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Abstract

This paper introduces a new estimator for the fixed effects ordered logit model. The

proposed method has two advantages over existing estimators. First, it estimates the

differences in the cut points along with the regression coefficient, leading to provide

bounds on partial effects. Second, the proposed estimator for the regression coefficient

is more efficient. I use the fact that the ordered logit model with J outcomes and T

observations can be converted to a binary choice logit model in (J−1)T ways. As

an empirical illustration, I examine the income-health gradient for children using the

Medical Expenditure Panel Survey.
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1 Introduction

The fixed effects ordered logit model is widely used in empirical research in economics.1 The

model allows a researcher with panel data and an ordinal dependent variable to control for time-

invariant unobserved heterogeneity that is correlated with the observed covariates in an unrestricted

way.

In this paper, I propose a new estimator for the fixed effects ordered logit model. This procedure

has two advantages over existing methods. First, it simultaneously estimates the differences in the

cut points and the regression coefficient. The cut point differences can be used to bound a marginal

effect.2 Existing estimators do not estimate the cut point differences, and can consequently not be

used to examine the magnitude of the regression coefficient.3

1Examples of empirical research using panel data with ordered responses can be found in many

areas of economics. In health economics, Carman (2013) looks at the intergenerational transfers

and health. and Frijters et al. (2005) and Khanam et al. (2014) look at the relationship between

income and health. In the context of the economics of educations, Fairlie et al. (2014) estimate

the effect of same-minority teachers on student outcomes. Allen and Allnutt (2013) are interested

in the effect of the “Teach First” program on student achievement. In labor economics, examples

of authors using the fixed effects ordered logit model are Das and van Soest (1999), Hamermesh

(2001), and Booth and van Ours (2008, 2013). An area of research where fixed effects ordered

logit models are heavily used is the empirical research of life satisfaction, see, among many others,

Ferrer-i-Carbonell and Frijters (2004), Frijters et al. (2004) and Blanchflower and Oswald (2004).

Finally, the fixed effects order logit model is useful for the analysis of (sovereign) credit ratings,

see e.g. Amato and Furfine (2003) and Afonso et al. (2013).
2Without the cut point differences, partial effects cannot be computed. This is closely related

to an analogous drawback in the context of the fixed effects binary choice logit model, see the

discussion in e.g. Chamberlain (1984, p. 1277), Honoré (2002, Section 2), and Wooldridge (2010,

section 15.8.3).
3See Baetschmann et al. (2015) for a recent contribution, and an overview of the existing

2



Second, the new estimator for the regression coefficient is more efficient than existing estima-

tors, despite the additional cut point differences that need to be estimated. I show a strict efficiency

gain with respect to the most efficient estimator currently available.4 A simulation study suggests

that the efficiency gain can be substantial.

The proposed estimator is based on the observation that the ordered logit model with J out-

comes and T observations can be converted to a binary choice logit model in (J−1)T ways. The

conditional maximum likelihood estimator in Chamberlain (1980) can be applied to each of these

binary choice models. The proposed procedure optimally combines the information from all these

binary choice models. Existing methods do one of the following: (1) they use only (J−1) trans-

formations or (2) they collapse the ordered variable to a binary choice variable, which corresponds

to using only one such transformation. These procedures are less efficient for the regression coef-

ficient, and do not provide an estimate of the cut point differences.

To fix ideas, consider the following simple example. Let yt ∈ {1,2,3} be an ordered random

variable indexed by time. Choose category 1 a the cutoff category, and consider the transformation

dt,1 = 1{yt ≤ 1}. Since the transformed variable dt,1 is a binary choice variable, the conditional

logit estimator in Chamberlain (1980) can be applied to dt,1. The same procedure can be repeated

for a transformation based on the other cutoff category dt,2 = 1{yt ≤ 2}. For efficiency, one could

then combine the estimators based on dt,1 and dt,2. The first paper to point this out is Das and van

Soest (1999).

I show that there are two additional transformations when we allow the cutoff category to vary

over time, namely

dt,(1,2) = 1{yt ≤ t}=


1{y1 ≤ 1} if t = 1,

1{y2 ≤ 2} if t = 2,

and dt,(2,1) = 1{yt ≤ 3− t}. These transformations provide additional information about the re-

procedures.
4This estimator was introduced by Das and van Soest (1999). Their estimator, and some varia-

tions on it, are discussed in Baetschmann et al. (2015).
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gression coefficient, and about how far apart the categories are. Therefore, combining the condi-

tional logit estimators based on these transformation allows us to estimate the regression coefficient

more efficiently, and simultaneously gives us an estimator for the cut point differences.

Organization. The remainder of this paper is organized as follows. Section 2 surveys the

related literature. Section 3 introduces the fixed effects ordered logit model and presents the main

result concerning the (J−1)T sufficient statistics. In Section 3.3, I discuss how the cut point dif-

ferences can be used to bound a certain marginal effect that may be relevant to empirical practice.

In Section 4, I introduce the conditional maximum likelihood estimator based on a single transfor-

mation, and establish its asymptotic properties. In Section 5, I show how to efficiently combine

the information from all such estimators into a single estimator for the regression coefficient and

cut point differences. I show that the estimator is at least as efficient as currently available pro-

cedures. Section 6 discusses the implementation of the estimator, focusing on its implementation

in Stata. I also discuss a composite likelihood procedure designed to overcome finite-sample is-

sues. Section 7 contains an empirical illustration on health satisfaction of children as it relates to

family income. Section 8 concludes. A supplementary appendix contains additional proofs and

derivations (Appendix A) and documents the results of a simulation study (Appendix B).

2 Related literature

This paper contributes to the literature on estimation in nonlinear, parametric, large-n fixed-T panel

data models with fixed effects by providing an estimator for the parameters in the fixed effects

ordered logit model.

In such models, estimation is complicated due to the incidental parameters problem, see e.g.

Lancaster (2000). For a small class of models, model-specific solutions are available. The binary

choice logit model is discussed in detail in the next paragraph. Machado (2004) analyzes the

binomial regression model with logistic link function. Truncated and censored regression models

are discussed by Honoré (1992), and count data models are discussed in Hausman et al. (1984).
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Results for restricted classes of models are sometimes available. Hahn (1997) provides re-

sults on efficient estimation in panel data models if the density belongs to the exponential class.

Wooldridge (1999) considers two classes of models with multiplicative unobserved heterogene-

ity. Lancaster (2002) proposes a likelihood-based approach on models that allow an orthogonal

reparametrization of the incidental parameter. Bonhomme (2012) proposes a functional differenc-

ing approach and shows that it is useful for a class of models including random coefficient models

and nonlinear regression models. Excellent reviews for the nonlinear panel data literature are e.g.

Arellano and Honoré (2001, Sections 4-7) and Arellano and Bonhomme (2012).

Estimation in the fixed effects ordered logit model is closely related to the literature on fixed

effects binary choice logit models. Building on Andersen (1970), Chamberlain (1980) discusses

CMLE in the fixed effects binary choice logit model and in an unordered discrete choice logistic

model. The logistic case is special. Chamberlain (2010) shows that, in the fixed effects binary

choice model with unbounded and strictly exogenous regressors, and i.i.d., unit-variance error

terms,
√

n consistent estimation is possible if and only if the error terms follow a logistic distri-

bution. In a two-period setting, Magnac (2004) relaxes the serial independence assumption on the

error terms.

This paper is not the first to consider estimation in the fixed effects ordered logit model. Das

and van Soest (1999) discuss how to combine the information from several binary choice models

into one estimator. Baetschmann et al. (2015) analyze the estimator in Das and van Soest, discuss

different ways of aggregating the information from the binary choice models consider by Das and

van Soest. They also introduce a composite likelihood estimator for the regression coefficient

which is asymptotically less efficient than the estimator in Das and van Soest, but is shown to be

preferable in small samples in an extensive simulation study. They also show that the procedure in

Ferrer-i-Carbonell and Frijters (2004) is inconsistent.

Of the 14 empirical papers listed in footnote 1, 9 use methods developed for fixed effects model

in ordered response models (Baetschmann et al., 2015, appears three times, Ferrer-i-Carbonell and

Frijters’s procedure is used by five papers, and the Chamberlain approach and the procedure in Das
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and van Soest are each used once). Four papers use linear panel data models, ignoring the discrete

nature of the dependent variable.

A (correlated) random effects ((C)RE) approach is used in five papers. In a CRE model, the

unobserved heterogeneity is modelled as a function of time-invariant characteristics, including

time-averaged regressors, with an additive error term that is assumed to be independent of the

regressors in the model. That model is more restrictive than a fixed effects model, which does

not impose any restrictions on the relationship between the unobserved heterogeneity and the re-

gressors. The main drawback of the CRE approach is that misspecification of the model for the

unobserved heterogeneity will produce an inconsistent estimator. Honoré (2002, Section 2) points

out some further drawbacks of the CRE approach in the context of nonlinear models.

3 Model and main result

Section 3.1 introduces the fixed effects ordered logit model. Section 3.2 shows that the model can

be transformed into a fixed effects binary choice logit model by using potentially time-varying

cutoff categories. This leads to the main result, which establishes the existence of a sufficient

statistic for the unobserved heterogeneity in each of the transformed models. Finally, Section 3.3

discusses how the differences of the cut point parameters in the ordered model can be used bound

a marginal effect, thus providing an interpretation for the magnitude of the regression coefficient.

3.1 Fixed effects ordered logit model

Consider the ordered logit model with additive unobserved heterogeneity in the latent variable,

y∗it = αi +Xitβ +uit , t = 1, · · · ,T ≥ 2. (1)

for an individual i with a vector of regressors Xit ∈ R1×K , and associated vector of regression

coefficients β ∈ RK×1. The error terms are assumed to be serially independent conditional on the
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regressors Xi = (Xi1, · · · ,XiT ) and the unobserved heterogeneity αi ∈ R, and to follow a standard

logistic distribution

(ui1, · · · ,uiT )|(αi,Xi)∼ iid LOG(0,1) . (2)

The observed, ordered dependent variable yit ∈ {1, · · · ,J} is linked to the latent variable y∗it through

cut points γ j ∈ R in the following way:

yit =



1 if y∗it < γ1,

2 if γ1 ≤ y∗it < γ2,

...
...

J if γJ−1 ≤ y∗it .

(3)

We will refer to the model in equations (1)-(3) as the fixed effects ordered logit model.

A random sample of size n on (yi,Xi) = (yi1, · · · ,yiT ,Xi1, · · · ,XiT ) is available for the estimation

of the regression coefficient and the cut points. In the asymptotic analysis, the number of cross-

section units diverges to infinity. The number of time periods T can be small, as long as T ≥ 2.

Conditional on the covariates Xi and the unobserved heterogeneity αi, the probability that the

ordered dependent variable yit assumes a particular value j is

P(yit = j|Xi,αi) = P
(

γ j−1 < αi +Xitβ +uit < γ j
∣∣Xit ,αi

)
= Λ

(
γ j−αi−Xitβ

)
−Λ

(
γ j−1−αi−Xitβ

)
, (4)

where Λ(x) = exp(x)/(1+ exp(x)) is the CDF of the logistic distribution, and we have implicitly

set γ0 =−∞ and γJ =+∞. The maximum likelihood estimator is affected by the incidental param-

eters problem (see Lancaster, 2000), since the number of parameters in the likelihood function,

Ln (β ,δ ,α) =
n

∏
i=1

T

∏
t=1

J

∏
j=1

[
Λ
(
γ j−αi−Xitβ

)
−Λ

(
γ j−1−αi−Xitβ

)]1{yit= j}
, (5)
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grows with the sample size n. The estimator for β based on (5) will be inconsistent for n→ ∞, if

T is fixed.

3.2 Transformations

The incidental parameters problem can be avoided in models for which a sufficient statistic for

the incidental parameters is available.5 The main result in this section shows that such a sufficient

statistic for the unobserved heterogeneity parameter αi is available for (J−1)T different transfor-

mations of the fixed effects ordered logit model in (1)-(3).

The ordered dependent variable yit can be transformed into a binary variable by checking

whether yit ≤ π (t) for any time series of cutoff categories π (t) , t = 1, · · · ,T . There are (J−1)T

ways of constructing such a transformation π = (π (t))T
t=1. Denote by di,π the binary time series

that results from applying transformation π to observation i,

di,π = (di,t,π = 1{yit ≤ π (t)} , t = 1, · · · ,T ) .

The transformed observation di,π follows the model:

y∗it = αi +Xitβ +uit (6)

ui|(αi,Xi) ∼ iid LOG(0,1) (7)

di,t,π = 1
[
αi +Xitβ +uit < γπ(t)

]
. (8)

I will refer to the model in (6)-(8) as the π-transformed fixed effects binary choice logit model.

5Andersen (1970) derives conditions under which a conditional maximum likelihood estimator

(CMLE) may be consistent for the common parameters. I use the sufficient statistic in Chamberlain

(1980), who extends the insight in Andersen (1970) to the fixed effects binary choice logit model.
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Denote the number of observations below or at the associated cutoff categories by

d̄i,π =
T

∑
t=1

di,t,π .

Furthermore, denote by pi,π (d) the probability distribution of di,π conditional on d̄i,π , written as a

function of the regression coefficient β of interest and the cut points γ = (γ1, · · · ,γJ−1),

pi,π (d|β ,γ)≡ P
(

di,π = d| d̄i,π = d̄,Xi,αi
)
.

