r∆
ˆ 

∑
s0

λ0 (s0|z0) (1− β0 (s0))×

I (λ1 (·|s0) , µλ,β (·|s0))

 dσ ≥ I (λ∗0;σ)

+

ˆ
λ∗0 (0|z0) I (l0;µλ∗,β∗ (0)) dσ

+e−r∆
ˆ 

∑
s0

λ0 (s0|z0) (1− β0 (s0))×

I (λ1 (·|s0) , µλ,β (·|s0))

 dσ

which is weakly larger than:

≥ I (λ∗0;σ)

+e−r∆
ˆ
λ∗0 (0|z0) I (l0;µλ∗,β∗ (0)) dσ

+e−r∆
ˆ 

∑
s0

λ0 (s0|z0) (1− β0 (s0))×

I (λ1 (·|s0) , µλ,β (·|s0))

 dσ

which is equal to:

= I (λ∗0;σ) + e−r∆
ˆ
λ∗0 (0|z0) dσ ×

I (l0;µλ∗,β∗ (·|0)) +

ˆ 
∑
s0

l0 (s0|z0)×

I (λ1 (·|s0) ;µλ,β (·|s0))

 dµλ∗,β∗ (z0|0)


= I (λ∗0;σ)

+e−r∆


ˆ
λ∗0 (0|z0) dσ

×I (λ∗1 (·|0) , µλ∗,β∗ (·|0))


as required.

Note that together, lemmas 4 and 5 imply that (λ∗, β∗) give the buyer a utility at least as high

as (λ, β) while achieving the same distribution over outcomes.

Construct now the following sequence:
(
λ0, β0

)
= (λ∗, β∗). For every n, construct (λn, βn) by

taking
(
λn−1, βn−1

)
and replacing the strategies starting at periods n and n + 1 in a similar way
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that λ∗0, β
∗
0 , λ

∗
1 and β∗1 replaced λ0, β0, λ1 and β1. It is easy to verify that (λn, βn) converges to

some limit (λ∞, β∞), and that (λ∞, β∞) is a recommendation strategy. Moreover, by 4 and 5 that

(λ∞, β∞) is both outcome equivalent to, and is better for the buyer than,(λ, β).
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C Optimal stopping with rational inattention

In this section we characterize the optimal recommendation strategy for the buyer under general

settings. The generalization is modest in that we allow for a more general space of outcomes and for

a more general relation between these outcomes and the buyer's payo�s. Thus, the results provided

here are given for a general stopping problem under rational inattention in which the unknown

evolves according to a sequence of probability transition kernels, and is not limited to the one-sided

bargaining setup studied in the paper. The specialization of the results to the setup in the paper

should be pretty straightforward. This is despite the notation in this section being completely self

contained. To make it as easy as possible to move from this section to the paper, I have attempted

to keep the notation of this section as similar as possible to that of the paper.

C.1 Two formulations of the optimal stopping problem

Let Y is some compact subspace of a �nite dimensional Euclidean space. De�ning Zm−1 = Xm×Y ,
we take σ0 to be a borel probability measure over Z0 = Y , and (σm)

M
m=1 to be a sequence of

probability transition kernels: σm : Zm−1 → ∆ (X) that give the conditional probability over the

m time fundamental Xm given zm−1 =
(
xm−1, y

)
. For n < m and zm ∈ ZM , we will take zm (n)

to denote the projection of zm on Zn. Throughout we will focus on the peirod 1 problem without

loss of generality. For M ∈ N ∪ {∞}, we let σ ∈ ∆
(
Y ×XM

)
denote the probability measure

derived by repeatedly application of (σm)
M
m=1. Similarly, we will write: σ (·|zn) ∈ ∆ (ZM−n) for the

probability distribution over {zn}×XM−n resulting from repeated application of (σm)
M
m=n+1. For

the sake of brevity, we write σ (Em) instead of σ
(
Em ×XM−m) for any borel set Em ⊂ Zm.

A binary stopping strategy is characterized by a collection of mappings (βm)
M
m=0 where βm :

Zm → [0, 1] is measurable for each m. βm (zm) represents the conditional probability that the

buyer decides to stop at period m given that m has been reached and the fundamental is zm. We

take B to be the set of all such mappings de�ned up to σ-almost sure equality. For a �xed β,

let βm,n = (βm, βm+1, . . . , βn) for n ≥ m. We will write lβm as short hand for the m likelihood

de�ned by lβm (0; zm) = 1−βm (zm) and lβm (1; zm) = βm (zm), abuse notation by writing for every

p ∈ ∆ (ZM ): I (βm; p) instead of I (lβm ; p). Understanding that βm is a function of zm ∈ ZM , we

will often use βm (zM ) instead of βm (zM (m)). Moreover, when there is no risk of confusion about

zM , we will sometimes write βm instead of βm (zm).

We now turn to de�ning the buyer's objective function. As in the main paper, for any sequence

of constants c∞ ∈ R∞, we will let
∏N
j=n cj = 1 whenever N < n. Let v (zm) be the value of the

buyer from stopping at perod m given fundamental zm. We assume that v is Borel measurable

and takes value in [v, v̄] for −∞ < v < 0 < v̄ < ∞, thereby implying that v is integrable. For

zM ∈ ZM , we will take vm (zM ) = v (zM (m)), and again abuse notation and write vm instead of

vm (zM ) whenever there is no risk of confusion.
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Let µβ,m be the buyer's posterior over ZM conditional on having used β and reaching the

beginning of period m. For any m ≥ 0, de�ne:

Um (β;σ) =

ˆ
ZM

m−1∏
n=1

(1− βn) (βmvm − κI (βm;µβ,m)) dσ

Taking:

U (β;σ) =

M∑
j=1

e−r∆(j−1)Uj (β;σ)

We can then de�ne the buyer's time 1 problem as:

max
β∈B
U (β;σ) (16)

To state our theorem, we need to introduce the concept of the buyer's quasi-value. Letting πm =´
βmdµβ,m For a given zm, let:

U∗m (β|zm) = βmvm − κβm ln (βm/πm)

−κ (1− βm) ln ((1− βm) / (1− πm))

It is not too di�cult to see that we can rewrite the buyer's objective function as:

U (β;σ) =

M∑
m=1

ˆ m−1∏
j=1

(1− βj)

 e−r∆(m−1)U∗m (β|zm) dσ

This way of writing the buyer's objective function suggests a useful way of thinking of the buyer's

continuation values. In particular, we will de�ne the quasi-value of the buyer conditional on arriving

to period n ≥ m and knowing zm:

Un (β;σ|zm) =

ˆ  M∑
j=n

e−r∆(j−n)

j−1∏
k=n

(1− βk)U∗j
(
β|xM , v

) dσ
(
zM |zm

)
as the conditional 'value' of the buyer conditional on zm and arriving to period n. With this

notation in hand, we will turn to prove the following theorem:

Theorem 5. β solves the problem 16 only if:

βm (zm) =
πme

1
κ vm(zm)

πme
1
κvm(zm) + (1− πm) e

1
κ e
−r∆Um+1(β;σ|zm)

(17)
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Moreover, if β satis�es the above conditions with πm ∈ (0, 1) for all m as well as:

lim
m→∞

ˆ (
e−r∆(m−n) ln

(
1− βm
1− πm

))
dσ
(
zM |zn

)
= 0 (18)

σ-almost surely, then βm is optimal.

To solve this program, we will solve an equivalent program in which the buyer chooses the

ex-ante probability that she will stop in period m conditional on zm. More speci�cally, take H

to be the set of all measurable mappings h : ZM → [0, 1]
M

de�ned up to σ-almost sure equality

that satisfy: (1)
∑M
m=0 hm (zM ) ≤ 1 and (2) zM (m) = z

′

M (m) implies hm (zM ) = hm

(
z
′

M

)
. Then

we are interested in maximizing a functional equivalent to the one in 16 de�ned over H instead

of B. It is easy to see that H is convex. We think of hm (zM ) as the probability that the buyer

stops at period m conditional on the fundamental up to and including period m being equal to

zM (m) =
(
xm+1, y

)
. When the choice of zM ∈ ZM is clear, we will sometime drop zM and simply

write hj instead of hj (zM ).

Fixing some h ∈ H and somem, we can de�ne the corresponding conditional stopping strategies:

βhm (zM ) =
hm

1−
∑m−1
n=0 hn

1− βhm (zM ) =
1−

∑m
n=0 hn

1−
∑m−1
n=0 hn

whenever
∑m−1
n=0 hn < 1 and have βhm (zM ) = 0 otherwise. Note that βh ∈ B, which allows us to

write: µh,m = µβh,m and I (hm;µh,m) = I
(
βhm;µβh,m

)
. Take:

Ũm (h;σ) =

ˆ
ZM

(
hm (zm) v (zm)− κ

(
1−

m−1∑
n=0

hn (zm)

)
I (hm;µh,m)

)
dσ

and de�ne the functional:

Ũ (h;σ) =
M∑
m=0

e−r∆mŨm (h;σ)

then we will consider the following ex-ante program:

max
h∈H
Ũ (h;σ) (19)

To establish the equivalence of these two programs, for every β ∈ B take hβ to be de�ned by:

hβ (zM ) =

m−1∏
n=0

(1− βn (zM ))βm (zM )
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The the following facts are easy to verify and we therefore ommit their proof.

Fact 1. For every h ∈ H and β ∈ B: (1)hβ
h

= h; (2) For every zM for which
∏m−1
n=0 (1− βn (zM )) >

0: βh
β

n (zM ) = βn (zM ). (3) U (β;σ) = Ũ
(
hβ ;σ

)
; (4) Ũ (h;σ) = U

(
βh;σ

)
.

Given the above equivalence, we will focus on �nding a solution to the program 19 from which

we will back out the solution to 16. The main advantage of focusing on maximizing Ũ rather than

U will be that Ũ is concave. We now turn to proving this fact.

C.2 Ũ is concave

Lemma 6. Let ϕ : ZM → [0, 1] be some measurable function. Then the function: fzM (ϕ) =

ϕ (zM ) ln
(
ϕ(zM )´
ϕdσ

)
is convex in ϕ for all zM .

Proof. Fix ϕ and ϕ
′
. Then by the log-sums inequality (2):

αϕ (zM ) ln

(
ϕ (zM )´
ϕdσ

)
+ (1− α)ϕ

′
(zM ) ln

(
ϕ
′
(zM )´
ϕ′dσ

)

≥
(
αϕ (zM ) + (1− α)ϕ

′
(zM )

)
ln

(
αϕ (zM ) + (1− α)ϕ

′
(zM )´

αϕ+ (1− α)ϕ′dσ

)

as required.

Lemma 7. Ũ is concave in h.

Proof. Note that we can write:

Ũm (h;σ) = hmvm − κ

hm ln

(
βhm´

βhmdµh,m

)
+

1−
m∑
j=0

hj

 ln

(
1− βhm´

(1− βhm) dµh,m

)

= hmvm − κ


hm ln

(
hm´
hmdσ

)
+

1−
m∑
j=0

hj

 ln

 1−
∑m
j=0 hj´ (

1−
∑m
j=0 hj

)
dσ


−

1−
m−1∑
j=0

hj

 ln

 1−
∑m−1
j=0 hj´ (

1−
∑m−1
j=0 hj

)
dσ




Thus, letting:

Ũ∗m (h; zM ) = hmvm − κhm ln

(
hm´
hmdσ

)

−κ
(
1− e−r∆1[m<M ]

)1−
m∑
j=0

hj

 ln

 1−
∑m
j=0 hj´ (

1−
∑m
j=0 hj

)
dσ
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we can rewrite:

Ũ (h;σ) =

ˆ
ZM

M∑
m=0

e−r∆mŨ∗m (h; zM ) dσ (20)

Concavity then follows from equation 20 and lemma 20.

C.3 Necessary Conditions

Note that throughout this subsection we �x σ. Therefore, we will simply write Ũ (h) instead of

Ũ (h;σ).

Lemma 8. Let f : [0, 1]→ R be concave. Then for all 0 ≤ γ ≤ λ < 1:

f (1)− f (λ)

1− λ
≤ f (1)− f (γ)

1− γ

Proof. Set α = 1−λ
1−γ . By concavity: f (λ) ≥ αf (γ) + (1− α) f (1). Therefore: f (λ) ≥ f (1) −

α (f (1)− f (γ)), or: α (f (1)− f (γ)) ≥ f (1)−f (λ). Dividing both sides by 1−λ gives the desired

inequality.

Lemma 9. Suppose h maximizes Ũ (h). Then both:

ln

(
1−

∑m
k=0 hj´

(1−
∑m
k=0 hj) dσ

)
and

M∑
j=m

e−r∆j ln

 1−
∑j
k=0 hk´ (

1−
∑j
k=0 hk

)
dσ


are σ-integrable for all m.

Proof. We will begin by showing that
∑M
j=m e

−r∆j ln

(
1−
∑j
k=0 hk´

(1−
∑j
k=0 hk)dσ

)
is integrable for m =

0. Since
∑M
j=0 e

−r∆j
(

1−
∑j
k=0 hk

)
ln

(
1−
∑j
k=0 hk´

(1−
∑j
k=0 hk)dσ

)
≥ 0 is integrable, this implies that∑M

j=0 e
−r∆j

(∑j
k=0 hk

)
ln

(
1−
∑j
k=0 hk´

(1−
∑j
k=0 hk)dσ

)
is not.

Take h0 to be such that h0
j = 0 for all j. Then by optimality of h and lemma 8 we have that

for all 0 ≤ γ ≤ λ < 1:

0 ≤
Ũ (h)− Ũ

(
λh+ (1− λ)h0

)
1− λ

≤
Ũ (h)− Ũ

(
γh+ (1− γ)h0

)
1− γ

≤ Ũ (h)− Ũ
(
h0
)
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where the last inequality comes from setting γ = 0. Note that:

Ũ (h)− Ũ
(
λh+ (1− λ)h0

)
1− λ

=

ˆ
ZM

M∑
j=0

e−r∆j



hjvj − κhj ln

(
hj´
hjdσ

)
− κ

(
1− 1[j<M ]e

−r∆

1− λ

)
×

×



(
1−

j∑
k=0

hj

)
ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ


−

(
1− λ

j∑
k=0

hk

)
ln


(

1− λ
∑j
k=0 hk

)
´ (

1− λ
∑j
k=0 hk

)
dσ






dσ

using the fact that for every α ∈ [0, 1]:

0 ≤ − (α lnα+ (1− α) ln (1− α)) ≤ ln 2

and that lnα is concave, we obtain:

0 ≤ −
ˆ
hj ln

(
hj´
hjdσ

)
dσ = −

(ˆ
hj lnhjdσ −

(ˆ
hjdσ

)
ln

(ˆ
hjdσ

))
= −

ˆ (
hj lnhj −

(ˆ
hjdσ

)
ln

(ˆ
hjdσ

))
dσ

≤ ln 2

Thus, since vj is bounded, we can rewrite:

Ũ (h)− Ũ
(
λh+ (1− λ)h

′
)

1− λ
=

ˆ
ZM

M∑
j=0

e−r∆j
(
hjvj − κhj ln

(
hj´
hjdσ

))
dσ

−κ
ˆ
ZM

M∑
j=0

(
1− e−r∆1[j<M ]

)
e−r∆j



(
1−

∑j
k=0 hj

1− λ

)
ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ


−

(
1− λ

∑j
k=0 hk

1− λ

)
ln


(

1− λ
∑j
k=0 hk

)
´ (

1− λ
∑j
k=0 hk

)
dσ




dσ
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Letting:

ζj (zM ;λ) =



(
1−

∑j
k=0 hj

1− λ

)
ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ


−

(
1− λ

∑j
k=0 hk

1− λ

)
ln


(

1− λ
∑j
k=0 hk

)
´ (

1− λ
∑j
k=0 hk

)
dσ




we obtain that the following inequality:

1

κ

ˆ
ZM

M∑
j=0

e−r∆j
(
hjvj − κhj ln

(
hj´
hjdσ

))
dσ

≥
ˆ
ZM

M∑
j=0

(
1− e−r∆1[j<M ]

)
e−r∆jζj (zM ;λ) dσ

≥ 1

κ

ˆ
ZM

M∑
j=0

e−r∆j
(
hjvj − κhj ln

(
hj´
hjdσ

))
dσ −

(
U (h)− U

(
h
′
))

holds for all λ < 1. This inequality implies that there exists a sequence λl with λl → 1 and that´
ZM

∑M
j=0

(
1− e−r∆1[j<M ]

)
e−r∆jζj (zM ;λ) dσ converges to some limit L∞ <∞. By the log sums

inequality: (
1−

j∑
k=0

hj

)
ln

(
1−

∑j
k=0 hj

1−
´ ∑j

k=0 hkdσ

)

+ (1− λ)

(
j∑

k=0

hj

)
ln

(
(1− λ)

∑j
k=0 hj

(1− λ)
´ ∑j

k=0 hkdσ

)
≥ (1− λα) ln

(
1− λ

∑j
k=0 hj

1− λ
´ ∑j

k=0 hkdσ

)

which implies:

ζj (zM ;λ) ≥

(
1−

j∑
k=0

hj

)
ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ

 (21)

for every zM and all λ, and therefore:

M∑
j=0

e−r∆jζj (zM ;λ) ≥
M∑
j=0

e−r∆j

(
1−

j∑
k=0

hj

)
ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ
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Which is integrable. Hence by Fatou's lemma:

lim
l→∞

ˆ
ZM

M∑
j=0

e−r∆jζj (zM ;λl) dσ = lim inf
l→∞

ˆ
ZM

M∑
j=0

e−r∆jζj (zM ;λl) dσ

≥
ˆ
ZM

lim inf
l→∞

M∑
j=0

e−r∆jζj (zM ;λl) dσ

However:

lim
l→∞

ζj (zM ;λl) =
d

dλ

(
1− λ

j∑
k=0

hk

)
ln


(

1− λ
∑j
k=0 hk

)
´ (

1− λ
∑j
k=0 hk

)
dσ

∣∣∣∣∣∣
λ=1

= −

(
j∑

k=0

hk

)
ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ

 (22)

+

 ´ (∑j
k=0 hk

)
dσ

´ (
1−

∑j
k=0 hk

)
dσ
−

∑j
k=0 hk

1−
∑j
k=0 hk

(1−
j∑

k=0

hk

)

Since equation 21 holds for all λ, it must also hold in the limit, i.e.

