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Abstract

This paper explores the consequences of information in sealed bid first price auc-

tions. For a given symmetric and arbitrarily correlated prior distribution over val-

uations, we characterize the set of possible outcomes that can arise in a Bayesian

equilibrium for some information structure. In particular, we characterize maximum

and minimum revenue across all information structures when bidders may not know

their own values, and maximum revenue when they do know their values. Revenue is

maximized when buyers know who has the highest valuation, but the highest valuation

buyer has partial information about others’ values. Revenue is minimized when buyers

are uncertain about whether they will win or lose and incentive constraints are binding

for all upward bid deviations.

We provide further analytic results on possible welfare outcomes and report com-

putational methods which work when we do not have analytic solutions. Many of our

results generalize to asymmetric value distributions. We apply these results to study

how entry fees and reserve prices impact the welfare bounds.
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1 Introduction

The first price auction is an important institution used in a wide variety of settings. Its

theoretical properties have been extensively studied for the last fifty years; it is a leading

example in the expanding theoretical and empirical literature on auctions. Yet it may be

argued that its properties are not well-understood outside of relatively special cases. Under

complete information, the auction reduces to the straightforward problem of Bertrand com-

petition. Under incomplete information, most work on private value first price auctions is

carried out under the assumption of independent private values.1 While the independence

assumption is strong, a far more serious limitation of this environment is that bidders know

nothing about others’ valuations. In first price auctions, unlike in second price auctions, bid-

ders’ information about others’ values is of first order strategic importance. Existing work

with private values but neither complete nor no information about others’ values—discussed

further below—only deals with special cases. Results with interdependent values also rely

on the assumption of one dimensional types, which means that there is a one-to-one map

between buyers’ information about their own values and their information about others’

values. Significant further restrictions are also required on the nature of the correlation.2

In this paper, we derive results about equilibria that hold across all common prior in-

formation structures. Our results cover two cases. In the known values case, bidders are

assumed to know their own values for the object being auctioned. We study what can happen

for all information structures specifying bidders’ information about other bidders’ values, for

any given joint prior distribution of values. This model thus generalizes the classical analysis

of private value auctions.3 In the unknown values case, we allow for the possibility that bid-

ders do not necessarily know their own values. Unknown values therefore embeds all possible

interdependent values environments, e.g., the case of pure common values. For each scenario,

our analytic results focus on the welfare outcomes of revenue and the bidders’ surpluses. We

identify the information structures and Bayesian equilibria that generate extreme points of

the set of possible surplus and revenue pairs. We also use computational methods to explore

features of the model for which analytical results are unavailable.

It is useful start with a classical example, which we shall return to throughout the paper

to illustrate our results. Suppose that there are two bidders in a first price auction, with

values independently and uniformly distributed between 0 and 1. Figure 1 describes the set

1See Kaplan and Zamir (2014) for a review of recent developments in the theory of first price auctions.
2The classic analysis of Milgrom and Weber (1982) relies on a strong affiliation restriction.
3Throughout, we will use the term private values to denote an information structure in which each bidder

receives a signal which is equal to their own value. Bidders therefore form beliefs about others’ values (and
hence others’ signals) through Bayesian updating from the prior. In contrast, a known values model may
involve the bidders obtaining additional signals about others’ values and beliefs.
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Figure 1: The set of revenue/total bidder surplus pairs that can arise in a BCE. Computed
for uniform distribution with grids of 10 valuations and 50 bids between 0 and 1. The axes
have been re-scaled to match moments with the continuum limit; for the discretized example,
the efficient surplus and minimum surplus are respectively 41/60 and 19/60, as opposed to
their limit values of 2/3 and 1/3.

of pairs of expected revenue and expected total bidder surplus that can arise in this setting.

Feasibility alone will always impose some elementary restrictions. The sum of revenue and

bidder surplus cannot be driven above the expectation of the highest value—2/3 in the

example. Since the first price auction without reserve price always allocates the object to

some bidder, the sum of revenue and bidder surplus cannot fall below the expected lowest

valuation—1/3 in this example. Also, it is not feasible for revenue to fall below zero, and

individual rationality of bidders implies that bidder surplus cannot fall below zero as well.

Thus, the green trapezoid represents restrictions on revenue and bidder surplus that are

implied by feasibility and participation alone. Now, under either complete information or

under independent private values, in which bidders know their own value but not the other

bidder’s value, revenue equals the expectation of the lower value (1/3), while expected bidder

surplus is the difference between the efficient surplus (2/3) and revenue (1/3). This outcome

is represented as point A in Figure 1. Also shown in Figure 1 are the sets of surplus-revenue

pairs that can arise in equilibrium for any information structure, with the larger blue region

corresponding to the unknown values case and the smaller red region corresponding to the

known values case. Note that while we use this leading example to motivate our results,
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our results apply to the case with many bidders with general and arbitrarily correlated

distributions of values.

We will start by giving some intuition for how revenue could be increased (and bidder

surplus decreased) while remaining on the efficiency frontier, so that we move to the north-

west from point A in Figure 1. Suppose that in the uniform example each bidder learns if

they have the high or the low value. In addition, if the low value was relatively close to

the high value (in particular, greater than one half of the high value), then the high value

bidder learns the low value precisely. But if the low value is low relative to the high value

(in particular, less than half of the high value), then the high value bidder only learns that

the low value is less than half his value. In the equilibrium we construct for this information

structure, the low value bidder will always lose and any bid that is weakly less than the

value is optimal, regardless of what else he knows about the high value. If the high value

bidder knows the low value, she will—as in the complete information case—bid the low value,

which is supported by the low type’s randomizing close to his value. If the high type does

not know the low value, her belief will be that it is uniformly distributed between 0 and

half her (high) value v, and the low type will be bidding his value. But the high type’s best

response in this case is to bid v/2: (i) bidding v/2 will give probability 1 of winning, so there

is no incentive to bid higher; (ii) bidding b < v/2 will give a probability of winning of 2b/v

and thus expected surplus (v − b) 2b/v, which is maximized by setting b = v/2. One can

verify that this gives rise to point B in Figure 1, where revenue is 5/12 and bidder surplus is

1/4.4 An intuition from this example is that giving bidders information about their rank and

giving the highest value bidder only partial information about lower values increases revenue

and reduces bidder surplus by inducing bidders to always bid more than under complete

information while maintaining efficiency.

Our first main result is a characterization of the maximal revenue in the known values

scenario. To establish this result, we first note an easy lower bound on bidder surplus. It

is always an option for a bidder to choose his bid as a function of his value alone and not

condition on his information about other bidders’ values. Even if the bidder is as pessimistic

as possible about others’ strategies—believing that other bidders will all bid their values—

such a bidder can guarantee himself a certain expected surplus as a function of his value.

Now, an ex-ante lower bound on that bidder’s surplus is the expectation of that value

dependent minimum surplus.5 Moreover, an upper bound on revenue is the efficient surplus

minus the sum of all bidders’ surplus lower bounds. In fact, we construct an information

structure and equilibrium—generalizing that of the previous paragraph—where this bound

4A formal version of this example is discussed in Appendix B.
5We are grateful to Satoru Takahashi for suggesting this bound to us.
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is exactly attained: Each bidder observes if he has the highest value or not, and those who

do not have the highest value always lose and bid their value. If the highest valuation bidder

knew nothing more, the optimal shading of his bid would mean that he would sometimes

lose to lower valuation bidders, which would undermine the proposed strategies for those

with low valuations. If the highest valuation bidder knew the second highest value precisely,

on the other hand, he would bid that value and get more surplus than his lower bound. We

show, however, that there is an intermediate amount of information for the highest valuation

bidder such that he always bids more than the second highest value, and therefore wins the

auction, but is always indifferent between his equilibrium bid and the bid associated with his

surplus lower bound for that value. Thus, the allocation is efficient, all bidders get only their

lower bound surplus, and revenue attains its upper bound. This argument and result holds

for any number of bidders and any distribution of private values. In the uniform example,

this gives revenue of 1/2 and bidder surplus of 1/6 and is represented by point C in Figure

1.

We now give some intuition for how revenue could be decreased (and bidder surplus

increased) while again remaining on the efficiency frontier, so that we move to the southeast

from point A in Figure 1. Suppose that in the uniform example, each bidder observed a signal

of the other bidder’s value. With high probability, each bidder’s signal is equal to the true

value of the other bidder. However, with low probability, both bidders observe signals which

are below both bidders’ values, with the signal of the high value bidder above the signal of

the low value bidder. There is an equilibrium where each bidder bids the minimum of his

valuation and his signal of the other bidder’s value. If it were not for the low probability

event, this would correspond to equilibrium in the complete information case. But with

small probability, the high value bidder will be bidding less than the low value bidder’s value

and winning. Since the allocation is still efficient and winning bids are shifted downwards,

revenue must decrease. In order for this to be an equilibrium, a bidder must be unsure if

he has the high value or the low value; and we must ensure that a bidder does not have an

incentive to deviate to a higher bid so that he wins even if the other bidder has a higher

value.6 This will be true only if the probability of the low signal event is small enough. An

intuition from this example is that in order to raise revenue, bidders must be uncertain about

their rank and the informational content of the signal; and the key constraint on decreasing

revenue is the incentive to bidders to increase their bids in order to win even if they have

the low value.

Our second main result is a characterization of the minimal revenue in the unknown

values scenario. We describe what we know about minimum revenue in the known values

6A fully specified and formal version of this example is discussed in Appendix B.
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case below, but we focus on the unknown values case because we have a sharp and insightful

characterization. Here our approach is to study a relaxation of the original problem where

we ignore bidders’ incentives to deviate to lower bids and focus only on bidders’ incentives

to deviate to higher bids. Moreover, we restrict attention to what we call uniform upward

deviations, in which, for some bid b, the bidder deviates up to b whenever his strategy

specifies that he should bid less than or equal to b. In an equilibrium, it must be the

case that such a deviation does not increase bidder surplus in ex-ante terms. We show

that revenue is minimized among solutions to this relaxed program only if all these uniform

upward incentive constraints are binding. This in turn implies that minimum revenue arising

in the relaxed program can be characterized as the solution to a differential equation. We

can then establish that if a certain revenue can be attained in a solution to the relaxed

program, we can also construct an information structure and strategy profile where that

minimum revenue is attained in a Bayes Nash equilibrium, so that all other deviations

(including deviations to lower bids) are not optimal. A key feature of this construction is

that bidders are uncertain about whether they have the highest valuation or not and they

are indifferent between all bids between their equilibrium bid and the maximum bid that

is made in equilibrium. Moreover, this information structure and strategy profile always

induce an efficient allocation, implying that bidder surplus is maximized. In the uniform

example, minimum revenue is approximately 0.096 and maximum bidder surplus is 0.571,

and is represented by point D in Figure 1.

The unknown values minimum revenue immediately implies a lower bound on the known

values minimum revenue. As we can see in the uniform example, this lower bound is not

tight. We also explore the extent to which our methodology can be applied to understand

minimum revenue in the known values case. When bidders can have only one of two possible

values,7 we can use the relaxed approach to solve for the minimum revenue exactly. Beyond

binary values, there are certain cases for which we can solve a generalized relaxed program

to provide a lower bond on revenue. However, this bound will generally not be tight. Point

E in Figure 1 describes minimum revenue in the uniform example in the known values case,

but is identified by computation and not an analytic characterization.

The set of points in Figure 1 where bidder surplus is driven to zero under the unknown

values scenario are also of interest. If bidders know nothing about their own and others’

values, and the distribution of values is symmetric, then the problem reduces to Bertrand

competition based on expected values. Bidder surplus will be zero and, because the allocation

does not depend on ex-post values, the outcome will be inefficient. In the uniform example,

each bidder will bid his expected value of 1/2 and get zero expected surplus. This corresponds

7Studied earlier by Fang and Morris (2006) and Āzacis and Vida (2015).
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to point G in Figure 1. Alternatively, consider an information structure when both bidders

are told only the highest value, without being told to whom it belongs. If we suppose that ties

are broken in favor of the bidder with the highest value, then there is an equilibrium where

everyone bids that highest value, bidder surplus is zero, and revenue is equal to the efficient

surplus. Indeed, we show in the body of the paper how this outcome can be approximated

even when ties are broken uniformly. This corresponds to point F in Figure 1. Finally, in the

two player and independent value case, if each bidder is told only the other bidder’s value,

there is a symmetric equilibrium where bids are monotonic in bidder’s information about

others’ values, bidders are indifferent to all bids, the allocation is maximally inefficient. In

the uniform example, this corresponds to point H in Figure 1.

In analyzing what can happen in all equilibria for all information structures under the

two scenarios, we can restrict attention to information structures where bidders’ signals are

identified with the bids that they are going to make in equilibrium. A more abstract way

of making this observation is that if we fix an incomplete information game, including a

description of some initial information, there is an equivalence between the set of what can

happen in all equilibria where players observe more information and a class of incomplete

information correlated equilibria. Bergemann and Morris (2013) labeled this class of incom-

plete information correlated equilibria Bayes correlated equilibria (BCE), and Bergemann

and Morris (2015) consider properties of BCE in general games.8 This paper can be seen as

an application of this methodology in a setting that is significantly more challenging than

previous applications. Our characterization of maximum revenue in the known values sce-

nario exploits insights from Bergemann, Brooks, and Morris (2015a), but characterization

of minimum revenue in the unknown values case develops new arguments. A significant

advantage of this approach is that solving for all equilibria under all information structures

corresponds to solving a linear programming program. We exploit this structure in our

computation of Bayes correlated equilibria.9 In fact, we were able to identify analytic solu-

tions for general settings by discovering structure in computations. An abstract observation

about BCE in Bergemann and Morris (2015) is that more information always reduces the

set of BCE: intuitively, more information can only impose more incentive constraints. The

inclusion of the set of possible welfare outcomes under the known values scenario in the

corresponding set for unknown values is a clean illustration of that insight.

8This builds on the work of Forges (1993) whose “Bayesian solution” characterizes what can happen if
players can observe more information but only information that is measurable with respect to the join of
players’ information. Thus, BCE and the Bayesian solution coincide under known values but diverge under
unknown values.

9A series of computation tools for computing BCE in general games is available through the authors’
websites.

7



We have motivated our results with an example involving a continuum of values and a

continuum of bids. In the formal analysis of this paper, however, we focus on the case of

a finite set of values and a continuum of bids.10 This modelling choice allows us to state

our main results and arguments in the most transparent way. In our computations, we work

with finite values and finite bids, but we can assume fine grids in each case. The extension of

our results to continuum values and continuum bids raises complications in the statement of

our results but does not change the structure of equilibria. We will occasionally refer again

to continuum bid case, and the uniform example discussed above, to develop intuition for

our results.

Our primary focus in this paper is on developing insights about how information can

affect outcomes in the first price auction and on the qualitative properties of the informa-

tion structure that lead to different outcomes. There are many different uses for which our

methodology could be used. For example, it can be used for counterfactual exercises, for

identifying restrictions on possible value distributions, or for comparison with other mech-

anisms. We present one such illustration in this paper, examining what happens to the

maximum possible and minimum possible revenue in the first price auction if a reserve price

is added. A striking finding for the uniform example is that minimum possible revenue is

single peaked and is maximized at a reserve price which is higher that the optimal reserve

price under the Myersonian optimal auction. The maximum possible revenue is decreasing

in the reserve price is decreasing in the reserve price, but the decrease in maximum possible

revenue is small compared with the increase in minimum possible revenue to its maximum.

In this sense, high reserve prices deliver more robust revenue performance.

The present inquiry is related to a number of papers which have studied behavior in the

first price auction under alternative information structures. First, there is a small number

of papers considering the privates value case where bidders have partial information about

other bidders’ independent values. Landsberger et al. (2001) consider the case where bidders

observe their values and also their rank (i.e., whether they have the highest valuation). They

showed that revenue increases when bidders know their ranks, although it induces inefficiency.

Kim and Che (2004) consider the case where bidders are divided into groups and each bidder

knows the valuations of those in his group, but knows nothing about the valuations of those

outside the group. Fang and Morris (2006) and Āzacis and Vida (2015) analyze the two

bidder binary value case where each bidder observes a conditionally independent signal of

the other bidder’s valuation. In each case, revenue falls and bidder surplus increases.

10This requires a technical extension of the definition and characterization of Bayes correlated equilibrium
from finite action to continuum action games, an extension that is described in our note Bergemann, Brooks,
and Morris (2015b).
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The rest of this paper proceeds as follows. In Section 2, we describe our basic model

of the first price auction, with a fixed distribution of ex-post values but many possible

specifications of beliefs. In Section 3, we characterize tight bounds on maximum revenue

and minimum bidder surplus over all possible specifications of bidders’ beliefs consistent

with a fixed ex-post distribution of values, first for the no-information model and then for

the known values model. In Section 4, we repeat the analysis for the objectives of minimum

revenue and maximum bidder surplus. Section 5 presents extensions of the model, and

Section 6 concludes. Omitted proofs are contained in the Appendix.

2 Model

There are N potential buyers of a single unit of a good that can be produced at zero marginal

cost. The bidders are indexed by i ∈ {1, . . . , N}. Bidders’ values are drawn from a compact

set V ⊂ R+ = [0,∞). For all of our formal results, we will assume that V is finite and

denumerated as

V = {v1, . . . , vK},

where K is the number of possible valuations. The profile of valuations is v = (v1, . . . , vN) ∈
V N . There is a fixed common prior joint distribution over values which we denote by p ∈
∆
(
V N
)
, which is common knowledge among the bidders.11 Throughout most of the paper,

we will assume that p is symmetric. Many of our results extend to asymmetric distributions

of values, which we will discuss further in Section 5.5. The buyers are participating in a first

price auction in which they submit real-valued bids bi ∈ R+.12 For a profile of bids b ∈ RN
+ ,

we denote the set of high bidders by W (b) = {i |bi = max b}. Bidder i receives the good

with probability

qi(b) =
Ii∈W (b)

|W (b)|
,

where the indicator function IX is equal to 1 if the event X occurs and zero otherwise. In

other words, the high bidder receives the good and ties are broken uniformly.

We assume that bidders may receive additional information about the profile of values,

beyond knowing the prior distribution. This additional information comes in the form of

signals, which we will call types, that are correlated with the profile of valuations. A type

11For a metric space X, ∆(X) denotes the set of Borel measures on X.
12The assumption that bids are non-negative is without loss of generality. We can equivalently assume

that the set of possible bids is bounded below and contains the convex hull of V .
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space is a collection T =
(
{Ti}Ni=1, µ

)
, where the Ti are compact metric spaces and µ :

V N → ∆ (T ) maps profiles of values into Borel probability measures over T = ×Ni=1Ti.

The interpretation is that Ti is the set of bidder i’s types and µ describes the conditional

distribution of types given values. Write µi (· |vi ) ∈ ∆ (Ti) for a version of the conditional

distribution of buyer i’s type given buyer i’s value, i.e., µi almost surely satisfies

µi(X|vi) =

∑
v−i∈V N−1 p(vi, v−i)µ (X × T−i|vi, v−i)∑

v−i∈V N−1 p(vi, v−i)
.

for all Borel subsets X ⊆ Ti. Let φi(vi|ti) be a version of the conditional distribution of vi

given ti. We will say that T is a known values type space if for all ti ∈ Ti the support of the

posterior belief φi (· |ti ) is a singleton for all ti, i.e., suppφi (· |ti ) = {vi}. Otherwise, T is an

unknown values type space.

For a fixed type space T , the first price auction is a game of incomplete information in

which bidders’ strategies are measurable mappings βi : Ti → ∆(B). Let Bi denote the set of

strategies for buyer i. Fixing a profile of strategies β ∈ B = ×Ni=1Bi, bidder i’s surplus from

the auction is

Ui(β) =
∑
v∈V N

p(v)

ˆ
t∈T

µ(dt|v)

ˆ
b∈RN+

qi(b) (vi − bi) β(db|t),

where β is the unique measure induced on the product σ-algebra by the product measure

β1 × · · · × βN (cf. Cohn, 1980, Theorem 5.1.4).

We shall restrict attention to strategies which satisfy a version of weakly undominated.

In particular, we require that for every type ti, the support of the possibly randomized bid

does not exceed the largest possible valuation in the support of his posterior beliefs given ti,

or:

supp βi (ti) ⊆ [0,max suppφi(·|ti)] . (1)

This restriction is weaker than weakly undominated; in the case of complete information,

it allows bidder i to bid up to and including his valuation vi, whereas the conventional

definition of weakly undominated would also rule out bidding vi, and thereby exclude the

unique equilibrium strategy in which two (or more) bidders who share the highest valuation

bid their valuation.
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The profile β ∈ B is a Bayes Nash equilibrium (BNE) if and only if, for all i,

∑
v∈V N

p(v)

ˆ
t∈T

µ(dt|v)

ˆ
b∈RN+

qi(b) (vi − bi) β(db|t)

≥
∑
v∈V N

p(v)

ˆ
t∈T

µ(dt|v)

ˆ
b∈RN+

qi(b) (vi − bi) (β′i, β−i)(db|t)
(2)

for all β′i ∈ Bi.
Let F : V N → ∆

(
RN

+

)
denote a mapping from profiles of values to probability distribu-

tions over profiles of bids. We say that F is a Bayes correlated equilibrium (BCE) if, for all

Borel measurable deviations σi : R+ → R+,

∑
v∈V N

p(v)

ˆ
b∈RN+

qi(b)(vi − bi)F (db|v)

≥
∑
v∈V N

p(v)

ˆ
b∈RN+

qi(σi(bi), b−i) (vi − σi(bi))F (db|v).

(3.1)

In addition, F is a known values BCE if for all vi ∈ V and for all σi : R+ → R+ that are

Borel measurable,

∑
v−i∈V N−1

p(vi, v−i)

ˆ
b∈RN+

qi(b) (vi − bi)F (db|vi, v−i)

≥
∑

v−i∈V N−1

p(vi, v−i)

ˆ
b∈RN+

qi(σi(bi), b−i) (vi − σi(bi))F (db|vi, v−i).
(3.2)

We note that the set of BCE is the intersection of the set of mappings from V N to Borel

measures over bid profiles with an (infinite) family of linear inequalities (3). Thus, the set

of BCE is convex and bounded, although because the payoff function is discontinuous, the

set of BCE is not compact.

Let us interpret these conditions. A BCE is an extension of the notion of correlated

equilibrium to games of incomplete information, where players’ actions are allowed to be

correlated, not just with one another, but also with the underlying payoff relevant states.

The incentive compatibility condition is that conditional on the equilibrium action, that ac-

tion must be optimal. The equilibrium can be viewed as a set of private bid recommendations

offered by a disinterested mediator who knows the true profile of values and privately recom-

mends bids to each bidder. A BCE is a recommendation rule for the mediator such that the

bidders would want to follow the recommendation. The distinction between unknown and
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known value BCE is that the known value definition requires that each recommendation is

followed even when each bidder knows his own value.

BCE are useful for our analysis because of the epistemic relationship between the set of

BCE and the set of outcomes that can be induced by a BNE for some type space T . In

particular, let us say that the conditional distributions F : V N → ∆
(
RN

+

)
are induced by

the type space T and the BNE β if for all v and Borel subsets X ⊆ RN
+ ,

F (X|v) =

ˆ
t∈T

β(X|t)µ(dt|v).

In earlier work, Bergemann and Morris (2015) define the notion of Bayes correlated equilibria

and investigate the relationship between BCE and Bayes Nash equilibria in canonical finite

player, finite action, finite state games. In the language of the current setting, their Theorem

1 can be restated as follows:

Theorem 1 (Bayes Correlated Equilibrium). F is induced by some (known value) type space

T and some BNE β if and only if F is an unknown (known) value BCE.

In a companion note, Bergemann, Brooks, and Morris (2015b), we extend this and other

results from finite games to infinite games, in particular infinite actions and infinite states.

Our goal is to analyze how welfare varies across type spaces and BNE for a fixed distri-

bution over values. Because of Theorem 1, we can equivalently ask how welfare varies across

BCE. The welfare outcomes that we will investigate are:

(i) bidder surplus: U(F ) =
N∑
i=1

∑
v∈V N

p(v)

ˆ
b∈RN+

qi(b) (vi − bi)F (db|v);

(ii) revenue: R(F ) =
N∑
i=1

∑
v∈V N

p(v)

ˆ
b∈RN+

qi(b)biF (db|t);

(iii) total surplus: S(F ) =
N∑
i=1

∑
v∈V N

p(v)

ˆ
b∈RN+

qi(b)viF (db|t).

We will study these objectives for both known and unknown value BCE.

3 Maximum Revenue and Minimum Bidder Surplus

In this section we explore the limits of how large revenue can be and how low bidder surplus

can be across all possible information structures. We begin with the known values model.