Finally, denote by Fd̄ the set of all binary T−vectors that set exactly d̄ elements to 1:

Fd̄ =
{

f ∈ {0,1}T such that f̄ = d̄
}
.

The following theorem formalizes that d̄i,π is a sufficient statistic for αi in the π-transformed fixed

effects binary choice logit model (6)-(8).

Theorem 1. If the random vector (yi,Xi) follows the fixed effects ordered logit model in equations

(1)-(3), then for any transformation π , the conditional probability distribution of the π-transformed

dependent variable di,π is given by

pi,π (d|β ,γ) =
1

∑ f∈Fd̄
exp
{

∑t ( ft−dt)
(
γπ(t)−Xitβ

)} (9)

for any d ∈ {0,1}T . This conditional probability distribution does not depend on αi.

Proof. Appendix A.1.

The remainder of this section discusses the main result. If the cutoff categories are time-

invariant, then Theorem 1 simplifies to

pi,π (d|β ) = 1
∑ f∈Fd̄

exp{−∑t ( ft−dt)Xitβ}
,
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which does not depend on the cut points γ j. This expression is identical to the conditional likeli-

hood contribution in the fixed effects binary choice logit model (Chamberlain, 1980).

For a transformation with time-varying cutoff categories, the conditional probability depends

on the differences in the cut points. Consider the case T = 2 and let π = ( j,k) with j 6= k. The

(inverse of the) conditional probabilities are

p−1
i,( j,k) ((1,0)|β ,γ) = 1+ exp

{(
γk− γ j

)
− (Xi2−Xi1)β

}
, (10)

p−1
i,( j,k) ((0,1)|β ,γ) = 1+ exp

{(
γ j− γk

)
− (Xi1−Xi2)β

}
. (11)

Table 1 illustrates this case, with J = 3. Four transformations are available. The first one is dt,(1,1)=

1{yt ≤ 1}, where category 1 is chosen as the cutoff category in both time periods. Consider two

observations from Table 1: y1 = (1,2) and y2 = (2,3). The transformed data is in column di,t,(1,1).

For observation y1, only the y11 is at or below the cutoff, so that d1,1,(1,1) = 1 and d1,2,(1,1) = 0.

For y2, both entries exceed the cutoff category, so that d2,1,(1,1) = d2,2,(1,1) = 0. For observation

2, there is no variation in the dependent variable over time, which implies that this transformed

observation provides no information on the parameters. The table also presents (column 4) the

other time-invariant transformation π = (2,2).

Next, consider the time-varying transformation π = (1,2), which chooses cutoff categories 1 in

period 1, and 2 in period 2. For observation y1 = (1,2), the ordered variable is at the cutoff category

in both periods, so that d1,1,(1,2) = d1,2,(1,2) = 1. For observation y2 = (2,3), the dependent variable

exceeds the cutoff category in both periods, so that d2,1,(1,2) = d2,2,(1,2) = 0. Neither of those

transformed observations have variation, but observation y3 does, since y3 = (1,3) is transformed

into d3,(1,2) = (1,0).

This last transformation, π = (1,2), can easily be seen to discard information as it reduces the

effective sample size from 3 to 1: only one of the three observations has variation in the transformed

dependent variable. Transformation π = (2,1) (column 6 in Table 1) is inefficient because all the

observations are equivalent after applying that transformation. These examples highlight that the
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t yi,t di,t,(1,1) di,t,(2,2) di,t,(1,2) di,t,(2,1)

Observation 1

1 1 1 1 1 1

2 2 0 1 1 0

d̄1,π 1 2 2 1

Observation 2

1 2 0 1 0 1

2 3 0 0 0 0

d̄2,π 0 1 0 1

Observation 3

1 1 1 1 1 1

2 3 0 0 0 0

d̄3,π 1 1 1 1

Table 1: An illustration of the relationship between the ordered variables yit , the transformed vari-

ables di,t,π and the sum of the transformed variables d̄i,π for the case J = 3, T = 2, and

three different cross-section units.
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choice of transformation determines the source of variation the researcher uses when estimating

the parameters of the model.

Interestingly, for observations with no variation in the ordered dependent variable, there may

exist transformations that induce variation in the transformed dependent variable. This happens

when the ordered variable is constant, and not equal to 1 or J. An example is y4 = (2,2) and

π = (2,1). Then d4,(2,2) = (1,0), so that the transformed variable is not constant over time, even

though we started from an ordered variable that did not exhibit any variation.

3.3 Cut points

In this Section, I show that one can use knowledge of the cut point differences to estimate the

minimum required change in the m-th regressor to move an arbitrary cross-section unit with yit = j

to a category higher than j.

An interpretation of the magnitude of the regression coefficient is not available when cut point

differences are unknown. This is related to a well-known drawback of the fixed effects binary

choice logit model, see e.g. the discussion in Chamberlain (1984, p. 1277) and Wooldridge (2010,

p. 622). Consider the marginal effect of a ceteris paribus change in regressor m on the probability

that the dependent variable for individual i in period t is at or below j:

∂P(yit ≤ j|Xit ,αi)

∂Xit,m
= βmΛ

(
αi +Xitβ − γ j

)[
1−Λ

(
αi +Xitβ − γ j

)]
, (12)

where βm is the regression coefficient associated with the m-th regressor. This marginal effect

depends on the unobserved heterogeneity αi. Although the sign of the regression coefficient deter-

mines the sign of (12), the magnitude of the marginal effect unknown in the absence of knowledge

on αi.6 The inability to compute marginal effects for the binary choice model is serious obstacle

to its use in empirical applications.

Consider the ordered logit model with J = 2 (binary choice). Knowledge of yit tells us whether

6The expected marginal effect would require knowledge of the conditional distribution of αi.
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the latent variable y∗it is to the left or to the right of the cut point γ1, but it does not tell us how far

away the latent variable is from that cut point. Consequentially, for an arbitrarily large change in

Xit , we can not be sure that the counterfactual latent variable crosses the cut point.

In the ordered logit model with J > 2, the same reasoning applies to an observation that falls in

one of the extreme categories, yit ∈ {1,J}. For such an observation, the associated latent variable

y∗it can be arbitrarily far away from the closest cut point (γ1 or γJ−1). In the absence of knowledge

on αi + uit , there is no change in Xitβ large enough to guarantee that the latent variable moves

across the cut point.

The situation is different when we observe a dependent variable in an intermediate category,

yit = j ∈ {2, · · · ,J−1}. For such an observation, we know that the latent variable y∗it is in the finite

interval
(
γ j−1,γ j

)
. This allows us to bound the marginal effect. For example, a ceteris paribus

change in Xitβ that exceeds γ j− γ j−1 will move y∗it across one of the cut points. By considering

the required change in Xit to guarantee such a crossing, this bound provides an interpretation of the

strength of the relationship between Xit and the yit . This opportunity is not available for currently

available estimators, because they do not yield a consistent estimator of the cut point differences.

To formalize this interpretation, consider an individual i who is in an intermediate category j

at time t, i.e. yit = j ∈ {2, · · · ,J−1}.7 For such an individual,

y∗it = Xitβ + vit ∈
(
γ j−1,γ j

)
, (13)

where vit is the composite error term vit = αi + uit . A ceteris paribus change in the regressors of

7The interpretation is only available for a dependent variable in the intermediate categories, and

not for yit ∈ {1,J}.
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∆x induces the counterfactual variables

X̃it = Xit +∆x,

ỹ∗it = y∗it +(∆x)β

= (Xit +∆x)β + vit ,

ỹit =
J

∑
j=1

j ·1
{

γ j−1 < ỹ∗it < γ j
}
.

The object of interest is the distribution of the counterfactual dependent variable, conditional on the

observable random variables yit and Xit . Let Fv denote the unknown distribution of the composite

error term vit = αi +uit , conditional on Xi. In Appendix A.2, I obtain the following result for the

conditional probability that the counterfactual dependent variable ỹit is in a category strictly larger

than j:8

P( ỹit > j|yit = j,Xit) =


1 if (∆x)β > γ j− γ j−1,

0 if (∆x)β < 0,

Fv(γ j−Xitβ)−Fv(γ j−(Xit+∆x)β)
Fv(γ j−Xitβ)−Fv(γ j−1−Xitβ)

otherwise.

(14)

The first component states that we can be certain that the counterfactual dependent variable is

greater than j if the change in the latent variable due to ∆x is large enough.9 To turn this into

8The Appendix contains some additional results. For example, an expression similar to the

one that follows can be obtained for P( ỹit = k|yit = j,Xit = x). Here, we focus on the conditional

probability P( ỹit > j|yit = j,Xit) because it leads to an easily interpretable quantity.
9The second and third components of this display are not informative. The second component

states that if we start from category j, and decrease the value of the latent variable, the counterfac-

tual dependent variable will not be greater than j. The third component is uninformative because

it requires several evaluations of the unknown function Fv. For this reason, we will focus on the

first component.
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a useful quantity, consider a change of ∆xm in the m-th regressor Xitm, with positive regression

coefficient βm > 0. Introduce the quantity

δ
j

m =
γ j− γ j−1

βm
. (15)

The result in (14) implies that

∆xm > δ
j

m⇒ P( ỹit > j|yit = j,Xit) = 1.

As a result, we can interpret δ
j

m as the minimum required change in Xitm to move an arbitrary

observation yit = j to a higher category. A small value of δ
j

m means that the relationship between

Xit and yit is strong at category j. Larger values for δ
j

m can be due to the distance from category j

is far away from j+1, or because the m-th regressor has little impact on yit .10

4 Conditional maximum likelihood estimation

This section analyzes identification and estimation in one arbitrary π-transformed fixed effects

binary choice model (6)-(8).

The conditional probability (9) in Theorem 1 depends on γ only through the differences in the

10An alternative interpretation of the cut point differences is available. Denote the odds ratio for

category j by

ω j (Xit) =
P(yit ≤ j|Xit ,αi)

P(yit > j|Xit ,αi)
= exp

(
γ j−αi−Xitβ

)
.

The ratio of the odds ratios of two categories j and k, j 6= k is a function of the cut point difference

only:

log
[

ω j (Xit)

ωk (Xit)

]
= γ j− γk.

This formalizes the idea that, conditional on Xit , the cut point differences measure the distance

between two categories.
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cut points used by transformation π . To see this, note that the number of non-zero entries for any

f ∈ Fd̄ =
{

f ∈ {0,1}T such that f̄ = d̄
}
.

is equal to the number of non-zero entries in d. For any f ∈Fd̄ , then, we have that γπ(1)∑t ( ft−dt)=

0. This allows us to rewrite the conditional probability in terms of cut point differences γπ(t)−γπ(1):

p−1
i,π (d|β ,γ) = ∑

f∈Fd̄

exp
{

∑
t
( ft−dt)γπ(t)−∑

t
( ft−dt)Xitβ

}
= ∑

f∈Fd̄

exp
{

∑
t
( ft−dt)

(
γπ(t)− γπ(1)

)
−∑

t
( ft−dt)Xitβ

}
. (16)

The estimand in the π-transformed fixed effects binary choice logit model (6)-(8) therefore consists

of the regression coefficient β and a subset of the differences of the cut points.

To formally define the estimand, let

γ̃π,∆ =
(
γπ(1)− γπ(1), · · · ,γπ(T )− γπ(1)

)
be the T ×1 vector of cut point differences that appear in (16). Denote by nπ the number of unique,

non-zero elements in γ̃π,∆. Collect those elements in an nπ ×1 vector γπ,∆.11 The T ×nπ selection

matrix Sπ transforms the unique elements in γπ,∆ into the time series of cut point differences γ̃π,∆:

γ̃π,∆ = Sπγπ,∆.

Adjoin the selection matrix Sπ to the stacked regressor matrix to obtain the T × (K +nπ) set of

augmented regressors Ziπ =

[
−Xi | Sπ

]
. The associated (K +nπ)× 1 vector of augmented re-

gression coefficients θπ =
(
β ,γπ,∆

)
is the parameter of interest for the π-transformed fixed effects

binary choice model. The conditional probability in Theorem 1 can now be rewritten as a function

11A time-invariant transformation π sets π (t) = j for all t, so that the cut point difference pa-

rameter γπ,∆ is empty, and nπ = 0.
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of the estimand:

p−1
i,π (d|θπ) = ∑

f∈Fd̄

exp
{

∑
t
( ft−dt)

(
γπ(t)− γπ(1)−Xitβ

)}
= ∑

f∈Fd̄

exp{( f −d)Ziπθπ} . (17)

Then, the conditional maximum likelihood estimator (CMLE) can be defined as:

θ̂π =
(

β̂ , γ̂π,∆

)
= arg max

RK×Rnπ

1
n

n

∑
i=1

1{di = d} ln piπ (d|θπ) , (18)

as an estimator for θπ,0 =
(
β0,γπ,∆,0

)
, the true value of the parameters in the π-transformed binary

choice model implied by the ordered logit model with true parameter values (β0,γ0).

