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Abstract

This is an investigation of stochastic choice when only the average of the

choices is observable. For example when one observes aggregate sales numbers

from a store, but not the frequency with which each item was purchased. The

focus of our work is on the Luce model, also known as the Logit model. We show

that a simple path independence property of average choice uniquely character-

izes the Luce model. We also characterize the linear Luce mode, using similar

tools. A linear version of the Luce model is used most frequently in empirical

work by applied economists.

Our characterization is based on the property of path independence, which

runs counter to early impossibility results on path independent choice. From

an empirical perspective, our results provide a small-sample advantage over the

tests of Luce’s model that rely on estimating choice frequences.

1. Introduction

We investigate the meaning of stochastic choice theory for data on average choices.

Aggregate or average choices are often available when exact choice frequencies are

unobservable. Such aggregate statistics are not only easy to obtain, but also easier to

estimate efficiently than are choice frequencies. Taking average choice as primitive, we

introduce a novel characterization of the ubiquitous Luce, or Logit model of discrete

choice.
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The crucial property for the Luce model is a weak version of path independence.

Classic path independence requires choices to be recursive moving from subsets to

larger sets. In particular, first making two selection from two disjoint sets and then

choosing among the pair of selections leads to the final outcome as immediately se-

lecting from the union of these sets. For example in a supermarket we may choose

Camembert cheese from the cheese section. Then choose from a simplified representa-

tion of the supermarket in which Camembert is the only cheese available. Our notion

of path independence is weaker, requiring the average choice to be any convex com-

bination of the average choices from a partition of the set, rather than requiring the

average choice to be the average choice from the average choice.

Our result is surprising because path independence was thought to be too strong a

property to impose on average choice. Path independence was first proposed by Plott

(1973), who used it to characterize rational choice in an abstract environment. Kalai

and Megiddo (1980) and Machina and Parks (1981) consider path independence for

average choice, essentially the same primitive as we assume in our paper. These papers

present impossibility theorems. They conclude that no continuous average choice can

satisfy Plott path independence. We consider a weakening of path independence,

where the average choice from a set must be a convex combination (a lottery) of the

average choices from a partition of the set in two. It does not need to coincide with

the average choice one would make when faced only with the two average choices. See

Section 4.2 for a comparison of the two axioms.

Our weakening of path independence not only avoids the impossibility result, but

together with continuity it pins down the Luce model uniquely. Our main result says

that the unique average choice that satisfies continuity and path independence is the

Luce average rule.

We proceed to expand on why average choices are a reasonable primitive for

stochastic choice, then explain our main contributions in some detail, and finally

discuss some related literature.

Average choices. We may often observe aggregate data on random choice, and not

the actual choice probabilities. There are two interpretations of the model of random

choice, and in each case it makes sense to think that one may be able to observe
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average choice instead of choice probabilities.

The first interpretation of random choice is that it reflects the choice frequencies

of a population of individual agents. While each individual has determinate choice

behavior, the randomness of the choice function records population-level heterogene-

ity. We claim that one may often actually observe the aggregate quantities chosen

and not the choice frequencies. For example, the ratio of wine sales to total revenue

at a supermarket can be immediately read from a balance sheet without observing

each shopper’s receipt. The average choice economizes on describing each product’s

distribution of sales (it does not require knowing how many shoppers bought over a

dozen bottles of wine) and on describing each product’s correlation with others (it

does not require knowing how frequently cheese is purchased with wine).

The store example makes sense if we interpret random choice as the behavior

of a population of individuals, each one with an idiosyncratic choice behavior. We

may instead focus on a single individual, who may have different choice behaviors at

different points in time. But even for a single individual it is reasonable to think that

we can observe average choice and not choice frequencies. For example we may ask

an individual how much wine, cheese and meat they purchased last month. This is

much easier to answer compared to the detailed record of each trip to the store that

would be required to compile information on choice frequencies.

Finally, even if one has information on choice frequencies it is statistically desirable

to use a test based on average choice. Studies of stochastic choice take population

choice probabilities as known. But in actual applications of the theory one only

observes a finite sample of choices. It is therefore important to understand how

one would test for the axioms that characterize the theory, given a finite-sample

approximation to the population stochastic choice probabilities.

The average is statistically very well behaved while the main alternative to our

characterization uses relative probabilities; these have much poorer qualities as a test

statistic. The alternative to our test is Luce’s axiomatization, based on testing for the

independence of irrelevant alternatives (IIA). Testing IIA requires estimating relative

choice probabilities: these are statistically more complicated objects than the average.

In small samples they are hard to estimate robustly, and even with a large sample

their estimators can have an arbitrarily large variance. We discuss these issues in
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detail in Section 4.4.

In fact, Luce (1959) already makes this point. Luce makes a very similar calcu-

lation to our calculations in Section 4.4, and concludes that a reliable test based on

his IIA axiom woud require very large datasets: Sample sizes of the order of several

thousands. This would render the tests inapplicable in most experimental setups.1

Our axiomatization, based on average choice, is in that sense much better behaved

because averages can be estimated more efficiently than fractions of probabilities.

Contributions. Our main contribution is an axiomatic characterization of the Luce

model when the primitive is average choice. The Luce model is very important in

economics, and very heavily used by applied economists and practitioners.

Our axiomatization is based on path independence, as described in the beginning of

the introduction. The axiomatization is useful as a statistical test for the Luce model

because data on average choices are a) available when data on choice frequencies are

not, and b) more robustly estimated given data on choices.

The axiomatization is also useful because of what we learn about the Luce mode.

Path independence of average choice has been studied before, and the connection

to Luce’s IIA went unnoticed. As mentioned in the beginning of the introduction,

the literature concluded that path independence of average choice was too strong a

property, and lead to an impossibility result. So the fact that a weak version of path

independence lies behind the Luce model is probably surprising, and uncovers a new

facet of the Luce model. In the paper (Section 4.1) we discuss the relation between

IIA and path independence, and why one cannot prove our main result by simply

showing that path independence must imply the IIA.

Our second contribution is to provide the first axiomatization of the linear Luce

model. The Luce model (or Logit model) is ubiquitous in applied economics: It is

taught to every first-year graduate student; and it is the basic go-to specification for

the demand side of most structural economic models. But the version of the model

that is actually empirically estimated assumes that utility is linear in object attributes.

As far as we know, the full empirical content of this model has not been investigated

1Luce suggests that one would use psychophysical experiments to obtain the kinds of sample sizes

needed to test IIA.
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until now. For example, in McFadden (1974), the influential paper that lays out the

Logit model as an empirical strategy, linearity is postulated as an axiom (McFadden’s

Axiom 4).

We show that an average choice version of the von-Neumann Morgenstern inde-

pendence axiom ensures that the Luce utility function is ordinally equivalent to a

linear function. After discussing this axiom, we turn to a kind of calibration axiom

that ensures that the Luce utility is affinely equivalent to a linear utility. These ax-

ioms, together with continuity and path independence, constitute the content of the

linear Luce model for average choice.

Related Literature. The papers that are closely related to ours are: Luce (1959),

Plott (1973), Kalai and Megiddo (1980), and Machina and Parks (1981). These have

been discussed above. In particular, the papers by Kalai and Megiddo (1980) and

Machina and Parks (1981) use the same primitive as we do, and argue that path

independence gives rise to an impossibility. We weaken path independence and find

that it gives rise to the Luce rule. Section 4.2 explains the Plott path independence

axiom in detail, and gives a simplified explanation behind the impossibility results.