M∑
j=0

e−r∆j lim
l→∞

ζj (zM ;λl) ≥
M∑
j=0

e−r∆j

(
1−

j∑
k=0

hj

)
ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ


But: ˆ  ´ (∑j

k=0 hk

)
dσ

´ (
1−

∑j
k=0 hk

)
dσ
−

∑j
k=0 hk

1−
∑j
k=0 hk

(1−
j∑

k=0

hk

)
dσ = 0

for all j then suggests that:

ˆ M∑
j=0

e−r∆j

(
j∑

k=0

hk

)
ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ

 dσ

is bounded, a contradiction. Therefore
∑M
j=0 e

−r∆j ln

(
(1−

∑j
k=0 hk)´

(1−
∑j
k=0 hk)dσ

)
dσ is integrable.

We will now prove that ln

(
(1−

∑m
k=0 hk)´

(1−
∑m
k=0 hk)dσ

)
dσ and

∑M
j=m+1 e

−r∆j ln

(
(1−

∑j
k=0 hk)´

(1−
∑j
k=0 hk)dσ

)
dσ

are both integrable for all m. Suppose both are for all j ≤ m− 1, but that one of them is not for
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j = m. Then both must not be integrable since:

M∑
j=0

e−r∆j ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ

 =

m−1∑
j=0

e−r∆j ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ


+

M∑
j=m+1

e−r∆j ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ


+e−r∆m ln

(
(1−

∑m
k=0 hk)´

(1−
∑m
k=0 hk) dσ

)
is integrable. Using equations 21 and 22 for every j we obtain that:

−

(
j∑

k=0

hk

)
ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ


+

 ´ (∑j
k=0 hk

)
dσ

´ (
1−

∑j
k=0 hk

)
dσ
−

∑j
k=0 hk

1−
∑j
k=0 hk

(1−
j∑

k=0

hk

)

≥

(
1−

j∑
k=0

hk

)
ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ


which, since

ˆ  ´ (∑j
k=0 hk

)
dσ

´ (
1−

∑j
k=0 hk

)
dσ
−

∑j
k=0 hk

1−
∑j
k=0 hk

(1−
j∑

k=0

hk

)
dσ = 0

means that both: ˆ M∑
j=m+1

e−r∆j ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ

 dσ =∞

and: ˆ
ln

(
(1−

∑m
k=0 hk)´

(1−
∑m
k=0 hk) dσ

)
dσ =∞

a contradiction.

The above lemma immediately leads to the following result:

Corollary 4. Assume h maximizes Ũ (h). Then σ
{∑m

j=0 hj = 1
}
> 0 implies σ

{∑m
j=0 hj = 1

}
=

1.

Lemma 10. Suppose h maximizes Ũ . Then the function ln
(

hm´
hmdσ

)
is integrable for all m.
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Proof. Suppose, by contradiction, thatm is such that ln
(

hm´
hmdσ

)
is not integrable. Since ln

(
hm´
hmdσ

)
<

− ln
(´
hmdσ

)
, we must have

´
ln
(

hm´
hmdσ

)
dσ = −∞. Let h+ be such that hj = 0 for all j 6= m

and hm = 1 for all zM . Then by concavity of Ũ and optimality of h, we have for all 0 ≤ λ < 1:

0 ≤ Ũ (h)− Ũ (λh+ (1− λ)h+)

1− λ
≤ Ũ (h)− Ũ

(
h+
)

= Ũ (h)− e−r∆m
ˆ
vmdσ

letting:

ζj (zM ;λ) =
1

1− λ



(
1−

j∑
k=0

hk

)
ln

 1−
∑j
k=0 hk´ (

1−
∑j
k=0 hk

)
dσ


−

(
1− λ

j∑
k=0

hk

)
ln

 1− λ
∑j
k=0 hk´ (

1− λ
∑j
k=0 hk

)
dσ




and:

ξm (zM ;λ) =
1

1− λ


hm ln

(
hm´
hm

)
− (λhm + (1− λ))×

ln

(
λhm + (1− λ)´

(λhm + (1− λ)) dσ

)


we have that:

Ũ (h)− Ũ (λh+ (1− λ)h+)

1− λ
=

ˆ M∑
j=0

e−r∆jhjvjdσ − κ
ˆ ∑

j 6=m

e−r∆jhj ln

(
hj´
hjdσ

)
dσ

−κ
ˆ M∑

j=m

(
1− e−r∆1[j<M ]

)(
1−

j∑
k=0

hk

)
ln

 1−
∑j
k=0 hk´ (

1−
∑j
k=0 hk

)
dσ

 dσ

−κe−r∆m
ˆ
ξm (zM ;λ) dσ − κ

(
1− e−r∆

) ˆ m−1∑
j=0

e−r∆jζj (zM ;λ) dσ

and therefore we obtain that there are L and L̄ such that:

L ≤ e−r∆m
ˆ
ξm (zM ;λ) dσ +

(
1− e−r∆

) ˆ m−1∑
j=0

ζj (zM ;λ) dσ ≤ L̄
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for all λ. Thus, there exists a sequence λl → 1 such that:

ˆ
e−r∆mξm (zM ;λl) +

(
1− e−r∆

)m−1∑
j=0

e−r∆jζj (zM ;λl) dσ → L∞

where L∞ ∈
[
L, L̄

]
. Using the log-sum inequality (Lemma 2) we obtain:

(
1−

j∑
k=0

hk

)
ln

 1−
∑j
k=0 hk´ (

1−
∑j
k=0 hk

)
dσ


+ (1− λ)

(
j∑

k=0

hk

)
ln

 (1− λ)
(∑j

k=0 hk

)
(1− λ)

´ (∑j
k=0 hk

)
dσ


≥

(
1− λ

j∑
k=0

hk

)
ln

 1− λ
∑j
k=0 hk´ (

1− λ
∑j
k=0 hk

)
dσ


implying that for all λ:

m−1∑
j=0

e−r∆jζj (zM ;λ) ≥
m−1∑
j=0

e−r∆j

(
j∑

k=0

hk

)
ln

( ∑j
k=0 hk´ ∑j
k=0 hkdσ

)

while using the log-sum inequality (2):

hm ln

(
hm´
hmdσ

)
+ (1− λ) (1− hm) ln

(
(1− λ) (1− hm)

(1− λ)
´

(1− hm) dσ

)
≥ (λhm + (1− λ)) ln

(
λhm + (1− λ)´

(λhm + (1− λ)) dσ

)
gives:

ξm (zM ;λ) ≥ (1− hm) ln

(
(1− hm)´
(1− hm) dσ

)
(23)

we can therefore use Fatou's lemma to obtain:

L∞ ≥
ˆ

lim inf
l→∞

e−r∆mξm (zM ;λ) +
(
1− e−r∆

)m−1∑
j=0

e−r∆jζj (zM ;λ)

 dσ

≥
ˆ
e−r∆m (1− hm) ln

(
(1− hm)´
(1− hm) dσ

)
dσ

+
(
1− e−r∆

)m−1∑
j=0

e−r∆j
ˆ ( j∑

k=0

hk

)
ln

( ∑j
k=0 hk´ ∑j
k=0 hkdσ

)
dσ > −∞
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However, for every zM :

lim
l→∞

ξm (zM ;λl) =
d

dλ

[
(λhm + (1− λ)) ln

(
λhm + (1− λ)´

(λhm + (1− λ)) dσ

)]∣∣∣∣
λ=1

= (hm − 1) ln
hm´
hmdσ

+ hm

(
hm − 1

hm
−
´
hmdσ − 1´
hmdσ

)
and:

lim
l→∞

ζj (zM ;λl) =
d

dλ

(1− λ
j∑

k=0

hk

)
ln

 1− λ
∑j
k=0 hk´ (

1− λ
∑j
k=0 hk

)
dσ

∣∣∣∣∣∣
λ=1

= −
j∑

k=0

hk ln

 1−
∑j
k=0 hk´ (

1−
∑j
k=0 hk

)
dσ


+

(
1−

j∑
k=0

hk

) ´ ∑j
k=0 hkdσ´ (

1−
∑j
k=0 hk

)
dσ
−

∑j
k=0 hk

1−
∑j
k=0 hk


By lemma 9,

j∑
k=0

hk ln

 1−
∑j
k=0 hk´ (

1−
∑j
k=0 hk

)
dσ


is integrable for every j. In addition, hm ln

(
hm´
hmdσ

)
is integrable,

ˆ
hm

(
hm − 1

hm
−
´
hmdσ − 1´
hmdσ

)
dσ = 0

and: ˆ (
1−

j∑
k=0

hk

) −∑j
k=0 hk

1−
∑j
k=0 hk

+

´ ∑j
k=0 hkdσ´ (

1−
∑j
k=0 hk

)
dσ

 dσ = 0

giving

∞ > L∞ +
(
1− e−r∆

)m−1∑
j=0

e−r∆j
ˆ j∑

k=0

hk ln

 1−
∑j
k=0 hk´ (

1−
∑j
k=0 hk

)
dσ

 dσ

−
ˆ
hm ln

hm´
hmdσ

dσ

≥ −
ˆ

ln

(
hm´
hmdσ

)
dσ > −∞
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as required.

Lemma 10 immediately implies the corollary:

Corollary 5. Suppose that h maximizes Ũ (h;σ). Then σ {hm = 0} > 0 implies σ {hm = 0} = 1.

De�nition 6. For any h ∈ H, we say that the measurable function η : ZM → R is an h-feasible

direction if there exists ε̄ > 0 such that for all 0 < ε < ε̄: h+εη ∈ H. We denote the set of h-feasible

directions by Hh.

De�nition 7. We say that Ũ is Gateaux di�rentiable at h ∈ H if there exists a bounded linear

functionaldŨh : Hh → R such that for every η ∈ Hh:

lim
ε→0

∣∣∣∣1ε (Ũ (h+ εη)− Ũ (h)− dŨh (η)
)∣∣∣∣ = 0

Lemma 11. Suppose h maximizes Ũ . Let:

Λh,m (zM ) = e−r∆mvm − κe−r∆m ln

(
hm´
hmdσ

)

+κ

M∑
j=m

e−r∆j
(
1− e−r∆1[j<M ]

)
ln

 1−
∑j
k=0 hk´ (

1−
∑j
k=0 hk

)
dσ


and de�ne dŨh (η) =

´
ZM

∑M
m=0 Λh,mηmdσ. Then for every h-feasible η, dŨh (η) is bounded and

satis�es:

lim
ε→0

∣∣∣∣1ε (Ũ (h+ εη)− Ũ (h)− dŨh (η)
)∣∣∣∣ = 0 (24)

Proof. Fix some h-feasible direction η. Assume without loss of generality that h+ η ∈ H, and let

λε = 1− ε, while de�ning hλ = h+ (1− λ) η. Then:

0 ≥ 1

ε

(
Ũ (h+ εη)− Ũ (h)

)
=

1

1− λε

(
Ũ
(
hλε
)
− Ũ (h)

)
=

ˆ
ZM

M∑
m=0

e−r∆m

(
U∗m

(
hλε ; zM

)
− U∗m (h; zM )

1− λε

)
dσ

since U∗m is concave (6), we have by 8:(
U∗m

(
hλ; zM

)
− U∗m (h; zM )

1− λ

)
= −

(
U∗m (h; zM )− U∗m

(
hλ; zM

)
1− λ

)
≥ −

(
U∗m (h; zM )− U∗m

(
h1; zM

))
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and therefore: (
U∗m

(
hλ; zM

)
− U∗m (h; zM )

1− λ

)
+
(
U∗m (h; zM )− U∗m

(
h1; zM

))
≥ 0

for all zM . Moreover, lemma 8 implies that (1− λ)
−1 (

U∗m
(
hλ; zM

)
− U∗m (h; zM )

)
is increasing

with λ. Therefore, by the monotone convergence theorem:

lim
λ→1

ˆ
ZM

M∑
m=0

e−r∆m

(
U∗m

(
hλ; zM

)
− U∗m (h; zM )

1− λ

)
dσ

=

ˆ
ZM

M∑
m=0

e−r∆m lim
λ→1

(
U∗m

(
hλ; zM

)
− U∗m (h; zM )

1− λ

)
dσ

note that:
(
hλmvm−hmvm

1−λ

)
= vmηm. In addition:

lim
λ→1

(1− λ)
−1

(
hm ln

(
hm´
hmdσ

)
− hλm ln

(
hλm´
hλmdσ

))
=

d

dλ

[
hλm ln

(
hλm´
hλmdσ

)]∣∣∣∣
λ=1

= −ηm ln

(
hm´
hmdσ

)
+

(
hm
´
ηmdσ´

hmdσ

)
− ηm

and:

lim
λ→1

(1− λ)
−1



1−
m∑
j=0

hj

 ln


(

1−
∑m
j=0 hj

)
´ (

1−
∑m
j=0 hj

)
dσ

−
1−

m∑
j=0

hλj

 ln

 1−
∑m
j=0 h

λ
j´ (

1−
∑m
j=0 h

λ
j

)
dσ




=

d

dλ

1−
m∑
j=0

hλj

 ln

 1−
∑m
j=0 h

λ
j´ (

1−
∑m
j=0 h

λ
j

)
dσ

∣∣∣∣∣∣
λ=1

=

 m∑
j=0

ηj

 ln

 1−
∑m
j=0 hj´ (

1−
∑m
j=0 hj

)
dσ


+

m∑
j=0

ηj −

(
1−

∑m
j=0 hj

) ´ ∑m
j=0 ηjdσ´ (

1−
∑m
j=0 hj

)
dσ
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thus, since: ˆ (
hm
´
ηmdσ´

hmdσ

)
− ηmdσ = 0

and: ˆ m∑
j=0

ηj −

(
1−

∑m
j=0 hj

) ´ ∑m
j=0 ηjdσ´ (

1−
∑m
j=0 hj

)
dσ

dσ = 0

we obtain that equation 24 holds. Boundedness of dŨh (η) for all feasible η follows from concavity

of Ũ and lemma 8 which imply:

0 ≥ lim
λ→1

1

1− λ

(
Ũ
(
hλ
)
− Ũ (h)

)
≥ Ũ

(
h1
)
− Ũ (h) ≥ v −

(
ln 2

1− e−r∆

)
− v̄

thereby concluding the proof.

De�ne:

πh (m) =

ˆ
βhmdµh,m

=

´
hmdσ´ (

1−
∑m−1
j=0 hj

)
dσ

For the next proof, it is useful to note that one can rewrite:

Λh,m (zM ) = e−r∆mvm − κe−r∆m ln

(
hm´
hmdσ

)

+κ

M∑
j=m

e−r∆j
(
1− e−r∆1[j<M ]

)
ln

 1−
∑j
k=0 hk´ (

1−
∑j
k=0 hk

)
dσ


= e−r∆mvm − κe−r∆m ln

(
hm´
hmdσ

)
+ κe−r∆m ln

 1−
∑m
j=0 hj´ (

1−
∑m
j=0 hj

)
dσ


+κ

M∑
j=m+1

e−r∆j

ln

 1−
∑j
k=0 hk´ (

1−
∑j
k=0 hk

)
dσ

− ln

 1−
∑j−1
k=0 hk´ (

1−
∑j−1
k=0 hk

)
dσ


= e−r∆mvm − κe−r∆m ln

(
βhm

πh (m)

)
+ κ

M∑
j=m

e−r∆j ln

(
1− βhj

1− πh (j)

)

63



Lemma 12. Suppose h maximizes Ũ . Then:

βhm (zm) =
πh (m) exp 1

κvm (zm)

πh (m) exp 1
κvm (zm) + (1− πh (m)) exp 1

κe
−r∆Ũm+1 (h|zm)

for all m.

Proof. First note that by corollaries 4 and 5 the theorem holds whenever σ {hm = 0} > 0 or

σ {hm = 1} > 0. Suppose then that σ {0 < hm < 1} = 1. Fix any zm in the support of σ, and de�ne

hzm as following: hzm = hj if j < m or j = m and zM (m) 6= zm, h
zm
m (zm) = 1 −

∑m−1
j=0 hj (zm),

hzmj (zM ) = 0 if zM (m) = zm and j > m. Let hλ = λh+(1− λ)hzm . Then obviously the following:

ηλ = hλ − h = (1− λ) (hzm − h)

is a feasible direction for all λ ∈ [0, 1]. Note that η = η1 satis�es ηj = 0 if j < m or zM (m) 6= zm,

ηm (zm) = 1 −
∑m
j=0 hj (zm), while ηj (zM ) = −hj (zM ) whenever both j > m and zM (m) = zm.

Since η is feasible and h is optimal, we must have that dŨh (η) ≤ 0. Note that the pertubation

−η is also feasible, and therefore 0 ≥ dŨh (−η) = −dŨh (η). Hence, we must have dŨh (η) = 0.

