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Abstract

Recent advances in IT and big data enable firms to adopt an increasing variety

of monitoring technologies at a reduced and yet significant cost. We exam-

ine the effect of such cost and flexibility on employee productivity and the

internal organization of firms. In an otherwise standard principal-agent model

with moral hazard, we allow the principal to adopt any monitoring technology

that constitutes a finite partition of the agent’s performance state space, at

a cost that increases as the induced performance measure becomes more fine-

grained. In various classical settings, we examine the optimal incentive contract

through trade-off between the compensation cost and the monitoring cost, ob-

taining characterizations, such as information aggregation, strict MLRP, the

fine-tuning of monitoring intensity across tasks according to the agent’s ten-

dency to shirk, and the use of group incentive systems among technologically

independent agents. We apply these results to human resource management

and suggest new explanations for long-lasting puzzles.
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1 Introduction

Recent advances in IT and big data bring new opportunities and challenges to em-

ployee monitoring. First, a growing volume and variety of performance information

can be processed, stored and reported at a reduced and yet significant cost,1 enabling

all-round performance appraisals based on the 360-degree feedback received from an

employee’s supervisors, peers, subordinates and customers (Bracken et al. (2001)), as

well as detailed records that tracks his time-spending patterns and communication

histories (Woodley (2013), Straz (2015)). Second, more flexibility is embedded in the

design and implementation of monitoring technologies, sparking discussions about

how we can classify the various sources of feedback into meaningful categories (Pu-

lakos (2004)), which rating scale balances informativeness and interpretability (Hook

et al. (2011)), how managers should trade off the monitoring of linked activities (Ka-

plan and Norton (1992, 1993)), and what mix of individual and group incentives can

best motivate a large group of employees (Bryson et al. (2013)).

As of today, multi-source feedback tools are widely adopted across the globe,2

and big data analysis is gaining momentum in human resource management.3 These

trends raise an important question, that of how the cost and flexibility they introduce

to can potentially affect the monitoring and rewarding of employees, which in turn

has important effects on employee productivity and the internal organization of firms.

However, the existing incentive theory is ill-suited for addressing this question, as most

models we have seen either ignore the monitoring cost or severely limit firms’ choices

over monitoring technologies. The current paper takes a step towards filling this gap.

Our framework builds on an otherwise standard principal-agent model with moral

hazard, where we represent all acquirable information about the agent’s hidden effort

by a random and potentially high-dimensional performance state. Motivated by real-

1On the gain side, Ewen and Edwards (2001) estimates that web-based technologies have reduced
the administration cost of multi-source feedback by as much as 80 percent; Baker and Hubbard (2004)
studies how on-board computers enable the better monitoring of truck drivers; and Solman (2013)
reports that cloud-based technologies are increasingly used for employee performance tracking and
analysis. On the cost side, Bracken et al. (2001) details how the infusion of new data complexifies
the implementation of multi-source feedback; a survey by Towers and Watson in 2014 ranks HR
data and analytics among the top three areas for HR technology spending; and a recent CB Insights
article reports how big data has spurred the growth and M&A of HR startups (“The Data-ification
of HR,” 2015).

2This includes at least one third of U.S. companies and 90 percent of Fortune 500 companies.
3“The Big Data Opportunity for HR and Finance,” Harvard Business Review, April 24, 2016.
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world practices, we allow the principal to adopt any monitoring technology that

constitutes a finite partition of the performance state space, at a cost that increases

as the induced performance measure becomes more fine-grained. Assuming that the

agent can only be compensated based on the realization of the monitoring outcome,

i.e., the cell of the partition that contains the realized performance state, we examine

the optimal incentive contract through the trade-off between the compensation cost

and the monitoring cost, obtaining characterizations, such as information aggregation,

the strict monotone likelihood ratio property, the fine-tuning of monitoring intensity

across tasks according to the agency’s tendency to shirk, and the use of group incentive

systems among technologically independent agents. We apply these results to human

resource management and suggest new explanations for long-lasting puzzles.
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Figure 1: Commonly used monitoring technologies represented by partitions of the
performance state space.

To illustrate our framework, suppose the agent’s performance state consists of a

supervisory evaluation and a customer review. In a hypothetical world where moni-

toring is costless, fully revealing every performance state provides the agent with the

strongest incentive to work. But in reality, the processing, storage and communi-

cation of performance data incur significant costs, giving rise to a common practice

that is supported by information theory (Cover and Thomas (2006)), that of classi-

fying the fine-grained performance data into a limited number of categories (Bracken

et al. (2001), Pulakos (2004), Hook et al. (2011)). Figure 1 depicts two monitoring
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technologies that achieve this goal, where the one on the left panel divides the per-

formance states into “satisfactory” and “unsatisfactory” depending on whether the

supervisory evaluation exceeds a cutoff or not, whereas the one on the right panel

does so according to whether a weighted score is above or below a threshold. Admit-

tedly, these monitoring technologies put emphasis on distinct information sources and

assign varying contents to the monitoring outcomes. But in the current framework,

they can both be adopted by the principal, as long as the performance measures they

induce have about the same degree of fine-grainedness. Together, these assumptions

formalize the cost and flexibility that arise in the design and implementation of mon-

itoring technologies, enabling analysis of their impact on employee productivity and

the internal organization of firms.

The optimal monitoring technology balances the trade-off between the compensa-

tion cost and the monitoring cost. To illustrate this idea, we first revisit the classical

setup of Holmstrom (1979), where a single agent can influence the distribution of

performance states by exerting either the high effort or the low effort. In this setting,

the optimal monitoring technology features information aggregation based on a cutoff

rule over likelihood ratios, meaning that it compresses the fine-grained and high-

dimensional performance states with similar likelihood ratios into the same coarse,

single-dimensional grades. This result explains why multi-source performance ap-

praisal systems aggregate the various sources of feedback into coarse, rank-ordered

ratings, such as “outstanding,” “highly effective,” “satisfactory” and “unsatisfactory,”

according to the employee’s performance measured by an overall score. It also justi-

fies the assignment of coarse grades, such as A, B, C, D and F, based on the student’s

performance in terms of an overall grade.

This result showcases Holmstrom (1979)’s sufficient statistics principle, which says

that the optimal wage scheme for any given monitoring technology depends only on

the likelihood ratio of the monitoring outcome. This suggests that when monitoring

is costly and flexible, the principal should focus on the processing, storage and com-

munication of the likelihood ratio, and ignore the part of performance state that is

orthogonal to the likelihood ratio. As a result, the optimal monitoring technology as-

signs distinct average likelihood ratios to different monitoring outcomes, and therefore

satisfies the strict monotone likelihood ratio property with respect to the order over

likelihood ratios (henceforth abbreviated as strict MLRP). In addition, since perfor-

mance states with similar likelihood ratios have similar effects on the compensation
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cost, whereas monitoring is flexible, meaning that the monitoring cost is independent

of the monitoring outcomes’ likelihood ratios, it follows that the optimal monitoring

technology classifies performance states with similar likelihood ratios into the same

monitoring outcome and hence can be obtained from applying a simple cutoff rule

to the space of likelihood ratios. These results remain valid even if we allow for

random monitoring technologies or if part of the performance state (e.g., company’s

cash flow) can be observed at no cost. Drawing on the findings of Bloom and Van

Reenen (2006, 2007, 2010), they attribute the use of different monitoring technologies

to factors that affect the (opportunity) cost of distinguishing employee performance

(e.g., access to IT, labor market regulation, product market competition), thereby

adding a new explanation to the long-lasting puzzle surveyed by Gibbons and Hen-

derson (2012), that of why the management practices adopted by otherwise similar

firms exhibit significant and persistent heterogeneity.

In case the agent can take multiple deviant actions, the optimal incentive contract

takes the form of a balanced scorecard (Kaplan and Norton (1992, 1993)), whereby

the resources spent on the detection of each potential deviation match the Lagrange

multiplier of the corresponding incentive compatibility constraint. In the multi-task

model considered by Holmstrom and Milgrom (1991), this suggests that the principal

fine-tune the monitoring intensity across tasks according to the agent’s tendency to

shirk. This result has policy implications, including how universities should evaluate

the teaching performance of faculties who simultaneously engage in other tasks, such

as research and administration.

We finally turn to the multi-agent model considered by Holmstrom (1982), Green

and Stokey (1983) and Mookherjee (1984), where the conventional wisdom attributes

the use of group incentive contracts (e.g., team and tournament) to either the effort

complementarity or the common productivity shock between agents on the one hand,

and limits the use of individual incentive contracts among technologically independent

agents on the other hand. Recently, this view has been challenged by Bloom and Van

Reenen (2006, 2007), who find that even firms with similar production technologies

make significantly different choices between individual and group incentive contracts.

We resolve this puzzle from the angle of monitoring cost. Intuitively, group incen-

tive contracts lump the assessment of agents together and yield coarser performance

ratings than individual incentive contracts. When monitoring is costly and flexible,

the limited monitoring capacity creates an attentional linkage between agents and
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stipulates the use of group incentive contracts even if agents are technologically in-

dependent. The main prediction of our result, that employees are less recognized for

their individual performance as the monitoring cost increases, other things equal, is

supported by the findings of Bloom and Van Reenen (2006, 2007).

1.1 Related Literature

Most foundational works on incentive contracting take the monitoring technology as

exogenously given, including the single-agent model of Holmstrom (1979), the multi-

task model of Holmstrom and Milgrom (1991) and the multi-agent models of Holm-

strom (1982), Green and Stokey (1983), Nalebuff and Stiglitz (1983) and Mookherjee

(1984). Meanwhile, existing studies on contracting with costly monitoring impose

strong limitations on the principal’s choice over monitoring technologies. For exam-

ple, in the costly verification model developed by Banker and Datar (1980) and Dye

(1986), the principal is limited to drawing a signal from an exogenously given prob-

ability distribution. And in the linear contracting model that appears commonly in

applied works, the principal can only pay to reduce the variance of a Gaussain perfor-

mance signal. Due to the lack of flexibility in the choice over monitoring technologies,

these models cannot jointly predict as our model does: information aggregation, strict

MLRP, the fine-tuning of monitoring intensity across tasks, and the use of group in-

centive contract among technologically independent agents.

A growing body of empirical studies has examined the impact of IT on the in-

ternal oragnization of firms. In particular, Milgrom and Roberts (1992) documents

how the price decline of IT accelerated the replacement of mass production with

modern manufacturing; Caroli and Van Reenen (2001) investigates the role of IT in

facilitating decentralization and multi-tasking; Bresnahan et al. (2002) exploits the

complementarity between IT, workforce skill and organization changes such as em-

ployee autonomy and teamworking; and Bloom et al. (2012) attributes the U.S.’s IT

related productivity advantage to its tough people management policies on promo-

tions, rewards, hiring and firing. In constrast, we formalize the cost and flexibility

that IT brings to employee monitoring and characterize the optimal monitoring tech-

nology in various classical settings.

The current paper shares a common spirit with the literature on rational inatten-

tion pioneered by Sims (2002) and Sims (2006), whereby economic agents can process
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the information required for decision making in a flexible manner, subject to a limited

capacity constraint measured by Shannon entropy. Recently, this framework has been

applied to the study of various macro and microeconomic probelms. For example,

Maćkowiak and Wiederholt (2009) explains observed patterns on price stickiness by

the optimal allocation of firm’s attention between idiosyncratic and aggregate shocks.

