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Abstract

This paper studies organizations in which participants have com-
mon preferences but communication is costly. In this model, use words
to describe similar information, but need not use precise words for fre-
quent events and vague words for unusual ones. The model identifies a
source of communication failure across units. It provides an argument
for giving the best-informed agents decision-making authority.
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1 Introduction

Effective communication requires conversational partners to coordinate on a
language. The nature of the language determines what information individ-
uals share. This paper studies the structure of optimal languages in a setting
where communication is costly and investigates the interplay between struc-
ture of organization and language. Inspired by Arrow [2], Crémer, Garicano,
and Prat [7] (CGP) present a team-theoretic model of communication in or-
ganizations that delivers several sharp results. This paper reexamines the
core questions raised by CGP in a slightly different model.

In the basic model of CGP, there are a finite set of states of the world.
One agent (salesman) must describe the state of the world to another agent
(engineer). The salesman communicates to the engineer. CGP model the
complexity of communication by restricting what the salesman can say to
a finite set of words. If the number of words is less than the number of
states, then, inevitably, the salesman must sometimes use the same word
to describe different states. When this happens, the engineer must pay a
cost to learn the true state. CGP assume that this cost is an increasing
function of the number of states represented by a word. In this setting,
a language is a partition of the states. Associated with each language is
an expected cost. The common objective of the salesman and engineer is
to minimize expected costs. CGP describe interesting properties of optimal
languages and the implications of the costly communication on organizational
structure. One feature of natural language is the interval property: broad
terms lump together similar items. If one has a limited vocabulary to describe
a scalar state variable, it is common for the language to partition states into
intervals. Course grades lump together students who receive similar exam
scores. Cities may be classified according to their size (small, medium, large).
The climate might be hot or cold. Color terms typically group together
colors with similar characteristics. One cannot investigate whether optimal
languages pool similar states in the basic model of CGP because the paper
imposes no structure on states. CGP generalize their model to allow the state
space to be a real interval. This provides a natural notion of similarity. For
this model, CGP demonstrate that if words are constrained to be intervals,
then the main qualitative properties of their general analysis continue to
hold.1

1Gärdenfors [10] presents a model of conceptual spaces that describes how to form
categories. The book contains examples of different objects that are lumped together by
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What CGP’s analysis fails to do is provide an explanation for why optimal
languages should pool similar items. Investigating this issue is the starting
point for my analysis. In order to investigate the question, I derive the
objective function from more basic assumptions. Specifically, I assume that
after the engineer hears the report of the salesman, she makes a decision
and then incurs a loss that depends on the decision and the state of nature.
This approach leads to an alternative form of loss function: Losses depend
on the set of states lumped together not just the cardinality of the set. In
this setting, there are simple conditions under which optimal languages are
interval partitions. Hence, in contrast to the model of CGP, the interval
property of optimal languages is a conclusion.

CGP show that optimal languages in their model satisfy interesting prop-
erties. First, the most likely states are pooled in more precise words. Second,
precise words are the most common. The first property is only compatible
with the property that words describe similar states if similar states arise
with similar probabilities. Hence CGP’s property does not hold in my model
without additional assumptions. The second result generally does not hold
in my model. CGP also show that in their model a problem becomes easier
(in the sense that the cost of the optimal language decreases) if probability
shifts from unlikely to likely states. In my model, lower costs are associated
with more concentrated distributions. In Section 4 I describe these results
in detail.

CGP extend their model to discuss efficient organization of firms when
information is diffuse and costly to transmit. They demonstrate how de-
creasing costs of communication create incentives to integrate separate units
and maintain fewer layers in organizational hierarchies. Section 5 shows that
these insights persist under the model of this paper. Explicitly modeling
decision making makes it possible to connect the observations of CGP to
findings in the delegation literature. I do this in Section 6. In Section 6
I relate the multi-agent version of my model to the frameworks introduced
by Alonso, Dessein, and Matouschek [1] and Rantakari [13] to study opti-
mal assignment of decision authority in organizations. Organizational design
is important in their models because agents have different preferences. My

similar properties and describes when representations involve lumping together similar
objects. Motivated by models of rational inattention, Saint-Paul [14] provides a model
of a coarse language. His paper derives a general version of the interval property similar
to Proposition 3. I derived my result independently of Saint-Paul, but his result takes
precedence.
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analysis revisits the problem under the assumption that it is complexity of
communication that determines optimal design of organizations.

Blume and Board [5], Blume and Board [4], and Blume ?? study commu-
nication games in which full communication may be impossible even though
agents have identical preferences. In these papers, what stands prevents
full communication is failure to have common knowledge about the language
competence of players. For example, in this environment, the Receiver may
not know whether the Sender sends a message because it accurately describes
the state or because the Sender does not know the message that corresponds
to the true state. These papers identify a fundamental reason for communi-
cation failure. The perspective of my paper is different because one of the
purposes of training in firms is to educate employees on the organizational
code. One cannot guarantee that training will make the language common
knowledge, but it suggests that the forces that may lead to communication
failure in the models of Blume and Board are less central in organizations.

2 The Model

The state of the world is an element θ ∈ [0, 1]. F (·) is the cumulative
distribution function of θ. F (·) is strictly increasing on (0, 1) and has positive
density f(·). One agent, the salesman, observes θ. The salesman selects a
word from a finite set, W1, . . . ,WK . The other agent, the engineer, observes
the word selected by the salesman, Wk, but not the state of the world. The
engineer must take an action a ∈ R. There is a loss function L : R× [0, 1]→
R; L(a, θ) is the loss associated with taking action a in state θ. Assume L(·) is
twice continuously differentiable and strictly convex in a. These assumptions
are primarily for convenience. They permit one to use calculus to describe
optima and guarantee that there is a unique optimal response to any word.

The joint objective of the salesman and engineer is to minimize the ex-
pected losses. They do so by coordinating on an optimal language.

An optimal language {W ∗
1 , . . . ,W

∗
K} must solve:

min
K∑
i=1

∫
Wi

L(a∗i , θ) dF (θ) (1)

where
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a∗i solves min
a∈A

∫
Wi

L(a, θ) dF (θ). (2)

Further, it must be the case that

Wi ⊂ {θ : L(ai, θ) = min
j
L(aj, θ)}. (3)

That is, informed agents will always use a word that induces a minimum-cost
action. If (3) failed, then losses would go down if one merely rearranged the
states assigned to each word without changing the responses to each word.2

A potential generalization would be to permit the team to choose prob-
abilistic languages. That is, the language could be thought of as a function
σ : {1, . . . , K} × [0, 1] → [0, 1] such that

∑K
k=1 σ(k, θ) = 1 for all θ. The in-

terpretation is that σ(k, θ) is the probability of using the kth message (word)
given state θ. In the general formulation, σ gives rise to posterior beliefs
µ1, . . . , µK where

µi(θ | k) =
σ(k, θ)f(θ)∫
σ(k, θ′)dF (θ′)

. (4)

In the formulation, I assume σ(·) is either zero or one so that words partition
the state space. Restricting to partitions is without loss of generality in the
sense that the value of the problem in (1) is equal to the value if probabilistic
languages were permitted. I prove this claim in the appendix.

CGP introduce a related model. In their setting, they assume that there
exists a function D : [0, 1] → R. D(l) that is the cost of decoding a word
that has (Lebesgue) measure l.3 A CGP optimal language {W ∗

1 , . . . ,W
∗
K}

must solve:

min
K∑
i=1

p(Wi)D(li) (5)

2There are several papers in the engineering literature that study this problem. Ki-
effer [12], for example, presents conditions describes how to characterize solutions to (1)
and gives sufficient conditions for the solution to be unique. Related problems arise in
cheap-talk models of communication, where differences in preferences between the sales-
man (Sender) and engineer (Receiver) lead to constraints on the number of words used in
equilibrium. Chen and Gordon [6] and Szalay [15] study models of this kind.