Therefore: ˆ
Λh,m (zm)

1−
m∑
j=0

hj (zm)

− M∑
j=m+1

Λh,jhjdσ (zM |zm) = 0

which can be rewritten as:

1−
m∑
j=0

hj (zm)

(e−r∆mvm − κe−r∆m ln

(
βhm

πh (m)

))

+κe−r∆m

1−
m∑
j=0

hj (zm)

 ln

(
1− βhm

1− πh (m)

)
 =



−κ

1−
m∑
j=0

hj (zm)

 ˆ M∑
j=m+1

e−r∆j ln

(
1− βhj

1− πh (j)

)
dσ (zM |zm)

+κ

ˆ M∑
j=m+1

M∑
k=j

hje
−r∆k ln

(
1− βhk

1− πh (k)

)
dσ (zM |zm)

+

ˆ M∑
j=m+1

hj

(
e−r∆jvj − κe−r∆j ln

(
βhj

πh (m)

))
dσ (zM |zm)
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But:

ˆ M∑
j=m+1

M∑
k=j

hje
−r∆k ln

(
1− βhk

1− πh (k)

)
dσ (zM |zm) =

ˆ M∑
k=m+1

 k∑
j=m+1

hj

 e−r∆k ln

(
1− βhk

1− πh (k)

)
dσ (zM |zm)

and therefore we obtain:

1−
m∑
j=0

hj (zm)

(e−r∆mvm − κe−r∆m ln

(
βhm

πh (m)

))

+κe−r∆m

1−
m∑
j=0

hj (zm)

 ln

(
1− βhm

1− πh (m)

)
 =


−κ
ˆ M∑

j=m

(
1−

j∑
k=0

hk

)
e−r∆j ln

(
1− βhj

1− πh (j)

)
dσ (zM |zm)

+

ˆ M∑
j=m+1

hj

(
e−r∆jvj − κe−r∆j ln

(
βhj

πh (m)

))
dσ (zM |zm)

 =

ˆ M∑
j=m+1

(
1−

j−1∑
k=0

hk

)
e−r∆jv∗j (zM ;h) dσ

dividing both sides by e−r∆m
(

1−
∑m
j=0 hj (zm)

)
gives:

vm − κ ln

(
βhm

πh (m)

)
+ κ ln

(
1− βhm

1− πh (m)

)
= e−r∆Ũn (h|zm)

dividing both sides by κ, exponentiating and solving for βhm gives the desired result.
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C.4 Su�cient Conditions

Suppose β satis�es: βm ∈ (0, 1) for all m and equations 17 and 18. We will show that β must be

optimal. Note that:

κ ln

(
1− βm
1− πm,

)
= κ ln

 exp

(
e−r∆Ũm+1(hβ |zm)

κ

)
(1− πm) exp

(
e−r∆

κ Ũm+1 (hβ |zm)
)

+ πm exp
(
vm
κ

)


= e−r∆Ũm+1

(
hβ |zm

)
− κ ln

(
(1− πm) exp

(
e−r∆

κ
Ũm+1

(
hβ |zm

))
+ πm exp

vm
κ

)
= e−r∆Ũm+1

(
hβ |zm

)
− vm + κ ln

(
exp

(vm
κ

))
−κ ln

(
(1− πm) exp

(
e−r∆

κ
Ũm+1

(
hβ |zm

))
+ πm exp

vm
κ

)
= e−r∆Ũm+1

(
hβ |zm

)
−
(
vm − κ ln

(
βm
πm

))
(25)

and therefore:

U∗m
(
zM ;hβ

)
= βmvm − κβm ln

(
βm
πm

)
− κ (1− βm) ln

(
1− βm
1− πm,

)
= βm

(
e−r∆Ũm+1

(
hβ |zm

)
− κ ln

(
1− βm
1− πm,

))
− κ (1− βm) ln

(
1− βm
1− πm,

)
= −κ ln

(
1− βm
1− πm,

)
+ βme

−r∆Ũm+1

(
hβ |zm

)
which implies that:

Ũm
(
hβ |zn

)
=

ˆ (
e−r∆Ũm+1

(
hβ |zm

)
− κ ln

(
1− βm
1− πm,

))
dσ (zM |zn)

Using the fact that equation 18 holds we can use iterative substitution to obtain:

Ũm
(
hβ |zn

)
= −κ

ˆ  M∑
j=m

e−r∆(j−m) ln

(
1− βj
1− πj

) dσ (zM |zn) (26)
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σ-almost surely. Rewriting

Λhβ ,m (zM ) = e−r∆mvm − κe−r∆m ln

(
hβm

1−
∑m
k=0 h

β
k

)

+κe−r∆m ln

 ´
hβmdσ´ (

1−
∑m
k=0 h

β
k

)
dσ



+κ

M∑
j=m+1

e−r∆j


ln

(
1−

∑j
k=0 h

β
k

1−
∑j−1
k=0 h

β
k

)

− ln

´
(

1−
∑j
k=0 h

β
k

)
dσ

´ (
1−

∑j−1
k=0 h

β
k

)
dσ




= e−r∆mvm − κe−r∆m ln

(
βm
πm

)
+ κe−r∆m ln

(
1− βm
1− πm

)
+κ

M∑
j=m+1

e−r∆j ln

(
1− βj
1− πj

)

Using equations 25 and 26 we can obtain that the following holds for σ-almost every zm:

ˆ
Λhβ ,m (zM ) dσ (zM |zm) = e−r∆m

(
vm − κ ln

(
βm
πm

)
+ κ ln

(
1− βm
1− πm

))
−κ
ˆ M∑

j=m+1

e−r∆j ln

(
1− βj
1− πj

)
dσ (zM |zm)

= e−r∆(m+1)Ũm+1

(
hβ |zm

)
−e−r∆(m+1)Ũm+1

(
hβ |zm

)
= 0

Since Ũ is concave this concludes the proof.

C.5 Quasi-Value Equivalence Lemma

In this section we prove the following lemma:

Lemma 13. Suppose β is optimal for the buyer given σ, ans satis�es πm ∈ (0, 1) for all m and
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equations , as well as equations 17 and 18. Then:

Ũm
(
hβ |zn

)
=

ˆ (
vm − κ ln

(
βm
πm

))
dσ (zM |zn)

=

ˆ (
e−r∆Ũm+1

(
hβ |zm

)
− κ ln

(
1− βm
1− πm,

))
dσ (zM |zn)

= −κ
ˆ  M∑

j=m

e−r∆(j−m) ln

(
1− βj
1− πj

) dσ (zM |zm)

=

ˆ
κ ln

(
(1− πm) exp

(
e−r∆

κ
Ũm+1

(
hβ |zm

))
+ πm exp

(vm
κ

))
dσ (zM |zn)

Proof. Note that:

vm − κ ln

(
βm
πm

)
= κ ln

(
(1− πm) exp

(
e−r∆

κ
Ũm+1

(
hβ |zm

))
+ πm exp

(vm
κ

))
= e−r∆Ũm+1

(
hβ |zm

)
− κ ln

(
1− βm
1− πm,

)
which, using equation 26 implies:

vm − κ ln

(
βm
πm

)
= −κ ln

(
1− βm
1− πm,

)
− κe−r∆

ˆ  M∑
j=m+1

e−r∆(j−(m+1)) ln

(
1− βj
1− πj

) dσ (zM |zm)

= −κ
ˆ  M∑

j=m

e−r∆(j−m) ln

(
1− βj
1− πj

) dσ (zM |zm) = Ũm
(
hβ |zm

)
where the last equality follows from equation 25. The conclusion then follows from Ũm

(
hβ |zn

)
=´

Ũm
(
hβ |zm

)
dσ (zM |zn) for all n ≤ m.
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D Equilibrium in �nite horizon model

The goal of this section is to prove a characterization theorem for all equilibria of the �nite horizon

game. It will eventually turn out that an equilibrium exists if and only if an object, which we call

an equilibrium average-ratio path exists. Moreover, the equilibrium will turn out to be completely

characterized by that object. The �rst subsection, de�nes, establishes the existence, and proves some

properties of this object. We then move to proving that equilibrium strategies are simple. In the

next subsection we prove lemma 1, which shows that the equilibria in the �nite horizon model admits

a recursive structure. In the following subsection we connect the recursive representation back to

equilibrium average-ratio paths, which establishes the existence of a �nite horizon equilibrium.

Finally, we prove some useful properties of a �nite horizon equilibrium which are used later in the

analysis of equilibria in the in�nite horizon.

D.1 Equilibrium Average Ratio Paths

We take W : R+ → R+ to be Lambert's W function, de�ned by: W (zez) = z, or, equivalently, as:

W (z) eW (z).

Let cv = e(
v−κ
κ ) and de�ne the functions:

z∗ (d, v, q) =
d

1− d
cv

1−e−r∆qe
−r∆

R (d, v, q) =
W (z∗ (v, d, q))

d (1 +W (z∗ (v, d, q)))

and:

Rc (d, v, q) = (1− d)
−1

(1 +W (z∗ (v, d, q)))
−1

It will eventually turn out that an equilibrium exists if and only if the following object, called

equilibrium average-ratio path exists. We now de�ne this object:

De�nition 8. A collection of numbers am ∈ (0, 1), m = 1, . . . ,M , pm,v ∈ R+, m = 1, . . . ,M + 1,

v ∈ V , and distributions, ϑm ∈ ∆ (V ), m = 1, . . . ,M are an equilibrium average-ratio path in

BM (µ0) if:

1. pM+1,v = exp
(
v−κ
κ

)
2. For every m = 1, . . . ,M and v: pm,v = R (am, v, pm+1,v)

3. ϑ1 (v) = µ0 (v) and for every m = 2, . . . ,M and v:

ϑm (v) =
ϑm−1 (v) (1− am−1pm−1,v)∑
v′ ϑm−1 (v′)

(
1− am−1pm−1,v′

)
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4. For every m = 1, . . . ,M :
∑
v ϑm (v) pm,v = 1.

D.1.1 Preliminary facts about Lambert's W function

In this section we prove a few facts about the positive part of Lambert's W function, i.e. the

function: W : R+ → R+ de�ned by: W (zez) = z, or, equivalently, as: W (z) eW (z).

Lemma 14. dW (z) /dz =
(
eW (z) (1 +W (z))

)−1
= W (z) (z (1 +W (z)))

−1

Proof. By de�nition: W (z) eW (z)−z = 0. The �rst equality is then implied by the implicit function

theorem. Substituting W (z) = z/eW (z) into
(
eW (z) (1 +W (z))

)−1
gives the second equality.

Lemma 15. W is concave.

Proof. Calculating the second derivative of W gives:

d2W

dz2
=

(
dW
dz

)
z (1 +W (z))−W (z)

(
1 +W (z) + z

(
dW
dz

))
z2 (1 +W (z))

2

= −
W (z)

(
W (z) + z

(
dW
dz

))
z2 (1 +W (z))

2 < 0

as required.

D.1.2 Existence of M-Equilibrium Average-Ratio Path

Here we prove the following theorem:

Theorem 6. For every µ0 and every M there exists an equilibrium average-ratio path of BM (µ0).

Lemma 16. For every v and q, the function f (d) = R (d; v, q) is strictly convex.

Proof. Rewrite R (d; v, q):

R (d; v, q) =

W

(
dc1−e

−r∆
v qe

−r∆

1−d

)
d

(
1 +W

(
dc1−e

−r∆
v qe−r∆

1−d

))

=

 d

W

(
β̄c1−e

−r∆
v qe−r∆

1−d

) + d


−1
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so a su�cient condition for R to be convex is for:

φ (d) =
d

W

(
dc1−e

−r∆
v qe−r∆

1−d

)
to be concave. Note that the second derivative of φ is:

d2φ

dd2
=

(1− d)
2

(
1 + 2W

(
dc1−e

−r∆
v qe

−r∆

1−d

))
−
(

1 +W

(
dc1−e

−r∆
v qe

−r∆

1−d

))2

d (1− d)
2
W

(
dc1−e

−r∆
v qe−r∆

1−d

)(
1 +W

(
dc1−e

−r∆
v qe−r∆

1−d

))3

so a necessary and su�cient condition for φ to being concave is for:

(1− d)
2

(
1 + 2W

(
da1−e−r∆
v qe

−r∆

1− d

))
−

(
1 +W

(
da1−e−r∆
v qe

−r∆

1− d

))2

< 0

for all d in the range. However:

(1− d)
2

(
1 + 2W

(
da1−e−r∆
v qe

−r∆

1− d

))

−

(
1 +W

(
da1−e−r∆
v qe

−r∆

1− d

))2

= d (d− 2)

(
1 + 2W

(
da1−e−r∆
v qe

−r∆

1− d

))

−

(
W

(
da1−e−r∆
v qe

−r∆

1− d

))2

which is strictly negative for all d ∈ (0, 1). Therefore φ is strictly concave, implying the desired

result.

Lemma 17. For a �xed v and q, then the unique solution to the equation:R (d; v, q) = 1 in [0, 1)

is:

d∗ (v, q) =
ln
(

exp
(
v−κ
κ

)1−e−r∆
qe
−r∆
)

1 + ln
(

exp
(
v−κ
κ

)1−e−r∆
qe−r∆

)
moreover, R (d; v, q) < 1 if and only if d ∈ (d∗ (v, q) , 1).
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Proof. Set k = ln
(
c1−e

−r∆

v qe
−r∆
)
, one obtains that:

R (d∗ (v, q) ; v, q) =
W
(
kek
)

d∗ (v, γ) (1 +W (kek))

=

(
k

1 + k

)
(d∗ (v, q))

−1
= 1

Note that: R (1; v, q) = 1 since R is continuous and:

R (1; v, q) = lim
d→1

W
(

d
1−de

(1−e−r∆)( v−κκ )qe
−r∆
)

d
(

1 +W
(

d
1−de

(1−e−r∆)( v−κκ )qe−r∆
)) = 1

Suppose then there exist d < d
′
< 1 such that R (d; v, q) = R

(
d
′
; v, q

)
= 1. Let α be such that

d
′

= αd+ (1− α). Then by strict convexity of R:

R
(
d
′
; v, q

)
= R (αd+ (1− α) ; v, q) < αR (d; v, q) + (1− α)R (1; v, q) = 1

a contradiction. This also proves that R (d; v, q) < 1 if and only if d ∈ (d∗ (v, q) , 1).

Lemma 18. For every d, v and q: R (d, v, q) ≤ max
{
qe
−r∆

c1−e
−r∆

v , 1
}

Proof. Note that R (1; v, q) = 1 for all v, q and that R (0; v, q) = qe
−r∆

c1−e
−r∆

v . The lemma then

follows from convexity of R in d.

Lemma 19. For every q and v such that c1−e
−r∆

v qe
−r∆ ≥ 1/2 we have: R (d, v, q) ≥ 1/2. If

c1−e
−r∆

v qe
−r∆

< 1/2, then R (0, v, r) < R (d, v, q) for all d > 0.

Proof. Note that R (0, v, q) = c1−e
−r∆

v qe
−r∆ ≥ 1/2, while R (1, v, q) = 1. Suppose the minimizer of

R is in the interior. Since d 7→ R (d, v, q) is convex, a necessary and su�cient condition for d to be

a minimizer of R is ∂R
∂d = 0. Taking derivative of R:

∂R

∂d
= − 1

d2

W

1 +W
+

1

d

∂z∗

∂d

(
W

z∗ (1 +W )
2 −

W 2

z∗ (1 +W )
3

)

= −R
d

+
z∗

d2 (1− d)

W

z∗ (1 +W )
3

= −R
d

+
R

d

Rc

(1 +W )

since:
∂z∗

∂d
=

1

(1− d)
2 c

1−e−r∆
v re

−r∆
=

z∗

d (1− d)
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Hence:

−R
d

+
R

d

Rc

(1 +W )
= 0

⇐⇒ R

d

(
Rc

(1 +W )
− 1

)
= 0

or: Rc/ (1 +W ) = 1. Hence Rc = (1 +W ), or W = (1− d)
−1/2 − 1 this means that, at the

minimum:

R =
(1− d)

−1/2 − 1

d (1− d)
−1/2

=
1− (1− d)

1/2

d

let f (d) =
(

1− (1− d)
1/2
)
/d. Then:

df

dd
=

1
2 (1− d)

−1/2
d− 1 + (1− d)

1/2

d2

=
1− (1− d)

1/2

2d2 (1− d)
1/2

which is never 0 in [0, 1]. Then the minimum of f is either f (0) or f (1). f (1) = 1 while:

f (0) = lim
d→0

(
1− (1− d)

1/2
)

d

= lim
d→0

1
2 (1− d)

−1/2

1
=

1

2

thus, min f = 1/2. Hence, if R (0, v, q) ≥ 1/2, we must have R (d, v, q) ≥ 1/2 for all d. Moreover,

if R (0, v, q) = c1−e
−r∆

v qe
−r∆

< 1/2, then R (0, v, q) < R (1, v, q) and R (0, v, q) < R (d, v, q) for all

d > 0, as required.

Lemma 20. Suppose that there exists a non-decreasing function g : V →
[

1
2 , cvh

]
such that for

every v: g (v) ≤ cv. Then for every d ∈ [0, 1) the function f (v) = R (d; v, g (v)) is strictly increasing

and also satis�es f (v) ≤ cv for all v.

Proof. For every v1 > v2 note that c1−e
−r∆

v1
g (v1)

e−r∆
> c1−e

−r∆

v2
g (v2)

e−r∆
and therefore f (v1) >

f (v2). f (v) ≤ cv follows from lemma 18.

Let G de the set of all γ ∈
[

1
2 , cvh

]V
that are weakly increasing in v and satisfy γv ≤ cv for all v.

For any θ ∈ ∆ (V ) and γ ∈ G de�ne the correspondance: Φ : G ×∆ (V ) ⇒ [0, 1] dy taking Φ (γ, θ)
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to be the set of all d ∈ [0, 1] that solve:∑
v

θ (v)R (d; v, γv) = 1

Lemma 21. For all γ and θ:1 ∈ Φ (γ, θ).

Proof. By de�nition:

R (1; v, γv) = lim
d→1

W
(

d
1−da

1−e−r∆
v re

−r∆

v

)
d
(

1 +W
(

d
1−da

1−e−r∆
v re−r∆v

)) = 1

therefore
∑
v θ (v)R (1; v, rv) =

∑
v θ (v) = 1.

Lemma 22. Suppose Φ (γ, θ) ∩ [0, 1) 6= ∅. Then there exists a unique d in Φ (γ, θ) ∩ [0, 1).

Proof. Assume wlog that there exists d < d
′
< 1 such that

{
d, d

′
}
⊂ Φ (γ, θ) ∩ [0, 1). By lemma

21 we have
∑
v θ (v)R (1; v, γv) = 1. Let α de s.t. d

′
= αd+ (1− α) 1. Then:

1 = α
∑
v

θ (v)R (d; v, γv) + (1− α)
∑
v

θ (v)R (1; v, γv)

=
∑
v

θ (v) (αR (d; v, γv) + (1− α)R (1; v, γv))

>
∑
v

θ (v)R (αd+ (1− α) 1; v, γv)

=
∑
v

θ (v)R
(
d
′
; v, γv

)
where the inequality follows from lemma 16 and Jensen's inequality. Thus, d

′
/∈ Φ (γ, θ), a contra-

diction.

Lemma 23. Φ (γ, θ)∩[0, 1) 6= ∅ if and only if
∑
v θ (v) c1−e

−r∆

v γe
−r∆

v ≥ 1, with Φ (γ, θ)∩[0, 1) 6= {0}
whenever the inequality is strict.

Proof. Note that:

R

(
exp (cvh)

1 + exp (cvh)
; vh, cvh

)
=

1 + exp (cvh)

exp (cvh)

W (cvh exp (cvh))

(1 +W (cvh exp (cvh)))

=

(
cvh

1 + cvh

)
/

(
exp (cvh)

1 + exp (cvh)

)
< 1

since ex > x for all x > 0. Since R (d; v, q) is increasing in v and in q this implies:

R

(
exp (cvh)

1 + exp (cvh)
; v, γv

)
< 1 (27)
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for all v and rv. Moreover, if
∑
v θ (v) c1−e

−r∆

v γe
−r∆

v ≥ 1 then:

∑
v

θ (v)R (0; v, r) =

∑
v θ (v) c1−e

−r∆

v γe
−r∆

v

exp (W (0)) (1 +W (0))
=
∑
v

θ (v) c1−e
−r∆

v γe
−r∆

v ≥ 1

implies dy the intermediate value theorem that Φ (γ, θ)∩ [0, 1) 6= ∅, and that Φ (γ, θ)∩ [0, 1) 6= {0}
whenever

∑
v θ (v) c1−e

−r∆

v γe
−r∆

v > 1. Suppose now that Φ (γ, θ) ∩ [0, 1) 6= ∅. Take d ∈ Φ (γ, θ) ∩
[0, 1). Then dy d 7→ R (d; v, γv) being strictly convex and equation 27 we have that

d <
exp (avh)

1 + exp (avh)

and therefore
∑
v θ (v) ∂R∂d (d; v, γv) < 0 dy convexity of d 7→

∑
v θ (v)R (d; v, γv) and

∑
v θ (v)R (1; v, γv) =

1. But convexity of d 7→
∑
v θ (v)R (d; v, γv) will then imply that

∑
v θ (v)R (d; v, γv) is decreasing

in the range [0, d], meaning that:

1 ≤
∑
v

θ (v)R (0; v, γv) =
∑
v

θ (v) a1−e−r∆
v γe

−r∆

v

as required.