The literature on path independent choice is large. Notable contributions include

the work of Blair (1975), Parks (1976), and Ferejohn and Grether (1977). This work

follows Plott in assuming an environment of abstract choice, without the linear struc-

ture that is part of our primitives.

The linear Luce model is the standard econometric specification of the Luce, or

Logit model. A discussion can be found in any econometric textbook: see for example

Greene (2003). The Logit model as an empirical strategy is laid out in McFadden

(1974). We are apparently the first to investigate the behavioral content of the lin-

earity assumption in the Luce model.

2. Average choice and the Luce model

2.1. Notation

Definitions of mathematical terms are in Section 5.1.
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If A ⊆ Rn, then convA denotes the the set of all convex combinations of elements

in A, termed the convex hull of A. Let conv0A denote the relative interior of convA.

A binary relation on a set is called a preference relation if it is complete and

transitive (in other words, if it is a weak order).

Let Y be a set. Then f : Y → R+ is a finite support measure on Y if there is

a finite subset A ⊆ Y such that f(x) = 0 for x /∈ A. In this case we say that the

set A is a support for f . A finite support measure may have more than one support.

If f in addition satisfies that
∑

x∈A f(x) = 1 then we say that it is a finite support

probability measure on X. When Y is a finite set, we use the term lottery to refer to

a finite support probability measure.

Let ∆(Y ) denote the set of all finite support probability measures; and for A ⊂ Y ,

let ∆(A) denote the set of finite support measures that have support A. We shall

only discuss finite support probability measures, so we some times refer to them as

probability measures.

2.2. Primitives

Let X be a compact and convex subset of Rn, with n ≥ 3. An important special

case is when X is a set of lotteries, in that case there is a finite set P of prizes, and

X = ∆(P ) is the set of all lotteries over P .

Let A be the set of all finite subsets of X.

An average choice is a function

ρ∗ : A → X,

such that, for all A ∈ A, ρ∗(A) is in conv0A, the relative interior of the convex hull

of A.

The primitive of our study is an average choice.

2.3. Luce model

A stochastic choice is a function

ρ : A → ∆(X)
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such that ρ(A) ∈ ∆(A).

A stochastic choice ρ : A → ∆(X) a continuous Luce rule if there is a continuous

function u : X → R++ such that

ρ(x,A) =
u(x)∑
y∈A u(y)

.

An average choice ρ∗ is continuous Luce rationalizable if there is a continuous Luce

rule ρ such that

ρ∗(A) =
∑
x∈A

xρ(x,A)

for all A ∈ A.

2.4. A characterization of continuous Luce rationalizable average choices.

Our main axiom is a version of the path independence axiom proposed by Plott (1973).

Plott’s axiom says that choice is recursive, in the sense that choice from A ∪ B is

obtained by choosing first from A and B separately, and then from a set consisting

of the two chosen elements. The idea is that all that matters about A and B in

A∪B are its “best” elements, the element chosen from A and B. Plott worked in an

environment of abstract choice. For average choice, the same environment as we use

in our paper, the papers by Kalai and Megiddo (1980) and Machina and Parks (1981)

argue that Plott’s axiom is too strong. They show that Plott’s path independence

gives an impossibility result. Our result is that a natural weakening of Plott’s axiom

does not give an impossibility but instead pins down the Luce model.

Our notion of path independence is weaker than Plott’s, and says that the average

choice from A ∪ B is a convex combination of the average choice from A and the

average choice from B. Formally, our axiom is:

Path independence: If convA ∩ convB = ∅ then

ρ∗(A ∪B) ∈ conv0{ρ∗(A), ρ∗(B)}.

Our second axiom imposes a continuity property on average choice.
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Continuity: Let x /∈ A. For any sequence xn in X, if x = limn→∞ xn, then

ρ∗(A ∪ {x}) = lim
n→∞

ρ∗(A ∪ {xn}).

(understood as weak* convergence ).

Continuity is a technical axiom but it raises some interesting issues related to

choosing among multiple copies of identical, or close to identical, objects. We discuss

these in Section 4.

Theorem 1. An average choice is continuous Luce rationalizable iff it satisfies con-

tinuity and path independence.

We can gain some intuition for Theorem 1 from Figure 1. Essentially what happens

is that path independence pins down ρ∗(A) uniquely from the value of ρ∗(A′) when

A′ ( A.2 We build up a rationalizing Luce model from the average choice at sets

of small cardinality, and then use path independence to show that ρ∗ must always

coincide with the average choice generated from that Luce model.

Figure 1 shows how ρ∗(A) is uniquely determined. In the figure, the points x and

y are extreme points of conv(A), where A = {x, y, z, w, q, r}. Path independence says

that ρ∗(A) must lie on the line segment joining x and ρ∗(A \ {x}) and on the line

segment joining y and ρ∗(A \ {y}). The main step in the proof (Lemma 6) establishes

that, outside of some “non-generic” sets A, the intersection of the line segments x—

ρ∗(A \ {x}) and y—ρ∗(A \ {y}) is a singleton. This means that path indepence pins

down ρ∗(A) uniquely from ρ∗(A \ {x}) and ρ∗(A \ {y}).
Figure 1 illustrates why the line segments x—ρ∗(A\{x}) and y—ρ∗(A\{y}) have

a singleton intersection. We choose x and y to lie on a proper face of convA, so there

is a hyperplane supporting A at that face. If there were two points in the intersection

of x—ρ∗(A \ {x}) and y—ρ∗(A \ {y}), then all four points x, ρ∗(A \ {x}), y and

ρ∗(A \ {y}) would lie in the same line. This implies that ρ∗(A \ {x}) and ρ∗(A \ {y})
lie on the hyperplane as well. But since these two average choices are in the relative

interior of the respective sets, it implies that A also lies in the hyperplane. This is

2See also the discussion in Section 4.1, where we compare path independence and Luce’s IIA, and

argue that we could not use IIA to the same effect as path independence.
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y

x
z

w

q

r

ρ∗(A \ {y})

ρ∗(A \ {x})

ρ∗(A)

Figure 1: The set A = {x, y, z, w, q, r}: ρ∗(A) is determined from path independence,

ρ∗(A \ {x}), and ρ∗(A \ {y})

what we mean by A being “not generic:” it means that convA does not have low

dimension.

3. Linear Luce

We have mentioned the popularity of the Luce model among practitioners and empir-

ical economists. Interestingly, the version of the Luce model they estimate is linear

in object attributes. Here we turn our attention to such a linear model. Specifically,

we consider continuous Luce models in which:

• u(x) = f(v · x) with v ∈ Rn and f a continuous strictly monotonic function;

• or u(x) = v · x+ β, with v ∈ Rn and β ∈ R.

The first model we term the linear Luce model. The second is called the strictly affine

Luce model.

Our results on linear Luce and the strictly affine Luce model are the first ax-

iomatic characterizations of any version of Luce model that assumes linearity in object

attributes, the kind of Luce model that is usually estimated empirically.
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3.1. Linear Luce

A stochastic choice ρ : A → ∆(X) a linear Luce rule if there is v ∈ Rn and a

monotone and continuous function f : R→ R++ such that

ρ(x,A) =
f(v · x)∑
y∈A f(v · y)

.

Consider the following axiom, which captures the kind of independence property

that is normally associated with von Neumann-Morgenstern expected utility theory.