The upcoming proof of consistency of the CMLE relies on the concavity of the criterion func-

tion in (18). Let

si,π (d|θπ) =
∂ ln pi,π (d|θπ)

∂θπ

,

Hi,π (d|θπ) =
∂ 2 ln pi,π (d|θπ)

∂θπ∂θ
′
π

be the contribution to the score vector and the Hessian matrix for an individual i with di = d. In

Appendix A.3, I show that

si,π (d|θπ) = −
∑ f∈Fd̄

exp(( f −d)Ziπθπ)Z
′
iπ ( f −d)

′

∑ f∈Fd̄
exp(( f −d)Ziπθπ)

(19)

and

Hi,π (d|θπ)

=−1
2

∑ f ,g∈Fd̄
exp{( f −d)Ziπθπ}exp{(g−d)Ziπθπ}(

∑ f∈Fd̄
exp(( f −d)Ziπθπ)

)2 Z
′
i,π (g− f )

′
(g− f )Ziπ . (20)
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The second derivative (20) is negative semidefinite: both the denominator and the numerator are

positive, and the nonscalar part is an outer product. It follows that the criterion function (18) is

globally concave, which helps me to establish consistency and asymptotic normality under fairly

weak conditions.

To state a sufficient condition for consistency and asymptotic normality of the CMLE for θπ,0,

let

X̃i = vec
(

X
′
i

)
=


X
′
i1
...

X
′
iT


be the KT ×1 column vector that stacks the T blocks of K regressors for individual i.

Assumption 2. The variance matrix of the regressors,Var
(
X̃i
)
, exists and is positive definite.

Assumption 2 guarantees that there is sufficient variation in the regressors for a given individual

across time. In particular, it implies that for any two time periods s 6= t , the variance matrix of the

difference Xit−Xis is of full rank. This rules out regressors that are constant across a subset of the

sample period, and rules out sets of regressors that perfectly co-vary. It rules out time dummies.

This assumption could be relaxed, as identification of the regression coefficient only requires two

time periods.

To state the main result in this section, some additional notation is required. First, denote by

si,π (θπ) = ∑
d∈{0,1}T

1{di = d}si,π (d|θπ)

the score contribution of individual i, and let Σπ be the variance of the score at the true value of the

parameters,

Σπ = E
(

si,π (θπ,0)si,π (θπ,0)
′)
. (21)
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Denote the Hessian by

Hπ (θπ) = E

 ∑
d∈{0,1}T

1{di = d}Hi,π (d|θπ)

 (22)

and write Hπ = Hπ (θπ,0) when the Hessian is evaluated at θπ,0.

Theorem 3. Let ({yi,Xi} , i = 1, · · · ,n) be a random sample from the fixed effects ordered logit

model (1)-(3) with true parameter values (β0,γ0), and let π be an arbitrary transformation. If

Assumption 2 holds, then (i) the CMLE θ̂π in equation (18) is consistent for θπ,0;

θ̂π

p→ θπ,0 as n→ ∞;

(ii) a central limit theorem applies to the score,

1√
n ∑

i
si,π (θπ,0)

d→N (0,Σπ) ; (23)

(iii) the Hessian Hπ (θπ) exists and is invertible for all θπ ; (iv) the CMLE estimator θ̂π in equation

(18) has the following limiting distribution:

√
n
(
θ̂π,n−θπ,0

) d→N
(
0,H−1

π ΣπH−1
π

)
as n→ ∞. (24)

Proof. Part (i) in Appendix A.4, parts (ii)-(iv) in Appendix A.5.

Results (i) and (iv) of Theorem 3 describe the asymptotic behavior of the CMLE based on a sin-

gle transformation π . Parts (ii) and (iii) are intermediate results for a standard proof of asymptotic

normality of an extremum estimator. They are stated here because they are essential ingredients

for the efficiency result in the next section.
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5 Efficiency

In this section, I introduce a class of generalized method of moments (GMM) estimators that in-

corporate the information from all (J−1)T transformations that can be applied to the fixed effects

ordered logit model. The optimal estimator in this class yields an estimator for the regression

coefficient β0 that is at least as efficient as existing estimators. I also show that it is asymptot-

ically equivalent to the optimal linear combination of all (J−1)T CMLE estimators, or optimal

minimum distance estimator (OMD).

For an arbitrary transformation π , the estimand targeted by the CMLE is the maximizer

θπ,0 = arg max
RK×Rnπ

E

 ∑
d∈{0,1}T

1 [di = d] ln pπ (d|θπ)

 . (25)

The representation in terms of the first order conditions is the first order condition:

E [siπ (θπ,0)] = 0. (26)

It will be useful to separate the role of the regression coefficient from that of the cut point differ-

ences:

E [siπ (θπ)] = E

si,π,β
(
β ,γπ,∆

)
si,π,γ

(
β ,γπ,∆

)
= E

 ∂ ln piπ
(
β ,γπ,∆

)
/∂β

∂ ln piπ
(
β ,γπ,∆

)
/∂γπ,∆

 .
From this perspective, a transformation π provides K + nπ first order conditions for K + nπ pa-

rameters.12 These first order conditions are moment conditions in the GMM framework. In what

follows, we will gather the moment conditions from all transformations.

The set of all (J−1)T transformations can be separated into a set of J−1 time-invariant trans-

formations,13 and the remaining, time-varying, transformations. We will consider them separately,

12The derivative siπ,β gives K moment conditions, and there are nπ moment conditions from

siπ,γ . There are K elements in the parameter β , and nπ elements in γπ,∆.
13A time-invariant transformation is one that sets π (t) = j, j ∈ {1, · · · ,J−1} for all t.
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starting with the time-invariant transformations. For a time-invariant transformation, the number

of unique cut point differences is nπ = 0, so that the parameter of interest consists only of the

regression coefficient θπ,0 = β0. For a single time-invariant transformation, the restriction on the

K×1 vector of scores si,π,β exactly identifies β0. Taken together, the (J−1) sets of restrictions on

the score vectors from the time-invariant transformations overidentify the regression coefficient β0

through the K (J−1) moment conditions:

E
[
si,1,β (β0)

]
= E


si,(1,··· ,1) (β0)

...

si,(J−1,··· ,J−1) (β0)

= 0, (27)

if J > 2. A GMM estimator based on (27) takes the form

β̃W1,n = argmin s̄1,n (β )
′
W1,ns̄1,n (β ) , (28)

where s̄1,n (β ) =
1
n ∑

n
i=1 si,1,β (β ), and W1,n is a weight matrix.

Existing consistent estimators for the regression coefficient correspond to different choices for

W1,n. Setting W1,n = e j⊗ IK corresponds to using the time-invariant transformation π (t) = j. The

blow-up-and-cluster (BUC) estimator advocated by Baetschmann et al. (2015) sets W1,n equal to

a blockdiagonal matrix with its j-th block equal to the the inverse of the Hessian associated with

transformation π (t) = j (Baetschmann et al., 2015, p. 691). Denote by β̃ ∗ the asymptotically

efficient GMM estimator in the class (28), which sets plimW1,n = E
[
si,1,β (β0)si,1,β (β0)

′]−1
. That

estimator is asymptotically equivalent to the minimum distance estimator proposed by Das and van

Soest (1999), see also Remark 5.

The moment conditions implied by the time-invariant transformations (27) do not exhaust the

information in the fixed effects ordered logit model. Each time-varying transformation implies

K + nπ additional moment conditions of the form (26). These moment conditions involve both

β0 and γπ,∆,0. Gather the cut point difference parameters from all time-varying transformations in
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γ∆ =
(
γπ,∆

)
π

, a column vector with nγ ≡ ∑π nπ elements.14 Similarly, collect the scores

si,2,γ (β ,γ∆) =
(
si,π,γ

(
β ,γπ,∆

)
, π : nπ ≥ 1

)
in a nγ×1 vector. The scores for the regression coefficients from the time-varying transformations

are collected in

si,2,β (β ,γ∆) =
(
si,π,β

(
β ,γπ,∆

)
, π : nπ ≥ 1

)
.

Taking together the restrictions on the scores from all (J−1)T transformations, we obtain

E
[
si
(
β0,γ∆,0

)]
= E


si,1,β (β0)

si,2,β
(
β0,γ∆,0

)
si,2,γ

(
β0,γ∆,0

)
= 0, (29)

which has dimension K (J−1)T + nγ for the K + nγ -dimensional parameter (β ,γ∆). A GMM

estimator based on (29) takes the form

(
β̂W,n, γ̂∆,W,n

)
= argmin s̄n (β ,γ∆)

′
Wns̄n (β ,γ∆) . (30)

where s̄n (β ,γ∆) =
1
n ∑

n
i=1 si (β ,γ∆) is the sample analog of the moments in (29). Denote by(

β̂ ∗, γ̂∗
∆

)
the asymptotically efficient estimator in the class of estimators of the form (30).

Theorem 4 establishes the asymptotic distribution of
(

β̂ ∗, γ̂∗
∆

)
, and shows that β̂ ∗ is at least

as efficient as β̃ ∗, so that adding the moment conditions from the time-varying transformations

reduces the asymptotic variance of the regression coefficient estimator. For a formal result, some

14Taking into account the relationship between the components in γ∆ may lead to a more effi-

cient estimation procedure. For the purpose of this section - showing efficiency increases for the

regression coefficient β - it is useful to consider each γπ,∆ as a separate parameter.
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additional notation is needed. First, denote by

Σ = E
[
si
(
β0,γ∆,0

)
si
(
β0,γ∆,0

)′]
(31)

the variance of the entire set of scores (29), and by

Σ1 = E
[
si,1,β

(
β0,γ∆,0

)
si,1,β

(
β0,γ∆,0

)′]

the variance of the restricted set of scores from time-invariant transformations in (27).15 The diag-

onal blocks are the transformation-specific variance matrices Σπ from (21). Furthermore, denote

by H the expected derivative of the scores in (27) with respect to (β ,γ∆), evaluated at the true val-

ues of the parameter.16 Finally, H1 consists of the top left K (J−1)×K block of H, which stacks

the Hessians Hπ of the time-invariant transformations.

Theorem 4. Let ({yi,Xi} , i = 1, · · · ,n) be a random sample from the fixed effects ordered logit

model (1)-(3) with true parameter values (β0,γ0), and let Assumption 2 hold. Then, as n→ ∞,

√
n
(

β̃
∗−β0

)
d→ N (0,V1) ,

√
n


 β̂ ∗

γ̂∗
∆

−
 β0

γ∆,0


 d→ N (0,V ) ,

where

V1 =
(

H
′
1Σ
−1
1 H1

)−1
,

V =
(

H
′
Σ
−1H

)−1
.

15The matrix Σ1 is the top-left K (J−1)×K (J−1) corner of Σ.
16This matrix has a specific structure, which is omitted for the sake of brevity, but which can be

found in Appendix A.7.1.
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Furthermore, let Vβ be the top-left K×K block of V . Then V1−Vβ is positive semidefinite.

Proof. The restrictions on si,2,γ exactly identify the cut point differences γ∆,0. Therefore, by The-

orem 1 in Ahn and Schmidt (1995), estimation of β0 using the restrictions on si,1,β is equivalent

to estimation of (β0,γπ,0) using the restrictions on si,1,β and si,2,γ . The restrictions on si,2,β there-

fore provide additional information on β0 that is not used for estimation of the additional cut point

parameters. A detailed proof is in Appendix A.6.

Theorem 4 states that, for the regression coefficient β0, estimation based on all transformations

is at least as efficient as estimation based on the time-invariant transformations only. Therefore,

the amount of information gained by considering the first order conditions from the time-invariant

transformations is greater than or equal to the amount of information required for estimating the

additional cut point parameters. Note that this procedure also yields an estimator γ̂∗
∆

for the cut

point differences.17 Finally, note that the estimation procedure can likely be improved by taking

into account the relationship between the components of γ∆,0.

Remark 5. In Appendix A.7, I show that the optimal minimum distance (MD) estimator based on

all (J−1)T CMLE estimators is asymptotically equivalent to the optimal GMM estimator
(

β̂ ∗, γ̂∗
∆

)
in Theorem 4. This provides an alternative way to combine the information in all the transforma-

tions, which will prove useful for implementation, see Section 6.18

Remark 6. By inspecting the expression for the optimal weights in Appendix A.7, it can be seen

17An anonymous referee points out that Assumption 2 rules out time dummies, but that using

information from multiple transformations may allow one to jointly identify time dummies and cut

point differences. I do not provide a formal proof here, and leave this for future research.
18This extends the insight in Baetschmann et al. (2015, p. 691), who only consider time-

invariant transformations. They show that the MD estimator in Das and van Soest (1999) is equiv-

alent to the GMM estimator β̃ ∗ in Theorem 4.
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that the weight given to β̂π is

Wπ ≡
(

H
′
Σ
−1H

)−1
H
′
Σ
−1



0
...

0

Hβγ

πJ

Hγ

πJ

0
...

0



.

This weight will not be equal to zero since H and Σ have full rank because of the logistic errors.

Since the OMD estimator assigns non-zero weights to the CMLE for the regression coefficient

from time-varying transformations. This means that it is strictly more efficient than the OMD

procedure in Das and van Soest (1999), which implicitly assigns zero weight to the estimators

based on time-varying transformations. By Remark 5, the efficient GMM and OMD estimators

based on all transformations are strictly more efficient than the GMM and OMD estimators based

on the time-invariant transformations.

6 Implementation

This section describes the implementation of the estimators described in Sections 4 and 5. First,

I show how the CMLE estimator based on a single, potentially time-varying transformation from

Section 4 can be implemented when a computer program for the fixed effects binary choice logit

model is available. Second,I discuss how the asymptotically efficient minimum distance estimator

in Section 5, Remark 5, can be implemented using standard methods for minimum distance esti-

mators. Additionally, I discuss a composite likelihood estimator (CLE) that is not asymptotically

efficient, but addresses a drawback of the optimal minimum distance (OMD) estimator. This CLE
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extends the blow-up-and-cluster (BUC) estimator in Baetschmann et al. (2015).

