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Abstract

Multivalued treatment models have only been studied so far under restric-

tive assumptions: ordered choice, or more recently unordered monotonicity. We

show how treatment effects can be identified in a more general class of models.

Our results rely on two main assumptions: treatment assignment must be a

measurable function of threshold-crossing rules; and enough continuous instru-

ments must be available. On the other hand, we do not require any kind of

monotonicity condition. We illustrate our approach on several commonly used

models; and we also analyze the identifying power of discrete instruments.
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1 Introduction

Since the seminal work of Heckman (1979), selection problems have been one of the

main themes in both empirical economics and econometrics. One popular approach

in the literature is to rely on instruments to uncover the patterns of the self-selection

into different levels of treatments, and thereby to identify treatment effects. The main

branches of this literature are the local average treatment effect (LATE) framework

of Imbens and Angrist (1994) and the local instrumental variables (LIV) framework

of Heckman and Vytlacil (2005).

The LATE and LIV frameworks emphasize different parameters of interest and

suggest different estimation methods. However, they both focus on binary treatments,

and restrict selection mechanisms to be “monotonic”. Vytlacil (2002) establishes that

the LATE and LIV approaches rely on the same monotonicity assumption. For binary

treatment models, it requires that selection into treatment be governed by a single

index crossing a threshold.

Many real-world selection problems are not adequately described by single-crossing

models. The literature has developed ways of dealing with less restrictive models of

assignment to treatment. Angrist and Imbens (1995) analyze ordered choice models.

Heckman, Urzua, and Vytlacil (2006, 2008) show how (depending on restrictions and

instruments) a variety of treatment effects can be identified in discrete choice models

that are additively separable in instruments and errors. More recently, Heckman and

Pinto (2015) define an “unordered monotonicity” condition that is weaker than mono-

tonicity for multivalued treatment. They show that given unordered monotonicity,

several treatment effects can be identified.

The most generally applicable of these approaches still can only deal with models

of treatment that are formally analogous to an additively separable discrete choice

model, as proved in Section 6 of Heckman and Pinto (2015). The key condition is

that the data contain changes in instruments that create only one-way flows in or

out of the treatment cells the analyst is interested in. In binary treatment models,

this is exactly the meaning of monotonicity: there cannot be both compliers and

defiers, so that LATE estimates the average treatment effect on compliers1. Things

are somewhat more complex in multivalued treatment models. Unless selection only

1de Chaisemartin (2015) shows that under a condition weaker than monotonicity, LATE estimates
the average treatment effect on a specific subset of the compliers.
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depends on one function of the instruments, there will be changes in instruments that

generate two-way flows in and out of any treatment cell. Unordered monotonicity

requires that we observe some changes in instruments that only induce one way-flows.

This is still too restrictive for important applications. Many transfer programs for

instance (or many tests in education) rely on several criteria and combine them in

complex ways to assign agents to treatment; and agents add their own objectives and

criteria to the list. An additively separable discrete choice model may not describe

such a selection mechanism. To see this, start from a very simple and useful applica-

tion: the double hurdle model, which treats agents only if each of two indices passes

a threshold2. While this is a binary treatment model, the existence of two thresholds

makes it non-monotonic: if a change in instruments increases a threshold but reduces

the other, some agents will move into the treatment group and some will move out

of it. Yet it is still an unordered monotonic model: any change in instruments that

moves the two thresholds in the same direction only creates one-way flows.

Now let us change the structure of the model slightly: there are still two thresholds,

but we only treat agents who are above one threshold and below the other. As we

will see in Section 2, any change in instruments that moves both thresholds will

generate two-way flows, and standard approaches to identification fail. This model

of selection with two-way flows cannot be represented by a discrete choice model;

it is formally equivalent to a discrete choice model with three alternatives in which

the analyst only observes partitioned choices (e.g. the analyst only observes whether

alternative 2 is chosen or not). Our identification results apply to this variant of

the double hurdle model, and to all treatment models generated by a finite family

of threshold-crossing rules. In fact, one way to describe our contribution is that it

encompasses all additively separable discrete choice models in which the analyst only

observes a partition of the set of alternatives.

Our analysis allows selection to be determined by a vector of unobservables, in-

stead of a scalar random variable; and these unobservables can be correlated with

potential outcomes. We rely on the control function approach, but we use a vec-

tor of control variables to deal with multidimensional unobserved heterogeneity. We

establish conditions under which one can identify the probability distribution of un-

observables governing the selection mechanism, as well as a generalized version of the

marginal treatment effects (MTE) of Heckman and Vytlacil (2005). Furthermore, we

2See, e.g. Poirier (1980) for a parametric version of this model.
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discuss a few applications to illustrate the usefulness of our approach.

We will give a detailed comparison between our paper and the existing literature

in Section 6. Let us only mention at this stage a few points in which our paper differs

from the literature. Unlike Imbens (2000), Hirano and Imbens (2004), and Cattaneo

(2010), we allow for selection on unobservables. Gautier and Hoderlein (2015) study

binary treatment when selection is driven by a rule that is linear in a vector of

unobservable heterogeneity; this breaks monotonicity in a different way than ours.

We focus on the point identification of marginal treatment effects, unlike the research

on partial identification (see e.g. Manski (1990), Manski (1997) and Manski and

Pepper (2000)). Chesher (2003), Hoderlein and Mammen (2007), Florens, Heckman,

Meghir, and Vytlacil (2008), Imbens and Newey (2009), D’Haultfœuille and Février

(2015), and Torgovitsky (2015) study models with continuous endogenous regressors,

based on control function approaches. Each of these papers develops identification

results for various parameters of interest. Our paper complements this literature by

considering multivalued (but not continuous) treatments with more general types of

selection mechanisms.

Heckman and Vytlacil (2007, Appendix B) and Heckman, Urzua, and Vytlacil

(2008) and more recently Heckman and Pinto (2015) and Pinto (2015) are closer to

our paper. But they focus on the selection induced by multinomial discrete choice

models, whereas our paper allows for more general selection problems.

The paper is organized as follows. Section 2 sets up our framework; it motivates

our central assumptions by way of examples. We present and prove our identification

results in Section 3. Section 4 applies our results to four important classes of applica-

tions, including the models mentioned in this introduction. We also use some of these

models to analyze the case in which instruments are discrete-valued in Section 5. Fi-

nally, we relate our contributions to the literature in Section 6. Some further results

and details of the omitted proofs are collected in Online Appendices.

2 The Model and our Assumptions

We assume throughout that treatments take values in a finite set of treatments K.

This set may be naturally ordered, as with different tax rates. But it may not be, as

when welfare recipients enroll in different training schemes for instance; this makes no

difference to our results. We assume that treatments are exclusive; this involves no
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loss of generality as treatment values could easily be redefined otherwise. We denote

K = |K| the number of treatments, and we map the set K into {0, . . . , K − 1} for

notational convenience.

Potential outcomes {Yk : k ∈ K} are generated by

Yk = µk(X, Uk),

where X is a vector of covariates, Uk is an unobserved random variable, and µk(·, ·)
is an unknown function of X and Uk for each k ∈ K. We denote Dk = 1 if the k

treatment is realized and Dk = 0 otherwise. The observed outcome and treatment

are Y :=
∑

k∈K YkDk and D :=
∑

k∈K kDk, respectively.

In addition to the covariates X, observed treatment D and outcomes Y , the

data contain a random vector Z that will serve as instruments. We will always

condition on the value of X in our analysis of identification; and we suppress it

from the notation. Observed data consist of a sample {(Yi, Di,Zi) : i = 1, . . . , N}
of (Y,D,Z), where N is the sample size. We will denote the generalized propensity

scores by Pk(Z) := Pr(D = k|Z); they are directly identified from the data.

Let G denote a function defined on the support Y of Y . We focus on identification

of EG(Yk). For example, if we take G(Yk) = Yk, then the object of interest is the

mean of the counterfactual outcome Yk (conditional on the omitted covariates X).

Once we identify EG(Yk) for each k, we also identify the average treatment effect

E(G(Yk) − G(Yj)) between any two treatments k and j. Alternatively, if we let

G(Yk) = 11(Yk ≤ y) for some y, where 11(·) is the usual indicator function, then the

object of interest is the marginal distribution of Yk. This leads to the identification

of quantile treatment effects.

One of our aims is to relax the usual monotonicity assumption that underlies

LATE and LIV. Consider the following, simple example where K = 3, and treat-

ment assignment is driven by a pair of random variables V1 and V2 whose marginal

distributions are normalized to be U [0, 1].

Example 1 (Selection with Two-Way Flows). Assume that there are two thresholds

Q1(Z) and Q2(Z) such that

• D = 0 iff V1 < Q1(Z) and V2 < Q2(Z),

• D = 1 iff V1 > Q1(Z) and V2 > Q2(Z),
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• D = 2 iff (V1 −Q1(Z)) and (V2 −Q2(Z)) have opposite signs.

We could interpret Q1 and Q2 as minimum grades or scores in a two-part exam or an

eligibility test based on two criteria: failing both parts/criteria assigns you to D = 0,

passing both to D = 1, and failing only one to D = 2.

If F is the joint cdf of (V1, V2), it follows that the generalized propensity scores

are

P0(Z) = F (Q1(Z), Q2(Z)) ,

P1(Z) = 1−Q1(Z)−Q2(Z) + F (Q1(Z), Q2(Z)) ,

P2(Z) = Q1(Z) +Q2(Z)− 2F (Q1(Z), Q2(Z)) .

(2.1)

Take a change in the values of the instruments that increases both Q1(Z) and Q2(Z),

as represented in Figure 1: both criteria, or both parts of the exam, become more

demanding. Then some observations (a) will move from D = 1 to D = 2, some (b)

from D = 1 to D = 0, and some (c) will move from D = 2 to D = 0. This violates

monotonicity, and even the weaker assumption that generalized propensity scores are

monotonic in the instruments. Note also that some observations leave D = 2 and

some move into D = 2: there are two-way flows in and out of D = 2. Moreover, it

is easy to see that any change in the thresholds creates such two-way flows; Figure 2

illustrates it for changes in opposite directions, with observations (d) moving from

D = 0 to D = 2, observations (e) moving from D = 2 to D = 1, observations (f)

moving from D = 1 to D = 2 and observations (g) moving from D = 2 to D = 0.

Therefore this model violates the weaker requirement of unordered monotonicity

of Heckman and Pinto (2015), which we describe in Section 6.3—unless we are only

interested in treatment values 0 and 1.

To take a slightly more complicated example, consider the following entry game.

Example 2 (Entry Game). Two firms j = 1, 2 are considering entry into a new

market. Firm j has profit πmj if it becomes a monopoly, and πdj < πmj if both firms

enter. The static Nash equilibria are simple:

• if both πmj < 0, then no firm enters;

• if πmj > 0 and πmk < 0, then only firm j enters;
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Figure 1: Example 1
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• if both πdj > 0, then both firms enter;

• if πdj > 0 and πdk < 0, then only firm j enters;

• if πmj > 0 > πdj for both firms, then there are two symmetric equilibria, with

only one firm operating.

Now let πmj = Vj − Qj(Z) and πdj = V̄j − Q̄j(Z), and suppose we only observe the

number D = 0, 1, 2 of entrants. Then

• D = 0 iff V1 < Q1(Z) and V2 < Q2(Z)

• D = 2 iff V̄1 > Q̄1(Z) and V̄2 > Q̄2(Z)

• D = 1 otherwise.

This is very similar to the structure of Example 1; in fact it coincides with it in the

degenerate case when for each firm, πjm and πjd have the same sign with probability

one.
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Figure 2: Example 1 (bis)
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2.1 The Selection Mechanism

These two examples motivate the weak assumption we impose on the underlying

selection mechanism. In the following we use J to denote the set {1, . . . , J}.

Assumption 2.1 (Selection Mechanism). There exist a finite number J , a vector of

unobserved random variables V := {Vj : j ∈ J}, and a vector of known functions

{Qj(Z) : j ∈ J} such that, equivalently:

(i) the treatment variable D is measurable with respect to the σ-field generated by

the events

Ej(Z) := {Vj < Qj(Z)} for j ∈ J ;

(ii) each event {D = k} = {Dk = 1} is a member of this σ-field;

(iii) for each k, there exists a function gk that is measurable with respect to this

σ-field such that Dk = 1 iff gk(V ,Q(Z)) = 0.
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Moreover, every treatment value k has positive probability for all Z.

Note that the fact that every observation belongs to one and only one treatment

group imposes further constraints; we will not need to spell them out at this stage,

but we will show later how they can be used for overidentification tests.

In this notation, the validity of the instruments translates into:

Assumption 2.2 (Conditional Independence of Instruments). Yk and V are inde-

pendent of Z for each k = 0, . . . , K − 1.