Independence: ρ∗({x, y}) = (1/2)x + (1/2)y iff for all λ ∈ R and all z s.t. λx +

(1− λ)z, λy + (1− λ)z ∈ X,

ρ∗({λx+ (1− λ)z, λy + (1− λ)z}) = λρ∗({x, y}) + (1− λ)z

Note that if ρ∗ is continuous Luce rationalizable with utility u, then u(x) = u(y)

iff ρ∗({x, y}) = (1/2)x + (1/2)y. So the meaning of the independence axiom is that

u(x) = u(y) iff for all λ ∈ R and all z s.t. λx + (1 − λ)z, λy + (1 − λ)z ∈ X,

ρ∗({λx+ (1− λ)z, λy + (1− λ)z}) = λρ∗({x, y}) + (1− λ)z.

The next diagram is a geometric illustration of independence. Note that the

average choice ρ∗(λx+(1−λ)z, λy+(1−λ)z) must be translated with λ from ρ∗(x, y).

Since we have u(x) = u(y), this will force a rationalizing rule to translate indifference

curves in λ in a similar fashion, so the indifference curves passing through the points

λx + (1− λ)z and λy + (1− λ)z), and through λ′x + (1− λ′)z and λ′y + (1− λ)z′),

must be translates of the indifference curve passing through x and y.

x

y

z

ρ∗(λx + (1− λ)z, λy + (1− λ)z)

ρ∗(λ′x + (1− λ′)z, λ′y + (1− λ′)z)

ρ∗(x, y)

10



The independence axiom ensures that u satisfies von Neumann-Morgenstern inde-

pendence. The immediate implication of the axiom (Lemma 8) says that u satisfies a

weak version of independence, but this version can be shown to suffice for the result

(Lemma 9). The result is as follows.

Theorem 2. An average choice is continuous linear Luce rationalizable iff it satisfies

independence, continuity and path independence.

3.2. Strictly affine Luce model

A stochastic choice ρ : A → ∆(X) is a strictly affine Luce rule if there is v ∈ Rn and

β ∈ R such that

ρ(x,A) =
v · x+ β∑

y∈A(v · y + β)
.

In the linear model, u is ordinally equivalent to a linear function of x. The so-

called strictly affine model has u being an affine transformation of a linear model.

Independence is not sufficient to obtain this model and we need a stronger axiom; an

axiom that allows us to measure the effects of moving close to an alternative. This

axiom is termed calibration:

Calibration:

ρ∗({λx+ (1− λ)y, λy + (1− λ)x}) = ρ∗({x, y}) + 2λ(1− λ)(x+ y − ρ∗({x, y}))

Calibration requires that “symmetric” combinations:

λx+ (1− λ)y and λy + (1− λ)x

correctly reflect the magnitude of λ. Think of the vectors λx+(1−λ)y and λy+(1−λ)x

as two independent lotteries. The following diagram represents the two lotteries.

ρ∗

y

x

y

x

x

y

1− λ

1− λ

λ

λ

1− λ

λ
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Given the two independent lotteries: with probability λ2 you draw x and then

y; and with probability (1 − λ)2 you draw y then x. Either way you get ρ({x, y}).
The problem is when you draw two x or two y. Then you get ρ({x, x}) = x or

ρ∗({y, y}) = y. This happens with probability 2λ(1−λ). So what we get is ρ∗({x, y})
and a “compensation” (x+ y− ρ∗({x, y})) in the event that we draw two x or two y.

This is multiplied by the probability of that event.

Theorem 3. An average choice is strictly affine Luce rationalizable iff it satisfies

calibration, independence, continuity and path independence.

4. Discussion

An axiomatic characterization serves two kinds of purposes. One is that the ideas

behind the axioms give some qualitative meaning to a quantitative model of choice.

Path independence captures a procedural approach to choice: this idea is most clearly

captured by Plott’s version of path independence. Plott’s notion is too strong in our

environment: we discuss these issues in Section 4.2.

Our second axiom, continuity, takes the form it takes because of a well-known

phenomenon in stochastic choice. This is discussed in 4.3.

The other use of an axiomatic characterization is that it provides a test for the

theory. Luce’s model is the most widely used model of discrete choice. While you

read this paper, dozens of economists are hard at work estimating hundreds of Luce

models (Logit models) of choice. But Luce’s characterization of the model relies on

stochastic choice as primitive, we argue that there are practical empirical advantages

to testing Luce’s model using average choice. These are discussed in Section 4.4.

In the first place, however, we turn to a theoretical discussion of Luce’s and our

axiomatization of the Luce model.

4.1. Path independence and Luce’s IIA.

Luce (1959) takes a stochastic choice ρ as primitive, and shows that Luce’s rue emerges

from the axiom:
ρ(x, {x, y})
ρ(y, {x, y})

=
ρ(x,A)

ρ(y, A)
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y

x

zρ∗({x, y})

ρ∗({x, y, z})

Figure 2: Path independence and Luces’ IIA.

z w

y
x

ρ∗(A \ {y})

z w

y
x

ρ∗(A \ {x})

z w

y
x

Figure 3: Violation of path independence; A = {x, y, z, w}.

for any A 3 x, y. It is interesting to consider the relation between IIA and path

independence.

Figure 2 exhibits a violation of path independence. The average choice ρ∗({x, y, z})
is not on the line connecting z with ρ∗({x, y}. Instead, ρ∗({x, y, z}) is above the line.

If we write ρ∗({x, y, z}) as a weighted average of the vectors x, y and z, then this

means that the relative weight places on x, relative to the weight place on y, is clearly

higher than the relative weight places on x in ρ∗({x, y}). This would be a violation

of Luce’s IIA, when the weights are choice probabilities.

So it is easy to see, at least in some special cases, how path independence is related

to IIA. It is not, however, so easy to prove Theorem 1 using IIA. Consider the violation

of path independence in Figure 3.

Figure 3 exhibits a violation of path independence. The figure has the average

choice from some subsets of A = {x, y, z, w}, and these choices are incompatible with

path independence. It is easy to draw violations of path independence, but Figure 3
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illustrates that the axiom can be violated given only information about the average

choice from {x, z, w} and {y, z, w}. This information does not allow us to reduce the

problem to a violation IIA because we cannot relate the probability weights in a larger

set to the probability weights in the smaller set.

The diagram on the left shows where ρ∗({x, z, w}) is in conv{x, z, w}, while the

diagram in the middle depicts ρ∗({y, z, w}) in conv{y, z, w}. It should be clear, as

illustrated in the diagram on the right of Figure 3, that path independence cannot be

satisfied because the lines x–ρ∗(A \ {x}) and y–ρ∗(A \ {y}) do not cross.

The example in Figure 3 because it shows how the average choice at sets of smaller

cardinality pin down uniquely the average choice at sets of larger cardinality. Luce’s

IIA cannot be used in the same way. To check for IIA, as suggested by Figure 2,

requires the probability weights to be unique, but this is only possible for affinely

independent sets of vectors. So it is only possible for sets A of small cardinality.

Our proof of Theorem 1 also works inductively over the cardinality of A, but path

independence (in contrast to IIA) does pin down average choice in a way that makes

Luce’s model unavoidable.

4.2. Plott path independence

Path indepence was introduced to choice theory by Plott (1973). In our model, Plott’s

notion of path independence translates into the axiom:

Plott path independence: If convA ∩ convB = ∅ then

ρ∗(A ∪B) = ρ∗ ({ρ∗(A), ρ∗(B)}) .