All three estimators are easy to implement in Stata (StataCorp, 2015). The CMLE estimator

can be obtained using the clogit command.19 The OMD estimator can be obtained using the

suest command after several calls to clogit. The composite likelihood estimator can be obtained by

running clogit after duplicating the data set using expand. This extends the insight by Baetschmann

et al. (2015) to time-varying transformations.

6.1 CMLE and OMD

If a binary dependent variable di and regressors Xi follow a fixed effects binary choice logit model,

the conditional probability that forms the basis for the CMLE in Chamberlain (1980), and imple-

mented in Stata’s clogit is given by

p−1
i (d|β ) = 1+ exp

{
−∑

t
( ft−dt)Xitβ

}
. (32)

Now, consider an observation (yi,Xi) from the fixed effects ordered logit model. The conditional

probability associated with the π-transformed model is given by Theorem 1, equation (9):

p−1
i,π (d|β ,γ) = ∑

f∈Fd̄

exp
{

∑
t
( ft−dt)

(
γπ(t)−Xitβ

)}
. (33)

For a time-invariant transformation π , the cut points γπ(t) drop out, and the conditional probability

(33) is identical to that of the fixed effects binary choice logit model in (32). In that case, the

19The clogit command comes with an option that allows the empirical researcher to cluster

standard errors. This clustering will carry over to the ordered logit estimators discussed in this

paper. However, care should be exercised when choosing this option. Please refer to Section

VII.C.2 in Cameron and Miller (2015) for a discussion of cluster-robust inference in nonlinear

fixed effects models. Additionally, note that serial correlation is explicitly ruled out by the fixed

effects ordered logit model discussed here.
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CMLE for the regression coefficient using the π-transformed model is identical to the CMLE for

the binary choice model applied to diπ .

For a time-varying transformation π , the conditional probability in equation (33) features the

additional term ∑t ( ft−dt)γπ(t). In Section 4, equation (17), I showed that the conditional proba-

bility can be rewritten as

p−1
i,π (d|θπ) = ∑

f∈Fd̄

exp{( f −d)Ziπθπ} ,

where Ziπ is the set of augmented regressorsZiπ =

[
−Xi | Sπ

]
. As a result, the conditional

probability for the π-transformed model is equivalent to the CMLE for a binary choice fixed effects

logit model with the columns in Sπ as additional regressors. These additional regressors indicate

which cut points are used to π-transform the dependent variable. The coefficient estimates for the

elements of Sπ are estimates for the cut point differences γπ(t)− γπ(1).

The OMD estimator in Section 5, Remark 5, is the optimal linear combination of all CMLE

estimators. The optimal weights depend on the variance matrix of vector of all CMLE estimators.

Stata’s suest command can be used to estimate that variance matrix. Therefore one can produce

the OMD estimator using a simple program that uses suest after (J−1)T calls to clogit. A more

detailed description can be found in Appendix A.7.

6.2 Composite likelihood estimator

The number of CMLE estimators (J−1)T can be very large, even for moderate values of J and

T . The OMD estimator requires an estimate of the variance matrix of these estimators. When the

number of entries in that variance matrix approaches or exceeds the number of observations n, we

expect poor finite-sample performance of the OMD estimator.

Recent contributions to the literature on estimation with many moments, and on the combi-

nation of many estimators include Han and Phillips (2006) and Chen et al. (2016). The OMD

procedure discussed in Chen et al. (2016) is similar to the estimator introduced in Section 5, the

27



implementation of which is described in the previous subsection. Chen et al. (2016) discuss condi-

tions on the rate of growth of the number of estimators with the sample size under which standard

inference applies (see for example their Theorem 3). In this paper, I assume that the number of

categories J and the number of time periods T are fixed, so that the conditions in their paper are

trivially satisfied.

The composite likelihood estimator (CLE) introduced in this section is an alternative procedure

that also incorporates the information from all transformations, but that avoids the estimation of the

large variance matrix. The CLE has the added advantage that it imposes the relationship between

the elements of γ∆.20 The drawback of the CLE is that it sacrifices asymptotic efficiency.

The CLE is defined as the maximizer of the sum of the criterion functions for all the CMLEs,

i.e.

θ̂cle = arg max
RK×Rnπ

−∑
π

n

∑
i=1

1{di=d} ln ∑
f∈Fd̄

exp
{

∑
t
( ft−dt)

(
γπ(t)− γπ(1)−Xitβ

)}
. (34)

By imposing the normalization restriction γ1 = 0, we can interpret γ j as the difference of the j-th

cutpoint with respect to γ1. This estimator

θ̂cle =
(

β̂cle, γ̂2,cle, · · · , γ̂J−1,cle

)

estimates the regression coefficient and all the cut point differences.

The CLE is an extension of the “blow up and cluster estimator” (BUC) estimator described

in Baetschmann et al. (2015). The difference between the CLE and the BUC estimator is that

the CLE estimator takes into account all transformations, whereas the BUC estimator uses time-

invariant transformations only. Baetschmann et al. (2015, p. 690) discuss the properties of the

BUC estimator. By examining the first order conditions of the objective function, they show that the

BUC estimator is a consistent and asymptotically normal GMM estimator with non-optimal weight

matrix. As a result, the CLE is not asymptotically efficient. However, it is easy to implement,

20For example, if J = 3, T = 2, then γ(1,2),∆ = γ2− γ1 and γ(2,1),∆ = γ1− γ2 so that γ(1,2),∆ =

γ(2,1),∆. The CLE discussed in this section automatically imposes these restrictions.
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avoids the estimation of the Hessians or variance matrix for use in a second step, and has excellent

finite-sample properties. These insights extend to the CLE estimator.

In Stata, the proposed estimator can be implemented by (i) duplicating each observation (J−1)T

times using expand; (ii) generating binary choice variables by applying a different transformation

π to each duplicate of the original data; (iii) applying clogit on these binary choice variables and

the augmented regressors discussed in Section 6.1. Baetschmann et al. (2015) provide more de-

tails. In particular, they discuss the need to use cluster-robust standard errors to account for the fact

that observations are highly correlated by the definition of the transformed dependent variable.

In Appendix B, I document the usefulness of the CLE approach using a simulation study. I

show that the CLE avoids the finite sample bias in situations where (J−1)T is large relative to n.

In those cases, the finite sample bias for the OMD estimator is large.

7 Empirical illustration

In this section, I investigate the relationship between reported (subjective) children’s health sta-

tus and total household income using the conditional likelihood estimator that uses all (J−1)T

transformations. The analysis in this section follows that in Murasko (2008) and Khanam et al.

(2014).21

In an influential paper, Case et al. (2002) use pooled cross-section data from the United States

to document that reported children’s health is positively related to household income. They also

find that this relationship is stronger for older children. Currie and Stabile (2003) replicate these

findings using the panel data from Canada. They use the availability of panel data to investigate

the effect of past health shocks, but do not control for fixed effects. Further empirical evidence for

the findings in Case et al. (2002) comes from Murasko (2008). He uses the Medical Expenditure

Panel Survey (MEPS) from the United States. He documents that the income-health relationship

seems to be weaker in MEPS than it is in the cross-sectional NHIS data used by Case et al. (2002).

21Stata code for this example can be downloaded from my website, www.sfu.ca/~cmuris.
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Murasko confirms that the income-health relationship is stronger for older children. He does not

use fixed effects to control for unobserved heterogeneity..

There are two studies that cast doubt on the finding that the health-income relationship becomes

stronger with age. First, using pooled cross-section data from England, Currie et al. (2007) confirm

the positive relationship between income and health. However, they find that magnitude of the

relationship is much smaller than that reported in Case et al. (2002), and they do not find evidence

that the strength of the relationship increases with the age of the child. Khanam et al. (2014) use

Australian data. This study appears to be the first that that controls for time-invariant unobserved

heterogeneity in this literature. They use the BUC estimator in Baetschmann et al. (2015), and do

not find evidence that the strength of the health-income relationship increases with age.

My results are based on Panel 16 of the Medical Expenditure Panel Survey (MEPS). The MEPS

is a rotating panel collected by the Agency for Healthcare Research Quality since 1996. It gath-

ers information on demographic and socioeconomic variables, and on health and healthcare usage

from a nationally representative sample of households. Data from the household’s medical provider

and employer-based health insurance supplement the household data. The household data is ob-

tained through questionnaires. Importantly, all household members are interviewed regarding their

health status.

Panel 16 of the MEPS contains data on 4131 children gathered across 2 years (2011 and 2012).

A child is any interviewee who does not reach age 18 by the end of the interview period. I remove

observations with nonpositive values for household income, age, and those with family size less

than two. I also remove the richest 5% of families. The dependent variable is self-reported health

status (RTHLTH) reported in rounds 2 and 4.22 Subjective health is reported on a scale of 1-

5, where “1” corresponds to “Poor”, “2” to Fair, “3” to “Good”, “4” to “Very good”, and “5”

to “Excellent”. The explanatory variable of interest is the log of total household income, and

22Reported health is available for all five interview rounds. However, we only have annual

income data. We choose rounds 2 and 4 based on the timing of the interview rounds: the uneven

interview rounds are conducted over a period that span multiple years.
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the interaction between age and income. The interaction term between age category and family

income allows us to determine whether the relationship between income and health changes with

age. Following Murasko, I also control for family size (capped at 5). The reported specification

does not include a year dummy: including it does not change the results. The results are reported

in Table 2.

I report results for five estimators. The first two columns report the results from random effects

(RE) and correlated random effects (CRE) estimator. For the correlated random effects estimator

(CRE) model, I model αi as a linear function of the average of the time-varying regressors, gen-

der, age, and dummies for race and region. Column (3,3) uses Chamberlain’s conditional logit

estimator using “Good” as the cut off category. Column BUC reports the results from a composite

likelihood procedure using the time-invariant transformations. Column CLE uses the composite

likelihood procedure proposed by this paper. Age, log(Income), and Family size have been nor-

malized to have zero sample mean.

There does not seem to be enough evidence in the data to find a positive effect of income

on health at the average sample age (coefficient on log(Income)). The CRE estimator and the

FE estimators (columns 2-4) do not document a statistically significant relationship. The random

effects estimator does find a statistically significant negative relationship, but this is likely due

to omitted variable bias. The data, however, do support the finding that the income-health effect

increases with age. The CLE estimator proposed in this paper is the only estimator that is efficient

enough to pick this effect up. Although the other estimators find the same, positive, sign, the results

for those estimators are not statistically significantly different from zero at standard significance

levels. None of the estimators find a statistically significant effect of family size, although all point

estimates - with the exception of the estimate from the random effects model - produce negative

point estimate. It is likely that the this is due to omitted variable bias, which is avoided by the

correlated random effects and fixed effects procedures.

In this context, the CLE is clearly to be preferred over the BUC and CMLE estimators: it is the

only estimator that detects that the relationship between income and health changes with age. It is
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RE CRE (3,3) BUC CLE

log(Income)it −0.38 −0.10 0.33 −0.09 −0.06

(0.03) (0.06) (0.26) (0.07) (0.08)

Age× log(Income)it −0.014 0.017 0.083 0.021 0.035

(0.007) (0.013) (0.049) (0.015) (0.016)

Family size 0.09 −0.19 −0.46 −0.20 −0.23

(0.04) (0.14) (0.60) (0.15) (0.16)

γ2− γ1 2.01 2.02 - - 1.87

(0.05) (0.05) (0.05)

γ3− γ2 2.96 2.97 - - 2.92

(0.09) (0.09) (0.12)

γ4− γ3 2.73 2.74 - - 2.61

(0.23) (0.23) (0.29)

Table 2: Estimated health-income relationship for children using MEPS Panel 16, which consists

of 4131 children, each observed in 2 years. Age, log(Income) and Family size were

normalized to have zero sample mean. The first two columns report the results from

random effects (RE) and correlated random effects (CRE) estimator. For the correlated

random effects estimator (CRE) model, we model αi as a linear function of the average

of the time-varying regressors, gender, age, and dummies for race and region. Column

(3,3) uses Chamberlain’s conditional logit estimator using “Good” as the cut off cate-

gory. Column BUC reports the results from a composite likelihood procedure using the

time-invariant transformations. Column CLE uses the composite likelihood procedure

proposed by this paper.
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also the only fixed effects estimator that produces the cut point differences. The CLE is also to be

preferred over the RE estimator, which seems to be biased due to the omitted variable bias that is

captured by the fixed effects approach.

It is also interesting to compare the CLE results to those from the CRE. The coefficient es-

timates from the CRE estimator are very similar to those from the CLE, which suggests that the

model for the unobserved heterogeneity used by the CRE is close to correctly specified. However,

this model involves so many covariates that the additional restrictions imposed on the unobserved

heterogeneity do not reduce the standard errors much in comparison to the CLE. The standard

errors are only slightly smaller.

In Section 3.3, I discussed an interpretation for the magnitude of the regression coefficient

based on the cut point differences. The quantity δ
j

m in equation (15) can be interpreted as the the

minimum required change in Xitm to move an arbitrary observation yit = j to a higher category. For

the CLE results in this model, consider the amount of family income required to move a 15-year

old that is currently reported to have “Fair” health to have at least “Good” health. The appropriate

regression coefficient for a 15-year old is 7.60 ∗ 0.035− 0.064 ≈ 0.20. As a result, an income

increase of more than 900 is required to achieve this. This either suggests that the quantity is a

loose bound, or that the relationship between income and health is weak. To get some idea, we can

compare the results from the CRE model. If we look at the CRE’s predictions for children of age

15 that currently have “Fair” health, we see that a 100% income increase changes their predicted

probability of being in category “Good” or above from 0.1415 to 0.1447. This suggests that the

relationship between income and health at age 15, although statistically significant, is not very

strong..