3CGP concentrate on a model in which the set of states is finite. In this case, D(·) is
a function of the number of states pooled together in a single word. They do consider a
variation of the model in which the state space is the unit interval. When they analyze
this variation, they assume D(·) is linear.
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where p(Wi) =
∫
Wi

dF (θ) is the probability of word Wi and li is the Lebesgue

measure of Wi. Since
∫
Wi
D(li) dF (θ) is equal to the probability of Wi, the

objective is to minimize the expected costs of decoding.
CGP and I study the same basic problem: The optimal communication

structure in a setting where information is distributed, participants have com-
mon preferences, and perfect communication is not feasible. Both approaches
model complexity by imposing an exogenous limit on the number of different
things that the informed player can say (or the uninformed player can un-
derstand). Both approaches assume that the organization can coordinate on
an optimal language given the complexity constraint. The approaches differ
because they assume different objectives. The costs in CGP are a function of
the “size” of the words. The costs in my model are a measure of how difficult
it is to make a decision with limited information. The two approaches are
alternative reduced forms of a model in which the objective is to minimize
expected costs and costs are an arbitrary function of the set of states in a
word. CGP explain that their formulation applies to a setting in which the
engineer must learn the state of nature and the cost of identifying the state
given a vague statement by the salesman is proportional to the number of
sets consistent with the statement. My model applies to a setting in which
the engineer must make a decision and the quality of the decision depends
on the quality of the information provided by the salesman.4

I conclude this section with a technical note. There is a general model
that captures both CGP’s formulation and mine. In this model the optimal
language {W ∗

1 , . . . ,W
∗
K} must solve:

min
K∑
i=1

p(Wi)M(Wi) (6)

where M(W ) the expected cost given word W . Expression (6) describes
the problem of minimizing a general expected cost. In CGP’s formulation,

4CGP describe their model as if there are two ways to get the information: either the
salesman supplies it or the engineer figures it out. The salesman is unable to supply full
information due to constraints on the available language. The engineer has a cost that
depends on the number of states. I make identical assumptions about what the salesman
knows and how much he can say, but assume that the engineer must make a decision based
on information available to her. This assumption is compatible with the interpretation
that the engineer must acquire information to make a decision, but typically does not give
rise to a cost function that depends only on the number of states in each word.

5



the cost given W is a function of the length of W : M(W ) = D(l(W )); in
my formulation, the cost given W is the expected loss given W : M(W ) =
mina

∫
W
L(a, θ) dF (θ)/p(W ). It is straightforward to see – and subsequent

results will demonstrate – that my formulation is not a special case of CGP’s
formulation. It is also the case that CGP’s formulation is not a special case of
mine. The next proposition formalizes this insight. For any loss function L,
let G be a probability distribution over states (to be though of as a posterior
distribution given a word) and define M∗(G) = min

∫
L(a, θ) dG(θ) to be the

expected cost.

Proposition 1 Let L : R × [0, 1] → R be a continuous function such that
M∗(G) exists for all nonatomic distributions on [0, 1]. If M∗(G) depends only
on the support of G, then for all measurable G′ and G′′, M∗(G′) = M∗(G′′).

The Appendix contains proofs for this and subsequent propositions.
The proposition states that if the expected cost derived in a loss-minimizing

formulation depends only on the support of the word, then the expected loss
function is constant. CGP’s loss function depends only on the length of the
support of W . Hence the proposition implies that the only such loss func-
tion must be constant. So no non-trivial CGP loss function can be described
using my model.

3 The Interval Property

In my model, language establishes a relationship between words and actions.
A partition of the state space into words, W1, . . . , WK , induces actions
{a1, . . . , aK}, where ai is the response to word Wi. I seek conditions un-
der which the optimal language groups similar states together. The next
definition formalizes this idea.

Definition 1 The language {W1, . . . ,WK} is an interval partition of [0, 1]
if there exists θ0 ≤ θi−1 ≤ θi ≤ . . . ≤ θK = 1 such that Wi = [θi−1, θi) of
0 < i < K and WK = [θK−1, θK ].5

It is straightforward to show under maintained assumptions, all words in
optimal languages will be non empty so that θi−1 < θi.

5Since the density f(·) is positive, it does not matter which words contain the endpoints
of intervals.
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A sufficient condition for the optimal language to group similar states
together is for the loss function to satisfy the single-crossing property: if
a′′ > a” and θ′′ > θ′, then

L(a′′, θ′) ≤ (<)L(a′, θ′) =⇒ L(a′′, θ′) ≤ (<)L(a′, θ′).

Proposition 2 If L satisfies the single-crossing property, then there exists
an optimal language that is an interval partition.

The proposition suggests that there may be optimal languages that do
not form an interval partition. This is true because one can change the
assignment of states to words on a set of measure zero without increasing
losses. The optimal language must be an interval partition if one requires
the salesperson to pick the optimal word for all states.

I state the result when the state of the world is an element of the real line,
but the argument generalizes to higher dimensions. That is, if the decision
maker’s objective is to minimize expected losses and the loss function is well
behaved, then words will consist of “similar” objects. To make the statement
precise, let A and Θ be compact, convex subsets of Euclidian spaces. Define
the function N(x, x′, θ) ≡ L(x, θ)− L(x′, θ).

Proposition 3 If {(θ : N(x, x′, θ) > 0} and {(θ : N(x, x′, θ) ≥ 0} are convex
for all x and x′, then there exists an optimal language {W1, . . . ,WK} such
that Wi is convex for each i.

Say that the function N(x, x′, θ) is monotonic on rays if N(x, x′, θ0 + λθ)
is a monotonic function of the scalar variable λ for all θ0, θ, x, and x′. It is
straightforward to verify that the conditions in Proposition 3 hold if N(·) is
monotonic on rays.6 In the one-dimensional case, sub or supermodularity of
L(·) implies that N is monotonic on rays. In higher dimensions, the convexity
assumptions are restrictive, but hold in the leading case where L(a, θ) is the
Euclidean distance between a and θ.

Versions of Proposition 3 appear is the literature. Jäger, Koch-Metzger,
and Riedel [11] study this model under the assumption that L(a, θ) is of
the form l(‖a − θ‖), where ‖ · ‖ is a norm on Rn and l(·) is a continuous,
convex, and strictly increasing function. They show that the conclusion

6In non-degenerate cases, {(θ : N(x, x′, θ) ≥ 0} is the closure of {(θ : N(x, x′, θ) > 0}
so that convexity of {(θ : N(x, x′, θ) > 0} implies convexity of {(θ : N(x, x′, θ) ≥ 0}.
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of Proposition 3 holds for these preferences under the added condition that
{(θ : N(x, x′, θ) = 0} is a set of measure zero. Saint-Paul [14] proves a similar
result (he states the “monotonicity on rays” condition in a differential form).

It is straightforward to see that the optimal language in CGP will not
satisfy the interval property in general. The cost minimizing language tends
to place the most likely states together into precise words. If the most likely
states are extreme, then in the optimal language, words will not be intervals.
For a formal example, suppose that K = 2 and the prior distribution of
states is symmetric around .5 and that δ ∈ (0, .5) and ε > 0 are such that
the probability of states in [δ, 1 − δ] is less than ε. The cost of having W1

represent [δ, 1− δ] and W2 the complement, is

λ(W1)Pr(θ ∈ W1) + λ(W2)Pr(θ ∈ W2) ≤ (1− 2δ)ε+ 2δ, (7)

while the cost of an interval partition is at least the cost associated with the
partition element that contains .5, which is at least .25. Since (7) can be
made arbitrarily close to zero, the interval property does not hold.