2.2 Atoms and Indices

To describe the class of selection mechanisms defined in Assumption 2.1 more con-

cretely, we focus on a treatment value k. We define Sj(Z) := 11(Vj < Qj(Z)) for

j = 1, . . . , J . Any element of the σ-field generated by {Ej(Z) : j = 1, . . . , J} can be

written uniquely as a finite union of the 2J disjoint sets

F1 ∩ . . . ∩ FJ ,

where Fj is either Ej or its complement Ēj. We will call them the atoms of the

σ-field. Note that any such atom has an indicator function of the form

J∏
j=1

Tj,

where Tj is either Sj (when Fj = Ej) or (1−Sj) (when Fj = Ēj). The event {D = k}
is a finite union of such atoms, defined by a subset Nk of {1, . . . , 2J}. For any atom

n ∈ Nk, denote Mn the subset of indices j = 1, . . . , J for which Fj = Ēj in atom n.

Then the indicator function Πn of atom n is

Πn =
∏
j 6∈Mn

Sj
∏
l∈Mn

(1− Sl).

The highest degree term of Πn is

(−1)pn
J∏
j=1

Sj,

9



where pn = |Mn|.
To illustrate, suppose that J = 4 and take atom n to be E1 ∩ Ē2 ∩ Ē3 ∩ E4: its

Mn subset is {2, 3}, its pn = 2, and its indicator function is

Πn = S1S4(1− S2)(1− S3) = S1S4 (1− (S2 + S3) + S2S3) .

Now consider {D = k} as the union of these |Nk| atoms. Since they are disjoint,

its indicator function is simply the sum of their indicator functions. By construction,

it is a multivariate polynomial in S ≡ (S1, . . . , SJ). Consider any subset (j1, . . . , jm)

of indices in J . Then it is easy to see that the coefficient of the product∏
l=1,...,m

Sjl

in the indicator function of treatment value k is∑
n∈Nk

(−1)|(j1,...,jm)∩Mn|.

The highest degree term of this polynomial will play a central role in our analysis.

Note that if we choose (j1, . . . , jm) = J , then (j1, . . . , jm) ∩Mn = Mn for any atom

n. It follows that the coefficient of the full product
∏J

j=1 Sj is

ak =
∑
n∈Nk

(−1)pn .

We call this number the index of treatment k. It can be any integer between − |Nk|
and |Nk|, including zero. To illustrate this, let us return to Example 1, with J = 2

and K = 3. For k = 0, the selection mechanism is described by the intersection

E1(Z) ∩ E2(Z). Hence, this case corresponds to N0 = 1 and its atom’s indicator

function is Π0,1(Z) = S1(Z)S2(Z), where the first subscript 0 denotes the treatment

value 0. Similarly, for k = 1 we have N1 = 1 and Π1,1(Z) = (1− S1(Z))(1− S2(Z)).

Finally, for k = 2 we have N2 = 2 and

Π2,1(Z) = S1(Z)(1− S2(Z))

Π2,2(Z) = (1− S1(Z))S2(Z).
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In this example the indices are a0 = a1 = 1 and a2 = (−1)1 + (−1)1 = −2.

Appendix A.1 gives some results on indices. With J = 2 as in Example 1, the

only treatments with a zero index are those which only depend on one threshold: e.g.

11(V1 < Q1). But for J > 2 it is not hard to generate cases in which a treatment value

k depends on all J thresholds and still has ak = 0, as shown in Example 3.

Example 3 (Zero Index). Assume that J = K = 3 and take treatment 0 such that

D0 = 11(V1 < Q1(Z), V2 < Q2(Z), V3 < Q3(Z))

+ 11(V1 > Q1(Z), V2 > Q2(Z), V3 > Q3(Z)).

This has two atoms; the atom on the first line has p1 = 0, and the second one has

p2 = 3. The index is a0 = 1 − 1 = 0. Another way to see this is that the indicator

function for {D0 = 1} is

S1S2S3 + (1− S1)(1− S2)(1− S3) = 1− S1 − S2 − S3 + S1S2 + S1S3 + S2S3,

which has no degree three term.

When the index is zero as in Example 3, the indicator function of the corresponding

treatment k has degree strictly smaller than J . Since Assumption 2.1 rules out

the uninteresting cases when treatment k has probability zero or one, its indicator

function cannot be constant; and its leading terms have degree m ≥ 1. We call m

the degree of treatment k, and we summarize this discussion in a lemma:

Lemma 2.1. Under Assumption 2.1, for each k ∈ K there exists a subset Nk of

{1, . . . , 2J} such that

Dk =
∑
n∈Nk

Πn(Z),

and for each n ∈ Nk,

Πn(Z) :=
∏

j∈J−Mn

Sj(Z)
∏
l∈Mn

(1− Sl(Z)).

The leading terms of the multivariate polynomial

Dk(S) =
∑
n∈Nk

∏
j∈J−Mn

Sj
∏
l∈Mn

(1− Sl)
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have degree m ≥ 1, which we also call the degree of treatment k.

Define pn ≡ |Mn|, and ak ≡
∑

n∈Nk
(−1)pn the index of treatment k. Treatment k

has degree m = J if and only if ak 6= 0; and then the leading term of Dk(S) is

ak

J∏
j=1

Sj.

It is useful to think of atoms as alternatives in a discrete choice model. Any

of the 2J atoms can be interpreted as the choice of alternative n, where the binary

representation of n has a one for digit j if Fj = Ej and a zero if Fj = Ēj. The

assignment of an observation to treatment k, which is a union of atoms, then is

formally equivalent to the choice of an alternative whose number matches that of

one of these atoms. In essence, we are dealing with discrete choice models with only

partially observed choices.

3 Identification Results

In this section we fix x in the support of X and we suppress it from the notation.

All the results obtained below are local to this choice of x. Global (unconditional)

identification results follow immediately if our assumptions hold for almost every x

in the support of X.

We will treat separately the non-zero index and the zero index cases. We make

this explicit in the following assumption.

Assumption 3.1 (Nonzero index). The index ak defined in Lemma 2.1 is nonzero.

We will return to zero-index treatments in Section 3.2.

We require that V have full support:

Assumption 3.2 (Continuously Distributed Unobserved Heterogeneity in the Selec-

tion Mechanism). The joint distribution of V is absolutely continuous with respect to

the Lebesgue measure on RJ and its support is [0, 1]J .

Normalization: We normalize the marginal distribution of each Vj ∈ V to be

U [0, 1].
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Note that when J = 1, Assumptions 2.1 and 3.2 define the usual threshold-crossing

model that underlies the LATE and LIV approaches. However, our assumptions allow

for a much richer class of selection mechanisms when J > 1. Our Example 1 illustrates

that our “multiple thresholds model” does not impose any multidimensional extension

of the monotonicity condition that is implicit with a single threshold model. Even

when K = 2 so that treatment is binary, J could be larger than one, allowing for

flexible treatment assignment: just modify Example 1 to obtain the double hurdle

model

D = 11 (V1 < Q1(Z) and V2 < Q2(Z)) .

Let fV (v) denote the joint density function of V at v ∈ [0, 1]J . Our identification

argument relies on continuous instruments that generate enough variation in the

thresholds. This motivates the following three assumptions.

For any function ψ of q, define “local equicontinuity at q” by the following prop-

erty: for any subset I ⊂ J , the family of functions qI 7→ ψ(qI , q−I) indexed by

q−I ∈ [0, 1]|J−I| is equicontinuous in a neighborhood of qI .

Assumption 3.3 (Local equicontinuity at q). The functions v 7→ fV (v) and v 7→
E (G(Yk)|V = v) are locally equicontinuous at v = q.

Assumption 3.3 will allow us to differentiate the relevant expectation terms. It is

fairly weak: Lipschitz-continuity for instance implies local equicontinuity.

The next two assumptions apply to the functions Q(Z). These are unknown in

most cases, and need to be identified; in this part of the paper we assume that they

are known. We will return to identification of the Q functions in Section 3.3.

Assumption 3.4 (Open Mapping at q). The function Q is an open map at every

point z such that Q(z) = q.

Assumption 3.4 requires that the image by Q of every small neighborhood of z

contain a neighborhood of Q(z). It ensures that we can generate any small variation

in Q(Z) by varying the instruments around z. This makes the instruments strong

enough to deal with multidimensional unobserved heterogeneity V . It is crucial to

our approach. In Example 1 for instance, Assumption 3.4 would fail if Q1 and Q2 were

functionally dependent around z, with say Q1 ≡ Q3
2. More generally, Assumption 3.4

ensures both that there are “enough instruments” and that they have enough variation
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locally3. In its absence, we would only get partial identification of the marginal

treatment effects.

We also consider a global version of Assumptions 3.3 and 3.4.

Assumption 3.5 (Global Condition). Assumptions 3.3 and 3.4 hold at all q ∈
(0, 1)J .

3.1 Identification with a Non-Zero Index

We are now ready to prove identification of EG(Yk) when treatment k has a non-zero

index. In the following theorem, for any real-valued function q 7→ h(q), the notation

Th(q) ≡ ∂Jh∏J
j=1 ∂qj

(q)

refers to the J-order derivative that obtains by taking derivatives of the function h

at q in each direction of J in turn.

Theorem 3.1 (Identification with a non-zero index). Let Assumptions 2.1, 2.2, 3.1,

and 3.2 hold. Fix a value q in the support of Q(Z) and assume that 3.3 and 3.4 hold

at q. Then the density of V and conditional expectation of G(Yk) are given by

fV (q) =
1

ak
T Pr(D = k|Q(Z) = q)

E[G(Yk)|V = q] =
TE (G(Y )Dk|Q(Z) = q)

T Pr(D = k|Q(Z) = q)
.

If in addition Assumption 3.5 holds, then

(3.1) EG(Yk) =
1

ak

∫
[0,1]J

TE (G(Y )Dk|Q = q) dq.

Proof of Theorem 3.1. Our proof has three steps. We first write conditional moments

as integrals with respect to indicator functions. Then we show that these integrals are

3Note that Assumption 3.4 does not require a rank condition at z. If Q has a Jacobian, this
could have reduced rank at z as long as it has full row rank in small neighborhood of z—as it must
if Q is an open map at z. Since critical points of non-constant maps are typically isolated, this is a
much weaker requirement.
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differentiable and we compute their multidimensional derivatives. Finally, we impose

Assumption 3.1 and we derive the equalities in the theorem.

Step 1:

Under the assumptions imposed in the theorem, for any q in the range of Q,

E[G(Y )Dk|Q(Z) = q]

= E[G(Yk)|D = k,Q(Z) = q] Pr(D = k|Q(Z) = q)

= E[G(Yk)|gk(V ,Q(Z)) = 0,Q(Z) = q] Pr(gk(V ,Q(Z)) = 0|Q(Z) = q)

= E[G(Yk)|gk(V , q) = 0] Pr (gk(V , q) = 0)

= E[G(Yk)11 (gk(V , q) = 0)]

= E (E[G(Yk)11 (gk(V , q) = 0) |V )

= E (E[G(Yk)|V ]11 (gk(V , q) = 0)) ,

where the third equality follows from Assumption 2.2 and the others are obvious. As

a consequence,

E[G(Y )Dk|Q(Z) = q]

=

∫
11 (gk(v, q) = 0)E[G(Yk)|V = v]fV (v)dv.(3.2)

Let bk(v) ≡ E[G(Yk)|V = v]fV (v) and Bk(q) = E[G(Y )Dk|Q(Z) = q]. Then

(3.2) takes the form

Bk(q) =

∫
11(gk(v, q) = 0)bk(v)dv.

Now remember from Lemma 2.1 that the indicator function of D = k is a multivariate

polynomial of the indicator functions Sj for j ∈ J . Moreover,

Sj(Z) = 11(Vj < Qj(Z)) = H(Qj(Z)− Vj),

where H(t) = 11(t > 0) is the one-dimensional Heaviside function. Therefore we can

rewrite the selection of treatment k as

11(gk(v, q) = 0) =
∑
n∈Nk

∏
j∈J−Mn

H(qj − vj)
∏
j∈Mn

(1−H(qj − vj)) ,(3.3)
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and it follows that

Bk(q) =
∑
n∈Nk

∫ ( ∏
j∈J−Mn

H(qj − vj)
∏
j∈Mn

(1−H(qj − vj))

)
bk(v)dv.

Expanding the products, the right-hand side can be written as a sum

(3.4) Bk(q) =
∑
l

cl

∫ ∏
j∈Il

H(qj − vj)bk(v)dv,

where for each l, the set Il ⊂ J and cl =
∑

n∈Nk
(−1)|Il∩Mn| is an algebraic integer.