Bidders can always guarantee themselves positive surplus due to the information about their
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own values. We will characterize the exact limits of how much surplus the bidders need to

receive and how much revenue the seller can earn. We illustrate the result with an example of

two bidders with uniformly distributed values. We then briefly consider the unknown values

model, for which there are trivial information structures that yield zero bidder surplus.

Moreover, we can construct beliefs such that the seller extracts all the surplus.

3.1 Known Values

In the known values model, each bidder i is assumed to know his value vi and that the profile

of valuations is drawn from the common prior p. As each bidder always know his value for

the object, any weakly undominated strategy profile requires that the bidders never bid

above their values. Thus, each bidder knows that their opponents cannot be using a more

aggressive strategy than bidding their values. If this were in fact the strategy that others

are using, bidder i would face a bid distribution with cumulative distribution

P
(2)
i (b|vi) ,

∑
{v−i∈V N−1|maxj 6=i vj≤b}

p(vi, v−i).

Against this most aggressive bidding behavior by his competitors, bidder i would optimally

bid

b∗i (vi) , max

{
arg max
b∈R+

{
(vi − b)P (2)

i (b|vi)
}}

, (4)

where we take without loss of generality the largest optimal bid in case there are multiple

solutions. Note that the optimal bid must be attained at a value vk
∗
i (vi) ∈ V . It follows that

bidder i with value vi must receive in any equilibrium at least the surplus

U i(vi) , (vi − b∗i (vi))P
(2)
i (b∗i (vi)|vi).

For if the equilibrium surplus were lower, bidder i could deviate upwards to bi = b∗i (vi) + ε

and guarantee himself surplus arbitrarily close to U i(vi). This implies that in ex-ante terms,

bidder i must receive at least

U i ,
∑
v∈V N

p(v)U i(vi).

The main result of this section is to argue that this lower bound is in fact tight: there are

BCE in which bidder i receives exactly U i in surplus. Moreover, it is possible for all bidders to

receive this surplus at the same time, and in an equilibrium in which the allocation is socially

efficient. Thus, these equilibria simultaneously minimize bidder surplus and maximize the
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revenue of the seller at the level

R = S −
N∑
i=1

U i. (5)

We should emphasize two aspects of the best response b∗i (vi). First, the the strategy

profile in which each bidder bids according to b∗i (vi) clearly does not form an equilibrium

profile. After all, each bidder’s best response b∗i (vi) will generally involve shading, whereas

the conjecture that justifies b∗i (vi) is that others are bidding their values. Second, the using

the strategy b∗i (vi) against the conjecture of all other bidders bidding their value would

not yield an efficient allocation either, as bidder i would sometimes loose against bidders

with lower values. In the equilibrium we construct below, the losing bidders will know that

they face a bidder with a higher valuation, and will have an incentive to bid their value,

thus justifying the conjecture by the winning bidder implicit in (4). Moreover, the winning

bidder will know that he has the highest valuation and will have some additional information

about the conditional distribution about the losing bidders’ valuation that will lead him to

bid higher than suggested by b∗i (vi), and in fact sufficiently high to maintain an efficient

outcome against the losing bidders. Thus, we will re-establish efficiency and increase the

bids of the winning bidder to attain the upper bound in the seller’s revenue as suggested by

(5).

Theorem 2 (Max revenue and min bidder surplus for known values). For any distribution p,

there exists a BCE in which Ui(F ) = U i for all i and R(F ) = R. This BCE simultaneously

minimizes bidders’ surpluses and maximizes revenue over all BCE.

We construct the information structure that attains the revenue upper bound of Theorem

2 in Appendix A, and here we will give an informal description. The BCE that maximizes

the revenue of the seller—and concurrently minimizes the surplus of the bidders—can alter-

natively be represented by a Bayes Nash equilibrium with an information structure that is

close, but in one important aspect, distinct from the complete information structure. In the

information structure that we construct, every losing bidder is informed about the valua-

tions of all of the bidders. The winning bidder, on the other hand, is informed about the fact

that his valuation is the highest valuation, but he is not informed about the realized second

highest valuation. More precisely, relative to just knowing the conditional distribution of v(2)

given his own valuation vi, he receives some additional information about the distribution

of losing valuations that is sufficient to make him indifferent between bidding b∗i (vi) and

bidding vl with b∗i (vi) < vl. Namely, when the winning bidder is supposed to make a bid

bi = vl, the conditional distribution of second highest distribution “oversamples” vl relative

to its true frequency in the conditional distribution of v(2). In particular, the ratio of mass
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of type vl to the mass of valuations vl
′

with l′ < l is only 1 : αl, with αl < 1, as opposed

to 1 : 1 according to the prior distribution. The weight αl is chosen to satisfy the following

indifference condition:

(vi − vl)
(
αlP

(2)
i (vl−1|vi) + p

(2)
i (vl|vi)

)
= (vi − b∗i (vi))αlP

(2)
i (b∗i (vi)|vi). (6)

As long as b∗i (vi) < vl, this condition implies that αl < 1, because at αl, we know that the

winning bidder would not chose bi = vl but rather bi = b∗i (vi). But clearly, for every vl ≤ vi,

we can find αl ∈ [0, 1) such that oversampling the highest valuation vl and keeping all the

lower valuations in the same proportion as they appear in the conditional distribution of

v(2) guarantees the indifference. Thus, when the winning bidder makes a bid bi = vl, he

knows that with sufficiently high probability the second highest valuations is vl and hence

he does not have an incentive to lower his bid below vl. As in the complete information

structure, the winning bidder knows that with high probability his bid is just sufficient to

fend off the second highest valuation vl, but importantly, there is some residual uncertainty,

expressed by αl > 0, that the second highest valuation is below vl. We can now see how this

information structure induces larger revenues for the seller than the complete information

structure. Namely, the residual uncertainty about whether the second highest valuation is

indeed vl or below vl induces the winner to bid vl, even though a lower bid, one that would

just match the second highest valuation would sometimes have sufficed to win the auction.

We note that whenever we oversample vl relative to its frequency in the conditional

distribution of v(2), we maintain the relative proportions of valuations below vl as they

appear in the conditional distribution of v(2). Thus, the indifference condition (6) suggests an

algorithm to construct the information structure for the winning bidder. Namely, start with

the highest possible bid for winning bidder vi, clearly bi = vi, and lower the winning bid bi

gradually until bi reaches b∗i (vi). At each bid increment bi = vl, the remaining second highest

valuations vl are exhausted and all that remains are valuations below vl (importantly in their

original proportion according to the conditional distribution of v(2)). When the algorithm

finally reaches the lowest bid recommendation bi = b∗i (vi), by construction αk
∗
i (vi) = 1, and

all the remaining second highest valuations are recovered.

From the point of view of the bidder with the second highest valuation v(2), who is one

of the losing bidders, the distribution of the winning bids against which he loses can also be

recovered from the above construction of the BCE. Namely, the losing bidder with valuation

v(2) will face bids ranging from v(2) all the way up to v(1). The probability of a bid vl is given
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by

xl =
K∏

l′=l+1

(1− αl′)

if vl = v(2), and by

yl = αlxl

if vl > v(2), and we can easily verify that xl +
∑

l′>l y
l′ = 1 for all l in the relevant range,

that is b∗i (vi) ≤ vl ≤ vi.

The proof of Theorem 2 uses ideas from our related paper on monopoly price discrimi-

nation, Bergemann, Brooks, and Morris (2015a) (BBM). Essentially, a bidder who is facing

a fixed distribution of opponents’ bids is in a situation comparable to that of a monopolist

who is facing a fixed distribution of consumers’ valuations, each of whom demands a single

unit of a good that can be produced at zero cost. In the case of the auction, submitting

a bid b will result in a surplus of v − b when others’ bids are less than b. The monopolist,

on the other hand, earns a revenue of p when consumers’ valuations v are greater than p.

Thus, we have simply reversed the sign of how the agent’s action, the bid or the price enters

the objective function, but it is still the case that the relevant surplus is a linear function

of that action times the mass in a one-sided tail of a distribution that is, from the bidding

agent’s perspective, exogenous. The construction of the information structure in Theorem

2 corresponds to a particular information structure discussed in BBM, where we change the

conditional distribution of losing valuation only locally, namely at the upper end of the dis-

tribution. The general results of BBM are proved using a geometric argument to construct

extremal distributions that changed the composition of the valuations everywhere, that is

globally.

In the monopoly case, partial information about consumers’ values facilitates third degree

price discrimination, whereby the monopolist offers different prices to different segments of

consumers. BBM show that it is possible to structure information for the monopolist by

creating pools of consumers so that there are enough low valuation consumers to justify

dropping the price, but each pool also contains a fair number of high-valuation consumers

who benefit when prices fall. In fact, regardless of the ex-ante distribution of consumers’

valuations, it is always possible to construct these pools so that prices drop enough so that

all consumers purchase the good (as long as they value it above marginal cost), but the

monopolist is just indifferent to dropping the price, so that the monopoly profits do not

increase relative to the no-discrimination outcome.

In the current setting, partial information about others’ bids means that the bidder

receives information that is correlated with the other bidders’ information, and therefore with
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their equilibrium actions. Because of the similar features of the payoff function, the same

logic that allows for efficient price discrimination with zero benefit to a monopolist means

that it is possible to structure information for the high-valuation bidder so that he always

outbids his opponents, but does not benefit from the additional information. Thus, the bidder

is just as well off as if he knew nothing besides the prior distribution over others’ values, and

best responded to the conditional distribution of others’ valuations. Importantly, while the

distribution of consumers’ values in the monopoly setting is exogenous, the distribution of

others’ bids must be generated by best responses which have to be supported in equilibrium.

However, this can be accomplished in a straightforward manner when maximizing revenue

and minimizing bidder surplus, namely, by guaranteeing that the losing bidders will lose to

bids that are greater or equal to their own known values.

3.2 Unknown Values

If the distribution p is symmetric, then each bidder has the same ex-ante valuation for the

good, which is

E[vi] =
∑
v∈V N

p(v)vi.

In the absence of any additional information, there is a simple equilibrium in which every

bidder bids bi = E[vi]. All bidders tie and earn a surplus of 0 in equilibrium. This equilibrium

is, however, inefficient, since the winner need not be the bidder with the maximum ex-post

valuation.

Perhaps not too surprisingly, there are also equilibria in weakly undominated strategies

such that the outcome is very nearly efficient, and yet bidder surplus is arbitrarily close to

zero. This result reflects, in some sense, the weakness of weakly undominated strategies as

a refinement under unknown values. It may be that beliefs are such that bidders are willing

to bid a large amount because they think that the bid is less than their value conditional

on winning, although conditional on losing their value might be quite a bit lower. This

aggressive bidding behavior when losing supports, in turn, very aggressive bidding on the

part of the winning bidder. Indeed, we construct such an equilibrium in the proof of the

following theorem:

Theorem 3 (Max revenue and min bidder surplus with unknown values). For all ε > 0,

there exists a weakly undominated BCE F such that R(F ) > S − ε and U(F ) < ε.
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4 Minimum Revenue and Maximum Bidder Surplus

We now turn our attention to the lower limit of revenue and the upper limit of total bidder

surplus. The main result for this section is a tight characterization of minimum revenue

and maximum bidder surplus for the unknown values model. At the end of the section, we

will apply our methods to the known values model, which turns out to be significantly more

complicated. We will give a tight characterization for some cases and explain the limitations

of our techniques.

4.1 Unknown Values

4.1.1 Main Idea

The analysis of minimum revenue and maximum bidder surplus requires the development

of a number of new ideas. Before diving in, we will provide some intuition for where we

are headed using our familiar example with two bidders and independent standard uniform

valuations. We will construct an equilibrium in that setting with extremely unfavorable

revenue properties, but which generates very high surplus for the bidders. As with the

analysis of maximum revenue, our formal results will be for discrete models with finitely

many values. In the continuum limit, our constructions converge to the equilibrium that we

now describe.

In this equilibrium, the winner will be the bidder with the highest valuation, and, similar

to the complete information Bertrand equilibrium, the winning bid will be a deterministic

and strictly increasing function of the loser’s value. We will call this winning bid function

β(v). Note that revenue can be calculated from the bidding function by integrating over

losing values:

R =

ˆ 1

v=0

β(v)2(1− v)dv.

For now, we take this structure granted, and we look for a lower bound on revenue across

this class of equilibria. The approach, which will be fully developed over the course of this

section, is to minimize revenue over all possible winning bid functions.

Since bidding behavior is only partially specified by β, we cannot evaluate all possible

deviations and verify that β is consistent with an equilibrium. For the purposes of this

exercise, however, we will only require that β deter a subset of deviations: for all v ∈ [0, 1],

bidders should not want to deviate by bidding β(v) whenever they would have bid some

x ≤ β(v) in equilibrium. We refer to this as a uniform deviation up to β(v) (uniform in the
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sense of deviating to max{x, β} for all equilibrium bids x). Notice that this is a deviation

in the strategic normal form of the game, since it involves deviating after all signals which

induce bids less than β(v) in equilibrium, and we will evaluate its merits in ex-ante terms.

Fortunately, β does contain enough information to evaluate uniform upward deviations.

Such a deviation results in two distinct effects on the deviator’s surplus. First, the deviator

gains some surplus by winning on events when she would have lost the auction in equilibrium,

and the other bidder would have won. This gain in surplus is therefore

ˆ v

x=0

(x− β(v))(1− x)dx.

On the other hand, the deviator would sometimes have won with bids less than x ≤ β(v)

in equilibrium. After the deviation, she will still win, but now the deviator will have to pay

more for the good. This loss is

ˆ v

x=0

(β(v)− β(x))(1− x)dx.

The uniform deviation up to β(v) is not attractive if the gain is less than the loss, or if

ˆ v

x=0

(x− β(v))(1− x)dx ≤
ˆ v

x=0

(β(v)− β(x))(1− x)dx

⇐⇒ β(v) ≥ 2

1− (1− v)2

ˆ v

x=0

(x+ β(x))(1− x)dx. (7)

Now consider a candidate β for which (7) is slack for some v. This means that it is

possible to have the winner bid less when the loser’s value is v, without giving bidders an

incentive to uniformly deviate up to β(v). Moreover, inspection of the right-hand side of (7)

indicates that lowering β(v) further relaxes the constraint for higher v, by decreasing the

integral. This indicates that at an optimum, the incentive constraint (7) should hold as an

equality for all v ∈ [0, 1].

Equivalently, we can differentiate (7) to conclude that the optimal β should satisfy the

following differential equation:

β′(v) = (v − β(v))
1− x

1− (1− v)2
.

This equation has a unique solution given by

β(v) =
1√

1− (1− v)2

ˆ v

x=0

x(1− x)√
1− (1− x)2

dx (8)
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Figure 2: Winning bid as a function of the minimum value in the no information mini-
mum revenue BCE and the complete information BNE, with two bidders whose values are
i.i.d.standard uniform.

which is in fact the optimal bidding function. This β is depicted in Figure 2, with comparison

to the known values BNE bidding function, which entails each buyer bidding half of their

own value (rather than a function of the losing buyer’s value).

We can then compute the revenue to be

R =
1

3
− 2

[ˆ 1

x=0

√
1− (1− v)2dv −

ˆ 1

v=0

(1− (1− v)2)dv

]
≈ 0.0959,

which is significantly lower than the 1/3 revenue obtained in the known values BNE. More-

over, the allocation is efficient, so total surplus is 2/3. The bidders must obtain all of the

surplus net of revenue, which is about 0.5708.

At this point, we have constructed part of a bidding strategy and verified that it is con-

sistent with a subset of the incentive constraints that have to be satisfied in equilibrium. We

shall subsequently see that it is possible to fill in the missing pieces, in particular the distri-

bution of losing bids, in order to extend this construction to a full equilibrium. Moreover, not

only will this equilibrium minimize revenue when the winner’s bid is a deterministic function

of the loser’s value, but it will globally minimize revenue. Finally, in this equilibrium, it will

be the case that bidders are indifferent to all deviations in which they bid β(v) instead of

some x < β(v).

The fact that the uniform upward incentive constraints are binding is closely related to

how the equilibrium is able to induce such low revenue. Minimizing revenue entails pushing

down the distribution of winning bids as far as it will go. Intuitively, the force that prevents

the bid distribution from being pushed down further is the bidders’ temptation to deviate

upwards: if too many winning bids were packed close together at the low end, increasing
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one’s bid would result in a too large of increase in the probability of winning relative to

the additional payment. This suggests that upward constraints should be binding at the

minimum revenue BCE. Indeed, in our construction, all upward incentive constraints are

binding, as long as the deviation is to a bid in [0, β(1)].

At first glance, it may seem remarkable that this construction pushes down revenue to

such a degree while still maintaining efficiency of the allocation. One might have thought that

a way to lower revenue would be to destroy some surplus by misallocating the good, thereby

leaving fewer rents for both the buyers and the seller. In fact, the opposite is true: efficiency

of the allocation is necessary to minimize revenue. The reason is that the attractiveness of

an upward deviation depends on what the bidder believes is the valuation conditional on

losing. By making the allocation efficient, the expected valuation conditional on losing the

auction is minimized, thus giving bidders weaker incentives to deviate up.

We will see that similar equilibria can be constructed in general. Our analysis will work

with discrete distributions of values, but the equilibria retain several key features of the

uniform example:

1. The allocation is efficient.

2. The winning bid recommendation only depends on the loser’s value.

3. Bidders with higher valuations lose to higher bids.

For the uniform example, the last property manifests itself in the monotonicity of the func-

tion β. A prominent difference between the discrete and continuous models is that in the

continuum limit, the winner’s bid is a deterministic function of the loser’s value, whereas the

discrete model will involve some randomization over winning bids conditional on the loser’s

value. Nonetheless, we shall see that there is an “ordered supports” property that charac-

terizes the discrete solution, so that the winner’s bid is drawn from a higher support when

the loser’s value is higher. After the derivation, we will discuss how our solution behaves in

the continuum limit.

4.1.2 The Relaxed Program

The first step in our general characterization of minimum revenue for unknown values is to

establish a bound on how low revenue can go. To economize on notation while we develop

ideas, we will first focus on the case with two bidders and symmetric BCE. The analysis will

subsequently be generalized to many bidders and asymmetric equilibria.

As we have foreshadowed, the constraints that characterize minimum revenue are those

corresponding to upward deviations. Thus, at a first cut, we will drop all incentive constraints
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except for those corresponding to deviating from a bid x to a higher bid b. This still leaves a

two-dimensional family of constraints indexed by recommendations and upward deviations.

We will reduce the problem even further by only checking incentive compatibility with regard

to the one-dimensional family of uniform upward deviations that we looked at with the

uniform example, namely, deviations in which a buyer deviates from the equilibrium bid x

to max{x, b}, for some fixed b.

In addition, we will simplify the problem by only looking at certain marginal distributions

of a BCE. Recall that the BCE specifies a joint distribution of bids for every profile of

valuations. Revenue, however, can be calculated from the distribution of winning bids alone.

Let

H(b|v1, v2) =

ˆ
{(x1,x2)∈R2

+|xi≤b}
q1(x1, x2)F (dx1, dx2|v1, v2) (9)

denote the probability that buyer 1 wins with a bid less than b, when the profile of values

is (v1, v2). Since we are assuming symmetry of the equilibrium, this quantity is independent

of the identities of the bidders, and we can make the notation generic by writing H(b|v, v′)
for the probability that a type v wins against a type v′ with a bid less than or equal to b.

Note that these probabilities condition on the event that the profile of values is (v, v′), but

not on events where v or v′ is the winner. Thus, H(b|v, v′) + H(b|v′, v) is the probability

that either bidder wins with a bid less than or equal to b, conditional on the profile of values

being (v, v′). Feasibility requires that

H(b|v, v′) +H(b|v′, v) ∈ [0, 1], (10)

for all b ∈ R+ and for all (v, v′) ∈ V 2.

Using these winning bid distributions, we can compute revenue as the expected winning

bid:

R =
∑

(v,v′)∈V 2

p(v, v′)

ˆ vK

b=0

bH(db|v, v′) = vK −
∑

(v,v′)∈V 2

p(v, v′)

ˆ vK

b=0

H(b|v, v′)db

where the equivalence comes from integration by parts. Thus, minimizing revenue is aligned

with maximizing

∑
(v,v′)∈V 2

p(v, v′)

ˆ vK

b=0

H(b|v, v′)db, (11)

which is the area under the winning bid distributions.
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In addition to calculating revenue, we can use these objects to evaluate uniform upward

deviations. As with the uniform example, we can decompose the effect on bidder utility into

a gain and a loss. The buyer loses surplus of

∑
(v,v′)∈V 2

p(v, v′)

ˆ b

x=0

(b− x)H(dx|v, v′),

since, by deviating to a higher bid, the buyer will still win on events where he would have

won by following the equilibrium strategy, but he will pay more for the good. This quantity

integrates by parts to

∑
(v,v′)∈V 2

p(v, v′)

ˆ b

x=0

H(x|v, v′)dx,

and notice the similarity with the objective of maximizing (11). The gain associated with the

deviation comes from winning when the buyer would have lost by following the equilibrium

strategy. These are precisely the outcomes where the other buyer would have won with a

bid less than or equal to b: ∑
(v,v′)∈V 2

p(v, v′)(v′ − b)H(b|v, v′).

A uniform deviation up to b is not attractive if the loss exceeds the gain, or if

∑
(v,v′)∈V 2

p(v, v′)(v′ − b)H(b|v, v′) ≤
∑

(v,v′)∈V 2

p(v, v′)

ˆ b

x=0

H(x|v, v′)dx. (12)

Thus, our relaxed program is to maximize (11), subject to (10) and (12) for all b ∈ R+. Note

that we are even dropping the requirement that the distributions H(b|v, v′) be monotonic,

though fortunately the solution to this relaxed formulation will turn out to be weakly in-

creasing. Because this program is a relaxation of the original problem of minimizing revenue

over all BCE, the solution must generate a lower bound for revenue across all unknown value

BCE.

The relaxed program can be visualized as an optimal control problem. Bids b take the

role of “time”, which runs from b = 0 up to b = vK . The winning bid distributions H(b|v, v′)
are the “controls” and are constrained by (12). The right-hand side of that constraint is a
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state variable,

S(b|v, v′) =

ˆ b

x=0

H(x|v, v′)dx,

whose law of motion is the current value of the control, i.e., Ṡ(b|v, v′) = H(b|v, v′). All

of the controls and states are initialized to zero at b = 0, and the revenue minimizing

winning bid distributions will maximize the sum of the terminal values of the states, which

is
∑

v,v′ p(v, v
′)S(vK |v, v′).

We now describe the solution to the relaxed program. First, at an optimal solution,

it must be that the incentive constraint (12) almost surely holds as an equality whenever

H(b|v, v′)+H(b|v′, v) < 1 for some (v, v′). If this were not the case, then it would be possible

to increase one of these controls without violating (12) at b. Moreover, increasing H(b|v, v′)
merely relaxes the right-hand side of (12) even further (and increases the objective), so we

know that the increased control will still be feasible (and lowers revenue).

Second, the allocation of the good that is implied by the winning bid distributions must

be efficient, i.e., H(b|v, v′) = 0 if v < v′. This can be seen by inspecting the left-hand side

of (12). Notice that the control H(b|v, v′) is multiplied by v′ − b, i.e., the valuation of the

losing buyer. This corresponds to our intuition from the uniform example: the gain from

deviating upwards depends on one’s valuation on the event that one loses. All things equal,

this gain is smaller if losing valuations are lower, which is when the allocation is efficient.

More formally, suppose that H(b|v′, v) > 0 even though v′ < v. Then we can define a

new solution H̃, which coincides with the old solution except for this pair of values, and with

H̃(b|v′, v) = 0

H̃(b|v, v′) = H(b|v, v′) +H(b|v′, v).

It is clear that this new solution will respect feasibility and result in the same right-hand

side in (12), as well as the same objective (11). However, the left-hand side of (12) will have

strictly decreased, because∑
(v,v′)∈V 2

p(v, v′)(v′ − b)H̃(b|v, v′) =
∑

(v,v′)∈V 2

p(v, v′)(v′ − b)H(b|v, v′) + (v′ − v)H(b|v′, v)

<
∑

(v,v′)∈V 2

p(v, v′)(v′ − b)H(b|v, v′),
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since v′ < v. Thus, there is now some extra slack in (12) that could be used to increase the

controls faster, thereby reducing pushing down the winning bid distributions and decreasing

revenue.