Matéjka and McKay (2012) examine the optimal pricing strategy against consumers

who can process the offers made by firms with a certain degree of flexibility. The

current paper differs from these studies in two respects: first, we focus mostly on

partitional monitoring technologies in order to best represent reality, though our re-

sults carry over qualitatively to random monitoring technologies; second, we consider

a large class of monitoring cost functions that nests entropy as a special case.

Several authors have examined the impact of limited communication on mecha-

nism and organization design. Among them are Dye (1985), which characterizes the

outcome of bilateral trade when state contingencies are costly to write; Blumrosen et

al. (2007), which derives the optimal auction format in case bidders can send only a

few messages to the auctioneer; Crémer et al. (2007) and Sobel (2015), which charac-

terize the optimal organizational code that can be described by a finite vocabulary;

Dessein et al. (2016), which examines the trade-off between coordination and local-

ization when the communication between team members is costly; and Green and

Laffont (1987) and Madarasz and Prat (2016), which investigate screening problems

where the agent cannot fully describe his hidden type.

A vast literature is devoted to understanding why heterogeneity prevails among

the management practices adopted by otherwise similar firms (see Gibbons and Hen-

derson (2012) for a thorough survey). Recent theoretical works on this subject matter

include but are not limited to Chassang (2010), Li and Matouschek (2013) and Ha-

lac and Prat (2014). Specifically, Chassang (2010) formalizes the adoption of new

monitoring technology as a bandit problem and obtains characterizations, such as

heterogeneity and path-dependence. Li and Matouschek (2013) examines the conflict

cycle in relational contracts where a random and private shock affects the principal’s

cost of paying bonuses. And Halac and Prat (2014) characterizes the equilibrium

monitoring intensity in a reputation model, where the market imperfectly observes a

firm’s decision on whether or not to monitor its employee.

The remainder of this paper proceeds as follows: Section 2 introduces the model

setup; Section 3 presents the main results; Sections 4 and 5 investigate extensions of
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the baseline model; Section 6 concludes. See Appendix A for omitted proofs and the

online appendix for further results.

2 Setup

Players There is a risk-neutral principal (she) and a risk-averse agent (he). The

agent can spend a non-negative wage w ≥ 0 and privately exert either the high effort

(a = 1) or the low effort (a = 0). His utility is given by u(w)− c(a), where u(0) = 0,

u′ > 0, u′′ < 0 and c(1) = c > c(0) = 0. Each effort a generates a probability space

(Ω,Σ, Pa), where Ω ⊂ Rd is the performance state space, Σ is the Borel sigma-algebra

restricted to Ω, and Pa is the probability measure over (Ω,Σ) given a. In particular,

each performance state ω ∈ Ω contains all acquirable information about the agent’s

hidden effort (e.g., 360-degree feedback), whereas Pa is equipped with a well-defined

probability density function pa. The principal’s expected payoff depends only on the

agent’s effort. Her goal is to induce the high effort through the use of incentive

contracts.

Incentive contract An incentive contract 〈P , w(·)〉 is a pair of monitoring tech-

nology P and wage scheme w : P → R+. In general, a monitoring technology is a

probabilistic mapping between the performance state space and finitely many moni-

toring outcomes. To highlight the main intuition, we focus on partitional monitoring

technologies in the main body of this paper and defer the discussion about general

monitoring technologies to Appendix B.4. Specifically, let P be any finite partition

of Ω whose cells belong to Σ, and w : P → R+ be a function that maps each cell A of

P to a non-negative wage w(A) ≥ 0. For each ω ∈ Ω, use A(ω) to denote the unique

monitoring outcome that contains ω, and let w(A(ω)) be the wage payment at state

ω. Time evolves as follows:

1. The principal commits to an incentive contract 〈P , w(·)〉;

2. The agent privately exerts an effort a ∈ A = {0, 1};

3. Nature draws a performance state ω ∈ Ω according to Pa;

4. The monitoring technology publicly announces the monitoring outcome A (ω);

5. The principal pays the promised wage w (A (ω)) to the agent.
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Each pair of monitoring technology P = {A1, · · · , AN} and effort a defines a

random performance measure X : Ω → P whose p.m.f. PX (· | a) is given by

PX (X = An | a) = Pa(ω ∈ An) for all An ∈ P . Let ~π(P , a) = (PX(X = A1 |
a), · · · , PX(X = AN | a)) denote the probabilities of the performance measure that

(P , a) induces.

Implementation cost At any given level a of agent effort, the total cost of imple-

menting an incentive contract is given by∑
A∈P

Pa(A)w(A) + µ ·H(P , a).

This cost has two parts. The first part
∑

A∈P Pa(A)w(A), or the compensation cost,

has been the central focus of the existing principal-agent literature. Meanwhile, the

second part µ · H(P , a), henceforth referred to as the monitoring cost, is new and

captures the cost that is associated with the processing, storage and communication

of performance data. Throughout, we assume that the monitoring cost equals the

product of (1) H(P , a), a measure of the fine-grainedness of the random performance

measure that (P , a) induces, and (2) µ > 0, an exogenous variable that parameter-

izes the difficulty in implementing fine-grained monitoring technologies (henceforth

referred to as the marginal monitoring cost).

Inspired by information theory, we make the following assumption on the moni-

toring cost function.

Assumption 1. There exists a function h such that H(P , a) = h (~π(P , a)) for all

(P , a). For any N ∈ N and (π1, · · · , πN) ∈ ∆N ,

(a) h (π1, · · · , πN) = h
(
πΠ(1), · · · , πΠ(N)

)
for all permutation Π over {1, · · · , N};

(b) h (π1, · · · , πN) < h (π′1, π
′′
1 , · · · , πN) for all π′1, π

′′
1 > 0 such that π′1 + π′′1 = π1.

Assumption 1 says that the monitoring cost is invariant to how we assign contents

or namings to the monitoring outcomes, and that it increases as the induced perfor-

mance measure becomes more fine-grained. This assumption plays a crucial role in

formalizing the cost and flexibility that are arise in the design and implementation

of monitoring technologies. In information theory, it is satisfied by many commonly

used measures for the quantity of information, including bits and entropy (Cover and
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Thomas (2006)). Due to space limitations, we will further explain this assumption

and give examples of the fine-grainedness measure in Section 2.1. We will defer the

discussion on marginal monitoring cost to Section 3.3.

z-value Suppose the likelihood ratio p0/p1 exists, and define a random variable

Z : Ω→ R by

Z = 1− p0

p1

.

For each A ∈ Σ, use Z(A) to denote the image of A under the mapping Z, and define

the z-value of A by

z(A) = E[Z | A; a = 1].

A contract is incentive compatible if it induces the agent to exert the high effort, i.e.,∑
A∈P

u(w(A))P1(A)z(A) ≥ c. (IC)

A close inspection of the (IC) constraint reveals that z-value contains all the infor-

mation that the principal needs in order to deter shirking.

Optimal incentive contract A contract satisfies the agent’s limited liability con-

straint if (the online appendix replaces this with an individual rationality constraint)

w(A) ≥ 0,∀A ∈ P . (LL)

An optimal incentive contract that induces the high effort from the agent minimizes

the total implementation cost, subject to the agent’s incentive compatibility con-

straint and limited liability constraint, i.e.,

min
〈P,w(·)〉:|P|∈N

∑
A∈P

P1(A)w(A) + µ ·H(P , 1), s.t. (IC) and (LL). (2.1)

In Appendix B.1, we show that the solution to 〈P∗, w∗(·)〉 to this problem exists under

mild regularity conditions. One can verify that these conditions are compatible with

the assumptions that are required for establishing our main results. Unless otherwise

specified, our statements hold true except perhaps on a measure-zero set of states.
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2.1 Illustrative Examples

This section illustrates the usefulness of our framework through examples. We begin

with the observation that partitional monitoring technologies are commonly used for

classifying performance data in human resource management.

Example 1. Suppose Ω = R and each ω ∈ Ω represents an outcome of supervisory

evaluation. When monitoring is costless, fully revealing every ω gives the agent the

strongest incentive to exert high effort. But in reality, the processing, storage and

communication of performance data incur significant costs, giving rise to the common

practice of classifying the fine-grained performance data into coarse categories. An

example would be to label those evaluations that lie above a threshold ω̂ as “satis-

factory” and those that fall below ω̂ as “unsatisfactory.” This is formally achieved

by implementing the monitoring technology P = {(−∞, ω̂), [ω̂,+∞)} that partitions

Ω into (−∞, ω̂) and [ω̂,+∞).

We next explain how our assumption — that any partitional monitoring partition

can be implemented at a cost that increases with the fine-grainedness of the induced

performance measure — helps formalize the flexibility that arises in the design and

implementation of monitoring technologies.

Example 2. Suppose Ω = R2 and each ω ∈ Ω consists of a supervisory evaluation

zsupv and a customer review zcust. Figure 1 depicts two commonly observed monitoring

technologies, where the one on the left panel focuses exclusively on the “downward

feedback” that is given by the supervisor, whereas the one on the right panel takes into

account the “upward feedback” that is received from the customer. Admittedly, these

monitoring technologies put emphasis on different information sources and assign

varying contents to the monitoring outcomes “satisfactory” and “unsatisfactory.”

But under Assumption 1, they incur the exact same monitoring cost, as long as the

performance measures they induce have the same degree of fine-grainedness measured

by the probabilities of monitoring outcomes.

To better understand this last assumption, suppose, to the contrary, that the mon-

itoring cost can depend on the contents of the monitoring outcomes, too. Then in

general, the above described monitoring technologies incur different monitoring costs

even if they have the exact same degree of fine-grainedness measured by the probabil-

ities of monitoring outcomes. In this sense, we have created an artificial barrier to the
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adoption of the expensive monitoring technology and limited the principal’s choice

for reasons beyond the cost of processing, storage and communication of performance

data. Assumption 1 removes this barrier and expands the principal’s choice set over

monitoring technologies.

We finally give a commonly used fine-grainedness measure that satisfies Assump-

tion 1.

Example 3. As noted by Bracken et al. (2001), Pulakos (2004) and Hook et al.

(2011),4 the number of performance categories, often termed as the “rating scale,” is

commonly used to measure the fine-grainedness of the performance appraisal system

in human resource management. Monitoring cost functions that fit this description

take the form of f (|P|), where |P| denotes the cardinality of P and f is an increasing

function over N.

3 Main Result

This section examines the main features of the optimal monitoring technology. Specif-

ically, Section 3.1 shows that the performance measure induced by the optimal mon-

itoring technology satisfies the strict monotone likelihood ratio property with respect

to the order over z-values. Meanwhile, Section 3.2 demonstrates that the optimal

monitoring technology achieves information aggregation based on a cutoff rule over

z-values, meaning that it groups fine-grained and high-dimensional performance states

with similar z-values to the same coarse, single-dimensional grades.

3.1 Strict Monotone Likelihood Ratio Property

We begin by recalling the definitions of the monotone likelihood ratio property (hence-

forth abbreviated as MLRP) and the strict monotone likelihood ratio property (hence-

forth abbreviated as strict MLRP).