Let G be the set of all (γ, θ) pairs that satisfy,
∑
v θ (v) c1−e

−r∆

v γe
−r∆

v ≥ 1, and let φ (γ, θ)

be the unique element in Φ (γ, θ) ∩ [0, 1) for all (γ, θ) ∈ G. Note that G is closed, and that φ is

continuous since it is a �xed point of a continuous function10. For every dM ∈
[
0, vh−κvh

]M
, de�ne

γ∗M
(
dM
)

= R (dM ; v, cv), and γ
∗
m = R

(
dm; v, γ∗m+1,v

(
dM
))

for all m < M . Note that γ∗m ∈ G dy
lemma 20. Then for every m, let θ∗m

(
dM
)
:

θ∗m
(
v; dM

)
=

µ0 (v)
∏m−1
j=0

(
1− djγ∗j

(
dM
))∑

v′ µ0 (v)
∏m−1
j=0

(
1− djγ∗j (dM )

)
Finally, de�ne the function Ψ :

[
0, vh−κvh

]M
→
[
0, vh−κvh

]M
dy setting: ΨM

(
dM
)

= φ
(
c, θ∗M

(
dM
))

and letting Ψm

(
dM
)

= φ
(
γ∗M
(
dM
)
, θ∗m

(
dM
))
.

Lemma 24. Ψ is well de�ned and ΨdM (m) > 0 for all m.

10An easy argument is to set φ = arg min (d−
∑
v θ (v)R (0; v, γv))

2
sudject to d ≤

exp (cvh) / (1 + exp (cvh)) and use Berge's theorem of the maximum.
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Proof. The �rst stage is clearly well de�ned. The second stage is well de�ned since:

dmγ
∗
m,v

(
dM
)

= dmR
(
dm; v, γ∗m+1,v

(
dM
))

=
W
(

dm
1−dm a

1−e−r∆
v γ∗m+1,v

(
dM
)e−r∆)

1 +W
(

dm
1−dm a

1−e−r∆
v γ∗m+1,v (dM )

e−r∆
) < 1

for all m and therefore θ∗m
(
dM
)
is well de�ned. It remains to de shown that

(
θ∗m
(
dM
)
, γ∗m

(
dM
))
∈

G and φ
(
θ∗m
(
dM
)
, γ∗m

(
dM
))
∈
[
0, vh−κvh

]
.
(
θ∗M
(
dM
)
, γ∗M

(
dM
))
∈ G follows from cv > 1 for all v.

Ψ (M) ≤ vh−κ
vh

follows from:

R

(
vh − κ
vh

; vh, cvh

)
=

W
(
vh−κ
κ exp

(
vh−κ
κ

))(
vh−κ
vh

) (
1 +W

(
vh−κ
κ exp

(
vh−κ
κ

))) = 1

and R
(
vh−κ
vh

; v, cv

)
being strictly increasing in v (which implies that

∑
θ∗M (v)R

(
vh−κ
vh

; v, cv

)
< 1

since θ∗M (v) < θ (0; vh) < 1 from monotonicity of γ∗m,v in v). Note further that γ∗M,v (M) < cv for

every v since cv = R (0; v, cv), Ψ (M) > 0 (since
∑
v θvcv =

∑
v θvR (0; v, cv) > 1 for all θ ∈ ∆ (V ))

and R (d; v, cv) is strictly decreasing for all d < v−κ
v . Suppose now γ∗m+1,v < cv for all v, and Ψ (j)

is well de�ned and satis�es Ψ (j) > 0 for all j ≥ m+ 1. We will show that Ψ (m) is well de�ned, is

in
[
0, vh−κvh

]
, and γ∗v,m < cv for all v. Note that:

∑
v

θ∗m
(
v; dM

)
a1−e−r∆
v

(
γ∗m+1,v

)e−r∆
=

∑
v

θ∗m
(
v; dM

)
av

(
γ∗m+1,v

av

)e−r∆
>

∑
v

θ∗m
(
v; dM

)
av

(
γ∗m+1,v

av

)
=

∑
v

θ∗m
(
v; dM

)
γ∗m+1,v

where the inequality follows from γ∗m+1,v < cv and xe
−r∆

> x for all ∆ > 0 and x ∈ (0, 1).

But since γ∗j,v was monotone for all j, θ∗m �rst order stochastically dominates θ∗m+1, meaning

that
∑
v θ
∗
m

(
v; dM

)
γ∗m+1,v ≥

∑
v θ
∗
m+1

(
v; dM

)
γ∗m+1,v which is equal to 1. This proves that(

θ∗m
(
dM
)
, γ∗m

(
dM
))
∈ G . Moreover, since the inequality

∑
v θ
∗
m

(
v; dM

)
c1−e

−r∆

v

(
γ∗m+1,v

)e−r∆
>∑

v θ
∗
m

(
v; dM

)
cv

(
γ∗m+1,v

cv

)
≥ 1, we obtain that φ

(
θ∗m
(
dM
)
, γ∗m

(
dM
))

> 0. Finally γ∗m,v < cv

follows from γ∗m+1,v < cv and Ψd (m) > 0.

Lemma 25. Ψ is continuous, and therefore has a �xed point a∗ ∈
[
0, vh−κκ

]M
that satis�es: a∗m > 0

for all m.

Proof. Continuity of Ψ follows from Ψ being a composition of continuous functions. We can there-
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fore use Brouwer's �xed point theorem to odtain a �xed point, and α∗m > 0 follows from lemma

24.

Lemma 26. There exists an M -equilibrium average-ratio path.

Proof. By lemma 25, there exists a �xed point a∗ ∈
[
0, vh−κκ

]M
of Ψ which satis�es a∗m > 0 for

all m. Set pMm,v = γm,v (a∗) for all m ≤ M and pMM+1,v = exp
(
v−κ
κ

)
. Letting aM = a∗ and

ϑMm = θ∗m
(
aM
)
for all m then gives a triplet

(
aM , pM , ϑM

)
which is anM -equilibrium average-ratio

path.

D.1.3 Additional Properties of M-equilibrium average-ratio paths

Lemma 27. Suppose γ ∈ G, θ ∈ ∆ (V ) and d ∈ (0, 1] are such that θ (vh) < 1, θ (vl) > 0 and∑
v θ (v)R (d; v, γv) = 1. Then: (1) dR (d; v, γv) ≤ (vh − κ) /vh for all v; (2) R (d; vh, γvh) > 1; (3)

R (d; vl, γvl) < 1.

Proof. (1): R ((vh − κ) /vh; vh, cvh) = 1. Since R (d; v, γv) is strictly increasing in γv and v and γv ≤
cv for all v this implies that R ((vh − κ) /vh; v, γv) ≤ R ((vh − κ) /vh; vh, cvh) = 1. By lemma 16,

one must have
∑
v θ (v)R

(
d
′
; v, γv

)
< 1 for all d

′ ∈ ((vh − κ) /vh, 1). Therefore, d ≤ (vh − κ) /vh.

But the function f
(
d
′
)

= d
′
R
(
d
′
; v, γv

)
is strictly increasing in d. Therefore:

dR (d; v, γv) ≤
(
vh − κ
vh

)
R

((
vh − κ
vh

)
; v, γv

)
≤
(
vh − κ
vh

)
as required. (2) and (3) follow from lemma 20 and θ (vh) < 1 and θ (vl) > 0.

Lemma 28. Let (a, p, ϑ) be an equilibrium average-ratio path of BM (µ0). Then pm,v is strictly

increasing in v for every m and satis�es: pm,vl < 1 < pm,vh .

Proof. The �rst part follows from lemma 20 while the second from lemma 27.

D.2 History Independence in Finite Periods

Here we will prove the following lemma, which implies that equilibrium strategies are simple.

Lemma 29. Let (µ, β, σ) be an equilibrium of the �nite horizon game. Then for every m there

exists two functions: zm : V → X and bm : X × V → (0, 1) such that:

1. For every m and v: σm
(
zm,v|xm−1, v

)
= 1 for all xm−1.

2. For every m, v and x ∈ X, βm
(
x, xm−1, v

)
= bm (x, v) for all xm−1.
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We will prove Lemma 29 in steps, many of which will be useful later.

Lemma 30. For a ∈ (0, 1), c ∈ R, d ∈ R+, and consider the function:

H (x|a, c, d, v) =

(
ae

v−c−x
κ

1− a+ ae
v−c−x
κ

)
x+

(
1− a

1− a+ ae
v−c−x
κ

)
d

then H − d is strictly log-concave over x ∈ R+. Therefore, the problem: maxx∈X H (x|a, c, d, v) has

a unique solution for every a, c and d.

Proof. Note that:

ln (H − d) = ln (x− d) + ln a+
1

κ
(v − c− x)− ln

(
1− a+ ae

v−x−c
κ

)
the second derivative of which with respect to x is:

− (x− d)
−2 −

 a (1− a) e
v+x+c
κ

κ2
(
ae

v
κ + (1− a) e

x+c
κ

)2

 < 0

for all x ∈ R+, concluding the proof.

Lemma 31. Consider the maximization problem: maxx∈R+
H (x|a, c, d, v). This problem has a

unique solution. This solution satis�es x∗ = d+

(
1−a+ae

v−x−c
κ

1−a

)
κ, which is equivalent to:

x∗ = κ+ d+ κW

(
a

1− a
exp

(
v − c− κ− d

κ

))
(28)

and satis�es the following two equations:(
ae

v−c−x∗
κ

1− a+ ae
v−c−x∗

κ

)
x∗ +

(
1− a

1− a+ ae
v−c−x∗

κ

)
d = x∗ − κ (29)

and:
ae

v−c−x∗
κ

1− a+ ae
v−c−x∗

κ

=

(
x∗ − d− κ
x∗ − d

)
(30)

Proof. By lemma 30, H − d is log-concave. Clearly, any solution of maxH is also a solution to

max ln (H − d). Since ln (H − d) is strictly concave, the following �rst order condition is both

necessary and su�cient for a solution:

1

x− d
− (1− a)

κ
(

1− a+ ae
v−x−c
κ

) = 0
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which can be rearranged to obtain equation 29 and 30. This can also be rearranged as:

a

1− a
e
v−x−c
κ =

(
x− d− κ

κ

)
which can be rearranged to be:

d

1− d
e
v−c−κ−d

κ =

(
x− d− κ

κ

)
e(

x−d−κ
κ )

or: (
x− d− κ

κ

)
= W

(
a

1− a
e
v−c−κ−d

κ

)
which can be easily rearranged to give the desired equality.

De�nition 9. Suppose (β, σ, µ) are consistent. We say that a sequence {µn, βn, εn}∞n=1 is a (xm, v)

perturbation sequence for some (xm, v) if there exists a µ∗ ∈ ∆ (Xm × V ) with µ∗ (xm, v) > 0 such

that:

1. µn = εnµ∗ + (1− εn)µm

2. εn > 0, εn → 0 and βn → β

3. βn maximizes Em [U2|µn, βn, σ] for all n.

Given some (xm, v)-pertubation sequence, {µn, βn, εn}∞n=1, let π
n
m =

´
βnmdµn.

Lemma 32. For all
(
xM , v

)
:

βM
(
xM , v

)
=

πMe
1
κ (v−xM )

1− πM + πMe
1
κ (v−xM )

Proof. Let {µn, βn, εn}∞n=1 be a
(
xM , v

)
-pertubation sequence. By Lebesgue's dominated conver-

gence theorem:
´
βnMdµM →

´
βMdµM , which implies

´
βnMdµn →

´
βMdµM . Using theorem

5:

βM
(
xM , v

)
= lim

n→∞
βnM

(
xM , v

)
= lim

n→∞

πnMe
1
κ (v−xM )

1− πnM + πnMe
1
κ (v−xM )

=
πMe

1
κ (v−xM )

1− πM + πMe
1
κ (v−xM )

as required.
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Lemma 33.
´
βMdµM ∈ (0, 1).

Proof. By lemma 32, if
´
βMdµM = 0 then βM

(
xM , v

)
= 0 for all

(
xM , v

)
contradicting βM being

attentive, while
´
βMdµM = 1 implies βM

(
xM , v

)
= 1 for all

(
xM , v

)
which cannot possibly be in

equilibrium since then the seller must be charging x̄ for sure in period M , contradicting β being a

best reseponse to σ in period M .

Note that we can now write the seller's expected value conditional on arriving to period M ,

the history being
(
xM−1, v

)
and o�ering xM :

U1,M

(
xM |xM−1, v

)
=

(
πMe

1
κ (v−xM )

1− πM + πMe
1
κ (v−xM )

)
xM

which by lemma 31 has a unique maximizer in X for every v. Let zM,v be that maximizer.

Lemma 34. σ
(
zM,v;x

M−1, v
)

= 1 for all
(
xM−1, v

)
. Moreover, U1,M

(
xM |xM−1, v

)
is independent

of xM−1.

Proof. Follows directly from lemma 32 and lemma 31.

In what follows, let:

ρm (xm, v) =
βm (xm, v)´
βmdµm

for all (xm, v).

Lemma 35. The following conditions must hold in equilibrium for all m:

1. There exists a function bm : X × V → (0, 1) such that for every (xm, v), βm (xm, v) =

bm (xm, v). Moreover, bm satis�es:

bm (xm, v) =
πme

1
κ (v−xm)

πme
1
κ (v−xm) + (1− πm) e

e−r∆
κ (v−zm+1,v−κ ln ρm+1(zm+1,v,xm,v))

2. πm ∈ (0, 1) for all m.

3. For every m and v there exists a unique zm,v ∈ X such that σm
(
zm,v|xm−1, v

)
= 1 for all

xm−1.

4. For every m and v, U1,m

(
xm|xm−1, v

)
is independent of xm−1.

Proof. Note that we've shown that the lemma holds for period M . Suppose it holds for all periods

m+ 1, . . . ,M . We will show that it holds for m. Let ρm+1,v = ρm+1 (zm+1,v, x
m, v), which is well

de�ned and independent of xm by part (1) of the lemma. For some (xm, v), let {µn, βn, εn}∞n=1 be
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a (xm, v)-pertubation sequence. Since βnj
(
xj , v

)
→ βj

(
xj , v

)
for all

(
xj , v

)
, we have by Lebesgue's

dominated convergence theorem that: πnm+j → πm+j for all relevant j ≥ 0. Moreover,

lim
n→∞

ρnm+1 (zm+1,v, x
m, v) = lim

n→∞

βnm+1 (zm+1,v, x
m, v)´

βnm+1dµn
= ρm+1,v

since πm+1 > 0. By theorem 5:

βm (xm, v) = lim
n→∞

βnm (xm, v)

= lim
n→∞

πnme
1
κ (v−xm)

πnme
1
κ (v−xm) + (1− πnm) e

e−r∆
κ (v−zm+1,v−κ ln ρnm+1(zm+1,v,xm,v))

=
πme

1
κ (v−xm)

πme
1
κ (v−xm) + (1− πm) e

e−r∆
κ (v−zm+1,v−κ ln ρm+1,v)

thereby proving (1). To prove (2), note that πm = 0 contradicts β being attentive, and πm = 1 will

imply σm
(
x̄, xm−1, v

)
= 1 for all v which contradicts β being optimal for the buyer. Part (3) then

follows from part (4) holding for m+ 1 and lemma 31, which then also imply part (4).

Note that Lemma 1 follows from Lemma 35.

D.3 Recursive Representation in Finite Horizon

D.3.1 Statement of Proposition

Given Lemma 29, it is clear that the only relevant belief for the buyer at period m is the marginal

of µm over V . Denote the marginal of µm over V by µ̄m. Let BM (µ̄1) be the bargaining game

with a horizon of M periods with a prior distribution of µ̄1 = µ0 over V . We will use Lemma 1

to represent equilibria of BM (µ̄1) as a strategy for period 1 and an equilibrium of BM−1 (µ̄2). For

that, we introduce the following de�nition of an equilibrium representation:

De�nition 10. For every m, let θm ∈ ∆ (V ), bm : X × V → (0, 1) and zm : V → X. We say

that (θ, b, z) = {(θm, bm, zm)}Mm=1 is an equilibrium representation of BM (µ0) if there exists an

equilibrium (µ, β, σ) of BM (µ0) such that for all m, v, x ∈ X and xm−1 ∈ Xm−1: θm = µ̄m,

σm
(
zm,v|xm−1, v

)
= 1 and βm

(
x, xm−1, v

)
= bm (x, v).

Given an equilibrium representation (θ, b, x) of BM (µ0), let bm,v := bm (zm,v, v), and take πm

to be the prior probability that the buyer accepts the m-th o�er conditional on arriving to period

m, i.e.

πm :=
∑
v

θm (v) bm,v (31)
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and take:

zM+1,v := κ

πM+1 := 1

bM+1,v := e(v−κ)/κ

for all v. These quantities will be useful in the following Proposition, which establishes that the

equilibrium can be represented in a recursive manner.

Proposition 7. (θ, b, z) is an equilibrium representation of BM (µ0) if and only if:

1. {(θm, bm, zm)}Mm=2 is an equilibrium representation of BM−1 (θ2).

2. For every v and m, zm,v solves:

zm,v − e−r∆zm+1,v = κ

(
1− e−r∆ +

(
bm,v

1− bm,v

))
(32)

3. For every v, m and x ∈ X, bm (x, v) solves:

v − x− e−r∆ (v − zm+1,v) = κ ln

(
bm (x, v) (1− πm)

πm (1− bm (x, v))

)
− κ ln

(
bm+1,v

πm+1

)e−r∆
(33)

The subject matter of the rest of this section is to prove the above proposition. Note that one

can combine equation 32 and equation 33 for x = zm,v to obtain the condition:

(
bm,v

1− bm,v

)
e

(
bm,v

1−bm,v

)
=

(
πm

1− πm

)(
bm+1,v

πm+1

)e−r∆ (
e
v−κ
κ

)1−e−r∆

(34)

D.3.2 Preliminary facts

We will begin by proving the following preliminary fact, which will help us establish that the seller's

strategy is an interior solution.

Lemma 36. Suppose (θ, b, z) satis�es equations 8 and 7 of Proposition 7. Then for every m:

1. zm,v is strictly increasing in v.

