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1 Introduction

The current paper considers the relationship between the volatility of individual assets and the

volatility of an aggregate risk factor, such as the market volatility, focusing specifically at the jump

times in the volatility of the risk factor. If the volatility of the risk factor is itself a priced source

of risk then an exploration of the link between the volatilities of individual assets and the volatility

of aggregate risk factors will prove useful and insightful for the pricing of individual assets and for

the understanding of the cross-section of asset returns.

To think about such a relationship let (Yt)t≥1 be the price process of some asset and (Zt)t≥1 an

aggregate risk factor, such as the market, and denote their co-volatility matrix as ct with cY Y,t and

cZZ,t their respectively volatilities. The current paper studies relationships between elements of ct

at jump times τ ∈ T where we denote the jumps in ct as ∆ct = ct − ct−. The statistical inference

is based on discrete observations of (Y,Z) sampled on an observation grid with asymptotically

shrinking mesh. Because of this and the latent nature of the spot volatilities we will only be able

to observe estimates of ct. The primary focus of the paper is on generalized “volatility jump betas”

which the paper defines as

βτ ≡
∆g(cτ )

∆h(cτ )
(1)

for τ ∈ T where g, h : R2 × R2 → R are any continuously differentiable functions and ∆g(ct) =

g(ct)−g(tt−) and ∆h(ct) = h(ct)−h(tt−). Taking g(c) = cY Y,t and h(c) = cZZ,t, for example, would

uncover the spot-volatility beta in variance units whereas g(c) = log cY Y,t and h(c) = log cZZ,t or

g(c) =
√
cY Y,t and h(c) =

√
cZZ,t would allow us to explore the relationship in log or standard-

deviation units. We might also consider g(c) = cY Y,t− (cZY,t)
2/cZZ,t and h(c) = cZZ,t which would

uncover the beta between the spot volatility in Z and the “idiosyncratic” spot volatility in Y .

Without any model restriction, the spot volatility jump beta is stochastic and varies across

instances of jump events. However, in many asset pricing models a linear relationship between

functions of the spot volatilities might exist which would motivate testing a linear relationship of

the form

∆g(cτ ) = β∆h(cτ ) (2)

for τ ∈ T where β is constant. For example, when g(c) = log cY Y,t and h(c) = log cZZ,t the beta

in (2) is the elasticity between the spot volatilities of Z and Y . The magnitude of that beta then

would tell us whether a concave, convex, or linear relationship existed between the spot volatilities
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Figure 1: A Representative Illustration of Volatility Jump Regressions
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Note: These figures plot estimates of the contemporaneous log-volatility co-jumps between the E-mini S&P500 index futures
(ES) and the Consumer Discretionary ETF (XLY) together with linear fits. The estimated volatility jumps in the E-mini are
on the horizontal axis while the those for XLY are along the vertical axis. The volatility co-jumps are estimated using returns
sampled at a one-minute frequency for 2008 (left) and 2007-2015 (right). The procedure for estimating the volatility co-jumps
and their jump times is detailed in Section 3.

which could potentially have very interesting results for any model of asset volatilities. Note that,

equation (2) is akin to a linear regression between functions of the spot volatilities where the error

in the observed equation ∆g(ĉτ ) = β∆h(ĉτ ) + ετ is due to the estimation error in estimating ct.

This will be the basis for the asymptotic results to follow in the paper.

A motivating empirical example of volatility jump regressions is given in Figure 1. The figure

plots the estimated co-jumps in the log-volatility of the E-mini S&P500 index futures (ES), which

is used here to proxy for the market, against those for the Consumer Discretionary portfolio ETF

(XLY) together with a linear fit based on the model in (2). Note that even if the linear model in (2)

held for all the estimated jump times that we would not expect to see a perfectly linear relationship

in the plots due to the estimation error in estimating the spot volatilities. Considering this caveat

the plots do show a remarkably good fit for a linear relationship in the one-year subsample (left) and

a still reasonable fit for the entire nine-year sample (right). Note as well how closely the line of best

fit is to β = 1 in both panels – this would imply a linear relationship between the spot volatility

jumps of the E-mini and XLY.1 The main contribution of this paper is to develop econometric

techniques to both test the fit of these linear relationships and to conduct inference on the beta in

such relationships.