Definition 1. For any totally ordered set (P ,�), X : Ω→ P satisfies

4See also “Performance Management: Which Performance Rating Scale is Best, and What Should
an Employer Consider in Adopting a Performance Rating Scale?,” The Society of Human Resource
Foundation, Oct 21, 2014.
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(a) The monotone likelihood ratio property with respect to � if for all A,A′ ∈ P,

z(A) ≤ z(A′) if and only if A � A′;

(b) The strict monotone likelihood ratio property with respect to � if for all A,A′ ∈ P,

z(A) < z(A′) if and only if A � A′.

Definition 2. Any A,A′ ∈ Σ satisfy A
z

� A′ if and only if z(A) ≤ z(A′).

It is worth noting that while the performance measure induced by any arbitrary

monitoring technology satisfies the MLRP with respect to
z

� by definition,5 it violates

the strict MLRP with respect to
z

� in case there are multiple monitoring outcomes

that attain the same z-value. This observation should be contrasted with the next

theorem, which shows that the performance measure induced by the optimal moni-

toring technology always satisfies the strict MLRP with respect to
z

�.

Theorem 1. Under Assumption 1, any P∗ can be expressed as {A1, · · · , AN} where

(i) z(A1) < z(A2) < · · · < z(AN) and w∗(A1) = 0 < w∗(A2) < · · · < w∗(AN);

(ii) X : Ω→ P∗ satisfies the strict MLRP with respect to
z

�.

Theorem 1 can be shown in two steps. First, we take any arbitrary monitoring

technology P as given and solve for the optimal wage scheme for P , i.e.,

min
w:P→R+

∑
A∈P

P1(A)w(A), s.t. (IC) and (LL).

Denote the solution to this problem by w∗(·;P). Define

ẑ =
1

u′(0)
.

The next lemma restates Holmstrom (1979)’s sufficient statistics principle, that w∗(·;P)

depends only on the z-value of the monitoring outcome.

Lemma 1. For any P, there exists λ > 0 such that u′(w∗(A;P)) = 1/max{λz(A), ẑ}
for all A ∈ P.

5Milgrom (1981) observes that for any totally ordered set (P,�), X : Ω→ P satisfies the MLRP

with respect to � if and only if � and
z
� are consistent, meaning that for all A,A′ ∈ P, A � A′ if

and only if A
z
� A′.
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Lemma 1 reiterates the fact that z-value contains all the information that the

principal needs in order to deter shirking. From this follows that when monitoring is

costly and flexible, the principal should focus exclusively on the processing, storage

and communication of z-values, and ignore the part of performance state that is

orthogonal to the z-value. In particular, if two monitoring outcomes attain the same

z-value or yield the same wage, then merging them together has no incentive effect but

saves the monitoring cost. Hence all outcomes prescribed by the optimal monitoring

technology attain distinct z-values, from which strict MLRP follows.

3.2 Information Aggregation

We begin with the concept of Z-convexity.

Definition 3. A set A ∈ Σ is Z-convex if for all ω′, ω′′ ∈ A,

{ω ∈ Ω : Z(ω) = (1− s) · Z (ω′) + s · Z (ω′′) for some s ∈ (0, 1)} ⊂ A.

In words, Z-convexity means that if a set contains two states with distinct z-

values, then it must also contain all states with in-between z-values. Notice that

when Z(Ω) is connected in R, the Z-convexity of a set A reduces to the convexity of

Z(A) in R.

The next theorem shows that all cells of the optimal monitoring technology are

Z-convex and can be obtained from applying a cutoff rule to the space of z-values

under mild regularity conditions.

Theorem 2. Under Assumptions 1, each A ∈ P∗ is Z-convex. If, in addition,

that Z(Ω) is connected, then P∗ can be expressed as {A1, · · · , AN}, where there exist

−∞ ≤ ẑ0 ≤ ẑ1 ≤ · · · ≤ ẑN < +∞ such that each An contains {ω : Z(ω) ∈ (ẑn−1, ẑn)}
and potentially a subset of {ω : Z(ω) = ẑn−1 ∨ ẑn}.

Theorem 2 says that the optimal monitoring technology aggregates the fine-

grained and high-dimensional performance states with similar z-values into the same

coarse and single-dimensional grade. This result explains why multi-source perfor-

mance appraisal systems compress the various sources of feedback into coarse and

rank-ordered ratings, such as “outstanding,” “highly effective,” “satisfactory” and

“unsatisfactory,” according to the employee’s performance measured by an overall
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score. It also justifies the assignment of coarse grades, such as A, B, C, D and F,

based on the student’s performance in terms of an overall grade.

To better understand this result, consider how we should assign each performance

state to the various monitoring outcomes in order to mimimize the sum of compen-

sation cost and monitoring cost. Since performance states with similar z-values have

similar effects on the (IC) constraint and hence the compensation cost, whereas mon-

itoring is flexible, meaning that the monitoring cost is independent of the likelihood

ratios of the monitoring outcomes, it follows that the assignment of performance

states should follow an in-betweenness rule over z-values, whereby if two states with

different z-values are assigned to the same monitoring outcome, then any state with

an in-between z-value should be assigned to this monitoring outcome, too. Under

mild regularity conditions, this in-betweenness rule can be reduced to the simple

cutoff rule described above.

Theorem 2 is another showcase of the sufficient statistics principle. Intuitively,

since z-value is a sufficient statistic for the agent’s performance, the assignment of

final performance grade should respect the order over z-values when monitoring is

costly and yet flexible. It is worth distinguishing this result from the conventional

interpretation of the sufficient statistics principle, which says that in the presence of

multiple sources of performance signals, such as supervisory reports ω1 and customer

reviews ω2, it suffices to contract on a subset of signals, say ω1, if and only if ω1 is

a sufficient statistic for ω2, or equivalently if ω2 is redundant given ω1. This inter-

pretation, if taken seriously, cannot explain why so many resources are spent on the

collection and processing of redundant signals if in the end, only one single signal is

being used to grade and reward the agent. In contrast, we allow the principal to distill

Z(ω1, ω2) from (ω1, ω2) and to discard the part of information that is orthogonal to

Z(ω1, ω2). This flexibility gives rise to information aggregation even if ω1 and ω2 are

non-redundant given each other.

3.3 Discussions

Marginal monitoring cost The marginal monitoring cost parameterizes the prac-

tical challenges that arise in the implementation of fine-grained monitoring technolo-

gies. Recent empirical studies by Bloom and Van Reenen (2006, 2007, 2010) identify

a list of factors that affect this cost: on the supply side, these authors find that access
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to IT, transmission of advanced managerial practices and loose labor market regu-

lation reduce the cost of implementing fine-grained monitoring technologies; on the

demand side, they find that tough product market competition increases the demand

for high-powered incentive contracts, which in turn reduces the opportunity cost of

adopting fine-grained monitoring technologies.

Optimal degree of fine-grainedness The fine-grainedness of the optimal mon-

itoring technology hinges on the trade-off between the compensation cost and the

monitoring cost. Formally, let

W (P) =
∑
A∈P

P1(A)w∗(A;P)

be the minimal compensation cost that is incurred by any given monitoring technology

P , and express the optimal incentive contract 〈P∗(µ), w∗ (·;µ)〉 as a function of µ.

The next proposition examines how the optimal incentive contract varies with µ.

Proposition 1. For any 0 < µ′ < µ′′, any P∗(µ′) and P∗(µ′′) satisfy H (P∗(µ′), 1) ≥
H (P∗(µ′′), 1) and W (P∗(µ′)) ≤ W (P∗(µ′′)).

Proposition 1 says that as the marginal monitoring cost increases, the principal

differentiates the agent’s performance less carefully and decreases the power of the

wage scheme accordingly. In case H(P , a) = f(|P|) for some increasing function f ,

the optimal rating scale is non-increasing in the marginal monitoring cost.

More broadly, Proposition 1 illustrates how the variation in the monitoring cost

identified Bloom and Van Reenen (2006, 2007, 2010) can lead to the use of different

monitoring technologies among otherwise similar firms. This result adds an explana-

tion to a long-lasting puzzle, that of why heterogeneity prevails among the manage-

ment practices adopted by firms with similar production technologies (see Gibbons

and Henderson (2012) for a survey on this subject matter). In Section 5, we further

examine the implication of this heterogeneity for multi-agent models.

Contingent contract As in Dye (1986), suppose that after the agent privately

exerts an effort a, players observe at no cost the realization s ∈ S of a signal (e.g.,

the company’s cash flow) that is distributed independently of ω given a. Based on s,

the principal acquires information about ω through the monitoring technology that

she pre-commits to. In this setting, an incentive contract is a profile of contingent
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partitions and wage schemes (〈P (s) , w (·; s)〉)s∈S, where P (s) is a finite partition of

Ω, and w (·; s) maps each A ∈ P (s) to a non-negative wage w (A; s) ≥ 0 for each

s ∈ S. Time evolves as follows:

1. The principal commits to a contingent contract (〈P (s) , w (·; s)〉)s∈S;

2. The agent privately exerts an effort a ∈ A;

3. Nature draws ω ∈ Ω and s ∈ S.

4. Players observe s and the unique cell A(ω; s) of P (s) that contains ω;

5. The principal pays the promised wage w (A (ω; s) ; s) to the agent.

Since ω and s are independently distributed given a, the introduction of s has no

effect on the mapping Z : Ω→ R or the z-value of A ∈ Σ. Let S be finite. Define

Z(s) = 1− P0(s)

P1(s)

for each s ∈ S, and suppose that Z(s) is non-zero for all s ∈ S.

Assumption 2. Z(s) 6= 0 for all s ∈ S.

The next corollary characterizes the optimal contingent contract.

Corollary 1. Suppose Assumptions 1 and 2 hold. Then for each s ∈ S, any P∗(s) can

be expressed as {A1,s, A2,s, · · · , AN(s),s} where (i) z(A1,s) < z(A2,s) < · · · < z(AN(s),s)

and w∗(A1,s; s) = 0 < w∗(A2,s; s) < · · · < w∗(AN(s),s; s), and (ii) each An,s is Z-

convex.

4 Multiple Actions

This section extends the baseline model to encompass multiple deviant actions. Specif-

ically, let A be any finite set and a∗ ∈ A be the target action that the principal

aims to induce. To make the analysis interesting, suppose that the target action

is not the least costly action, i.e., c(a∗) > mina∈A c(a). For each deviant action

a ∈ D = A− {a∗}, define a random variable Za : Ω→ R by

Za = 1− pa
pa∗

.
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For each a ∈ D and A ∈ Σ, define the za-value of A by

za(A) = 1− Pa(A)

Pa∗(A)
.

A contract is incentive compatible if for each a ∈ D, we have∑
A∈P

u(w(A))Pa∗(A)za(A) ≥ c (a∗)− c(a). (ICa)

Take any profile of non-negative reals ~λ = (λa)a∈D. Define a random variable

Z
(
~λ
)

: Ω→ R by

Z
(
~λ
)

=
∑
a∈D

λa · Za.

For each A ∈ Σ, define the z
(
~λ
)

-value of A by

z
(
A;~λ

)
=
∑
a∈D

λa · za(A).

The next definition generalizes Z-convexity.