The example is not special. In fact, if the density is not monotonic, then
there exists K such that the cost-minimizing CGP language is not an interval
partition. If K is sufficiently large, there will exist a pair of words such that
one of the words contains a positive measure of states that are both more and
less likely than states in another word. It can be shown that it is possible to
construct a new, lower cost, language in which the likely states are pooled
together (so that the interval property fails).

On the other hand, the CGP cost-minimizing language has the interval
property when the density of states is monotonic.

Proposition 4 If the density is monotonic, the CGP cost-minimizing lan-
guage {W1, . . . ,WK} can be taken to be an interval partition. Furthermore,
words are monotonic in length. That is, if Wi = [θi−1, θi) for θi−1 < θi, then
θi − θi−1 is monotonic in i.

As I discuss in the next section, CGP demonstrate that in their model
more common states are pooled together. More common states are adjacent
precisely when the density is monotonic.

There is a rich literature that compares color terms in different languages
(see Berlin and Kay [3]). This literature provides strong evidence that color
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terms associate similar colors.7 Gärdenfors [10] describes many other natural
situations in which the interval property (and higher dimensional variations)
holds.

Language does contain words for “extreme” states. One can say that
on outcome is an outlier or that a result is n standard deviations from the
mean, but these statements are probably more useful when combined with
knowledge that indicates the direction of the outcome.8 I am not aware
of any study that associates the interval property with monotonicity of the
density, however. I conclude that to the extent that the interval property is
a natural property of real-world communication, it follows for reasons that
are not included in the CGP model. My formulation provides a basis for the
interval property under a condition that is commonly assumed in economic
applications.

I have shown that in my model the interval property arises as a conse-
quence of assumptions about the loss function. An alternative point of view
is that the property arises as a consequence of cognitive limitations of the
salesman. If the salesman is unable to distinguish between two sets, then he
would be unable to separate the sets into two different words. One way to for-
malize this approach would be to assume that the salesman can only observe
certain kinds of subsets of the state space and words must be elements of this
set. This approach provides a partial justification for CGP’s restriction that
words must be intervals. If a salesman can only describe intervals, then the
interval property must hold. This restriction is not appropriate, however, if
one assumes that the set of describable subsets of states is a σ−algebra. If
the salesman can identify intervals and unions of intervals (coining a word for
states that are “either high or low” for example), then the interval property

7Berlin and Kay [3] provide evidence that color terms evolve in common ways indepen-
dent of cultural or linguistic context. The data suggest that color terms enter a language
in a well defined order. For example, languages that have a word for “green” will also have
a word for “red.” For the purposes of this paper, the relevance of the work on basic color
terms is that the one can construct a lower-dimensional model of colors with the property
that color terms typically describe a convex subset of this space. In particular, color terms
lump together tones with similar frequencies.

8The interval property is not universal. One class of exceptions are “periodic” proper-
ties: people with birthday in January (independent of the year). Even in cases like this
one might conjecture that payoff-relevant versions of states are pooled together, so that
the interval property holds in a reduced-form version of the model. Alternatively, in the
birthdate example items are pooled together in a convex set when dates are described by
a pair consisting of the year and month of birth.
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will fail.

4 Other Properties of the Models

In this section I discuss the extent to which properties of optimal codes in
CGP carry over to my model.

4.1 Precise Words

The optimal language in CGP must satisfy two properties:

1. more likely states are pooled together in more precise words; and

2. more precise words are used more frequently.

Stated in terms of interval partitions, these properties are

CGP-1 if θ ∈ Wi, θ
′ ∈ Wj, and f(θi) < f(θj), then θi − θi−1 > θj − θj−1; and

CGP-2 if θi − θi−1 > θj − θj−1, then F (θi)− F (θi−1) < F (θj)− F (θj−1)

These properties do not hold without additional assumptions in my model.
Even if the density on the states of the world is monotonic, it may be the
case that smaller words contain unlikely states. The reason for this is clear:
In my formulation, losses are not directly associated with the length of the
word. Instead, losses depend on the value of the information provided by the
word.

Example 1 Suppose that the state θ is uniformly distributed on [0, 1], that
the action a is an element of [0, 1], and that the loss function is L(a, θ) = (a−
θ − .5)2. A simple computation identifies the optimal two-word language as
{[0, 1/3), [1/3, 1]}. That is, although the states are equally likely it is optimal
to use one word (referring to higher states) more common. The optimal
language is not symmetric because information about the high states is not
as valuable as information about low states. This follows because actions are
bounded by 1, so that it is always optimal to take the action a = 1 when it
is known that θ ≥ .5. Starting from equally precise words, making the lower
word more precise has a first-order benefit, but making the higher word less
precise has no first-order cost. The qualitative feature of this example (low
word less likely that high word) would remain even if the density was strictly
increasing.
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CGP’s first result holds under some conditions. Assume that the loss
function L(a, θ) can be written g(a− θ) where g(·) is a differentiable, strictly
convex function satisfying g(0) = 0. (Functions of the form g(x) = |x|α for
α > 1 satisfy these conditions.) If the density of states is monotonic, then in
the optimal language less frequent states are pooled in larger intervals.

Proposition 5 Assume that L(a, θ) ≡ g(a−θ) where g(·) is a differentiable,
strictly convex, symmetric function minimized at 0. If the density of states is
monotonic, then in the optimal language bigger intervals are associated with
less frequent words.

Here is a sketch of the proof of Proposition 5. Suppose Wi = [θi−1, θi)
and ai is the action taken in response to Wi. When the density is decreasing,
low states in an interval are more likely than high states. When losses are a
convex function of the distance between the action and the true state, this
causes the optimal action to be below the midpoint of the interval. The first-
order condition for Problem 1 is g(θi − ai) = g(ai+1 − θi) so that the state
that divides two adjacent words is equidistant to the two adjacent actions,
since both actions must be below the (uniform) average state in a word, Wi+1

must pool together more states that Wi.
The assumption that the density is monotonic is a strong condition, but

Proposition 4 demonstrates that it is necessary. On the other hand, a local
version of the result holds. Suppose that the density of states in monotonic
on an interval [a, b] and W1 and W2 are adjacent words contained in this
interval (W1 = [a1, b1],W2 = [a2, b2], with a ≤ a1; b1 = a2 and b2 ≤ b). In the
optimal language b1−a1 ≥ b2−a2 if the density decreases and b2−a2 ≥ b1−a1
if the density increases.

Example 1 fails to satisfy the conditions of Proposition 5 because it re-
stricts the set of actions to [0, 1]. If agents could take any real action, then it
is valuable to distinguish between states known to be greater than one half.
The optimal two-word language would partition states into those less than
one half and those greater than one half.

Proposition 5 provides conditions under which CGP-1 holds in my model.
I cannot provide conditions under which CGP-2 holds. One can show that
CGP-2 need not hold even in restricted examples in which L(a, θ) = −(a−θ)2
and F (θ) = θα.
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4.2 Complexity

I conclude this section with a discussion of how the cost of the optimal
language varies with the prior.

CGP present a nice result on the complexity of decision problems. Fix
the state space and the cardinality of the language. Associated with each
probability distribution over states, F (·), one can compute the minimum
cost of associated with the optimal language, V ∗(F ). CGP give a simple
comparative-statics property of V ∗(·). Assume that one can order the states
so that higher states are more likely. This ordering is without loss of gener-
ality in a model with a finite number of states. Interpret F (θ) as the prob-
ability that the state is less than or equal to θ. The cumulative distribution
function F̃ dominates F (in the sense of first-order stochastic dominance) if
F (θ) ≥ F̃ (θ) for all θ. CGP prove that if F̃ dominates F , then the problem
associate with F is more complicated than the problem associated with F̃
in the sense that V (F ) ≥ V (F̃ ). That is, when probability shifts from less
likely to more likely events, then the cost associated with bounded rationality
decreases. The intuition for this result is that the optimal language under F
uses more precise words for more likely events. Hence, losses are lower when
likely events happen. Shifting probability to more likely events reduces the
losses associated with this language.