8 Conclusion

I propose a new estimator for the regression coefficient and the difference in the cut points in the

fixed effects ordered logit model. The estimator uses (J−1)T transformations of a time series
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of ordered discrete outcomes into time series of binary outcomes. Taking into account all these

transformations allows me to construct an estimator for the regression coefficient that is more effi-

cient than currently available estimators. Furthermore, the difference in the cut points is estimated,

which provides a bound on a marginal effect that is useful in empirical practice.

It may be possible to extend the main result in this paper to a more general setting, namely the

fixed effects ordered choice model that relaxes the logistic assumption and the serial independence

assumption. For example, consider the fixed effects ordered logit model in equations (1)-(3), but

replace the conditional logit assumption by the assumption that the conditional distribution of

the error terms is identically distribution in each error term. One could turn this ordered model

into (J−1)T instances of the semiparametric binary choice model studied by Manski (1987). An

alternative approach would be to use a pairwise differencing approach, see e.g. Ahn et al. (2015).
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Supplement to “Estimation in the fixed effects ordered logit model”

Chris Muris

This Appendix consists of two parts. Part A contains proofs of the main results in the paper,

and contains some additional derivations. Part B contains a simulation study.

A Proofs and derivations

A.1 Proof of Theorem 1

Proof. Proof of Theorem 1. Consider an observation (yi,Xi) from the fixed effects ordered logit

model (1)-(3). Assign a category π (t) ∈ {1, · · · ,J−1} to each time period. Denote by di,π the

dichotimization of yi along π ,

di,π = (di,t,π = 1{yit ≤ π (t)} , t = 1, · · · ,T ) .

Denote the number of observations below or at the associated cut points by d̄i,π = ∑
T
t=1 di,t,π . The

logistic probability distribution is positive on the real line, so that P(dit = f |Xi,αi)> 0 for any f ,

and for any value of αi and Xi. This guarantees that all denominators in the following derivations

are bounded away from zero. Letting Fd̄ =
{

f ∈ {0,1}T : f̄ = d̄
}

, we have

P
(

di,π = d| d̄i,π = d̄,Xi,αi
)

=
P
(

di,π = d, d̄i,π = d̄
∣∣Xi,αi

)
P
(

d̄i,π = d̄
∣∣Xi,αi

)
=

P(di,π = d|Xi,αi)

∑ f∈Fd̄
P(di,π = f |Xi,αi)

=

[
∑

f∈Fd̄

P
(

d̄i,π = f
∣∣Xi,αi

)
P(di,π = d|Xi,αi)

]−1

(35)
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Because of conditional serial independence, any arbitrary term in that sum simplifies:

P(di,π = f |Xi,αi)

P(di,π = d|Xi,αi)

= ∏
t

[
P
(

di,t,π(t) = ft
∣∣Xi,αi

)
P
(

di,t,π(t) = dt
∣∣Xi,αi

)] (36)

= ∏
t: ft=1,dt=0

[
P
(

di,t,π(t) = 1
∣∣Xi,αi

)
P
(

di,t,π(t) = 0
∣∣Xi,αi

)] ∏
t: ft=0,dt=1

[
P
(

di,t,π(t) = 0
∣∣Xi,αi

)
P
(

di,t,π(t) = 1
∣∣Xi,αi

)] (37)

= ∏
t: ft=1,dt=0

[
exp
{

γπ(t)−Xitβ −αi
}
/
[
1+ exp

{
γπ(t)−Xitβ −αi

}]
1/
[
1+ exp

{
γπ(t)−Xitβ −αi

}] ]
(38)

× ∏
t: ft=0,dt=1

[
1/
[
1+ exp

{
γπ(t)−Xitβ −αi

}]
exp
{

γπ(t)−Xitβ −αi
}
/
[
1+ exp

{
γπ(t)−Xitβ −αi

}]]

= ∏
t: ft=1,dt=0

[
exp
{

γπ(t)−Xitβ −αi
}]

∏
t: ft=0,dt=1

[
1

exp
{

γπ(t)−Xitβ −αi
}] .

For the equality leading to (37), note that the terms for dt = ft have identical denominator and

numerator. To obtain (38), substitute the expressions for the conditional probability in the fixed

effects ordered logit model.

Because f and d have the same number
(
d̄
)

of ones, the sets {t : ft = 1,dt = 0} and {t : ft = 0,dt = 1}

have the same number of elements. Therefore, we have

P(di,π = f |Xi,αi)

P(di,π = d|Xi,αi)
= ∏

t: ft 6=dt

[
exp
{

ft
(
γπ(t)−Xitβ −αi

)}
exp
{

dt
(
γπ(t)−Xitβ −αi

)}]

= exp

{
∑

t: ft 6=dt

( ft−dt)
(
γπ(t)−Xitβ

)}
. (39)

By plugging (39) back into equation (35), we obtain the equality (9) in Theorem 1.

A.2 Bounds on the counterfactual distribution

Consider an individual i who is in an intermediate category j at time t, i.e. yit = j ∈ {2, · · · ,J−1}.

For such an individual,

y∗it = Xitβ + vit ∈
(
γ j−1,γ j

)
, (40)
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where vit is the composite error term vit = αi + uit . Consider a ceteris paribus change in the

regressors by ∆x, inducing the counterfactual variables:

X̃it = Xit +∆x,

ỹ∗it = y∗it +(∆x)β

= (Xit +∆x)β + vit ,

ỹit =
J

∑
j=1

j ·1
{

γ j−1 < ỹ∗it < γ j
}
.

We are interested in the distribution of the counterfactual dependent variable, conditional on the

observable random variables yit and Xit , i.e.

P( ỹit |yit = j,Xit = x) . (41)

This conditional probability depends on ∆x and on the true values of the model parameters. From

(40), we have that, conditional on Xit = x and for a fixed ∆x,

yit = j ⇔ vit ∈
(
γ j−1,0− xβ0,γ j,0− xβ0

)
≡ (l1,u1) , (42)

ỹit = k ⇔ vit ∈
(
γk−1,0− (x+∆x)β0,γk,0− (x+∆x)β0

)
≡ (l2,u2) . (43)

The relative position of (l1,u1) and (l2,u2) are important in what follows. To that end, let l =

max{l1, l2} and u = min{u1,u2}. Also, denote by Fv the conditional-on-Xi distribution function of

3



vit . Then

P( ỹit = k|yit = j,Xit) =
P( ỹit = k,yit = j|Xit)

P(yit = j|Xit)
(44)

=
P(vit ∈ (l1,u1)∩ (l2,u2)|Xit)

P(vit ∈ (l1,u1)|Xit)
(45)

=


0 if (l1,u1)∩ (l2,u2) = /0

1 if (l1,u1)∩ (l2,u2) = (l1,u1)

Fv(u)−Fv(l)
Fv(u1)−Fv(l1)

otherwise.

(46)

Similarly, we can consider the event ỹit > j. Conditioning on Xit = x, we have

ỹit > j⇔ vit > γ j,0− (x+∆x)β0 ≡ (l2,∞) . (47)

Then

P( ỹit > j|yit = j,Xit) =
P( ỹit > j,yit = j|Xit)

P(yit = j|Xit)

=
P(vit ∈ (l1,u1)∩ (l2,∞)|Xit)

P(vit ∈ (l1,u1)|Xit)

=


1 if (l1,u1)∩ (l2,u2 = ∞) = (l1,u1) or l2 < l1

0 if (l1,u1)∩ (l2,u2 = ∞) = /0 or u1 < l2,

Fv(u=u1)−Fv(l=l2)
Fv(u1)−Fv(l1)

otherwise.

Note that the final component of the display has the term Fv(u=u1)−Fv(l=l2)
Fv(u1)−Fv(l1)

, which is unknown

because Fv is unknown, since the conditional distribution of αi is unrestricted. The interesting

cases are therefore those with u1 < l2 and l2 < l1.

We can use the definitions of l1, u1, and l2 to back out the results used in the main text. Those

4



definitions are in (42) and in (47). First, note that

u1 = γ j,0− xβ0 < γ j,0− (x+∆x)β0 = l2

if and only if ∆xβ0 < 0. This result is sensible, but not informative. The interesting case is

l2 = γ j,0− (x+∆x)β0 < γ j−1,0− xβ0 = l1

which holds if and only if

(∆x)β0 > γ j,0− γ j−1,0.

Therefore, the result of interest can be restated as.

P( ỹit > j|yit = j,Xit) =


1 if (∆x)β0 > γ j,0− γ j−1,0,

0 if ∆xβ0 < 0

Fv(γ j,0−Xitβ0)−Fv(γ j,0−(Xit+∆x)β0)
Fv(γ j,0−Xitβ0)−Fv(γ j−1,0−Xitβ0)

otherwise.

In the main text, this result is used to turn the cut point differences into interpretable quantities.

For the sake of completeness, I also work out P( ỹit = k|yit = j,Xit) by simplifying the inequal-

ities in (46) using the definitions of l1, u1, l2, and u2 in (42) and (43). The relevant cases are (i)

(l1,u1)∩ (l2,u2) = /0 and (ii) (l1,u1)∩ (l2,u2) = (l1,u1). For case (i), note that

(l1,u1)∩ (l2,u2) = /0

⇔ u1 < l2 or u2 < l1

⇔ γ j,0− xβ0 < γk−1,0− (x+∆x)β0 or γk,0− (x+∆x)β0 < γ j−1,0− xβ0

⇔ (∆x)β0 < γk−1,0− γ j,0 or (∆x)β0 > γk,0− γ j−1,0.
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For case (ii), note that

(l1,u1)∩ (l2,u2) = (l1,u1)

⇔ l2 ≤ l1 and u2 ≥ u1

⇔ γk−1,0− (x+∆x)β0 ≤ γ j−1,0− xβ0 and γk,0− (x+∆x)β0 ≥ γ j,0− xβ0

⇔ (∆x)β0 ≥ γk−1,0− γ j−1,0 and (∆x)β0 ≤ γk,0− γ j,0

so that (46) is equal to

P( ỹit = k|yit = j,Xit) =



0 if (∆x)β0 < γk−1,0− γ j,0,

0 if (∆x)β0 > γk,0− γ j−1,0,

1 if γk−1,0− γ j−1,0 ≤ (∆x)β0 ≤ γk,0− γ j,0,

Fv(u)−Fv(l)
Fv(u1)−Fv(l1)

otherwise.

A.3 Score and Hessian calculations

We abbreviate ∑ f∈Fd̄
to ∑ f where this does not cause confusion. The following two derivatives

will be useful in this section:

∂ p−1
i,π (d|θπ)

∂θπ

=
∂ ∑ f exp(( f −d)Zi,πθπ)

∂θπ

= ∑
f

exp(( f −d)Zi,πθπ)( f −d)Zi

∂ 2 p−1
i,π (d|θπ)

∂θπ∂θ
′
π

= ∑
f

exp(( f −d)Zi,πθπ)Z
′
i ( f −d)

′
( f −d)Zi.

Note that ln pi,π (d|θπ) =− ln p−1
i,π (d|θπ) is of the form g(h(x)), with g : R→ R is g(u) =− lnu

and h : Rp → R, is h = p−1. The score in (19) follows immediately. The Hessian in 20 can be
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computed using the appropriate chain rule,

∂ 2g◦h(x)
∂x∂x′

=
∂ 2g(u)

(∂u)2

∣∣∣∣∣
u=h(x)

∂h(x)
∂x

′
∂h(x)

∂x
+

∂g(u)
∂u

∣∣∣∣
u=h(x)

∂ 2h(x)
∂x∂x′

,

which, for this case, evaluates as

−
∂ 2− ln p−1

i,π (d|θπ)

∂θπ∂θ
′
π

= p2
i,π

[
∑

f
exp(( f −d)Zi,πθπ)( f −d)Zi

]′ [
∑

f
exp(( f −d)Zi,πθπ)( f −d)Zi

]
(48)

−pi,π

[
∑

f
exp(( f −d)Zi,πθπ)Z

′
i ( f −d)

′
( f −d)Zi

]

= −p2
i,π

([
∑

f
exp(( f −d)Zi,πθπ)

][
∑

f
exp(( f −d)Zi,πθπ)Z

′
i ( f −d)

′
( f −d)Zi

]
− (49)

[
∑

f
exp(( f −d)Zi,πθπ)( f −d)Zi

]′ [
∑

f
exp(( f −d)Zi,πθπ)( f −d)Zi

] .