1For 2008 the beta is estimated at 1.01 with a 95% confidence interval of [0.89, 1.21] and for the entire 2007-2015
sample it is estimated at 0.91 with a 95% confidence interval of [0.77, 1.00]
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The motivations for studying spot volatility jumps are several fold, but one particular motivation

is the evidence that the volatilities of aggregate risk factors, or even the volatilities of individual

assets, are themselves priced sources of risk. Numerous papers in the options pricing literature have

documented a negative price of risk for the volatility of their underlying assets as well as the market

volatility. In the options pricing context the “vega” of an option, i.e., the derivative of the option’s

value with respect to the volatility of the underlying asset, is widely studied both by researchers

and practitioners. In terms of the cross-section of returns, one notable paper Ang, Hodrick, Xing,

and Zhang (2006) explored the cross-sectional pricing of volatility risk in a fashion analogous to

Fama and French (1992) and found that even controlling for the three Fama and French (1993)

factors that shocks to aggregate volatility carry a statistically significant negative price of risk of

approximately -1% per annum. Other papers have examined the “variance risk premium” which is

defined as the difference between the expectation of future market volatility under the risk-neutral

measure and its exception under the physical measure. One paper, Bollerslev, Tauchen, and Zhou

(2009), found that the variance risk premium explains a considerable fraction of the variation in

quarterly stock market returns. This paper explores the pricing of volatility jumps in an empirical

application in Section 6.4 where, in a series of predictive regressions, future market excess returns

are regressed on estimated market spot volatility jumps. The empirical applications finds spot

volatility jumps to be most predictive of future excess returns at a three to four month horizon

with R2s of nearly ten percent.

In terms of economic theory the last decade has seen a considerable body of work developed

that attempts to explain the underlying economic mechanisms that would lead to a negative price

of volatility or a variance risk premium. An early paper, Tauchen (2011), widely circulated as

a working paper before being published, showed how Epstein-Zin preferences and a model with

time-varying volatility could endogenously give rise to a “leverage effect” and a variance risk pre-

mium with the sign of these effects depending critically on the coefficient of risk aversion and the

intertemporal elasticity of substitution. Drechsler and Yaron (2011) show how a preference for the

early resolution of uncertainty will lead to a variance risk premium in the long-run risk framework

of Bansal and Yaron (2004). The intuition for their result is that if investors have a preference

for the early resolution of uncertainty then they will pay to hedge against increases in uncertainty.

Since volatility arises as a time-varying source of economic uncertainty in the long-run risk frame-

work volatility itself becomes a priced risk factor. Two other recent papers to develop a variance

risk premium in a long-run risk framework are Bollerslev, Sizova, and Tauchen (2011) and Bansal,

Kiku, Shaliastovich, and Yaron (2014). Volatility regressions might aid in developing tests of the
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implications of these theories.

In addition to the leverage effect more recent research has documented a negative relation

between the idiosyncratic volatility of an asset and its subsequent returns. This has come to be

known as the “idiosyncratic volatility puzzle.” This phenomenon was first documented in Ang,

Hodrick, Xing, and Zhang (2006). They conjectured that this finding might result because stocks

with high idiosyncratic volatilities may have a high exposure to the aggregate volatility risk, which

lowers their average returns. Empirically, however, they find this to be an incompletely explanation.