The complexity result does not hold in my model. To see this, consider a
case in which K = 1, L(a, θ) = (a− θ)2, and F (·) is the uniform distribution
on [0, 1]. The optimal action will be a = .5. Shifting probability mass from a
small interval around .5 to an interval near 1 will lead to a distribution that
stochastically dominates F (·), but it will place weight from states for which
a = .5 is a good decision to one in which it is a bad decision. Intuitively,
in my model complexity is more closely related to the dispersion of F . One
can generalize the example to arbitrary K. The solution to my problem will
induce K words (Wi, i = 1, . . . , K) and K actions (ai best responses to Wi).
Any shift in the prior distribution that moves probability mass in an interval
Wi closer to ai will lower the cost of the problem. It will always be possible
to find such a shift that leads to a first-order stochastically dominating shift
(in either direction).

The next result describes how to rank distributions in my model. Given
a distribution function F (·) defined on [0, 1], F̃ is a compression of F if
there exists a ρ ∈ (0, 1) such that F̃ (ρθ) ≡ F (θ) for all θ ∈ [0, 1]. Plainly,
F̃ (·) is a distribution function on [0, ρ].
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Proposition 6 Assume that L(a, θ) ≡ g(|a − θ|) where g(·) is strictly in-
creasing on (0,∞). If F̃ is a compression of F , then the losses associated
with F̃ are less than the losses associated with F .

Proposition 6 states that compressing the state space reduces losses. The
assumptions in the proposition are strong, but I could not prove a more
general statement. The intuition for the result is clear. Compressing the
state space reduces losses.

5 Communication in Organizations

The basic model assumes that there are just two agents: a single salesman
and a single engineer, but the model has implications for more complicated
interactions. CGP enrich their model by assuming that there is more than
one distribution that generates problems. The simplest extension is to as-
sume that there are two salesman-engineer pairs, with the pairs distinguished
only by the prior distribution over states. I will call a salesman-engineer pair
a division. If the divisions operate in isolation and both face identical com-
plexity restrictions (limits on the cardinality of language), then it will gener-
ally be optimal to use different languages for the each division. CGP assume
that there are gains associated with integrating the pairs.9 Costs arise be-
cause the integrated organization is still constrained to use a language with
a fixed set of words. Losses associated with coarse communication will be
greater in the integrated organization.

This section reviews CGP’s model of communication in organizations in
order to observe that the qualitative properties identified in CGP do not
depend on their specification of complexity costs. These properties will hold
for my formulation of costs and for more general formulations. Hence the
message of this section is different from that of the previous sections. Up
until now, I have demonstrated that the properties of CGP-optimal codes
generally do not hold if one wants to be able to deduce the interval prop-
erty. This section argues that important implications for communication in
organizations deduced by CGP are consistent with the interval property.

9CGP provide one specific motivation for this assumption. In a situation in which
customers arrive at appropriate salesman but depart without making a purchase if the
salesman is occupied, integration allows the organization to increase the total number of
customers served because with positive probability a customer can be diverted to the other
salesman when her preferred salesman is occupied.
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5.1 Integration versus Separation

It is straightforward to summarize CGP’s insight in precise terms and demon-
strate that it does not depend on the way in which they formalize commu-
nication cost. They assume that all customers generate revenue (normalized
to) one and the cost to serve a customer is β times the complexity cost.
They denote this cost D∗(·). D∗(·) is a function of the probability distribu-
tion over states (and K, which is held fixed). They assume that there are
two populations of customers, vi is the fraction of type i customers and fi(·)
is the probability distribution of states for type i customers. They compare
profits in a firm in which a common language allows both engineers to deal
with all customers (organization C for communication) to one in which one
salesman-engineer pair i have their own K−word language and deal exclu-
sively with type i customers (organization NC for no communication). They
assume that the form of the organization determines the expected number
of customers so that qC > qNC , where qC denotes the expected number of
customers with communication and qNC the expected number of customers
without communication. Given this formulation, CGP deduce that profits
are equal to

qNC(1− β (v1D
∗(f1) + v2D

∗(f2))) (8)

without communication and to

qC(1− βD∗(v1f1 + v2f2)) (9)

with communication. CGP use (8) and (9) to deduce when integration is
more profitable than separation. Given these formulas, their conclusions are
straightforward: Increases in the gains from communication (as measured by
qC/qNC) or reductions in losses associated with complexity (as measured by
β), make integration more profitable relative to separation.

The only property of the optimal complexity cost function used in the
analysis is concavity: D∗(v1f1 + v2f2)) ≥ v1D

∗(f1) + v2D
∗(f2). Concavity

also holds if complexity costs are derived using my formulation,10 so their
qualitative properties also hold in my model.

10Concavity follows because it is feasible for both pairs to use the same language without
communication as they would optimally choose under communication.
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5.2 Hierarchy

CGP also consider a hierarchical form of organization under which the firm
can serve qNC customers, but salesman-engineer pairs use different languages.
Engineer i can serve a customer handled by Salesman j, j 6= i because the
hierarchical organization hires a costly translator. The translator can turn
any message from the salesman into a word in the (appropriate) engineer’s
language. Denoting the cost of hiring a translator as µ, the profits from a
hierarchical organization are

qC
(

1− β
(
ṽ1D

∗(f̃1) + ṽ2D
∗(f̃2)

))
− µ (10)

where ṽ1 = v1φ+ v2(1− φ) and ṽ2 = 1− ṽ1, while and

f̃1 =
v1φf1 + v2(1− φ)f2

v1
and f̃2 =

v1(1− φ)f1 + v2φf2
v2

where φ ∈ (0, 1) is an exogenous parameter than determines how effectively
the translator can allocate customers from one salesman to the corresponding
engineer (when φ = 1, Engineer 1 sees only customers from Salesman 1).

Hierarchical organizations serve the same number of customers as inte-
grated organizations. Relative to integrated organizations, they have a cost
and a benefit. The cost is that translation services are costly. The benefit
is that customers are partially sorted (so that different engineers can use
somewhat specialized languages). Relative to separated organizations, hier-
archies have the advantage of serving more customers and the disadvantage
of incurring higher complexity costs (because languages are less specialized
in hierarchical organizations than in separated organization). Once again,
the qualitative features depend on concavity of D∗, but not in the precise
model that generates D∗.11

5.3 Comparison

CGP (page 373) provide this summary of their contribution:

A broader organizational scope allows for more synergies to
be captured, but reduces within-unit efficiency, since it requires a

11CGP understand the importance of concavity of D∗. They identify the property in
Lemma 1 of their paper (page 389). My point is only to emphasize that concavity of D∗

does not depend on the specific form of the loss function that gives rise to costs.
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more generic language. A manager working as specialized transla-
tor may also be used to achieve between-unit coordination while
maintaining separate languages. Our theory reconciles two re-
cent well-documented phenomena within organizations: the re-
cent increase in information centralization and the reduction in
hierarchical centralization.

In this section I explain that the increase in informational centraliza-
tion and the reduction in hierarchical centralization follow from a property
of their model, concavity of the optimal loss function, that does not de-
pend on their precise formulation of losses. If one interprets lower cost as
lower weight on the loss function (reduction is β), then integration becomes
more attractive because the value of having specialized language goes down.
CGP associate reductions in hierarchical centralization with less reliance on
translation. The property that makes reductions in β favor integration over
hierarchical organization is concavity of D∗.