2. bm,v := bm (zm,v, v) is strictly increasing in v.

3. vl < vl − κ ln
(
bm,vl
πm

)
< zm,vl < zm,vh < vh − κ ln

(
bm,vh
πm

)
< vh.
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Proof. We will prove by induction. Suppose (θ, b, z) satisfy equations 8 and 7 of Proposition 7.

Then they must satisfy equation 34, which implies:

bM,v

1− bM,v
= W

((
πM

1− πM

)
e
v−κ
κ

)
which, since πM ∈ (0, 1), implies that bM,v is strictly increasing in v. Since:

zM,v = κ+ κ

(
bM,v

1− bM,v

)
we obtain that zM,v is strictly increasing in v. Finally, note that that equation 33 implies:

zM,v = v + κ ln

(
1− bM,v

1− πM

)
− κ ln

(
bM,v

πM

)
which implies part (3) since bM,vh > πM > bM,vl . Suppose now (1)-(3) hold for m+ 1, . . . ,M . We

will show they hold for m. First note that by equation 34, b is strictly increasing in v since bm+1

is strictly increasing in v. To obtain that zm,v is strictly increasing in v, note that:

zm,v = κ

(
1− e−r∆ +

(
bm,v

1− bm,v

))
+ e−r∆zm+1,v

which is strictly increasing in v. Using equation 7 we obtain that for every m and v:

zm,v + κ ln

(
bm,v
πm

)
=
(
1− e−r∆

)
v + κ ln

(
1− bm,v
1− πm

)
+ e−r∆

(
zm+1,v + κ ln

(
bm+1,v

πm+1

))
and therefore, through repeated substitution:

zm,v + κ ln

(
bm,v
πm

)
= v + κ

M∑
j=m

e−r∆(j−m) ln

(
1− bj,v
1− πj

)

Therefore:

zm,vh = vh − κ ln

(
bm,vh
πm

)
+ κ

M∑
j=m

e−r∆(j−m) ln

(
1− bj,vh
1− πj

)
< vh − κ ln

(
bm,vh
πm

)
< vh

where the inequality follows from bm,v being strictly increasing for m,m+ 1, . . . ,M .
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D.3.3 Proof of Proposition 7

We will prove by induction. Suppose �rst that θM ∈ ∆ (V ), bM : X × V → (0, 1) and zM : V → X

satisfy the conditions of Proposition 7. Then note that:

bM (x, v) =
πMe

v−x
κ

1− πM + πMe
v−x
κ

for all x. Therefore, by Lemma 31, zM,v is a best response to bM . Take µ1 to be the distribution

over X × V de�ned by v being distributed v an σ (zM,v|v) = 1 for all v. By Theorem 5, βM = bM

is a best response for the buyer conditional on the seller o�ering zM . To show that bM is a credible

best response, �x any (x, v). Suppose wlog that x < zM,v. By lemma 36 we have zM,v < vh for all

v. Pick x̃ such that x̃ = vh and take α to be such that:

αbM (x̃, v) + (1− α) bM (x, v) = bM,v

then de�ne µS to be such that for every v
′ 6= v: µS

(
zM,v′ , v

′
)

= µ0

(
zM,v′ , v

′
)
. For v, set

µS (x, v) = (1− α)µm (zM,v, v) and µS (x̃, v) = αµ0 (zM,v, v). Then clearly bM satis�es the con-

ditions of Theorem 5 for every µε = εµS + (1− ε)µ0. This establishes that bM is a credible best

response. Thus, (θM , bM , zM ) is an equilibrium representation of B1 (µ0).

Suppose now that (µ, β, z) is an equilibrium of B1 (µ0). By Lemma 29 the equilibrium can be

represented by some (θM , bM , zM ). By Lemma 35:

bM (x, v) =
πMe

v−x
κ

1− πM + πMe
v−x
κ

Then conditional on v the seller solves maxx∈X H (x|πM , 0, 0, v). By Lemma 31 this has a unique

solution in R+. Let xM,v be that solution. By Lemma 31, xM,v ≥ κ for all M . Suppose xM,v ≥ x̄

for some v. Note that, from Lemma 31, xM,v is strictly increasing in v. Therefore, xM,vh ≥ x̄.

However, xM,vh satis�es:

xM,vh = κ+ κW

(
πM

1− πM
e
vh−κ
κ

)
≥ x̄ > vh

but for xM,vh > vh one must have:

W

(
πM

1− πM
e
vh−κ
κ

)
>
vh − κ
κ

⇐⇒ πM >
vh − κ
vh

which will, in turn, imply that xM,v > v for all v. But this means that zM,v > v for all v. But

then the best response for the buyer must satisfy πM = 0, which will contradict β being attentive.
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Therefore, xM,v < x̄ for all v, which implies that zM,v = xM,v. Proposition 7 then follows from

Lemma 31.

Suppose now the proposition holds for BM−1 (µ0) for all µ0. We will show that it also holds for

BM (µ0). Suppose �rst {(θm, bm, zm)}Mm=1 satis�es the equations 32 and 33 of Proposition 7. We

will show that {(θm, bm, zm)}Mm=1 is an equilibrium representation of BM (µ0). Note that equation

33 implies:

bm (xm, v) =
πme

1
κ (v−e−r∆(v−zm+1,v−κ ln(bm+1,v/πm+1))−xm)

1− πm + πme
1
κ (v−e−r∆(v−zm+1,v−κ ln(bm+1,v/πm+1))−xm)

De�ne σ by σm
(
zm,v|xm−1, v

)
= 1 for all

(
xm−1, v

)
, take βm (xm, v) = bm (xm, v) for all v, and

let µ be the beliefs implied by the seller using σ, the buyer using β and µ being updated using

Bayesian updating (which is always possible since bm (xm, v) ∈ (0, 1) for all (xm, v)).

Step 1: σ is a best response to β after every history.

Proof. In period M , conditional on v, the seller solves maxx∈X H (x|πM , 0, 0, v). By Lemma 31

zM,v is the unique solution to this problem. Moreover, the expected value for the seller conditional

on arriving to period M and having good of quality v is zM,v − κ. Suppose now that the seller's

value conditional on arriving to period m + 1 and on v is zm+1,v − κ regardless of xm. Then the

seller will choose xm to maximize:

max
xm∈X

bm (xm, v)xm + (1− bm (xm, v)) e−r∆ (zm+1,v − κ)

which is equivalent to maximizing:

H
(
x|πm, e−r∆ (v − zm+1,v − κ ln (bm+1,v/πm+1)) , e−r∆ (zm+1,v − κ) , v

)
the unique solution in R+ by Lemma 31, equation 30 is equal to:

xm,v = κ+ e−r∆ (zm+1,v − κ) + κ

(
bm (xm,v, v)

1− bm (xm,v, v)

)
Which, by Lemma 36 implies that xm,v ∈ [vl, vh] ⊂ X. Thus, zm,v = xm,v, meaning that zm,v

solves the v type seller's period m problem, as required.

Step 2: β is a credible best response to σ after every history given µ.

Proof. Note that β is a best response by Theorem 5. Fix any (xm, v). Suppose wlog that xm < zm,v.

By lemma 36: zm,v < vh for all v. Pick x̃m such that x̃m = vh and take α to be such that:

αβm (x̃m, v) + (1− α)βm (xm, v) = βm (zm,v, v)
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then de�ne µS to be such that for every v
′ 6= v: µS

(
z1,v′ , . . . , zm,v′ , v

′
)

= µm

(
z1,v′ , . . . , zm,v′ , v

′
)
.

For v, set µS (xm, v) = (1− α)µm (z1,v, . . . , zm,v, v) and µS (x̃m, v) = αµm (z1,v, . . . , zm,v, v). Note

that by construction the buyer's posterior over V after using βm and reaching period m+ 1 is the

same under µm and µS . The same holds for every µε = εµS + (1− ε)µm for ε ∈ (0, 1). Hence,

it is straightforward to show that (βm, . . . , βM ) satis�es the conditions of theorem 5 when the

distribution over Xm × V is µε = εµS + (1− ε)µm for ε ∈ (0, 1) and future o�ers are drawn from

σ. The fact that β is a credible best response follows.

We have therefore established that {(θm, bm, zm)}Mm=1 is an equilibrium representation of BM (µ0).

Suppose now that {(θm, bm, zm)}Mm=1 is an equilibrium representation of BM (µ0). By Lemma

35, bM satis�es:

bM (x, v) =
πMe

v−x
κ

1− πM + πMe
v−x
κ

therefore, the seller's problem conditional on arriving to period M and having a good of quality

v is maxx∈X H (x|πM , 0, 0, v). By Lemma 31 this has a unique solution in R+. Let xM,v be that

solution. By Lemma 31, xM,v ≥ κ for all M . Suppose xM,v ≥ x̄ for some v. Note that, from

Lemma 31, xM,v is strictly increasing in v. Therefore, xM,vh ≥ x̄. However, xM,vh satis�es:

xM,vh = κ+ κW

(
πM

1− πM
e
vh−κ
κ

)
≥ x̄ > vh

but for xM,vh > vh one must have:

W

(
πM

1− πM
e
vh−κ
κ

)
>
vh − κ
κ

⇐⇒ πM >
vh − κ
vh

which will, in turn, imply that xM,v > v for all v. But this means that zM,v > v for all v. However,

this means that the best response for the buyer must satisfy πM = 0, which will contradict β being

attentive. Therefore, xM,v < x̄ for all v, which implies that zM,v = xM,v. Note that this implies

that zM,v satis�es equation 32. Moreover, the seller's expected utility conditional on ariving to

period M and having a good of quality v is zM,v − κ (Lemma 31, equation 29). Suppose now that

the seller's value conditional on arriving to period m + 1 and on v is zm+1,v − κ regardless of xm.

Then the seller will choose xm to maximize:

max
xm∈X

bm (xm, v)xm + (1− bm (xm, v)) e−r∆ (zm+1,v − κ)

Note that by Lemma 35 bm must satisfy:

bm (xm, v) =
πme

1
κ (v−e−r∆(v−zm+1,v−κ ln(bm+1,v/πm+1))−xm)

1− πm + πme
1
κ (v−e−r∆(v−zm+1,v−κ ln(bm+1,v/πm+1))−xm)
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and therefore the seller's problem is equivalent to to maximizing:

H
(
x|πm, e−r∆ (v − zm+1,v − κ ln (bm+1,v/πm+1)) , e−r∆ (zm+1,v − κ) , v

)
the unique solution in R+ by Lemma 31, equation 30 is equal to:

xm,v = κ+ e−r∆ (zm+1,v − κ) + κ

(
bm (xm,v, v)

1− bm (xm,v, v)

)
which, by Lemma 36 implies that xm,v ∈ [vl, vh] ⊂ X. Thus, zm,v = xm,v, meaning that zm,v

solves the v type seller's period m problem. Therefore we obtain that z satis�es equation 32.

Simple algebra reveals that Lemma 31 implies that bm must satisfy equation 33. To obtain that

{(θm, bm, zm)}Mm=2 is an equilibrium representation of BM−1 (µ̄2), note that the strategies induced

by {(bm, zm)}Mm=2 in the game BM−1 (µ̄2) satisfy equations 32 and 33. Then {(θm, bm, zm)}Mm=2

being an equilibrium representation of BM−1 (µ̄2) follows from the induction assumption.

D.4 Proof of Theorem 1

Lemma 37. (θ, b, z) is an equilibrium representation of BM (µ0) if and only if there exists an

equilibrium average-ratio path of BM (µ0), (a, p, ϑ), such that:

1. For all m: θm = ϑm and am = πm.

2. For every m and v:pm,v = bm,v/πm.

3. For all m and v:

zm,v − e−r∆zm+1,v =
(
1− e−r∆

)
κ+ κW

(
am

1− am

(
e
v−κ
κ

)1−e−r∆

pe
−r∆

m+1,v

)
(35)

4. For all m, v and x ∈ X, bm (x, v) solves equation:

v − x− e−r∆ (v − zm+1,v) = κ ln

(
bm (x, v) (1− am)

am (1− bm (x, v))

)
− κ ln (pm+1,v)

e−r∆
(36)

Proof. Suppose �rst that (θ, b, z) is an equilibrium representation of BM (µ0) . De�ne ϑ = θ,

am = πm and pm,v = bm,v/πm. Part (4) holds due to Proposition 7. By equation: 34:

bm,v =

W

(
πm

1−πm

(
e
v−κ
κ

)1−e−r∆ (
bm+1,v

πm+1

)e−r∆)
1 +W

(
πm

1−πm

(
e
v−κ
κ

)1−e−r∆ (
bm+1,v

πm+1

)e−r∆)
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The fact that (a, p, ϑ) is an equilibrium average-ratio path follows. Suppose (a, p, ϑ) is an equilibrium

average ratio path. De�ne zm,v by equation 35 and take bm (x, v) to be the solution to the equation

36 for every x. Note that for every m:

bm (zm,v, v) =

(
am

1−am

)(
e
v−κ
κ

)1−e−r∆

pe
−r∆

m+1,ve
1
κ ((1−e−r∆)κ−(zm,v−e−r∆zm+1,v))

1 +
(

am
1−am

)(
e
v−κ
κ

)1−e−r∆
pe
−r∆
m+1,ve

1
κ ((1−e−r∆)κ−(zm,v−e−r∆zm+1,v))

substituting in equation 35 for
(
1− e−r∆

)
κ −

(
zm,v − e−r∆zm+1,v

)
and noting that

(
y/eW (y)

)
=

W (y) gives:

bm (zm,v, v) =

W

((
am

1−am

)(
e
v−κ
κ

)1−e−r∆

pe
−r∆

m+1,v

)
1 +W

((
am

1−am

)(
e
v−κ
κ

)1−e−r∆
pe
−r∆
m+1,v

) = ampm

Therefore, π1 =
∑
v µ0b1,v = a1. Clearly, θm = ϑm describes the evolution of the buyer's beliefs

over V given the strategy b. Moreover, for everym: πm =
∑
v θm (v) bm,v = am, and bm,v/πm = pm.

It is straightforward now to show that zm,v solves equation 32 and bm (x, v) solves equation 33. The

Lemma follows.

Given the above Lemma, Theorem 1 is implied by Theorem 6.

D.5 Properties of equilibrium in �nite horizon

D.5.1 Boundedness of bm,v and πm

In the following subsection, assume that (θ, b, z) is an equilibrium representation in BM (µ0) and

let (a, p, ϑ) be the equilibrium average ratio path of BM (µ0) from lemma 37

Claim 1. Then 1
2πm ≤ bm,v ≤ e

v−κ
κ πm

Proof. By Lemma 20, pm,v ∈ [1/2, cv] for all m and v. The claim follows from bm,v/πm = pm,v for

all m and v.

Lemma 38. For every m,

zm,v − e−r∆ (zm+1,v − κ) ≤
(
1− e−r∆

)
v + e−r∆κ

88



if and only if:

pe
−r∆

m+1,v ≤ R (am, v, pm+1,v)

Rc (am, v, pm+1,v)

=
1− am
am

W (z∗ (am; v, pm+1,v))

Proof. Note that the inequality is equivalent to:

am
1− am

(pm+1,v)
e−r∆ ≤W (z∗ (am; v, pm+1,v))

which is equivalent to:
am

1− am
(pm+1,v)

e−r∆ ≤
(
1− e−r∆

)
ln av

or:

z (am; v, pm+1,v) ≤ c1−e
−r∆

v ln c1−e
−r∆

v

which is true if and only if W (z∗ (am; v, pm+1,v)) ≤
(
1− e−r∆

)
ln cv =

(
1− e−r∆

) (
v−κ
κ

)
. The

conclusion then follows from:

zm,v − e−r∆ (zm+1,v − κ) = κ+ κW (z∗ (am; v, pm+1,v))

Claim 2. For every m and v: bm,v ≤ vh−κ
vh

.

Proof. Follows from Lemma 27 and Lemma 37.

Lemma 39. For every m, there exists a v such that

zm,v − e−r∆ (zm+1,v − κ) ≤
(
1− e−r∆

)
v + e−r∆κ

Proof. Suppose otherwise. Then by the previous lemma:

pe
−r∆

m+1,v >
R (am; v, pm+1,v)

Rc (am; v, pm+1,v)

for all v. Therefore:

pe
−r∆

m+1,vR
c (am; v, pm+1,v) > R (am; v, pm+1,v)

As such: ∑
v

ϑm (v)Rc (am; v, pm+1,v) p
e−r∆

m+1,v > 1
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however: ∑
v

ϑm (v)Rc (am; v, pm+1,v) p
e−r∆

m+1,v =
∑
v

ϑm (v)
1− ampm,v

1− am
pe
−r∆

m+1,v

<

(∑
v

ϑm (v)
1− ampm,v

1− am
pm,v

)e−r∆

=

(∑
v

ϑm+1 (v) ampm,v

)e−r∆
= 1

a contradiction.

Claim 3. For every m, there exists a v such that:

bm,v ≤
(
1− e−r∆

)
(v − κ)

(1− e−r∆) (v − κ) + κ

Proof. By Lemma 39 for every m there is a v such that:

zm,v − e−r∆ (zm+1,v − κ) ≤
(
1− e−r∆

)
v + e−r∆κ

but by Proposition 7, part 2:

bm,v =

(
zm,v − e−r∆ (zm+1,v − κ)

)
− κ

(zm,v − e−r∆ (zm+1,v − κ))

≤
(
1− e−r∆

)
(v − κ)

(1− e−r∆) (v − κ) + κ

as required.

E In�nite Horizon Equilibrium

In this section we provide an analysis of the in�nite horizon equilibria of our game. We begin by

proving that an equilibrium exists via Theorem 2. The fact that the equilibrium satis�es equations

7 and 8 from Lemma 1 will follow directly from Lemma 29 and Proposition 7. We then move

to establishing some properties shared by all equilibria of the �nite horizon game. With these

properties at hand, we turn to proving Propositions 2 and 5.
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E.1 Proof of Theorem 2

E.1.1 Preliminary Lemma

Let (am, bm)
∞
m=1 and (anm, b

n
m)
∞
n,m=1 be such that bnm, bm ∈ (0, 1), cnm, cm ≥ 0 and (bnm, c

n
m) →

(bm, cm) for every m. De�ne J : X∞ → R+ by:

J (x∞) =

∞∑
j=1

e−r∆(j−1)

 bje
1
κ (v−xj−cj)

(∏j−1
k=1 (1− bk)

)
∏j
k=1

(
1− bk + bke

1
κ (v−xk−ck)

)
xj

J∗ = max J ,

Jn (x∞) =

n∑
j=1

e−r∆(j−1)

 bnj e
1
κ (v−xj−cnj )

(∏j−1
k=1 (1− bnk )

)
∏j
k=1

(
1− bnk + bnke

1
κ (v−xk−cnk)

)
xj

and J∗n = max Jn.