The idea is that all that matters for choosing from A ∪ B are the choices from A

and from B. Once we know ρ∗(A) and ρ∗(B) there is no more relevant information

in the original sets A and B.

It is important to see how our path independence axiom weakens Plott’s. We

require only that ρ∗(A ∪ B) be a convex combination of ρ∗(A) and ρ∗(B)}, but the

weights in this convex combination does not need to coincide with the weights in the

choice from the set {ρ∗(A), ρ∗(B)}. So the elements of A∪B are allowed to influence
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the average choice ρ∗(A ∪ B) by way of affecting the weights placed on ρ∗(A) and

ρ∗(B)}.
There is an extensive literature following the work of Plott. The most relevant

for our purposes is Kalai and Megiddo (1980) and Machina and Parks (1981), who

argue that Plott path independence is too strong an axiom in our framework. It is

particularly simple to see Kalai’s, Megiddo’s, Machina’s, and Park’s point when we

talk about Luce rationalizable average choice.

Proposition 4. If an average choice is continuous Luce rationalizable, then it cannot

satisfy Plott path independence.

Proof. Let ρ∗ be an average choice that is continuous Luce rationalizable, and let

u : X → R++ be the continuous utility function in the Luce model that rationalizes

ρ∗. Suppose towards a contradiction that ρ∗ satisfies Plott path independence.

Fix any affinely independent x, y, z ∈ X. Then Plott path independence implies

that

ρ∗({x, y, z}) = ρ∗(ρ∗({x, y}), {z}) =
u(ρ∗({x, y}))ρ∗({x, y}) + u(z)z

u(ρ∗({x, y})) + u(z)
.

But at the same time, ρ∗({x, y, z}) also equals

u(x)x+ u(y)y + u(z)z

u(x) + u(y) + u(z)
.

Affine independence then implies that

u(z)

u(x) + u(y) + u(z)
=

u(z)

u(ρ∗({x, y})) + u(z)
.

Then u(z) > 0 gives that

u(ρ∗({x, y})) = u

(
u(x)x+ u(y)y

u(x) + u(y)

)
= u(x) + u(y).

One can choose y arbitrarily close to x such that x, y, z are affinely independent.

Therefore, continuity of u would imply that u(x) = 2u(x), which is impossible as

u(x) > 0.
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4.3. Debreu’s example

The continuity axiom we are using is perhaps not the first such axiom one would think

of (it certainly was not the first we thought of). A stronger axiom would demand that

ρ∗ is continuous, but this is incompatible with the Luce rule.

It is interesting to see why, as it relates the the famous “blue bus – red bus”

example of Debreu (1960) and Tversky (1972). Suppose that an agent has to choose

a mode of transportation. Choosing x means taking a bus while choosing y means

taking a cab.3 Alternative z is also a bus, but of a different color from x. Debreu

argues that the presence of z should matter for the relative probability of choosing

x over y, as the agent would consider whether to take a bus or a taxi and then be

indifferent over which bus to take.

To see the connection to Debreu’s example, suppose that ρ∗ is continuous Luce

rationalizable, with a continuous function u. Let zn be a sequence in X converging to

x ∈ X. Then

ρ∗({x, y}) 6= 2u(x)x+ u(y)y

2u(x) + u(y)
= lim

n→∞
ρ∗({x, y, zn}).

Thus ρ∗ must be discontinuous.

The lack of continuity of ρ∗ is reminiscent of the blue bus-red bus example. The

lack of continuity results because the Luce model demands that zn be irrelevant for

the relative choice of x over y, even when zn becomes very similar to x. In that sense,

the lack of continuity of ρ∗ is related to the blue bus-red bus phenomenon.

4.4. Sampling error

Theoretical studies of stochastic choice assume that choice probabilities are observed

perfectly. But we intend our axioms to be useful as empirical tests, so that one can

empirically decide whether observed data are consistent with the theory.

In an empirical study, however, choice probabilities must be estimated from sample

frequencies. In the individual interpretation of the stochastic choice model (see the

3Actually Debreu talked about two different recordings of the same Beethoven symphony vs. a

suite by Debussy; but the literature has preferred buses and cabs.
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discussion in the Introduction), one agent would make a choice repeatedly from a set

of available alternatives. This allows us to estimate the stochastic choice, but not to

perfectly observe it. In the population interpretation (again, see the Introduction)

we can observe the choices of a group of agents. The group may be large, and the

fraction with which an agent makes a choice may be close to the population fraction

of that choice, but there is likely some important randomness due to sampling. Here

we want to argue that our axiomatization is better suited to dealing with such errors.

In his discussion of the Luce mode, Luce (1959) makes the point that testing his

axiom, IIA, requires a large sample size. We follow up on Luce’s remark and compare

the efficiency of the IIA test statistic with the test statistic neded to test for path

independence, the average of the choices.

Fix a set of alternatives A. Suppose that the population choices from A are given

by p ∈ ∆(A), which comes from some continuous Luce rule u : X → R++. We do not

observe p but instead a sample X1, . . . , Xn of choices, with Xi ∈ A for i = 1, . . . , n.

TheXi are independent, and distributed according to p. The probability p is estimated

from the empirical distribution:

pnx =
|i : Xi = x|

n
.

We have two possibilities to test the Luce model:

1. Test the model using Luce’s original axiomatization, by computing relative prob-

abilities
pnx
pny
,

for x, y ∈ A.

2. Test the model using our axiomatization, by computing average choice:

µn =
∑
x∈A

xpnx

We argue that option (2) is better for two reasons. One is that in small samples

it is more reliable to use the average than to use relative probabilities. The other is

that, even in a large sample, the test statistic in (1) can have a very large variance
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relative to the test statistic in (2). Specifically, for any M there is an instance of the

Luce model in which the asymptotic variance of the statistic in (1) is M times the

asymptotic variance of the statistic in (2).

We proceed to formalize the second claim.

Standard calculations (see Appendix B) yield:

√
n

(
pnx
pny
− px
py

)
d−→ N

(
0,

√
px
np2y

[
1 +

px
py

])

On the other hand,
√
n(µn − µ)

d−→ N(0,Σ), where

Σ = (σl,h) and σl,h =
∑
x∈A

∑
y∈A\x

−xlyhpxpy +
∑
x∈A

xlxhpx(1− px).

It is obvious that the entries of Σ are bounded and the asymptotic variance of

pnx/p
n
y can be taken to be as large as desired by choosing a Luce model in which

u(x)/u(y) is large. So for any M there is a Luce model for which the asymptotic

variance of pna/p
n
b relative to max{σl,h}, the largest element of Σ, is greater than M .

5. Proof of Theorem 1

5.1. Definitions from convex analysis

Let x, y ∈ Rn. The line passing through x and y is the set {x + θ(y − x) : θ ∈ R}.
The line segment joining x and y is the set {x+ θ(y− x) : θ ∈ [0, 1]}. A subset of Rn

is affine if it contains the line passing through any two of its members. A subset of

Rn is convex if it contains the line segment joining any two of its members.

If A is a subset of Rn, the affine hull of A is the intersection of all affine subsets

of Rn that contain A. An affine combination of members of A is any finite sum∑l
i=1 λixi with λi ∈ R and xi ∈ A i = 1, . . . , l and

∑l
i=1 λi = 1. The affine hull of

A is equivalently the collection of all affine combinations of its members. If A is a

subset of Rn, the convex hull of A is the intersection of all convex subsets of Rn that

contain A. A set A is affinely independent if none of its members can be written as

an affine combination of the rest of the members of A.
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A point x ∈ A is relative interior for A if there is a neighborhood N of x in Rn

such that the intersection of N with the affine hull of A is contained in A. The relative

interior of A is the set of points x ∈ A that are relative interior for A.