The model of translation raises issues that neither CGP nor I pursue.
These considerations probably do not influence the qualitative conclusion
that hierarchical organizations are optimal in “intermediate” situations (in
terms of qC/qNC and β), but may be important in other ways. First, one
might expect that the cost of the translator depends on the context. The
closer are the distributions f1 and f2, the easier it is to carry out the trans-
lation. Second, translation may have qualitatively different properties de-
pending on whether the interval property holds. In CGP’s model, one would
expect the optimal K word language for two different salesman-engineer pairs
to be completely different. When K = 2 and the state space contains N ele-
ments, for example, there are 2N − 1 qualitatively different languages and no
natural way that a word in one language corresponds to a word in another
language. Translation seems relatively difficult. On the other hand, if the
states are ordered and the optimal language satisfies the interval property,
then when K = 2 there are N − 1 different languages. All of these languages
classify some states as “low” and the others as “high.” So on one hand
translation in this environment seems easier (because there are fewer possi-
ble optimal codes), but on the other hand when both languages satisfy the
interval property, mistakes in translation seem possible. That is, when lan-
guages satisfy the interval property, individuals can get confused about the
meaning of “low,” but in the general case, words from different languages
could be completely non comparable. This could lead to more failures to
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communicate, but fewer misunderstandings.

6 Coordination with Costly Communication

Section 5 applies a model of costly communication to the study of organiza-
tions. It points out that the qualitative conclusions of CGP hold for more
general models of the complexity of communication. Since my model contains
an explicit model of decision making, one can use it to study how to allocate
decision-making authority within an organization. I illustrate this possibility
using a variation of a model studied by Alonso, Dessein, and Matouschek [1]
(ADM) and Rantakari [13] (R).

6.1 A Model of Decision Making in Organizations

There are two agents, i = 1 and 2. Each agent has private information: Agent
i observes θi. ADM and R assume that the θi are independently distributed
on an interval symmetric around 0. (I only require that the distributions be
independently distributed and I denote the support by [θi, θi].) The orga-
nization must take two decisions, ai, for i = 1 and 2. Profit to Agent i is
πi = Ki − (ai − θi)2 − δ(a1 − a2)2, where Ki is a positive constant.12 ADM
study two institutions for making decisions in the organization. When deci-
sion making is centralized, the agents observe their private information and
simultaneously send a cheap-talk message to a center. That is, they send a
message si(θi) = mi; the messages partition the sets into words of the form
{θi : si(θi) = mi}. The center then selects actions to maximize π1 + π2.
When decision making is decentralized, the agents observe their private
information and simultaneously exchange cheap-talk messages. Agent i then
selects ai to maximize λπi + (1 − λ)πj. In addition to these institutions, R
studies two additional organizations. Under partial delegation, the center
makes the decision of Agent i while Agent j, j 6= i makes the decision for
division j. Under directional authority, one of the divisions makes both
actions. ADM assume that Agent i seeks to maximizes a weighted average
of πi and πj, leading to the objective function λπi + (1− λ)πj, where λ ≥ .5,
while the center maximizes π1 + π2.

Centralized decision making has two potential advantages. First, since
the center makes both decisions, coordination is simple. Second, since the

12Rantakari permits δ to depend on i.

17



conflict of interest between an agent and the center is not as great as the
conflict between the two agents, centralized communication is more effective
than decentralized communication.13 Decentralized decision making has the
advantage that Agent i has perfect information about θi. One might con-
jecture that since an increase in δ increases the importance of coordination,
increasing δ will increase the value of centralized decision making relative to
decentralized decision making. ADM and R show that this intuition is not
correct. ADM point out that increases in δ reduce the conflict between the
agents (since they both care more about coordination), which in turn leads to
improved direct communication. Partial delegation and directional authority
have some of the strengths and some of the weaknesses of decentralization
and centralization. R shows that there exist preference parameters under
which any one of the four organizations may be optimal.

I modify ADM and R’s problem in two ways. First, I assume that λ =
.5. This eliminates the conflict of interest between the agents.14 Hence the
common loss function is

.5(a1 − θ1)2 + .5(a2 − θ2)2 + δ(θ1 − θ2)2. (11)

Second, I assume that complexity costs limit communication. Following
CGP, I assume that there are only a finite number of messages available
to the organization. In this setting, centralization still has the advantage of
permitting coordinated decision making. Decentralization still has the ad-
vantage of allowing an agent to make a better decision. Decentralization will
clearly be optimal when δ = 0. In this case, communication is unnecessary
and decentralized decision making leads to the first-best option. When there
is no conflict of interest, centralization and partial delegation are dominated
by directional authority. Consider the optimal language under either cen-
tralization or partial delegation. The same language is feasible when under
directional authority. Concentrating authority for both decisions in the hands
of one of the agent’s (in the case of centralization) or the agent who makes

13This assertion hides subtleties. The preferences of an individual agent are more similar
to those of the center than to those of the other agent because the center’s preferences
are the average of the preferences of the two agents. ADM demonstrate that there always
exists an equilibrium with centralized communication that is “more informative” under
centralized decision than the “most informative” equilibrium with decentralized commu-
nication. A more informative distribution of θi (in this context) is one that leads to a
lower expected value of (ai − θi)2.

14ADM’s analysis includes the case λ = .5.

18



the decision for his own division (in the case of partial delegation) cannot
raise the expected losses faced by the organization. Since there is no conflict
of interest, the decision maker learns as much as the center would about the
other division’s information. On the other hand, partial delegation permits
the decision maker to use the information about his own state and allows
decisions to be coordinated (since the same agent takes both decisions).

In the ADM-R model, what limits communication is conflict of interest,
not complexity cost. If δ = 0, nothing would prevent the agents from fully
sharing their information. There would be no role for centralization. ADM-R
study communication equilibria when there is a conflict of interest between
the informed agents. Notice that in this case, there will also be a conflict of
interest between an informed agent and the central planner. Intuitively, this
conflict is smaller than the conflict between the agents. ADM formalize this
intuition and demonstrate that there can be more effective communication
between agents and the center than directly between agents in equilibrium.
Perhaps surprisingly, however, they show that as coordination increases in
importance (δ increases), decentralized communication leads to a higher pay-
off for the organization than centralized communication. The intuition for
this result is that when agents care more about coordination, they are more
willing to communicate directly and are also inclined to coordinate their
actions even when they have the autonomy to choose their actions indepen-
dently.

In this section, I characterize the optimal language and demonstrate when
it is advantageous to grant all decision making authority to one of the agents.
I show that if one does give decision making authority to a single informed
agent, it is better to give the authority to the agent with more precise prior
information.

6.2 Characterization of Optimal Organizations

Consider the case where a single decision maker makes both decisions. A
straightforward computation (included in ADM and R) establishes that con-
ditioned on the messages m1 and m2, the decision rule satisfies:

aCi = γCE[θi | mi] + (1− γC)E[θj | mj], (12)

where

γC =
1 + 2δ

1 + 4δ
.
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From (12) a computation leads to an expression for the common objective
function. I include the details in the appendix and summarize the result in
the following lemma.

Lemma 1 Given message rules s1, s2, let Ki(mi) = {θi : si(θi) = mi}. The
expected value of the organization can be written

cR(RC
1 +RC

2 ) + cHH, (13)

where, for i, j = 1 and 2, and j 6= i,

RC
i ≡

K∑
i=1

∫
Ki(mi)

(E[θi | mi]− θi)2 dFi(θi)

and

H ≡
∫ ∫

(θ1 − θ2)2 dF1(θi) dF2(θ2),

and cR = .5
(
(γC)2 + (1− γC)2

)
+δ
(
2γC − 1

)2
, cH = (1−γC)2+δ(2γC−1)2.

RC
1 and RC

2 are residual variances. It is clear that RC
i ≥ 0. These quanti-

ties depend on the information structure and, intuitively, measure how much
information is lost because of communication constraints. Notice that the
residual variance is computed from the point of view of the decision maker.
The quantity H measures the difference between the agents’ information. It
does not depend on the choice of code. Increases in this term make coordi-
nation more difficult under all organizations.