Lemma 40. J∗n → J∗. Moreover, if x∞(n) ∈ arg maxJn for every n is such that x∞(n) → x∞ for

some x∞ ∈ X∞, then x∞ ∈ arg maxJ .

Proof. Since (bnm, c
n
m)→ (bm, cm) for every m, for every N and ε > 0, there is an Nε > N such that

n > Nε implies: ∣∣∣∣∣∣∣∣∣∣∣∣∣
N∑
j=1

e−r∆(j−1)



 bnj e
1
κ (v−xj−cnj )

(∏j−1
k=1 (1− bnk )

)
∏j
k=1

(
1− bnk + bnke

1
κ (v−xk−cnk)

)


−

 bje
1
κ (v−xj−cj)

(∏j−1
k=1 (1− bk)

)
∏j
k=1

(
1− bk + bke

1
κ (v−xk−ck)

)



xj

∣∣∣∣∣∣∣∣∣∣∣∣∣
< ε

Since x ∈ X∞, this implies that for every n > N and every x∞: |J (x∞)− Jn (x∞)| < ε+ e−r∆N

1−e−r∆ x̄.

This is also true for any x∞ ∈ arg maxJ , implying that: |J∗ − J∗n| < ε + e−r∆N

1−e−r∆ x̄. Since this is

true for all N , we have that J∗n → J∗. If x∞(n) ∈ arg maxJn for every n is such that x∞(n) → x∞

for some x∞ ∈ X∞. Fix an N and ε > 0. Then since (bnm, c
n
m)→ (bm, cm) and xnm → xm for all m,

there exists an Nε > N such that for all n > Nε:∣∣∣∣∣∣∣∣∣∣∣∣∣
N∑
j=1

e−r∆(j−1)



 bje
1
κ (v−xj−cj)

(∏j−1
k=1 (1− bk)

)
∏j
k=1

(
1− bk + bke

1
κ (v−xk−ck)

)
xj

−

 bnj e
1
κ (v−xnj −c

n
j )
(∏j−1

k=1 (1− bnk )
)

∏j
k=1

(
1− bnk + bnke

1
κ (v−xnk−cnk)

)
xnj



∣∣∣∣∣∣∣∣∣∣∣∣∣
< ε

91



since x∞ ∈ X∞, this implies that for every n > N :
∣∣J (x∞)− Jn

(
x∞(n)

)∣∣ < ε+ e−r∆N

1−e−r∆ x̄, thereby

implyng that J∗n = Jn
(
x∞(n)

)
→ J (x∞). Therefore:

|J (x∞)− J∗| ≤
∣∣∣J (x∞)− Jn

(
x∞(n)

)∣∣∣+
∣∣∣Jn (x∞(n)

)
− J∗

∣∣∣
=

∣∣∣J (x∞)− Jn
(
x∞(n)

)∣∣∣+ |J∗n − J∗| → 0

as required.

E.1.2 Proof of Theorem 2

By Proposition 7, we can represent every sequence of equilibria {(µn, βn, σn)}∞n=1 of BMn
(µ0) by

their equilibrium representations, {(θn, bn, zn)}∞n=1. Note that for everym
{(
θnm (v) , bnm,v, z

n
m,v

)}
v∈V

is an element of a compact subset of R3V
+ . Therefore, by Cantor's diagonal method there exists a sub-

sequence {(θnk , bnk , znk)}∞k=1 such that
{(
θnm (v) , bnm,v, z

n
m,v

)}
v∈V converges to {(θm (v) , bm,v, zm,v)}v∈V

for all m. As a consequence, the prior probability that the buyer accepts conditional on arriving to

period m, πnm, converges to πm :=
∑
v θm (v) bm,v. By Proposition 7 we have for every x ∈ X:

bnm (x, v) =

(
πnm

1−πnm

) (
e
v
κ

)1−e−r∆ (
e
znm+1,v

κ

(
bnm+1,v

πnm+1

))e−r∆
e−

x
κ

1 +
(

πnm
1−πnm

) (
e
v
κ

)1−e−r∆ (
e
zn
m+1,v
κ

(
bnm+1,v

πnm+1

))e−r∆
e−

x
κ

which implies that bnm (x, v)→ bm (x, v) where:

bm (x, v) =

(
πm

1−πm

) (
e
v
κ

)1−e−r∆ (
e
zm+1,v

κ

(
bm+1,v

πm+1

))e−r∆
e−

x
κ

1 +
(

πm
1−πm

) (
e
v
κ

)1−e−r∆ (
e
zm+1,v

κ

(
bm+1,v

πm+1

))e−r∆
e−

x
κ

=
πme

1
κ

(
v−x−e−r∆

(
v−κ ln

(
bm+1,v
πm+1

)
−zm+1,v

))

1− πm + πme
1
κ

(
v−x−e−r∆

(
v−κ ln

(
bm+1,v
πm+1

)
−zm+1,v

))

and therefore, βnk (xm, v) → β (xm, v) = bm (xm, v). Note that by Claim 1: bnm,v ≤ (vh − κ) /vh

for all v and m and therefore πnm ≤ (vh − κ) /vh, i.e. πm ≤ (vh − κ) /vh. We will now show that

πm > 0. Suppose otherwise, i.e. there is some m such that πnm → 0. Then this implies that

µ̄m = µ̄m+1. Let:

f (k, l) =
W
(

k
1−k l

)
k
(

1 +W
(

k
1−k l

))
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then using W (z) = z/eW (z) we obtain:

f (k, l) =

(
l

1− k

)
1

exp
(
W
(

k
1−k l

))(
1 +W

(
k

1−k l
))

and therefore f (0, l) = l. Hence, using the mean value theorem, for every M there is a k∗ ∈ [0, anm]

such that:∣∣∣pnm,v − c1−e−r∆v

(
pnm+1,v

)e−r∆ ∣∣∣ =
∣∣∣f (anm, c1−e−r∆v

(
pnm+1,v

)e−r∆)− f (0, c1−e
−r∆

v

(
pnm+1,v

)e−r∆)∣∣∣
≤

∣∣∣∣∂f∂k (k∗, c1−e−r∆v

(
pnm+1,v

)e−r∆)∣∣∣∣ anm
but:

∂f

∂k
=

1− (1− k)
(

1 +W
(

k
1−k l

))2

(1− k)
(

1 +W
(

k
1−k l

))2

 f (k, l)

k

=

 1−
(

1 +W
(

k
1−k l

))2

(1− k)
(

1 +W
(

k
1−k l

))2

 f (k, l)

k
+
f (k, l)

1− k

which, since k∗ < 1 we have that f (k, l) / (1− k) is bounded in the range (k, l) ∈ [0, (vh − κ) /vh]×
[0, cvh ]. In addition:

lim
k→0

 1−
(

1 +W
(

k
1−k l

))2

(1− k)
(

1 +W
(

k
1−k l

))2

 f (k, l)

k
=

(
lim
k→0

f (k, l)

)
lim
k→0

1−
(

1 +W
(

k
1−k l

))2

k


assuming the limit limk→0 k

−1

(
1−

(
1 +W

(
k

1−k l
))2

)
exists. Using L'Hopital's rule:

lim
k→0

k−1

(
1−

(
1 +W

(
k

1− k
l

))2
)

= lim
k→0

2
(

1 +W
(

k
1−k l

))
exp

(
W
(

k
1−k l

))(
1 +W

(
k

1−k l
)) ( l

(1− k)
2

)

= lim
k→0

2

exp
(
W
(

k
1−k l

)) ( l

(1− k)
2

)
= 2l
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thus, ∂f
∂k is bounded, implying that

∣∣∣pnm,v − c1−e−r∆v

(
pnm+1,v

)e−r∆ ∣∣∣ → 0 and therefore pm,v =

c1−e
−r∆

v (pm+1,v)
e−r∆

for all v. But:∑
v

µ̄m (v) pm,v = lim
Mn→∞

∑
v

µ̄nm (v) pnm,v = 1

and therefore we've obtained:

1 =
∑
v

µ̄m (v) c1−e
−r∆

v (pm+1,v)
e−r∆

>
∑
v

µ̄m (v) pm+1,v

=
∑
v

µ̄m+1 (v) pm+1,v = 1

where the inequality follows cv ≥ pm+1,v for all v and cvl > 1 ≥ pm+1,vl , a contradiction. Hence,

we have πm > 0 for all m.

Thus, by Lemma 40, o�ering zm,v for sure in period m conditional on the quality of the good

being v regardless of the history is a best response for the seller conditional on the buyer using β.

We will now show that β is a best response to σ de�ned by the seller o�ering zm,v for sure in

period m conditional on the quality of the good is v. Note that:

κ ln

(
1− bm,v
1− πm

)
= e−r∆

(
v − zm+1,v − κ ln

(
bm+1,v

πm+1

))
therefore, for every n < m, consider the buyer's quasi-value, Um (β, σ|xn, v), is equal to:

∞∑
j=m

e−r∆(j−m)

j−1∏
k=m

(1− bm,v)

 bj,v

(
v − zj,v − κ ln

(
bj,v
πj

))
− (1− bj,v)κ ln

(
1− bj,v
1− πj

)


=

∞∑
j=m

e−r∆(j−m)

j−1∏
k=m

(1− akpk,v)


v − zj,v − κ ln

(
bj,v
πj

)
−e−r∆ (1− bj,v)×(

v − zj+1,v − κ ln

(
bj+1,v

πj+1

))


= v − zm,v − κ ln

(
bm,v
πm

)
Thereby implying, by Theorem 5, that β is a best response to σ. We will now prove that β is a

credible best response to σ. Note that Lemma 36 implies that for every m and n: znm,v ∈ [vl, vh]

94



and therefore zm,v ∈ [vl, vh]. As such, for every (xm, v) ∈ X × V , there is a x̃m and α ∈ (0, 1) such

that:

αbm (xm, v) + (1− α) bm (x̃m, v) = bm,v

de�ne µS to be such that for every v
′ 6= v: µS

(
z1,v′ , . . . , zm,v′ , v

′
)

= µm

(
z1,v′ , . . . , zm,v′ , v

′
)
. For

v, set µS (xm, v) = (1− α)µm (z1,v, . . . , zm,v, v) and µS (x̃m, v) = αµm (z1,v, . . . , zm,v, v). Note that

by construction the buyer's posterior over V after using βm and reaching period m+ 1 is the same

under µm and µS . The same holds for every µε = εµS + (1− ε)µm for ε ∈ (0, 1). Hence, it is

straightforward to show that (βm, . . .) satis�es the conditions of theorem 5 when the distribution

over Xm × V is µε = εµS + (1− ε)µm for ε ∈ (0, 1) and future o�ers are drawn from σ. The fact

that β is a credible best response follows.

Note that we've shown that every sequence of equilibria {(µn, βn, σn)}∞n=1 in BMn
(µ0) with

Mn → 0 has a convergent subsequence {(µnk , βnk , σnk)}∞k=1 whose limit (µ, β, σ) is an attentive rec-

ommendation perfect equilibrium. As such, if a sequence of equilibria {(µn, βn, σn)}∞n=1 converges

then the limit must be an equilibrium of the in�nite horizon game.

E.2 Proof of equations 7 and 8

Follows from Lemma 29 and Proposition 7.

E.3 Additional Properties of In�nite Horizon Equilibria

E.3.1 Monotonicity of bm,v in in�nite horizon

We now prove the following lemma.

Lemma 41. For every m, bm,v is strictly increasing in v.

Proof. Consider any M -horizon equilibrium (θ, b, z). By equation 34 we have that:(
bM,v

1− bM,v

)
e

(
bM,v

1−bM,v

)
=

(
πM

1− πM

)
e
v−κ
κ

and therefore bM,v is strictly increasing in v. An inductive argument using equation 34 then

establishes that bm,v is strictly increasing in v for all m in the �nite equilibrium. Clearly, this

implies that for any limit (θ∞, b∞, z∞), b∞m,v is weakly increasing in v. Using equation 34 again

implies that b∞m,v is strictly increasing.
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E.3.2 Boundedness of bm,v and πm

In the following subsection, assume that (µ, b, z) is an equilibrium in the in�nite horizon game. The

following three claims follow immediately from (µ, b, z) being the limit of �nite horizon equilibria

and Claims 1, 2 and 3. We therefore give them without proof.

Claim 4. Then 1
2πm ≤ bm,v ≤ e

v−κ
κ πm

Claim 5. For every m and v: bm,v ≤ vh−κ
vh

.

Claim 6. For every m, there exists a v such that:

bm,v ≤
(
1− e−r∆

)
(v − κ)

(1− e−r∆) (v − κ) + κ

E.3.3 Calculating values in in�nite horizon equilibria

Lemma 42. Let (µ, b, z) be an equilibrium of B (∆, κ) and take (F, u, w) be its corresponding

equilibrium collection. Then:

um =
∑
v

µ0 (v)

κ ∞∑
j=m

e−r∆(j−m) ln

(
1− πj
1− bj,v

)
πm,v = κ

∞∑
j=m

e−r∆(j−m)

(
bj,v

1− bj,v

)

Proof. By Lemma 13, we know that in equilibrium the buyer's quasi-value in period m conditional

on zm−1
v = (z1,v, . . . , zm−1,v) and on v is:

Um
(
β, σ|zm−1

v , v
)

= κ

∞∑
j=m

e−r∆(j−m) ln

(
1− πj
1− bj,v

)

the buyer's expected value conditional on arriving to period m is:

um =

ˆ
Um
(
β, σ|xm−1, v

)
dµm

=
∑
v

µ̄m (v)Um
(
β, σ|zm−1

v , v
)

= κ
∑
v

µ̄m (v)

 ∞∑
j=m

e−r∆(j−m) ln

(
1− πj
1− bj,v

)
For pro�ts, in any �nite equilibrium we have by Lemma 31 that the seller's expected utility con-

ditional on arriving to period m and having a good of quality v is zm,v − κ. The conclusion then

follows for the in�nite horizon equilibrium by Lemma 40.
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E.3.4 Trade occurs for sure

Lemma 43. Let (µ, b, z) be an equilibrium. Then for every v:

lim
m→∞

m∏
j=1

(1− bj,v) = 0

Proof. Suppose otherwise. Note that by Claim 4, bm,v/πm ≥ 1/2. Thus, we must have πm → 0 as

m→∞. By Claim 4, bm,v/πm is bounded both from above and from below, we must have:

lim
m→∞

κ

∞∑
j=m

e−r∆(j−m)

(
bj,v

1− bj,v

)
= 0

for all v. But equation 8 then implies that zm,v → κ, contradicting Proposition 2 which implies

zm,v ≥ zm,vl > vl > κ.

E.4 Proof of Proposition 2

By Lemma 41, bm,v is strictly increasing for all v. Monotonicity of zm,v then follows from equation

8 from lemma 1. To prove that v − zm,v is strictly increasing, take natural log of both sides of

equation 7 and rearrange to obtain:

zm,v + κ ln

(
bm,v
πm

)
= v + κ ln

(
1− bm,v
1− πm

)
+ e−r∆

(
zm+1,v + κ ln

(
bm+1,v

πm+1

))
which, through repeated substitution implies:

zm,v + ln

(
bm,v
πm

)
= v + κ

∞∑
j=m

er∆(j−m) ln

(
1− bj,v
1− πj

)
(37)

or:

v − zm,v = κ

ln

(
bm,v
πm

)
−
∞∑
j=m

e−r∆(j−m) ln

(
1− bj,v
1− πj

)
which implies from bm,v being strictly increasing in v for allm. Finally, note that the above equation

implies: (
bm,v
πm

)
= exp

v − zm,v + κ

∞∑
j=m

e−r∆ ln

(
1− bj,v
1− πj

)
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for all m and v. However, by de�nition of πm:
∑
v µ̄m (v) (bm,v/πm) = 1. Since bm,v is strictly

increasing, bm,v/πm must be strictly increasing as well, which implies:

vl − zm,vl + κ

∞∑
j=m

e−r∆ ln

(
1− bj,vl
1− πj

)
< 0 < vh − zm,vh + κ

∞∑
j=m

e−r∆ ln

(
1− bj,vh
1− πj

)

But bj,v being strictly increasing for all j implies:

κ

∞∑
j=m

e−r∆ ln

(
1− bj,vh
1− πj

)
< 0 < κ

∞∑
j=m

e−r∆ ln

(
1− bj,vl
1− πj

)

thereby concluding the proof.

E.5 Proof of Proposition 5

We begin by proving for every equilibrium we have u1 > 0 and:

u1 +
∑
v

µ0 (v)w1,v >
∑
v∈V

µ0 (v) (v − κ)

Let (µ, b, z) be an equilibrium of B (∆, κ) and take (F, u, w) to be its corresponding equilibrium

collection. Repeated substitution of Equation 8 from lemma 1 implies:

z1,v = κ+ κ

∞∑
j=1

e−r∆(j−1)

(
bj,v

1− bj,v

)
= w1,v + κ

where the second equality follows from Lemma 42. Thus, using equation 37 we obtain that:

1 =
∑
v

µ0

(
b1,v
π1

)
=
∑
v

µ0 exp

v − κ− w1,v − κ
∞∑
j=1

e−r∆(j−1) ln

(
1− πj
1− bj,v

)
Note that b1,v is strictly increasing, and therefore by Jensen's inequality and Lemma 42:

1 > exp

∑
v

µ0 (v)

v − κ− w1,v − κ
∞∑
j=1

e−r∆(j−1) ln

(
1− πj
1− bj,v

)
= exp

(∑
v

µ0 (v) (v − κ)−

(
u1,v +

∑
v

µ0 (v)w1,v

))

Therefore implying that the total expected surplus in (µ, b, z) is strictly higher than
∑
v µ0 (v) (v − κ).

We will now prove that the buyer's expected surplus is strictly larger than zero. Since bm,v is strictly
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increasing, for every v > v
′
:

µ̄m+1 (v)

µ̄m+1 (v′)
=

(1− bm,v) µ̄m (v)(
1− bm,v′

)
µ̄m (v′)

<
µ̄m (v)

µ̄m (v′)

thus, µ0 �rst order stochastically dominates µ̄m for all m ≥ 2. Using Lemma 42 again implies:

u1 = −
∑
v

µ0 (v)

∞∑
j=1

e−r∆(j−1) ln

(
1− bj,v
1− πj

)

> −
∑
v

µ0 (v)

∞∑
j=1

e−r∆(j−1) ln

(∑
v µ0 (v) (1− bj,v)

1− πj

)

> −
∑
v

µ0 (v)

∞∑
j=1

e−r∆(j−1) ln

(∑
v µ̄j (v) (1− bj,v)

1− πj

)
= 0

where the �rst inequality follows from Jensen's inequality and the second follows from µ0 �rst order

stochastically dominating µ̄j .