A polytope is the convex hull of a finite set of points. The dimension of a polytope

P is l − 1 if l the largest cardinality of an affinely independent subset of A. A vector

x ∈ A is an extreme point of a set A if it cannot be written as the convex combination

of the rest of the members of A. A face of a convex set A is a convex subset F ⊆ A

with the property that if x, y ∈ A and (x + y)/2 ∈ F then x, y ∈ F . If F is a face

of a polyope P , then F is also a polytope and there is α ∈ Rn and β ∈ R such that

P ⊆ {x ∈ Rn : α · x ≤ β} and F = {x ∈ P : α · x = β}. If a polytope has dimension

l then it has faces of dimension 0, 1, . . . , l (Corollary 2.4.8 in Schneider (2013)).

5.2. Proof

The following axiom seems to be weaker than path independence, but it is not.

One-point path independence:

ρ∗(A) ∈ conv0{x, ρ∗(A \ {x})}.

We use one-point path independence in the proof of sufficiency in Theorem 1.

Since path independence is satisfied by any continuous Luce rationalizable average

choice, one-point path independence and path independence are equivalent (at least

under the hypothesis of continuity).

We now proceed with the formal proof. The first lemma establishes necessity, and

is also needed in the proof of sufficiency.

Lemma 5. If ρ∗ is continuous Luce rationalizable, then it satisfies continuity and

path independence.

Proof. Continuity of the average choice is a direct consequence of the continuity of u.

Path independence is also simple: Note that when convA∩ convB = ∅ then A and B
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are disjoint. So it follows that(∑
x∈A

u(x) +
∑
y∈B

u(x)

)
ρ∗(A ∪B) =

∑
x∈A

u(x)x+
∑
x∈B

u(x)x

= ρ∗(A)
∑
x∈A

u(x) + ρ∗(B)
∑
x∈B

u(x);

whence

ρ∗(A ∪B) ∈ conv0{ρ∗(A), ρ∗(B)},

as
∑

x∈A u(x) > 0 and
∑

x∈B u(x) > 0.

The proof of the sufficiency of the axioms relies on two key ideas. One is that when

A is affinely independent, ρ∗(A) has a unique representation as a convex combination

of the elements of A. The other is the following lemma, which is used to show that

path independence determines average choice uniquely.

Lemma 6. Suppose that ρ∗ satisfies one-point path independence. Let A be a finite

set with |A| ≥ 3, and let x, y ∈ A with x 6= y. If x and y are extreme points of A and

there is a proper face F of conv(A) with dim(F ) ≥ 1 and x, y ∈ F , then:

conv0({x, ρ∗(A \ {x})}) ∩ conv0({y, ρ∗(A \ {y})})

is a singleton.

Proof. First, ρ∗(A) ∈ conv0{x, ρ∗(A \ {x})} and ρ∗(A) ∈ conv0{y, ρ∗(A \ {y})}, as ρ∗

satisfies one-point path independence. So

∅ 6= conv0{x, ρ∗(A \ {x})} ∩ conv0{y, ρ∗(A \ {y})}.

Since x, y ∈ F there is a vector p and a scalar α with F ⊆ {z ∈ X : p ·z = α} –one

of the hyperplanes supporting convA– and such that convA ⊆ {z ∈ X : p · z ≥ α}.
We shall prove that if there is

z1, z2 ∈ conv0{x, ρ∗(A \ {x})} ∩ conv0{y, ρ∗(A \ {y})},

with z1 6= z2, then A ⊆ F , contradicting that F is a proper face of conv(A).
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Now, z1, z2 ∈ conv0{x, ρ∗(A \ {x})} implies that there is θx, θρ∗(A\{x}) ∈ R such

that x = z2 + θx(z
1− z2) and ρ∗(A\{x}) = z2 + θρ∗(A\{x})(z

1− z2). Similarly, we have

y = z2 + θy(z
1 − z2) and ρ∗(A \ {y}) = z2 + θρ∗(A\{y})(z

1 − z2).
As a consequence then of p · x = α = p · y we have

p · z2 + θxp · (z1 − z2) = p · z2 + θyp · (z1 − z2).

Since θx 6= θy (as x 6= y) we obtain that p · (z1 − z2) = 0. So

α = p · x = p · z2 + p · θx(z1 − z2) = p · z2.

Then

p · ρ∗(A \ {x}) = p · (z2 + θρ∗(A\{x})(z
1 − z2)) = p · z2 = α.

But ρ∗(A \ {x}) =
∑

z∈A\{x} λzz for some λz > 0, as ρ∗(A \ {x}) is in the relative

interior of conv(A \ {x}). Then p · z ≥ α for all z ∈ A implies that p · z = α for all

z ∈ A \ {x}.
This means that A ⊆ F , contradicting that F is a proper face of convA.

The proof of sufficiency proceeds by first constructing a stochastic choice ρ, then

arguing that it is a Luce rule that rationalizes ρ∗. The first step is to define ρ(A) for

A with |A| = 2. Then we define ρ(A) for A with |A| = 3, and finally we define ρ on

all of A by constructing a continuous Luce rule, and using this rule to define ρ. The

average choice defined from the Luce rule must be path independent, so Lemma 6 is

used to show that the average choice from the constructed Luce rule coincides with

ρ∗.

Let x, y ∈ X, x 6= y. Since ρ∗({x, y}) is in the relative interior of {x, y} there

is a unique θ ∈ (0, 1) with ρ∗({x, y}) = θx + (1 − θ)y. Define ρ(x, {x, y}) = θ and

ρ(y, {x, y}) = 1− θ. Note that ρ(x, {x, y}) is a continuous function of x and y.

Thus we have defined ρ(A) for A with |A| = 2. Now turn to A with |A| =

3. Let A = {x, y, z}. Consider the case when the vectors x, y and z are affinely

independent. Such collections of three vectors exist because |P | ≥ 3. Then there

are unique ρ(x,A) ρ(y, A) and ρ(z, A) (non-negative and adding up to 1) such that

ρ∗(A) = xρ(x,A) + yρ(y, A) + zρ(z, A). Since ρ∗(A) is in the relative interior of

conv(A) in fact, ρ(x,A), ρ(y, A), ρ(z, A) > 0.
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By path independence, there is θ such that

ρ∗(A) = θz + (1− θ)ρ∗(A \ {z}) = θz + (1− θ)[xρ(x, {x, y}) + yρ(y, {x, y})].

The vectors x, y and z are affinely independent, so the weights ρ(x,A), ρ(y, A) and

ρ(z, A) are unique, which implies that ρ(x,A) = (1 − θ)ρ(x, {x, y}) and ρ(y, A) =

(1− θ)ρ(y, {x, y}). Hence
ρ(x,A)

ρ(y, A)
=
ρ(x, {x, y})
ρ(y, {x, y})

. (1)

Consider now the case when the vectors x, y and z are not affinely independent.

Choose a sequence {zn} such that

a) x, y and zn are affinely independent for all n,

b) z = limn→∞ zn,

c) and ρ({x, y, zn}) converges.