The difference between two double sums can be manipulated as in Machado (2003, Theorem 1),

who uses a similar derivation in the context of a binomial logit model with fixed effects. For an

arbitrary choice of f ,g, the double term features the two expressions

exp(( f −d)Zi,πθπ)exp((g−d)Zi,πθπ)
[
Z
′
i (g−d)

′
(g−d)Zi−Z

′
i ( f −d)

′
(g−d)Zi

]

and

exp(( f −d)Zi,πθπ)exp((g−d)Zi,πθπ)
[
Z
′
i ( f −d)

′
( f −d)Zi−Z

′
i (g−d)

′
( f −d)Zi

]
,

which sum to

exp(( f −d)Zi,πθπ)exp((g−d)Zi,πθπ)
[
Z
′
i (g− f )

′
(g− f )Zi

]
,

7



so that the second derivative in (49) simplifies to

∂ 2 ln pi,π (d|θπ)

∂θπ∂θ
′
π

= −1
2

p2
i,π ∑

f
∑
g

exp(( f −d)Zi,πθπ)exp((g−d)Zi,πθπ)
(

Z
′
i,π (g− f )

′
(g− f )Zi,π

)
.

A.4 Proof of Theorem 3, part (i)

Proof. [Proof of Theorem 3, part (i)] The CMLE is an extremum estimator with sample criterion

function

Qn (θπ) =
1
n ∑

i
∑

d∈{0,1}T

1 [di = d] ln pπ (d|θπ) .

It follows from equation (20) in Section 4 (derivation in Appendix A.3) that the sample criterion

function is concave. The current proof proceeds by verifying the conditions (i, identification) and

(iii, pointwise convergence) for Theorem 2.7 in Newey and McFadden (1994), which is a proof

of consistency for extremum estimators with concave sample criterion functions. First, I establish

pointwise convergence of the criterion function. Second, I establish identification. The result then

follows from the aforementioned result.

Pointwise convergence (boundedness of criterion function). Boundedness of

Q0 = E (Qn) = ∑
d∈{0,1}T

1 [di = d]E [ln pπ (d|θπ)]

implies pointwise convergence of Qn to Q0 by the law of large numbers. To bound E [ln pπ (d|θπ)],

use a mean-value expansion around θπ = 0, i.e. there exist some θ̃π in between 0 and θπ (row-wise)

such that

ln piπ (d|θπ)− ln piπ (d|0) = si,π
(

d| θ̃π

)
θπ .

8



Note that

ln pπ (di|0) =− ln ∑
f∈Fd̄

exp{( f −d)Ziπ0}=− ln#{Fd̄}< ∞.

Therefore, bounding the expectation of the derivative delivers the desired pointwise convergence.

I simplify notation for

si,π (d|θπ) = −
∑ f exp(( f −d)Ziπθπ)Z

′
iπ ( f −d)

′

∑ f exp(( f −d)Ziπθπ)

≡ −
∑ f a f dZ

′
iπ ( f −d)

′

ad

by setting a f d = exp(( f −d)Ziπθπ) and ad = ∑ f a f d . Note that a f d/ad ∈ (0,1). Using Jensen’s

inequality and submultiplicativity,

‖E (si,π (d|θπ))‖ ≤ E

∥∥∥∥∥−Z
′
iπ ×∑

f

a f d

ad
( f −d)

′

∥∥∥∥∥
≤

∥∥∥∥∥∑f

a f d

ad
( f −d)

∥∥∥∥∥×E (‖Ziπ‖)

which is bounded because of Assumption 2, which guarantees the existence of second moments of

the regressors. Pointwise convergence of Qn to Q0 follows.

Identification. We first make sure that P(diπ ∈ {(0, · · ·0) ,(1, · · · ,1)}) 6= 1. If this does not

hold, then Q0 (θπ) = 1 does not depend on the parameters. This is the population analogue of

“time-invariant observations are not informative.” This condition is satisfied because for any real-

ization of the real-valued unobserved heterogeneity, the error term will still have some mass in the

9



closets tail. To be more precise, note that

P(diπt = 0) = P
(
uit > γπ(t)−αi

)
=

ˆ
Λ
(
αi− γπ(t)

)
f (αi)dαi

=

ˆ ā

−∞

Λ
(
αi− γπ(t)

)
f (αi)dαi +

ˆ
∞

ā
Λ
(
αi− γπ(t)

)
f (αi)dαi

<

ˆ ā

−∞

1 f (αi)dαi + supα∈(ā,∞)Λ
(
a− γπ(t)

)ˆ ∞

ā
f (αi)dαi

=

ˆ ā

−∞

f (αi)dαi +

ˆ
∞

ā
f (αi)dαi = 1.

where I have used the symmetry of Λ(u) = 1−Λ(u), the fact that Λ(u) is strictly increasing,

and that limu→+∞ Λ(u) = 1. The argument above can be conditioned on Xi. Since observations are

serially independent after conditioning on Xi and αi , the above argument implies P(diπ = 0T )< 1.

A two-sided version of the above argument then shows that

P(diπ ∈ {(0, · · ·0) ,(1, · · · ,1)}) 6= 1.

We have now established that transformed dependent variables are time-varying with positive prob-

ability.

The proof that follows is based on a reduction of the T period problem to the 2-period using

time periods (1, t), where t is arbitrary.23 Consider an arbitrary time period t > 1 and discard

information from remaining time periods. The two-period data (Yi1,Yi,t ,Xi1,Xit) follows a fixed

effects ordered logit model. For any transformation π , the conditional probabilities in (10) and

23Alternatively, a sufficient condition for identification is strict negative definiteness of the Hes-

sian of Q0. In the proof of asymptotic normality in Section A.5, part (iii), I show that this condition

holds. The drawback of the alternative approach is that it relies more heavily on Assumption 2.

The proof here suggests that Assumption 2 can be relaxed. I do not pursue this relaxation in this

paper: it is notationally cumbersome, and does not provide additional insight.

10



(11) apply:

p−1
i,(π(1),π(t)) ((1,0)) = 1+ exp

{(
γπ(t)− γπ(1)

)
− (Xit−Xi1)β

}
,

p−1
i,(π(1),π(t)) ((0,1)) = 1+ exp

{
−
(
γπ(t)− γπ(1)

)
+(Xit−Xi1)β

}
.

It will be useful to consider separately two types of transformation π: (i) the cut off categories in

the two periods are the same, π (t) = π (1), or (ii) the cut off category in period t is different from

that in period 1, π (t) 6= π (1).

In case (i), the conditional probabilities in (10) and (11) simplify to

1+ exp{−(Xit−Xi1)β} and 1+ exp{(Xit−Xi1)β} .

The assumption on the regressor variance matrix implies that E
[
(Xit−Xi1)

′
(Xit−Xi1)

]
is positive

definite, so that for any β 6= β0,

(β −β0)
′
E
[
(Xit−Xi1)

′
(Xit−Xi1)

]
(β −β0)> 0

which implies (Xit−Xi1)β 6= (Xit−Xi1)β0. By monotonicity of p in (Xit−Xi1)β , this ensures

identification of β0. This reasoning is similar to the standard identification proof for logit and

probit, see e.g. Example 1.2 in Newey and McFadden (1994).

For case (ii), consider two different values of the difference in the cut point parameter,

(
γπ(t)− γπ(1)

)
6=
(
γπ(t)− γπ(1)

)
0

and two values of the regression coefficient β , β0. Let

0 6= δ ≡
(
γπ(t)− γπ(1)

)
−
(
γπ(t)− γπ(1)

)
0

Then, it must hold that
(
γπ(t)− γπ(1)

)
− (Xit−Xi1)β 6=

(
γπ(t)− γπ(1)

)
0− (Xit−Xi1)β0. To see

11



why, assume
(
γπ(t)− γπ(1)

)
− (Xit−Xi1)β =

(
γπ(t)− γπ(1)

)
0− (Xit−Xi1)β0. Then δ 6= 0 implies

(Xit−Xi1)(β −β0) = δ 6= 0. This would require some linear combination of Xit to be equal to

a non-zero constant. However, the variance of any non-zero linear combination of Xit −Xi1 is

non-zero, by assumption. We conclude that γπ,∆ 6= γπ,∆,0 implies ( f −d)Ziπθπ 6= ( f −d)Ziπθπ,0.

Identification follows from strict monotonicity of 1+ exp(u).

Since the choice of t > 1 was arbitrary, we can repeat this argument for all time periods t > 1

and identify γπ(t)− γπ(1), t > 1, giving us γ∆,π,0. The regression coefficient was identified using

only two time periods.

A.5 Proof of Theorem 3, parts (ii)-(iv)

Proof. [Proof of Theorem 3, parts (ii)-(iv)] This proof is structured as follows. (1) First, I will

show that Σπ exists. Part (ii) of Theorem 3 then follows by the random sampling assumption and

a standard central limit theorem. (2) Second, I will show part (iii): that the Hessian Hπ (θπ) exists

and is invertible for all θπ .

Part (iv) then follows from Theorem 3.1 in Newey and McFadden. To see that the conditions

of their Theorem 3.1 is satisfied, note that the CMLE was shown to be consistent in part (i). Their

condition (i, true value is in the interior) is satisfied because the parameter space is RK+nπ . Their

condition (ii, objective function is twice differentiable) and the first part of their condition (iv,

second derivative is continuous) is satisfied because of the results on the score and hessian in

section 4, equations (19) and (20), as derived in A.3. Their condition (iii) is part (ii) of the current

proof. The remainder of condition (iv), and condition (v), follows from part (iii) in the current

proof (existence and invertibility Hessian). In particular, because I will show that the Hessian

exists for all θπ , so that a ULLN will apply for any compact set around θπ0, which is all we need

for condition (iv) in Newey and McFadden’s Theorem 3.1. In what follows, sums are over elements

in the set Fd̄ =
{

f ∈ {0,1}T : f̄ = d̄
}

unless mentioned otherwise.

Part (ii): Existence of Σπ . I will show that Σd,π (θπ) = E
(

si,π (d|θπ)si,π (d|θπ)
′)

exists for

12



an arbitrary d and an arbitrary θπ . Existence of Σπ then follows because

Σπ (θπ) = ∑
d∈{0,1}T

1{di = d}Σd,π (θπ) ,

and is then evaluated at θπ = θπ0. To simplify notation, let a f d = exp(( f −d)Ziπθπ) and ad =

∑ f a f d . Note that a f d/ad = a f ∈ (0,1). Then

E
(

si,π (d|θπ)si,π (d|θπ)
′)

= E

[
∑ f exp(( f −d)Ziπθπ)Z

′
iπ ( f −d)

′

∑ f exp(( f −d)Ziπθπ)
×

∑ f exp(( f −d)Ziπθπ)( f −d)Ziπ

∑ f exp(( f −d)Ziπθπ)

]
= E

[
∑ f ∑g a f dagdZ

′
iπ ( f −d)

′
(g−d)Ziπ

a2
d

]

< E

[
∑

f
∑
g

Z
′
iπ ( f −d)

′
(g−d)Ziπ

]

which exists, because because Zi is a combination of X̃i and the selection matrix Sπ . and we know

that the second moments of Xi exist by the assumption (2).

Part (iii): Existence and invertibility of Hπ (θπ). In Sections 4 and A.3, it was established

that the log-likelihood contributions are concave. It follows that the expected log-likelihood is

concave. I now establish that concavity of the population criterion function is strict, by showing

that the second derivative,

Hπ (θ) = E

 ∑
d∈{0,1}T

1 [di = d]Hi,π (d|θπ)


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is negative definite.24 This will be true if, letting a f d and ad be defined as in the proof of part (ii),

E [Hi,π (d|θπ)] = −1
2

E

[
[pi,π (d|θπ)]

2
∑
f ,g

a f dagdZ
′
i,π (g− f )

′
(g− f )Zi,π

]

= −1
2

E

[
Z
′
i,π

(
∑
f ,g

[pi,π (d|θπ)]
2 a f dagd (g− f )

′
(g− f )

)
Zi,π

]
(50)

is negative definite for at least one value d. Take an arbitrary value d, and , so that pi,π (d|θπ) =

1/ad . Note that a f d ≥ 0 for all f ,d. The double sum inside (50) simplifies considerably in notation:

[pi,π (d|θπ)]
2
∑
f ,g

a f dagd (g− f )
′
(g− f ) =

1
a2

d
∑
f ,g

a f dagd (g− f )
′
(g− f )

= ∑
f ,g

a f dagd (g− f )
′
(g− f )(

∑h1 ah1d
)(

∑h2 ah2d
) (51)

For all f = g, this term is equal to the zero matrix, since ( f −g)
′
= 0T . Furthermore, the denomi-

nator in (51) can be expanded

(
∑
h1

ah1d

)(
∑
h2

ah2d

)
= ∑

h1

a2
h1d + ∑

h1 6=h2

ah1dah2d.

Since
a f d

agd
=

exp{( f −d)Zi,πθπ}
exp{(g−d)Zi,πθπ}

= exp{( f −g)Zi,πθπ}= a f g,

any term under the double sum in in (51) can be bounded as follows:

a f dagd (g− f )
′
(g− f )

∑h1 a2
h1d +∑h1 6=h2 ah1dah2d

=
(g− f )

′
(g− f )

∑h1 ah1 f ah1g +∑h1 6=h2 ah1 f ah2g
(52)

=
(g− f )

′
(g− f )

2+∑h1 ah1 f ah1g +∑h1 6=h2 ah1 f ah2g
(53)

≥ 1
2
(g− f )

′
(g− f ) . (54)

24This could serve as an alternative proof of identification (see the proof of Theorem 3, part (i)).
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Plugging this lower bound back into (51) gives

∑
f ,g

a f dagd (g− f )
′
(g− f )(

∑h1 ah1d
)(

∑h2 ah2d
) ≥ 1

2 ∑
f ,g

(g− f )
′
(g− f ) ,

and, finally,

E [Hi,π (d|θπ)] ≤ −1
2

E

[
Z
′
i,π

(
∑
f ,g

(g− f )
′
(g− f )

)
Zi,π

]
.