Definition 4. A set A ∈ Σ is Z
(
~λ
)

-convex if for all ω′, ω′′ ∈ A,

{
ω : Z

(
ω;~λ

)
= (1− s) · Z

(
ω′;~λ

)
+ s · Z

(
ω′′;~λ

)
for some s ∈ (0, 1)

}
⊂ A.

With this definition in hand, we now characterize the optimal incentive contract

that deters multiple deviant actions.

Theorem 3. Under Assumption 1, any P∗ can be expressed as {A1, · · · , AN}, where

there exist a profile ~λ∗ = (λ∗a)a∈D of non-negative reals with maxa∈D λ
∗
a > 0 such that

(i) z
(
A1; ~λ∗

)
< z

(
A2; ~λ∗

)
< · · · < z

(
AN ; ~λ∗

)
and w∗

(
A1; ~λ∗

)
= 0 < w∗

(
A2; ~λ∗

)
<

· · · < w∗
(
AN ; ~λ∗

)
;

(ii) Each An ∈ P∗ is Z
(
~λ∗
)

-convex. If, in addition, that Z
(

Ω; ~λ∗
)

is connected

in R, then there exist −∞ ≤ z∗0 ≤ · · · ≤ z∗N < +∞ such that each An contains{
ω : Z

(
ω; ~λ∗

)
∈
(
z∗n−1, z

∗
n

)}
and potentially a subset of

{
ω : Z

(
ω; ~λ∗

)
= z∗n−1 ∨ z∗n

}
.
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According to Theorem 3, the optimal incentive contract that deters multiple de-

viant actions takes the form of a balanced scorecard (Kaplan and Norton (1992, 1993)),

whereby agent’s performance Za in resisting each potential deviation a ∈ D is weighed

by the Lagrange multiplier λ∗a of the corresponding incentive compatibility constraint.

The Lagrange multipliers reveal how the principal trades off the detection of various

deviations when monitoring is costly and yet flexible. To illustrate, consider two

scenarios where (1) λ∗a is large and (2) λ∗a = 0. In the first scenario, the agent is

tempted to commit deviation a, and the principal best-responds by concentrating on

the detection of deviation a and varying the monitoring outcome significantly with

the agent’s performance Za in resisting deviation a. In the second scenario, the agent

has no desire to commit deviation a. Therefore, the principal spends no resource on

the detection of deviation a and leaves the monitoring outcome invariant to Za.

Motivated by the increasing task complexity facilitated by IT, Kaplan and Norton

(1992, 1993) invented the balanced scorecard, with the aim of improving employee

performance by monitoring and rewarding a range of linked activities. As of today,

balanced scorecard is regarded as one of the first types of pay schemes that make

use of the greater amount of information due to advances in technology, and variants

of it has been adopted by many large firms and organizations across the globe (see

Griff and Neely (2009) and the references therein). But since its invention, balanced

scorecard has been criticized, most fiercely by Jensen (2001), for giving no clue about

how managers should trade off the monitoring of different activities. Theorem 3

closes this debate: this trade-off is determined by how tempted that the employee

feels about shirking each activity. In the next section, we examine the implication of

this result for agency models with multiple tasks.

4.1 Multiple Tasks

As an application, consider an adaptation of Holmstrom and Milgrom (1991)’s multi-

task model, where the agent can privately exert either the high effort (ai = 1) or the

low effort (ai = 0) in each of the two tasks i = 1, 2. Each ai independently generates

a probability space (Ωi,Σi, Pi,ai), where Ωi ⊂ Rki is the state space of the agent’s

performance in task i, Σi is the Borel sigma-algebra restricted to Ωi, and Pi,ai is

the probability measure over (Ωi,Σi) given ai. Define ~a = a1a2 and ~ω = ω1ω2. Let

A = {11, 01, 10, 00}, a∗ = 11 and D = {01, 10, 00}, and define (Z~a)~a∈D the same way
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as we did in the previous section. Under the assumption that performance states are

independently distributed across tasks, we have

Z01(~ω) = Z01(ω1),

Z10(~ω) = Z10(ω2),

and

Z00(~ω) = Z01(ω1) + Z10(ω2)− Z01(ω1) · Z10(ω2).

For any profile ~λ = (λ~a)~a∈D of non-negative reals, define

Z
(
~ω;~λ

)
= (λ01 + λ00) · Z01(ω1) + (λ10 + λ00) · Z10(ω2)− λ00 · Z01(ω1) · Z10(ω2).

A straightforward extension of Theorem 3 leads to the following characterization for

the optimal multi-task contract.

Corollary 2. Suppose that Assumption 1 holds and that Z~a(Ω1×Ω2) is connected in

R for all ~a ∈ D. Then any P∗ can be expressed as {A1, · · · , AN}, where there exist

(a) ~λ∗ = (λ∗~a)~a∈D where λ∗~a ≥ 0, λ∗01 + λ∗00 > 0 and λ∗10 + λ∗00 > 0, and (b) −∞ ≤
z∗0 ≤ · · · ≤ z∗N < +∞, such that each An contains

{
~ω : Z

(
~ω; ~λ∗

)
∈
(
z∗n−1, z

∗
n

)}
and

potentially a subset of
{
~ω : Z

(
~ω; ~λ∗

)
= z∗n−1 ∨ z∗n

}
.

Comparing and constrasting Corollary 2 with the result of Holmstrom and Mil-

grom (1991) yields new insights into the management of multi-task agency relation-

ships. In their seminal paper, Holmstrom and Milgrom (1991) argues that when

the agent faces multiple tasks with different measurabilities (i.e., the performance-

measuring signals have different noise levels), over-incentivizing the easy-to-measure

task prevents the agent from completing the difficult-to-measure task. At the heart

of this argument is the following view, that fine-tuning the power of the compensa-

tion scheme is key to the management of multi-task agency relationships when the

performance-measuring signals can only be taken as exogenously given.

Corollary 2 suggests a conjugate solution, that of fine-tuning the monitoring in-

tensity across tasks according to the agent’s tendency to shirk. To illustrate, suppose

that the performance state in task one is drawn from a noisy probability distribu-

tion. In this case, since the one-step deviation 01 and the double-step deviation

00 are most difficult to detect, it is easy to construct examples where the ratio
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(λ∗00 + λ∗01)/(λ∗00 + λ∗10) exceeds one, meaning that it is optimal to focus mostly on

the monitoring of task one and to vary the monitoring outcome significantly with the

agent’s performance in task one. This result has policy implications, including how

universities should assess the teaching performance of faculties who simultaneously

engage in more difficult-to-measure tasks such as research.

The Lagrange multipliers constitute part of the endogenous solution to the prin-

cipal’s problem. To complete the above story, notice that as the principal shifts focus

to the monitoring of task one, the agent becomes more tempted to shirk task two in-

stead, which in turn has two effects on the optimal monitoring technology. The first

effect resembles the substitution effect in consumer theory, as requires that the prin-

cipal re-balance the monitoring intensity across tasks. The second effect is analogous

to the income effect in consumer theory, as it stipulates that adjustments be made

to the performance thresholds (z∗n)Nn=1. The analytical and numerical results that we

have so far obtained (available upon request) suggest that the overall effect depends

subtly on model primitives, especially the probability distribution functions of perfor-

mance states. Thus it is not surprising that Kaplan and Norton (1992, 1993) left the

trade-off between different tasks unspecified. This in turn suggests that in practice,

a careful evaluation of the contracting environment is required for determining the

monitoring intensity for each task.

5 Multiple Agents

Setup A risk-neutral principal faces multiple risk-averse agents i = 1, · · · , I, each of

whom can spend a non-negative wage wi ≥ 0 and exert either the high effort (ai = 1)

or the low effort (ai = 0), earning a payoff ui(wi) − ci(ai) that satisfies ui(0) = 0,

u′i > 0, u′′i < 0 and ci(1) = ci > ci(0) = 0. Each joint effort profile ~a = (a1, · · · , aI)
generates a probability space (Ω,Σ, P~a), where Ω is the space of joint performance

states, Σ is a sigma-algebra over Ω, and P~a is the probability measure over (Ω,Σ)

given ~a. The principal observes neither agent’s effort, and her goal is to induce the

high effort from all agents.

Incentive contract An incentive contract is a pair 〈P , ~w(·)〉, where P is a finite

partition of Ω whose cells belong to Σ, whereas ~w : P → RI
+ maps each A ∈ P to

a vector ~w(A) = (w1(A), · · · , wI(A)) of non-negative wages. For each joint perfor-
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mance state ~ω, let A (~ω) denote the unique monitoring outcome that contains ~ω, and

~w (A(~ω)) denote the wage vector at state ~ω. Time evolves as follows:

1. The principal commits to an incentive contract 〈P , ~w(·)〉;

2. Agents simultaneously make effort choices ai ∈ Ai = {0, 1}, i = 1, · · · , I;

3. Nature draws a joint performance state ~ω from Ω according to P~a;

4. The monitoring technology publicly announces the monitoring outcome A (~ω);

5. The principal pays the promised wage wi (A (~ω)) to agent i = 1, · · · , I.

Let ~1 denote the I-dimensional vector of ones. For each i = 1, · · · , I, define a

random variable Zi : Ω→ R by

Zi = 1−
pai=0,a−i=1

p~1
.

For each i = 1, · · · , I and A ∈ Σ, define the zi-value of A ∈ Σ by

zi(A) = E
[
Zi | A;~a = ~1

]
.

A contract is incentive compatible for agent i if∑
A∈P

ui(wi(A))P~1(A)zi(A) ≥ ci, (ICi)

and it satisfies agent i’s limited liability constraint if

wi(A) ≥ 0,∀A ∈ P . (LLi)

At any given effort profile ~a, the total cost of implementing an incentive contract is

given by ∑
A∈P

P~a(A)
I∑
i=1

wi(A) + µ ·H(P ,~a).

An optimal incentive contract minimizes the implementation cost, subject to the

incentive compatibility constraints and limited liability constraints, i.e.,

min
〈P, ~w(·)〉:|P|∈N

∑
A∈P

P~a(A)
I∑
i=1

wi(A) + µ ·H(P ,~a), s.t. (ICi) and (LLi), i = 1, · · · , I.
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Optimal multi-agent contract Define a mapping ~Z : Ω→ RI by

~Z = (Z1, · · · , ZI) ,

and use ~Z(A) to denote the image of any A ∈ Σ under ~Z. The next definition

generalizes Z-convexity.

Definition 5. A set A ∈ Σ is ~Z-convex if for any ~ω′, ~ω′′ ∈ A,{
~ω ∈ Ω : ~Z (~ω) = (1− s) · ~Z (~ω′) + s · ~Z (~ω′′) for some s ∈ (0, 1)

}
⊂ A.

The next assumption is meant for analytical elegance.

Assumption 3. ~Z(Ω) is connected in RI and the distribution of ~Z given ~a = ~1 is

atomless.

With these definition and assumption in hand, we now characterize the optimal

multi-agent contract.

Theorem 4. Under Assumptions 1, any P∗ satisfies the following properties:

(i) For each i = 1, · · · , I, there exists λi > 0 such that any A ∈ P∗ satisfies

u′i (w
∗
i (A)) = 1/max {λizi (A) , ẑ};

(ii) Each A ∈ P∗ is ~Z-convex. If, in addition, that Assumption 3 is satisfied, then

the boundaries of A consist of straight line segments in ~Z(Ω).