This paper explores such a relationship in an empirical application in Section 6.3 where the beta

between the idiosyncratic spot volatility jumps of various assets and the market spot volatility

jumps are estimated. Near all of the betas are all found to statistically significantly different from

zero implying a correlation between the idiosyncratic volatilities of assets and the market volatility

at jump times. Even further, the R2s are often in excess of 0.50 implying that the market volatility

jumps often explains a substantial fraction of the variation in the idiosyncratic volatility jumps

themselves. Other explanations for the idiosyncratic volatility puzzle have posited lottery-like

preference on the part of some investors or have examined market frictions. A thorough review of

the literature since then and these and other proposed explanations for the “puzzle” can be found

in Hou and Loh (2016).

The motivation for examining the relationship between spot volatilities at jump times, particu-

larly jump times in the market volatility, is several fold. First, there is a strong correlation between

jumps in the price-level of the market and jumps in the market volatility. This is documented in

Todorov and Tauchen (2011) and elsewhere. Given the strong negative correlation between returns

and their volatility,2 and the fact that jumps in the price level provide an undiversifiable source

of risk in addition to an economically significant proportion of the quadratic variation in returns,

examining the link between volatilities at jump times seems especially warranted. Second, many

of these jump times correspond to scheduled macroeconomic announcements such as the FOMC

announcements of the Federal Reserve. Understanding the link between these announcements and

changes in volatilities could elucidate another channel whereby macroeconomic announcements af-

fect financial markets. Third, given the large evidence on the time-varying nature of volatilities

an exploration of volatility co-movements at jump times might illuminate an economic relationship

different from that at non-jump times. On the level of returns, Li, Todorov, and Tauchen (2015)

explore jump betas between asset returns and market returns at jump times. They find that for

many assets that these betas remain constant at jump intervals, within a given time span, in direct

2Andersen, Bondarenko, and Gonzalez-Perez (2015) provide evidence that this relationship exists and remains
strongly negative at both jump and non-jump intervals.
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contrast to findings in Reiss, Todorov, and Tauchen (2015) and elsewhere in which such betas are

found to be time varying. A similar finding might arise when examining the relationship between

volatilities. Finally, due to the fact that volatilities are latent processes and must be estimated

there is likely to be a fairly low signal-to-noise ratio in nearly any study of volatilities. Especially

if one considers microstructure issues. A study focusing on the large jumps in volatilities could

mitigate these problem because the focus would be directed only on relatively large movements in

these processes where a higher signal-to-noise ratio is likely to exist and where the magnitude of

changes in the true latent volatilities are likely to be considerably larger than the magnitudes of

changes in the volatilities any possible microstructure factors.

Moving to the results of the paper, the main contributions can be summarized as follows. In the

first part of the analysis, the paper develops a specification test for whether a linear relationship

such as (2) exists between general functions of the spot co-volatility of two assets at jump times.

The test is asymptotically consistent against all nonparametric fixed alternatives for which a linear

relationship is violated, for example, due to time variation in the beta of the relationship and/or

nonlinearities between the volatility jumps (i.e., the dependence of the volatility jump beta on the

volatility jump size). Next, the paper develops tools for estimating and conducting inference on

the volatility jump beta of the linear relationship. The paper show how an ordinary least-squares

estimator can lead to potentially biased estimates of the volatility jump beta due to the estimation

error in estimating the volatility jumps and provides a quasi-maximum-likelihood estimator based

on an asymptotic approximation of the distribution of the errors in estimating the spot volatilities

that corrects for this bias in small samples and asymptotically. Finally, since the asymptotic

distribution of the likelihood based estimator of the volatility jump beta is highly non-standard,

the paper introduces an intuitive and easy to implement bootstrap procedure for making inference

and justifies its asymptotic validity.