= −1
2 ∑

f ,g
E
[
Z
′
i,π (g− f )

′
(g− f )Zi,π

]
(55)

Every term in the finite sum of E
[
Z
′
i,π (g− f )

′
(g− f )Zi,π

]
in equation (55) is finite because of

assumption (ii). This establishes the existence of the Hessian for all θπ0.

To see that it is positive definite, take arbitrary f 6= g, and note that

(g− f )Zi,π = ∑
t
(gt− ft)

(
γπ(t)− γπ(1)−Xit

)
= (g− f )Sπγπ,∆ +∆g, f Xi,

where ∆g, f Xi = ∑t (gt− ft)Xit is a 1×K vector of time-differenced regressors . The assumption

that Var
(
X̃i
)
, exists and is positive definite implies that

Var
(
∆g, f Xi

)
= Var (Vec((g− f )Xi))

= Var
(
IK⊗ (g− f ) X̃i

)
= (IK⊗ (g− f ))Var

(
X̃i
)(

IK⊗ (g− f )
′)

(56)

is positive definite, since the expression in (56) amounts to selecting a submatrix of a positive

definite matrix. Finally, since Var
(
∆ f ,dXi

)
is positive definite, it follows that Hπ (θ) is negative

definite, by equation (55).
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A.6 Proof of Theorem 4

Proof. [Proof of Theorem 4] This proof consists of two parts. The main result is the comparison of

the variance of the different estimators. That result requires asymptotic normality of the estimators.

I start with the variance comparison (Part 1), and then show that the required asymptotic normality

is satisfied (Part 2).

Part 1: Comparing the asymptotic variances. On top of the estimators β̃ ∗, and β̂ ∗ defined

in the main text, define β̌ ∗ as the efficient estimator based on si,1,β and si,2,γ . In Part 2 (below), I

show that β̃ ∗, β̌ ∗ and β̂ ∗ are asymptotically normal, i.e.

√
n
(

β̃
∗−β

)
d→ N (0,V1)

√
n
(

β̌
∗−β

)
d→ N (0,V2)

√
n
(

β̂
∗−β

)
d→ N (0,V3)

This part proceeds in two steps. The first step establishes that β̌ ∗ is equivalent to β̃ ∗, using Theorem

1 in Ahn and Schmidt (1995). Second, let θ̌ ∗ =
(

β̌ ∗, γ̌∗
∆

)
and θ̃ ∗ =

(
β̃ ∗, γ̃∗

∆

)
. Since the latter

estimator targets the same parameters, but uses more moment conditions, it follows from e.g.

Theorem 6.1 in Hall (2005) that θ̃ ∗ is at least as efficient as θ̌ ∗.

Step 1. To show that β̌ ∗ and β̃ ∗ are equivalent, note that this problem can be written in the

form of Ahn and Schmidt (1995, Section 2). In their notation m1 (θ1) = s1,β (β ) and m2 (θ1,θ2) =

s2,γ (β ,γ∆). Their Theorem 1 then requires that (i) the dimension of s1,β is equal to a greater than β ,

which holds because (J−1)K ≥ K; (ii) the dimension of s2,γ is equal to that of γ∆, which holds by

construction; and that (iii) E
[

∂ s1,β/∂β
∣∣
β=β0

]
has full rank, and that E

[
∂ s2,γ/∂γ∆

∣∣
β=β0,γ∆=γ∆,0

]
is invertible, which holds [...]. Their Theorem 1 therefore applies, so that β̌ ∗ = β̃ ∗, which implies

V2 =V1.

Step 2. To show that β̂ ∗ is at least as efficient as β̌ ∗, note that θ̌ ∗=
(

β̌ ∗, γ̌∗
∆

)
and θ̃ ∗=

(
β̃ ∗, γ̃∗

∆

)
are both estimators for (β ,γ∆). The former is based on a subset

(
s1,β ,s2,γ

)
. The latter is based on

the full set
(
s1,β ,s2,γ ,s2,β

)
. The regularity conditions in Theorem 6.1 in Hall are satisfied, and the
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proof of positive semi-definiteness there applies, which means that Avar
(
θ̌ ∗
)
−Avar

(
θ̂ ∗
)

is psd.

This implies that V2−V3 is psd.

Taking together the results from Steps 1 and 2, we can conclude that V1 =V2 ≥V3.

Part 2: Asymptotic normality. To establish asymptotic normality of the estimators, I check

the conditions of Theorem 3.4 in Newey and McFadden (1994), which is a result for asymptotic

normality of a general GMM estimator. Condition (i, interior solution) is satisfied because the

parameter space is open. Condition (ii, continuously differentiable moment function) follows from

the properties of the second derivative of the criterion function for each transformation π , de-

scribed in detail in Section A.3. Condition (iii, moment function are zero-mean, finite-variance) is

satisfied because the moment functions are score, and because each score is finite by part (ii) of

Theorem 3. Condition (iv, bounded envelope) is implied by the existence of the Hessian for each

transformation, for every value of the parameters, see part (iii) of Theorem 3.

What remains to be shown show is condition (v, invertibility of efficiency bound). For β̃ ∗, this

amounts to verifying positive definiteness of H
′
1Σ
−1
1 H1, where H1 is the (J−1)K×K matrix that

stacks the K×K Hessians from the time-invariantly transformed models on top of each other:

H1 =


H(1,··· ,1)

...

H(J−1,··· ,J−1)


and Σ1 = E

[
si,1,β (β0)si,1,β (β0)

′]
. Since each block in H1 has full rank, the matrix H1 has full

column rank, so that H
′
1Σ
−1
1 H1 is positive definite if and only if Σ1 is positive definite.

Similarly, for β̂ ∗, this amount to verifying that H
′
Σ−1H is invertible, where H stacks the(

K +nγ

)
×
(
K +nγ

)
Hessians from all the transformations.25 It is easy to see that H has full

column rank, so that positive definiteness of Σ = E
[
si (β ,γ∆)si (β ,γ∆)

′]
is necessary and sufficient

for invertibility of HΣ
′−1H. If Σ is pd, then Σ1 is pd, because it is a principal submatrix of Σ.

25This Hessian is described in detail in Appendix A.7.1.
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Consider the simple case that there are only two transformations π and π
′
, and that Sπ = S

π
′ .26

Letting a f d = exp{( f −d)Ziπθπ0} and

Ad =
∑ f ,g a f dagdZ

′
iπ ( f −d)

′
(g−d)Ziπ(

∑ f a f d
)2

obtains that

Σ = E

 siπs
′
iπ siπs

′

iπ ′

siπ ′ s
′
iπ siπ ′ s

′

iπ ′


= ∑

d∈{0,1}
E


 1{diπ = d} 1{diπ = d}1

{
diπ ′ = d

}
1{diπ = d}1

{
diπ ′ = d

}
1
{

diπ ′ = d
}

⊗Ad

 (57)

using that Sπ = S
π
′ so that Ziπ = Ziπ ′ , and abbreviating ∑ f = ∑ f∈Fd̄

. Consider

Q≡ E


 1{diπ = d} 1{diπ = d}1

{
diπ ′ = d

}
1{diπ = d}1

{
diπ ′ = d

}
1
{

diπ ′ = d
}


∣∣∣∣∣∣∣Xi,αi

 (58)

which can be written as

Q =

 P(diπ = d|Xi,αi) P
(

diπ = diπ ′ = d
∣∣Xi,αi

)
P
(

diπ = diπ ′ = d
∣∣Xi,αi

)
P(diπ ′ = d|Xi,αi)


The matrix Q will be of full rank if P

(
diπ = diπ ′ = d

∣∣Xi,αi
)
<P(diπ = d|Xi,αi) or P

(
diπ = diπ ′ = d

∣∣Xi,αi
)
<

P
(

diπ ′ = d
∣∣Xi,αi

)
. To see that this holds, consider a time period t for which π (t) 6= π

′
(t). Without

26The general case is tedious, and does not provide additional insight, and is therefore omitted.
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loss of generality, let π (t)< π
′
(t). Then

P
(

diπ(t) 6= diπ ′(t)

∣∣∣Xi,αi

)
= P

(
γπ(t) < y∗it < γ

π
′
(t)

)
= Λ

(
γ

π
′
(t)−αi−Xitβ

)
−Λ

(
γπ(t)−αi−Xitβ

)
> 0,

which implies that the unconditional probability P
(
diπ 6= diπ ′

)
> 0, which implies that the matrix

Q in (58) is invertible. Then, from (57), Σ is invertible.

A.7 GMM and OMD estimation

Subsection A.7.1 presents the structure of the Hessian involved in the efficient GMM estimator.

Subsection A.7.2 contains the derivations underlying Remark 5, which claims that a certain optimal

minimum distance estimator is equivalent to the optimal GMM estimator in Theorem 4. Subsection

A.7.3 contains some details about the implementation of the estimator in Stata.

A.7.1 GMM: Structure of H

To describe the structure of H, I order the transformations by letting π1, · · · ,πJ−1 be the J−1 time-

invariant transformations, and letting πJ, · · · ,π(J−1)T be the remaining transformations. For each

transformation, the Hessians of the CMLE, Hπ in (22), can be dividided into blocks corresponding

to the regression coefficient and cut point difference,

Hπ ≡

Hβ

π Hβγ

π

Hγβ

π Hγ

π

 .
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The matrix H has the following structure

H =



Hβ

π1 0 0 · · · 0
...

...
... · · · ...

Hβ

πJ−1 0 0 · · · 0

Hβ

πJ Hβγ

πJ 0 · · · 0

Hγβ

πJ Hγ

πJ 0 · · · 0

Hβ

πJ+1 0 Hβγ

πJ+1 · · · 0

Hγβ

πJ+1 0 Hγ

πJ+1 · · · 0
...

...
... . . . ...

Hβ

π
(J−1)T

0 0 · · · Hβγ

π
(J−1)T

Hγβ

π
(J−1)T

0 0 · · · Hγ

π
(J−1)T



. (59)

A.7.2 OMD: Derivations

Consider the set of CMLE estimators θ̂π from (18), for all transformations π . Consider that these

CMLE estimators target the parameters
(
βπ ,γπ,∆

)
without imposing the assumption that βπ = β0

for all π . Label the transformations π1, · · · ,π(J−1)T , letting π1 · · · ,πJ−1 be the time-invariant
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transformations.27 Then denote by ˆ̃
θ the estimator that stacks all the CMLE estimators, i.e.

ˆ̃
θ =



β̂π1

...

β̂πJ−1

β̂πJ

γ̂πJ ,∆

...

β̂π
(J−1)T

γ̂π
(J−1)T ,∆



.

and denote by θ̃0 the true value of the stacked target parameter.

The stacked estimator ˆ̃
θ corresponds to the GMM estimator based on the full set of moment

conditions in 29, without taking into account that βπ = β0 for all π , i.e. it is the GMM estimated

based on

E



si,π1 (βπ1)

...

si,πJ−1

(
βπJ−1

)
si,πJ

(
βπJ ,γπJ ,∆

)
...

si,πJ

(
βπ

(J−1)T
,γπ

(J−1)T ,∆

)


= 0. (60)

Therefore, the estimator ˆ̃
θ can be seen as a GMM estimator that uses the same moment conditions

as those used by the optimal GMM estimator in Theorem 4. Consequentially, the variance matrix

associated with the moment conditions of this estimator is the same as that for the GMM estimators,

27Note that we have used the ordering and numbering of the CMLEs used in Section A.7.1,

introduced before equation (59).
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namely Σ in equation (31). However, the Hessian associated with (60) is

HMD =



Hβ

π1 · · · 0 0 0 · · · 0 0 0 · · · 0
... . . . ...

...
... · · · 0

...
... · · · ...

0 · · · Hβ

πJ−1 0 0 · · · 0 0 0 · · · 0

0 · · · 0 Hβ

πJ 0 · · · 0 Hβ ,γ
πJ 0 · · · 0

0 · · · 0 Hβ ,γ
πJ 0 · · · 0 Hγ

πJ 0 · · · 0

0 · · · 0 0 Hβ

πJ+1 · · · 0 0 Hβ ,γ
πJ+1 · · · 0

0 · · · 0 0 Hβ ,γ
πJ+1 · · · 0 0 Hγ

πJ+1 · · · 0
...

...
...

...
... . . . ...

...
... . . . ...

0 · · · 0 0 0 · · · Hβ

π
(J−1)T

0 0 · · · Hβ ,γ
π
(J−1)T

0 · · · 0 0 0 · · · Hβ ,γ
π
(J−1)T

0 0 · · · Hγ

π
(J−1)T


which is different from the Hessian for the GMM estimators in Section 5, introduced as H in

section A.7.1. The Hessian is different because derivatives for the regression coefficient are now

with respect to (βπ , π) instead of with respect to β0.

The estimator ˆ̃
θ is a method of moments estimator, because the number of parameters is the

same as the number of moment conditions. Its asymptotic distribution is

√
n
(

ˆ̃
θ − θ̃0

)
d→N

(
0,
(

H
′
MDΣ

−1HMD

)−1
)
,
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where θ̃0 is the vector of true values of the parameters targeted by the stacked CMLEs, so that

θ̃0 =



IK 0 0 · · · 0
...

...
... · · · 0

IK 0 0 · · · 0

IK 0 0 · · · 0

0 InπJ
0 · · · 0

IK 0 0 · · · 0

0 0 Inπ
· · · 0

...
...