At this point, we notice that the winning bid does not appear anywhere in either the

objective or the constraints, except as an index for the winning bid distributions. It is only

the loser’s value that directly enters the program, through the incentive constraint. This

suggests that we can collapse the program down further. In particular, let us write

pL(v) =
1

2
p(v, v) +

∑
v′>v

p(v, v′)

for the probability that v is the losing value, and let

H(b|v) =
1

pL(v)

∑
v′≥v

p(v, v′)H(b|v′, v)

denote the distribution of the winning bids made against a losing bidder with valuation v.

We can then rewrite the relaxed program as

max
∑
v∈V

pL(v)

ˆ vK

b=0

H(b|v)db; (13)

subject to

H(b|v) ∈ [0, 1]; (14)∑
v∈V

pL(v)(v − b)H(b|v) ≤
∑
v∈V

pL(v)

ˆ b

x=0

H(x|v)dx. (15)

Our earlier conclusion still applies: that (15) should bind whenever H(b|v) < 1 for some v.

At this point, we know that (15) has to bind throughout the support of winning bids,

and moreover, that support is connected, i.e., an interval. Note that at a given b, there is

a certain amount of slack on the right-hand side of (15), and a number of controls on the

left-hand side that could use that slack. The question then is: which controls should be

used at each b? It turns out that there is a simple answer, which is to use the H(b|v) with

the smallest v such that H(b|v) < 1. In particular, the optimal solution should satisfy the

ordered supports property:

H(b|v) < 1 =⇒ H(b|v′) = 0∀v′ > v. (16)
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The logic here is closely related to the reason why the solution should be efficient. It is clear

that all H(b|v) contribute symmetrically to the objective and to the right-hand side of (15),

but H(b|v) for smaller v contribute less to the left-hand side of (15). Thus, all things equal,

it is more efficient to first use H(b|v) with lower v to relax the incentive constraint faster,

which subsequently provides more room for controls at higher b.

The final piece to characterizing the solution is an initial condition. We argue in the

Appendix that H(b|v) must be zero for b < v1. Intuitively, the lowest types of buyer are in

Bertrand competition with one another for the good, and they bid up the price to v1. In

addition, it is clear that (15) does not constrain H(b|v1) at all, since the coefficient v1 − b is

non-positive for all b ≥ v1. Thus, this control can immediately jump up to 1 at b = v1.

Given this initial condition, the rest of the solution is constructed inductively using (16).

Suppose that H(b|vl) = 1 for all l < k and H(b|vl) = 0 for l ≥ k, and (15) is binding at b.

We then solve (15) with equality for H(b|vk), setting H(b|vl) = 1 for l < k and H(b|vl) = 0

for l > k. The H(b|vk) that solves this equation will blow up as b gets close to vk, since vk−b
converges to zero. Thus, there will be a finite bk at which H(b|vk) hits 1. At this point, we

set H(b|vk) = 1 for all b > bk, and we continue the process with H(b|vk+1). At k = K, the

algorithm terminates and all of the winning bid distributions have been specified.

This completes our characterization of the two-bidder unknown values relaxed program.

The solution is efficient, has binding upward incentive constraints in the support of winning

bids, and satisfies the ordered supports property. Moreover, the analysis generalizes in a

natural manner to the case of many bidders, but there are two key differences.

First, in a symmetric equilibrium with two bidders, conditional on a profile of winner’s

and loser’s valuations, each buyer is equally likely in ex-ante terms to be the buyer who

wins the auction. With N bidders, it must be that each bidder only wins a fraction 1/N of

the time and loses a fraction (N − 1)/N of the time. Thus, the many bidder analogue of

the incentive constraint (15) has a weight of N − 1 on the left-hand side, since an upward

deviator is more likely to be a losing buyer and therefore gains more from winning when she

was supposed to lose.

Second, in the final form of the two bidder relaxed program, the choice variables are

distributions of winning bids conditional on the loser’s value. In some sense, we needed to

keep track of the statistical relationship between winning bids and losing values in order to

calculate the gains from deviating upwards. With N > 2, there are multiple losing bidders,

each of whom has a different valuation, so in principle we might have to keep track of how

winning bids are related to all of the losing values. It turns out, however, that we can just

keep track of how winning bids are related to summary statistics of the losing values. In

particular, suppose that some bidder deviates up and wins when they were supposed to lose
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when the true profile of values is v = (v1, . . . , vN). By symmetry, they must also now win

whenever the profile is a permutation of v, ξ(v) for ξ ∈ Ξ. In the event that they win when

they would have lost in equilibrium, the upward deviator is therefore equally likely to have

any losing value in v. Thus, the expected valuation on this event is the average losing value,

given the profile v.

As a result, the generalized relaxed program will keep track of the distribution of winning

bids conditional on an average losing value m, which we denote by H(b|m). Specifically, let

µ(v) =
1

N − 1

(∑
i

vi −max v

)
(17)

denote the average losing value when the profile of values is v. This statistic takes on values

in a finite set M ⊂ R+, and is distributed according to

pL(m) =
∑

{v∈V N |µ(v)=m}

p (v) . (18)

The winning bid distributions over which we maximize are

H(b|m) =
1

pL(m)

∑
{v∈V N |v1=max v,µ(v)=m}

p(v)| arg max v|H(b|v1, v−1).

The general form of the relaxed program is to maximize

∑
m∈M

pL(m)

ˆ vK

b=0

H(b|m)db (19)

subject to

H(b|m) ∈ [0, 1]∀m ∈M (20)

(N − 1)
∑
m∈M

pL(m)(m− b)H(b|m) ≤
∑
m∈M

pL(m)

ˆ b

x=0

H(x|m)dx. (21)

The solution to this relaxed program generates a lower bound on revenue:

Lemma 4. The H(b|m) induced by any symmetric BCE must satisfy (20) and (21). More-

over, expected revenue under F must be at least vK minus (19).

The solution to the generalized relaxed program has the same structure as with two

bidders, as described by the following proposition:
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Proposition 5. The solution to the unknown values relaxed problem is the unique {H(·|m)}m∈M
such that (21) holds with equality for b > minM whenever H(b|m) < 1 for some m ∈ M
and that satisfies the ordered supports property:

H(b|m) < 1 =⇒ H(b|m′) = 0∀m′ > m. (22)

To recap, we have studied a particular relaxed program for minimizing revenue. In this

program, we dropped all incentive constraints except those associated with deviations of the

form “bid b whenever you would normally bid any x ≤ b,” and we optimized over winning

bid distributions rather than the entire joint distribution of bids. The resulting solution

implies a very particular structure for winning bid distributions that will minimize revenue.

We note that this lower bound on revenue also generates an upper bound on bidder surplus,

since bidders cannot receive more than the efficient surplus minus minimum revenue.

4.1.3 Construction of a BCE

At this point, Proposition 5 gives us a lower bound on minimum revenue and an upper bound

on bidder surplus, though we do not yet know if these bounds are tight. There is good reason

to think they might not be: we have only specified a particular marginal distribution of a

BCE, namely the distribution of winning bids, and we have also not checked if the myriad

of other constraints can be satisfied.

It turns out, however, that the solution to the relaxed program can always be extended to

a BCE, thus verifying sharpness of the bounds derived above. Let {H(b|m)} be the solution

described in Proposition 5. Our procedure for extending this solution to a full BCE is as

follows:

(i) Draw a profile of values v according to p(v), and pick a bidder with a high value to be

the winner, breaking ties uniformly;

(ii) Assign the winner a bid b drawn from the distribution H(b|µ(v));

(iii) Draw bids b for the remaining bidders independently from the cumulative distribution

L(b′|b, µ(v)) (to be specified shortly).

The distribution of losing values contains quite a bit more information than just the winning

bid distributions with which we have worked thus far. In particular, L(b′|b,m) can be used

to calculate the distribution of the winner’s bid conditional on a losing recommendation b′.

Whereas before we could only evaluate uniform upward deviations, now we will be able to

evaluate pointwise upward deviations, in which a bidder deviates from a particular bid x < b
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up to b. Note that the net gains from a uniform deviation up to b is simply the expectation

of the net gains from pointwise deviations from x up to b for all x ≤ b.

In particular, consider a bidder who is told to bid b and deviates up to b′ > b. The gain

from winning when one would have lost is

∑
m′∈M

(m′ − b′)pL(m′)
N − 1

N

ˆ b′

x=0

L(db|x,m′)H(dx|m′) (23)

and the loss from paying more when the deviator would have won anyway is

(b′ − b)
∑
m′∈M

pL(m′)

N
H(db|m′). (24)

Thus, the pointwise upward incentive constraint is that

(N − 1)
∑
m′∈M

(m′ − b′)pL(m′)

ˆ b′

x=0

L(db|x,m′)H(dx|m′)− (b′ − b)
∑
m′∈M

pL(m′)H(db|m′) ≤ 0.

(25)

This inequality must hold almost surely if these losing and winning bid distributions consti-

tute a BCE.

In fact, we claim that if the L’s and H’s constitute a BCE, the incentive constraint (25)

must hold as an equality for all b′ > b. In other words, not only are bidders indifferent

to uniform upward deviations, but they are also indifferent to almost all pointwise upward

deviations. Why? Suppose there were a set X of bids less than b which arose with positive

probability in equilibrium and for which the bidders strictly preferred their equilibrium bids

over deviating up to b. Since bidders are indifferent to the uniform upward deviation up to

b, it must be that bidders strictly prefer to deviate to b from bids [0, b] \X! Of course, that

cannot happen in a BCE.

Moreover, it turns out that there is a unique choice of L(b|b′,m) such that all pointwise

upward incentive constraints hold with equality. Let Bm denote the support of H(b|m).

These supports are ordered so that if b ∈ Bm and b′ ∈ Bm′ with m > m′, then b ≥ b′.

Assuming that L(x|y,m′) has been defined for m′ < m and for x ≤ y, with L(x|x,m′) = 1,
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we inductively define

pL(m)L(b|b′,m)H(db′|m)

=
1

(m− b′)2

[
1

N − 1

∑
m′≤m̃

pL(m′)

(ˆ b

x=0

H(x|m′)dx+ (m− b)H(b|m′)
)

+
∑
m′<m

(m−m′)pL(m′)

ˆ
x∈Bm′

L(b|x,m′)H(dx|m′)

]
.

(26)

where b ∈ Bm̃ with m̃ ≤ m. L(b|b′,m) is identically 1 for b ∈ Bm̃ with m̃ > m. The following

result characterizes these losing bid distributions:

Lemma 6.

(i) The functions L(b|b′,m) defined by (26) are monotonically increasing in b, and satisfy

L(b|b,m) = 1.

(ii) Moreover, if the marginal distribution of losing bids is L(b|b′,m), then bidders are

almost surely indifferent between following a recommendation b and deviating upwards

to any b′ > b.

(iii) Finally, if losing bids are i.i.d.draws from L(b|b′,m), then bidders almost surely prefer

the recommendation b to any b′ < b.

The proof of this result appears in the Appendix. The proofs of (i) and (ii) are somewhat

mechanical, with the latter essentially verifying that (26) is reverse-engineered from the

assumption that the pointwise upward incentive constraints all hold with equality. The

proof of (iii) is more subtle and, we are sorry to say, a bit mysterious. In the next section we

will study the limit of this equilibrium as the distribution of values converges to a continuous

distribution. The equilibrium simplifies dramatically in the limit, and we will use that simpler

construction to provide better intuition for the result, or at the least a more transparent

argument for why incentive constraints should be satisfied.

There is one last step before we state our main result. Through the discussion of minimum

revenue, we have restricted attention to symmetric BCE, under the premise that this is

without loss of generality. We now state this as a formal result.

Lemma 7. If the distribution of values p is symmetric, then there exist symmetric BCE that

minimize revenue and maximize total bidder surplus.
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Here is the basic idea behind this Lemma. BCE are a subset of the convex set of joint

distributions over values and bids. For that reason, if one had an asymmetric BCE, it is

always possible to “symmetrize” by (i) first drawing a permutation of the buyers’ identities at

random and (ii) drawing values and bids according to the original BCE and assigning them

to the permuted identities. Note that this symmetrized BCE has the same distribution

of values, since the original distribution was symmetric. Moreover, conditional on each

permutation, the conditional distribution of bids and values is a BCE, so overall it must be

a BCE as well. And finally, revenue and total bidder surplus for the symmetrized BCE are

the expectation of those objectives conditional on the permutation, but conditional on the

permutation, revenue and total bidder surplus are the same as under the original BCE.

Thus, the bounds from Proposition 5 are sharp and in particular must also be satisfied

by asymmetric BCE. Since our constructed BCE attains the bounds, we have a complete

welfare characterization:

Theorem 8 (Min revenue and max bidder surplus for unknown values). The solution to the

unknown values relaxed problem, together with the losing bid distributions defined by (26),

constitute a BCE. This BCE simultaneously maximizes total bidder surplus and minimizes

revenue over all unknown values BCE.

4.1.4 Continuum Limit

The results from the previous section give a tight lower bound for revenue for any symmetric

prior with finite support. The finiteness was convenient for our characterization of the

relaxed program, but the discreteness of valuations necessitated that the minimum revenue

BCE involve a lot of randomization of bids, in particular randomization of the winning bid

recommendation given the losing value. This randomization is not entirely unexpected, given

that similar behavior arises in prior work characterizing equilibria of first price auctions with

discrete values, e.g., that of Maskin and Riley (1985) or Fang and Morris (2006). It should

therefore also not surprise the reader that the analogous construction is substantially simpler

when the distribution of values is continuous. In this section, we will explain what this limit

looks like, with two objectives in mind: first, the limit equilibrium is extremely easy to state

and verify, which to some extent may alleviate the mystery of why our discrete construction

hangs together; and second, we can use the continuous construction to obtain deeper insight

into the structure of information that attains minimum revenue, and also relate our results

to the prior literature on first price auctions.

Before constructing our equilibrium, let us first consider how the solution to the relaxed

program should look in the limit. This discussion is heuristic, and is not meant to be a formal
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derivation. Let us suppose there is a sequence pk(v) of discrete joint distributions of values

that converge to some continuous weak-∗ limit p(v) with support equal to the compact

cube [v, v]N . Let us write pL(m) for the distribution of the average losing value for the

continuous limiting distribution. For example, in the case of two bidders with independent

and identically distributed values, i.e., p(v1, v2) = p(v1)p(v2), the average losing value is just

the second-highest value, m = min(v1, v2), and

pL(m) = 2p(m)(1− p(m)).

We assume that pL has compact support equal to V = [v, v], and we write PL(m) for the

corresponding cumulative distribution.

In the limit as the mass of any particular value of m goes to zero, the supports of the

H(v|m) will collapse to a singleton, and there will be a deterministic winning bid as a

function of the average loser’s value, which we denote by β(m). Assume for now that this

function is strictly increasing and differentiable. Then the continuum analogue of (21) is

(N − 1)

ˆ β−1(b)

x=v

(x− b)pL(x)dx =

ˆ β−1(b)

x=v

(b− β(x))pL(x)dx.

Again, the left-hand side is the gain from winning when the average losing value ranges from

v up to β−1(b), and the right-hand side is the loss from paying more when the average losing

value is below β−1(b). We can substitute b = β(m) into the limit of integration to rewrite

this as

(N − 1)

ˆ m

x=v

(x− β(m))pL(x)dx =

ˆ m

x=v

(β(m)− β(x))pL(x)dx. (27)

This relationship must hold for all m ∈ V .

Thus, (27) pins down the winning bid function as the solution of a differential equation.

In fact, there is a unique β that satisfies (27), which is given by

β(m) =
N − 1

N

1

(PL(m))
N−1
N

ˆ m

x=v

xpL(x)

(PL(x))
1
N

dx. (28)

This function is the continuum analogue of the H(b|m) distributions from the discrete con-

struction.

As in the discrete case, we can always construct an information structure and BNE

in which the winner bids according to (28). Bidders will receive signals in Si = [v, v]: if

vi = max v, then bidder i receives the signal s = m = µ(v). Otherwise, bidders receive
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signals with independent draws from the conditional distribution L(s|m) on [v,m]:

L(s|m) =

(
PL(s)

PL(m)

) 1
N

. (29)

This is in some sense the continuum analogue of (26). The total probability of getting the

signal s, in ex-ante terms, is

pL(s)

N
+
N − 1

N

ˆ v

x=s

L(ds|m)pL(m)dm =
1

N

pL(s)

(PL(s))
N−1
N

.

But conditional on receiving the signal s, bidders think that s is the average losing value

(and they have the high value, with others’ signals being lower) with probability (PL(s))
N−1
N ,

and with probability 1− (PL(s))
N−1
N , they think that the true average losing value is higher

than s, and is distributed according to the conditional distribution

(PL(m))
N−1
N − (PL(s))

N−1
N

1− (PL(s))
N−1
N

.

In equilibrium, all bidders follow the monotonic pure strategy of bidding β(s). Thus, in

the event that the true m is greater than s, bidders believe that the highest bid is β(m).

Through integration by parts, we can deduce that the general form for minimum revenue is

R =

ˆ v

m=v

β(m)pL(m)dm

= v +

ˆ v

m=v

(
(N − 1)PL(m)−N(PL(m))

N−1
N

)
dm.

The following proposition asserts that these objects do in fact constitute an equilibrium:

Proposition 9 (Continuum limit). Suppose that the joint distribution has a density p(v)

with full support on [v, v]n. Then there exists a BCE in which the buyer with the high

value bids β(µ(v)), where β is defined by (28) and is the solution to (27), and the buyers

with lower values bid β(s), with the losing bidder’s signals being independent draws from

L(s|µ(v)) defined by (29).

Thus, in the minimum revenue information structure, bidders receive one-dimensional

signals that are informative about the average losing value m. Essentially, the signal could

fall into one of two categories: one of the bidders, chosen at random, will receive a “precise”

signal s = m, while the remaining N − 1 bidders will receive “coarse” signals that are

distributed between [0,m] according to the losing signal distribution L (s|m). Importantly,
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bidders are uncertain about whether they received the precise signal or the coarse signal.

Moreover, this information structure supports a symmetric, monotonic, and pure strategy

equilibrium in which everyone bids β (s).

The reader may be curious about the connection to Milgrom and Weber (1982), who study

a class of symmetric “affiliated” information structures that similarly admit a monotonic and

pure strategy equilibrium. The affiliation property can be thought of as a form of positive

correlation between the bidders’ values and their one-dimensional signals. While affiliation is

sufficient to support monotonic pure strategies, it is far from necessary, and indeed, regardless

of the underlying distribution of values, the minimum revenue information structure will not

be affiliated. This can be seen by considering the conditional distribution of signals given m

and one of the bidder’s signals si: for si < m, it must be that si was the coarse signal, so

that some other bidder obtained a recommendation sj = m, whereas if si = m, then others

must have almost surely received coarse signals which are strictly below m. Thus, signals

are “negatively correlated” given the true value of m.

Indeed, affiliation restricts the kind of inference that bidders can draw about their values

upon losing the auction in a manner that strengthens the incentive to deviate upwards. In

the event that some other bidder has won the auction, they must have received a higher

signal, which means that losing the auction is a positive signal about one’s own value. In

turn, this means that the expected value conditional on winning is increasing as a bidder

deviates upwards. On the other hand, winning when one should have lost in the minimum

revenue information structure and equilibrium is, at the margin, a strong negative signal

about one’s value. For if a bidder wins with a bid of β (s) after receiving the signal s, they

believe that their value is distributed over the range [s, v]. But when they deviate up to a

bid β (s+ ε), the incremental event on which they win is when their value was between s and

s+ ε, so that this event pulls down the expectation of their value conditional on winning.

To conclude, let us apply these results to the uniform example with which we began the

section. The formula for β (s) reduces to what we computed for the uniform example at the

beginning of the section, with PL(v) = 1 − (1 − v)2. The conditional distribution of the

loser’s signal, given the loser’s value is v, is

L(s|v) =

√
1− (1− s)2

1− (1− v)2
. (30)

In the example, we first draw values (v1, v2) independently from the standard uniform distri-

bution, with the lower of the two values being y. The bidder with the higher value is told to

bid β(s), where β is given by (8). For the bidder with the lower value, we draw an x accord-
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ing to (30) and tell the losing buyer to bid β(x). As we have shown, this recommendation

rule will satisfy both upward and downward incentive constraints and is therefore a BCE.

4.2 Known Values

We now turn our attention to minimum revenue and maximum bidder surplus when the

buyers know their own valuations. We will pursue the same course that characterized revenue

in the unknown values model, namely, (i) formulate and solve a relaxed program for revenue,

and then (ii) extend this solution to a full BCE. In the known values relaxed program, we

again only keep track of winning bid distributions and drop all incentive constraints except

those corresponding to uniform upward deviations. In the unknown values case, there was

a one-dimensional family of such constraints, indexed by the bid that the player deviates

up to. With known values, however, there is a separate family of such constraints for each

possible known value. This introduces a second-dimension to the problem, and for general

known values models, the pattern of binding uniform upward incentive constraints can be

quite complicated. We will, however, give a tight characterization of minimum revenue and

maximum bidder surplus when there are only two possible valuations, high or low. We give

examples of the complexities that arise with more than two values in Appendix C

Suppose that K = 2 and V = {v1, v2} is the set of possible valuations. Bidders know

whether or not they have the low-value or the high value. It turns out, however, that the

strategic behavior of the low-valuation buyer is quite simple: When all buyers have low

values, they will all bid the low value and tie. Otherwise, these buyers have to lose the

auction in equilibrium, and they randomize so as to induce a high valuation buyer to win at

a price weakly greater than v1. Thus, we only need to determine the behavior of the high

valuation buyer.

To characterize the high type’s behavior, we will first study a relaxed program. It will

turn out that in the revenue minimizing BCE, bidders will have somewhat complicated higher

order beliefs about the number of high types. For example, bidders will sometimes make

low bids because they think there is a high probability that they are the only bidder with

a high value, and they are only facing low types. At other times, the high type will believe

that they are likely to be bidding against another high type, who thinks that they are most

likely facing only low types. Of course, this logic continues to higher orders, and in general,

a high type may think that they are likely to be facing (and winning against) k − 1 other

high types, who themselves think that they are facing k − 2 other high types, etc. For this

reason, in formulating our relaxed program, it is necessary to keep track of the statistical

relationship between winning bids and the number of bidders with high valuations.
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For a profile of values v, we let

ζ(v) = |{i|vi = v2}|

denote the number of high value buyers. The distribution p induces a distribution on

{0, . . . , N} given by

pZ(z) = p(ζ−1(z)).

Let H(b|z) denote the cumulative distribution of winning bids when there are z bidders with

value v2. Per the previous discussion, H(·|0) puts probability one on v1.

The relaxed program is

max
N∑
z=0

pZ(z)

ˆ v2

b=0

H(b|z)db (31)

subject to

H(b|z) ∈ [0, 1] for all b ∈ R+, z ∈ {0, . . . , N}; (32)

(v2 − b)
N∑
z=1

pZ(z)
z − 1

z
H(b|z) ≤

N∑
z=1

pZ(z)
1

z

ˆ b

x=0

H(x|z)dx. (33)

These constraints are almost entirely analogous to the feasibility and incentive constraints

from the unknown values relaxed problem, with the exception that there is now only an

incentive constraint for the high valuation type (who has a known value v2). Note that when

there are z high types, a bidder with a high valuation thinks that there is a 1/z chance that

they are the winner and a (z − 1)/z chance that they will not win.

The analysis of the binary known values relaxed program proceeds in much the same

manner as for unknown values. It must be that (33) binds whenever H(b|z) < 1 for some z,

since otherwise we could push down the distribution of winning bids while further relaxing

incentive constraints. Moreover, there is a straightforward analogue of the ordered supports

property. In particular, H(b|z) has a weight of (z−1)/z on the left-hand side and 1/z on the

right-hand side. H(b|z) with lower z therefore provide more “bang for the buck” in relaxing

incentive constraints. For example, when z = 1, H(b|1) only appears on the right-hand

side, and indeed this implies that H(b|1) must put probability one on v1. Thus, the correct
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ordered supports property is:

H(b|z) < 1 =⇒ H(b|z′) = 0∀z′ > z. (34)

In other words, at an optimal solution, buyers should win with lower bids when there are

fewer buyers with high valuations.

We summarize the solution of the binary known values relaxed program in the following

proposition:

Proposition 10. The solution to the binary known values relaxed problem is the unique

H(b|z) that satisfies (33) with equality whenever H(b|z) < 1 for some z and also satisfies

(34).

The solution to the binary values relaxed program can be extended to a full BCE using

similar techniques as with unknown values. We first draw the valuations according to p.