To see that it is possible to choose such a sequence, note that x, y and zn are

affinely independent if and only if x− zn and y− zn are not collinear. Now x− z and

y − z are collinear, so there is θ ∈ R with x− z = θ(y − z). For each n the ball with

center z and radius 1/n has full dimension, so the intersection of this ball with the

complement in X of the line passing through x and z (which is also the line passing

through y and z) is nonempty. By choosing zn in this ball, but outside of the line

passing through x and z, we obtain a sequence that converges to z Then we have that

(x− zn)i
(y − zn)i

=
θ(y − z)i + (z − zn)i
(y − z) + (z − zn)i

=
θ + (z−zn)i

(y−z)i

1 + (z−zn)i
(y−z)i

,

a ratio that is not a constant function of i, as zn is not on the line passing through y and

z. Finally, by going to a subsequence if necessary, we can ensure that condition c) holds

because the simplex is compact. Define ρ({x, y, z}) to be the limit of ρ({x, y, zn}).
We have shown that Equation (1) holds for sets of three affinely independent vec-

tors. So ρ(x,A)/ρ(y, A) = ρ(x, {x, y})/ρ(y, {x, y}), as ρ(x, {x, y, zn})/ρ(y, {x, y, zn}) =

ρ(x, {x, y})/ρ(y, {x, y}) for all n. In particular, this means that ρ(x,A), ρ(y, A) ∈
(0, 1), as ρ(x, {x, y}), ρ(y, {x, y}) ∈ (0, 1).
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Again, the fact that Equation (1) holds for sets of three affinely independent

vectors implies:

ρ(zn, {x, y, zn})
ρ(y, {x, y, zn})

=
ρ(zn, {zn, y})
ρ(y, {zn, y})

→ ρ(z, {z, y})
ρ(y, {z, y})

as n → ∞. Then ρ(z, A)/ρ(y, A) = ρ(z, {z, y})/ρ(y, {z, y}). In particular, ρ(z, A) ∈
(0, 1) because ρ(z, {z, y}) ∈ (0, 1).

Thus we have established that, for any three distinct vectors x, y, z ∈ X (affinely

independent or not), Equation (1) holds with A = {x, y, z}.
Now we turn to the definition of ρ on A. The definition proceeds by induction.

We use (1) to define a utility function u : X → R++ and a Luce rule. Then we show

by induction, and using Lemma 6, that ρ rationalizes ρ∗.

Fix y0 ∈ X. Let u(y0) = 1. For all x ∈ X, let u(x) = ρ(x,{x,y0})
ρ(y0,{x,y0}) . Note that u is a

continuous function, as x 7→ (ρ(x, {x, y}), ρ(y, {x, y})) is continuous, and that u > 0.

By Equation (1), we obtain

u(x)

u(y)
=

ρ(x, {x, y0})
ρ(y0, {x, y0})

ρ(y0, {y, y0})
ρ(x, {y, y0})

=
ρ(x, {x, y})
ρ(y, {x, y})

=
ρ(x, {x, y, z})
ρ(y, {x, y, z})

,

for all x and y.

Let ρ(A) be the Luce rule defined by u. This definition coincides with the definition

of ρ we have given for A with |A| ≤ 3 because

u(x)

u(y)
=
ρ(x, {x, y})
ρ(y, {x, y})

and
u(x)

u(y)
=
ρ(x, {x, y, z})
ρ(y, {x, y, z})

for all x, y, z ∈ X.

Note also that, by definition of ρ,

ρ∗({x, y}) = xρ(x, {x, y}) + yρ(y, {x, y})

and ρ∗({x, y, z}) = xρ(x, {x, y, z}) + yρ(y, {x, y, z}) + zρ(z, {x, y, z})
(2)

for all x, y, z ∈ X.

23



Let

ρ̄(A) =
∑
x∈A

xρ(x,A).

We shall prove that ρ̄(A) = ρ∗(A) for all A ∈ A, which finishes the proof of the

theorem.

The proof proceeds by induction on the size of A. We have established (see Equa-

tion (2)) that ρ̄(A) = ρ∗(A) for |A| ≤ 3. Suppose then that ρ̄(A) = ρ∗(A) for all

A ∈ A with |A| ≤ k. Let A ∈ A with |A| = k+ 1. We shall prove that ρ̄(A) = ρ∗(A).

Suppose first that dim(convA) ≥ 2. Then by Corollary 2.4.8 in Schneider (2013)

there is a proper face F of conv(A) with dimension ≥ 1. Let x, y ∈ A be two extreme

points of conv(A), such that x, y ∈ F . Such x and y exist because F has dimension at

least 1. Note that ρ̄(A \ {x}) = ρ∗(A \ {x}) ρ̄(A \ {y}) = ρ∗(A \ {y}) by the inductive

hypothesis. By Lemma 5, ρ̄ satisfies path independence. So Lemma 6 implies that

conv0({x, ρ̄(A\{x})})∩conv0({y, ρ̄(A\{y})}) = conv0({x, ρ∗(A\{x})})∩conv0({y, ρ∗(A\{y})})

is a singleton. Since ρ̄ and ρ∗ both satisfy path independence, ρ̄(A) = ρ∗(A).

In second place we consider the case when dim(A) = 1. Let z ∈ A be an extreme

point of convA. Let {zn} be a sequence with zn → z, such that A \ {z} ∪ {zn} has

dimension ≥ 2. This is possible because X has dimension larger than 3. The we

obtain that ρ̄(A) = ρ∗(A) by continuity of ρ∗ and ρ̄.

6. Proof of Theorems 2 and 3

Lemma 7. If ρ∗ is continuous linear Luce rationalizable, then it satisfies indepen-

dence.

Proof. Let ρ∗ be continuous linear Luce rationalizable, with u(x) = f(v ·x). We check

that it satisfies independence. Note first that:

ρ∗({λx+ (1− λ)z, λy + (1− λ)z}) = µ(λx+ (1− λ)z) + (1− µ)(λy + (1− λ)z)

= λ(µx+ (1− µ)y) + (1− λ)z,
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where

µ =
f(v · (λx+ (1− λ)z))

f(v · (λx+ (1− λ)z)) + f(v · (λy + (1− λ)z))
.

Suppose first that u(x) = u(y). Then v · x = v · y, as f is monotone increasing.

Then f(v · (λx + (1 − λ)z)) = f(v · (λy + (1 − λ)z)). This means that µ = 1/2. So

µx+ (1− µ)y = ρ∗({x, y}), because u(x) = u(y) implies that ρ∗({x, y}) = 1
2
x+ 1

2
y.

Conversely, suppose that for all λ and all z such that λx+(1−λ)z, λy+(1−λ)z ∈ X

ρ∗({λx+ (1− λ)z, λy + (1− λ)z}) = λρ∗({x, y}) + (1− λ)z,

but (towards a contradiction) that u(x) 6= u(y). Say that u(x) > u(y). Choose z

and λ such that µ > 1/2, where µ is such that ρ∗({λx + (1− λ)z, λy + (1− λ)z}) =

µ(λx+ (1− λ)z) + (1−µ)(λy+ (1− λ)z) (which can be done by the continuity of u).

Then ρ∗({x, y}) 6= µx+ (1− µ)y, a contradiction.

Let ρ∗ be continuous Luce rationalizable with utility function u. Write x ∼ y when

u(x) = u(y).