5.1 Individual vs. Group Incentive Contract

Theorem 4 enables us to compare individual and group incentive contracts from the

angle of monitoring cost. In order single out our contribution, we will henceforth work

with technologically independent agents. Formally, suppose each agent i’s individual

effort ai generates a probability space (Ωi,Σi, Pi,ai), where Ωi ⊂ Rdi is the space of

agent i’s individual performance states, Σi is the Borel sigma-algebra restricted to

Ωi, and Pi,ai is the probability measure over (Ωi,Σi) given ai. Agents are said to

be technologically independent if the probability space generated by the joint effort

profile has the following product structure.
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Assumption 4. (Ω,Σ, P~a) = (Ω1 × · · · × ΩI ,Σ1 ⊗ · · · ⊗ ΣI , P1,a1 × · · · × PI,aI ) for

all ~a ∈ A1 × · · · × AI .

In the language of contract theory, Assumption 4 rules out any kind of techno-

logical linkage (i.e., ωi depends on a−i) or common productivity shock (i.e., ωi, ωj are

correlated given ~a) between agents (see Segal (2006) for terminologies).

5.1.1 Partitional Representation

The analysis below considers both finite and infinite partitions. We begin with a few

definitions.

Definition 6. A partition P of Ω is an individual monitoring technology if for every

A ∈ P, there exist Ai ∈ Σi such that A = A1 × · · · × AI ; otherwise it is a group

monitoring technology.

Definition 7. Under any individual monitoring technology P, a wage scheme ~w(·;P)

for P is an individual wage scheme if wi(Ai × A′−i;P) = wi(Ai × A′′−i;P) for all

i = 1, · · · , I and Ai × A′−i, Ai × A′′−i ∈ P.

Definition 8. 〈P , ~w(·;P)〉 is an individual incentive contract if P is a individual

monitoring technology and ~w(·;P) is an individual wage scheme for P; otherwise it

is a group incentive contract.

The next lemma shows that coupling the use of individual monitoring technol-

ogy with that of individual wage scheme is optimal when agents are technologically

independent.

Lemma 2. Under Assumption 4, 〈P , ~w∗(·;P)〉 is an individual incentive contract

for any individual monitoring technology P.

Theorem 4 and Lemma 2 enable us to represent individual and group incentive

contracts as partitions of the space of ~Z(Ω). Figures 2 and 3 give such examples

in case I = 2. In particular, the individual incentive contract depicted in Figure

2 has the minimal cardinality that any individual incentive contract needs in order

to elicit the high effort from both agents. Meanwhile, Figure 3 exhausts all bi-

partitional contracts, where the team depicted on the left panel evaluates and rewards

both agents together, whereas the tournament depicted on the right panel conducts
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relative performance evaluations and rewards the best performer only. In the current

framework, all these contracts can be adopted at potentially different monitoring

costs.

W1>0	
W2>0	

W1>0	
W2=0	

W1=0	
W2=0	

W1=0	
W2>0	

Z1	

Z2	

Figure 2: Individual incentive contract.

W1=0	
W2=0	

W1>0	
W2>0	

Z2	

Z1	 Z1	

Z2	

W1>0	
W2=0	

W1=0	
W2>0	

Figure 3: Team and tournament.

Since Lazear and Rosen (1981), it has long been noted that individual performance

measures contain more fine-grained information than ordinal performance rankings.6

6A quote from Lazear and Rosen (1981) goes: “In a modern, complex business organization ...
the costs of measurement for each conceivable candidate are prohibitively expensive. Instead, it might
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In the survey conducted by Bloom and Van Reenen (2006, 2007), rewarding employees

based on their individual performance rather than the shift performance or the overall

company performance is regarded as a good management practice. A close inspection

of Figures 2 and 3 leads to a similar conclusion, that group monitoring technologies

lump the assessment of agents together and generate coarser performance ratings

than individual monitoring technologies. The next lemma formalizes this intuition in

case the fine-grainedness measure is given by the number of performance categories.

Lemma 3. Under Assumptions 3 and 4 hold, for any individual incentive contract

that elicits the high effort from both agents, there exists a group incentive contract

that does the same through a monitoring technology with a smaller cardinality.

5.1.2 Coexistence of individual and group contract

In their seminal work that ignores the monitoring cost, Holmstrom (1982), Green

and Stokey (1983) and Mookherjee (1984) argue that it is optimal to use individ-

ual incentive contracts among technologically independent agents. The reason is

straightforward: in this case, since the individual performance of an agent is a suffi-

cient statistic for his individual effort, it follows from the sufficient statistics principle

that the optimal individual incentive contract minimizes agents’ exposure to risks and

hence the compensation cost.

Since the discovery of this result, a large body of the agency literature has adopted

a dichotomous view that attributes the use of group incentive contracts to either the

technological linkage or the common productivity shock between agents on the one

hand, and confines the use of individual incentive contracts among technologically

independent agents on the other hand. Studies in this vein include Hamilton et al.

(2003) and Boning et al. (2007), which quantify the value of team incentive when

the task requires diverse skills, frequent communication and collaborative work; as

well as Holmstrom (1982), Green and Stokey (1983), Nalebuff and Stiglitz (1983) and

Mookherjee (1984), which establishes rank-order tournament as the optimal incentive

scheme in case agents face common productivity shocks.

Recently, this conventional wisdom has been challenged by Bloom and Van Reenen

(2006, 2007), who find that even firms with similar production technologies make

be said that those in the running are “tested” by assessments of performance at lower positions. Such
tests are inherently ordinal in nature ... It is in these situations such as this that the conditions seem
ripe for tournaments to be the dominant incentive contract institution.”
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signfiicantly different choices between individual and group incentive contracts. The

next proposition resolves this puzzle from the angle of monitoring cost.

Proposition 2. Suppose that Assumptions 3 and 4 hold, and that H(P , a) = f(|P|)
for some increasing function f : N ∪ {+∞} → R.

(i) When µ = 0, the optimal individual incentive contract is an optimal contract;

(ii) There exists µ > 0 such that for all µ > µ, any optimal contract is a group

incentive contract.

Proposition 2 illustrates how the variation in the marginal monitoring cost can

explain the coexistence of individual and group incentive contracts among technolog-

ically independent agents. On the one hand, Part (i) of this proposition replicates

the result of Holmstrom (1979), saying that the optimal individual incentive contract

minimizes the compensation cost among technologically independent agents. On the

other hand, Part (ii) shows that when monitoring is costly and yet flexible, mean-

ing that any partitional monitoring technology can be adopted at a cost measured

by its cardinality, the limited monitoring capacity creates an attentional linkage be-

tween agents that favors group incentive contracts over individual incentive contracts.

When the marginal monitoring cost is sufficiently high, saving the monitoring cost

becomes the primary concern and gives rise to the use of group incentive contracts

among technologically independent agents. The main prediction of this result, that

agents are less recognized for their individual performance as the marginal monitor-

ing cost increases, other things equal, is supported by the findings of Bloom and Van

Reenen (2006, 2007).

6 Conclusion

We conclude by discussing related issues and suggesting avenues for future research.

So far, we have allowed the principal to choose between a large variety of monitor-

ing technologies and have made only a few assumptions about the monitoring cost

funciton, in order to capture the flexibility in employee monitoring and to obtain ro-

bust predictions about employee productivity and the internal organization of firms.

When applying our framework to the study of more concrete problems, richer compar-

ative statics can be obtained from imposing more restrictions on either the principal’s

choice set or the monitoring cost function that best reflect the constraints in reality.
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The foregoing analysis assumes that the agent is protected by limited liability and

pays no monitoring cost. In Appendices B.2 and B.3, we replace the limited liability

constraint with an individual rationality constraint and let the agent pay part of the

monitoring cost (e.g., communication cost).

So far, we have ruled out random monitoring technologies for two reasons. First,

randomization creates confusion and disputes in human resource management. Sec-

ond, most of our results, in particular the in-betweenness property of the information

aggregation rule, remain valid even if randomization is allowed. See Appendix B.4

for further discussions and results.

Recent advancement in incentive theory (see, for example, Li (2015)) has at-

tempted to identify which features of the monitoring technology have the most sig-

nificant impact for the efficiency of long-term agency relationships. In light of these

results, it is imperative that we develop a framework for studying the optimal choice

of monitoring technology in dynamic agency models with moral hazard. We hope the

current analysis provides a useful starting point for such analysis.

A Omitted Proofs

For brevity, write πn, zn, wn and w∗n instead of P1(An), z(An), w(An) and w∗(An).

Proof of Lemma 1.

Proof. Take P∗ = {A1, · · · , AN} as given and reduce the principal’s problem to

min
{wn}

N∑
n=1

πnwn,

s.t.
N∑
n=1

πnu(wn)zn ≥ c, (IC)

and wn ≥ 0, n = 1, · · · , N. (LL)

Let λ and ηn denote the Lagrange multiplier associated with the (IC) constraint

and the (LL) constraint with respect to wn, respectively. In the principal’s problem,

taking derivative with respect to wn yields

u′ (w∗n) =
1− ηn/πn

λzn
.
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From this follows that w∗n > 0 ⇐⇒ u′ (w∗n) = 1/λzn ⇐⇒ λzn > ẑ, or equivalently

that u′ (w∗n) = 1/max {λzn, ẑ}.

Proof of Theorem 1.

Proof. Suppose, to the contrary, that w∗j = w∗k for some j 6= k. Then by merg-

ing Aj and Ak into a single cell, the principal can save the monitoring cost without

affecting the (IC) constraint, the (LL) constraint or the compensation cost, a contra-

diction. Thus w∗j 6= w∗k for all j 6= k. Furthermore, there exists zn < 0 < ẑ, because∑N
n=1 πnzn = 0. Together, these results enable us to express P∗ as {A1, · · · , AN}

where z1 < z2 < · · · < zN and w∗1 = 0 < w∗2 < · · · < w∗N .

Proof of Theorem 2.

Proof. Suppose, to the contrary, that some Aj ∈ P∗ is not Z-convex. Then there

exist A′, A′′, Ã ∈ Σ such that

(1) P1 (A′) = P1 (A′′) = P1

(
Ã
)

= ε for some small ε > 0;

(2) A′, A′′ ⊂ Aj and Ã ⊂ Ak ∈ P∗ for some k 6= j;

(3) z
(
Ã
)

= (1− s)z (A′) + sz (A′′) for some s ∈ (0, 1).

For brevity, write z̃ = z
(
Ã
)

, z′ = z (A′) and z′′ = z (A′′).

Consider two perturbations to P∗:

(a) Moving A′ to Ak and Ã to Aj (henceforth referred to as “switching” A′ and Ã);

(b) Moving Ã to Aj and A′′ to Ak (henceforth referred to as “switching” Ã and A′′).

Under Assumption 1, neither perturbation affects the monitoring cost. We now argue

that one of these perturbations reduces the compensation cost without violating the

(IC) or the (LL) constraint.

Consider perturbation (a) first. Specifically, let (zn(ε))Nn=1 denote the z-values of

the cells of P∗ after this perturbation. Straightforward algebra shows that
z′j(0) =

s (z′′ − z′)
πj

,

z′k(0) = −s (z′′ − z′)
πk

,

z′n(0) = 0,∀n 6= j, k.
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Take any profile (wn(ε))Nn=1 of wages (which clearly exists) that satisfies two condi-

tions: (1) w1(ε) = w1(0) = 0, and (2) (IC) holds after perturbation (a), i.e.,

N∑
n=1

πnu(wn(ε))zn(ε) = c.