If z = 0, the winning bidder will bid v1. If z > 1, we select one of the high-valuation

bidders uniformly to be the winning bidder and assign him or her a winning bid b from

H(b|z). Finally, we draw bids for the losing high-valuation buyers independently from the

distribution

pZ(z)
z − 1

z
L(b|b′, z)H(db′|z) =

1

(v2 − b′)2

z̃∑
z′=1

p(z′)

z′

ˆ b′

x=0

(v2 − x)H(dx|z′), (35)

where b ∈ Bz̃ = suppH(·|z̃) and b′ ∈ Bz with b′ > b. The following result, proven in

the Appendix, asserts that these losing bid distributions, together with the winning bid

distributions that solve the relaxed program, constitute a BCE:

Theorem 11 (Min revenue and max bidder surplus for binary known values). The solution

to the binary known value relaxed problem, together with the losing bid distributions defined

by (35), constitute a BCE. This BCE simultaneously maximizes total bidder surplus and

minimizes revenue over all binary known values BCE.

We illustrate the binary known value result in the case where there are just two buyers,

the possible valuations are 0 and 1, and values are i.i.d.draws with probability p ∈ [0, 1] of

drawing a high value. In this case, H(b|0) and H(b|1) put probability 1 on b = 0, and H(b|2)

solves the following differential equation

(1− b)p
2
H(b|2) = (1− p)b+

p

2

ˆ b

x=0

H(x|2)dx,
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so

H(b|2) =
1− p
p

b(2− b)
(1− b)2

.

This distribution hits 1 at b = (1−
√

1− p)/2.

Note that the high type is indifferent to a strategy of always bidding b, so the surplus

of the high type is easily calculated as 1− b =
√

1− p, and total bidder surplus is therefore

2p
√

1− p. The allocation is efficient, so total surplus is 1− (1− p)2 and the revenue is

1− (1− p)2 − 2p
√

1− p.

For comparison, in the complete information benchmark, each high type bidder earns a

surplus of 1 when facing the low type and a surplus of 0 when facing the high type, so

that total bidder surplus is only 2p(1 − p). Revenue under complete information is p2. In

a previous version of this paper, Bergemann, Brooks, and Morris (2013), we additionally

construct simple information structures that give rise to this equilibrium. We also solve for

the entire set of bidder surplus pairs that can obtain in a BCE.

The binary values example tells us a great deal about the qualitative differences between

the unknown and known values cases. In both models, uniform upward deviations seem to

be key for characterizing the revenue minimizing BCE. The information that is needed to

evaluate those deviations is, however, quite different in the two cases. With unknown values,

the probability of being the winner when the profile of values is some given v is independent

of the profile, so that the only manner in which v affects the incentives to deviate uniformly

upwards is through inference about the average losing value, µ (m).

Indeed, we could think about the profile v for a given upward deviation b as being

associated with a gain-loss ratio, which is the extent to which winning when the profile is v

tightens the left-hand side of the uniform upward incentive constraint for a given relaxation

of the right hand side, i.e., (N − 1) (µ (v)− b). Importantly, this gain-loss ratio associated

with v is the same for all buyers, thus inducing a one-dimensional ordering over profiles.

A general lesson from the unknown values analysis is that minimizing revenue requires a

specific relationship between the distribution of winning bids and the gain-loss ratio. In

particular, low winning bids should be associated with a low gain-loss ratio.

With known values, bidders know their value when they lose the auction, thus rendering

µ (v) irrelevant for the evaluation of uniform upward deviations. On the other hand, the

probability of winning versus losing depends very much on the distribution of values and

on the bidder’s own value: in an efficient equilibrium, having a value below the maximum
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means that one will lose for sure, and the more ties there are for the highest value, the

less likely is a high valuation bidder to win the auction. For example, in the binary known

values model, the gain loss-ratio for a high type is (ζ (v)− 1) (v2 − b), and for a low type it

is always (v1 − b) (since the low type always loses in equilibrium when the winning bid is

above v1). With binary values, the low type is strategically quite simple, so that it is only the

high type’s gain-loss ratio that matters and a simple ordering property that emerges for the

supports of winning bids. In general, when different buyers have different gain-loss ratios,

there is no obvious ordering property over the distribution of winning bids. In Appendix C,

we analyze the relaxed program for three values and document the complications that arise

with more than two values. We give a partial characterization of the solution to the relaxed

program, though it turns out that in these cases where we solve the relaxed program, the

bound it generates cannot possibly be tight.

5 Further Topics

5.1 Additional Welfare Outcomes

We have thus far focused on characterizing bounds on revenue and total bidder surplus.

Maximizing and minimizing these outcomes correspond to characterizing the BCE that are

maximal in four directions in welfare space. Of course, there are many other welfare objec-

tives we might have considered. For example, what do BCE look like that maximize a single

bidder’s welfare, or that minimize the efficiency of the auction?

In this section, we will briefly consider the range of welfare outcomes in these and other

directions. We will report some new analytic results, but also fully develop numerical sim-

ulation methods. Bayes correlated equilibria have a simple structure that lend themselves

to computation: they are essentially joint distributions over values and bids that satisfy

a family of linear incentive constraints, and welfare outcomes such as revenue and surplus

are linear functions of that distribution. Maximizing a weighted sum of expected welfare

outcomes over the set of BCE is therefore a linear program which can be solved efficiently.

We applied large-scale linear programming software to compute the BCE that maximize

various welfare objectives for discretized examples. In particular, we studied a model in

which there are two potential buyers who have 10 valuations and 50 possible bids. Values

and bids are evenly spaced between 0 and 1, and the distribution of values is uniform. Figure

1 from the introduction depicts the pairs of revenue and total bidder surplus that can arise

in a BCE, with the boundary of the unknown and known values welfare sets in blue and red,

respectively.
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Let us examine these sets in somewhat greater detail than in the introduction. The

computed welfare sets have a number of prominent features that align with our theoretical

results. The red set is contained within the blue set, which we know must be the case

because any known value BCE is also an unknown values BCE. Also, welfare properties of

the equilibria that we constructed are visible on the frontiers of the welfare sets. Minimum

total bidder surplus is zero and is attained at points F, G, and H, and the unknown values

BNE outcome of (0, 0.5) (point B) is on the boundary of the unknown values surplus set.

We also see the complete information BNE at point A on the boundary of both the known

value and unknown values surplus sets. In this outcome, revenue is the expected second-

highest value and total surplus is the expected highest value. As predicted, there are BCE

that attain point F in which the outcome is socially efficient, but bidder surplus is zero and

revenue is equal to the entire efficient surplus. Finally, minimum revenue for the unknown

values model is attained in an efficient equilibrium at point D, as predicted by Theorem 8.

There are however new features which might not have been anticipated. An intriguing

feature of the unknown values surplus set is southwestern frontier, in which the total surplus

is below the efficient level. As we observed in the introduction, since there is no reserve price

in the auction, the good is always allocated. A lower bound on total surplus is therefore the

expected lowest valuation, which for this discretized example is 0.316. A striking implication

of Figure 1 is that there are equilibria in which this lower bound is attained exactly, meaning

that the buyer with the lower valuation is always the one who receives the good. Moreover,

minimum surplus is attained while both bidders receive zero surplus!

In fact, it is not hard to construct a BCE that accomplishes these objectives when

there are two bidders and independent values. Let P (v) denote the independent cumulative

distribution on the range [v, v]. We construct a BCE in which each buyer i observes buyer

j’s valuation vj, and bids

β(vj) =

´ vj
x=v

x dP (x)dx

P (v)
, (36)

where β(v) = v. In other words, each buyer bids the other buyer’s expected value, conditional

on it being below their true valuation. As long as the density is almost everywhere positive,

this bidding function will be strictly increasing on the support of valuations. We claim that

this is a BCE. Clearly, buyers always believe that their own value vi is distributed according

to P and that the other buyer bids β(vi). Conditional on a bid of β(v), the buyer will win

whenever vi ≤ v, so the expected valuation conditional on winning with a bid of b is the

expectation of their value given vi ≤ v, which is precisely β(v)! Thus, all bids in the support

of P result in an expected payoff of zero. Moreover, it is clear that since equilibrium bids
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are increasing in the other buyer’s value, the winner of the auction will be the bidder with

the lowest valuation, thus attaining point H. Similar arguments and constructions can be

provided when values are discrete, while maintaining the assumptions of independence and

two bidders.

Thus, we have characterized the three “corners” of the unknown values set, and by

convexity, we can generate the both the western and northeastern flats. The remaining

feature, hitherto unexplained, is the apparently smooth southwestern frontier that runs from

the maximally inefficient equilibrium to the efficient revenue minimizing equilibrium. In

fact, we know a great deal about the class of equilibria that generate this southwestern

frontier. They are members of a class of “conditionally revenue minimizing” equilibria,

which minimize revenue conditional on a fixed allocation of the good. As the allocation

ranges from efficient to maximally inefficient, we move smoothly between points D and H.

The southwestern frontier corresponds to a particular path of allocations for which we can

give a partial characterization. These additional analytical results are in Appendix D.

The known values surplus set is depicted in red in Figure 1, and it is significantly smaller

than the unknown values surplus set. At point C, revenue is maximized and bidders are held

down to the lower bound from Section 4. In this example, minimum revenue for the known

values model is approximately 0.11, while minimum revenue for the unknown values model is

approximately 0.06. This difference corresponds to roughly 8 percent of the efficient surplus.

The extreme points of the surplus sets of Figure 1 are maximal for welfare objectives

that are symmetric with respect to the bidders. For example, when we maximize revenue or

total bidder surplus, the objective does not depend on which bidder bids which amount, but

only on the average maximum bid. For symmetric objectives, it is without loss of generality

to consider symmetric BCE (Lemma 7). However, even when the distribution of values is

symmetric, asymmetries in information about values or in behavior could induce differences

in welfare outcomes across buyers.

Figure 3 displays the sets of bidder surplus pairs (U1, U2) that can arise in our discretized

uniform example. Again, blue is for unknown values and red is for known values. Points

are labeled in correspondence with Figure 1. For example, point A in Figure 3 is the BNE

outcome under known values, and corresponds to point A in Figure 1. Point FGH, at which

bidder surpluses are minimized, corresponds to points F, G, and H in Figure 1, etc. The

point marked E′ is the only labeled point on Figure 3 that does not have a direct counterpart

in Figure 1: although the two are close together and are visually difficult to distinguish,

minimum revenue and maximum bidder surplus need not coincide for the known values

model.
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Figure 3: The set of bidder surplus pairs that can arise in a BCE. Computed for uniform
distribution with grids of 10 valuations and 50 bids between 0 and 1.

5.2 Max/Min Ratios

The form that our results have taken thus far is to provide welfare bounds over all information

structures and BNE that are consistent with a fixed prior distribution of values. But what is

the broader message? Are the bounds wide or narrow? To help us get a sense of how much

welfare can vary due to information that is less tied to a particular prior, we will employ

a methodology that has been widely used in the algorithmic mechanism design literature,

which is to study how welfare varies across information structures and BNE relative to some

suitable benchmark. A natural candidate in our setting is complete information, in which

there are no informational frictions whatsoever.

Thus, we can ask if there are bounds on how much revenue and bidder surplus can vary

relative to their respective values in the complete information BNE. Let R̂ = E[v(2)] denote

the expected second-highest value, and Û = E[v(1) − v(2)] denote the residual surplus for

bidders, which is the difference between the highest and second-highest values. Analogously,

let R, R, U , and U denote the highest and lowest revenues and highest and lowest total

bidder surpluses, respectively, that occur in BCE. We will consider the ratios:

R/R̂,R/R̂, U/Û , and U/Û.

42



Bounds on how far these ratios can differ from 1 would mean that these welfare objec-

tives cannot be either too much larger or too much smaller than the complete information

benchmark, regardless of the prior p.

It turns out, however, that there are no such bounds: there exist distributions of values

such that these welfare ratios are arbitrarily small and arbitrarily large. Moreover, this re-

mains true even if we restrict attention to known values information structures. We illustrate

this with three examples.

First, we show that R/R̂ and U/Û can be arbitrarily small and large, respectively. Con-

sider the binary values model with V = {0, 1}, with p being the independent and symmetric

probability of a high type. Revenue in the complete information benchmark is therefore

p2, and minimum revenue is 1 − (1 − p)2 − 2p
√

1− p. As p goes to zero, we can verify by

L’Hôpital’s rule that the ratio of minimum to benchmark revenue converges to

lim
p↓0

p√
1−p − 2

√
1− p+ 2(1− p)
p

= lim
p↓0

[
2√

1− p
− p

2(1− p) 3
2

− 2

]
= 0.

With regard to Û/U , maximum bidder surplus is 2p
√

1− p and benchmark bidder surplus

is 2p(1− p). Thus, the ratio U/Û is 1/
√

1− p, which blows up as p ↑ 1.

Second, R/R̂ can be arbitrarily large. Consider two bidders with values independently

drawn from the cumulative distribution P (v) = vβ. The lower bound on bidder surplus is

U =

ˆ 1

v=0

max
b

(v − b)P (b)p(v)dv.

With the distribution we have chosen, the optimal bid is b∗(v) = β
1+β

v, so that lower-bound

bidder surplus is 1
1+2β

(
β

1+β

)β+1

. The expected highest value is β/(1+2β), so that maximum

revenue is β
1+2β
− 1

1+2β

(
β

1+β

)β+1

. The expected second-highest value is β
1+β

β
1+2β

, so the ratio

of maximum to benchmark revenue is

1 + β −
(

β
1+β

)β
β

,

which clearly blows up as β → 0.

Finally, U/Û can be arbitrarily close to zero. We will suppose that v(1) ∼ U [0, 1], and

that conditional on the highest value, the second-highest value follows a truncated Pareto
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distribution on [0, γv(1)], i.e.,

P (v(2)|v(1)) =


1 if v(2) > γv(1);

(1− γ) v(1)

v(1)−v(2) if 0 ≤ v(2) ≤ γv(1);

0 otherwise.

The expected highest value is 1/2, and the optimal bid is always γv(1), so that the lower

bound on bidder surplus is just (1−γ)/2. Benchmark revenue is a slightly more complicated

calculation. The expected second-highest value, conditional on v(1), is

(1− γ)v(1)

ˆ γv(1)

x=0

x

(v(1) − x)2
dx = (γ + (1− γ) log(1− γ))v(1).

Hence, the ratio of the benchmark to lower bound bidder surplus is 1 − log(1 − γ), which

goes to infinity as γ goes to one.

Thus, we find that the range of welfare outcomes can be very wide, depending on the

specification of the prior. The extreme ratios are however obtained in extreme cases where

either benchmark revenue or benchmark bidder surplus is going to zero. Another weakness

of these ratios is that they are not invariant to translation of values: by adding a constant

to all values, it is possible to make any of these ratios arbitrarily close to 1. In that sense,

our bounds can also be arbitrarily narrow. It remains an open question whether there are

natural classes of distributions or more intuitive benchmark comparisons for which welfare

ratios are bounded.

5.3 Reserve Prices and Entry Fees

The first price auction is an important mechanism to study for many reasons, but at the

end of the day it is just one of many possible mechanisms. Indeed, even in the classical

setting when values are known and the distribution is symmetric, independent, and regular,

the first price auction is generally only optimal if low valuation buyers are excluded from the

auction using a minimum bid or a participation fee (Myerson, 1981). A general treatment

of welfare bounds in mechanism design goes well beyond the scope of this paper, but we

can make some progress by considering simple variants of the first price auction that include

some device for the exclusion of low valuation buyers, i.e., entry fees and reserve prices.

We will explore these variants via a numerical example. Suppose that there are two

buyers whose values are uniformly distributed on a grid between 0 and 1. Reserve prices

and entry fees are modeled as follows: With a reservation price r ≥ 0, buyers can submit
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Figure 4: Comparison of reserve prices and entry fees. Computed for uniformly distribution
with grids of 20 valuations and 20 bids between 0 and 1.

any bid they want, but if the high bid is less than the reservation price, the good will not

be allocated and no transfers take place. Otherwise, the good is allocated to the buyer who

bids the most, and the winning buyer pays their bid to the seller. With an entry fee, buyers

first choose whether or not to enter the auction. Only entrants can bid, but an entrant must

pay an additional fee of e ≥ 0 regardless of whether or not the entrant wins the auction.

In the absense of an entry fee, we can interpret a bid of 0 (or any bid below the reserve

price) as “not entering,” so that the reserve price model effectively captures a model with a

zero entry fee. With a positive entry fee, however, some modeling choices arise with regard

to the timing of information. In particular, do buyers make their entry decisions before or

after observing whatever signals will inform the equilibrium bid? Similarly, in the known

values model, we may wish to assume that buyers learn their values before or after the entry

decision. Neither alternative is obviously more compelling, so we will simulate both and

compare.13

Again, we used linear programming software to numerically calculate maximum and

minimum revenue for a range of reserve prices and entry fees. Figure 4 displays the output

of these computations for a specification with 20 values and 20 bids, evenly spaced between

0 and 1. The left and right panels illustrate the revenue bounds for the unknown and

known value models, respectively. The blue lines are bounds on revenue with reserve prices.

The black lines bound revenue over all BCE with an “ex-ante” fee, which must be paid

before the buyers acquire whatever signals inform their equilibrium bid, while the red lines

bound revenue with an “ex-post” fee, which is paid after learning one’s equilibrium bid.

13An additional timing question arises with entry fees in the known values model. In principle, bidders
might learn their value before they learn their equilibrium bid, in which case we have to ask whether or not
the fee is paid (i) before learning the value, (ii) after learning the value and before the bid, or (iii) after both
learning the value in the bid. We will use (ii): buyers first learn their value, then pay the fee, then learn the
bid.
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Note that a BCE with an ex-post fee is also a BCE with an ex-ante fee, so that the black

bounds are necessarily wider than the red bounds. In addition, since known values BCE

are also unknown values BCE, the bounds on the left panel are necessarily wider than their

counterparts on the right panel.

The simulation indicates some intriguing features of how reserve prices and entry fees

could affect the auction. Consistent with the classical theory, it is very much possible for

both reserve prices and entry fees to raise minimum revenue over all information structures.

However, reserve prices are much more effective at boosting minimum revenue than are

entry fees, at least for this example. In the known values model, max min revenue over all

reserve prices is approximately 0.3705, whereas max min revenue over entry fees is 0.2379.

With regard to entry fees, a surprising result is that ex-ante and ex-post entry fees result in

virtually identical minimum revenue curves. We do not know of any theoretical justification

for this phenomenon.

With regard to maximum revenue, if values are unknown, revenue might be equal to

the efficient surplus. Thus, excluding low valuation buyers can only depress revenue. With

known values, however, it appears that exclusion can increase maximum revenue. In addition,

there is a stark ordering over maximum revenues. For each x ∈ [0, 1], maximum revenue

with an ex-ante fee of x is strictly higher than maximum revenue with an ex-post fee of x,

which is strictly higher than maximum revenue with a reserve price of x. The weak ordering

of ex-ante and ex-post fees is fairly transparent, but maximum revenue ranking of entry fees

versus reserve prices is more subtle. In fact, we have found a relatively simple argument that

an ex-ante fee is always going to generate weakly more revenue than a reserve prices, which

we present in Appendix E. This conclusion corresponds with a result of Milgrom and Weber

(1982) that entry fees induce greater revenue than reserve prices when signals and values are

affiliated.

In sum, this example demonstrates that reserve prices and entry fees can have a large

impact on revenue bounds. In future research, we hope to extend the analysis of welfare

bounds to more general classes of mechanisms.

5.4 Continuum of Values

Though our formal results have been stated for the case of discrete values, we have frequently

illustrated these results with examples in which there is a continuum of valuations. While

discreteness has been useful for our inductive constructions, we do not regard it as essential,

and we expect that our results would generalize to distributions of values characterized by

Borel measures. However, the extension of the results to the continuum case seems to be
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a non-trivial technical exercise, for the simple reason that the set of BCE is not weak-∗

compact, and so sequences of BCE need not converge to BCE in the limit. For example,

it may be that all along a sequence of BCE, bids are not equal with probability 1, but in

the limit, bids are equal with probability 1, thus invoking the tie breaking rule. This is

a well-studied phenomenon, and we refer the reader to Jackson and Swinkels (2005) and

Jackson et al. (2002) for a more detailed discussion of the issue.

5.5 Extension to Asymmetric p

Throughout our analysis, we have maintained the assumption that the distribution p is

symmetric. This has greatly simplified our arguments, especially for deriving solutions to

the minimum revenue and maximum bidder surplus optimal control problems. We wish to

pointout, however, that some of our results extend readily to models with asymmetric value

distributions. Nothing in the proof of Theorem 2 relied on symmetry, and indeed, that result

extends unchanged to the case where p is asymmetric, with different minimum surpluses for

each bidder.

Symmetry is more important for our minimum revenue and maximum bidder surplus

constructions, and there is no simple generalization to asymmetric priors. Our results do

however generate bounds for asymmetric models: suppose that p is asymmetric and minimum

expected revenue over all BCE is R. Then R is also minimum revenue over all BCE for the

permuted distribution of values given by p ◦ ξ for some ξ ∈ Ξ, since all we have done is

rearrange the identities of the bidders. Now consider the “symmetrized” distribution

p̃ =
1

n!

∑
ξ∈Ξ

p ◦ ξ.

Then clearly, there is a BCE for p̃ which is just the symmetrization of the BCE that yielded

revenue of R for the original p, and this BCE will also yield expected revenue of R. As

a result, R must be weakly larger than minimum revenue for p̃, for which we have tight

characterizations.

6 Conclusion

The purpose of this paper has been to study the range of welfare outcomes that might obtain

in a first price auction. In this exercise, we have sought to relax classical assumptions on the

nature of the bidders’ information that were made primarily for the purpose of tractability.

For general specifications of information, in which values can be arbitrarily correlated and
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signals can be multidimensional, the structure of Bayes Nash equilibrium could be quite

complicated. By focusing on those information structures that generate extreme welfare

outcomes, we have maintained tractability while generating new insights into the range of

welfare outcomes that might occur. In particular, we have shown that while there is a

wide range of behavior that could occur, there are non-trivial limits on what can happen to

revenue, bidder surplus, and total surplus. The information structures that generate extreme

outcomes give us further insight into what kinds of information might be good or bad for

the seller and buyers. In particular, revenue is lower when buyers receive partial information

about whether or not they have the high value that induces them to bid less, opening the

door for other partially informed buyers to win with lower bids as well. Revenue is higher

when buyers receive precise information about whether or not they have the high value, but

partial information about the losing buyer’s value. Social surplus can be harmed when there

is precise information about others’ values and in the absense of precise information about

the buyer’s own value.

Many important questions remain. In a computational exercise, we showed that the intro-

duction of devices for excluding low valuation buyers can raise both minimum and maximum

revenue over all information structures. While these results are suggestive, clearly they rep-

resent a very limited exploration of welfare bounds across the universe of mechanisms. A

rich and open question is how to design mechanisms in the face of large uncertainty about

the beliefs held by agents. A takeaway from our work is that the design of equilibria can

be complemented by the design of information. By simultaneously constructing knowledge

and behavior, we obtain bounds on the outcomes of interest as well as gain insight into how

information interacts with the given game form. It is our hope that this methodology will

find use for a wide range of problems within mechanism design.
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A Omitted Proofs

Proof of Theorem 2. We first construct the BCE that attains the maximum revenue and the

minimum bidder surplus. The BCE is constructed as follows. A bidder i with the highest

valuation vi, and hence v(1) = vi is informed that he is the winning bidder and receives a bid

recommendation bi ∈
{
v1, ..., v(1)

}
. The probability distribution of his bid recommendation

is constructed in detail in the subsequent paragraph. Every losing bidder is informed that

he is a losing bidder and is asked to bid his value vi. This is, every losing bidder with the

exception of the bidder with the second highest valuation v(2) when the bid recommendation

of the winner is bi = v(2). In this case, the bidder j with vj = v(2) is asked to chose his bid

bj from the cumulative distribution

Fj
(
bj
∣∣v(1), v(2)

)
=
v(1) − v(2)

v(1) − bj

on a small interval
[
v(2) − ε, v(2)

]
for some ε sufficiently small. With this distribution the

winning bidder receives the object with probability one in the symmetric tie-breaking rule

even though he just bids the value of the second highest valuation.

Now we construct the bid distribution of the winning bidder with vi = v(1). We will

draw bi according to the following procedure based on the conditional distribution of the

second highest valuation v(2) given the highest valuation v(1). Let p
(2)
i (v(2)|v(1)) denote the

conditional probability of the second-highest value v(2) given that bidder i has the highest

value, that is v(1) = vi. In particular, this is:

p
(2)
i (w′|w) =

∑
{v∈V N |vi=w=v(1),v(2)=w′} p(v)∑
{v∈V N |vi=w=v(1)} p(v)

,

and for the corresponding cumulative distribution we write

P
(2)
i (w′|w) =

∑
w′′≤w′

p
(2)
i (w′′|w)

(These objects are only defined when there exists a v ∈ V N such that vi = v(1) = v).