I have displayed the formula assuming that λ = .5, but one can carry
out the computations for all λ. Hence an expression like (13) holds for the
models of ADM and R.15

Proposition 7 When agents have common loss functions, the optimal lan-
guage for centralized decision making in the coordination model minimizes

15See Proposition 4 in ADM and Proposition A3 in R for similar expressions. Both
expressions require that actions are best responses (that is, (12) holds), but ADM-R’s
expression also uses properties of the equilibrium communication structure that I do not
yet impose. Here the expressions in ADM-R are not identical to mine. The computation
of equilibrium in ADM and R is different (and more difficult) than mine because when
there is a conflict of interest, the equilibrium information structure will not generally be
selected to minimize losses. Instead, it must satisfy constraints that reflect the incentives
agents have to misrepresent their private information.
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the sum of residual variance, RC
1 + RC

2 . Losses are lower under directional
authority than when the center makes the decisions. If one agent’s informa-
tion is a compression of the other agent’s information, losses are lower if
the other agent makes the decision. Losses are decreasing in the number of
messages and increasing in the expected difference in the agents’ information
(H).

Computing the optimal information structure is a straightforward opti-
mization problem. Directional authority is superior to centralization because
under directional authority, RC

i = 0 when i is the decision maker. Since
the loss function is quadratic, the optimal language will have the interval
property. If the distribution of θj is uniform (as ADM and R assume) and
authority is delegated to Agent i, then the optimal language divides the state
space into K equal sized intervals.

When decision making is centralized and there are no conflicts of interest,
it is best to have one of the agents (rather than a central location that has
no private information) make both decisions. Let V C

i minimize RC
i over all

K-word languages. Agent i should make decisions if V C
i > V C

j . The intuition
is straightforward. The decision maker has complete information about her
division, but noisy information about the other division.

A qualitatively similar computation makes it possible to characterize the
optimal language when informed players first exchange messages and then
make decisions. In this situation, both decisions are made with full infor-
mation about one component of the state of nature, but they are not coor-
dinated. This suggests that decentralization would be advantageous when
using local information optimally is important (low δ) and centralization is
superior when coordination is important. Again, the algebra confirms this
intuition.

Let aDi (θi,mj) be the decision of Agent i in the state θi when the message
of the other agent is mj.

16 Routine computations establish that (for i = 1, 2,
j 6= i)

aDi (θi,mj) = γCηθi + (1− γC)E[θj | m] + (1− γC)(1− η)E[θi | m].

where, η = (1 + 4δ)/(1 + 2δ)2 and, as before, γC = (1 + 2δ)/(1 + 4δ).

16The decision rule aDi is, in principle, a function of both messages and θi, but since θi
determines mj I do not explicitly include the dependence on θj .
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As in the case of centralization, it is routine to substitute these expressions
into the objective function of the organization to obtain a formula for the
organization’s losses. The computation uses the independence of θi and θj
and the fact that E (E[θi | mi]− θi) = 0. After simplification, losses can be
written:

dR(RD
1 +RD

2 ) + dHH, (14)

where, lett dR = .5
(
(1− γC)2 + (γC)2η2

)
+ δ(γCη− (1−γC))2 and dH = cH .

Proposition 8 When agents have common loss functions, the optimal lan-
guage for decentralized decision making minimizes the sum of residual vari-
ance, RD

1 + RD
2 . Losses are decreasing in the number of messages and in-

creasing in the expected difference in the agents’ information (H).

Propositions 7 and 8 demonstrate that the organization’s objective will
be to minimize a sum of residual variances (R1 + R2) and the expected dif-
ference between the two distributions (H). The H term does not depend
on the form of communication. The formulas are consistent with a strong
intuition. When communication is perfect, residual variances will be zero.
There may still be losses because perfect coordination is infeasible. These
losses should be independent of the form of the organization. This explains
why dH = cH . It is straightforward to check that 0 ≤ dR ≤ cR. Losses as-
sociated with limited information are smaller under decentralization because
decision makers have more local information. The fact that dR ≤ cR does
not imply that decentralization is necessarily superior to (the best form of)
centralized decision making because under it is possible for RC

i < RD
i . This

happens when decentralization degrades the information (about the other
unit) available to the decision maker.

When δ is small (so that coordination of actions is not important), decen-
tralization is superior to directional authority for a familiar reason. Decen-
tralization can take advantage of all local information and when δ is small,
there are no losses from failure to coordinate. When δ is large, directional au-
thority can be superior. The reason for this is a bit more subtle. If Agent i is
the decision maker under directional authority, then RD

i = 0, while (because
K is finite) RC

i > 0. On the other hand, RC
j = RD

j . Hence decision mak-
ers will have better information about the other division under directional
authority, leading to the possibility of better communication.
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6.3 The Interpretation of Decision Authority

My analysis highlights the importance of directional authority. Directional
authority is always superior to a centralized organization in which the deci-
sion maker must rely on signals to learn about both states. This observation
is mathematically obvious; I have pointed out that it follows from simple
dominance. It may not be economically relevant. Directional authority is
not a common form of organization. I can think of two reasons for this.
First, the superiority of directional authority to centralization depends on
the assumption that there is no conflict of interest. When there is conflict,
as Rantakari [13] shows, centralization may be superior. The possibility that
centralization may improve communication relative to directional authority
requires the existence of conflict. The second reason is that decision making
is a specialized activity. It may be that only agents with special ability are
capable of making decisions.

There are several ways in which one might model the possibility that
decision-making authority is limited. One could assume that in each unit
there is a separation between informed agents and decision makers. This
corresponds to the division between salesmen and engineers in CGP. With
this interpretation, one can compare a decentralized (or specialized) organi-
zation in which each unit uses an optimal language to determine its action,
but there is no communication across divisions. This model creates a trade
off between the efficiency gains of having specialized languages for the two
units versus the costs associated with having poor information about the
other unit. In such an environment, centralization is optimal when the two
units face the same kind of problem (the distributions of θ1 and θ2 are sim-
ilar) while decentralization is optimal when coordination is not important.
When the problems are similar, the losses associated with using the same
K-word language in two divisions is small. I do not include the analysis,
which is similar to the construction in Section 6.2.17

Another possibility is to assume that agents can make local decisions,
but not global ones. That is, Agent i can pick ai but not aj, for j 6= i.
To make this specification non-trivial, one must also assume that the center
is able to make both decisions. This interpretation is consistent with the
interpretation centralization in ADM and is also consistent with real-world
organizations. It is a consequence of the analysis in Section 6.2 that when

17Under decentralization, Division i’s optimal action is a weighted average of the (un-
conditional) means of θ1 and θ2 and the mean of θi conditioned on the message received.
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there are no conflicts of interest, any communication structure feasible for
centralized decision making is feasible for decentralized decision making but
(because of the existence of local information) any information structure will
lead to lower residual variances under decentralization than under central-
ization. Since cR ≥ dR, this means that decentralization must be at least as
good as centralization. Intuitively, the advantage that centralization has is
that it can use better information to coordinate decisions. This result has
a substantively important implication: Complexity of communication (as I
have modeled it) is not by itself sufficient to justify centralized decision-
making authority. In order to emphasize that centralization (as opposed to
delegated authority) is inferior to decentralization in my model, I state the
observation as a proposition.

Proposition 9 The expected losses under the optimal communication struc-
ture under decentralization are no greater than the losses under centralization.

As ADM-R demonstrate, the conclusion of Proposition 9 need not hold
when there are conflicts of interest between divisions. The conclusion also
depends on the (implicit) assumption that the center has no advantage in
implementing decisions or processing information.