Step 2:

By Assumption 3.3, the function b is locally equicontinuous. This implies that

all terms in (3.4) are differentiable along all dimensions of q. To see this, start with

dimension j = 1. Any term l in (3.4) such that Il does not contain 1 is constant in

q1 and obviously differentiable. Take any other term and rewrite it as

Al(q1) ≡ cl

∫ q1

0

∫ ∏
j∈Il,j 6=1

H(qj − vj)bk(v1,v−1)dv−1dv1,

where v−1 collects all directions of v in Il − {1}.
Then for any ε 6= 0,

Al(q1 + ε)− Al(q1)

ε
− cl

∫ ∏
j∈Il,j 6=1

H(qj − vj)bk(q1,v−1)dv−1

=
cl
ε

∫ q1+ε

q1

∫ ∏
j∈Il,j 6=1

H(qj − vj) (bk(v1,v−1)− bk(q1,v−1)) dv−1dv1.

Since the functions (bk(·,v−1)) are locally equicontinuous at q1, for any η > 0 we

can choose ε such that if |q1 − v1| < ε,

|bk(q1,v−1)− bk(v1,v−1)| < η;

and since the Heaviside functions are bounded above by one, we will have∣∣∣∣∣Al(q1 + ε)− Al(q1)

ε
− cl

∫ ∏
j∈Il,j 6=1

H(qj − vj)bk(q1,v−1)dv−1

∣∣∣∣∣ < |cl| η.
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This proves that Al is differentiable in q1 and that its derivative with respect to

q1, which we denote A1
l , is

A1
l = cl

∫ ∏
j∈Il,j 6=1

H(qj − vj) bk(q1,v−1)dv−1.

But this derivative itself has the same form as Al. Letting v−1,2 collect all com-

ponents of v except (q1, q2), the same argument would prove that since the functions

(bk(·,v−1,2)) are locally equicontinuous at (q1, q2), the function A1
l is differentiable

with respect to q2 and its derivative is

cl

∫ ∏
j∈Il,j 6=1,2

H(qj − vj) bk(q1, q2,v−1,2)dv−1,2.

Continuing this argument finally gives us the cross-derivative with respect to (qIl) as

cl

∫
bk(q

Il ,v−Il)dv−Il ,

where v−Il collects all components of v whose indices are not in Il.

Step 3:

Lemma 2.1 and Assumption 3.1 also imply that the full-degree term Il = J has

cl = ak. To put it differently, the leading term in the Hj’s is

ak

J∏
j=1

H(qj − pj).

Now take the J-order derivative of B(q) with respect to all qj in turn. By

Lemma 2.1, the highest-degree term of B in q is

ak

∫ ( J∏
j=1

H(qj − vj)

)
bk(v)dv

as ak 6= 0 under Assumption 3.1; all other terms have a smaller number of indices j.

This term contributes a cross-derivative

akbk(q),

17



and all other terms generate zero-value contributions since each of them is constant

in at least one of the directions j.

More formally,

TBk(q) =
∂JBk(q)∏
j∈J ∂qj

= akbk(q).(3.5)

Given Assumption 3.3, equation (3.5) also applies to the pair of functions

B̄k(q) = Pr[D = k|Q(Z) = q] with b̄k(v) = fV (v).

This gives the first equality in the theorem. To obtain the second equality, we use

B̃k(q) = E[G(Y )Dk|Q(Z) = q] and b̃k(v) = E[G(Yk)|V = v]fV (v),

which again is locally equicontinuous by Assumption 3.3.

Under Assumption 3.5, the final conclusion of the theorem follows by using

EG(Yk) =

∫
E (G(Yk)|V = v) fV (v)dv.

It follows from Theorem 3.1 that if k and k′ are two treatments to which all of our

assumptions apply, then we can identify the average treatment effect, as well as the

marginal treatment effect and the quantile treatment effect of moving between these

two treatments.

To identify the average treatment effect, we need the full support condition in

Assumption 3.5. This is a stringent assumption that may not hold in many ap-

plications. In such cases we can extend Carneiro, Heckman, and Vytlacil (2010)

to identify the marginal policy relevant treatment effect (MPRTE) and the average

marginal treatment effect (AMTE). The MPRTE is a marginal version of the policy

relevant treatment effect (PRTE) of Heckman and Vytlacil (2001), which measures

the average effect of moving from a baseline policy to an alternative policy. The

AMTE is the average benefit of treatment for people at the margin of indifference

between participation in treatment and nonparticipation. We could obtain identifica-

tion results for a generalized version of the MPRTE by specifying marginal changes
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for our selection mechanism.

There are applications in which the analyst may not have enough continuous

instruments to identify even the MRPTE or AMTE. We consider the case of discrete

instruments in Section 5.

3.2 Identification with a Zero Index

Theorem 3.1 required that the index of treatment k be non-zero (Assumption 3.1).

Therefore it does not apply to Example 3 for instance. Recall that in that example,

D0 = 1− S1 − S2 − S3 + S1S2 + S1S3 + S2S3

and treatment 0 has degree m0 = 2 < J0 = 3.

Note, however, that steps 1 and 2 of the proof of Theorem 3.1 apply to zero-index

treatments as well; the relevant polynomial of Heaviside functions has leading term

H(q1 − v1)H(q2 − v2) +H(q1 − v1)H(q3 − v3) +H(q2 − v2)H(q3 − v3),

and we can take the derivative in (q1, q2) for instance to obtain an equation that

replaces (3.5):

∂2

∂q1∂q2

B0(q) =

∫
b0(q1, q2, v3)dv3.

Applying this to B0(q) = Pr[D = 0|Q(Z) = q] and b0(v) = fV (v), and then to

B0(q) = E[Y D0|Q(Z) = q] and b0(v) = E[G(Y0)|V = v]fV (v), identifies∫
fV1,V2,V3(q1, q2, v3)dv3 = fV1,V2(v1, v2)

and∫
E[G(Y0)|V1 = q1, V2 = q2, V3 = v3]fV1,V2,V3(q1, q2, v3)dv3

= E[G(Y0)|V1 = q1, V2 = q2]fV1,V2(v1, v2);
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and dividing through identifies a local counterfactual outcome:

E[G(Y0)|V1 = q1, V2 = q2].

Under assumption 3.5, this also identifies EG(Y0). Moreover, we can apply the same

logic to the pairs (q1, q3) and (q2, q3) to get further information on the treatment

effects.

This argument is quite general. It allows us to state the following theorem:

Theorem 3.2 (Identification with a zero index). Let Assumptions 2.1, 2.2, and 3.2

hold. Fix a value q in the support of Q(Z) and assume that 3.3 and 3.4 hold at q.

Let m be the degree of treatment k, and cl
∏

i=1,...,m Sji be any of the leading terms of

the indicator function of {D = k}. Denote I = {j1, . . . , jm}, and T̃ the differential

operator

T̃ =
∂m∏

i=1,...,m ∂ji
.

Then for q = (qI , qJ−I),

fV I (qI) =
1

cl
T̃ Pr[D = k|Q(Z) = q]

E[G(Yk)|V I = qI ] =
T̃ E[G(Y )Dk|Q(Z) = q]

T̃ Pr[D = k|Q(Z) = q]
.

If in addition Assumption 3.5 holds, then

EG(Yk) =
1

cl

∫
[0,1]J

T̃ E[G(Y )Dk|Q(Z) = q)dq.

Proof of Theorem 3.2. The proof of Theorem 3.2 is basically the same as that of

Theorem 3.1; it is included in Appendix B.1.

Theorem 3.2 is a generalization of Theorem 3.1 (just take m = J). It calls

for three remarks. First, we could weaken its hypotheses somewhat. We could for

instance replace (0, 1)J with (0, 1)m in the statement of Assumption 3.5.

Second, when m < J the treatment effects are overidentified. This is obvious

from the equalities in Theorem 3.2, in which the right-hand side depends on q but

the left-hand side only depends on qI .
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Finally, considering several treatment values can identify even more, since V is

assumed to be the same across k. Theorem 3.1 implies for instance that if there is

any treatment value k with a nonzero index, then the joint density fV is identified

from that treatment value.

3.3 Identification of Q

So far we assumed that the functions {Qj(Z) : j = 1, . . . , J} were known (see As-

sumption 2.1). In practice we will often need to identify them from the data before

applying Theorems 3.1 or 3.2. The most natural way to do so starts from the general-

ized propensity scores {Pj(Z) : j = 1, . . . , J}, which are identified as the conditional

probabilities of treatment4.

First note that by definition (and by Assumption 2.2),

Pk(z) = Pr(D = k|Z = z)

=

∫
11 (gk (v,Q(z)) = 0) fV (v)dv.

Note that this is a J-index model. Ichimura and Lee (1991) consider identification of

multiple index models with the indices are specified parametrically. Matzkin (1993,

2007) obtains nonparametric identification results for discrete choice models5; we

build on her results in Section 4.4 to obtain the identification of Q for multiple hurdle

models. Matzkin’s results only apply to a subset of the types of selection mechanisms

we consider (discrete choice models when all choices are observed). Section 4 discusses

identification of the Q’s in some specific models in more detail.

4 Applications

Our framework covers a wide variety of commonly used models. For simplicity, we

only illustrate its usefulness on two-threshold selection models in this section.

4It would also be possible to seek identification jointly from the generalized propensity scores
and from the cross-derivatives that appear in Theorems 3.1 or 3.2, especially when they are over-
identified. We do not pursue this here.

5See Heckman and Vytlacil (2007, Appendix B) for an application to treatment models.
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4.1 Monotone Treatment

We assume in this subsection that there are three treatments, K = {0, 1, 2}. Given

the results in Vytlacil (2002), the monotonicity assumption is essentially equivalent

to the existence of a family of threshold crossing rules.

Example 4 (Monotone Treatment with K = 3). For each treatment value k = 0, 1, 2,

we assign the treatments in the following way:

• D = 0 iff V1 > Q1(Z),

• D = 1 iff V1 < Q1(Z) and V2 > Q2(Z),

• D = 2 iff V1 < Q1(Z) and V2 < Q2(Z),

where V1 and V2 are independent U [0, 1]. This generates a model of treatment that

satisfies our Assumption 2.16.

Remark 4.1. Note that the traditional ordered choice model only uses a common

scalar random variable v, which we can normalize to be U [0, 1]: for k = 0, 1, 2,

Dk = 1 iff Fk(Z) < v < Fk+1(Z),

with F0 ≡ 0 and F2 ≡ 1. This model of assignment to treatment is observationally

equivalent to ours, provided that the probabilities of treatment Pk = Fk − Fk−1

coincide. We could for instance define the Qk functions recursively by 1 − Q1(Z) =

F1(Z) and 1 − Q2(Z) = [F2(Z) − F1(Z)]/[1 − F1(Z)]. This also shows that our

assumption of independence of V1 and V2 is not restrictive in this setting.

Going back to the original nonparametric model in Example 4, the thresholds are

easily identified from

Qk(Z) = Pr(D ≥ k|D ≥ k − 1,Z).

Treatments k = 1, 2 consist of a single atom: respectively E1 ∩ Ē2 and E1 ∩ E2.

Therefore they have a nonzero index, with a1 = −1 and a2 = 1. Treatment value

k = 0 comprises two atoms, Ē1 ∩ E2 and Ē1 ∩ Ē2; and it has a zero index, with a

leading coefficient cl = −1.

6Appendix A.2 discusses monotone treatment for any finite K.
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To apply Theorems 3.1 and 3.2, we assume the existence of enough continuous

instruments Z. It follows from Theorem 3.2 and V1 ∼ U [0, 1] that

E(Y0|V1 = v1) = − ∂

∂q1

E(Y D0|Q(Z) = v).

Theorem 3.1, combined with the assumption that V1 and V2 are independent with

marginal U [0, 1] distributions, gives for k = 1:

E(Y1|V = v) = − ∂2

∂q1∂q2

E(Y D1|Q(Z) = v)

and for k = 2:

E(Y2|V = v) =
∂2

∂q1∂q2

E(Y D2|Q(Z) = v).

These formulæ can be used to estimate marginal treatment effects, and to run

overidentifying tests.

Now take for instance the unconditional average treatment effect of moving to

treatment value k = 2 from treatment value k = 1. Assume that Z contains at least

two continuous instruments that generate full support variation in Q(Z). Then by

integrating we obtain

E(Y2 − Y1) =

∫
(0,1)2

∂2

∂q1∂q2

E (Y (D1 +D2)|Q(Z) = q) dq.