Let k∗i (vi) ∈ {1, ..., K} be the index of the valuation such that b∗i (vi) = vk
∗
i (vi). We now

construct the distribution of valuations and (almost bids) that the winning bidder faces when

he is asked to make a bid bi = vl. Let αl be defined for all vk
∗
i (vi) ≤ vl ≤ vi by:

(vi − vl)
(
αlP

(2)
i (vl−1|vi) + p

(2)
i (vl|vi)

)
= (vi − b∗i (vi))αlP

(2)
i (b∗i (vi)|vi), (37)

51



and rearranging:

αl =
(vi − vl)p(2)

i (vl|vi)
(vi − b∗i (vi))P

(2)
i (b∗i (vi)|vi)− (vi − vl)P (2)

i (vl−1|vi)
. (38)

By the construction of (4), it follows that αl = 1 if k∗i (vi) = l, and that 0 < αl < 1 if

vk
∗
i (vi) < vl < vi, and if p

(2)
i (vl|vi) = 0, then αl is defined to be 0.)

Now based on the weights αl that oversample vl relative to its true frequency in the

conditional distribution of v(2), the bid bi = vl is recommended to bidder i with probability

xl =
k∏

l′=l+1

(1− αl′) (39)

when v(2) = vl, and with probability

yl = αlxl (40)

when v(2) < vl.

We claim that these rules define a BCE. Note that the bidder j with vj = v(2) only

receives recommendation bj = vl when v(2) ≤ vl, so the only way to deviate upwards and

win the auction when one would lose by following the recommendation is to bid more than

v(2), which would result in negative surplus. Thus, it is sufficient to check that no bidder

would like to deviate downwards. To assess the value of such deviations, first observe that

the conditional distribution of v(2) conditional on bi = vl has a particular form: v(2) = vl

with probability

p
(2)
i (vl|vi)

p
(2)
i (vl|vi) + αlP

(2)
i (vl−1|vi)

,

and v(2) = vl
′

for l′ < l with probability

αlp
(2)
i (vl

′ |vi)
p

(2)
i (vl|vi) + αlP

(2)
i (vl−1|vi)

.

Thus, by construction bidder i is indifferent between a bid of vl and b∗i (vi), and moreover

the latter bid is superior to any bid other bid vl
′

with l′ < l by the definition of b∗i (vi) and

the fact that probabilities of winning for vl
′

with l′ < l are all proportional to P
(2)
i (vl

′ |vi).
Moreover, by choosing ε sufficiently small, we can be sure that bids in V are superior to bids

not in V .

Finally, this construction ensures that bidder i is always indifferent between following the

recommendation bi and bidding b∗i (vi). Thus, the surplus in equilibrium must be equal to
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the surplus from following the latter strategy, which is precisely U i(vi). Moreover, a bidder

with vi = v(1) always wins the auction, so that the outcome is efficient.

Proof of Theorem 3. We construct the BCE as follows. If v(1) = v(2), then all high bidders

bid v(1), and losing bidders can bid anything less than v(1).

Otherwise, if v(1) > v(2), the equilibrium first draws an x in [0, 1] according to the

distribution F (x) = xk. The high value bidder is then told to bid b = xv(1) + (1−x)v(2), and

losing bidders are told to bid yv(1) + (1− y)v(2) with y ∈ [0, x], where y ∼ G(y)
G(x)

=
(

y
1−y

1−x
x

)k
and G(x) =

(
x

1−x

)k
.

We claim that this is a BCE for all k. Clearly, there is always positive conditional prob-

ability that a given bid is both a winning bid and a losing bid. In particular, conditional on

the profile of values, a recommendation in the range [v(2), b] is a winning bid with probability

1

N
G

(
b− v(2)

v(1) − v(2)

)
,

and a losing bid is recommended in the range [v(2), b] with probability

N − 1

N
G

(
b− v(2)

v(1) − v(2)

)(
1 +

ˆ 1

x= b−v(2)

v(1)−v(2)

g(x)

G(x)
dx

)
.

Both of these expressions are differentiable and strictly increasing on the range b ∈ [v(2), v(1)],

and are zero when b = v(2), and thus bids in any open subinterval of [v(2), v(1)] arise with

positive probability conditional on both winning and losing. Thus, conditional on any bid,

it is possible to have value v(1), so that the strategy of bidding b is undominated. However,

if b is a losing recommendation, b > vi, so that it is never profitable to deviate to a higher

bid.

In addition, conditional on it being a winning bid b = xv(1) + (1−x)v(2), and conditional

on the highest and second highest values, the benefit of deviating downward to some b′(1) +

(1− y)v(2) with y ≥ 0 is proportional to

(v(1) − v(2))(1− y)
GN−1(y)

GN−1(x)
≤ (v(1) − v(2))(1− y)

G(y)

G(x)

since G(y)
G(x)

< 1, and moreover the left-hand side and right-hand side coincide at y = x.

Thus, it is sufficient to show that (1 − y)G(y) is increasing in y. This function is yk

(1−y)k−1 ,
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which is obviously increasing in y since the numerator is increasing and the denominator is

decreasing.

Finally, as k goes to ∞, the expected value of x converges to 1. For if we write H(x) for

any CDF that is strictly less than 1 with probability 1, then

ˆ 1

x=0

xdHk(x) = xHk(x)|1x=0 −
ˆ 1

x=0

Hk(x)dx

= 1−
ˆ 1

x=0

Hk(x)dx

≥ 1− zHk(z)− (1− z)

for any z ∈ (0, 1) (this just comes from the observation that H(x) ≤ H(z) for x ∈ [0, z]

and H(x) ≤ 1 for all x ∈ [z, 1]). Since Hk(z) < 1, by choosing z sufficiently close to 1

and k sufficiently large, we can make this number arbitrarily close to 1. Thus, in the limit

as k goes to ∞, it must be that E
[
b
]

= E[x]
∑

v p(v)v(1) + (1 − E[x])
∑

v p(v)v(2) goes to∑
v p(v)v(1) = S. Since S(F ) = R(F ) + U(F ) ≤ S, it must be that U(F ) goes to 0.

Proof of Lemma 4. The proof essentially follows the derivation of the relaxed problem in

Section 4.1.2. Let

H(b|v1, . . . , vn) =

ˆ
{x∈RN+ |xi≤b ∀i}

q1(x)F (dx|v1, . . . , vN). (41)

Thus, our convention is that it is bidder 1 who wins the auction. Since the BCE is symmetric,

H so defined is invariant to permutations of (v2, . . . , vN). Thus, the objective of minimizing

revenue is equivalent to maximizing

∑
v∈V N

p(v)

ˆ vK

b=0

H(b|v)db, (42)

which is the many-bidder analogue of (11). Recall that Ξ denotes the set of permutations of

{1, . . . , N}, and we associate a permutation ξ ∈ Ξ with a mapping from V N to V N , where

ξ(v) is the permuted profile of valuations in which ξi (v) = vξ(i). The feasibility constraint

that is analogous to (10) requires that∑
ξ∈Ξ

H(b|ξ(v)) ∈ [0, 1]∀v ∈ V N . (43)
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Finally, the incentive constraint that is analogous to (12) says that

(N − 1)
∑
v∈V N

p(v)H(b|v1, v−1)

(
1

N − 1

∑
i 6=1

vi − b

)
≤
∑
v∈V N

p(v)

ˆ b

x=0

H(x|v)dx. (44)

This expression is close to (12), with a notable difference being the sum over bidders other

than i on the left hand side. To derive this equation, let us consider uniform upward deviation

σbi (x) = max{x, b}. Then using (3), we can write the IC constraint for these deviations as

∑
v∈V N

p(v)

ˆ
{x∈RN+ |xi≤b}

[(vi − xi)qi(x)− (vi − b)qi(b, x−i)]F (dx|v) ≥ 0.

Since qi(b, x−i) ≤ 1, then clearly this constraint implies that

∑
v∈V N

p(v)

[ˆ
{x∈RN+ |xi≤b}

(vi − xi)qi(x)F (dx|v)− (vi − b)F (b1|v)

]
≥ 0.

Now, from (41) and the assumption of symmetry, it must be that

H(db|vi, v−i) =

ˆ
{x∈RN+ |xi=b}

qi(x)F (dx|v).

Moreover, F (b1|v) is the total probability that some buyer wins with a bid less than b when

values are v, which is
∑N

i=1 H(b|vi, v−i). Thus, we can rewrite this as

∑
v∈V N

p(v)

[ˆ b

x=0

(b− x)H(db|vi, v−i)− (vi − b)
∑
j 6=i

H(b|vj, v−j)

]
≥ 0.

So now, integrating by parts, we conclude that

∑
v∈V N

p(v)

[ˆ b

x=0

H(x|vi, v−i)dx− (vi − b)
∑
j 6=i

H(b|vj, v−j)

]
≥ 0.

Note that by symmetry,
∑

v∈V N H(b|vi, v−i) =
∑

v∈V N H(b|v1, v−1) for all i. Also, note that∑
v∈V N

p(v)(vi − b)
∑
j 6=i

H(b|vj, v−j) =
∑
v∈V N

p(v)H(b|vi, v−i)
∑
j 6=i

(vj − b).

By pulling out a factor N − 1, we obtain (44).
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Thus, an intermediate relaxed program is to maximize (42) subject to (43) and (44). It

is without loss of generality to consider efficient solutions, in which

H(b|v1, v−1) = 0 if v1 < max v. (45)

To see this, we will transform the relaxed program one more time. Recall that Ξ is the set

of permutations, which we have identified with mappings from V N to V N . Thus, we can let

V N/Ξ denote the set of equivalence classes modulo permutation, i.e., [v] ∈ V N/Ξ denotes

{ξ (v) |ξ ∈ Ξ}.

Moreover, p([v]) is the probability of [v] that is induced by p(v). From symmetry, we know

that H(b|vi, v−i) is invariant to permutations of the v−i. Thus, the distribution only depends

on the set of valuations and the valuation of the winner. We can write H(b|k, [v]) for this

permutation-invariant winning bid distribution when the profile is in [v] and the winner’s

value is vk. We also let

H(b|[v]) =
K∑
k=1

c(k, [v])H(b|k, [v])

denote the distribution of winning bids given [v], where

c(k, [v]) = |{i|vi = vk}|

is the number of values in [v] with value vk, which is obviously invariant to the choice

of representative. We finally denote by k∗([v]) the largest k such that c(k, [v]) > 0 and

c∗([v]) = c(k∗([v]), [v]).

With this notation in hand, we can rewrite the relaxed program as

max
∑

[v]∈V N/Ξ

p([v])
K∑
k=1

c(k, [v])

ˆ vK

x=0

H(x|k, [v])dx, (46)
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subject to

K∑
k=1

c(k, [v])H(b|k, [v]) ∈ [0, 1]∀[v] ∈ V N/Ξ; (47)

∑
[v]∈V N/Ξ

p([v])
K∑
k=1

c(k, [v])(vk − b)(H(b|[v])−H(b|k, [v]))

≤
∑

[v]∈V N/Ξ

p([v])
K∑
k=1

c(k, [v])

ˆ b

x=0

H(x|k, [v])dx.

(48)

Now, an inefficient solution corresponds to one where H(b|k, [v]) > 0 even though k < k∗([v]).

We can perturb the solution to

H̃(b|k, [v]) =

{
1

c∗([v])

∑K
k=1 c(k, [v])H(b|k, [v]) if k = k∗([v]);

0 otherwise.

Clearly, this solution will still satisfy (43) and result in the same objective (42), since

K∑
k=1

c(k, [v])H̃(k, [v]) = c∗([v])H̃(k∗([v]), [v])

=
K∑
k=1

c(k, [v])H(k, [v]).

Moreover, the incentive constraint will be relaxed, since

∑
[v]∈V N/Ξ

p([v])
K∑
k=1

c(k, [v])(vk − b)(H̃(b|[v])− H̃(b|k, [v]))

=
∑

[v]∈V N/Ξ

p([v])
K∑
k=1

c(k, [v])(vk − b)(H(b|[v])−H(b|k, [v]))

+
∑

[v]∈V N/Ξ

p([v])
K∑
k=1

c(k, [v])(vk − b)
(
H̃(b|[v])−H(b|[v])− H̃(b|k, [v]) +H(b|k, [v])

)
.
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But since H(b|[v]) = H̃(b|[v]), the last line is equivalent to

∑
[v]∈V N/Ξ

p([v])
K∑
k=1

c(k, [v])(vk − b)
(
H(b|k, [v])− H̃(b|k, [v])

)
=

∑
[v]∈V N/Ξ

p([v])

(
K∑
k=1

c(k, [v])(vk − b)H(b|k, [v])− (max v − b)c∗([v])H̃(b|k∗[v], [v])

)

=
∑

[v]∈V N/Ξ

p([v])

(
K∑
k=1

c(k, [v])(vk − b)H(b|k, [v])− (max v − b)
K∑
k=1

c(k, [v])H(b|k, [v])

)

=
∑

[v]∈V N/Ξ

p([v])
K∑
k=1

c(k, [v])(vk −max v)H(b|k, [v]) ≤ 0.

Thus, the right-hand side of the IC constraint has weakly decreased, though the right-hand

side is the same, which proves that incentive compatibility is still satisfied.

We can therefore restrict attention to efficient solutions to the relaxed program. The

constraint (48) then simplifies to

∑
[v]∈V N/Ξ

p([v])

k∗(v)∑
k=1

c(k, [v])(vk − b)− (max v − b)

 c∗([v])H(k∗([v]), [v])

=
∑

[v]∈V N/Ξ

p([v])(N − 1)

 1

N − 1

k∗(v)∑
k=1

c(k, [v])vk −max v

− b
 c∗([v])H(k∗([v]), [v])

=
∑

[v]∈V N/Ξ

p([v])(N − 1) (µ(v)− b) c∗([v])H(k∗([v]), [v])

≤
∑

[v]∈V N/Ξ

p([v])
K∑
k=1

c(k, [v])

ˆ b

x=0

H(x|k, [v])dx.

Using the functions µ and pL defined by (17) and (18), we can define

H(b|m) =
1

pL(m)

∑
{[v]∈V N/Ξ|µ(v)=m}

p([v])c∗([v])H(b|k∗([v]), [v]) (49)

as the distribution of winning bids conditional on the average losing value. Substituting this

expression into (46) yields , (48) becomes (21), and (47) becomes (20).
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Proof of Proposition 5. First, we observe that a solution to the unknown values relaxed

program must exist. The set of bounded and measurable functions from
[
0, vK

]
to [0, 1] is

compact. Moreover, for each b ∈ R+, (21) is a linear restriction that is continuous in H in

the weak-∗ topology, so that the set of distributions satisfying (21) is closed. Therefore, the

feasible set for the relaxed program is compact, and the objective is weak-∗ continuous, so a

solution exists.

Next, let us show that H(b|m) = 0 almost surely for all b < m , minM . Let us define

the function

H(b) =
∑
m∈M

pL(m)H(b|m).

Then (21) implies that

(m− b)N − 1

N
H(b) ≤ 1

N

ˆ b

x=0

H(x)dx.

Clearly, H(b|m) > 0 for some vL if and only if H(b) > 0 as well, so it is sufficient to prove

that H(b) = 0 almost surely for b < m. If H(b) > 0 for some non-null set of b < m, then

there exists a b < m such that
´ b
x=0

H(x)dx > 0. Let b be the infimum of such b (here we are

using the assumption that B is bounded below). Then it must be that H(x) = 0 for x < b.

Let z(ε) > 0 be the supremum of H(b) over the range [b, b + ε] for some small ε. Then it

must be that

(m− b− ε)N − 1

N
z(ε) ≤ 1

N
εz(ε),

which implies that (m−b)N−1
N
≤ ε. But this has to hold for arbitrarily small ε. Thus, b ≥ m.

As a result, it must be that

H(b|m) =

{
1 if b ≥ m;

0 otherwise.

The reason is that the weight on H(b|m) in (21) is non-positive, so that increasing H(b|m)

always weakly decreases the left-hand side and increases the right-hand side. Incidentally,

this argument also implies that H(b|m) = 1 for b ≥ m, for all m ∈M .

59



Now, consider a solution to the relaxed program such that there exists a non-null set

X ⊂ R such that for all b ∈ X, H(b|m) < 1 for some m ∈M and (21) is slack. Let

G(b) =
1

N

∑
m∈M

pL(m)

(ˆ b

x=0

H(x|m)dx− (N − 1)(m− b)H(b|m)

)

denote the slack in the constraint at b, so that G(b) > 0 on X. Then we can define an

alternative solution:

H̃(b|m) = H(b|m) +

{
0 if b /∈ X or if b ≥ m;

min
{

1−H(b|m), G(b)
(N−1)(m−b)

}
otherwise.

Thus, it must be that H̃(b|m) ≥ H(b|m), and for a non-null set of b ∈ X, it must be that

H̃(b|m) > H(b|m). Hence, we have that

∑
m∈M

pL(vL)
N − 1

N
(m− b)H̃(b|m) ≤

∑
m∈M

pL(m)
1

N
[(n− 1)(m− b)H(b|m) +G(b)]

=
∑
m∈M

pL(m)
1

N
H(x|m)dx

≤
∑
m∈M

pL(m)
1

N
H̃(x|m)dx,

so that H̃(b|m) is feasible. However, since H̃(b|m) > H(b|m) on a non-null set, we must

have that (19) is higher with H̃ than with H, so the objective has improved. Thus, if (21)

is slack on a non-null set such that H(b|m) < 1 for some m ∈M , then (19) must be strictly

below its optimal value.

Now, let us argue that (22) must be satisfied at the optimum. Suppose it is not the case,

and let X be a non-null set such that H(b|m) > 0 while H(b|m′) < 1 for some m′ > m. Let

φ(b) = min

{
pL(m′)

1−H(b|m′)
2

, pL(m)H(b|m)

}
.

Note that φ(b) > 0 on x. We can then define an alternative solution

H̃(b|m′′) =


H(b|m′′) if m′′ /∈ {m,m′};
H(b|m′) + 1

pL(m′)
φ(b) if m′′ = m′;

H(b|m)− 1
pL(m)

φ(b) if m′′ = m.
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From the definition of φ, we know that H̃(b|m′′) ∈ [0, 1] for all b ∈ R+ and for all m′′ ∈ M .

In addition, whenever φ(b) > 0,

∑
m′′∈M

pL(m′′)
N − 1

N
(m′′ − b)H̃(b|m′′) =

∑
m′′∈M

pL(m′′)
N − 1

N
(m′′ − b)H(b|m′′)

+
N − 1

N
φ(b)(m′ −m)

<
∑
m′′∈M

pL(m′′)
N − 1

N
(m′′ − b)H(b|m′′)

≤
∑
m′′∈M

pL(m′′)
1

N

ˆ b

x=0

H(x|m′′)dx

=
∑
m′′∈M

pL(m′′)
1

N

ˆ b

x=0

H̃(x|m′′)dx,

and ∑
m′′∈M

pL(m′′)H(b|m′′) =
∑
m′′∈M

pL(m′′)H̃(b|m′′)

for all b. Thus, we conclude that (21) is slack on a non-null set even though H̃(b|m′′) < 1

for some m′′, and therefore (19) must be strictly below the optimum at H̃. But (19) is the

same at H̃ and at H. Thus, H cannot be the optimal solution either. We conclude that (22)

must hold almost surely.

We are essentially done. H(b|m) is now inductively pinned down by (21) and (22). In par-

ticular, suppose that we have defined H(b|m′) for all m′ < m ∈M . Let b̂ = sup{b|H(b|m′) <
1 for some m′ < m}. Then it must be that H (̂b|m′) < 1 for all m′ < m and x ≤ b̂, and thus

(N − 1)(m− b)H(b|m)−
ˆ b

x=0

H(x|m)dx

=
1

pL(m)

[ ∑
m′<m

pL(m′)

(ˆ b̂

x=0

H(x|m′)dx− (N − 1)(m′ − b)

)
+ (b− b̂)

]
= C1 + C2b.

This is a first-order linear ordinary differential equation. The homogenous solutions would

be of the form (m− b)
1

N−1 , and using this, one can derive the non-homogenous solution

ˆ b

x=−∞
H(x|m)dx = C3(m− b)−

1
N−1 − C1 − C2

(N − 1)m+ b

N
,
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and thus,

H(b|m) =
C3

N − 1
(m− b)−

N−2
N−1 − C2

N
.

The constant C3 has to be chosen so that H (̂b|m) = 0, so

C3 = C2
N − 1

N
(m− b̂)

N−2
N−1 .

Our final form for H(b|m) is

H(b|v) =
1

N
C2

(m− b̂
m− b

)1+ 1
N−1

− 1

 . (50)

Strictly speaking, H(b|m) is zero for b < b̂, given by (50) for b ∈ [̂b, b] where b is the point at

which H(b|m) hits 1, and then is 1 for b > b. Clearly, as b ↑ m, the right-hand side of (50)

blows up, so that H(b|m) must hit 1 before b hits m. Now we can inductively continue the

solution for the next higher m ∈ M , and since M has are only finitely many elements, this

process eventually terminates and we have defined the solution. We note that the functions

H(b|m) so defined are monotonically increasing in b, so that they are in fact CDFs.

Proof of Lemma 6. If m = m = minM , then we define L(b|b′,m) to randomize over an

interval[m− ε,m] so as to support bidding at m by a type with expected valuation vW (m).

In particular, we can have

L(b|m,m) =


1 if b ≥ m;
vW (m)−m
vW (m)−b if b ∈ [m− ε,m];

0 otherwise.

Now, inductively suppose that L(b|b′,m′) has been defined for m′ < m, and satisfies the

properties in the lemma. The derivative of the first term in (26) is∑
m′≤m̃

pL(m′)(m− b)H(db|m′)

which is necessarily non-negative, since b ≤ m and H(db|m′) is positive from Proposition 5.

And since we have inductively assumed that L(b|x,m) is increasing for all m′ < m, it must

be that L(b|b′,m) must be increasing as well.
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Now, let us argue that L(b|b,m) = 1. Since L(b|b,m′) = 1 for all m′ < m and since b > x

for all x ∈ Bm′ with m′ < m, (26) can be rewritten as

pL(m)L(b|b,m)H(db|m)

=
1

(m− b)2

[
1

N − 1

∑
m′≤m

pL(m′)

(ˆ b

x=0

H(x|m′)dx+ (m− b)H(b|m′)
)

+
∑
m′<m

(m−m′)pL(m′)

ˆ
x∈Bm′

H(dx|m′)

]

which further rearranges to

pL(m)(m− b)2L(b|b,m)H(db|m)

=
1

N − 1

∑
m′≤m

pL(m′)

(ˆ b

x=0

H(x|m′)dx+ (m− b)H(b|m′)
)

+
∑
m′<m

(m−m′)pL(m′)

ˆ
x∈Bm′

H(dx|m′)

Since (21) holds with equality and the H(b|m) are almost everywhere differentiable, it must

be that ∑
m′≤m

pL(m′)
N − 1

N
(m′ − b)H(db|m′) =

∑
m′≤m

pL(m′)H(b|m′). (51)

But H(db|m′) = 0 for all m′ 6= m, so in fact

pL(m)
N − 1

N
(m− b)H(db|m) =

∑
m′≤m

pL(m′)H(b|m′).

We can substitute this and (21) into (26) to rewrite it as

L(b|b,m)(m− b) N

N − 1

∑
m′≤m

pL(m′)H(b|m′)

=
1

N − 1

∑
m′≤m

pL(m′) ((N − 1)(m′ − b)H(b|m′) + (m− b)H(b|m′))

+
∑
m′<m

(m−m′)pL(m′)H(b|m′)
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or (
L(b|b,m)

N

N − 1
− 1

N − 1

)
(m− b)

∑
m′≤m

pL(m′)H(b|m′)

=
∑
m′≤m

pL(m′)(m′ − b)H(b|m′) +
∑
m′<m

(m−m′)pL(m′)H(b|m′)

=
∑
m′≤m

pL(m′)(m− b)H(b|m′)

which implies that L(b|b,m) = 1.