In this new (IC) constraint, taking total derivative with respect to ε and multiplying

the result by λ (the Lagrange multiplier associated with the (IC) constraint prior to

the perturbation) yields

N∑
n=1

πn · u′ (w∗n) · λzn · w′n(0) = −λ
[
u
(
w∗j
)
· πjz′j(0) + u (w∗k) · πkz′k(0)

]
= s

[
u (w∗k)− u

(
w∗j
)]

(λz′′ − λz′) .

Now since u′ (w∗n) = 1
λzn

for all n ≥ 2 and w′1(0) = 0, it follows that

u′ (w∗n) · λzn · w′n(0) = w′n(0),∀n = 1, · · · , N.

Plugging in this condition into the previous one yields

N∑
n=1

πnw
′
n(0) = s

[
u (w∗k)− u

(
w∗j
)]

(λz′′ − λz′) , (A.1)

where the left-hand side equals the rate of change in the compensation cost.

Now consider perturbation (b). Similar algebraic manipulation yields

N∑
n=1

πnw
′
n(0) = −(1− s)

[
u (w∗k)− u

(
w∗j
)]

(λz′′ − λz′) . (A.2)

Since u
(
w∗j
)
6= u (w∗k), the right-hand sides of (A.1) and (A.2) have the opposite signs.

Thus for one of perturbations (a) and (b), we can construct a wage profile such that

after the perturbation, the compensation cost decreases while both (IC) and (LL)

remain satisfied. Thus P∗ is not optimal, a contradiction.

Proof of Proposition 1.

Proof. Take any 0 < µ′ < µ′′. Since P∗ (µ′) and P∗ (µ′′) are optimal at µ = µ′ and µ =
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µ′′, it follows that W (P∗ (µ′)) +µ′ ·H (P∗ (µ′) , 1) ≤ W (P∗ (µ′′)) +µ′ ·H (P∗ (µ′′) , 1),

and that W (P∗ (µ′′)) + µ′′ ·H (P∗ (µ′′) , 1) ≤ W (P∗ (µ′)) + µ′′ ·H (P∗ (µ′) , 1) . Tele-

scoping yields the result.

Proof of Corollary 1.

Proof. For each s ∈ S and An,s ∈ P∗ (s) (the nth cell of partition s), let zn,s, w
∗
n,s and

πn,s denote the z-value of An,s, the optimal wage at An,s and the probability measure

of An,s given a = 1, respectively.

Part (i): take (P∗(s))s∈S as given and reduce the principal’s problem to the following:

min
{wn,s}

∑
n∈N,s∈S

P1(s)πn,swn,s,

s.t.
∑

n∈N,s∈S

P1(s)πn,su(wn,s)zn,sZ(s) ≥ c, (IC)

and wn,s ≥ 0,∀n ∈ N, s ∈ S. (LL)

Let λ and ηn,s denote the Lagrange multiplier associated with the (IC) constraint

and the (LL) constraint with respect to wn,s, respectively. In the principal’s problem,

taking derivative with respect to wn,s yields

u′
(
w∗n,s

)
=

1

max {λzn,sZ(s), ẑ}
,∀n, s.

Plugging this first-order condition into the proof of Theorem 1 yields the result.

Part (ii): suppose, to the contrary, that Aj,s ∈ P∗(s) is not Z-convex for some j ∈ N
and s ∈ S. Then there exist A′, A′′, Ã ∈ Σ such that

(1) P1 (A′) = P1 (A′′) = P1

(
Ã
)

= ε for some small ε > 0;

(2) A′, A′′ ⊂ Aj,s and Ã ⊂ Ak,s ∈ P∗ (s) for some k 6= j;

(3) z
(
Ã
)

= (1− t)z (A′) + tz (A′′) for some t ∈ (0, 1).

For brevity, write z (A′) = z′, z (A′′) = z′′ and z
(
Ã
)

= z̃.
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First, consider the perturbation that switches A′ and Ã at s. Let (zn,s′ (ε))n∈N,s′∈S
denote the z-values of the cells of P∗ (s′) , s′ ∈ S after this perturbation. Straightfor-

ward algebra shows that 

z′j,s (0) =
t (z′′ − z′)

πj,s
,

z′k,s (0) = −t (z′′ − z′)
πk,s

,

z′n,s (0) = 0,∀n 6= j, k,

z′n,s′ (0) = 0,∀n and s′ 6= s.

Take any profile (wn,s′ (ε))n∈N,s′∈S of wages (which clearly exists) that satisfies two

conditions: (1) w1,s′(ε) = w1,s′(0) = 0 for all s′ ∈ S, and (2) (IC) holds after the

perturbation, i.e., ∑
s′,n

πn,s′P1 (s′)u (wn,s′ (ε)) zn,s′ (ε)Z (s′) = c.

In this new (IC) constraint, taking total derivative with respect to ε and multiplying

the result by λ yields∑
s′,n

πn,s′P1 (s′) · u′
(
w∗n,s′

)
· λzn,s′Z (s′) · w′n,s′ (0)

=− λP1 (s)Z (s)
[
u
(
w∗j,s
)
· πj,sz′j,s (0) + u

(
w∗k,s

)
· πk,sz′k,s(0)

]
=tP1 (s)Z (s)

[
u
(
w∗k,s

)
− u

(
w∗j,s
)]

(λz′′ − λz′) .

Since u′
(
w∗n,s′

)
= 1

λzn,s′Z(s′)
for all n ≥ 2 and w′1,s′ (0) = 0 for all s′ ∈ S, it follows that

u′
(
w∗n,s′

)
· λzn,s′Z (s′) · w′n,s′ (0) = w′n,s′ (0) ,∀n ∈ N, s′ ∈ S.

Substituting this into the previous condition yields∑
s′,n

πn,s′P1 (s′)w′n,s′ (0) (A.3)

=tP1 (s)Z (s)
[
u
(
w∗k,s

)
− u

(
w∗j,s
)]

(λz′′ − λz′) ,

where the left-hand side equals the rate of change in the compensation cost.
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Second, consider the perturbation that switches A′′ and Ã at s. Similar algebraic

manipulation yields∑
s′,n

πn,s′P1 (s′)w′n,s′ (0) (A.4)

=− (1− t)P1 (s)Z (s)
[
u
(
w∗k,s

)
− u

(
w∗j,s
)]

(λz′′ − λz′) .

Since w∗j,s 6= w∗k,s and Z(s) 6= 0 (Assumption 2), the right-hand sides of (A.3) and

(A.4) have the opposite signs. Thus for one of the above described perturbations, we

can construct a wage profile such that after this perturbation, the compensation cost

decreases while (IC) and (LL) remain satisfied. Thus (P∗(s′))s′∈S is not optimal, a

contradiction.

Proof of Theorem 3.

Proof. Part (i): take P∗ = {A1, · · · , AN} as given and reduce the principal’s problem

to the following:

min
{wn}

N∑
n=1

πnwn,

s.t.
N∑
n=1

πnu(wn)za,n ≥ c(a∗)− c(a), ∀a ∈ D, (ICa)

and wn ≥ 0,∀n = 1, · · · , N. (LL)

Let ~λ∗ = (λ∗a)a∈D denote the Lagrange multipliers for the incentive compatibility

constraints. Define

B = {a ∈ D : λ∗a > 0}

as the set of deviant actions that attains a binding (ICa) constraint, and notice that

B 6= ∅. In the principal’s problem, taking derivative with respect to wn yields

u′ (w∗n) =
1

max
{
zn

(
~λ∗
)
, ẑ
} ,

where zn

(
~λ∗
)

=
∑

a∈D λ
∗
a · za,n. A straightforward extension of Theorem 2 shows

that P∗ can be expressed as {A1, · · · , AN} where z1

(
~λ∗
)
< · · · < zN

(
~λ∗
)

and
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w∗1 = 0 < w∗2 < · · · < w∗N .

Part (ii): suppose, to the contrary, that some Aj ∈ P∗ is not Z
(
~λ∗
)

-convex. Then

there exist A′, A′′, Ã ∈ Σ satisfying

(1) P1 (A′) = P1 (A′′) = P1

(
Ã
)

= ε for some small ε > 0;

(2) A′, A′′ ⊂ Aj whereas Ã ⊂ Ak ∈ P∗ for some k 6= j;

(3) z
(
Ã; ~λ∗

)
= (1− s)z

(
A′; ~λ∗

)
+ sz

(
A′′; ~λ∗

)
for some s ∈ (0, 1).

For brevity, write z′
(
~λ∗
)

= z
(
A′; ~λ∗

)
, z′
(
~λ∗
)

= z
(
A′′; ~λ∗

)
and z̃

(
~λ∗
)

= z
(
Ã; ~λ∗

)
.

First, consider the perturbation that switches A′ and Ã. Let (za,n(ε))n∈N,a∈D
denote the z-values of the cells of P∗ after this perturbation. Straightforward algebra

shows that for each a ∈ D, we have
za,j(ε) =

s (z′′a − z′a)
πj

· ε+O(ε2),

za,k(ε) = −s (z′′a − z′a)
πk

· ε+O(ε2),

za,n(ε) = za,n,∀n 6= j, k.

Take any profile (wn(ε))Nn=1 of wages (which clearly exists) that satisfies three con-

ditions: (1) w1(ε) = w1(0) = 0, (2) any (ICa) that used to be slack before the

perturbation remains slack after the perturbation, i.e.,

N∑
n=1

πnu(wn(ε))za,n(ε) > c (a∗)− c(a),∀a ∈ Bc,

and (3) any (ICa) that used to be binding before the perturbation becomes weakly

slack after the perturbation, i.e.,

N∑
n=1

πnu(wn(ε))za,n(ε) ≥ c (a∗)− c(a),∀a ∈ B.

Multiplying these inequalities by their respective Lagrange multipliers and summing
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up the results yields

N∑
n=1

πnu(wn(ε))z
(
ε; ~λ∗

)
≥
∑
a∈D

λa · (c (a∗)− c(a)) .

Taking total derivative with respect to ε yields

ε·

[
N∑
n=1

πn · u′ (w∗n) · zn
(
~λ∗
)
· w′n(0) + s

(
u
(
w∗j
)
− u (w∗k)

) (
z′′
(
~λ∗
)
− z′

(
~λ∗
))]

+O
(
ε2
)
≥ 0.

Since u′ (w∗n) = 1

zn( ~λ∗)
for all n ≥ 2 and w′1(0) = 0, it follows that

u′ (w∗n) · zn
(
~λ∗
)
· w′n(0) = w′n(0),∀n ∈ N.