It is a natural extension of the binary treatment model (K = 2), for which the average

treatment effect (ATE) is written simply as

E(Y1 − Y0) =

∫ 1

0

∂E(Y |Q(Z) = q)

∂q
dq

since D0 +D1 = 1. This is the standard formula that derives the ATE from the MTE

(Heckman and Vytlacil, 2005).

4.2 Selection into Schooling and Employment

Let S̃ denote a binary schooling decision (say, college education) and Ẽ a binary

employment decision. We observe the outcome Y (wages) only when an individual
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is employed (say, Ẽ = 1). We are interested in the returns to a college education in

the form of higher wages. Table 1 summarizes the selection problem in this example.

Crossing Ẽ and S̃ gives four treatment values D = 0, 1, 2, 3. We observe the value of

D for each individual, and their wages iff Ẽ = 1; we denote Y0 (resp. Y1) the wages of

an employee without (resp. with) a college education, and our parameters of interest

are the moments of the college premium (Y1 − Y0).

Table 1: Schooling, employment, and wages

Ẽ = 0 (non-employed) Ẽ = 1 (employed)

S̃ = 0 (no college education) D0 (D2, Y0)

S̃ = 1 (college education) D1 (D3, Y1)

In line with our general model, we assume that both assignments S̃ and Ẽ are

characterized by a single crossing model based on a one-dimensional unobserved het-

erogeneity term:

S̃ = 1 iff V1 < Q1(Z)

Ẽ = 1 iff V2 < Q2(Z),

where the unobservables V1 and V2 are independent of Z, marginally distributed as

U [0, 1]; and their codependence structure is unknown. Here Q1 and Q2 are identified

from the population directly by Q1(Z) = Pr(S̃ = 1|Z) and Q2(Z) = Pr(Ẽ = 1|Z).

To use the notation of Section 2.2, we have

D2 = S2(Z)(1− S1(Z))

D3 = S1(Z)S2(Z).

Note that the indices for both treatment values 2 and 3 are non-zero: a2 = −1 and

a3 = 1. Therefore Theorem 3.1 applies to k = 2, 3, provided in particular that Q1(Z)

and Q2(Z) are functionally independent—which is generically true if Z contains two

continuous instruments. Under these assumptions,

E(Y0|V1 = q1, V2 = q2) =
∂2E[Y D2|Q1(Z) = q1, Q2(Z) = q2]/∂q1∂q2

∂2 Pr[D2 = 1|Q1(Z) = q1, Q2(Z) = q2]/∂q1∂q2

E(Y1|V1 = q1, V2 = q2) =
∂2E[Y D3|Q1(Z) = q1, Q2(Z) = q2]/∂q1∂q2

∂2 Pr[D3 = 1|Q1(Z) = q1, Q2(Z) = q2]/∂q1∂q2
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and the marginal treatment effect obtains by simple difference.

To identify the average treatment effect E(Y1 − Y0), we use Theorem 3.1 again

under the “full support” Assumption 3.5.7 Since a2 = −1 and a3 = 1, we obtain

EY0 = −
∫ 1

0

∫ 1

0

∂2E[Y D2|Q1(Z) = q1, Q2(Z) = q2]

∂q1∂q2

dq1dq2

EY1 =

∫ 1

0

∫ 1

0

∂2E[Y D3|Q1(Z) = q1, Q2(Z) = q2]

∂q1∂q2

dq1dq2

so that, since D2 +D3 = Ẽ,

E(Y1 − Y0) =

∫ 1

0

∫ 1

0

∂2E[Y E|Q1(Z) = q1, Q2(Z) = q2]

∂q1∂q2

dq1dq2.

This formula is very intuitive: integrating the right hand side of the equation

above gives

E(Y1 − Y0) = E[Y E|Q1(Z) = 1, Q2(Z) = 1]

− E[Y E|Q1(Z) = 0, Q2(Z) = 1]

− E[Y E|Q1(Z) = 1, Q2(Z) = 0]

+ E[Y E|Q1(Z) = 0, Q2(Z) = 0].

The last two terms are zero since the probability of employment is zero when Q2(Z) =

0; and conversely, the probability of employment is one when Q2(Z) = 1. That leaves

us with

E(Y1 − Y0) = E[Y |Q1(Z) = 1, Q2(Z) = 1]− E[Y |Q1(Z) = 0, Q2(Z) = 1],

the difference in average wages between the surely-employed populations who are

surely college-educated or surely not.

Our approach yields much more than this fairly trivial result, since it identifies the

whole function (q1, q2) 7→ E(Y1−Y0|V1 = q1, V2 = q2), as well as the joint density. The

7Remember that all of our analysis is conditional on covariates X. In practice, it is often
impossible to do so nonparametrically. In their study of returns to schooling, Carneiro, Heckman,
and Vytlacil (2011) and Carneiro and Lee (2009) circumvent this difficulty by assuming that both
the covariates X and instruments Z are independent of the error terms Uk and the scalar V . Then
Q can be constructed as a function of both X and Z. Such an assumption would allow us to obtain
full support even if Z is discrete, by interacting Z with continuous components of X.
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joint density fV1,V2(q1, q2) is of interest in itself, as (conditioning on the instruments)

it reveals the dependence structure between the likelihood of graduation and the

likelihood of employment. Note that fV1,V2(q1, q2) is over-identified, since it can be

obtained from taking cross partial derivatives of Pr[D2 = 1|Q1(Z) = q1, Q2(Z) = q2]

or of Pr[D3 = 1|Q1(Z) = q1, Q2(Z) = q2]:

fV1,V2(q1, q2) =
∂2 Pr[Ẽ = 1, S̃ = 1|Q1(Z) = q1, Q2(Z) = q2]

∂q1∂q2

= −∂
2 Pr[Ẽ = 1, S̃ = 0|Q1(Z) = q1, Q2(Z) = q2]

∂q1∂q2

.

Comparing the two resulting estimators provides a specification check.

To conclude this example, note that we could allow for a direct effect of schooling

on employment, by adding an argument in Q2:

Ẽ = 1 iff V2 < Q2(Z, S̃).

We could try to rewrite this selection rule as

Ẽ = 1 iff V ′2 < Q′2(Z)

for a different unobserved heterogeneity term V ′2 ; but since S̃ is a discontinuous func-

tion of V1, this would violate the continuity requirements that drive Theorem 3.1.

On the other hand, we may still be able to apply our results since we deal with

D = 2 and D = 3 separately. The threshold Q1 is still directly identified from

the probability of graduation. The probability of employment now depends on both

Q2(·, 0) and Q2(·, 1); we will assume here that their variations are restricted so that

they are still identified. With obvious changes in notation, we now have

D2 = (1− S1(Z))S2(Z, 0)

D3 = S1(Z)S2(Z, 1);
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and the conditional expectations are identified by

E(Y0|V1 = q1, V2 = q2) =
∂2E[Y D2|Q1(Z) = q1, Q2(Z, 0) = q2]/∂q1∂q2

∂2 Pr[D2 = 1|Q1(Z) = q1, Q2(Z, 0) = q2]/∂q1∂q2

E(Y1|V1 = q1, V2 = q2) =
∂2E[Y D3|Q1(Z) = q1, Q2(Z, 1) = q2]/∂q1∂q2

∂2 Pr[D3 = 1|Q1(Z) = q1, Q2(Z, 1) = q2]/∂q1∂q2

,

from which we can compute marginal and average treatment effects. This shows that

interesting models that do not seem to fit our assumptions at first sight can still yield

to our approach.

We should mention here a recent paper by Fricke, Frölich, Huber, and Lechner

(2015). They consider a model with both treatment endogeneity and non-response

bias that has a structure similar to this schooling-employment example. Using a dis-

crete instrument for the binary treatment and a continuous instrument for attrition,

they identify the average treatment effect for both the compliers and the total pop-

ulation. In contrast, we identify the marginal treatment effects with two continuous

instruments.

* * *

The selection mechanism in Table 4.2 has a single atom for each of the four treat-

ment values8. As explained in the introduction, our approach covers all cases in

which the analyst only observes limited information on the set of alternatives. We

illustrate this by combining the treatment values D1 and D2 in Table 4.2 into one

common treatment in Section 4.3 and by putting (D0, D1, D2) together in Section 4.4.

These models generate different selection patterns; and not surprisingly, the identifi-

cation conditions demand somewhat stronger instruments as the number of treatment

values—the information available to the analyst—decreases.

4.3 Selection with Two-Way Flows

Now return to Example 1, in which

• D = 0 iff V1 < Q1(Z) and V2 < Q2(Z),

• D = 1 iff V1 > Q1(Z) and V2 > Q2(Z),

8This belongs to the class of “fully partitioned treatment assignments”, which we treat in more
detail in Appendix A.3.
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• D = 2 iff (V1 −Q1(Z)) and (V2 −Q2(Z)) have opposite signs.

It is useful to start with some exclusion restrictions that help us identify Q1(Z)

and Q2(Z) separately from the generalized propensity scores given in (2.1). Assume

that

Assumption 4.1 (Two Continuous Instruments with Exclusion Restrictions).

1. The density of (V1, V2) is continuous on [0, 1]2, with marginal uniform distribu-

tions.

2. The instruments Z ≡ (Z1, Z2) consists of two scalar random variables whose

joint distribution is absolutely continuous with respect to the Lebesgue measure.

3. Q1(Z) does not depend on Z2, and it is continuously differentiable with respect

to Z1.

4. Q2(Z) does not depend on Z1, and it is continuously differentiable with respect

to Z2.

The crucial part of Assumption 4.1 is in the exclusion restrictions: Z1 affects Q1

but not Q2, and Z2 affects Q2 but not Q1.

It follows from (2.1) on page 6 that

Q1(Z) +Q2(Z) = 2P0(Z) + P2(Z).(4.1)

The right hand side of (4.1) is identified directly from the data. Suppose that Q̃1(Z)

and Q̃2(Z) also satisfy Q̃1(Z)+ Q̃2(Z) = 2P0(Z)+P2(Z), as well as Assumption 4.1.

Then writing ∆j(Z) = Qj(Z) − Q̃j(Z) (j = 1, 2) gives ∆1(Z) = −∆2(Z). But by

Assumption 4.1, ∆1 does not depend on Z2, and ∆2 does not depend on Z1. Therefore

we must have Q̃1(Z1) = Q1(Z1)+C and Q̃2(Z2) = Q2(Z2)−C, where C is a constant.

This proves that Q1 and Q2 are identified up to an additive constant.

To get rid of the constant, we use (2.1) again: if F is the joint distribution of

(V1, V2), we must have

P0(Z) = F (Q1(Z), Q2(Z)).(4.2)
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This implies that (Q̃1, Q̃2) must be associated with a joint distribution

F̃ (q1, q2) ≡ F (q1 − C, q2 + C).

But since V1 ∼ U [0, 1], we must have F̃ (q1, 1) ≡ q1. Now F̃ (q1, 1) = F (q1−C, 1 +C);

and if C > 0,

F (q1 − C, 1 + C) = F (q1 − C, 1) = q1 − C < q1.

Therfore C ≤ 0. Similarly, F̃ (1, q2) ≡ q2 gives C ≥ 0. Hence C = 0 and both (Q1, Q2)

and F are point-identified.

Using the identified Q1 and Q2, since the indices are a0 = a1 = 1 and a2 = −2 we

apply Theorem 3.1 to identify the joint density by

(4.3) fV1,V2(q1, q2) =
1

ak

∂2 Pr[D = k|Q1(Z) = q1, Q2(Z) = q2]

∂q1∂q2

,

where k = 0, 1, 2. Note that fV1,V2(q1, q2) is overidentified; checking equality between

the right hand sides of (4.3) provides a specification test9. Similar remarks apply to

the conditional expectations E(Yk|V1 = q1, V2 = q2); and as

E(Yk|V1 = q1, V2 = q2) =
∂2E[Y Dk|Q1(Z) = q1, Q2(Z) = q2]/∂q1∂q2

∂2 Pr[D = k|Q1(Z) = q1, Q2(Z) = q2]/∂q1∂q2

for each k = 0, 1, 2, the identification of the marginal and average treatment effects

follows immediately.

4.4 Double Hurdle Model

Let us now return to the double hurdle model of the introduction, where treatment

is binary and the selection mechanism is governed by

D = 1 iff V1 < Q1(Z) and V2 < Q2(Z),(4.4)

and D = 0 otherwise.

Both treatment values have non-zero indices: a1 = 1 and a0 = −1.