Now let us show (ii). (25) clearly holds as an equality if b′ = b. We will show that the

derivative of the left-hand side is zero, so that it will hold as an equality for all b′ > b as

well. Now, if b′ ∈ Bm, then H(db′|m′) is zero except for m′ = m. In addition, if b ∈ Bm̃,

then H(db|m) = 0 unless m = m̃. Thus, we can decompose the left-hand side into

(N − 1)pL(m)(m− b′)
ˆ b′

x=−∞
L(db|x,m)H(dx|m)

+ (N − 1)
∑
m′<m

(m′ − b′)pL(m′)

ˆ b′

x=0

L(db|x,m′)H(dx|m′)− (b′ − b)pL(m̃)H(db|m̃)

Now, it must be the case that b′ < m, so we can divide this equation by (N − 1)(m− b′) to

obtain

pL(m)

ˆ b′

x=−∞
L(db|x,m)H(dx|m)

+
∑
m′<m

m′ − b′

m− b′
pL(m′)

ˆ b′

x=0

L(db|x,m′)H(dx|m′)− b′ − b
m− b′

pL(m̃)H(db|m̃)

The incentive constraint is satisfied if and only if this expression is non-positive. Differenti-

ating with respect to b′, we obtain

pL(m)L(db|b′,m)H(db′|m)

− 1

(m− b′)2

[∑
m′<m

(m−m′)pL(m′)

ˆ b′

x=0

L(db|x,m′)H(dx|m′)− (m− b)pL(m̃)H(db|m̃)

]

which we can conclude is zero from differentiating (26).

Now consider the payoff to a bidder who is told to bid b′ ∈ Bm and deviates down to

b < b′. Let vW (m) be the expected value of a buyer who wins when the average losing value
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is m, i.e.,

vW (m) =
1

pL(m)

∑
{v∈V N |µ(v)=m}

p(v) max v.

Then the payoff of a buyer who deviates down is

1

N
pL(m)(vW (m)− b)L(b|b′,m)N−1H(db′|m),

where the N − 1 exponent comes from the fact that there are N − 1 losing bidders who

receive independent draws from this distribution. This expression is increasing in b if and

only if

(vW (m)− b)(N − 1)L(db|b′,m)− L(b|b′,m) ≥ 0

for all b ∈ [0, b′]. Using (26), a sufficient condition for this to be the case is that the following

functions are weakly increasing:

(vW (m)− b)

(∑
m′≤m̃

pL(m)

ˆ b

x=0

H(x|m′)dx

)N−1

;

(vW (m)− b)L(b|x,m′)N−1∀b ≤ x ≤ b′,m′ < m.

Again, if we inductively suppose that (vW (m′) − b)L(b|x,m′)N−1 is increasing for m′ < m,

then since vW (m) > vW (m′), we have that (vW (m) − b)L(b|x,m′)N−1 is increasing as well.

Let us then argue that the first of these two functions is increasing. Again, a sufficient

condition is that

(vW (m)− b)(N − 1)
∑
m′≤m̃

pL(m′)H(b|m′)−
∑
m′≤ṽ

pL(m′)

ˆ b

x=0

H(x|m′)dx ≥ 0.

But since vW (m) ≥ m, this is implied by (21). This verifies that downward deviations are

not profitable, and therefore we have constructed a BCE.

Proof of Lemma 7. Let g(b, v) be exchangeable in b ∈ RN
+ and in v ∈ V N , i.e., g(b, v) =

g(ξ(b), ξ(v)) for all ξ ∈ Ξ. This property is satisfied by revenue, bidder surplus, and total

surplus. For example, in the case of revenue, g(b, v) =
∑n

i=1 qi(b)bi, which is exchangeable

since qξ(i)(ξ(b)) = qi(b). Consider a BCE given by the family of conditional bid distributions
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{F (db|v)}v∈V N which attains an expected objective of

x =
∑
v∈V N

p(v)

ˆ
b∈RN+

g(b, v)F (db|v).

Then we claim that there is an exchangeable BCE that also attains x, which is defined by

F̃ (X|v) =
1

N !

∑
ξ∈Ξ

F (ξ(X)|ξ(v))

where X ⊆ RN
+ is any measurable set of bid profiles (note that the function ξ is measurable).

To see this, note that

∑
v∈V N

p(v)

ˆ
b∈RN+

g(b, v)F̃ (db|v) =
∑
v∈V N

p(v)

ˆ
b∈RN+

g(b, v)
1

N !

∑
ξ∈Ξ

F (dξ(b)|ξ(v))

=
1

N !

∑
ξ∈Ξ

∑
v∈V N

p(ξ(v))

ˆ
b∈RN+

g(ξ(b), ξ(v))F (dξ(b)|ξ(v))

=
1

N !

∑
ξ∈Ξ

∑
v∈V N

p(v)

ˆ
b∈RN+

g(b, v)F (db|v)

=
1

N !

∑
ξ∈Ξ

x = x

The first line is just exchanging the order of the summation and integration. The second

line follows from the fact that p and g are exchangeable. The third line comes from the fact

that ξ is a bijection, so that we can equivalently sum over V N and compose with ξ, or sum

over ξ(V N) without the composition, which is still just V N .

Proof of Proposition 9. The derivative of (27) with respect to m is

β′(m) =
N − 1

N
(m− β(m))

pL(m)

PL(m)
. (52)

It is easy enough to verify that β(m) defined by (28) satisfies this differential equation, with

the initial condition β(v) = v. For L’Hospital’s rule implies that

lim
m↓v

β(m) =
N − 1

N
lim
m↓v

mpL(m)

(PL(m))
1
N

N−1
N

pL(m)

(PL(m))
1
N

= v.
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Now, let us calculate the gains from deviating after a signal of s. If such a bidder were to

deviate downwards to β(s′) with s′ < s, they win only if (1) the deviator had the high value,

since otherwise some other bidder’s signal was greater than s, and (2) all others’ signals are

less than s′, which occurs with probability L(s′|s). Since others bids are independent draws,

this occurs with probability (L(s′|s))N−1. Thus, the surplus from deviating downwards is

proportional to

(vW (s)− β(s′))(L(s′|s))N−1,

where vW (s) ≥ s is the expected high valuation given that the average loser’s valuation is s.

Thus, a sufficient condition for bidders to not want to deviate downwards is that

(vW (s)− β(s′))(N − 1)(L(s′|s))N−2L(ds′|s)− β′(s′)(L(s′|s))N−1 ≥ 0.

A sufficient condition for this to be the case is that

(s− β(s′))(N − 1)L(ds′|s)− β′(s′)L(s′|s) ≥ 0.

Plugging in the definition of L and the formula for β′(s′), we obtain

N − 1

N

1

(PL(s))
1
N

pL(s′)

(PL(s′))
N−1
N

(s− s′) ≥ 0,

thus verifying that bidders will not want to deviate downwards.

Now let us consider upward deviations. Bidders think that their signal s is the aver-

age losing value m with likelihood pL(s)/N . The upward deviator therefore loses surplus

proportional to

(β(s′)− β(s))
pL(s)

n

from deviating up to β(s′). On the other hand, the likelihood of the signal s < m is

L(ds|m)N−1
N
pL(m), and conditional on winning when the average losing value is m, the

upward deviator expects to gain m− β(s′). Integrated over all m < s′, this is

ˆ s′

m=s

(m− β(s′))L(ds|m)
N − 1

N
pL(m)dm =

N − 1

N

1

N

pL(s)

(PL(s))
N−1
N

ˆ s′

m=s

(m− β(s′))
pL(m)

(PL(m))
1
N

dm.
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Thus, the total change in surplus is proportional to

N − 1

N

1

(PL(s))
N−1
N

ˆ s′

m=s

(m− β(s′))
pL(m)

(PL(m))
1
N

dm− (β(s′)− β(s)),

which is clearly zero when s′ = s. The derivative with respect to s′ is

N − 1

N

1

(PL(s))
N−1
N

(s′ − β(s′))
pL(s′)

(PL(s′))
1
N

− β′(s′)N − 1

N

1

(PL(s))
N−1
N

ˆ s′

m=s

pL(m)

(PL(m))
1
N

dm− β′(s′).

Again, using the differential equation for β′(s′), we can rewrite this quantity as

β′(s′)

[(
PL(s′)

PL(s)

)N−1
N

− N − 1

N

1

(PL(s))
N−1
N

ˆ s′

m=s

pL(m)

(PL(m))
1
N

dm− 1

]
.

By solving out the integral, we obtain

β′(s′)

[(
PL(s′)

PL(s)

)N−1
N

− 1

(PL(s))
N−1
N

(
(PL(s′))

N−1
N − (PL(s))

N−1
N

)
− 1

]
= 0.

Thus, bidders are indifferent to deviating up to any bid in the support of winning bids.

Proof of Proposition 10. The proof is similar to that of Proposition 5. The objective is weak-
∗ continuous and the feasible set is weak-∗ compact, by analogous arguments, so an optimum

exists. We first argue that no buyer can bid below v1. Then, we argue that (33) must bind

whenever H(b|z) < 1 for some z, or else there is another solution that strictly improves the

objective and lowers revenue. Finally, we show that the ordered supports property (34) must

be satisfied, or else it is possible to find an alternative solution for which revenue is the same

but also for which (33) is slack even though H(b|z) < 1 for some z.

We can write

H(b) =
N∑
z=0

pZ(z)H(b|z)

for the ex-ante cumulative distribution of the winning bid. Because v2 > v1, (33) implies

that H(b) satisfies the following inequality:

(v1 − b)H(b) ≤
ˆ b

x=0

H(x)dx.
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Since the support of bids is bounded below, there is an infimum b such that H(b) > 0, which

we denote by b. Note that for all b ∈ [b, b+ ε], H(b) ≤ H(b+ ε), so

(v1 − b)H(b+ ε) ≤ εH(b+ ε)

which implies that v1 − b ≤ ε for all ε > 0. Thus, b ≥ v1, and hence b ≥ v1.

Together with the assumption of weakly undominated strategies, this implies that H(b|0)

is a mass point on v1. In addition, it must be that H(b|1) is also a mass point on v1. The

reason is that the weight on H(b|1) on the left-hand side of (33) is zero, so increasing H(b|1)

only increase the right-hand side of (33), as well as increasing (31).

Now we claim that if (33) is not satisfied almost surely when H(b|z) < 1 for some z, then

it is possible to strictly improve the objective and decrease revenue. The proof is as in the

unknown values case. Let

G(b) =
1∑N

z=1 p
Z(z)

N∑
z=1

pZ(z)

[
1

z

ˆ b

x=0

H(x|z)dx− (v2 − b)z − 1

z
H(b|z)

]

denote the slack in the constraint at b. Suppose there is a non-null set X for which G(b) > 0

and H(b|z) < 1 for some z. Then we can define the alternative solution

H̃(b|z) = H(b|z) +

{
0 if b /∈ x;

min
{

1−H(b|z), G(b)
v2−b

z
z−1

}
otherwise

Note that H̃(b|z) > H(b|z) on a non-null set. Thus, the objective (31) must be larger with

H̃ than under H. In addition,

(v2 − b)
N∑
z=1

pZ(z)
z − 1

z
H̃(b|z) ≤ (v2 − b)

N∑
z=1

pZ(z)
z − 1

z
H(b|z) +

N∑
z=1

pZ(z)G(b)

=
N∑
z=1

pZ(z)
1

z

ˆ b

x=0

H(x|z)dx

≤
N∑
z=1

pZ(z)
1

z

ˆ b

x=0

H̃(x|z)dx,

so that the new solution is feasible as well.

69



Now let us show that (34) must be satisfied almost surely. Suppose that X is some

non-null set on which H(b|z) < 1 but H(b|z′) > 0 for some z′ > z. Let

φ(b) = min

{
pZ(z)

1−H(b|z)

2
, pZ(z′)H(b|z′)

}
.

As before, φ(b) must be strictly positive on X. Now define the perturbed solution

H̃(b|z′′) =


H(b|z′′) if z′′ /∈ {z, z′};
H(b|z) + 1

pZ(z)
φ(b) if z′′ = z;

H(b|z′)− 1
pZ(z′)

φ(b) if z′′ = z′.

We claim that H̃ is feasible and induces weakly higher objective. Observe that the right-hand

side of (33) has increased, since

N∑
z′′=0

pZ(z′′)

z′′

ˆ b

x=0

(H̃(x|z′′)−H(x|z))dx

=
pZ(z)

z

ˆ b

x=0

(H̃(x|z)−H(x|z))dx+
pZ(z′)

z′

ˆ b

x=0

(H̃(x|z′)−H(x|z′))dx

=

(
1

z
− 1

z′

) ˆ b

x=0

φ(x)dx > 0.

On the other hand, the change in the left-hand side is

(v2 − b)
N∑

z′′=1

pZ(z′′)
z′′ − 1

z′′
(H̃(b|z′′)−H(b|z′′))

= (v2 − b)
[
pZ(z)

z − 1

z

(
H̃(b|z)−H(b|z)

)
+ pZ(z′)

z′ − 1

z′

(
H̃(b|z′)−H(b|z′)

)]
= (v2 − b)φ(b)

(
z − 1

z
− z′ − 1

z′

)
< 0.

Since (33) was weakly satisfied under H, it must be strictly satisfied for a positive measure

of b such that φ(b) > 0, and moreover it is clear that H(b|z) < 1 for all such b. Thus, it is

possible to further perturb the solution as we did above in a manner that strictly decreases

expected revenue.

Having established that H(b|0) and H(b|1) are mass points on 0, it must be that there

is an interval [v1, b2] for which (33) is solved with H(b|1) = 1 and with H(b|z) = 0 for all
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z > 2. In particular,

(v2 − b)p
Z(2)

2
H(b|2) =

ˆ b

x=v1

[
pZ(1) +

pZ(2)

2
H(x|2)

]
dx.

The solution of this differential equation is

H(b|2) =
2pZ(1)

pZ(2)

v2(b− v1)− b2

2

(v2 − b)2
,

which explodes as b ↑ v2. Thus, it must hit 1/2 before b reaches v2, and at that point (b2)

we change over to solving (33) for equality with H(b|3).

Inductively, there will be ranges Bz = [bz−1, bz] over which (33) is solved as an equality

with H(b|z′) = 1 for z′ < z and H(b|z′) = 0 for z′ > z. The differential equation is:

(v2 − b)

[
z−1∑
z′=1

pZ(z′)
z′ − 1

z′
+ pZ(z)

z − 1

z
H(b|z)

]

=
z−1∑
z′=1

pZ(z′)

z′

[ˆ bz
′

x=0

H(x|z′)dx+ (b− bz′)

]

+
pZ(z)

z

ˆ b

x=bz−1

H(x|z)dx.

All of the terms corresponding to z′ < z can be treated as constants, so that this differential

equation can be rewritten as

(v2 − b)
[
Cz

1 +
z − 1

z
H(b|z)

]
= Cz

2 +
1

z

ˆ b

x=bz−1

H(x|z)dx,

which rearranges to

(v2 − b)z − 1

z
H(b|z)− 1

z

ˆ b

x=bz−1

H(x|z)dx = Cz
2 − Cz

1v
2 + Cz

1b.

The solution to the differential equation is of the form

ˆ b

x=bz−1

H(x|z)dx = Cz
3

(
v2 − b

)− 1
z−1 − Cz

1b+ Cz
4 .

Thus,

H(b|z) = Cz
3

1

z − 1
(v2 − b)−

z
z−1 − Cz

1 .
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The coefficient Cz
3 is chosen so that H(bz−1|z) = 0, so

Cm
3 = (z − 1)Cz

1 (v2 − bz−1)
z
z−1 .

Clearly, H(b|z) is blowing up as b ↑ v2, so given that bz−1 < v2, we must have H(b|z) hit 1 at

bz < v2 as well. This completes the construction of the solution to the relaxed program.

Proof of Theorem 11. Recall that the losing bid distributions are defined by

pZ(z)
z − 1

z
L(b|b′, z)H(db′|z) =

1

(v2 − b′)2

z̃∑
z′=1

pZ(z′)

z′

ˆ b

x=0

(v2 − x)H(dx|z′).

Clearly, these functions are monotonically increasing in b and are zero at b < v1, and if b = b′

and z = z̃, then this formula reduces through integration by parts to

pZ(z)
z − 1

z
L(b|b, z)H(db|z) =

1

(v2 − b)2

z∑
z′=1

pZ(z′)

z′

ˆ b

x=0

(v2 − x)H(dx|z′)

=
1

(v2 − b)2

z∑
z′=1

pZ(z′)

z′

[ˆ b

x=0

H(x|z′)dx+ (v2 − b)H(b|z′)
]
.

Substituting in (33), this further reduces to

pZ(z)
z − 1

z
L(b|b,m)H(db|m) =

1

v2 − b

z∑
z′=1

pZ(z′)H(b|z′).

Since (33) must hold as an equality, we can differentiate both sides to obtain

(v2 − b)pZ(z)
z − 1

z
H(db|z) =

z∑
z′=1

pZ(z′)H(b|z′),

where z is the almost-surely unique z′ such that b ∈ [bz
′−1, bz

′
]. Thus, we conclude that

L(b|b,m) must be 1.

Now let us verify that incentive constraints are satisfied. We will use the same approach

as before, showing that incentive compatibility is met almost surely with respect to the con-

ditional distributions of values and bids given a bidder’s own bid. In particular, a downward

deviation from the recommended bid b′ ∈ [bz−1, bz] to some b < b′ is suboptimal if

(v2 − b)L(b|b′, z)z−1 (53)

72



is increasing in b. L(b|b′, z) is continuous and almost everywhere differentiable, so a sufficient

condition for (53) to be increasing is that

(v1 − b)(z − 1)L(db|b′, z) ≥ L(b|b′, z)

wherever L(b|b′, z) is differentiable. Up to a constant that does not depend on b,

L(b|b′, z) ∝
z̃∑

z′=1

pZ(z′)

z′

ˆ b

x=0

(v2 − x)H(dx|z′),

where b ∈ Bz̃, so that the increasing condition is equivalent to

(v2 − b)2 z − 1

z̃
pZ(z̃)H(db|z̃) ≥

z̃∑
z′=1

pZ(z′)

z′

ˆ b

x=0

(v2 − x)H(dx|z′).

Since z ≥ z̃, the left-hand side is at least

(v2 − b)2 z̃ − 1

z̃
pZ(z̃)H(db|z̃).

Again, from the differential form of (33), this quantity can be rewritten as

(v2 − b)
z̃∑

z′=1

pZ(z′)H(b|z′) =
z̃∑

z′=1

pZ(z′)

[
(v2 − b)z

′ − 1

z′
H(b|z′)− (v2 − b) 1

z′
(v2 − b)H(b|z′)

]

=
z̃∑

z′=1

pZ(z′)

z′

[ˆ b

x=0

H(x|z′)dx+ (v2 − b)H(b|z′)
]

=
z̃∑

z′=1

pZ(z′)

z′

ˆ b

x=0

(v2 − x)H(dx|z′),

where the second line follows from (33). Thus, downward deviations are not attractive.

Now, let us see that it is not optimal to deviate upwards from a recommendation of b ∈ Bz

to a bid of b′ > b. With probability pZ(z)
z
H(db|z), b is a winning recommendation and the

upward deviator is losing surplus from paying more when they would have won anyway. With

probability
∑N

z′=z p
Z(z′) z

′−1
z′

´ b′
x=b

L(db|x, z′)H(dx|z′), the bid b is a losing recommendation

and the winner was told to bid some x ∈ [b, b′]. The incentive constraint is therefore that

(v2 − b′)
N∑
z′=z

pZ(z′)
z′ − 1

z′

ˆ b′

x=b

L(db|x, z′)H(dx|z′) ≤ (b′ − b)p
Z(z)

z
H(db|z).
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We will argue that the two sides are always equal, or rather that

n∑
z′=z

pZ(z′)
z′ − 1

z′

ˆ b′

x=b

L(db|x, z′)H(dx|z′) =
b′ − b
v2 − b′

pZ(z)

z
H(db|z).

Clearly the two are equal (and zero) at b′ = b, and we will argue that the derivatives of both

sides with respect to b′ are always equal. This requires that

pZ(z̃)
z̃ − 1

z̃
L(db|b′, z̃)H(db′|z̃) =

1

(v2 − b′)2

pZ(z)

z
H(db|z).

where b′ ∈ Bz̃. But of course, this is precisely the derivative of (35) with respect to b, so we

are done.

Finally, it is obvious that the winning bid distribution induced by this equilibrium is

equal to the solution to the binary known values relaxed program, and the latter generates

a lower bound on revenue over all binary known value BCE. Thus, the BCE constructed

above attains the lower bound on revenue. The allocation is also efficient, and so the BCE

attains an upper bound on total bidder surplus as well.

B Examples

B.1 Raising Revenue

Consider a small variation on the complete information benchmark. Bidders receive signals

ti = (vi, xi) where xi ∈ [0, 1] is determined according to the following procedure. Let us

first consider how information might induce an outcome in which revenue is higher than

the benchmark and bidder surplus is lower. We start close to complete information, and

suppose that the buyers receive signals that indicate which of them has the higher valuation.

In particular, we assume that the buyers’ signals contain the maximum value.

In addition, let us suppose that rather than learning the losing value, the winning bidder

receives a noisy signal. Fix ε ∈ [0, 1/2], and let us suppose that the bidders observe signals

ti = (vi, v
(1),max{εv(1), v(2)}). Thus, if v(2) > εv(1), the high value buyer learns the lowest

value, but otherwise all he learns is that the lowest value is less than ε of his own value.

We can construct a simple equilibrium in this case where if v(2) > εv(1), the high value

buyer bids v(2), and the low value buyer randomizes over bids below his value, say according

to the cumulative distribution function F (b|v(1), v(2)) = v(1)−v(2)
v(1)−b on [0, v(2)], and the high

value buyer wins with a bid of v(2). On the other hand, if v(2) < εv(1), the low value buyer

simply bids his value and the winner bids v(2). This is incentive compatible because the
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winner thinks that the loser’s bid is uniformly distributed on [0, εv(1)], so the surplus from a

bid b is (v(1) − b) b
εv(1)

, which is increasing as long as b < v(1)/2.

With this information and in this equilibrium, the cumulative distribution of winning

bids first-order stochastically dominates that under complete information, and so revenue

must be strictly higher and bidder surplus strictly lower. Intuitively, under the complete

information outcome, when v(2) = εv(1), the high bidder strictly prefers to bid v(2) over any

smaller bid. This bid would still be optimal even if there was a modest probability of v(2)

and the losing bid being less than εv(2). Thus, by creating partial information about the

losing bid and losing bidder’s value, the winner could be induced to bid more than in the

benchmark.

B.2 Lowering Revenue

The equilibrium is normally as with the complete information, with xi = vj, and bidder i

bids xi if xi < vi and randomizes over [0, vi] if xi > vi in order to support bidder j bidding

vi. However, there is a small probability that the following happens: If vi > vj, then with

probability εvj(vi− vj), bidder i is given the signal xi = α(vi, vj), which is strictly increasing

in vi and vj and for fixed vj, has range [2vj/3, vj], and bidder j is given the signal xj = xi/2.

In particular, we use the function:

α(vi, vj) =
vj
3

(
2 +

vi − vj
1− vj

)
,

which linearly interpolates bids between [2vj/3, vj] and assigns then to winning bidders vi in

order, for vi ∈ [vj, 1].

In equilibrium, when xi > vi, bidder i randomizes over the interval [α(vj, vi), vi] so as to

make bidder j indifferent to bidding vi, and otherwise bidders bid their signal: bi = xi.

Let us show that this is an equilibrium. If xi > vi, buyer i is indeed willing to randomize

as intended, since the “small probability” event has not happened and bj = vi.

If xi < vi, then there are three possibilities:

(a) xi = vj < vi.

(b) xi = α(vi, vj) for some vj < vi.

(c) xi = α(vj, vi)/2 for some vj > vi.

Note that event (c) could only occur if xi ∈ [vi/3, vi/2]. Let us assess the conditional

probabilities of these three events. Since vj is uniformly distributed, event (a) simply oc-

curs with ex-ante probability 1 − εxi(vi − xi). Event (b) occurs with ex-ante probability
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εγ(vi, xi)(vi− γ(vi, xi)) where γ(vi, xi) is the solution to α(γ, vi) = xi. Event (c) occurs with

ex-ante probability εvi(ξ(vi, xi)− vi), where ξ(vi, xi) solves α(vi, ξ) = 2xi.

Now, to verify that incentive constraints are satisfied, first observe that the surplus from

following the recommendation is

(vi − xi)(1− εxi(vi − xi)︸ ︷︷ ︸
(a)

+ εγ(vi, xi)(vi − γ(vi, xi))︸ ︷︷ ︸
(b)

+ 0︸︷︷︸
(c)

).

Note that the bidder gets no surplus from event (c) because by following the equilibrium

strategy, player j will win with a bid of 2xi. By deviating to a bid b = xi/2 (the most

attractive downward deviation), the bidder’s surplus will be approximately

(vi − xi/2)εγ(vi, xi)(vi − γ(vi, xi)),

which is less than the surplus from b = xi as long as

ε ≤ vi − xi
γ(vi, xi)(vi − γ(vi, xi))/2 + vi − xi

1

xi
.