Suppose now that there is no τ for which u1 +E [w1,v] > v−κ+ τ for all equilibria. then there

exists a sequence of equilibria (µn, bn, zn) with corresponding values (un, wn) such that

un1 +
∑
v

µ0 (v)wn1,v →
∑
v∈V

µ0 (v) (v − κ)

Note that for every n, m and v
(
µ̄nm (v) , bnm,v, z

n
m,v

)
is in a compact set of R+. Therefore there

exists a convergent subsequence. Let that subsequence be the sequence itself. Let pnm,v = bnm,v/π
n
m.

Note that πnm ≤ vh−κ
vh

for all m and n by claim 5 and therefore πm = limn→∞ πnm ≤ vh−κ
vh

< 1. We

will show that for all m: πm > 0. Suppose otherwise, i.e. there is some m such that πnm → 0. Then

this implies that µ̄m = µ̄m+1. Let:

f (k, l) =
W
(

k
1−k l

)
k
(

1 +W
(

k
1−k l

))
then using W (z) = z/eW (z) we obtain:

f (k, l) =

(
l

1− k

)
1

exp
(
W
(

k
1−k l

))(
1 +W

(
k

1−k l
))

and therefore f (0, l) = l. Hence, using the mean value theorem, for every M there is a k∗ ∈ [0, πnm]
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such that:∣∣∣pnm,v − c1−e−r∆v

(
pnm+1,v

)e−r∆ ∣∣∣ =
∣∣∣f (πnm, c1−e−r∆v

(
pnm+1,v

)e−r∆)− f (0, c1−e
−r∆

v

(
pnm+1,v

)e−r∆)∣∣∣
≤

∣∣∣∣∂f∂k (k∗, c1−e−r∆v

(
pnm+1,v

)e−r∆)∣∣∣∣πnm
but:

∂f

∂k
=

1− (1− k)
(

1 +W
(

k
1−k l

))2

(1− k)
(

1 +W
(

k
1−k l

))2

 f (k, l)

k

=

 1−
(

1 +W
(

k
1−k l

))2

(1− k)
(

1 +W
(

k
1−k l

))2

 f (k, l)

k
+
f (k, l)

1− k

which, since k∗ < 1 we have that f (k, l) / (1− k) is bounded in the range (k, l) ∈ [0, (vh − κ) /vh]×
[0, cvh ]. In addition:

lim
k→0

 1−
(

1 +W
(

k
1−k l

))2

(1− k)
(

1 +W
(

k
1−k l

))2

 f (k, l)

k
=

(
lim
k→0

f (k, l)

)
lim
k→0

1−
(

1 +W
(

k
1−k l

))2

k


assuming the limit limk→0 k

−1

(
1−

(
1 +W

(
k

1−k l
))2

)
exists. Using L'Hopital's rule:

lim
k→0

k−1

(
1−

(
1 +W

(
k

1− k
l

))2
)

= lim
k→0

2
(

1 +W
(

k
1−k l

))
exp

(
W
(

k
1−k l

))(
1 +W

(
k

1−k l
)) ( l

(1− k)
2

)

= lim
k→0

2

exp
(
W
(

k
1−k l

)) ( l

(1− k)
2

)
= 2l

thus, ∂f
∂k is bounded, implying that

∣∣∣pnm,v − c1−e−r∆v

(
pnm+1,v

)e−r∆ ∣∣∣ → 0 and therefore pm,v =

c1−e
−r∆

v (pm+1,v)
e−r∆

for all v. But:∑
v

µ̄m (v) pm,v = lim
Mn→∞

∑
v

µ̄nm (v) pnm,v = 1
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and therefore we've obtained:

1 =
∑
v

µ̄m (v) c1−e
−r∆

v (pm+1,v)
e−r∆

>
∑
v

µ̄m (v) pm+1,v

=
∑
v

µ̄m+1 (v) pm+1,v = 1

where the inequality follows cv ≥ pm+1,v for all v and cvl > 1 ≥ pm+1,vl , a contradiction. Hence,

we have πm > 0 for all m.

Note that:

pm,v = R (πm, v, pm+1,v)

for all m and v. Since pnm+1,v is weakly increasing and πm > 0, we have by Lemma 20 that pm,v is

strictly increasing and therefore bm,v is strictly increasing. We can now use the same argument as

in the single equilibrium case to establish that

lim
n→∞

un1 = u1 > 0

and:

lim
n→∞

un1 +
∑
v

µ0 (v)wn1,v >
∑
v

µ0 (v) (v − κ)

a contradiction.
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F Frequent O�ers Environment

In this section of the appendix we prove the results of sections 5 and 6. We begin by stating some

preliminary de�nitions and results used in the proof of Theorem 3. We then prove an omnibus

theorem that includes Theorem 3, Proposition 3 and Corollary 2.

F.1 Preliminaries

In what follows, let ϕ be the unique σ-additive measure over Ω =
(
R+,BR+

)
, where BR+ is the Borel

σ-algebra, satisfying ϕ ([t, t+ s]) =
(
e−rt − e−r(t+s)

)
for all t, s ≥ 0. As usual, let L2 (Ω,dϕ) be the

set of all equivalence classes of measurable functions satisfying: f : Ω→ R, f is ϕ-measurable and:´
R+
|f |2 dϕ < ∞, equipped with the norm: ‖f‖2 =

(´
R+
|f |2 dϕ

)1/2

. A map L from L2 (Ω,dϕ) to

the real numbers is a linear functional if: L (af1 + bf2) = aL (f1) + bL (f2). A linear functional

is continuous if L (fn) → L (f) whenever fn → f (according to the ‖·‖2), and it is bounded if

|L (f)| ≤ K ‖f‖2 for some �nite number K. It is well known that a functional is continuous if and

only if it is bounded. We let L2 (Ω,dϕ)
∗
be the set of continuous linear funtionals, also known

as the dual of L2 (Ω,dϕ). A sequence of functions (fn) ∈ L2 (Ω,dϕ) is said to converge weakly

to f ∈ L2 (Ω,dϕ), denoted by fn ⇀ f if: L (fn) → L (f) for every L ∈ L2 (Ω,dϕ)
∗
. Below is a

statement of a few famous theorems from functional analysis, specialized to the current setting.

The next theorem is often seen as a consequence of the Hahn-Banach theorem.

Theorem 7. Suppose f ∈ L2 (Ω,dϕ) satis�es L (f) = 0 for all L ∈ L2 (Ω,dϕ)
∗
. Then f = 0, and

therefore if fn ⇀ g and fn ⇀ h then g = h

Proof. Lieb and Loss (2010), pages 56 to 57.

Theorem 8. Let (fn)n≥0 be a sequence of functions in L2 (Ω,dϕ) such that for every L ∈ L2 (Ω,dϕ)
∗
,

the sequence L (fn) is bounded. Then there exists a �nite C > 0 such that ‖fn‖2 < C for all n.

Proof. Lieb and Loss (2010), pages 58 to 59.

The theorem below is a specialization of the Riesz representation theorem speci�c for our

purposes.

Theorem 9. For every L ∈ L2 (Ω,dϕ)
∗
there exists a unique g ∈ L2 (Ω,dϕ) such that: L (f) =´

R+
g (x) f (x)ϕ (dx). Moreover, for every g ∈ L2 (Ω,dϕ), Lg (f) =

´
R+
g (x) f (x)ϕ (dx) is a

bounded linear functional.

Proof. Lieb and Loss (2010), pages 61 to 63.

The following is a version of the Banach-Alaoglu theorem.
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Theorem 10. Let (fn)n≥0 be a sequence of functions bounded in L2 (Ω,dϕ). Then there exists a

subsequence (fnk)k≥0 and an f ∈ L2 (Ω,dϕ) such that fnk ⇀ f .

Proof. Lieb and Loss (2010), pages 68 to 69.

Lemma 44. Let (fn)n≥0 , (g
n)n≥0 be two sequences in L2 (Ω,dϕ). Suppose fn ⇀ f and gn → g

for some f and g in L2 (Ω,dϕ). Then:
´
R+
fn (x) gn (x) dϕ→

´
R+
f (x) g (x) dϕ.

Proof. Note that: fngn − fg = fn (gn − g) + (fn − f) g. Then:∣∣∣∣∣
ˆ
R+

fn (x) (gn (x)− g (x)) dϕ

∣∣∣∣∣ ≤ ‖fn‖2 ‖gn − g‖2 ≤ C ‖gn − g‖2 → 0

Since g ∈ L2 (Ω,dϕ), we have that L (h) =
´
R+
h (x) g (x) dϕ ∈ L2 (Ω,dϕ)

∗
and therefore

´
R+

(fn (x)− f (x)) g (x) dϕ→
0. The conclusion follows.

F.2 Preliminary De�nitions

De�nition 11. An extended equilibrium collection of B (∆, κ) is a collection
(
F̄ , F, w, ũ

)
such that

there exists an equilibrium (µ, β, σ) for which:

1. F̄ : R → [0, 1] is a cdf satisfying; F̄ (t) =
∑
v µ0 (v)F (t, v), i.e. it is the cdf of the time of

trade, unconditional on v.

2. ũ : T (∆) × V → R is the buyer's quasi-value conditional on arriving to period t/∆ and on

v, i.e.

ũt,v = Ut/∆
(
β, σ|z

t
∆−1
v , v

)
where zmv = (z1,v . . . , zm,v) is the history of o�ers that is made on equilibrium by a v type

seller up to and including period m.

3. F is a timing distribution function.

4. w : T (∆)×V → R+ is the seller's expected utility conditional on arriving to period t/∆and

on v in period t/∆ terms.

Note that one can �nd an extended equilibrium collection for every equilibrium collection.

De�nition 12. An potential extended continuous limit is a collection
(
F̄ , F, w, ũ

)
,where:

1. F̄ : R+ → [0, 1] is an absolutely continuous cdf.

2. F : R+ × V → [0, 1] is such that t 7→ F (t, v) is an absolutely continuous cdf.

3. w : R+ × V → R+ and ũ : R+ × V → R are both continuous in their �rst variable.
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We say that
(
F̄ , F, w, ũ

)
is an extended continuous limit of B (0, κ) if there exists a re�ning sequence

of extended equilibrium collections,
{(
F̄n, Fn, wn, ũn

)}∞
n=1

of B (∆n, κ) such that:

1. wnt,v → wt,v and ũ
n
t,v → ut,v for all (t, v) ∈ ∪nT (∆n).

2. F̄n (t)→ F̄ (t) and Fn (t, v)→ F (t, v) for all t and v.

We then say that
{(
F̄n, Fn, wn, ũn

)}∞
n=1

converges to
(
F̄ , F, w, u

)
.

F.3 Proof of theorem 3 and proposition 3

In the following section, we prove the following result that combines Theorem 3 and Proposition 3.

Theorem 11. Let {∆n}∞n=1 be a re�ning sequence, and take
{(
F̄n, Fn, wn, ũn

)}∞
n=1

to be a sequence

of extended equilibrium collections of B (∆n, κ). Then there exists a subsequence
{(
F̄nk , Fnk , wnk , ũnk

)}∞
k=1

that converges to an extended continuous limit of B0 (κ),
(
F̄ , F, w, ũ

)
. Moreover, there exists two

functions: λ̄ : R+ → R+ and λ : R+ × V → R+ such that:

1. λ̄t is the time dependent hazard rate of F̄ , i.e. F̄ (t) = 1− e−
´ t
0
λ̄sds, and λ̄t ≤ 3r

(
vh−κ
κ

)
.

2. λt,v is the time dependent hazard rate of F , i.e. F (t, v) = 1− e−
´ t
0
λs,vds.

Moreover,
(
w, ũ, λ̄, λ

)
satisfy:

3. wt,v =
´∞
t
e−r(s−t)λs,vds

4. ũt,v =
´∞
t
e−r(s−t)

(
λs,v − λ̄s

)
ds

5. λt,v/λ̄t = exp 1
κ (v − κ− wt,v − ũt,v) ∈

[
1
2 , e

v−κ
κ

]
.

6. For every t:

λ̄t =
∑
v

µ0 (v)

(
1− F (t, v)

1− F̄ (t)

)
λt,v

7. λ̄t > 0 and λt,v > 0 for almost all t.

8. λt,v is strictly increasing in v for almost all t.

Proof of Theorem

Proof of parts 1 and 2 Let ∆n be a re�ning sequence,
(
F̄n, Fn, wn, ũn

)
be an extended

collection of B (∆n, κ) for every n. Let (µn, βn, σn) be the sequence of corresponding equilibria,

and let bnt,v := βnt/∆

(
z
t/∆
v , v

)
and πnt =

∑
v µ̄t/∆ (v) bnt,v for every t ∈ T (∆n).

By Helly's selection theorem, there exists a subsequence of
(
F̄nk , Fnk , wnk , ũnk

)
and a �nite

collection of increasing, right-continuous functions Fv and F̄ such that F̄nk (t)→ F̄ (t) for all t for
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which F̄ (t) is continuous, and for every v: Fnk (t, v)→ F (t, v) := Fv (t) for all t for which Fv (t) is

continuous. Let
(
F̄n, Fn, wn, ũn

)
denote this subsequence. For every n, t and v ∈ V de�ne:

λ̄nt = − 1

∆n
ln

(
1− πnd t

∆n
e

)

= − 1

∆n
ln

1− F̄
(⌊

t
∆n

⌋
+ ∆n

)
1− F̄

(⌊
t

∆n

⌋)


λnt,v = − 1

∆n
ln

(
1− bnd t

∆n
e,v

)

and de�ne for every t: Ḡn (t) = 1 − e−
´ t
0
λ̄ns ds and Gn (t, v) = 1 − e−

´ t
0
λns,vds. Note that for every

t ∈ T∆n
:

ˆ t

0

λ̄ns ds =

t/∆∑
j=1

∆n

(
− 1

∆n
ln
(
1− πnj

))

= −
t/∆n∑
j=1

ln
(
1− πnj

)
and therefore:

Ḡn (t) = 1−
t/∆∏
j=1

(
1− πnj

)
= F̄n (t)

and similarly Gnv (t) = Fn (t) for all t ∈ T∆n
. De�ne:

π̄∆n
=

(
1− e−r∆n

)
(vh − κ)

(1− e−r∆n) (vh − κ) + κ

and note that by Claim 5, πnt ≤ 2π̄∆n
for all n. Therefore:

λ̄nt ≤ −
1

∆n
ln (1− 2π̄∆n

)

note that:

1− 2π̄∆n
= 1− 2

( (
1− e−r∆n

)
(vh − κ)

(1− e−r∆n) (vh − κ) + κ

)

=
κ− 2

(
1− e−r∆n

)
(vh − κ)

(1− e−r∆n) (vh − κ) + κ
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and therefore:

− 1

∆n
ln (1− 2π̄∆n

) =
1

∆n

(
ln
((

1− e−r∆n
)

(vh − κ) + κ
)
− ln

(
κ− 2

(
1− e−r∆n

)
(vh − κ)

))
→ 3r

(
vh − κ
κ

)

Similarly, Claim 4 implies that bnm,v ≤ 2e

(
vh−κ
κ

)
π̄∆n

for all n. Therefore:

λns,v ≤ − 1

∆n
ln

(
1− 2e

(
vh−κ
κ

)
ā∆n

)
=

1

∆n

(
ln
((

1− e−r∆n
)

(vh − κ) + κ
)
− ln

(
κ− 2e

(
vh−κ
κ

) (
1− e−r∆n

)
(vh − κ)

))
→

(
1 + 2e

(
vh−κ
κ

))
r

(
vh − κ
κ

)
for all v. Thus, for every ε > 0, there exists an Nε such that for all n > Nε: 0 < λ̄ns ≤ 3r

(
vh−κ
κ

)
+ ε

and 0 < λns,v ≤
(

1 + 2e

(
vh−κ
κ

))
r
(
vh−κ
κ

)
+ ε for all s and v. This implies that:

∥∥λ̄ns ∥∥2
,
∥∥λns,v∥∥2

≤
((

1 + 2e

(
vh−κ
κ

))
r

(
vh − κ
κ

)
+ ε

)2

and therefore, by the sequential Banach-Alaoglu theorem (theorem 10), there exists a subsequence

in which λ̄nk ⇀ λ and λnkv ⇀ λv. Note that ϕ is absolutely continuous with respect to Lebesgue

measure, with density −re−rt. Letting gt (s) = −1[s≤t]
ers

r , note that the linear functional de�ned

by:

|L (f)| =

∣∣∣∣∣
ˆ
R+

gt (s) f (s) dϕ

∣∣∣∣∣
≤

∣∣∣∣ertr
∣∣∣∣
∣∣∣∣∣
ˆ
R+

f (s) dϕ

∣∣∣∣∣ ≤
∣∣∣∣ertr

∣∣∣∣ ‖f‖2
therefore:

´
gt (s) λ̄nks dϕ→

´
gt (s) λ̄sdϕ for all t. However:

ˆ
gt (s) fsdϕ =

ˆ t

0

fsdt

and therefore we've obtain that Ḡnk (t) → 1 − e−
´ t
0
λ̄sdt ≡ Ḡ (t) for all t. Clearly, Ḡ is continuous

everywhere. Since F̄nk (t) = Ḡnk (t) for all t ∈ T∆nk
, this implies that for all t ∈ ∪k≥0T∆nk

:

F̄nk (t) → Ḡ (t), and therefore Ḡ (t) = F̄ (t) for all t ∈ ∪k≥0T∆nk
. For every t /∈ ∪k≥0T∆nk

, there
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exists a sequence
(
tia
)
i≥0

in ∪k≥0T∆nk
such that tia ↓ t. Since F̄ is right-continuous, we have that

F̄
(
tia
)
→ F̄ (t). But F̄

(
tia
)

= Ḡ
(
tia
)
→ Ḡ (t). Therefore: Ḡ (t) = F̄ (t) for all t. A similar argument

establishes that Fnk (t, v)→ F (t, v) = 1− e−
´ t
0
λs,vds for all t.