Identification of Q1 and Q2, which is a requisite to applying Theorem 3.1, is not

as straightforward as in the schooling/employment model of Section 4.2. In fact, this

9Since probabilities add up to one, only one of these equalities generates a specification test.
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case is more demanding than the selection model with two-way flows in Section 4.3

since we only have two treatment values. We observe

Pr(D = 1|Z) = FV1,V2 (Q1(Z), Q2(Z)) ,(4.5)

which is a nonparametric double index model in which both the link function FV1,V2

and the indices Q1 and Q2 are unknown. This is clearly underidentified without

stronger restrictions. Matzkin (1993, 2007) considers nonparametric identification

and estimation of polychotomous choice models. Our multiple hurdle model has a

similar but not identical structure. We build on Lewbel (2000) and on Matzkin’s

results to identify Q. To do so, we assume that the thresholds have the following

structure:

Q1(Z) = G1 (Z1 + q2(Z2))

Q2(Z) = G3 (Z3 + q4(Z4)) ,
(4.6)

where G1, G3, q2 and q4 are unknown functions; we also allow for q2 = q4 = 0. We

impose that

Assumption 4.2 (Identifying the Thresholds). The density of (V1, V2) is continuous

on [0, 1]2, with marginal uniform distributions. Furthermore,

1. G1 and G3 are strictly increasing C1 functions from possibly unbounded intervals

[a1, b1] and [a3, b3] onto [0, 1];

2. there exists a point (z̄2, z̄4) in the support of (Z2,Z4) such that

(a) the support of (Z1, Z3) conditional on Z2 = z̄2,Z4 = z̄4 is the rectangle

R13 = [a1, b1]× [a3, b3];

(b) the support of Z2 conditional on Z4 = z̄4 equals its unconditional support;

(c) the support of Z4 conditional on Z2 = z̄2 equals its unconditional support.

3. if q2 and/or q4 are known to be zero, drop the corresponding conditioning state-

ments in 2.

Theorem 4.1 (Identification in the double-hurdle model). Under Assumption 4.2,

the functions FV , G1, G3 and (if nonzero) q2 and q4 are identified from the propensity

score Pr(D = 1|Z).
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Proof of Theorem 4.1. The proof is in Appendix B.2.

While Theorem 4.1 requires at least four continuous instruments when q2 and

q4 are nonzero, various additional restrictions would relax this requirement. If for

instance the functional forms of q2 and q4 were known, then Z4 could coincide with

Z2. And if q2 and q4 were linear, we would be back to the linear multiple index model

of Ichimura and Lee (1991).

Once Q1(Z) and Q2(Z) are identified, then under our assumptions we identify

the joint density by

(4.7) fV1,V2(q1, q2) =
∂2 Pr[D = 1|Q1(Z) = q1, Q2(Z) = q2]

∂q1∂q2

.

Note that under Assumption 4.2, FV1,V2 is already identified; so that we overidentify

fV1,V2 . The marginal treatment effect is given by

(4.8) E(Y1 − Y0|V1 = q1, V2 = q2)fV1,V2(q1, q2) =
∂2E[Y |Q1(Z) = q1, Q2(Z) = q2]

∂q1∂q2

.

Under Assumption 4.2, both Q1(Z) and Q2(Z) have full support, and the average

treatment effect is identified by

(4.9) E[Y1 − Y0] =

∫ 1

0

∫ 1

0

∂2E[Y |Q1(Z) = p1, Q2(Z) = p2]

∂p1∂p2

∣∣∣
(p1,p2)=(q1,q2)

dq1dq2.

Example 5. As another illustration, consider the following model of employment,

adapted from Laroque and Salanié (2002). An employee (D = 1) must be employable,

in the sense that her unobserved productivity ρ must be above the minimum wage

Y . Specify productivity as

ρ = R1(Z)− v1,

where v1 is independent of Z. This gives a first hurdle v1 < R1(Z) − Y ; and trans-

forming both sides by the cdf of v1 gives V1 < Q1(Z).

In addition, employees must be willing to work at the offered wage. Assume that

each employee receives her full productivity. Then with a disutility of work specified

as

d = R2(Z)− v2,
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with again v2 independent of Z, the second hurdle ρ > d translates to v1 + v2 <

R1(Z) − R2(Z). Again, this can be transformed into V2 < Q2(Z) using the cdf

Fv1+v2 .

The impact of employment on outcomes Y can then be assessed using (4.7), (4.8)

and (4.9). Note that this particular structure naturally suggests ways of identifying

Q1 and Q2, as Q1 only depends on R1 and Q2 depends on both R1 and R2.

Example 6. Finally, consider a parental choice problem: the choice of a school for

a child, given nontransferable utility. The child will go to a private school (D = 1)

if both parents agree that she should: V1 < Q1(Z) and V2 < Q2(Z). Otherwise the

child will attend a public school (D = 0). If Y is any child outcome, then the effect

of attending a private school can be identified from (4.7), (4.8) and (4.9).

5 Discrete Instruments

Continuous instruments are a luxury that may not be available to the analyst. While

our method seems to be extremely dependent on them, it is sometimes possible to

use it with discrete-valued instruments, in the same way that LATE is an integrated

version of the MTE. To see this, take the nonzero index case. Theorem 3.1 gave us

equalities of the general form: for some functions b(q) and F (Y,Dk) (which will be

different in different uses)

b(q) =
1

ak
TE (F (Y,Dk)|Q(Z) = q) ,(5.1)

where T is the linear differential operator

TH =
∂JH∏J
j=1 ∂qj

.

With discrete-valued instruments, we cannot make sense of the right-hand side of

(5.1); on the other hand, we can invert the operator T to obtain

akb(q) = E (F (Y,Dk)|Q(Z) = q) + F0(q),(5.2)
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where F0 is any function with TF0 = 0; that is,

F0(q) =
J∑
j=1

F0j(q−j),

where each term in the sum excludes one of the components of q.

Given discrete-valued instruments, we can apply the finite-difference T̄ version of

T to (5.2). The terms F0j generate null finite differences, and we point-identify finite

differences of b. In many models this will allow us to identify the average effect of a

treatment on a family of observations that comprises several groups of “compliers.”

If moreover the instruments vary in the “right” way, it is in fact easy to identify

some local average treatment effects. Consider a model woih J thresholds. Assume

that some of the values the instruments Z take in the data generate threshold values

Q(Z) that form a hyperrectangle in (Q1, . . . , QJ) space. The analyst may know this

because (s)he has identified the functions Qj, or simply from prior knowledge on the

role the instruments play in selection to treatment. We will return to the identification

of Q with discrete instruments later in this section. For now, note that this obviously

requires that the instruments take 2J different values—and a specific alignment of

the 2J threshold values they generate.

Given this “rectangular case”, pick two opposite summits of the hyperrectangle10,

and call them q− and q+. Index all summits by σ = (σ1, . . . , σJ) ∈ ΣJ = {0, 1}J ,

where summit σ has coordinates

qσj = (1− σj)q−j + σjq
+
j ;

and for each summit σ, denote nσ the number of indices j such that σj = 1. For

instance, when J = 1, the hyperrectangle reduces to the interval between q− and q+;

and nσ = 0 for q− and nσ = 1 for q+. When J = 2, it consists of four points in

the two-dimensional plane: (q−1 , q
−
2 ), (q−1 , q

+
2 ), (q+

1 , q
−
2 ), (q+

1 , q
+
2 ) and the corresponding

nσ’s are respectively 0, 1, 1, and 2.

We claim that

Theorem 5.1 (The rectangular case).

10They could be for instance the summits with the smallest and the largest coordinates; but any
pair of opposite summits will do.
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1. If any treatment value k has a non-zero index ak, then the probability that V

belongs to the hyperrectangle is identified11 by

Pr(q−j ≤ Vj ≤ q+
j ∀j = 1, . . . , J) =

1

ak

∑
σ∈ΣJ

(−1)J+nσ Pr (D = k|Q(Z) = qσ) .

2. If treatment value k has a non-zero index ak, then the density-weighted average

value of E(Yk|V = q) in the hyperrectangle is identified by

EwE(Yk|V = q) =

∑
σ∈ΣJ

(−1)J+nσE (Y Dk|Q(Z) = qσ)∑
σ∈ΣJ

(−1)J+nσ Pr (D = k|Q(Z) = qσ)
,

where w(q) is fV (q) normalized to integrate to one within the hyperrectangle.

Proof of Theorem 5.1. The proof is in Appendix B.3, where we also present analog

results for treatment values with a zero index.

It is important to be clear on the interpretation of the theorem. If treatment

values k and l both have a non-zero index, then part 2 of the theorem shows that

we identity a marginal treatment effect E(Yk − Yl|V = q) averaged with known

weights (given part 1) over a hyperrectangle. The observations in the hyperrectangle

may constitute an interesting population over which to compute this average in some

applications. What can be said about this population is that by construction, they

had S1 = . . . = SJ = 0 and they switched to S1 = . . . = SJ = 1. We may call this

group “supercompliers” since the change from q− to q+ made them jump above all

J thresholds; but this group may or may not be of interest as regards the treatment

effect of moving from k to l.12

Rather than going through a tedious enumeration of all the examples from Sec-

tion 4, we illustrate Theorem 5.1 and the interpretation of the supercompliers by

focusing here on the double hurdle model of Section 4.4 and the two-way flow model

of Section 4.3. Remember that both models have two thresholds, so that

TH(q1, q2) =
∂2H

∂q1∂q2

(q1, q2) and T̄H(q, q′) =
H(q) +H(q′)−H(q1, q

′
2)−H(q′1, q2)

(q′1 − q1)(q′2 − q2)
.

11As always, if several treatment values have a non-zero index then applying the formula to each
of them may overidentify the probability of the hyperrectangle.

12As pointed out in footnote 10, the choice of q− and q+ can be tweaked and that could make
this supercomplier group more relevant; this depends on the application of interest.
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5.1 The Double Hurdle Model

Let us start with the double hurdle model of Section 4.4. Assume that the values the

instruments take in the data contain two vectors Zi and Z l such that

qi1 ≡ Q1(Zi) < Q1(Z l) ≡ ql1 and qi2 ≡ Q2(Zi) < Q2(Z l) ≡ ql2.

Here, both thresholds are higher under ql ≡ (ql1, q
l
2) than under qi ≡ (qi1, q

i
2). The

analyst may know this because (s)he has identified the functions Q1 and Q2, or simply

from prior knowledge on the role the instruments play in selection to treatment. For

now, only ordinal knowledge that qi1 < ql1 and qi2 < ql2 is assumed—we will return to

the identification of Q1 and Q2 with discrete instruments at the end of this subsection.

Since both thresholds increase, no observation moves from D = 1 to D = 0; and

three groups move from D = 0 to D = 1:

1. (C1): those with V1 < qi1 and qi2 < V2 < ql2

2. (C2): those with qi1 < V1 < ql1 and V2 < qi2

3. (SC): those with qi1 < V1 < ql1 and qi2 < V2 < ql2.

To borrow from the language of the LATE literature, there are three different groups

of compliers and no defiers, as shown in Figure 3.

Figure 3: Discrete instruments in the double hurdle model

V1

V2

qi

(qm) ql

(qn)

C2

C1 SC

The relative weights of these groups cannot be estimated from the data without
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further assumptions. If we form the Wald estimator

E(Y |Q(Z) = ql)− E(Y |Q(Z) = qi)

Pr(D = 1|Q(Z) = ql)− Pr(D = 1|Q(Z) = qi)
,

we only identify a weighted treatment effect for all three groups combined together.

This illustrates the limitations of discrete instruments, and the difficulty of inter-

preting Wald estimands or their extensions when the selection mechanism is more

complex than in the usual single-threshold model.

Let us now move to a more favorable case: we assume that the sample contains not

only Zi and Z l, but also values Zm and Zn such that the four vectors of thresholds

(qi, ql, qm, qn) form a rectangle in (q1, q2) space. This could arise if the thresholds

are varied independently and then the variations are combined. Of course, it requires

that the vector of instruments take at least four values.

We form

∆1 = Pr(D = 1|Q(Z) = qi) + Pr(D = 1|Q(Z) = ql)

− Pr(D = 1|Q(Z) = qm)− Pr(D = 1|Q(Z) = qn)(5.3)

= FV1,V2(q
i) + FV1,V2(q

l)− FV1,V2(qm)− FV1,V2(qn),

which identifies the last term. Note in passing that the quantity

(5.4)
∆1

(qi1 − ql1)(qi2 − ql2)

is the value of the density fV at some point between13 qi and ql; it is identified if the

values of the thresholds are.

Let us turn to the identified quantity

∆2 = E(Y |Q(Z) = qi) + E(Y |Q(Z) = ql)− E(Y |Q(Z) = qm)− E(Y |Q(Z) = qn)

=

∫ ql1

qi1

∫ ql2

qi2

∂2

∂q1∂q2

E(Y |V1 = q1, V2 = q2)dq1dq2.

13More precisely, at some point on each arc that links these two points.