Observing that xi ≤ γ(vi, xi) ≤ vi, it must be that γ(vi − γ) ≤ vi(vi − xi), so that the

right-hand side is at least

1

vi/2 + vi − xi
1

xi

which is at least 4/5, so for any ε < 4/5, a downward deviation is not attractive.

Similarly, deviating up to a bid slightly larger than 2xi would allow the bidder to win on

event (c), yielding a surplus of

(vi − 2xi)(1− εxi(vi − xi) + εγ(vi, xi)(vi − γ(vi, xi)) + εvi(ξ(vi, xi)− vi)),

which is less than the surplus from bidding xi if

ε ≤ xi
(vi − 2xi)vi(ξ(vi, xi)− vi) + x2

i (vi − xi)− γ(vi, xi)(vi − γ(vi, xi))
.

But since xi ≥ vi/3, the right-hand side must be at least

1

3

1

(vi − 2xi)(ξ(vi, xi)− vi) + x2
i /3

,
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which is itself at least 1/2. Thus, choosing ε ≤ 1/2, both upward and downward incentive

constraints will be satisfied.

In the end, it is incentive compatible to follow the “recommendation” xi. Moreover, this

equilibrium induces winning bids where xi < v(2) with positive probability, so that revenue

must be strictly lower. The outcome is, however, still efficient, so bidder surplus must have

risen relative to the complete information case.

B.3 An Example with Uniformly Distributed Values

We now illustrate Theorem 2, both the result and the construction of the information struc-

ture with an example of two bidders with independent standard uniformly distributed values

in [0, 1], thus Fi (vi) = vi for i = 1, 2. The lower bound on bidder surplus for a bidder with

valuation vi when the competing bidder always bids his value is

ui(vi) = max
b∈[0,vi]

(vi − b)b =
v2
i

4

as the optimal bidding strategy is b∗i (vi) = vi/2. Thus, the ex-ante lower bound on bidder

surplus is

U i =

ˆ 1

v=0

ui(vi)dvi =

ˆ 1

v=0

v2
i

4
dvi =

1

12
.

The sum of the worst case bidder surplus is therefore 1/6, and since the efficient surplus is

2/3, the maximum revenue for the seller is 2/3−1/6 = 1/2. This can be contrasted with the

revenue under the conventional BNE – in which each bidder knows his value and maintains

the common prior as his belief about his competitor – which is 1/3.

We can explicitly construct a BCE that attains the outcome (U,R) = (1/6, 1/2). When

values are (vi, vj), with vi > vj, the bidders receive recommendations in [vi/2, vi]×{vj}. We

can easily adapt the construction of Theorem 2 to the case of continuous random variables.

The indifference condition (6) identified the weight α on the conditional distribution of the

second highest valuation conditional on it being below the bid bi of the winner and the second

highest valuation being equal to the bid b. In the case of the continuous random variable

the indifference condition (6) simply becomes

(vi − bi)
(
αPr

(
v(2) < bi

∣∣v(1)
)

+
(
1− αPr

(
v(2) < bi

∣∣v(1)
)))

= (vi − b∗i (vi))αPr
(
v(2) ≤ b∗i (vi)

∣∣v(1)
)

.

(54)

(55)
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With two bidders and the uniform distribution this condition can be written as

(vi − bi)
(
α
bi
vi

+

(
1− αbi

vi

))
=

(
vi −

1

2
vi

)
α

1

2

and yields

α =
4 (vi − bi)

vi
.

With this information, we can immediately construct the conditional distribution of the

loser’s value given a bid recommendation bi to a winner with valuation vi, or:

Gvi,bi(vj) =

{
4(vi−bi)

v2i
vj, if 0 ≤ vj ≤ bi;

1, if bi ≤ vj.
(56)

Note that there is a conditional mass point of size

1− 4(vi − vj)vj
v2
i

on vj = bi, given the recommendation bi.We also define the distribution Gvi,vi as the pointwise

limit of Gvi,bi as bi ↑ vi, which puts probability one on vj = vi.

Next, we construct the distribution of bid recommendations bi, given the loser’s value

vj, so that the conditional distribution of the loser’s value given a recommendation of bi has

the shape of Gvi,bi . As a result, it will always be optimal to bid bi, and the bidder will be

indifferent between bidding bi and bidding vi/2, which is the best response when others are

bidding their values.

Let us write F (bi|vi) for the marginal distribution of winning bid recommendations when

the winner’s value is vi, which will have a continuously differentiable density. In order for the

probabilities of the losing values vj to add up, it must be that the prior density of valuations

is equal to the expected interim density. For vj ∈ [vi/2, vi], this requirement can be written

as ˆ vi

bi=vj

4(vi − bi)
v2
i

f(bi|vi)dbi + f(vj|vi)
(

1− 4(vi − vj)vj
v2
i

)
=

1

vi
,

Differentiating this expression with respect to vj, we conclude that

−4(vi − vj)
v2
i

f(vj|vi) +

(
1− 4(vi − vj)vj

v2
i

)
f ′(vj|vi)− f(vj|vi)

4(vi − 2vj)

v2
= 0.
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Finally, this rearranges to the differential equation

f ′(vj|vi)
f(vj|vi)

=
4(vi − 2vj) + 4(vi − vj)

(vi − 2vj)3
,

which admits simple solutions of the form

f(vj|vi) =
C(vi)

(2vj − vi)3 exp

(
− vi

2vj − vi

)
.

The constant of integration has to be chosen so that the density of bid recommendations

integrates to one:

1 =

ˆ vi

bi=vi/2

f(bi|vi)dbi =
C(vi)

v2
i e
⇔ C(vi) = v2

i e.

The resulting conditional distribution function

F (bi|vi) =
bi

2bi − vi
exp

(
2vi − 2bi
vi − 2bi

)
increases continuously from 0 to 1 as bi increases from vi/2 to vi.

To complete the construction of the BCE, we simply have the losing bidder bid his or

her value if the winning bid is strictly larger than the loser’s value, and if the winner is told

to bid the loser’s value vj, then the losing bidder randomizes over an interval, say [vj/2, vj]

according to the cumulative distribution G(bj|vi, vj) = (vi − vj)/(vi − bj), where vi is the

winner’s value.

C Beyond Binary Values

Suppose that V = {v1, v2, v3} that n = 2, and that the distribution of values is independent.

To condense notation, we write Hkk′(b) for the cumulative distribution of winning bids when

vk wins against vk
′
, and pk will denote the independent symmetric prior p(vk). For example,

H23(b) denotes the cumulative distribution of winning bids when the v2 type wins against

v3 type. We restrict attention to efficient solutions in which H23(b) = 0 for all b. As with

binary values, whenever some bidder wins against v1, they win at a bid of v1. The relaxed

program in this case is:

max
∑

k,k′∈{1,2,3}

pkpk′

ˆ vk

x=0

Hkk′(x)dx (57)
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subject to

Hkk′(b) +Hkk′(b) ∈ [0, 1]∀b ∈ R, k, k′ ∈ {1, 2, 3}; (58)

and

(v2 − b) (p2H22(b) + p3H32(b)) ≤
ˆ b

x=v1
(p1 + p2H22(x)) dx; (59.1)

(v3 − b)p3H33(b) ≤
ˆ b

x=v1
(p1 + p2H32(x) + p3H33(x)) dx. (59.2)

Our usual arguments imply that at a solution to the relaxed program, (59.1) must be

binding whenever eitherH22(b) < 1/2 orH32(b) < 1, and (59.2) must bind wheneverH33(b) <

1/2. If not, we could increase one of these controls while maintaining feasibility and pushing

down the winning bid distribution. Note that this pins down the path for H33(b) given the

path of H32(b). However, while we know that (59.1) is binding, we do not know the order

in which H22(b) and H32(b) should rise. Let us consider the tradeoffs. At a given b, there

is a certain amount of slack in the right-hand side of (59.1) which could be allocated either

to H22(b) or to H32(b). If that space is allocated to H22(b), then the slack on the right-hand

side of (59.1) increases more quickly, thereby allowing both H33(b) and H32(b) to increase

faster. Alternatively, if the slack is allocated to H32(b), then the right-hand side of (59.2)

increases faster so that H33(b) rises faster. In economic terms, the more v2 loses to v2 with

low bids, the faster the distribution of bids that win against v2 will rise. The more v2 loses

to v3 at low bids, the faster the distribution bids that win against v3 will rise.

The resolution of this tradeoff turns out to depend very much on the parameters of

the model. The reason is that benefits of relaxing each of the incentive constraints only

accrue while that constraint binds. Thus, if one of the two constraints is binding for a wider

range of bids, then there is more benefit to relaxing that inequality. For example, if v3 is

much larger than v2, then it will take much longer for H33(b) to hit its upper bound than

p2H22(b)+p3H32(b). By increasing H32 faster early on, there are large gains in reducing H33.

On the other hand, if the parameters are such that H33(b) hits its upper bound much faster

than p2H22(b) + p3H32(b), for example when p3 is very small relative to p2, then the opposite

intuition holds, that it is better to have v2 win against v2 with low bids.

For this latter case, we can provide an exact characterization of the solution to the

relaxed program. In particular, if p2 is sufficiently large relative to p3, then the optimal
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solution should satisfy the following ordered supports property:

H22(b) < 1/2 =⇒ H32(b) = 0. (60)

We formalize this in the following proposition:

Proposition 12. If p2/p3 is sufficiently large, the solution to the efficiency-constrained

known value relaxed program is the unique Hkk′(b) that satisfies (59.1) and (59.2) with equal-

ity whenever (58) is slack and also satisfies (60).

Proof of Proposition 12. Arguments analogous to those for the unknown and binary values

cases can be used to demonstrate the following facts:

In any solution to the relaxed problem, no buyer wins with a bid less than v1, and all

buyers win with bids of v1 when the second-highest value is v1.

The incentive constraint (59.k) should bind whenever Hkk′(b) <
1+Ik 6=k′

2
for some k′.

The remaining piece to characterize the equilibrium is the ordered supports property

(60). Define T2 to be the infimum of b such that

p2H22(x) + p3H32(x) =
p2

2
+ p3

for all x ≥ b. Analogously define T3 to be the infimum b such that H33(x) = 1/2 for all

x ≥ b.

Now, suppose that there exists a non-null set of b for which (60) is violated and b > T3.

In other words, (59.2) is slack, (59.1) binds, and H32(b) > 0 while H22(b) < 1/2. In that

case, we claim there is a simple perturbation that improves the objective: Let H̃kk′(b) be

defined by

Hkk′(b) = Hkk′(b) +

{
0 if b < T3 or (k, k′) = (3, 3);
1
pk
φ(b) otherwise,

where

φ(b) = min

{
p3H32(b), p2

1

2

(
1

2
−H22(b)

)}
.
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Then clearly the left-hand side of (59.1) has stayed the same while the right-hand side has

increased, so that (59.1) is slack. The right-hand side of (59.2) has decreased, but

ˆ b

x=v1
(p1 + p2H22(x) + p3H32(x)) dx

≥
ˆ T3

x=v1
(p1 + p2H22(x) + p3H32(x)) dx

= (v3 − T3)p3 = (v3 − T3)p3H33(T3)

≥ (v3 − b)p3H33(b)

for b > T3. Thus, this solution is clearly feasible. But (59.1) is slack for a non-null set of b

for which H33(b) < 1/2, so that there is another perturbation that strictly increases revenue.

Thus, for b > T3, any optimal solution must satisfy (60).

Now we will use the assumption that p2 is much larger than p3 to argue that T2 > T3,

for any feasible solution to the relaxed problem. Let α = p2/p3. A lower bound on T2 is

obviously achieved by the solution that satisfies (60), and in that solution, T2 is at least as

large as the infimum of b for which H22(x) = 1/2 for all x ≥ b, which we will denote by T22.

On the other hand, an upper bound on T3 is achieved by a solution where H32(b) = 0 for all

b. Thus, T2 is at least the first time that H22(b) hits 1/2 when H22(b) solves

(v2 − b)H22(b) =

ˆ b

x=v1

(
p1

p2

+H22(x)

)
dx

≤
(
p1

p2

+
1

2

)
(b− v1),

and T3 is no more than the first time that H33(b) hits 1/2 where H33(b) solves

(v3 − b)H33(b) =

ˆ b

x=v1

(
p1

p3

+H33(x)

)
dx

=

ˆ b

x=v1

(
α
p1

p2

+H33(x)

)
dx

≥ α
p1

p2

(b− v1).

Thus,

H22(b) ≤
(
p1

p2

+
1

2

)
b− v1

v2 − b

H33(b) ≥ α
p1

p2

b− v1

v3 − b
.
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Clearly, if α is sufficiently large, then H33(b) will have to hit 1/2 before H22(b).

Now, let us argue that (60) must be satisfied for b < T3, when T2 > T3. Suppose that

there is a non-null set X ⊆ [v1, T3] on which (60) is violated. We will construct a new,

perturbed solution

H̃kk′(b) = Hkk′(b) + ψkk′(b).

This perturbed solution will have T3 < T̃3 < T2, and will satisfy ψkk′(b) = 0 for b > T̃3.

Moreover, we will perturb the solution in such a way that ψ21(b) ≤ 0, ψ22(b) ≤ 0, and

ψ21(b) ≥ 0, but over the supports of these perturbations, (59) will be satisfied as an equality.

In particular, write

Ψkk′(b) =

ˆ b

x=v1
ψkk′(x)dx.

Note that at the solution H, (59) holds with equality over the range [v1, T3]. For some T̃3 just

slightly larger than T3, let Ĥ33(b) be the path that continues to solve (59.2) as an equality

on the range [T3, T̃3], and is equal to 1 for b > T̃3. Note that Ĥ33(T̃3) > 1/2 is infeasible for

the original problem, which imposes Ĥ33(b) ∈ [0, 1/2], though it results in a higher objective

(since Ĥ ≥ H).

The perturbed solution H̃ will satisfy (59) as an equality as well, also over the range

[v1, T̃3]. Thus, differencing the incentive constraints across the perturbed solution and the

alternative solution, we conclude that ψ has to satisfy

(v2 − b)(p2ψ22(b) + p3ψ32(b)) = p2Ψ22(b)

(v3 − b)p3ψ33(b) = p2Ψ32(b) + p3Ψ33(b).

Integrating these equations by parts, we conclude that

(v2 − b)(p2Ψ22(b) + p3Ψ32(b)) = −p3

ˆ b

x=v1
Ψ32(x)dx

(v3 − b)p3Ψ33(b) = p2

ˆ b

x=v1
Ψ32(x)dx
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and so finally

p2Ψ22(b) = −p3

(
Ψ32(b) +

1

v2 − b

ˆ b

x=v1
Ψ32(x)dx

)
(61.1)

p3Ψ33(b) = p2
1

v3 − b

ˆ b

x=v1
Ψ32(x)dx. (61.2)

Thus, once we have fixed the perturbation ψ32(b), it is possible to back out the perturbations

Ψ22(b) and Ψ33(b) that maintain (59) with equality. In addition, the above formulae imply

that

p2
2Ψ22(b) + p2p3Ψ32(b) + p2

3Ψ33(b) = p2p3

(
1

v3 − b
− 1

v2 − b

) ˆ b

x=v1
Ψ32(x)dx. (62)

The left-hand side of this equality, evaluated at b = T̃3, is the change in the objective function

at the perturbed solution relative to the alternative solution (since ψkk′(b) = 0 for b > T̃3).

Thus, if we can construct ψ32(b) so that the perturbed solution is feasible for the relaxed

problem and such that
´ T̃3
x=v1

Ψ32(x)dx < 0, we will have demonstrated a perturbation that

improves the objective.

We need to derive some bounds on how large perturbations might be that are induced

in this manner. If |ψ32(b)| < κ, then |Ψ32(b)| ≤ (b − v1)κ, and |
´ b
x=v1

Ψ32(b)| ≤ (b−v1)2

2
κ.

Differentiating (61), we conclude that

p2ψ22(b) = −p3

(
ψ32(b) +

1

v2 − b

(
Ψ32(b) +

1

v2 − b

ˆ b

x=v1
Ψ32(x)dx

))
p3ψ33(b) = p2

1

v3 − b

(
Ψ32(b) +

1

v3 − b

ˆ b

x=v1
Ψ32(x)dx

)
Thus, if |ψ32(b)| < κ, we conclude that

p2|ψ22(b)| ≤ p3

(
1 +

1

v2 − b
(b− v1)2

2
+

b− v1

(v2 − b)2

)
κ (63.1)

p3|ψ33(b)| ≤ p2
1

v3 − b

(
(b− v1) +

(b− v1)2

2(v3 − b)

)
κ. (63.2)

Our perturbation will only involve b ∈ [v1, T2], with T1 < v1, so that by choosing a perturba-

tion ψ32(b) that is uniformly small, we can be guaranteed that the induced ψ22(b) and ψ33(b)

will be uniformly small as well. This is necessary in order to ensure that H̃ will be feasible.
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Now, let κ small, and let

Xκ =

{
b ∈ X

∣∣∣∣H32(b) ≥ κ,H22(b) ≤ 1

2
− κ,H33(b) ≥ κ

}
.

For κ sufficiently small, Xκ must be non-null as well. We will define ψ to be the perturbation

generated by

ψ32(b) = −εIb∈Xκ

for some κ and ε. Note that this perturbation induces ψ22(b) ≥ 0 and ψ33(b) ≤ 0. Since

T2 < v2, there is an ε small enough such that H̃22(b) ≤ 1/2, H̃33(b) ≥ 0, and H̃32(b) ≥ 0.

Moreover, since ψ33(b) is continuous in ε, there will be an ε for which H̃33(b) hits 1/2 at T̃3,

as long as T̃3 is sufficiently close to T3. In addition, by construction of the perturbations,

H̃kk′(b) will satisfy (59) for b ∈ [0, T̃3]. In addition, the right-hand side of (59.1) for b > T̃3 is

ˆ b

x=v1
(p1 + p2H22(x)) dx+ p2Ψ22(T̃3) + p3Ψ32(T̃3).

But since
´ T̃3
x=v1

Ψ32(x)dx < 0, as we argued above, (62) implies that p2Ψ22(T̃3)+p3Ψ32(T̃3) >

0. Thus, the right-hand side is larger than under the original solution H, and the paths that

H22(b) and H32(b) followed for b > T̃3 will still satisfy (59).

Alas, while we can characterize the efficient solution to the relaxed program for certain

parameters, we have little hope of constructing BCE that will attain the bounds. This is at

issue particularly for range of parameter values in Proposition 12, in which H33(b) hits its

upper bound before H22(b) and H32(b). In this case, there are bids in the support of H32(b)

that are above the supports of H22(b) and H33(b). Bids in this range are only made by the

type v3 against v2, in which case the v2 bidder surely loses. This leads to the following

quandary: if v2 is recommended to bid in this range, then he knows he will lose for sure and

would want to increase his bid so as to sometimes win. If v2 is never told to bid in this range,

then v3 could shade down to highest bid in the support of H22, and continue to win with a

lower bid. Thus, it is impossible to satisfy both upward and downward incentive constraints

while attaining the solution to the relaxed program.

Corollary 13. There exist distributions of values such that the welfare bounds from the

trinary known value relaxed program are not tight.

Proof of Corollary 13. Take as given the Hkk′(b) as constructed in the proof of Proposition

12, for the case in which α is large. Thus, T2 > T3, so that X = suppH32(b) \ [v1, T3]
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has positive measure under H32. Note that H is the almost surely unique solution to the

relaxed problem, so that any other feasible solution has strictly lower revenue. As a result,

if there were BCE that attained revenue close to that in the solution of the relaxed problem,

the cumulative distributions of winning bids would have to converge to the solution to the

relaxed problem as well.

Consider such a sequence of BCE with marginal winning bid distributions H l
kk′(·) that

converge to Hkk′(·) in the weak-∗ topology. We will argue that for such sequence, there exists

an l large enough such that H l
kk′ cannot be induced by a BCE. Let Ll denote the probability

that the v1 type loses with a bid in X, let W l
2 denote the probability that the v2 type wins

with a bid in X, and let W l
3 denote the probability that the v3 type wins with a bid in X.

Claim: Ll goes to 0 as l goes to ∞. Since the H distributions are absolutely continuous

(above v1), the probability that the v2 type wins with a bid in X under the lth BCE must

go to zero (since this is true under H), so W l
2 goes to 0. Thus, if Ll goes to L > 0, then the

deviation which calls for always bidding T2 when told to bid in X results in an asymptotic

gain in surplus of at least

(v2 − T2)Ll − (T2 −minX)W l
2 → (v2 − T2)L > 0,

since the winning bid recommendation in x must be at least minX. For large enough l, this

deviation would be profitable.

On the other hand, there is positive probability in the limit that type v3 wins against

v2 with a bid in X, i.e., W l
3 goes to W3 > 0. Consider the deviation in which the v3 type

bids minX whenever told to win with a bid above X. Let b̂l denote the average winning

bid made by the v3 type, conditional on winning with a bid in X. By weak-∗ convergence,

b̂l converges to some b̂ > minX. The change in surplus from this deviation is

(̂bl −minX)(W l
3 − Ll)− (v3 −minX)Ll

which will be strictly positive for sufficiently large l.

Thus, it is impossible to have a sequence of BCE whose winning bid distributions converge

weakly to the solution to the relaxed problem, and therefore, infimum revenue over all BCE

must be bounded away from the solution to the relaxed problem.

In the end, we conclude that the approach that worked in the unknown values and binary

known value cases will not yield a tight characterization of minimum revenue and maximum

bidder surplus for general known values models. Nonetheless, the BCE solution concept is
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highly tractable from a computational perspective. We will take this approach to better

understand the known values model in the next section.

D The southwestern frontier with unknown values

Let us explore the southwestern frontier of the set revenue and bidder surpluses that can arise

in unknown values BCE, under the assumption that there are two bidders and independent

and symmetrically distributed values. Our starting point is a partial equilibrium analysis

where we fix the allocation of the good and obtain a lower bound on revenue that is consistent

with that allocation. We will then give a general characterization of the allocations that

minimize weighted sums of revenue and total surplus. While this characterization does not

uniquely pin down the optimal allocation, it does narrow the focus to a relatively small class

of candidate solutions. For allocations within this class, we construct BCE that implement

the allocation as well as the conditionally revenue minimizing winning bid function. Finally,

we will use the calculus of variations to give an even tighter characterization of the optimal

allocations for the case of two bidders with independent and standard uniform valuations.

D.1 Preliminaries

Let q1(v1, v2) be the (symmetric) probability that buyer 1 receives the good in equilibrium,

and let

PL(v) = 2

ˆ v

v1=v

ˆ v

v2=v

(1− q1(v1, v2)) p(v1)p(v2)dv2dv1

denote the distribution of the losing value. Note that this function pins down the surplus

generated by the auction:

TS = 2

ˆ v

v1=v

v1

ˆ v

v2=v

q1(v1, v2)p(v1)p(v2)dv2dv1

= 2

ˆ v

v1=v

v1p(v1)dv1 − v +

ˆ v

v=v

(PL(v1)) dv1.

There are two special allocations: q, which is the maximally efficient allocation, and q, the

maximally inefficient allocation. These are defined by

q1(v1, v2) = Iv1≥v2
q

1
(v1, v2) = Iv1≤v2 .
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Since the independent distribution P is non-atomic, the event that v1 = v2 has probability

zero, so it is irrelevant to welfare (and strategic concerns, as we shall see) what happens as

far as allocation on this event.

By analogous arguments as those we employed in Section 4, we can deduce that a lower

bound on revenue is given by the winner bidding a deterministic function of the losing value

β(v) that satisfies (28). Moreover, revenue in this equilibrium is

R =

ˆ v

v=v

β(v)pL(v)dv = v +

ˆ v

v=v

(
PL(v)− 2

√
PL(v)

)
dv.

Thus, minimizing a weighted sum λTS +R (with λ > 0) is equivalent to minimizing

ˆ v

v=v

(
(1 + λ)PL(v)− 2

√
PL(v)

)
dv. (64)

We will characterize the minimum of this objective over all allocations q(v1, v2). We note for

future reference that (64) is a strictly convex function of PL.

D.2 General characterization

Let us consider the first variation of PL(v) in the direction Ξ(v), i.e., perturbing to a distri-

bution of the losing value

PL
ε (v) = PL(v) + εΞ(v).

The derivative of (64) evaluated at P ε with respect to ε, evaluated at ε = 0, is

ˆ v

v=v

(
1 + λ− 1√

PL(v)

)
Ξ(v)dv =

ˆ v

v=v

µ(v)Ξ(v)dv.