Lemma 8. If ρ∗ satisfies independence then it satisfies the following property:

x ∼ y iff ∀λ ∈ R∀z ∈ X(λx+(1−λ)z, λy+(1−λ)z ∈ X =⇒ λx+(1−λ)z ∼ λy+(1−λ)z)

Proof. Let x ∼ y, λ ∈ (0, 1) and z ∈ X. Let µ be such that

ρ∗({λx+ (1− λ)z, λy + (1− λ)z}) = µ(λx+ (1− λ)z) + (1− µ)(λy + (1− λ)z)

= λ(µx+ (1− µ)y) + (1− λ)z.

Then independence implies that

λ(µx+(1−µ)y)+(1−λ)z = ρ∗({λx+(1−λ)z, λy+(1−λ)z}) = λρ∗({x, y})+(1−λ)z,

and thus µx+ (1− µ)y = ρ∗({x, y}) Since x ∼ y we must have µ = 1/2. Hence

1

2
=

u(λx+ (1− λ)z)

u(λx+ (1− λ)z) + u(λy + (1− λ)z)
.

Therefore λx+ (1− λ)z ∼ λy + (1− λ)z.

Conversely, if λx + (1 − λ)z ∼ λy + (1 − λ)z for all λ and all z then x ∼ y by

continuity of u and the fact that λx+ (1− λ)z, λy + (1− λ)z ∈ X.
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The property in Lemma 8 is weaker than the standard von-Neuman Morgenstern

independence property (restricted to λ ∈ (0, 1)). Using Lemma 8, however, we can

establish the stronger independence property, as stated in the next lemma. Then

the proof of Theorem 2 follows from the expected utility theorem: the preference

relation represented by u is a weak order, it satisfies continuity (as u is continuous),

and independence.

Lemma 9. If ρ∗ is continuous Luce rationalizable, and it satisfies independence, then

it satisfies the following property

u(x) ≥ u(y) iff ∀λ ∈ [0, 1]∀z ∈ X u(λx+ (1− λ)z) ≥ u(λy + (1− λ)z).

Proof. Note that by Lemma 8, independence implies that

x ∼ y iff x+ θ(z − x) ∼ y + θ(z − y)

for all scalars θ and for all z.

Suppose towards a contradiction that u(x) ≥ u(y) but that u(λx + (1 − λ)z) <

u(λy + (1 − λ)z). By continuity of u there is λ∗ < λ such that u(λx + (1 − λ)z) =

u(λy + (1− λ)z).

Let λ∗x+(1−λ∗)z = x′. Then x = x′− 1−λ∗
λ∗

(z−x′). Similarly, y = y′− 1−λ∗
λ∗

(z−y′)
where λ∗y+(1−λ∗)z = y′. Then independence and u(x′) = u(y′) implies that u(x) =

u(y). Then u(λx+ (1− λ)z) < u(λy + (1− λ)z) is a violation of independence.

6.1. Proof of Theorem 3

By Theorem 2, a strictly affine Luce rationalizable rule satisfies independence, conti-

nuity and path independence. Lemma 10 establishes that Calibration is also necessary

for the rule to be strictly affine Luce rationalizable.

For necessity, we know that path independence, continuity and independence imply

that an average choice rule is linear Luce rationalizable. Lemma 11 finishes the proof

by establishing that calibration is sufficient for the linear Luce rule to be strictly affine.

Lemma 10. The strictly affine Luce model satisfies calibration
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Proof. Let w = λx+ (1− λ)y and w′ = λy + (1− λ)x. Note that

v · w + v · w′ = v · x+ v · y.

Therefore,

ρ∗({λx+ (1− λ)y, λy + (1− λ)x})

=
(v · w + β)(λx+ (1− λ)y) + (v · w′ + β)(λy + (1− λ)x)

(v · x+ β) + (v · y + β)
.

Note that

(v · w + β)(λx+ (1− λ)y) + (v · w′ + β)(λy + (1− λ)x)

is:

(λv · x+ (1− λ)v · y + β)(λx+ (1− λ)y) + (λv · y + (1− λ)v · x+ β)(λy + (1− λ)x)

= ((λ2 + (1− λ)2)v · x+ 2λ(1− λ)v · y)x

+((λ2 + (1− λ)2)v · y + 2λ(1− λ)v · x)y

+β(λx+ (1− λ)y + λy + (1− λ)x)

= ((λ2 + (1− λ)2)v · x+ 2λ(1− λ)v · y)x+ ((λ2 + (1− λ)2)v · y + 2λ(1− λ)v · x)y

+β(x+ y).

Hence,

ρ∗({λx+ (1− λ)y, λy + (1− λ)x})

=(λ2 + (1− λ)2)
v · xx+ v · yy

(v · x+ β) + (v · y + β)
+ 2λ(1− λ)

v · yx+ v · xy
(v · x+ β) + (v · y + β)

+
β(x+ y)

(v · x+ β) + (v · y + β)

=(λ2 + (1− λ)2)
(v · x+ β)x+ (v · y + β)y

(v · x+ β) + (v · y + β)
+ 2λ(1− λ)

(v · y + β)x+ (v · x+ β)y

(v · x+ β) + (v · y + β)

=(λ2 + (1− λ)2)ρ∗({x, y}) + 2λ(1− λ)(x+ y − ρ∗({x, y})).

Lemma 11. Let ρ∗ be a linear Luce rationalizable, with utility function u(x) = f(v ·
.x). Suppose that ρ∗ satisfies calibration. Then there is α > 0 and β such that

f(v · x) = αv · x+ β for all x ∈ X.
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Proof. By the calibration axiom, for all x, y ∈ X and λ ∈ [0, 1],

λf(v · w) + (1− λ)f(v · w′)
f(v · w) + f(v · w′)

=
(λ2 + (1− λ)2)f(v · x) + 2λ(1− λ)f(v · y)

f(v · x) + f(v · y)
,

where w = λx+ (1− λ)y and w′ = λy + (1− λ)x.

Let V = {a ∈ R|v ·x = a for some x ∈ X}. Then, the above equation implies that

for all λ ∈ [0, 1] \ {1
2
} and a, b ∈ V ,

λf(λa+ (1− λ)b) + (1− λ)f(λb+ (1− λ)a)

f(λa+ (1− λ)b) + f(λb+ (1− λ)a)
=

(λ2 + (1− λ)2)f(a) + 2λ(1− λ)f(b)

f(a) + f(b)

= λ
λf(a) + (1− λ)f(b)

f(a) + f(b)

+ (1− λ)
(1− λ)f(a) + λf(b)

f(a) + f(b)
.

Let

A =
f(λa+ (1− λ)b)

f(λa+ (1− λ)b) + f(λb+ (1− λ)a)
and B =

λf(a) + (1− λ)f(b)

f(a) + f(b)
.

Then λA+ (1− λ)(1− A) = λB + (1− λ)(1−B), so that A = B.

Step 1: For all λ ∈ [0, 1]\{1
2
} and a, b ∈ V , f(λa+(1−λ)b) > λf(a)+(1−λ)f(b)⇔

f(λb+ (1− λ)a) < λf(b) + (1− λ)f(a).

Proof of Step 1: If f(λa+ (1−λ)b) < λf(a) + (1−λ)f(b), then A = B implies that

f(λa+ (1− λ)b) + f(λb+ (1− λ)a) > f(a) + f(b). So λf(a) + (1− λ)f(b) + f(λb+

(1− λ)a) > f(a) + f(b). Therefore, f(λb+ (1− λ)a) > λf(b) + (1− λ)f(a).