36



Now using (4.8), we get

(5.5) ∆2 =

∫ ql1

qi1

∫ ql2

qi2

E(Y1 − Y0|V1 = q1, V2 = q2)fV1,V2(q1, q2)dq1dq2.

Again,
∆2

(qi1 − ql1)(qi2 − ql2)
= E(Y1 − Y0|V1 = t1, V2 = t2)fV1,V2(t1, t2)

for some point q between qi and ql.

If the rectangle is small enough, it will be a good first approximation to say that

∆2/∆1 identifies the MTE locally. If it is not, then we identify

∆2

∆1

=

∫ ql1

qi1

∫ ql2

qi2

E(Y1 − Y0|V1 = q1, V2 = q2)w(q1, q2)dq1dq2,

where the function

w(q1, q2) =
fV1,V2(q1, q2)

∆1

defines unknown positive weights14 that integrate to one. These weights are simply

the density of V truncated to the rectangle.

This is an integrated MTE, just like LATE. Note that ∆1 corresponds to the

size of group 3 (SC); in fact the ratio ∆2/∆1 is a density-weighted average of the

effect of the treatment for group 3 (SC). If we are lucky enough to observe such a

“rectangular” variation in the thresholds, then we can estimate the effect of treatment

on this group of “super-compliers”, who failed both criteria and now pass both.

We could also construct other Wald estimators in the rectangular case. For in-

stance, assume that qn1 > qi1 (so that qn2 = qi2), and consider the identified ratio

E(Y |Q(Z) = qn)− E(Y |Q(Z) = qi)

Pr(D = 1|Q(Z) = qn)− Pr(D = 1|Q(Z) = qi)
.

The denominator equals∫ 1

0

∫ 1

0

(
11(v1 < qn1 , v2 < qn2 )− 11(v1 < qi1, v2 < qi2)

)
fV1,V2(v1, v2)dv1dv2;

14∆1 is positive given our ordering of i, l,m, n.
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and since qn2 = qi2, this can be rewritten as∫ 1

0

∫ 1

0

11(v2 < qn2 )11(qi1 < v1 < qn1 )fV1,V2(v1, v2)dv1dv2,

which is the size of group (C1) of compliers. It is easy to see that this new Wald

estimator estimates the treatment effect on this group. We could similarly define

E(Y |Q = qm)− E(Y |Q = qi)

Pr(D = 1|Q = qm)− Pr(D = 1|Q = qi)

and identify the average effect of treatment on group (C2).

The rectangular case therefore identifies the sizes of the three groups of compliers,

as well as the average effect of treatment for each group.

The identification of the values of the thresholds q is more difficult with discrete

instruments than it was in Section 4.4; and it requires stronger assumptions.

To illustrate this, suppose that V1 and V2 are independent U [0, 1], and that the

thresholds are increasing functions of different instruments:

q1 = Q1(Z1) and q2 = Q2(Z2).

Then with Z = (Z1, Z2), (4.5) becomes

Pr(D = 1|Z) = Q1(Z1)Q2(Z2),(5.6)

Suppose that we observe four values of the vector of instruments Z = (Z1, Z2) of the

form

Zi = (zi1, z
i
2),Z l = (zl1, z

l
2),Zm = (zl1, z

i
2),Zn = (zi1, z

l
2),

Then the vectors of thresholds are ordered in a rectangle as on Figure 3. If moreover

0 < Pr(D = 1|Zj) < 1 for j = i, n, l,m, then none of the values of the thresholds

qi1 = Q1(zi1), ql1 = Q1(zl1), qi2 = Q2(zi2), ql2 = Q2(zl2)

can be zero or one. The values of the generalized propensity scores at the four Zj

points are

Pi = qi1q
i
2 ; Pl = ql1q

l
2 ; Pm = ql1q

i
2 ; Pn = qi1q

l
2.
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These four equations are linked by PiPl = PmPn, which is an implication of indepen-

dence (and obviously a testable one). As a consequence, we cannot identify all four

qjk values. This is natural, given the built-in symmetry: one can pick a value for say

qi1, which fixes all other three values. Such a choice corresponds to fixing the relative

scales of the two axes15 while conserving the probability.

5.2 Selection with Two-way Flows

Example 1 presents different possibilities. Start again by assuming ordinal knowledge

of the thresholds. Figure 4 illustrates the effect of a change in instruments that

increases both thresholds, just as in Figure 3. Five groups are involved this time:

• (G1): moves from D = 2 to D = 0

• (G2): moves from D = 1 to D = 2

• (G3): moves from D = 1 to D = 0

• (G4): moves from D = 2 to D = 0

• (G5): moves from D = 1 to D = 2.

Figure 4: Discrete instruments with two-way flows

V1

V2

qi

ql

G1

G2

G3

G4

G5

15The choice of qi1 is only constrained by the need for all thresholds to be smaller than one. It is
easy to check that qi1 can be chosen freely between max(Pi, Pn) and Pl/Pm.
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With three treatment values, we identify two changes in probabilities and three

changes in expected values; but they are combinations of the weights of these five

groups and of no fewer than 5× 2 = 10 expected values like E(Y 11(D = 2) | (G1)).

In the “rectangular case” we would identify the effect of moving from D = 0 to

D = 1 for group (G3) by moving around the rectangle. By moving up from qi we

would combine groups (G1), (G3), and (G5); by moving to the right from qi we would

combine groups (G2), (G3), and (G4); etc.

Figure 5: Discrete instruments with two-way flows—bis

V1

V2

qi

ql

G̃1

G̃2

G̃3

G̃4

Note also that a change in instruments that moves the thresholds in opposite

directions would only involve four groups, as shown in Figure 5. The groups are:

• (G̃1): moves from D = 2 to D = 0

• (G̃2): moves from D = 2 to D = 1

• (G̃3): moves from D = 0 to D = 2

• (G̃4): moves from D = 1 to D = 2.

Moving up from qi would involve groups (G̃1) and (G̃4); and moving to the left from

qi would involve groups (G̃2) and (G̃3).

Identification of the thresholds Q is simpler, since with three treatment values

we have more information (two generalized propensity score functions). As in the
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previous subsection, assume here that V1 and V2 are independent. Then (4.1) and

(4.2) imply that

Q1(Z) +Q2(Z) = 2P0(Z) + P2(Z) and Q1(Z)Q2(Z) = P0(Z),

This defines a quadratic equation for Q1(Z) and Q2(Z). Solving the equation gives

two solutions between 0 and 1 if the model is well-specified.16 Given the symmetry

between Q1(Z) and Q2(Z) in the selection mechanism of Example 1, we can only

achieve identification of (Q1(Z), Q2(Z)) up to labeling.

Note that this discussion does not rely on exclusion restrictions as we did before.

It shows again that independence is a powerful alternative identifying assumption.

6 Relation to the Existing Literature

Several papers have analyzed multivalued treatments under the unconfoundedness

assumption. Imbens (2000) and Hirano and Imbens (2004) develop generalizations of

the propensity score to discrete treatments and to continuous treatments, respectively.

Cattaneo (2010) show that the semiparametric efficiency bound can be achieved in

discrete treatment models by first estimating the generalized propensity score, then

applying an inverse probability weighted estimator.

Since we do not assume conditional independence between potential outcomes and

unobservables governing the selection mechanism, the rest of this section discusses

selection on unobservables in models with multivalued treatment. The most popular

approaches rely on instruments, like ours.

6.1 Ordered Treatments with Discrete Instruments

Angrist and Imbens (1995) consider two-stage least-squares estimation of a model in

which the ordered treatment takes a finite number of values, and a discrete-valued

instrument is available. Let z = 0, . . . ,M−1 be the possible values of the instrument,

ordered so that E(D|Z = z) increases with z; and D = 0, . . . , K − 1. Angrist

and Imbens show that the TSLS estimator obtained by regressing outcome Y on a

preestimated E(D|Z) converges to βTSLS ≡
∑M−1

m=1 µmβm, where βm’s are called the

16One in the limit case when they are equal.
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average causal responses, defined by

βm ≡
E(Y |Z = m)− E(Y |Z = m− 1)

E(D|Z = m)− E(D|Z = m− 1)

for m = 1, . . . ,M − 1, and the family of weights {µm}M−1
m=1 is given by the joint

distribution of D and Z.

The average causal response βm itself can only be interpreted as causal under

a stronger monotonicity assumption. Denote Dz the counterfactual treatment for

Z = z, and assume that Dm ≥ Dm−1 with probability one. Angrist and Imbens

(1995) prove that under these assumptions, βm is a weighted average of the effects of

treatment on the various groups of compliers:

βm =
K−1∑
k=1

ωkE (Yk − Yk−1|Dm ≥ k > Dm−1) .

The weights (ωk) are given by the joint distribution of Dm−1 and Dm, and they can

be estimated under the monotonicity assumption. On the other hand, the individual

terms

E (Yk − Yk−1|Dm ≥ k > Dm−1)

cannot be identified; only their weighted average βTSLS is.

Heckman, Urzua, and Vytlacil (2006, 2008) go beyond Angrist and Imbens (1995)

by showing how the TSLS estimate can be reinterpreted in more transparent ways in

the MTE framework. They also analyze a family of discrete choice models, to which

we now turn.

6.2 Discrete Choice Models

Heckman, Urzua, and Vytlacil (2008, see also Heckman and Vytlacil (2007)) consider

a multinomial discrete choice model of treatment. They posit

D = k ⇐⇒ Rk(Z)− Uk > Rl(Z)− Ul for l = 0, . . . , K − 1 such that l 6= k,

where the U ’s are continuously distributed and independent of Z.

Define

R(Z) = (Rk(Z)−Rl(Z))l 6=k and U = (Uk − Ul)l 6=k .
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Then Dk = 11(R(Z) > U); and defining Ql(Z) = Pr[Ul < Rl(Z)|Z] allows us to

write the treatment model as

D = k iff V < Q(Z),(6.1)

where each Vl is distributed as U [0, 1].

Heckman, Urzua, and Vytlacil (2008) then study the identification of marginal and

local average treatment effects under assumptions that are similar to ours: continuous

instruments that generate enough dimensions of variation in the thresholds.

As they note, the discrete choice model with an additive structure implicitly im-

poses monotonicity, in the following form: if the instruments Z change in a way that

increases Rk(Z) relative to all other Rl(Z), then no observation with treatment value

k will be assigned to a different treatment. In our notation, Dk is an increasing func-

tion of Q(Z). We make no such assumption, as Example 1 and Figure 1 illustrate.

Our results extend those of Heckman, Urzua, and Vytlacil (2008) to any model with

identified thresholds.

Example 7 (Discrete Choice Model with Three Alternatives). We consider a special

case of (6.1). Suppose that K = {0, 1, 2} with K = 3. Let R̃0,1(Z) = R0(Z) −
R1(Z), R̃0,2(Z) = R0(Z) − R2(Z) and R̃1,2(Z) = R1(Z) − R2(Z). Similarly, let

Ũ0,1 = U0 − U1, Ũ0,2 = U0 − U2 and Ũ1,2 = U1 − U2. Let V0,1 = FŨ0,1
(Ũ0,1) and

Q0,1(Z) = FŨ0,1
(R̃0,1(Z)). Define V0,2, V1,2, Q0,2(Z) and Q1,2(Z) similarly. Then the

selection mechanism in (6.1) can be rewritten as

• D = 0 iff V0,1 < Q0,1(Z) and V0,2 < Q0,2(Z)

• D = 1 iff V0,1 > Q0,1(Z) and V1,2 < Q1,2(Z)

• D = 2 iff V0,2 > Q0,2(Z) and V1,2 > Q1,2(Z).

Our general result in Section 3 applies immediately once the Qj,k’s are identified. This

can be done along the lines of Theorem 4.1, or by applying the results of Matzkin

(1993, 2007).

6.3 Unordered Monotonicity

In an important recent paper, Heckman and Pinto (2015) introduce a new concept of

monotonicity. Their “unordered monotonicity” assumption can be rephrased in our
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notation in the following way. Take two values z and z′ of the instruments Z. We

want to study the treatment effect of moving from k to k′ by exploiting the change

of instruments from z to z′.

Assumption 6.1 (Unordered Monotonicity). Denote Dz and Dz′ the counterfactual

treatments. Then for l = k, k′, there cannot be two-way flows in and out of treatment

value l as the instruments change. More succinctly,

Pr(Dz = l and Dz′ 6= l)× Pr(Dz 6= l and Dz′ = l) = 0.

Unordered monotonicity for treatment value l requires that if some observations

move out of (resp. into) treatment value l when instruments change value from z to

z′, then no observation can move into (resp. out of) treatment value l. For binary

treatments, unordered monotonicity is equivalent to the usual monotonicity assump-

tion: there cannot be both compliers and defiers. When K > 2, it is much weaker,

and also weaker than ordered choice.