Note that as v → v, PL(v) → 0, so that µ(v) → −∞. On the other hand, as v → v,

PL(v)→ 1, so that µ(v)→ λ > 0. Moreover, as PL(v) is strictly increasing, µ(v) is strictly

increasing as well, so that there is a cutoff v̂ such that µ(v) < 0 for v < v̂ and µ(v) > 0 for

v > v̂. Thus, the objective decreases if the variation Ξ(v) is positive for v < v̂ and if Ξ(v) is

negative for v > v̂. We will refer to this cutoff as the inflexion point, i.e., the solution to

PL(v̂) =
1

(1 + λ)2
.
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This observation will be immensely useful in characterizing the optimum. For starters,

suppose that the optimum is associated with the inflexion point v̂. Then we claim that for

profiles such that v1 ≥ v̂ and v2 ≥ v̂, q1(v1, v2) = q
1
(v1, v2) if vi < vj, and for profiles such

that v1 ≤ v̂ and v2 < v̂, then q1(v1, v2) = q1(v1, v2). Why? If this were not the case, then

we could change the allocation to the one that allocates the good efficiently if v1 ≤ v̂ and

v2 ≤ v̂. This will clearly not change PL(v̂) (or for PL(v) with v > v̂), so the inflexion point

remains the same. However, we will have weakly increased PL(v) for all v ≤ v̂, since

PL(v) = 2

ˆ v

v1=v

ˆ v

v2=v

(1− q1(v1, v2)) p(v1)p(v2)dv2dv1

+ 2

ˆ v

v1=v

ˆ v

v2=v

(1− q1(v1, v2)) p(v1)p(v2)dv2dv1

≤ 2

ˆ v

v1=v

ˆ v

v2=v

(1− q1(v1, v2)) p(v1)p(v2)dv2dv1

+

ˆ v

v1=v

ˆ v

v2=v

p(v1)p(v2)dv2dv1

which is what obtains with an efficient allocation on the region [v, v̂]2. By a similar argument,

we can conclude that inflexion to the inefficient allocation on the region [v̂, v]2 weakly reduces

PL(v) for v > v̂ without changing PL(v) for v ≤ v̂.

Let us say that a set X is strictly less than X ′ if there exists some (v1, v2) such that

w1 < v1 and w2 < v2 for all (w1, w2) ∈ X, and w1 > v1 and w2 > v2 for all (w1, w2) ∈ X ′.
Now, suppose there are non-null sets X and X ′ in [v, v̂] × [v̂, v] such that X is less than

X ′. We claim that at the optimum, it cannot be q1(v1, v2) > 0 for (v1, v2) ∈ X and that

q1(v1, v2) < 1 for (v1, v2) ∈ X ′. If this were true, we could change the allocation rule to

q̃1(v) =


(1− ε)q1(v) if v ∈ X
(1− ε′)q1(v) + ε′ if v ∈ X ′

q1(v) otherwise

for suitably chosen small ε > 0 and ε′ > 0. In particular, let λ(X) denote the Lebesgue

measure, and let

L =

ˆ
x∈X

q1(x)λ(dx)

L′ =

ˆ
x∈X′

q1(x)λ(dx).
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We want to reduce q1 on X and increase q1 on X ′ so that L + L′ remains the same. Note

that

L̃ =

ˆ
x∈X

q̃1(x)λ(dx) = (1− ε)L

L̃′ =

ˆ
x∈X′

q̃1(x)λ(dx) = (1− ε′)L′ + ε′λ(X ′).

Thus, we need εL = ε′(λ(X ′)− L′), so we let ε′ = min{1, (λ(X ′)− L′)/L} and then define ε

by the preceding equation. The net effect of this perturbation is that PL(v̂) has remained

the same, but PL(v) has weakly increased at v < v̂ and weakly decreased at v > v̂.

An implication of this result is that at an optimum, the set of points for which q1(v) ∈
(0, 1) must have Lebesgue measure zero. Let us call the set X, and write X̂ for the subset

of X with Lebesgue density equal to 1 Cohn (1980, Corollary 6.2.6). Now, suppose there is

some v, v′ ∈ X with v1 < v′1 and v2 < v′2. Then for ε < min{v′1− v1, v
′
2− v2}/2, we have that

Bε(v) is strictly less than Bε(v
′) = ∅, so that Y = X ∩ Bε(v) and Y ′ = X ∩ Bε(v) (i) both

have positive measure, (ii) Y is strictly less than Y ′, and (iii) q1(v) ∈ (0, 1) for all v ∈ Y

and v ∈ Y ′, which is impossible. Thus, we conclude that there are no two v, v′ ∈ X̂ that can

be ordered in this manner. But now we can write X̂1 for the projection of X̂ onto its first

coordinate, and write f : X̂1 → R for the function f(x1) = sup{x2|(x1, x2) ∈ X̂}. Thus, X̂

is contained in the union of the graph of f , together with vertical line segments that contain

the discontinuities, of which there are countably many. Both the graph and the countably

many vertical line segments have Lebesgue measure zero, so X̂ has Lebesgue measure zero.

But λ(X̂) = λ(X), so we are done.

Thus, q1(v) ∈ {0, 1} almost surely, and we can always change q1(v) so that this property

holds everywhere without changing PL. Let us write Z(v) = q1(v)v2 + (1 − q1(v))v1, i.e.,

Z(v) is the valuation of the loser. We additionally write M(v) = {x|z(x) ≤ v}, so that

PL(v) = P 2(M(v)),

where we identify P 2 as the (independent and symmetric) prior measure on [v, v]2. Note

that because of our previous discussion, we know that v ∈ M(v̂) almost surely implies that

Z(v) = min v and v /∈M(v̂) almost surely implies that Z(v) = max v. Moreover, it must be

that the set M(v̂) is “downward closed” in the sense that for almost all v ∈M(v̂),

P 2 (M(v̂) ∩ ([v, v1]× [v, v2])) = P 2 ([v, v1]× [v, v2]) . (65)
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We can then modify q1 so that this condition holds exactly, by setting Z(v) = min v if and

only if (65) holds.

Thus, the allocation and the distribution of the losing value are pinned down by the choice

of the downward closed set M(v̂), which is the region on which the allocation is efficient.

Because it is downward closed, this set is the hypograph of a monotonically decreasing

boundary curve φ : [v, v]→ [v, v], where

φ(v1) = max{v2|(v1, v2) ∈M(v̂)}.

It turns out that PL(v) can be compactly expressed as a function of φ. Note that φ(v) > v,

and we note that v̂ = inf{v|φ(v) ≤ v}. For v ∈ [v, v̂], we have that

PL(v) = 2

ˆ v

x=v

(P (φ(x))− P (x))p(x)dx.

Conversely, for v > v̂,

PL(v) = PL(φ−1(v)) + (P (v)− P (φ−1(v)))2,

where

φ−1(v) = sup{v′ ∈ [v, v̂]|φ(v′) ≥ v}

in cases where φ(v) has flats. When φ is invertible, we can more simply write

PL(φ(v)) = PL(v) + (P (φ(v))− P (v))2.

This concludes our general characterization of the optimal allocation. Optimal allocations

always have a monotonically decreasing boundary function; the allocation is efficient below

the boundary, and the allocation is inefficient above the boundary. The optimal boundary

function turns out to be the solution to a rather messy variational problem. We will subse-

quently have more to say in for the case of the uniform distribution, for which the variational

problem turns out to be quite tractable. However, we will now show that regardless of what

the monotonically decreasing boundary is (optimal or otherwise), we can construct BCE

which implement the corresponding allocation and conditionally minimize revenue, as we

shall now see.
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D.3 Extension to an equilibrium

Let us suppose that we have a monotonically decreasing boundary function φ(v) so that the

allocation is efficient whenever min v ≤ v̂ and max v ≤ φ(min v), and otherwise the allocation

is inefficient. This boundary function induces a distribution of the losing value PL(v), and

through that a function β that determines the winning bid for each possible losing value.

We now construct a BCE in which the winning bid coincides with β. The construction will

closely follow the pattern that we have previously established: Since bidders are indifferent

to all uniform upward deviations, they must also almost surely be indifferent to pointwise

upward deviations, which pins down the marginal distribution of losing signals as

L(s|v) =

√
PL(s)√
PL(v)

where s is the loser’s signal and v is the loser’s valuation. This has to be the marginal

distribution of the losing bidder’s signal conditional on the winner’s signal (and hence the

loser’s value) in order for pointwise upward incentive constraints to be satisfied. However,

there is some flexibility as to how loser’s signals are correlated with the winner’s value. From

the allocation, we know that if the winner’s signal v is less than v̂, the loser’s value is the

lowest value, and the winner’s value is distributed according to a truncated prior on [v, φ(v)].

But if v is larger than v̂, then it must be that v is the highest of the two values, so that

the winner’s value is distributed according to a truncated prior on the region [φ−1(v), v]. In

either case, we will make the joint distribution of the loser’s signal comonotonic with the

winner’s value. In other words, given the winner’s signal, the percentile of the winner’s value

is perfectly correlated with the percentile of the loser’s signal. This corresponds with our

construction of the maximally inefficient equilibrium in Section 5.1, but contrasts with our

construction of the revenue minimizing equilibrium in Section 4. In the latter case, we made

the loser’s signal independent of the winner’s value conditional on the winner’s signal.

Claim: regardless of which case we are in, the distribution of the winner’s value must

(weakly) first-order stochastic dominate the distribution of the loser’s signal. This is obvious

in the first case since the support of the winner’s value is above the support of the loser’s

signal, which is [v, v]. In the second case, the winner’s value v′ is distributed on [φ−1(v), v]

according to the cumulative distribution

G(v′|v) =
P (v′)− P (φ−1(v))

P (v)− P (φ−1(v))
,
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while the loser’s value is distributed according to L(s|v) on [v, v]. We will show the even

stronger result that √
PL(s)√
PL(v)

≥ P (s)

P (v)

so we just need to prove that
√
PL(s)/P (s) is decreasing in s. The derivative of this

expression is

pL(s)

2
√
PL(s)

P (s)− p(s)
√
PL(s)

(P (s))2
=

pL(s)
2
P (s)− p(s)PL(s)√
PL(s)(P (s))2

.

For s < v̂, this evaluates to

(P (φ(s))− P (s))P (s)− PL(s)√
PL(s)(P (s))2

p(s)

so it is sufficient to show that P (φ(s))− P (s) ≤ PL(s). But this has to be the case since

PL(s) = 2

ˆ s

x=v

(P (φ(x))− P (x))p(x)dx ≥ 2P (s)P (φ(s))− P (s)),

since φ is weakly decreasing. For s > v̂, we know that

PL(s) = PL(v̂) + 2

ˆ s

x=v̂

(P (s)− P (φ−1(s)))p(x)dx.

Thus, pL(s) = 2(P (s)−P (φ−1(s)))p(s), so that condition for
√
PL(s)/P (s) to be decreasing

simplifies to

(P (s)− P (φ−1(s)))P (s)− PL(s) ≤ 0

which is obviously true because PL(s) ≥ (P (s))2.

Thus, the distribution G(s|v) stochastically dominates L(s|v). Thus, if we write vW (s)

for the winner’s value as a function of the loser’s signal according to the comonotonic joint

distribution, then vW (s) ≥ s for all s. Let us use this to verify that downward constraints

are satisfied. Suppose that a bidder is told to bid β(v) and considers deviating downwards
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to β(s). That buyer’s expected payoff is proportional to

ˆ s

x=v

(vW (x)− β(s))L(dx|v).

Thus, the derivative of this payoff with respect to s is

(vW (s)− β(s))
pL(s)

2
√
PL(s)

√
PL(v)

− β′(s)
√
PL(s)√
PL(v)

.

Substituting in (28), we conclude that the derivative is

(vW (s)− s) pL(s)

2
√
PL(s)

√
PL(v)

,

which we know must be non-negative. Thus, the deviator’s payoff is increasing in s for s < v,

and the bid of β(v) is rational.

D.4 Uniform example

In general, what we can say is that the equilibrium that minimizes λTS + R for λ > 0

corresponds to a conditionally revenue minimizing equilibrium for some allocation given by

the boundary function φ. The precise φ that minimizes the objective turns out to be the

solution of a rather messy problem in the calculus of variations. For the case of the uniform

distribution, however, this variational problem has an elegant solution. In particular, let us

suppose that P (v) = v and [v, v] = [0, 1], so that for v ≤ v̂,

PL(v) = 2

ˆ v

x=0

(φ(x)− x)dx,

and for v ≥ v̂,

PL(v) = PL(φ−1(v)) + (v − φ−1(v))2.

Let us consider a region [w,w] on which φ is strictly decreasing. In that case, we can write

PL(φ(v)) for v ∈ [v, v] as

PL(φ(v)) = PL(v) + (φ(v)− v)2.
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Thus, the contribution to the objective for v ∈ [w,w] and v ∈ [φ(w), φ(w)] is

ˆ w

v=w

((1 + λ)PL(v)− 2
√
PL(v))dv

− (1 + λ)

ˆ w

v=w

(PL(v) + (φ(v)− v)2)φ′(v)dv

+ 2

ˆ w

v=w

√
PL(v) + (φ(v)− v)2φ′(v)dv.

(66)

This objective can be simplified even further. Note also that

pL (v) = 2 (φ (v)− v) ;

pL,′ (v) = 2 (φ′ (v)− 1) .

Thus, (66) can be further simplified as

J(PL) =

ˆ w

v=w

((1 + λ)PL(v)− 2
√
PL(v))dv

− (1 + λ)

ˆ w

v=w

(
PL(v) +

(
pL(v)

2

)2
)(

1 +
pL,′(v)

2

)
dv

+ 2

ˆ w

v=w

√
PL(v) +

(
pL(v)

2

)2(
1 +

pL,′(v)

2

)
dv,

(67)

thereby replacing any reference to the boundary function φ with references to derivatives of

the function PL(v). We will use the calculus of variations to identify necessary conditions

that must be satisfied by a solution PL that is smooth on the range [w,w]. Let us compute

the first variation of J . In particular, let us consider a candidate solution

PL
ε (v) = PL(v) + εΞ(v)
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where Ξ(w) = Ξ(w) = ξ(w) = ξ(w) = 0. This variation corresponds to a smooth variation

of φ such that φ(w) and φ(w) are unchanged. The first variation is

d

dε
J(PL

ε )

∣∣∣∣
ε=0

=

ˆ w

v=w

(
1 + λ− 1

PL(v)

)
Ξ(v)dv

− (1 + λ)

ˆ w

v=w

(
Ξ(v) +

pL(v)

2
ξ(v)

)(
1

2
pL,′(v) + 1

)
dv

− (1 + λ)

ˆ w

v=w

(
PL(v) +

(
pL(v)

2

)2
)

1

2
ξ′(v)dv

+

ˆ w

v=w

Ξ(v) + pL(v)
2
ξ(v)√

PL(v) +
(
pL(v)

2

)2

(
1

2
pL,′(v) + 1

)
dv

+ 2

ˆ w

v=w

√
PL(v) +

(
pL(v)

2

)2
1

2
ξ′(v)dv.

Through repeated application of integration by parts, this expression reduces to

d

dε
J(PL

ε )

∣∣∣∣
ε=0

=

ˆ w

v=w

(
1 + λ− 1√

PL(v)

)
Ξ(v)dv

− (1 + λ)

ˆ w

v=w

(
1

2
pL,′(v) + 1

)
Ξ(v)dv

+

ˆ w

v=w

1√
PL(v) + 1

4
(pL(v))2

(
1

2
pL,′(v) + 1

)
Ξ(v)dv.

If this variation is zero for all Ξ, it must be that

1 + λ− 1

PL(v)
−

1 + λ− 1√
PL(v) + 1

4
(pL(v))2

(1

2
pL,′(v) + 1

)
= 0

for all v. This is typically called the Euler-Lagrange equation (Clarke, 2013, Chapter 14.1).

This reduces to the second-order non-linear ordinary differential equation

pL,′(v) = 2

 1 + λ− 1√
PL(v)

1 + λ− 1√
PL(v)+ 1

4
(pL(v))2

− 1

 . (68)

We note that the Lagrangean J(PL) is strictly convex in (PL, pL, pL,′), so that a solution to

(68) must be a global minimum among smooth solutions (Clarke, 2013, Theorem 15.9). We
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also note that it is possible to back out the boundary function from pL(v) using

φ(v) =
1

2
pL(v) + v.

The differential equation (68) must be satisfied by the induced allocation on any stretch

[w,w] on which φ is decreasing, i.e., φ′(v) ≤ 0. This is true if and only if pL,′(v) ≤ −2. There

are global feasibility constraints on pL(v): pL(v) ≥ 0 for all v, and pL(v) ≤ 2(1− v).

Finally, we have not yet determined the correct inflexion point v̂ corresponding to a given

λ, which must satisfy PL(v̂) = 1/(1 + λ)2. Now, if pL(v̂) > 0, then pL,′(v) → −2, which

corresponds to a boundary with φ′(v̂) = 0, i.e., the boundary function is locally flat close to

the cutoff. On the other hand, if pL(v̂) = 0, let us use L’Hôpital’s rule to compute the limit

of (68) as v ↑ v̂. This must be

pL(v̂) = −2 + 2 lim
v↑v̂

pL(v)

(PL(v))3/2

pL(v)(1+1/2pL,′(v))

(PL(v)+(pL(v))2/4)3/2

= −2 + 2
1

1 + 1/2pL,′(v̂)
.

Thus, pL(v̂) must be a solution to the polynomial equation x2 + 4x = 0 which has a single

solution less than −2, and we conclude that pL(v̂) = −4. This corresponds to φ′(v̂) = −1.

It remains an open question, analytically speaking, whether or not pL(v̂) > 0 is optimal.

However, numerical simulations have indicated to us that it is the latter structure, in which

pL(v̂) = 0, which minimizes the objective, and thus we will focus on “smooth” solutions

where pL(v̂) = 0. There are two remaining possibilities: It could be that the constraint that

φ(v) ≤ 1 (which corresponds to the constraint that pL(v) ≤ 2(1−v)) is initially binding, and

there is a flat where φ(v) = 1, after which φ(v) decreases smoothly to φ(v̂) = v̂ according to

(68). In the second alternative, φ(v) < 1 initially, and the path of PL is everywhere pinned

down by (68). Note that (68) blows up as v → 0, since PL(v)→ 0 so that pL,′(v)→ −∞.

In practice, we solved examples by guessing the correct v̂ for a given λ and sending out

the solution according to the terminal conditions that pL,′(v̂) = −1 and pL(v̂) = 0. If the

path of pL(v) ever goes above the 2(1− v) boundary, we truncate it at that point, and look

for solutions such that PL(v̂) = 1/(1 +λ)2. Figure 5 displays the results of this computation

for λ = 1.1 and λ = 2.0. The blue line is the optimal distribution of the losing value, with

the red line being its density. The purple line is function φ, which is the upper boundary of

the region M(v̂) on which the allocation is efficient. The reader can now see why we have

referred to v̂ as the inflexion point, since pL(v̂) = 0.
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Figure 5: Two examples of the optimal boundary and the corresponding cumulative distri-
bution of losing valuations.

In the left panel, λ is relatively low and the direction is somewhat close to minimizing

revenue. As a result, the allocation is close to efficient, which is reflected in the boundary

function φ(v) being quite high. In fact, φ is stuck at its upper bound for low to moderate

valuations. In the right panel, λ is somewhat higher and the allocation is now closer to always

inefficient. Indeed, the boundary function φ never hits its upper bound and asymptotes at

zero. Based on the preceding analysis, we have also constructed more precise computations

of the set of possible welfare outcomes for two bidders and independent standard uniform

distributions. The results of this computation are presented in Figure 6.

We close by commenting on how this example might generalize. For more general indepen-

dent distributions, the corresponding differential equation to (68) is much more complicated,

and essentially only implicitly defines pL,′(v) as a function of PL(v) and pL(v). We suspect,

however, that the optimal boundary function will have a smooth structure for those cases.

Beyond two players and independence, there is still a well defined lower bound on revenue

conditional on the allocation, but it is no longer clear that such allocations can be imple-

mented subject to downward incentive constraints.The known values surplus set is depicted

in red in Figure 1, and it is significantly smaller than the unknown values surplus set. At

point G, revenue is maximized and bidders are held down to the lower bound from Section

4. In this example, minimum revenue for the known values model is approximately 0.11,

while minimum revenue for the unknown values model is approximately 0.06. This difference

corresponds to roughly 8 percent of the efficient surplus.
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Figure 6: The set of welfare outcomes with two bidders and independent standard uniform
valuations.

E Ex-Ante Entry Fee versus Reserve Prices

Our characterization from Theorem 2 can explain why ex-ante entry fees will dominate

reserve prices in terms of maximum revenue when values are known. Suppose that there

are n buyers whose values are i.i.d. draws from a cumulative distribution P (v) on [v, v].

An entry fee e and reserve price r together induce an exclusion level x(r, e), which is the

lowest-value that would enter the auction in a revenue maximizing equilibrium. It is still the

case that, conditional on entering, buyers will not bid more than their values, and indeed, it

is possible to construct an equilibrium via similar methods in which bidder surplus is exactly

what bidders could attain by best responding when others bid their values. The difference

is that when a buyer does not enter, that effectively imputes a bid for that buyer which is

equal to the reserve price. Moreover, the allocation is efficient conditional on the set of types

that enter, so that the lowest entering type will only win when no other buyer enters, and in

ex-ante terms, the cutoff type must receive a surplus of zero. This means that the exclusion

level x(r, e) is implicitly defined by

e = (x− r)PN−1(x). (69)

It is straightforward to verify that x is increasing in both of its arguments and if P is strictly

increasing, then x will be strictly increasing in each argument. (We will assume P is strictly

increasing for the remainder of the heuristic argument.)

99



Now, let us consider two distinct pairs (r, e) and (r′, e′) that induce the same exclusion

level x. Then it is without loss of generality to assume that r < r′ and e > e′. We will argue

that revenue is higher under (r, e) by arguing that bidder surplus is uniformly lower for all

types that enter under (r, e) than under (r′, e′). Let b∗(v) be the solution to

max
b

(v − b)PN−1(b) = u(v).

Thus, u(v) is the interim lower bound bidder surplus when others bid their values and all

types enter. It is straightforward to show that b∗(v) is (weakly) increasing and u(v) is strictly

increasing. Thus, among buyers who enter, the optimal lower bound bidding strategy will

involve another cutoff x̂(r, e) ≥ x(r, e), where buyers with values between x(r, e) and x̂(r, e)

will bid r and buyers with values above x̂(r, e) will bid b∗(v), and at the cutoff,

(x̂− r)PN−1(x(r, e)) = (x̂− b∗(x̂))PN−1(b∗(x̂)).

The cutoff x̂ must also be increasing in (r, e). Thus, inducing a given exclusion level with a

lower reserve price and a higher fee tends to increase bidding at the reserve price. Specifically,

if r < r′ and x(r, e) = x(r′, e′) = x, then x̂(r, e) ≥ x̂(r′, e′). This is intuitive, because the

probability of winning at the reserve price is fixed but the cost of winning at the reserve

price goes down, then clearly bidding at the reserve price must become more attractive to

all types.

We can now compare bidder surplus across the two exclusion mechanisms. If v is between

x and x̂(r′, e′), then interim bidder surplus must be the same using either reserve and fee

pair, because these types bid the reserve price and obtain surplus

(v − r)PN−1(x)− e = (v − v′)PN−1(x) = (v − r′)PN−1(x)− e′.

This follows from the entry condition (69). If v is greater than x̂(r, e), lower bound surplus

is necessarily lower with the lower reserve price, since the reserve price does not distort

bidding behavior (leaving interim surplus the same) but the entry fee is higher. Finally, for

valuations that are between x̂(r′, e′) and x̂(r, e), the difference in surplus is

u(v)− (v − r)PN−1(x)− e ≥ (v − r)PN−1(x)− e− (v − r′)PN−1(x) + e′ = 0,

so that these buyers attain higher surplus under (r′, e′) than under (r, e).

Intuitively, conditional on the exclusion level, a lower reserve price induces greater dis-

tortion in bidding behavior upon entry away from the unconditional optimum b∗. Both
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distortion and higher entry fees tend to decrease bidder surplus, relative to the no exclusion

case. Thus, by setting a lower reserve and a higher fee, the seller simultaneously induces

more distortion and extracts more rents from the buyers’ whose behavior is not distorted,

which must be decreasing the lower bound bidder surplus.

We note that this conclusion corresponds with a result of Milgrom and Weber (1982) that

entry fees induce greater revenue than reserve prices when signals and values are affiliated.

Their argument also involves comparison of two different pairs of reserve prices and fees that

induce the same exclusion level, and to some extent, a similar logic may be underlying the

two results.
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