Proof of parts 3 and 4: Note that for every t ∈ T∆nk
:

ln

(
1− πnkt/∆
1− bnkt/∆,v

)
= ∆

(
λnkt/∆,v − λ̄

nk
t/∆

)
and therefore:

ũnkt,v = κ

∞∑
j=t/∆nk

e−r(j∆nk
−t)∆

(
λnkj∆nk

,v − λ̄
nk
j∆nk

)

let: g∆nk
(t) = − 1

r e
r
(
t−∆nk

⌊
t

∆nk

⌋)
. Then:

ũnkt,v = κert
ˆ ∞
t

g∆nk
(s)
(
λnks,v − λ̄nks

)
dϕ

= κert
(ˆ ∞

t

g∆nk
(s)λnks,vdϕ−

ˆ ∞
t

g∆nk
(s) λ̄nks dϕ

)

however, for every ∆ > ∆nk :
(
g∆nk

(t)
)2

≤ 1
r2 e

2r∆, and therefore by the dominated convergence

theorem: g∆nk
→ − 1

r in L2 (R+,dϕ). Hence, by lemma 44:

ũnkt,v = κert
(ˆ ∞

t

g∆nk
(s)λnks,vdϕ−

ˆ ∞
t

g∆nk
(s) λ̄nks dϕ

)
→ −κe

rt

r

ˆ ∞
t

(
λs,v − λ̄s

)
dϕ = κ

ˆ ∞
t

e−r(s−t)
(
λs,v − λ̄s

)
ds

for all t ∈ ∪k≥0T∆nk
. Similarly, for every t ∈ T∆nk

:

wnkt,v = κ

∞∑
j=t/∆nk

e−r(j∆nk
−t)

(
bj∆nk

,v

1− bj∆nk
,v

)

= κ

∞∑
j=t/∆nk

e−r(j∆nk
−t)
(
e

∆nk
λ
nk
j∆nk

,v − 1
)
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using the mean value theorem, there exists a ∆∗nk ∈ (0,∆nk) such that:

wnkt,v = κert
∞∑

j=t/∆nk

e−rj∆nk∆nkλ
nk
j∆nk

,ve
∆∗nk

λ
nk
j∆nk

,v

= κert
ˆ ∞
t

e
∆∗nk

λ
nk
j∆nk

,vg∆nk
(s)λnkj∆nk

,vdϕ

since we have
(
λnkj∆nk

,v

)2

<

((
1 + 2e

(
vh−κ
κ

))
r
(
vh−κ
κ

)
+ ε

)2

, we can again use the dominated

convergence theorem to obtain that e
∆∗nk

λ
nk
j∆nk

,vg∆nk
→ − 1

r in L2 (R+,dϕ), thereby implying:

wnkt,v → κ
´∞
t
e−r(s−t)λs,vds. For every nk and t /∈ T∆nk

set:

ũnkt,v = ũnk
∆nkdt/∆nke,v

wnkt,v = wnk
∆nkdt/∆nke,v

Clearly, these converge to the obvious extensions of ũt,v and wt,v to all t: ũt,v = κ
´∞
t
e−r(s−t)

(
λs,v − λ̄s

)
ds

and wt,v = κ
´∞
t
e−r(s−t)λs,vds which are continuous.

Proof of parts 5 and 6: For every nk and t (not necessarily in T∆nk
), set: pnkt,v =

exp 1
κ

(
v − κ− wnkt,v − ũ

nk
t,v

)
. Since ũnkt,v → ũt,v and wnkt,v → wt,v, we have that pnkt,v → pt,v ≡

exp 1
κ (v − κ− wt,v − ũt,v). Morevoer, 1

2 ≤ pnkt,v ≤ e
v−κ
κ for all v and t by claim 4, meaning that(

pnkt,v
)2 ≤ e2( v−κκ ). Hence, by the dominated convergence theorem, pnkt,v → pt,v in L2 (R+,dϕ). But

this means that for every g ∈ L2 (R+,dϕ), gtp
nk
t,v → gtpt,v in L

2 (R+,dϕ). Thus, by Lemma 44 and

Riesz representation thoerem (theorem 9) we have that pnkt,vλ̄
nk
t ⇀ pt,vλ̄t. Note, however, that every

t:

pt,v =
1− e−∆nk

λ
nk
t,v

1− e−∆nk
λ̄
nk
t

and therefore by the mean-value theorem, there exists ∆1
nk
,∆2

nk
∈ (0,∆nk) such that:

pnkt,v =
λnkt,ve

−∆1
nk
λ
nk
t,v

λ̄nkt e−∆2
nk
λ̄
nk
t

and therefore:

e
−∆nk

((
1+2e(

vh−κ
κ )

)
r
(
vh−κ
κ

)
+ε

)
λnkt,v < λ̄nkt pnkt,v < λnkt,ve

∆nk

(
3r
(
vh−κ
κ

)
+ε
)
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therefore, for every bounded linear operator L ∈ L2 (R+,dϕ):

L
(
λ̄nkt pnkt,v

)
< e

∆nk

(
3r
(
vh−κ
κ

)
+ε
)
L (λnkv )→ L (λv)

L
(
λ̄nkt pnkt,v

)
> e

−∆nk

((
1+2e(

vh−κ
κ )

)
r
(
vh−κ
κ

)
+ε

)
L (λnkv )→ L (λv)

and therefore pnkv λ̄nk ⇀ λv. Hence, by theorem 7, pt,vλ̄t = λt,v in L
2 (R+,dϕ). Therefore: λt,v/λ̄t =

exp 1
κ (v − κ− wt,v − ũt,v). Moreover, since pnkt,v ∈

[
1
2 , e

v−κ
κ

]
(Claim 4) for all t ∈ T (∆nk) we have

pt,v ∈
[

1
2 , e

v−κ
κ

]
for all t ∈ ∪kT (∆nk) which implies pt,v ∈

[
1
2 , e

v−κ
κ

]
by continuity of pt,v in t. Note

that for every k and every t ∈ T∆k
:

1 =
∑
v

µ0 (v)

(
1− Fnk (t−∆nk , v)

1− F̄nk (t−∆nk)

)
pnkt,v

→
∑
v

µ0 (v)

(
1− F (t, v)

1− F̄ (t)

)
pt,v =

∑
v

µ0 (v)

(
1− F (t, v)

1− F̄ (t)

)
pt,v

which extends to all t by continuity in t of F (t, v), F̄ (t) and pt,v. This implies:

λ̄t =
∑
v

µ0 (v)

(
1− F (t, v)

1− F̄ (t)

)
λt,v

for all t.

Proof of part 7: To see that λ̄t > 0 for almost all t, assume there is an open ball, (t, t+ ε)

such that s ∈ (t, t+ ε) implies λs = 0. Then:

λt,v/λ̄t = exp
1

κ

(
v − κ− e−rε (wt+ε,v + ũt+ε,v)

)
=

(
e
v−κ
κ

)1−e−rε (
λt+ε,v/λ̄t+ε

)e−rε ≥ λt+ε,v/λ̄t+ε
for all v with a strict inequality for vl since

(
λt,vl/λ̄t

)
≤ 1 < e

vl−κ
κ for all t (since pnkt,vl < 1 for all

t ∈ ∪kT (∆nk)). Therefore:

∑
v

µ0 (v) e−
´ t+ε
0 (λs,v−λ̄s)ds

(
λt,v
λ̄t

)
>
∑
v

µ0 (v) e−
´ t+ε
0 (λs,v−λ̄s)ds

(
λt+ε,v
λ̄t+ε

)
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but λ̄s = 0 for all s ∈ (t, t+ ε) implies:

∑
v

µ0 (v) e−
´ t+ε
0 (λs,v−λ̄s)ds

(
λt,v
λ̄t

)
=

∑
v

µ0 (v) e−
´ t
0 (λs,v−λ̄s)ds

(
λt,v
λ̄t

)
= 1

=
∑
v

µ0 (v) e−
´ t+ε
0 (λs,v−λ̄s)ds

(
λt+ε,v
λ̄t+ε

)

a contradiction. Therefore λ̄t > 0 for almost all t.

Proof of Part 8: Suppose there is an open ball (t, t+ ε) for ε > 0 and v < v
′
such that

λs,v = λs,v′ for all s ∈ (t, t+ ε), and λt,v = λt,v′ by continuity of λt,v/λ̄t. Therefore:

1 =
λt,v′

λt,v

= exp
1

κ

(
v
′
− v −

((
wt,v′ + ũt,v′

)
− (wt,v + ũt,v)

))
= exp

1

κ

(
v
′
− v − 2κ

ˆ ∞
t+ε

e−r(s−t)
(
λs,v′ − λs,v

)
ds

)

implying that: κ
´∞
t+ε

e−r(s−t)
(
λs,v′ − λs,v

)
ds = 2

(
v
′ − v

)
> 0. But:

1 ≤ λt+ε,v′

λt+ε,v

= exp
1

κ

(
v
′
− v − 2erεκ

ˆ ∞
t+ε

e−r(s−t)
(
λs,v′ − λs,v

)
ds

)
< exp

1

κ

(
v
′
− v − 2κ

ˆ ∞
t+ε

e−r(s−t)
(
λs,v′ − λs,v

)
ds

)
= 1

since erε > 1, a contradiction. Therefore λt,v is strictly increasing almost everywhere.

Proof that F̄ and F (·, v) are cdfs: Suppose otherwise. Then
(
λt,v/λ̄t

)
≥ 1/2 for all

t and v implies that λ̄t → 0. But, since λ̄t is bounded, we can use the dominated convergence

theorem to obtain that:
(
λt,vl/λ̄t

)
= exp 1

κ

(
vl − κ− κ

´∞
t
e−r(s−t)

(
2λs,vl − λ̄s

)
ds
)
→ e

vl−κ
κ > 1,

a contradiction.

F.4 A few additional properties of extended continuous limits

Let
(
F̄ , F, w, ũ

)
be a continuous time limit of B (0, κ) and take

(
λ̄, λ

)
be the hazard rates from

Theorem 11.
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Lemma 45. For almost all t: wt,vh + ũt,vh < vh − κ.

Proof. By part 5 of Theorem 11:

(
λt,vh/λ̄t

)
= exp

1

κ
(vh − κ− wt,vh − ũt,vh)

Part 6 of Theorem 11 along with λt,v being strictly increasing in v (part 8 of Theorem 11) implies

the desired conclusion.

G Proof of Theorem 4

G.1 Proof of Corollary 2

Let {∆n}∞n=1 be a re�ning sequence, and take {(µn, bn, zn)}∞n=1 to be a sequence of corresponding

equilibria. Let
{(
F̄n, Fn, wn, ũn

)}∞
n=1

be a corresponding sequence of extended equilibrium collec-

tions. Then by Theorem 11 there exists a subsequence {(µnk , bnk , znk)}∞k=1 such that
{(
F̄nk , Fnk , wnk , ũnk

)}∞
k=1

converges to a continuous limit
(
F̄ , F, w, ũ

)
. But:

E [Un1 ] =
∑
v

µ0 (v)wnv,(1/∆n) →
∑
v

µ0 (v)wv,0 = Ū1

E [Un2 ] =
∑
v

µ0 (v) ũnv,(1/∆n) →
∑
v

µ0 (v) ũv,0 = Ū2

as required.

G.2 Proof of Theorem 4

Note that Theorem 11, for every Ū1 and Ū2 of B (0, κ) there exists an extended continuous limit(
F̄ , F, w, ũ

)
of B (0, κ) such that:

Ū1 =
∑
v

µ0 (v)wv,0

Ū2 =
∑
v

µ0 (v) ũv,0

Thus, for every {κn}∞n=1 such that κn → 0 and corresponding sequence of frequent o�er utilities

, let
(
F̄n, Fn, wn, ũn

)
be the corresponding sequence of extended continuous limits of B (0, κn).

Let
(
λ̄n, λn

)
be the hazard rates from Theorem 11 for

(
F̄n, Fn, wn, ũn

)
. Note that for every t:(

λnt,vl/λ̄
n
t

)
∈
[

1
2 , 1
]
, implying that 1

κ

(
vl − κ− wnt,vl − ũ

n
t,vl

)
must remain �nite. As such, wnt,vl +
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ũnt,vl → vl. Since this is true for all t, and:

wnt,vl + ũnt,vl = κn

ˆ t+ε

t

e−r(s−t)
(
2λns,vl − λ̄

n
s

)
ds+ e−rε

(
wnt+ε,vl + ũnt+ε,vl

)
we obtain that:

κn

ˆ t+ε

t

e−r(s−t)
(
2λns,vl − λ̄

n
s

)
ds→

(
1− e−rε

)
vl

for all t and every ε > 0. Note this implies that λ̄nt →∞ for almost all t, since λ̄ns > λns,vl for all s

and therefore:

ˆ t+ε

t

λ̄nt ds =

ˆ t+ε

t

(
2λ̄nt − λ̄nt

)
ds

>

ˆ t+ε

t

(
2λns,vl − λ̄

n
s

)
ds

>

ˆ t+ε

t

e−r(s−t)
(
2λns,vl − λ̄

n
s

)
ds→ lim

n→∞

(
1− e−rε

) vl
κn

=∞

Suppose that there exists a subsequence
(
F̄ k, F k, wk, ũk

)
, an interval [t1, t2], and a Borel measurable

function f : R+ → R satisfying f > 0 almost everywhere in [t1, t2] such that vh−κ−wkt,vh− ũ
k
t,vh

>

f (t) almost everywhere in [t1, t2] for all k larger than some K. Then for k > K:

wkt1,vh + ũkt1,vh >

ˆ t2

t1

e−r(s−t1)κk
(
2λkt,vh − λ̄

k
t

)
ds

≥
ˆ t2

t1

e−r(s−t1)

(
2e

f(s)
κk − 1

)
κkλ̄

k
t ds

≥
ˆ t2

t1

e−r(s−t1) lim inf
k→∞

(
2e

f(s)
κk − 1

)
κkλ̄

k
t ds

where the second inequality follows from Fatou's lemma. By Theorem 11, part 1: κnλ̄
n
t ∈

[0, 3r (vh − κn)] for all t. However, for almost every t we have both f (t) > 0 and, from before:

lim inf
k→∞

κk

ˆ t2

t1

λ̄ksds >
(

1− e−r(t2−t1)
)
vl

implying that: 2κk
´ t2
t1
λ̄kse

f(s)
κk ds → ∞. Thus, wkt1,vh + ũkt1,vh → ∞. But by lemma 45: wkt1,vh +

ukt1,vh < vh, a contradiction. Therefore vh − κ − wnt,vh − ũnt,vh → 0 for almost all t. Since λnt,v
is stricly increasing in v, the di�erence v − κ − wnt,v − ũnt,v is also strictly increasing in v. Thus:

v − κ− wnt,v − ũnt,v → 0 for all v for almost all t. But this implies that for almost all t:

wnt,v + ũnt,v −
(
wnt,vl + ũnt,vl

)
→ v − vl
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which, since ũnt,v − ũnt,vl =
´∞
t
e−r(s−t)

(
λns,v − λns,vl

)
ds = wnt,v − wnt,vl implies:

wnt,v − wnt,vl →
v − vl

2

for almost all t and all v. Therefore, for every t, s > 0:
(
wnt,v − wnt,vl

)
− e−rs

(
wnt+s,v − wnt+s,vl

)
converges to (1− e−rs)

(
v−vl

2

)
. Note that for every n, and almost every t > ε > 0:

ˆ t

0

(
λns,v − λns,vl

)
ds >

ˆ t

ε

(
λns,v − λns,vl

)
ds

>

ˆ t

ε

e−r(s−ε)
(
λns,v − λns,vl

)
ds

=
1

κn

((
wnε,v − wnε,vl

)
− e−r(t−ε)

(
wnt,v − wnt,vl

))
→∞

which implies that:
µ0 (v) (1− Fn (t, v))

µ0 (vl) (1− Fn (t, vl))
→ 0

for almost all t and for all v > vl. Therefore:

1− F̄n (t)

1− Fn (t, vl)
=

∑
v

µ0 (v)

(
1− Fn (t, v)

1− Fn (t, vl)

)
= µ0 (vl) +

∑
v>vl

µ0 (v)

(
1− Fn (t, v)

1− Fn (t, vl)

)
→ µ0 (vl)

And therefore:

0 ≤

(∑
v

(
µ0 (v) (1− Fn (t, v))

1− F̄n (t)

)
ũnt,v

)
− ũnt,vl

=

(
1− F̄n (t)

1− Fn (t, vl)

∑
v

(
µ0 (v) (1− Fn (t, v))

1− Fn (t, vl)

)
ũnt,v

)
− ũnt,vl

= µ0 (v)

(
1− Fnvl (t)

1− F̄n (t)

)
ũnt,vl

+

(
1− F̄n (t)

1− Fnvl (t)

)∑
v>vl

(
µ0 (v) (1− Fnv (t))

1− Fnvl (t)

)
ũnt,v − ũnt,vl

→ 0
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by Theorem 11 parts 4, 6 and 8:

ũt,vl =

ˆ ∞
t

e−r(s−t)
(
λs,vl − λ̄s

)
ds < 0

and:

∑
v

µ0 (v)

(
1− Fn (t, v)

1− F̄n (t)

)
ũnt,v =

ˆ ∞
t

e−r(s−t)

(∑
v

µ0 (v)

(
1− Fn (t, v)

1− F̄n (t)

)
λs,v − λ̄s

)
ds

>

ˆ ∞
t

e−r(s−t)

(∑
v

µ0 (v)

(
1− Fn (s, v)

1− F̄n (s)

)
λs,v − λ̄s

)
ds

= 0

and therefore:

0 ≤ −ũnt,vl ≤

(∑
v

(
µ0 (v) (1− Fnv (t))

1− F̄n (t)

)
ũnt,v

)
− ũnt,vl

for all n. But this implies: limn→0 ũ
n
t,vl
→ 0 for almost all t. This means that: wnt,vl → vl for almost

all t, and therefore wnt,v → v+vl
2 for all v. To extend to time 0, note �rst that

∑
v µ0 (v)

(
λn0,v/λ̄

n
0

)
=

1 for all n and
(
λn0,v/λ̄

n
0

)
≥ 1

2 for all v implies that exp 1
κ

(
v − κ− wn0,v − ũn0,v

)
converges to a

strictly positive but �nite number, and therefore v − κn − wn0,v − ũn0,v → 0. As such, we have:

wn0,v − wn0,vl →
1
2 (v − vl) for all v. Note that for every t > 0:

0 > ũn0,vl = κn

ˆ t

0

e−rs
(
λns,vl − λ̄

n
s

)
ds+ e−rtunt,vl

> κn

ˆ t

0

e−rs
(
λns,vl − λ

n
s,vh

)
λns ds+ e−rtunt,vl

=
((
wn0,vh − w

n
0,vl

)
− e−rt

(
wnt,vh − w

n
t,vl

))
+ e−rtunt,vl

→ −
(
1− e−rt

)(vh − vl
2

)
taking t→ 0 then gives ũn0,vl → 0. But this implies wn0,vl → vl, and therefore wn0,v → v+vl

2 for all v,

which imples ũn0,v → v−vl
2 since wn0,v + ũn0,v → v. The Theorem then follows from:

Ūns =
∑
v

µ0 (v)wn0,v

Ūnb =
∑
v

µ0 (v) ũn0,v

for all n.
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