... · · · ...

IK 0 0 · · · 0

0 0 0 · · · Inπ
(J−1)T



 β0

γ∆,0



≡ R

 β0

γ∆,0

 .

This suggests that
(
β0,γ∆,0

)
can be estimated using classical minimum distance. The optimal

minimum distance estimator (see Newey and McFadden, 1994, p. 2164), which I will denote by

θ̂
∗
md =

(
β̂
∗, γ̂∗∆

)
(61)

sets Wmd =
(

H
′
MDΣ−1HMD

)
in the minimization

θ̂W,md = argmin
(

ˆ̃
θ −Rθ̂W,md

)′
Wmd

(
ˆ̃
θ −Rθ̂W,md

)
.

The resulting estimator is θ̂ ∗md =
(

R
′
H
′
MDΣ−1HMDR

)−1
R
′
H
′
MDΣ−1HMDθ̂ . Inspecting R, HMD, and

H reveals that

HMDR = H. (62)
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It follows that

θ̂
∗
md =

(
H
′
Σ
−1H

)−1
H
′
Σ
−1HMD

ˆ̃
θ

and

√
n

θ̂
∗
md−

 β0

γ∆,0


 d→N (0,V )

using (62) once more. In conclusion, the optimal MD estimator from all CMLE’s is asymptotically

equivalent to the optimal GMM estimator.

A.7.3 Implementation

This subsection discusses the implementation of the procedure in A.7.2, assuming available soft-

ware that returns ˆ̃
θ and its variance. In Stata, each block in

ˆ̃
θ =



β̂π1

...

β̂πJ−1

β̂πJ

γ̂πJ ,∆

...

β̂π
(J−1)T

γ̂π
(J−1)T ,∆


can be computed using clogit, as explained in the main text, in the implementation section. Fur-

thermore, Stata’s suest can be used to compute a consistent estimate of

(
H
′
MDΣHMD

)−1
,
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say Ω̂−1. Then, a feasible version of the optimal minimum distance estimator can be computed by

evaluating

θ̂
∗
md =

(
R
′
Ω̂R
)−1

R
′
Ω̂

ˆ̃
θ

which uses the known matrix R (see previous subsection), the results from clogit, and the result

from suest.

B Simulation study

This simulation section consists of three parts. First, I document the efficiency gains from using

the optimal minimum distance (OMD) estimator over existing estimators. Second, I show that

the finite sample performance of the OMD estimator deteriorates as T grows, and that the CLE

is a good alternativewhen the number of transformations is large relative to the sample size. Fi-

nally, I document that the OMD and CLE are robust against misspecification of the error term

distribution.28

B.1 Efficiency gain

The first set of results are for simulation designs with T = 2 and n = 5000. The reported results

are based on S = 1000 simulations with data generated from the fixed effects ordered logit model

described in Section 3. In particular,

y∗it = αi +
1
K ∑

k
Xit,k +uit .

28Stata code for the simulation study is available from my website, www.sfu.ca/~cmuris.

Since the CLE performs well regardless of the simulation design, we will use the it in the em-

pirical illustration in Section 7.
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The regressors Xit,k are generated from a Normal distribution with a time-varying mean,

Xi1,k

Xi2,k

∼N


−1

1

 ,

1 0

0 1


 .

The unobserved heterogeneity is generated as αi =
1
2 (Xi1,1 +Xi2,1). The ordered variable yit ∈

{1, · · · ,J} is computed according to

yit =



1 if y∗it <−1,

2 if −1≤ y∗it < 1,

j if j−2≤ y∗it < j−1, if j ∈ {3, · · · ,J−1}

J if J−1≤ y∗it .

I evaluate the following estimators: (i) “Oracle” is the infeasible MLE, based on known αi, that

maximizes the unconditional likelihood 5;29 (ii) “CSLogit” is the MLE based on the unconditional

likelihood 5, with the unobserved heterogeneity parameters fixed at 0, i.e. it ignores the unobserved

heterogeneity; (iii)-(vi) the CMLEs based on the transformations (1,1), (1,2), (2,1), and (2,2);

(vii) “DvS” is the optimal minimum distance estimator based on all time-invariant transformations,

proposed by Das and van Soest (1999); (viii) “OMD” is the optimal minimum distance estimator

based on all transformations, proposed in Section 5, Remark 5. This is the estimator proposed

advocated by this paper.

Table 3 displays the results for the simplest case, J = 3 and K = 1. Of the feasible estimators,

the OMD estimator has the lowest simulated standard error. In particular, it is more than 10%

more efficient than any of the currently available estimators. Unsurprisingly, estimators based on

29This estimator does not suffer from the incidental parameters problem, and uses all cross-

section units (including those with time-invariant yi). It is asymptotically at least as efficient as the

minimum-variance estimator for β in the presence of nuisance parameters αi. As such, it provides

an upper bound on the performance of the estimators considered in this simulation exercise.
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a single transformation are outperformed by estimators that efficiently combine several of them

(DvS and OMD). The OMD has the largest bias of the feasible estimators, but that bias is small

at 0.8. In terms of the cut point parameters, the OMD estimator has the lowest bias at 0.13%,

and its simulated standard error is almost 50 lower than that of the most competitive CMLE. The

large bias of the CSLogit emphasizes that unobserved heterogeneity is important in this simulation

design. The relatively strong performance of the CMLE based on the transformation (2,1) versus

(1,2) is due to the increase in the mean of Xitk from -1 to 1 when we move from period 1 to period

2.

To investigate the robustness of these findings, Table 4 presents results for designs with dif-

ferent values for J and K. In terms of the regression coefficient, notice that the simulated relative

standard error of the OMD estimator is always substantially lower than that of the other feasible

estimators (only the most competitive ones are displayed). Compared to the Oracle estimator, there

is some loss of relative efficiency when J is increased. Increasing the number of regressors from

increases relative efficiency. The efficiency gain with respect to the DvS estimator is 11.2% in the

benchmark case, and increases to 14.5% and 14.7% when K is increased to 3 and 5. Increasing J

reduces the efficiency gain to 8.8%. This is likely due to the finite sample bias associated with es-

timating the variances and covariancies of (J−1)2 estimators, which is investigated in more detail

below. In terms of the cut point differences, the relative standard errors increase when the number

of regressors is increased. The number of categories does not seem to have a large effect on the

relative standard error. The bias of the OMD estimator increases, likely due to finite sample issues

associated with estimating the optimal weights for the additional estimators.

B.2 Small sample performance

Section 6.2 discusses a potential drawback of the OMD estimator when the number of estima-

tors is large relative to the sample size. The OMD relies on an estimate of the variance of the

CMLE estimators, which may lead to poor finite sample performance when considering a large

number of estimators. The CLE was introduced to avoid this issue, at the expense of asymptotic
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β γ2− γ1

Estimator %Bias RelSD %Bias RelSD

Oracle 0.0 1.00 0.03 1.00

CSLogit 14.2 0.93 6.29 0.95

π = (1,1) 0.0 1.89 - -

π = (2,2) 0.2 2.28 - -

π = (1,2) 0.3 4.09 0.18 3.30

π = (2,1) 0.2 1.90 0.28 3.70

DvS 0.6 1.52 - -

OMD 0.8 1.35 0.13 1.51

Table 3: Simulation results based on 1000 simulations, for J = 3, K = 1, T = 2, N = 5000 and

T = 2. The OMD estimator proposed in this paper is in the bolded last row. The columns

“%Bias” list the absolute value of the simulated bias, divided by the true value of the

parameter. The columns “RelSD” report the simulated standard deviation divided by the

simulated standard deviation of the Oracle estimator.
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J = 3, K = 3 J = 3, K = 5 J = 5, K = 5

Estimator %Bias RelSD %Bias RelSD %Bias RelSD

Coefficient β

π = (1,1) 0.17 1.78 0.90 1.70 0.90 1.80

π = (1,2) 0.30 1.49 0.80 1.33 0.80 1.40

DvS 0.03 1.43 0.61 1.36 0.41 1.37

OMD 0.24 1.22 0.01 1.16 1.69 1.28

Cut point γ2− γ1

π = (1,2) 0.47 4.20 0.57 5.02 0.57 5.03

π = (2,1) 0.69 11.01 2.02 14.17 2.02 14.95

OMD 0.21 1.42 0.50 1.40 1.76 1.40

Table 4: Robustness of simulation results. We change the values of (J,K) away from their respec-

tive values of (3,1) in the benchmark simulation design in Table 3. Results are based on

S = 1000 simulations. The columns “%Bias” list the absolute value of the simulated bias,

divided by the true value of the parameter. The columns “RelSD” report the simulated

standard deviation divided by the simulated standard deviation of the Oracle estimator.
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efficiency. I now investigate the relative finite sample performance of the CLE estimator and the

OMD estimator.

For that purpose, I decreasing the sample size to n = 350, and manipulate the number of time

periods T . The remaining design parameters are unchanged. For t > 2, the regressors are generated

from a standard normal distribution.

The results for the regression coefficient, based on S = 1000 simulations, are presented in Table

5. The results for the cut points are qualitatively similar to those for the regression coefficient. We

report the results for (i) the Oracle estimator; (ii) for the CMLE estimator based on π = (1,1),

which has the best performance among the CMLEs for this design; (iii) “BUC”, the compos-

ite likelihood estimator based on time-invariant transformations, described in Baetschmann et al.

(2015); (iv) “DvS”, the optimal minimum distance estimator based on time-invariant transforma-

tions proposed by Das and van Soest (1999); (v) “CLE”, the composite likelihood based on all

transformations introduced in Section 6.2; (vi) “OMD”, the optimal minimum distance estimator

based on all transformations.

The CLE has the lowest relative standard error in all designs. The relative performance of the

OMD estimator versus the CLE deteriorates when T increases. In particular, when T = 6 and

T = 8, the simulated bias for the OMD estimator is very large at 10% and 18%. For these cases,

the CLE is an excellent alternative, as it can be seen to dominate the existing estimators in terms

of standard error, and also delivers the differences in the cut points. The poor performance of

the OMD estimator in these designs is not surprising. The optimal combination of the (J−1)T

CMLEs requires an estimate of a large number of variance and covariance matrices.30

B.3 Robustness to misspecification

In this subsection, I investigate the sensitivity of the OMD estimator and the CLE to misspecifica-

tion of the error term distribution. To that end, I generate data from the benchmark specification

used for Table 3, with the exception that the error terms uit are generated from a number of al-

30For T = 4, the number of blocks is 121. For T = 6, this number grows to 2017.
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ternative distributions. Baetschmann et al. (2015, Section 3.3) document that the DvS and BUC

estimator perform well under alternative specification when the focus is on the ratio β1/β2. In

this subsection, I focus on the ratio β1/(γ2− γ1). I do not report results for estimators that do not

estimate the cut point difference: such estimators are not informative for a model with only one

regressor, because β1 can only be estimated up to scale.

The results, using S = 1000 simulations, and using a Normal, χ2, and Poisson distribution are

presented in Table 6. The results are favorable for the estimators proposed in this paper. The Oracle

estimator has substantially more bias than in the correctly specified case, and is now outperformed

by the CLE and OMD estimator in terms of bias for two of the designs. The Oracle estimator still

has the lowest standard error. The CMLEs for time-varying transformations yield mixed results.

The performance for π =(1,2) is reasonable, although not as good as the CLE and OMD. However,

the CMLE based on π = (2,1) performs very poorly. The CLE and OMD do not inherit the poor

performance of that estimator, and have generally excellent performance under misspecification.
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T = 2 T = 4 T = 6 T = 8

Estimator %Bias RelSD %Bias RelSD %Bias RelSD %Bias RelSD

Oracle 0.72 1.00 1.29 1.00 0.38 1.00 1.17 1.00

π = (1,1) 1.01 1.78 2.45 1.57 0.59 1.48 1.70 1.46

BUC 1.44 1.53 1.64 1.18 0.16 1.15 1.14 1.10

DvS 0.30 1.50 1.30 1.20 0.00 1.13 0.99 1.09

CLE 1.83 1.40 1.87 1.15 0.20 1.10 1.05 1.07

OMD 0.21 1.43 1.90 1.20 10.70 1.18 18.85 1.21

Table 5: Simulation results comparing the optimal minimum distance estimators to the composite

likelihood estimators. Sample size is n = 350, and results are based on S = 100 simu-

lations. The columns “%Bias” list the absolute value of the simulated bias, divided by

the true value of the parameter. The columns “RelSD” report the simulated standard

deviation divided by the simulated standard deviation of the Oracle estimator.

Poi(2) χ2
3 N (0,1)

Estimator %Bias RelSD %Bias RelSD %Bias RelSD

Oracle 0.73 1.00 0.46 1.00 0.43 1.00

π = (1,2) 0.08 1.28 0.14 1.28 0.06 1.33

π = (2,1) 7.29 7.02 6.51 5.70 6.31 8.59

CLE 0.05 1.22 0.14 1.17 0.04 1.30

OMD 0.06 1.21 1.06 1.19 0.03 1.29

Table 6: Simulation results for the misspecification analysis. Results are for β1/(γ2− γ1), based

on S = 1000 simulations. Results are based on S = 1000 simulations. The columns

“%Bias” list the absolute value of the simulated bias, divided by the true value of the

parameter. The columns “RelSD” report the simulated standard deviation divided by the

simulated standard deviation of the Oracle estimator.
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