6.4 Complexity versus Conflict

I have revisited questions raised by ADM-R in a setting where communica-
tion may be incomplete due to complexity rather than conflict of interest.
On an analytical level, the problems are similar. Organizations have identi-
cal objective functions, but face different constraints: incentive constraints
in ADM-R and complexity constraints in my model. Perhaps the biggest
qualitative conclusion is that my model removes any rationale for central-
ized decision making when directed authority is feasible. It is plausible to
attribute the use of centralized authority to the existence of different pref-
erences.18 A complete model would allow for both conflicts of interest and
limitations of communication. I hope that it is constructive to study each
factor separately.

18There are alternative explanations that do not require conflict of interest. For example,
the ability to make division-specific decisions may be a specialized skill that is not available
throughout the organization.
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6.5 Comparison to CGP

I have described the optimal organization given that the firm is integrated.
To compare the results to those in the previous section, one can also imagine
that there is a decision whether to integrate. Separate divisions need not
coordinate actions. Division i can take the action ai = θi without communi-
cation. This would lead to a total profit of qS. Profits for an integrated firm
would be the expected value of

qI
(
K − 5(a1 − θ1)2 − .5(a2 − θ2)2 + δ(θ1 − θ2)2

)
,

where the expectation is taken assuming the optimal organization. With this
specification, it becomes clear that ADM-R and CGP present complemen-
tary analyses that illustrate the role of costly communication in the design
of organizations. In CGP, increases in the relative number of customers one
can serve or reductions in losses associated with complexity make integra-
tion more profitable relative to separation. Separation is attractive if the
distribution of states across divisions is sufficiently different that it is useful
to preserve separate languages. In ADM-R the barrier to integration is the
need to coordinate actions across divisions. Integration is attractive if the
need to coordinate is large (large δ), if integration generates relatively more
customers (qI/qS is large), or if communication is not complex (K is large).
Hence in both cases, integration is more attractive when, loosely, integration
leads to greater demand for services, the divisions involved are more similar,
and the complexity of communication is smaller.

6.6 Different Notions of Complexity

Dessein, Galeotti and Santos [8] study a team decision problem in which
agents have private information about an idiosyncratic target. The team ob-
jective is to minimize a weighted sum of losses, where losses arise either if a
team-member’s action differs from her idiosyncratic target or if the actions of
team members are not coordinated. This leads to an objective function simi-
lar to the one that arises in ADM’s model without conflict of interest.19 Like
me, Dessein, Galeotti, and Santos study the impact of limited ability to com-
municate on outcomes. In their model, individuals have “local” information,

19Dessein, Galeotti, and Santos follow the formulation of Dessein and Santos [9] that
gives rise to a slightly different objective function.
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which they can share through communication. Communication is noisy, but
allocating more resources to communication reduces noise. There is a fixed
limit on the amount of time that can be devoted to communication. In this
framework, Dessein, Galeotti, and Santos contrast balanced communication
(when different agents communicate equally) and focused communication.
In the two-agent model, they present conditions under which a leader makes
decisions that are responsive to his local information and the follower is able
to coordinate because the organization allocates its limited communication
resources to enable the follower to learn the leader’s local information. In
the multi-agent model, they generalize this insight and show the exogenous
formation of leaders (agents who communicate to many sources). The anal-
yses carry a somewhat similar message: Limited communication may lead to
organizations in which it is optimal to create asymmetries between agents.
In my model, certain agents have extra authority to make decisions. In Des-
sein, Galeotti, and Santos, certain agents have access to more information.
It would be straightforward to combine these models – either by changing
the timing and allocation of decision rights in Dessein, Galeotti, and Santos
or my changing the complexity costs in my model.20

In this section I compared the performance of different organizational
forms when communication is costly. It is worth noting that I chose a par-
ticular way to model costly communication. Following CGP, I assumed that
what constrains communication is a finite set of words. It would be natural
to investigate the implications of models in which it is expensive to produce
words so that the bound K arises endogenously. In models with one division,
it is straightforward to carry out this analysis. In organizations, one must
decide who bears the cost of the new words. If it is an organizational deci-
sion and all agents have access to the same language, then there is no need
to change the basic analysis. If instead, individuals can make investments,
one might expect divisions that face more complicated problems to develop
richer languages. This would create pressure for some divisions to be good at
coding or sending messages while others are good at decoding or receiving.
Even if one maintains the assumption that communication capacity is fixed,
it is not clear that the number of words is the appropriate measure of com-
plexity. Dessein, Galeotti, and Santos model limits on communication by the

20The natural way to do this is to assume that K bounds the number of distinct messages
instead of the number of distinct words. With this modification it would be costly for two
agents to use the same word. Following CGP, my model assumes that it is not costly for
another agent to use an existing word.
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amount of time an individual talks. One could also limit communication by
the number of different actions that can be induced.21

6.7 Other Variations

ADM’s conclusions about centralization depend strongly on the choice of ob-
jective function. ADM discuss the sensitivity of their conclusions to modeling
assumptions in Section 7 of their paper and demonstrate that the arguments
for decentralization are robust to variations in their assumptions. I men-
tion a somewhat different example. Assume that the losses of Agent i are
(a1 − λθi − (1 − λ)θj)

2 + (a2 − λθi − (1 − λ)θj)
2, while the center seeks to

minimize the average of these losses. In this case, each agent wants both
actions to be close to a target and the target is an average of θ1 and θ2.
Agents differ because they have different targets. If λ > .5 an agent’s own
observation receives more weight in determining the target. If θi is uniformly
distributed on [−1, 1] and λ = 1, then decentralized decision making leads to
the ai = θi. When decision making is centralized, there exists an equilibrium
in which Agent i truthfully reports the sign of θi. This increases the center’s
payoff.

I did not optimize over all possible organizations forms. Following Rantakari,
I emphasized the importance of directional authority in team problems. One
could imagine situations in which communication is sequential and different
divisions determine how much to say and who should act on the basis of past
decision. For example, decentralized decision making could be the default
organization, but a division could have the freedom to send a message indi-
cating that additional consultation is needed. Decision makers would draw
inferences from silence and costly deliberation could be reduced.22

21In the one division model, the number of words in the language is equal to the number
of actions induced. When there are K words and two divisions, a centralized decision
maker takes K2 action and when there is decentralization, the action rule of at least one
decision maker can take on a continuum of actions.

22Notice that if communication is free, alternative forms of organizational communica-
tion may be beneficial in ADM-R.
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Appendix

Proof of Claim that Deterministic Codes Minimize Costs. Given a
solution to the optimization problem:

min
K∑
i=1

∫
L(a∗i , θ) dµ(θ | k) (15)

where

a∗i solves min
a∈A

∫
L(a, θ) dµ(θ | k)

(and the µ(·) are derived using Bayes’s Rule (4) from a function σ), define a
partition in which

Wi = {θ : L(a∗i , θ) ≥ L(a∗j , θ) for all j}∩{θ : L(a∗i , θ) > L(a∗j , θ) for all j < i}.

It is straightforward to confirm that the value of the problem (15) is

K∑
i=1

∫
Wi

L(a∗i , θ) dF (θ),

so restricting to deterministic languages does not increases losses. �

Proof of Proposition 1. Let H be a probability distribution on [0, 1] with
support S(H) that is absolutely continuous with respect to Lebesgue mea-
sure. Let a∗(H) be an action that minimizes

∫
L(a, θ) dH(θ). By assumption

a∗(H) exists.
I claim that M∗(G′) = M∗(G) for all G′ with S(G) ⊂ S(G ′). First, I

show that M∗(G′) ≥M∗(G). Observe that

M∗(G′) = M∗((1− δ)G+ δG′) ≥ (1− δ)M∗(G) + δM∗(G′),

where the first equation follows because G′ and (1 − δ)G + δG′ have the
same support and the inequality follows because a∗((1 − δ)G + δG′) is a
feasible action for the minimization problem that defines M∗(G) and M∗(G′).
Taking the limit as δ approaches zero yields M∗(G′) ≥ M∗(G). To see that
M∗(G′) ≤M∗(G), note that

M∗(G′) = M∗((1−δ)G+δG′) ≤ (1−δ)
∫
L(a∗(G), θ) dG(θ)+δ

∫
L(a∗(G), θ) dG′(θ).