Plugging this into the previous inequality yields

ε ·
N∑
n=1

πnw
′
n(0) ≥ s

(
u (w∗k)− u

(
w∗j
)) (

z′′
(
~λ∗
)
− z′

(
~λ∗
))
· ε+O

(
ε2
)
. (A.5)

Second, consider the perturbation that switches A′′ and Ã. Similar algebraic

manipulation shows that

ε ·
N∑
n=1

πnw
′
n(0) ≥ −(1− s)

(
u (w∗k)− u

(
w∗j
)) (

z′′
(
~λ∗
)
− z′

(
~λ∗
))
· ε+O

(
ε2
)
. (A.6)

Since s ·
(
u (w∗k)− u

(
w∗j
))
·
(
z′′
(
~λ∗
)
− z′

(
~λ∗
))

and −(1 − s) ·
(
u (w∗k)− u

(
w∗j
))
·(

z′′
(
~λ∗
)
− z′

(
~λ∗
))

have the opposite signs, it follows that for one of the above

described perturbations, we can construct a wage profile such that after this per-

turbation, the expected wage decreases whereas all (ICa) and (LL) remain satisfied.

Thus, the contract prior to the perturbation is not optimal, a contradiction.

Proof of Corollary 2.

Proof. λ∗01 + λ∗00 > 0 and λ∗10 + λ∗00 > 0 because the contract induces the high effort

in both tasks. The rest of the proof follows that of Theorem 3.
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Proof of Theorem 4.

Proof. Part (i): write zi,n, wi,n and w∗i,n instead of zi(An), wi(An) and w∗i (An) for

brevity. Take P∗ = {A1, · · · , AN} as given and reduce the principal’s problem to

min
{wi,n}

N∑
n=1

πn

I∑
i=1

wi,n,

s.t.
N∑
n=1

πnui(wi,n)zi,n ≥ ci,∀i, (ICi)

and wi,n ≥ 0, ∀i, n. (LLi)

Let λi and ηi,n denote the Lagrange multiplier for the (ICi) constraint and the (LLi)

constraint with respect to wi,n, respectively. In the principal’s probelm, taking deriva-

tive with respect to wi,n yields

u′i
(
w∗i,n

)
=

1

max {λizi,n, ẑ}
.

For each i = 1, · · · , I, let Bi denote the cells of P∗ that yield a positive wage to agent

i, i.e.,

Bi =
{
n : w∗i,n > 0

}
.

Part (ii): suppose, to the contrary, that some Aj ∈ P∗ is not ~Z-convex. Then there

exist A′, A′′, Ã ∈ Σ such that

(1) P1(A′) = P1(A′′) = P1(Ã) = ε for some small ε > 0;

(2) A′, A′′ ⊂ Aj whereas Ã ⊂ Ak for some k 6= j;

(3) ~z
(
Ã
)

= (1− s) · ~z (A′) + s · ~z (A′′) for some s ∈ (0, 1).

For brevity, write ~z′ = ~z (A′), ~z′′ = ~z (A′′) and ~̃z = ~z
(
Ã
)

.

Consider first the perturbation that switches A′ and Ã. Let (~zn(ε))Nn=1 denote the
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~z-values of the cells of P∗ after this perturbation, where

~z′j(0) =
s ·
(
~z′′ − ~z′

)
πj

,

~z′k(0) = −
s ·
(
~z′′ − ~z′

)
πk

,

~z′n(0) = ~0, ∀n 6= j, k.

Take any profile (~wn(ε))Nn=1 of wages (which clearly exists) such that (1) wi,n(ε) = 0

for all i and n ∈ Bci , and (2) (ICi) holds for all i after the perturbation, i.e.,

N∑
n=1

πnui(wi,n(ε))zi,n(ε) = ci,∀i = 1, · · · , I.

In this new (ICi) constraint, taking total derivative with respect to ε and multiplying

the result by λi yields

N∑
n=1

πn · u′i
(
w∗i,n

)
· λizi,j · w′i,n(0)

=− λi
[
ui
(
w∗i,j
)
· πjz′i,j(0) + ui

(
w∗i,k
)
· πkz′i,k(0)

]
,∀i = 1, · · · , I.

Since u′i
(
w∗i,n

)
= 1

λizi,n
for all n ∈ Bi and w′i,n(0) = 0 for all n ∈ Bci , it follows that

u′i
(
w∗i,n

)
· λizi,n(0) · w′i,n(0) = w′i,n(0),∀n, i.

Plugging this into the previous condition and summing up the results over i yields

I∑
i=1

N∑
n=1

πnw
′
i,n(0) = s ·

(
~u∗k − ~u∗j

)
· Λ ·

(
~z′′ − ~z′

)
, (A.7)

where ~u∗n =
(
u1

(
w∗1,n

)
, · · · , uI

(
w∗I,n

))
for n = k, j and Λ =


λ1 · · · 0
...

. . .
...

0 · · · λI

. Notice

that the left-hand side of (A.7) equals the rate of change in the compensation cost.

Now consider the perturbation that switches A′′ and Ã. Similar algebraic manip-
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ulation yields

I∑
i=1

N∑
n=1

πnw
′
i,n(0) = −(1− s) ·

(
~u∗k − ~u∗j

)
· Λ ·

(
~z′′ − ~z′

)
. (A.8)

Since ~u∗k − ~u∗j 6= ~0 because otherwise we can merge Aj and Ak together and save the

monitoring cost, there are two remaining cases to consider:

(i)
(
~z′′ − ~z′

)
· Λ ·

(
~u∗k − ~u∗j

)
6= 0. In this case, (A.7) and (A.8) have the opposite

signs, and the remainder of the proof follows that of Theorem 2.

(ii)
(
~z′′ − ~z′

)
·Λ ·

(
~u∗k − ~u∗j

)
= 0. In this case, we can always find B′ ⊂ A′, B′′ ⊂ A′′

and B̃ ⊂ Ã such that (1) P1 (B′) = P1 (B′′) = P1

(
B̃
)
< ε, (2) ~z

(
B̃
)

= (1−s′) ·

~z (B′)+s′·~z (B′′) for some s′ ∈ (0, 1), and (3) (~z (B′′)− ~z (B′))·Λ·
(
~u∗k − ~u∗j

)
6= 0.

Replacing A′, A′′ and Ã with B′, B′′ and B̃ in the above argument and the result

follows.

Proof of Lemma 2.

Proof. Under Assumption 4, any cell A = A1 × · · · × AI ∈ Σ satisfies

zi(A) = 1−
∫
A
pai=0,a−i=1(~ω)d~ω∫

A
p~1(~ω)d~ω

= 1−
∫
Ai
pai=0(ωi)dωi∫

Ai
pai=1(ωi)dωi

,

where the right-hand side depends only on Ai. Plugging this into Part (i) of Theorem

4 and the result follows.

Proof of Lemma 3

Proof. First, the monitoring technology of any individual incentive contract that in-

duces the high effort from all agents has at least 2I cells. Second, there exists a

bi-partitional monitoring technology, e.g., {{~z :
∑

i aizi ≥ κ,∀I} , {~z :
∑

i aizi < κ}},
that induces the high effort from all agents when equipped with the optimal wage

scheme.

Proof of Proposition 2.
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Proof. Part (i): see the original proof of Holmstrom (1982).

Part (ii): for each N ≥ 2, define

WN = inf
P:|P|≤N

I∑
i=1

∑
A∈P

w∗i (A;P)

as the infimum of the minimum compensation costs that are attained by monitoring

technologies with at most N cells. Notice that WN is well-defined for all N ≥ 2

and is non-increasing in N . Hence there exists µ > 0 such that WN + µ · f(N) >

W2I−1 + µ · f
(
2I − 1

)
for all N ≥ 2I and µ > µ. Thus for all µ > µ, any P∗(µ) has

at most 2I − 1 cells and hence is a group monitoring technology.

B Online Appendix (For Online Publication Only)

B.1 Existence of Optimal Incentive Contract

In the baseline model, suppose the range of Z is compact and connected in R.

Assumption 5. Z(Ω) is compact and connected in R.

Theorem 5. Under Assumptions 1 and 5, the solution to Problem (2.1) exists in the

following situations:

(i) H(P , a) = f(|P|), where f : N→ R is increasing and unbounded above;

(ii) H(P , a) =

h (~π(P , a)) if |P| ≤ K

+∞ if |P| > K
, where K ∈ N − {1} and h : ∆K → R is

continuous.

Proof. Part (i): suppose for simplicity and for now that the distribution of Z given

a = 1 is atomless. From Theorem 2, it follows that any P∗ = {A1, · · · , AN} can

be characterized by N + 1 cutoff z-values ẑ0 ≤ · · · ≤ ẑN where An = {ω : Z(ω) ∈
[ẑn−1, ẑn]} for all n = 1, · · · , N . Hence the principal’s problem can be solved in two

steps:

Step 1. For each K ≥ 2, find K + 1 cutoff z-values ẑ0 ≤ · · · ≤ ẑK that mimimize the

compensation cost. Define

ZK = {(ẑ0, · · · , ẑK) : ẑn ∈ Z(Ω), n = 0, · · · , K and ẑ0 ≤ · · · ≤ ẑK} ,
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and equip ZK with the sup-norm. Let ~̂z = (ẑ0, · · · , ẑK), and write W
(
~̂z
)

instead of W (P) (the minimum compensation cost under P). Formalize the

principal’s problem as follows:

min
~̂z∈ZK

W
(
~̂z
)
.

Since W is continuous in its argument and ZK is compact, the solution to

this problem exists. Denote a solution by ~̂z∗ and let WK = W
(
~̂z∗
)

be the

minimal compensation cost attained by ~̂z∗.

Step 2. Solve for minK≥2WK + µ · f(K). Since WK is non-increasing in K whereas

f(K) is increasing and unbounded above, the solution to this problem exists.

Now suppose the distribution of Z given a = 1 has atoms. Then the principal’s

choice variable becomes ((ẑ0, p0) , · · · , (ẑK , pK)), where ẑn ∈ Z(Ω) is a cutoff z-value,

and pn ∈ [0, 1] denote the probability of assigning {ω : Z(ω) = ẑn} to An. Plugging

this to the argument above and the result follows.

Part (ii): for simplicity, consider only the case where the distribution of Z given a = 1

is atomless. For any profile ~̂z ∈ ZK of cutoff z-values, write the monitoring cost as

a function of ~̂z, i.e., h
(
~̂z
)

= h (P1(Z(ω) ∈ [ẑ0, ẑ1]), · · · , P1(Z(ω) ∈ [ẑK−1, ẑK ])), and

notice that h
(
~̂z
)

is continuous in its argument. Formalize the principal’s problem as

follows:

min
~̂z∈ZK

W
(
~̂z
)

+ µ · h
(
~̂z
)
.

Since ZK is compact and the objective function is continuous, the solution to this

problem exists.

B.2 Individual Rationality

In the baseline model, suppose the agent faces an outside option that confers a reser-

vation utility u at the contracting stage. An incentive contract 〈P , w(·)〉 constitutes

a pair of monitoring technology P and wage scheme w : P → R. It is individually

rational if ∑
A∈P

P1(A)u(w(A)) ≥ c+ u. (IR)
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The optimal incentive contract minimizes the total implementation cost, subject to

(IC) and (IR).

Corollary 3. Under Assumption 1, any P∗ can be expressed as {A1, · · · , AN} where

(i) z(A1) < · · · < z(AN) and w∗(A1) < · · · < w∗(AN);

(ii) Each An ∈ P∗ is Z-convex.