Conversely, if f(λa + (1 − λ)b) > λf(a) + (1 − λ)f(b), then A = B implies that

f(λa+ (1− λ)b) + f(λb+ (1− λ)a) < f(a) + f(b). So λf(a) + (1− λ)f(b) + f(λb+

(1− λ)a) < f(a) + f(b). Therefore, f(λb+ (1− λ)a) < λf(b) + (1− λ)f(a).

Step 2: f(1
2
a+ 1

2
b) = 1

2
f(a) + 1

2
f(b) for all a, b ∈ V .

Proof of Step 2: Suppose that f(1
2
a+ 1

2
b) 6= 1

2
f(a)+ 1

2
f(b) for some a, b ∈ V . Without

loss of generality, assume f(1
2
a+ 1

2
b) > 1

2
f(a) + 1

2
f(b). Define for all λ ∈ [0, 1],

d(λ) = f(λa+ (1− λ)b)− λf(a) + (1− λ)f(b).
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Then by Step 1, we must have for all λ ∈ [0, 1] \ {1
2
},

d(λ) > 0⇔ d(1− λ) < 0.

and d(1
2
) > 0. Since d is continuous, there exists a positve number ε such that

d(1
2

+ ε) > 0 and d(1
2
− ε) > 0. This is a contradiction. So we have f(1

2
a + 1

2
b) =

1
2
f(a) + 1

2
f(b) for all a, b ∈ V .

Step 3: f(λa+ (1− λ)b) = λf(a) + (1− λ)f(b) for all a, b ∈ V and λ ∈ (0, 1).

Proof of Step 3: Suppose toward contradiction that there exist a, b ∈ V and λ ∈
(0, 1) such that f(λa + (1 − λ)b) 6= λf(a) + (1 − λ)f(b). Without loss of generality,

assume that a < b.

Consider the case where f(λa+ (1−λ)b) > λf(a) + (1−λ)f(b). Define a function

g as follows: for all x ∈ V

g(x) = f(x)− f(b)− f(a)

b− a
(x− a)− f(a).

Note that

g(λa+ (1− λ)b) = f(λa+ (1− λ)b)− f(b)− f(a)

b− a
(λa+ (1− λ)b− a)− f(a)

> λf(a) + (1− λ)f(b)− (1− λ)(f(b)− f(a))− f(a)

= 0.

So supx∈[a,b] g(x) > 0. Define γ ≡ supx∈[a,b] g(x).

Moreover, g(a) = g(b) = 0. By Step 2,

g
(x+ y

2

)
= f

(x+ y

2

)
− f(b)− f(a)

b− a

(x+ y

2
− a
)
− f(a)

=
g(x) + g(y)

2
.

Define c = inf{x ∈ [a, b]|g(x) = γ}. Since g is continuous (because f is continuous),

g(c) = γ. Since γ > 0, it must be that c ∈ (a, b). For any h > 0 such that c+h ∈ (a, b)

and c− h ∈ (a, b), we have that g(c− h) < g(c) and g(c+ h) ≤ g(c). Hence, by Step

2,

g(c) =
g(c− h) + g(c+ h)

2
<
g(c) + g(c)

2
= g(c),
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which is a contradiction.

We can obtain a contrdiction in the same way in the case where f(λa+(1−λ)b) <

λf(a) + (1− λ)f(b).

So we have proved that there is α > 0 and β such that f(v · x) = αv · x+ β for all

x ∈ X. We redefine v as v = αv. So we finished the proof of Theorem 3.

A. Appendix

The following result is standard in convex analysis (see for example Theorem 1.1.14

in Schneider (2013)). We include a proof for convenience.

Lemma 12. Let A ⊆ Rn be a finite set. Then x is in the relative interior of conv(A)

iff there exists (λa)a∈A such that x =
∑

a∈A λaa,
∑

a∈A λa = 1 and λa > 0 for all

a ∈ A.

Proof. Let A∗ = {l ∈ A|there exists no {ri} ⊂ A, {αi} s.t. l =
∑
αiri}. Since

ρ∗(A) ∈ conv(A), by Choquet theorem, there exists ρ such that ρ∗(A) =
∑

a∈A∗ aρ(a,A).

If A = A∗, there is nothing to prove. Consider the case A \ A∗ 6= ∅.
Since A is finite, we can write A∗ = {r1, . . . , rm} and A \ A∗ = {a1, . . . , an}.

By definition, for each aj, there exist αj ∈ [0, 1]m such that aj =
∑m

i=1 α
j(i)ri and∑m

i=1 α
j(i) = 1. For each j ∈ {1, . . . , n}, choose a positive number εj such that for

each i ∈ {1, . . . ,m}
n∑
j=1

εjα
j(i) < ρ(ri, A).

Define ρ′ as follows: for each i, define ρ′(ri, A) = ρ(ri, A) −
∑n

j=1 εjα
j(i), for each

aj, define ρ′(aj, A) = εj. By the deifnition of ε, ρ′(a,A) > 0 for all a ∈ A. To

finish the proof, we need to show
∑

a∈A ρ
′(a,A) = 1 (so that ρ′(A) ∈ ∆(A)) and
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∑
a∈A a(x)ρ′(a,A) = ρ∗(A).

∑
a∈A

ρ′(a,A) =
m∑
i=1

ρ′(ri, A) +
n∑
j=1

ρ′(aj, A)

=
m∑
i=1

(
ρ(ri, A)−

n∑
j=1

εjα
j(i)
)

+
n∑
j=1

εj

=
m∑
i=1

ρ(ri, A)−
m∑
i=1

n∑
j=1

εjα
j(i) +

n∑
j=1

εj

=
m∑
i=1

ρ(ri, A)−
n∑
j=1

εj

( m∑
i=1

αj(i)
)

+
n∑
j=1

εj

=
m∑
i=1

ρ(ri, A) (∵
m∑
i=1

αj(i) = 1)

= 1.

Hence, ρ′ ∈ ∆(A). Moreover, for each x ∈ P ,∑
a∈A

a(x)ρ′(a,A) =
m∑
i=1

ri(x)ρ′(ri, A) +
n∑
j=1

aj(x)ρ′(aj, A)

=
m∑
i=1

ri(x)ρ′(ri, A) +
n∑
j=1

( m∑
i=1

αj(i)ri(x)
)
ρ′(aj, A)

=
m∑
i=1

ri(x)
(
ρ(ri, A)−

n∑
j=1

εjα
j(i)
)

+
n∑
j=1

( m∑
i=1

αj(i)ri(x)
)
εj

=
m∑
i=1

ri(x)ρ(ri, A)

=
∑
a∈A∗

a(x)ρ(a,A)

= ρ∗(x,A).

So
∑

a∈A a(x)ρ′(a,A) = ρ∗(A).

B. Calculations from Section 4.4

We have Epnx = px/n, Vpnx = px(1 − px)/n and Cov(pnx, p
n
y ) = −pxpy when y 6= x.

Moreover, the central limit theorem implies that
√
n(pnx − px)

d−→ N(0,
√
px(1− px)).
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Then, using the delta method and the following calculation yields the result in the

text:

V

(
pnx
pny
− px
py

)
=

(
1

py

)2

Vpnx +

(
−px
p2y

)2

Vpny +
2

py

−px
p2y

(−pxpy)

=
1

np2y

[
px(1− px) +

p2x
p2y
py(1− py) + 2px

]
=

px
np2y

[
(1 + px) +

px
py

(1− py)
]

=
px
np2y

[
1 +

px
py

]
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