(16)
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Since M∗(G) =
∫
L(a∗(G), θ) dG(θ), taking the limit of (16) as δ approaches

zero establishes M∗(G′) ≥M∗(G).
Finally observe that the result follows because if G′ and G′′ are any two

distributions, M∗(G′) = M∗(.5G′+ .5G′′) = M∗(G′′) because S(G′),S(G′′) ⊂
S(.5G′ + .5G′′). �

Proof of Proposition 2. If L is supermodular, then the optimal language
much be an interval partition. To see this, observe that any language must
induce actions {a1, . . . , aK}. Order these actions so that ai < ai+1. It follows
from supermodularity and (3) that {Wi} constitute an interval partition.
That is, there exist 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θK = 1 such that (θi−1, θi) ⊂ Wi ⊂
[θi−1, θi] and L(ai, θi) = L(ai+1, θi) for i = 1, . . . , K − 1. �

Proof of Proposition 3. Any language {W1, . . . ,WK} induce actions
{a1, . . . , aK}, where ai minimizes loses given Wi. The sets

W ∗
i ≡ {θ : L(ai, θ) ≤ L(aj, θ) for all j}∩{θ : L(ai, θ) < L(aj, θ) for all j < i}

are convex by assumption and using these words cannot reduce losses. Hence
one can always replace an arbitrary language with a language that partitions
the state space into convex sets and does not increase cost.

I now show that the assumption that N(·) is monotonic on rays is suf-

ficient for the conclusion. Let
◦
Xi = {θ : L(ai, θ) < minj<i L(aj, θ)} and

Xi = {θ : L(ai, θ) = minj L(aj, θ)}. The convexity of Xi and
◦
Xi follow from

the assumption that N(·) is monotonic on rays. Suppose θ′, θ′′ ∈ Xi and
θ∗ = λθ′ + (1− λ)θ′′ for λ ∈ (0, 1). It follows that

0 ≥ L(ai, θ)− L(aj, θ) (17)

for θ = θ′ and θ′′. It follows by assumption that inequality (17) holds for θ∗.
This proves that Xi is convex. The same argument (starting with a strict

inequality in (17)) establishes that
◦
Xi is convex. It follows that W ∗

i as defined
above is convex and hence defined the language W∗ = {W ∗

1 , . . . ,W
∗
K} is a

cost-minimizing language consisting of convex words. �

Proof of Proposition 4. Assume that the density is monotonically decreas-
ing. I will show that the shortest word in the cost minimizing language can
be taken to be [0, l] for some l. Iterating the argument demonstrates that the
cost minimizing language can be taken to be an interval partition, with the
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words increasing in length. LetW = {W1, . . .WK} be a cost minimizing lan-
guage, and let W1 be the shortest word inW . Denote by li the length of Wi.
If a subset of W1 of positive Lebesgue measure is not contained in [0, l1], then
there is a k > 1 and a subset S ⊂ [0, l1]∩Wk such that S has positive Lebesgue
measure and an S ′ of identical measure contained in [l1, 1] ∪W1. Consider
an alternative language W ′ = {W ′

1, . . . ,W
′
K} with word W ′

1 = W1 ∩ S \ S ′,
W ′
k = Wk ∪ S ′ \ S, and W ′

i = Wi for i 6= 1, k. Denote by C(W) (C(W ′)) the
cost of language W (W ′). C(W ′) = C(W)− (lk − l1)(F (S)−F (S ′)). By as-
sumption, lk ≥ l1. If the density of F (·) is non increasing, then F (S) ≤ F (S ′).
Hence C(W ′) ≤ C(W). �

Proof of Proposition 5. Assume f(·) is decreasing. Take t2 > t1 and set
m = (t1 + t2)/2.∫ t2

t1

g′(m− θ) dF (θ) =

∫ m

t1

g′(m− θ) dF (θ) +

∫ t2

m

g′(m− θ) dF (θ)

=

∫ m−t1

0

g′(s) dF (m− s)−
∫ m−t2

0

g′(r) dF (m− r)

=

∫ m−t1

0

g′(s) dF (m− s) +

∫ m−t2

0

g′(s) dF (m+ s)

=

∫ m−t1

0

g′(s) (dF (m− s)− dF (m+ s))

≥ 0. (18)

The second line follows from changing variables. The third line uses
g′(s) = g′(−s) (and another change of variables). The fourth line follows
since m = (t1 + t2)/2 implies m − t1 = t2 − m. Finally, the inequality
follows because both terms in the integral are nonpositive: g′(0) = 0 because
the loss function is minimized at 0; g′(s) > 0 for s > 0 by convexity; and
dF (m− s) ≥ dF (m+ s) by assumption.

It follows that when f(·) is decreasing, the optimal action for an interval
is less that the midpoint of the interval.

Suppose that the optimal language consists of words W ∗
i , where W ∗

i =
[θ∗i−1, θ

∗
i ) and θ∗i > θ∗i−1. Denote by a∗i the optimal response to the word W ∗

i .
Observe that when L(a, θ) = g(|a− θ|), a∗i satisfies g(θ∗i − a∗i ) = g(a∗i+1 − θ∗i )
and so

θ∗i − a∗i = a∗i+1 − θ∗i . (19)

It follows that
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θ∗i − θ∗i−1
2

< θ∗i − a∗i = a∗i+1 − θ∗i <
θ∗i+1 − θ∗i

2
(20)

where the inequalities follow because the optimal action for an interval is less
than the midpoint of the interval and the equation follows (19). �

Proof of Proposition 6. Suppose that the optimal language under F
includes the word Wi = [θi, θi+1] with associated action ai. Consider the
language for F̃ that uses the word W̃i = [ρθi, ρθi+1] and responds to the word
with ãi = ρai. A change of variables argument implies that∫ θi+1

θi

g(ai − θ) dF (θ) =

∫ ρθi+1

ρθi

g((ãi − v)/ρ) dF̃ (v) >

∫ ρθi+1

ρθi

g(ãi − v) dF̃ (v).

(21)
It follows from (21) that the losses associated with this policy under F̃ are
less than the losses under F , the desired result. �

Proof of Lemma 1.
Note that (12) implies that

aC1 − θ1 = γC(E[θ1 | m1]− θ1) + (1− γC)(E[θ2 | m2]− θ2) + (1− γC)(θ2− θ1),

aC2 − θ2 = (1− γC)(E[θ1 | m1]− θ1) + γC(E[θ2 | m2]− θ2) + (1− γC)(θ1− θ2),

and

aC1 − aC2 = (2γC − 1) ((E[θ1 | m1]− θ1)− (E[θ2 | m2]− θ2) + (θ1 − θ2)) .

Routine algebra permits one to write the expected value of any linear
combination of losses as a linear combination of six terms: (E[θ1 | m1]−θ1)2,
(E[θ2 | m2] − θ2)

2, (θ1 − θ2)
2, (E[θ1 | m1] − θ1)(θ2 − θ1), (E[θ2 | m1] −

θ2)(θ1 − θ2), and (E[θ1 | m1] − θ1)(E[θ2 | m2] − θ2). The lemma follows
from the observation that the sixth term is zero (because θ1 and θ2 are
independent) and elementary manipulations. These manipulations enable
one to find coefficients for each of the six terms. The coefficients of the
(E[θ1 | m1]− θ1)(θ2 − θ1) and (E[θ2 | m1]− θ2)(θ1 − θ2) terms are zero. �
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