Heckman and Pinto (2015) show that unordered monotonicity (for well-chosen

changes in instruments) is equivalent to a treatment model based on rules that are

additively nonseparable in the unobserved variables. That is,

Dk = 11 (φk(V ) ≤ ψk(Z))

for some functions φk and ψk that assign all observations to a unique treatment value.

This is almost, but not quite, equivalent to a discrete choice model with additively

separable utilities. In this interpretation, changes in instruments that increase the

mean utility of an alternative relative to all others are unordered montonicity for

that alternative, for instance. We refer the reader to Section 6 of Heckman and Pinto

(2015) for a more rigorous discussion, and to Pinto (2015) for an application to the

Moving to Opportunity program.

Unlike us, Heckman and Pinto (2015) do not require continuous instruments;

all of their analysis is framed in terms of discrete-valued instruments and treat-

ments. Beyond this (important) difference, unordered monotonicity clearly obeys

our assumptions—just redefine φk(V ) and ψk(Z) above so that the unobserved vari-

able is distributed as U [0, 1]. On the other hand, we allow for much more general

models of treatment. It would be impossible, for instance, to rewrite our Examples 1,
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2 and 3 so that they obey unordered monotonicity: to use the terminology of Heck-

man and Pinto (2015), they are both unordered and non-monotonic. We illustrate

this point using Example 1 below.

Example 1 (continued). In Example 1, we have that D = 2 iff (V1 − Q1(Z)) and

(V2 − Q2(Z)) have opposite signs. Note that there are two unobserved categories

within D = 2:

D = 2a iff V1 < Q1 and V2 > Q2,

D = 2b iff V1 > Q1 and V2 < Q2.

Each one is unordered monotonic; but because we only observe their union, D = 2

is not unordered monotonic—increasing Q1 brings more people into 2a but moves

some out of 2b, so that in the end we have two-way flows, contradicting unordered

monotonicity. To put it differently, the selection mechanism in Example 1 becomes

a discrete choice model when each of four alternatives d = 0, 1, 2a, 2b is observed;

however, we only observe whether alternative d = 0, d = 1 or d = 2 is chosen in

Example 1. This amounts to “filtering” unordered monotonic treatment through a

coarser information partition; this coarsening destroys unordered monotonicity.

Our formalism allows us to derive a new characterization of the unordered mono-

tonicity property defined by Heckman and Pinto (2015). Take any treatment value

k. In our model, a change in instruments Z acts on the treatmemt assigned to

an observation with unobserved characteristics V through the indicator functions

Sj = 11(Vj < Qj(Z)), which depend on the thresholds Q.

Unordered monotonicity requires that there exist changes in thresholds ∆Q such

that for Q′ = Q+ ∆Q,

Pr {Dk(V ,Q) = 0 and Dk(V ,Q
′) = 1}×Pr {Dk(V ,Q) = 1 and Dk(V ,Q

′) = 0} = 0,

where the probabilities are computed over the joint distribution of V .

In our framework, several thresholds are typically relevant for each treatment

value. This makes the analysis of unordered monotonicity complex in general. To

understand why, we start from

Dk =
∑
n∈Nk

Πn(S)
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with Nk ⊂ {1, . . . , 2J} the atoms included in treatment value k and

S = (S1, . . . , SJ) for Sj(V ,Q) = 11(Vj < Qj).

Here

Πn =
∏

j∈J−Mn

Sj
∏
j∈Mn

(1− Sj).

Consider Dk and Πn as multivariate polynomials of ∆S. For any change in thresholds

∆Q that induces changes in the indicators ∆S,

(6.2) ∆Dk =
J∑

m=1

1

m!

∑
j1 6=... 6=jm

∂mDk

∂Sj1 . . . ∂Sjm

m∏
l=1

∆Sjl .

Note that this is an exact expansion since Dk is a polynomial. Moreover, note that

given a change in thresholds ∆Qj,

(6.3) ∆Sj(V ) = 11(|Vj −Qj| < |∆Qj|)× δj,

where δj = ±1 as ∆Qj ≷ 0, and qj = 0 otherwise.

The changes ∆Sj can only take the values 0 or ±1. In general higher-order terms

in the above expansion may be nonzero. However, if the changes in thresholds ∆Q

are small then we can neglect the higher order terms since the set of values of V for

which several ∆Sj are nonzero will have very small probability. To make this more

precise, we use the following definition:

Definition 1 (Two-Way Flows). A change in thresholds ∆Q generates two-way flows

for treatment value k if and only if

lim
ε→0

Pr (Dk(0) = 0 and Dk(ε) = 1)

ε
× Pr (Dk(0) = 1 and Dk(ε) = 0)

ε
> 0

for Dk(ε) ≡ Dk(V ,Q+ ε∆Q).

We now provide new characterizations of unordered monotonicity.

Theorem 6.1 (Characterizing Unordered Monotonicity in the Small). Assume that

J > 1 thresholds are relevant for treatment value k. Fix a value Q of the thresholds.

Denote

D′k(S) =
∂Dk

∂S
(S).
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1. If each component of D′k(S) has a constant sign when S varies over {0, 1}|J |,
then some changes in thresholds will not generate two-way flows, and others

will.

2. If the sign of a component j of D′k(S) changes in a neighborhood of the hyper-

plane Sj = 0, then any change in thresholds will generate two-way flows.

(In these two statements, we take 0 to have the same sign as both −1 and +1.)

Proof of Theorem 6.1. The proof is given in Appendix B.4.

To illustrate the theorem, first consider the double hurdle model, for whichD′1(S) =

(S2, S1) ≥ 0. Changes such that ∆Q1 and ∆Q2 have the same sign do not generate

two-way flows, but changes that generate ∆Q1∆Q2 < 0 do. Now turn to the model

of Example 1, where D′2(S) = (1−2S2, 1−2S1). To get one way flows only, we would

need to choose q1, q2 = ±1 so that

0, (1− 2S2)q1, (1− 2S1)q2 and (1− 2S2)q1 + (1− 2S1)q2

have the same sign, and that sign is the same for all V . But with (1 − 2S1) (resp.

(1 − 2S2)) changing sign near {S1 = 0} (resp. {S2 = 0}), that is clearly impossible

since as V varies the sum takes values 0, q1, q2, q1 + q2, q1 − q2, q2 − q1 and −q1 − q2.

Hence any change in instruments creates two-way flows.

6.4 Models with Continuous Treatment

Chesher (2003) develops conditions to identify derivatives of structural functions

in nonseparable models by functionals of quantile regression functions. His frame-

work includes the case of a continuous treatment and is based on a control function

approach. In addition, Florens, Heckman, Meghir, and Vytlacil (2008) consider a

potential outcome model with a continuous treatment. They assume a stochastic

polynomial restriction such that the counterfactual outcome Yd corresponding to the

continuous treatment value d has the form:

Yd = EYd +
J∑
j=0

djεj,
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where the order of the polynomial, J < ∞, is known. They show that the average

treatment effect can be identified if a control function Ṽ can be found such that

E(εj|D,Z) = E(εj|Ṽ ) ≡ rj(Ṽ ), j = 0, . . . , J,

where D is the realized treatment and Z is a vector of instruments.

Imbens and Newey (2009) also consider selection on unobservables with a contin-

uous treatment. They assume that the treatment (more generally in their paper, an

endogenous variable) is given by D = g(Z, V ), with g increasing in a scalar unob-

served V . They use a control function approach based on the identification of V as

FD|Z(D|Z) to identify the average structural function

EYd = EE(Yd|V ) = EE(Y |D = d, V ),

as well as quantile, average, and policy effects.

Other more recent identification results along this line can be found in Torgovitsky

(2015) and D’Haultfœuille and Février (2015) among others. One key restriction in

this group of papers is the monotonicity in the scalar V in the selection equation. We

do not rely on this type of restriction, but we only focus on the case of multivalued

treatments. Hence, our approach and those of the papers cited in this subsection are

complementary.

Finally, our approach shares some similarities with Hoderlein and Mammen (2007).

They consider the identification of marginal effects in nonseparable models without

monotonicity:

Y = φ(X,Z, U),

where Z is continuous multivariate and U ⊥⊥ X|Z. They show that

E

(
∂φ

∂x
(x, z, U)|X = x, Z = z, Y = qα(x, z)

)
=
∂qα
∂x

(Y |X = x, Z = z).

In this equation, qα(Y |X,Z) represents the α-quantile of the distribution of Y con-

ditional on X and Z; and the left-hand side is a local average structural derivative.

Since the quantiles are clearly identified from the data, so is the left-hand side. Their

approach based on differentials is reminiscent of our method of taking derivatives.

The parameters of interest they study are quite different, however; and their selec-
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tion mechanism is not as explicit as ours.
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Online Appendices to “Identifying Effects of Multi-

valued Treatments”

A Additional Results

A.1 Some Results on Indices

Assume that the model of treatment has J thresholds. This generates 2J atoms. A

treatment value is defined by the union of any number of atoms, that is by a subset

of {1, . . . , 2J}. There are no fewer than (22J − 2) possible selection rules (excluding

the two trivial cases). The number of treatment models with t treatment values is

the number of partitions of the set {1, . . . , 2J} into t non-empty sets, which is an

exponentially increasing number.

For m = 0, . . . , J , the number of atoms with m terms Ēj is
(
J
m

)
; and such atoms

have an index (−1)m. Since
∑J

m=0

(
J
m

)
(−1)m = (1− 1)m = 0, the sum of the indices

of all atoms is zero; and so is that of the indices of all treatment values since each

atom belongs to one treatment and to one only. Moreover, for every atom with index

1 there is one with index −1, and vice versa (just take complements of the Ej and Ēj

sets). It follows that there are 2J−1 atoms with index 1 and 2J−1 with index −1.

To create a treatment value with all J thresholds relevant and a zero index, we

need to combine (at least) an atom with index 1 and one with index −1. Take any

such pair of atoms. They must differ on an odd number of threshold-crossing rules.

They can differ on only one threshold j: but then their union would combine Ej or

Ēj, and threshold j would not be relevant any more. It follows that the two-threshold

case is very special: for J = 2 no treatment value that responds to both thresholds

can have zero index.

On the other hand, with J = 3 thresholds one can simply take the complement

of the three Ej or Ēj in any atom; combining the resulting two atoms creates a

zero-index treatment value, as in Example 3. And for J > 3, we can leave all other

threshold crossings unchanged.
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A.2 Monotone Treatment (General Case)

This section generalizes Section 4.1 for any finite K ≥ 2. To do so, take a family

of thresholds (Q1(Z), . . . , QK−1(Z)) and unobserved mutually independent random

variables (V1, . . . , VK−1) whose marginal distributions are U [0, 1]. First, assign D = 0

when V1 > Q1(Z); and for every k = 1, . . . , K − 1 and given that D ≥ k − 1, let the

model assign D ≥ k if and only if

Vk < Qk(Z).

This generates a model of treatment that satisfies our Assumption 2.1. It has J =

K − 1 and a very specific structure:

D = arg min{k = 0, . . . , K − 2 | Vk+1 > Qk+1(Z)},

with D = K − 1 if Vk < Qk(Z) for all k = 1, . . . , K − 1.

Note that the thresholds are easily identified from

Qk(Z) = Pr(D ≥ k|D ≥ k − 1,Z).

Each treatment value k is defined by k atoms Ej (for j = 1, . . . , k− 1) and one event

Ēk+1, with the exceptions of k = 0 which only has atom Ē1 and k = K − 1 which

has atoms Ej for j = 1, . . . , K − 1. Therefore only treatment values (K − 2) and

(K − 1) have a nonzero index, with aK−2 = −1 and aK−1 = 1. Treatment values

k = 0, . . . , K − 2 (if K > 2) have ak = 0 and their leading coefficient is cl = −1.

To apply Theorems 3.1 and 3.2, we assume the existence of enough continuous

instruments Z. Using the generic notation xn = (x1, . . . , xn), we then obtain a series

of formulæ for k = 0, . . . , K − 2 and all v ∈ (0, 1)K−1 :

E(Yk|V k+1 = vk+1) = − ∂k+1

∂q1 . . . ∂qk+1

E(Y Dk|Q(Z) = v)

along with two slightly different formulæ for k = K − 1:

E(YK−1|V = v) =
∂K−1

∂q1 . . . ∂qK−1

E(Y DK−1|Q(Z) = v).

These formulæ can be used to estimate marginal treatment effects, and to run
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overidentifying tests.

Now take for instance the unconditional average treatment effect of moving to

treatment value (K − 1) from treatment value (K − 2). Assume that Z contains at

least (K − 1) continuous instruments that generate full support variation in Q(Z).