Proof. Part (i): take P∗ = {A1, · · · , AN} as given and reduce the principal’s problem

to

min
{wn}

N∑
n=1

πnwn,

N∑
n=1

πnu(wn)zn ≥ c, (IC)

N∑
n=1

πnu(wn) ≥ c+ u. (IR)

Let λ and µ denote the Lagrange multiplier associated with the (IC) constraint and

the (IR) constraint, respectively. In the principal’s problem, taking derivative with

respect to wn yields

u′ (w∗n) =
1

λzn + µ
.

Hence if zj = zk for any Aj, Ak ∈ P∗, then merging Aj and Ak into a single cell has

no effect on (IC) or (IR) but saves the monitoring cost, a contradiction. Thus P∗ can

be written as {A1, · · · , AN} where z(A1) < · · · < z(AN) and w∗(A1) < · · · < w∗(AN).

Part (ii): suppose, to the contrary, that some Aj ∈ P∗ is not Z-convex. First, consider

the perturbation in the proof of Theorem 2 that switches A′ and Ã, where
z′j(0) =

s (z′′ − z′)
πj

z′k(0) = −s (z′′ − z′)
πk

,

z′n(0) = 0,∀n 6= j, k.
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Take any profile (wn(ε))Nn=1 of wages that satisfies (IC) and (IR) after this perturba-

tion, i.e.,

λ ·
N∑
n=1

πnu(wn(ε))zn(ε) = λ · c,

and µ ·
N∑
n=1

πnu(wn(ε)) = µ · (c+ u).

In these new conditions, taking total derivative with respect to ε and summing up

the results yields

N∑
n=1

πn · u′ (w∗n) · (λzn + µ) · w′n(0) = −λ
[
u
(
w∗j
)
· πjz′j(0) + u (w∗k) · πkz′k(0)

]
.

Now since u′ (w∗n) = 1
λzn+µ

for all n = 1, · · · , N , it follows that

u′ (w∗n) · (λzn + µ) · w′n(0) = w′n(0),∀n = 1, · · · , N.

Substituting this into the previous condition yields

N∑
n=1

πnw
′
n(0) = s

[
u (w∗k)− u

(
w∗j
)]

(λz′′ − λz′) , (B.1)

where the left-hand side equals the rate of change in the expected wage.

Now consider the perturbation that switches Ã and A′′. Similar algebraic manip-

ulation yields

N∑
n=1

πnw
′
n(0) = −(1− s)

[
u (w∗k)− u

(
w∗j
)]

(λz′′ − λz′) . (B.2)

Since u
(
w∗j
)
6= u (w∗k), the right-hand sides of (B.1) and (B.2) have the opposite signs.

The rest of the proof follows that of Theorem 2.

B.3 Cost sharing

In the baseline model, suppose a fraction β ∈ [0, 1] of the monitoring cost is borne by

the agent.
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Corollary 4. Under Assumption 1, for any β ∈ [0, 1], Theorems 1 and 2 hold if

(i) H(P , a) = f(|P|);

(ii) H(P , a) = h(~π(P , a)) for some totally differentiable function h, and

u (w∗ (An)) + β
∂h

∂πn
(P0 (A1) , · · · , P0 (AN))

differs across all n = 1, · · · , N under the optimal contract.

Proof. Part (i): same as the proofs of Theorem 1 and 2.

Part (ii): in this case, the agent’s incentive compatibility constraint becomes

N∑
n=1

πnu(wn)zn − c ≥ β [h (π1, · · · , πN)− h (π1z1, · · · , πNzN)] (ICβ)

Suppose, to the contrary, that some cell of P∗ is not Z-convex. First, consider the

perturbation in the proof of Theorem 2 that switches A′ and Ã. Take any profile

of wages {wn(ε)}Nn=1 such that (1) w1(ε) = w1(0) = 0 and (2) (ICβ) holds after this

perturbation, i.e.,

N∑
n=1

πnu(wn(ε))zn(ε)− c = β [h (π1, · · · , πN)− h (π1z1(ε), · · · , πNzN(ε))] .

Similar algebraic manipulation as that in the proof of Theorem 2 yields

N∑
n=1

πnw
′
n(0) = s[vk − vj] (λz′′ − λz′) , (B.3)

where

vn = u (w∗k) + β
∂h

∂πk
(P0(A1), · · · , P0(AN)), n = k, j.

Next, consider the perturbation in the proof of Theorem 2 that switches Ã and

A′′. Similar algebraic manipulation yields

N∑
n=1

πnw
′
n(0) = −(1− s)[vk − vj] (λz′′ − λz′) . (B.4)
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Since vk 6= vj, the right-hand sides of (B.3) and (B.4) have the opposite signs. The

remainder of the proof follows that of Theorem 2.

B.4 Random Monitoring Technology

Setup In the baseline model, let the monitoring technology P : Ω → ∆N map

each ω ∈ Ω to a finite probability vector P(ω) = (p1(ω), · · · , pN(ω)) ∈ ∆N , and

w : {1, · · · , N} → R+ map each monitoring outcome n ∈ {1, · · · , N} to a non-

negative wage wn ≥ 0. Time evolves as follows:

1. The principal commits to an incentive contract 〈P , w〉;

2. The agent privately exerts an effort a ∈ A = {0, 1};

3. Nature draws ω ∈ Ω according to Pa;

4. The monitoring technology publicly announces n ∈ {1, · · · , N} with probability

pn(ω);

5. The principal pays the promised wage wn.

In this setting, (P , a) induces a random performance measureX : Ω→ {1, · · · , N},
where

πn(P , a) , PX(X = n | a) =

∫
pn(ω)dPa(ω).

Let ~π(P , a) = (πn(P , a))Nn=1 denote the probability vector that (P , a) induces. Define

Z : Ω → R and z(A) for each A ∈ Σ the same as before. For each n ∈ {1, · · · , N},
define the z-value of monitoring outcome n by

zn(P) =

∫
pn(ω)Z(ω)dP1(ω)∫
pn(ω)dP1(ω)

.

A contract is incentive compatible if

N∑
n=1

πn(P , 1)zn(P)u(wn) ≥ c.
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At any given level a of agent effort, the total cost of implementing an incentive

contract is
N∑
n=1

πn(P , a)wn + µ · h (~π(P , a)) ,

where h satisfies Assumption 1. An optimal incentive contract minimizes the total

implementation cost, subject to the agent’s incentive compability and limited liability

constraints, i.e.,

min
N∈N,〈P,w〉

N∑
n=1

πn(P , 1)wn + µ · h (~π(P , 1)) , s.t. (IC) and (LL).

Analysis The next definition generalizes Z-convexity.

Definition 9. P is ~u-inbetween for some ~u ∈ ∆N if for any ω′, ω′′, ω̃ ∈ Ω whereby

Z(ω̃) = (1− s) · Z(ω′) + s · Z(ω′′) for some s ∈ (0, 1), we have

min {P(ω′) · ~u,P(ω′′) · ~u} ≤ P(ω̃) · ~u ≤ max {P(ω′) · ~u,P(ω′′) · ~u} .

Theorem 6. Under Assumption 1, any 〈P∗, w∗〉 satisfies the following properties:

(i) z1 (P∗) < z∗2 (P∗) < · · · < zN (P∗) and w∗1 = 0 < w∗2 < · · · < w∗N ;

(ii) P∗ is (u(w∗1), · · · , u(w∗N))-inbetween.

Proof. For brevity, write zn and πn instead of zn(P) and πn(P , 1).

Part (i): take P∗ as given and reduce the principal’s problem to the following:

min
{wn}

N∑
n=1

πnwn,

s.t.
N∑
n=1

πnu(wn)zn ≥ c, (IC)

and wn ≥ 0, n = 1, · · · , N. (LL)

Taking derivative with respect to wn yields

u′(w∗n) = 1/max{λzn, ẑ}.

45



Thus if w∗j = w∗k for some j 6= k, then merging j and k into a single monitoring

outcome has no incentive effect but saves the monitoring cost. Furthermore, w∗n = 0

for some n whereby zn < 0, because
∑N

n=1 πnzn = 0. Thus we can rank the monitoring

outcomes according to their z-values such that z∗1 < z∗2 < · · · < z∗N and w∗1 = 0 <

w∗2 < · · · < w∗N .

Part (ii): take any A′, A′′, Ã ∈ Σ such that

(1) P1 (A′) = P1 (A′′) = P1

(
Ã
)

= ε for some small ε > 0;

(2) z
(
Ã
)

= (1− s)z (A′) + sz (A′′) for some s ∈ (0, 1).

For each n = 1, · · · , N and A ∈
{
A′, A′′, Ã

}
, define

pn(A) =

∫
A
pn(ω)dP1(ω)∫
A
dP1(ω)

.

For brevity, write p′n = pn (A′), p′′n = pn (A′′), p̃n = pn

(
Ã
)

, z̃ = z
(
Ã
)

, z′ = z (A′)

and z′′ = z (A′′).

Consider two perturbations to P∗:

(a) Apply (p′1, · · · , p′N) to ω ∈ Ã and (p̃1, · · · , p̃N) to ω ∈ A′;

(b) Apply (p′′1, · · · , p′′N) to ω ∈ Ã and (p̃1, · · · , p̃N) to ω ∈ A′′.

Under Assumption 1, neither perturbation affects the monitoring cost. We now eval-

uate their effects on the compensation cost.

Consider perturbation (a) first. Specifically, let (zn(ε))Nn=1 denote the z-values of

the monitoring outcomes after this perturbation. Straightforward algebra shows that

z′n(0) =
1

πn
(p̃n − p′n) (z′ − z̃),∀n = 1, · · · , N.

Take any profile (wn(ε))Nn=1 of wages (which clearly exists) that satisfies two condi-

tions: (1) w1(ε) = w1(0) = 0, and (2) (IC) holds after perturbation (a), i.e.,

N∑
n=1

πnu(wn(ε))zn(ε) = c.
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In this new (IC) constraint, taking total derivative with respect to ε and multiplying

the result by λ (the Lagrange multiplier associated with the (IC) constraint prior to

the perturbation) yields

N∑
n=1

πn · u′ (w∗n) · λzn · w′n(0) = −λ
N∑
n=1

u(w∗n) · πnz′n(0)

= s · ~u∗ ·
(
~̃p− ~p′

)
· (λz′′ − λz′) .

where ~u∗ = (u (w∗1) , · · · , u (w∗N)), ~̃p = (p̃1, · · · , p̃N) and ~p′ = (p′1, · · · , p′N). Further-

more, since u′ (w∗n) = 1
λzn

for all n ≥ 2 and w′1(0) = 0, it follows that

u′ (w∗n) · λzn · w′n(0) = w′n(0),∀n = 1, · · · , N.

Plugging in this into the previous condition yields

N∑
n=1

πnw
′
n(0) = s · ~u∗ ·

(
~̃p− ~p′

)
· (λz′′ − λz′) , (B.5)

where the left-hand side gives the rate of change in the compensation cost.

Now consider perturbation (b). Similar algebraic manipulation yields

N∑
n=1

πnw
′
n(0) = −(1− s) · ~u∗ ·

(
~̃p− ~p′′

)
· (λz′′ − λz′) . (B.6)

Since the right-hand sides of these conditions have the same signs, it follows that

min
{
~p′ · ~u∗, ~p′′ · ~u∗

}
≤ ~̃p · ~u∗ ≤ max

{
~p′ · ~u∗, ~p′′ · ~u∗

}
.
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