Then by integrating we obtain

E(YK−1 − YK−2) =

∫
(0,1)K−1

∂K−1

∂q1 . . . ∂qK−1

E (Y (DK−1 +DK−2)|Q(Z) = q) dq.

A.3 Fully Partitioned Treatment Assignment

Sometimes the combination of J criteria determines 2J different treatments17, accord-

ing to the value of the binary vector (V1 < Q1(Z), . . . , VJ < QJ(Z)). Each of these

treatment values is what we called earlier an atom, with an index ±1. Identification

of (Q1, . . . , QJ) is straightforward; if for instance the first 2J−1 treatment values have

V1 < Q1 and the last 2J−1 have V1 > Q1, then Q1(Z) = Pr(D ≤ 2J−1|Z).

To identify the treatment effects and joint density, we need J continuous instru-

ments in Z. To illustrate, order treatment values in the standard binary order, coding

Vj < Qj as a 1. The joint density is multiply overidentified: for each treatment value

d = 0, . . . , 2J − 1 of index ad,

fV1,...,VJ (q1, . . . , qJ) =
1

ad

∂J

∂q1 . . . ∂qJ
Pr(D = d|Q1(Z) = q1, . . . , QJ(Z) = qJ).

Say that J ≥ 4 and we want to identify the treatment effect of moving from treatment

value d = 1011 (with index ad = −1) to treatment value d′ = 0101 (which has index

ad = 1). The marginal treatment effect is given by

E(Yd − Yd′ |V1 = q1, . . . , VJ = qJ)fV1,...,VJ (q1, . . . , qJ)

=
∂J

∂q1 . . . ∂qJ
E(Y (Dd +Dd′)|Q1(Z) = q1, . . . , QJ(Z) = qJ).

17We thank Rodrigo Pinto for suggesting this example to us.
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B Proofs

B.1 Proof of Theorem 3.2

As explained in the text, steps 1 and 2 of the proof of Theorem 3.1 do not rely on

any assumption about indices. They show that if we define

Wl(q) =

∫ ∏
j∈Il

H(qj − vj)bk(v)dv

where the set Il ⊂ J , then its cross-derivative with respect to (pIl) is∫
bk(q

Il ,v−Il)dv−Il ,

where v−Il collects all components of v whose indices are not in Il.

Now let m be the degree of treatment k. In the sum (3.4), take any term l such

that |Il| = m. Recall that T̃ denotes the differential operator

T̃ =
∂m∏

i=1,...,m ∂ji
.

By the formula above, applying T̃ to term l gives

cl

∫
bk(q

Il ,v−Il)dv−Il .

Moreover, applying T̃ to any other term l′ obviously gives zero if term l′ has degree

lower than m. Turning to terms l′ of degree m, any such term must have a Il′ 6= Il,

or it would be collected in term l. But then T̃ takes at least one derivative along a

direction that is not in l′, and that term contributes zero too.

This proves that

T̃Bk(q) = cl

∫
bk(q

Il ,v−Il)dv−Il ;

note that it also implies that T̃Bk(q) only depends on qIl .

Applying this first to bk(v) = fV (v) and Bk(q) = Pr(D = k|Q(Z) = q), then to

bk(v) = E[G(Yk)|V = v]fV (v) and Bk(q) = E[G(Y )Dk|Q(Z) = q] exactly as in the
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proof of Theorem 3.1, we get∫
fV (qIl ,v−Il)dv−Il =

1

cl
T̃ Pr(D = k|Q(Z) = q)∫

E[G(Yk)|V = (qIl ,v−Il)]fV (qIl ,v−Il)dv−Il =
1

cl
T̃E(G(Y )Dk|Q(Z) = q).

Since the left-hand sides are simply fV Il (v
Il) and E[G(Yk)|V Il = qIl ]fV Il (v

Il), the

conclusion of the theorem follows immediately.

B.2 Proof of Theorem 4.1

Without loss of generality18, we normalize q2(z̄2) = q4(z̄4) = 0. Define H by

H(z1, z3) = Pr (D = 1|Z1 = z1, Z3 = z3,Z2 = z̄2,Z4 = z̄4)

for any (z1, z3) ∈ R2.

Let fV (v1, v2) denote the density of V . By construction,

H(z1, z3) = FV (G1(z1), G3(z3)) =

∫ G1(z1)

0

∫ G3(z3)

0

fV (v1, v2)dv1dv2.(B.1)

Differentiating both sides of (B.1) with respect to z1 gives

∂H

∂z1

(z1, z3) = G′1(z1)

∫ G3(z3)

0

fV (G1(z1), v2)dv2.(B.2)

Now letting z3 → b3 on the both sides of (B.2) yields

lim
z3→b3

∂H

∂z1

(z1, z3) = G′1(z1)

[
lim
z3→b3

∫ G3(z3)

0

fV (G1(z1), v2)dv2

]
.(B.3)

Note that the expression inside the brackets on the right side side of (B.3) is 1 since

limz3→b3 G3(z3) = 1 and the marginal distribution of V2 is U [0, 1]. Therefore we

identify G1 by

G1(z1) =

∫ z1

a1

lim
t3→b3

∂H

∂z1

(t1, t3)dt1.(B.4)

18We can always adjust G1 and G3 to compensate.
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Analogously, we identify G3 by

G3(z3) =

∫ z3

a3

lim
t1→b1

∂H

∂z3

(t1, t3)dt3.(B.5)

Returning to (B.1), since G1 and G3 are strictly increasing we also identify FV by

FV (v1, v2) = H(G−1
1 (v1), G−1

3 (v2)).

Once FV , G1 and G3 are identified, we fix any point (z̄1, z̄3) and we identify q2(z2)

by choosing Z1 = z̄1;Z3 = z̄3;Z2 = z2; and Z4 = z̄4. This gives

Pr (D = 1|Z1 = z̄1;Z3 = z̄3;Z2 = z2, Z4 = z̄4) = FV (G1(z̄1 + q2(z2)), G3(z̄3))

which inverts to give the value of q2(z2). We proceed in the same way for q4(z4).

B.3 Proof of Theorem 5.1 and Theorem B.1

First define the discrete form T̄ of the differential operator

Th(q) =
∂Jh

∂q1 . . . ∂qJ
(q)

by averaging Th(q) over the hyperrectangle:

T̄ h(q−, q+) ≡

∫ q+1
q−1
. . .
∫ q+J
q−J
Th(q)dq∏J

j=1(q+
j − q−j )

.

We claim that

(B.6) T̄ h(q−, q+) =

∑
σ∈ΣJ

(−1)J+nσh(qσ)∏J
j=1(q+

j − q−j )
.

This is easily seen by a recursive argument. It is obviously true for J = 1, with

T̄ h(q−, q+) =
1

q+ − q−

∫ q+

q−
h(q)dq.
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Assume that (B.6) holds for J = p. For J = p+ 1 we write, integrating over the last

coordinate,

T̄ h(q−, q+) =

∫ q+1
q−1
. . .
∫ q+p+1

q−p+1

∂Jh
∂q1...∂qp+1

h(q)dq∏p+1
j=1(q+

j − q−j )

=
1

q+
p+1 − q−p+1

∫ q+1
q−1
. . .
∫ q+p
q−p

∂p

∂q1...∂qp
h(q1, . . . , qp, q

+
p+1)dq1 . . . dqp∏p

j=1(q+
j − q−j )

− 1

q+
p+1 − q−p+1

∫ q+1
q−1
. . .
∫ q+p
q−p

∂p

∂q1...∂qp
h(q1, . . . , qp, q

−
p+1)dq1 . . . dqp∏p

j=1(q+
j − q−j )

=
1∏p+1

j=1(q+
j − q−j )

∑
σ∈Σp

(−1)p+nσ
(
h(qσ, q+

p+1)− h(qσ, q−p+1)
)
,

using qσ to denote summits of the p-th dimensional hyperrectangle. Noting that

(p+ 1) + (nσ + 1) ≡ p+ nσ (mod 2)

completes the proof of (B.6).

The proof of Theorem 5.1 is now straightforward. First take h(q) = Pr(D =

k|Q(Z) = q). We know from Theorem 3.1 that

Th(q) = akfV (q);

it follows that T̄ h(q−, q+) is ak times the average of the density of V over the hyper-

rectangle:

∑
σ∈ΣJ

(−1)J+nσ Pr(D = k|Q(Z) = qσ)∏J
j=1(q+

j − q−j )
= ak

∫ q+1
q−1
. . .
∫ q+J
q−J
fV (q)dq∏p+1

j=1(q+
j − q−j )

which proves part 1 of the theorem. Using h(q) = E(Y Dk|Q(Z) = q) gives

∑
σ∈ΣJ

(−1)J+nσE(Y Dk|Q(Z) = qσ)∏J
j=1(q+

j − q−j )
= ak

∫ q+1
q−1
. . .
∫ q+J
q−J
fV (q)E(Yk|Q(Z) = q)dq∏p+1
j=1(q+

j − q−j )

and dividing through gives part 2.
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It is easy to adapt the proof of Theorem 5.1 to obtain the following result for

treatment values with a zero index:

Theorem B.1 (The rectangular case with zero index). If no treatment value has

a non-zero index but treatment k has degree m < J , renumber threshold conditions

so that one of the highest-degree terms in Dk(S) is c × S1 × · · · × Sm. Then if

we can construct a hyperrectangle in m-dimensional (Q1, . . . , Qm) space with fixed

(qm+1, . . . , qJ), adapting the qσ in the natural way,

1. the probability that (V1, . . . , Vm) belongs to the hyperrectangle is identified by

Pr(q−j ≤ Vj ≤ q+
j ∀j = 1, . . . ,m) =

1

c

∑
σ∈Σm

(−1)m+nσ Pr (D = k|Q(Z) = qσ) ;

2. the density-weighted average value of E(Yk|V = q) in the hyperrectangle is

identified by

EwE(Yk|V = q) =

∑
σ∈Σm

(−1)m+nσE (Y Dk|Q(Z) = qσ)∑
σ∈Σm

(−1)m+nσ Pr (D = k|Q(Z) = qσ)
,

where w(q) is fV (q) normalized to integrate to one within the hyperrectangle.

The changes in the proof are very minor: they only require setting q+
j = q−j for

j > m, limiting the σj’s to be 0 for j > m, and integrating over the first m dimensions

only.

B.4 Proof of Theorem 6.1

Remember that given a change in thresholds ε∆Qj,

∆Sj(V ) = 11(|Vj −Qj| < ε |∆Qj|)× δj,

where δj = ±1 as ∆Qj ≷ 0, and δj = 0 otherwise.

Therefore under our assumptions on the distribution of V the probability that

∆Sj 6= 0 is of order ε; the probability that ∆Sj∆Sl 6= 0 is of order ε2, etc. Given

Definition 1, we only need to work on the first-order terms in expansion (6.2) since

the other terms generate vanishingly small corrections.
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To prove part 1 of the theorem, assume that the sign of each derivative of Dk

with respect to the Sj has a constant sign, independently of S ∈ {0, 1}|J |. Then

it is easy to find changes ∆Q that only generate one-way flows: take each ∆Qj to

have the sign of ∂Dk

∂Sj
(or take all opposite signs). It is equally easy to find changes

in instruments that generate two-way flows. Take two indices j 6= l such that ∂Dk

∂Sj

and ∂Dk

∂Sl
are not identically zero. (Such a pair exists since the number of k-relevant

thresholds J > 1.) Under our assumptions we can take ∆Qm = 0 for m 6= j, l. Choose

some ∆Qj,∆Ql 6= 0 such that

∂Dk

∂Sj
(S)δj and

∂Dk

∂Sl
(S)δl

have opposite signs (which do not vary with S by assumption). Then the first-order

terms in the expansion in (6.2) give

∆Dk '
∂Dk

∂Sj
(S)δj11(|Vj −Qj| < ε |∆Qj|) +

∂Dk

∂Sl
(S)δl11(|Vl −Ql| < ε |∆Ql|).

Take |Vj −Qj| small and |Vl −Ql| not small; then this expression has the sign of
∂Dk

∂Sj
(S)δj. Permuting j and l generates the opposite sign; therefore such a change in

thresholds generates two-way flows.

To prove part 2 of the theorem, take j such that ∂Dk

∂Sj
changes sign with S near

the hyperplane {Sj = 0} = {Vj = Qj}. Make ∆Qj > 0 and ∆Qm = 0 for all m 6= j.

Then the first order term in (6.2) gives

∆Dk '
∂Dk

∂Sj
(S)δj11(|Vj −Qj| < ε |∆Qj|),

which takes opposite values as Vj varies in a neighborhood of Sj = 0.
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