In terms of its empirical contributions this paper contains three empirical applications of the

methods and procedures introduced. The first empirical application studies the volatility jump beta

between the market and a panel of assets consisting of the nine industry portfolios that comprise the

S&P500 index and the thirty stocks within the Dow-Jones Industrial Average (DOW30) over the

period 2007-2015, with the E-mini being the proxy for the market. Comparing log-volatility jumps

the study documents that the market volatility jump beta of many financial assets appears to remain

stable over a period of one year, but finds evidence for temporal variation over the entire nine year

sample. Interestingly, the study finds the volatility jump beta for many assets to be very near one

which would imply a linear relationship between the spot volatility of the assets and the market

6



volatility at jump times. The next empirical application estimates the jump beta between the

idiosyncratic volatility of the DOW30 stocks and the market spot volatility. The study finds many

of the betas to be statistically different from zero implying a correlation between the idiosyncratic

volatilities of these assets and the market volatility at jump times. Even further, the R2s are often

in excess of 0.50 implying that the market volatility jumps often explains a substantial fraction

of the variation in the idiosyncratic volatility jumps themselves. The final empirical application

examines the pricing of market volatility jumps. Through a series of predictive regressions between

future market excess returns and the estimated market spot volatility jumps, the study documents

spot volatility jumps to be most predictive of future excess returns at a three to four month horizon

with R2s of nearly ten percent.

The rest of the paper is organized as follows. Section 2 introduces the main setting and as-

sumptions that will be used throughout the paper. Section 3 describes the econometric framework

and asymptotic theory used in estimating the spot volatilities and their jump times. Section 4

introduces the framework for estimating and evaluating volatility jump regressions and introduces

a bootstrap procedure for conducting inference. Section 5 contains a Monte Carlo evaluation. Sec-

tion 6 shows the results of three empirical applications. Section 7 concludes. All proofs are given

in the appendix which is Section 8.

2 Setting

This section introduces the formal setup for the analysis of this paper. The following notations are

used throughout. The transpose of a matrix A is denoted by A>. For two vectors a and b, the

notation a ≤ b is meant to convey that the inequality holds component-wise. The functions vec (·),
det (·) and Tr(·) denote matrix vectorization, determinant and trace, respectively. The Euclidean

norm of a linear space is denoted ‖ · ‖. The notation R∗ is used to denote the set of nonzero real

numbers, that is, R∗ ≡ R \ {0}. The cardinality of a (possibly random) set P is denoted |P|.
For any random variable ξ, the paper follows the standard shorthand notation {ξ satisfies some

property} for {ω ∈ Ω : ξ (ω) satisfies some property}. The largest smaller integer function is

denoted by b·c. For two sequences of positive real numbers an and bn the notation an � bn implies

that bn/c ≤ an ≤ cbn for some constant c ≥ 1 and all n. All limits are for n → ∞. The notation
P−→,

L−→ and
L-s−→ denote convergence in probability, convergence in law, and stable convergence in

law, respectively.
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2.1 The underlying processes

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. Throughout the paper, all processes are

assumed to be càdlàg adapted. First, consider a 2-dimensional Itô semimartingale X = (Y, Z) with

the form

Xt = x0 +

∫ t

0
bsds+

∫ t

0
σsdWs + (δ1{||δ||≤1}) ∗ (p− q)t + (δ1{||δ||>1}) ∗ pt, (3)

where the 2-dimensional process b is the drift, the 2 × 2-dimensional process σ is the stochastic

(co)volatility process, W is a 2-dimensional Brownian motion, and p is a Poisson measure on R+×R
with compensator q(dt, dx) = dt⊗λ(dx). This model is commonly used for analyzing high-frequency

data (see, e.g., Section 2.1.4 of Jacod and Protter (2012) and Section 1.4.3 of Aı̈t-Sahalia and Jacod

(2014)). It is assumed that X is observed at discrete times i∆n, for 0 ≤ i ≤ n ≡ bT/∆nc, within

the fixed time interval [0, T ]. The increments of X are denoted by

∆n
i X ≡ Xi∆n −X(i−1)∆n

, i = 1, . . . , n. (4)

The paper considers an infill asymptotic setting below in which ∆n → 0 as n→∞.

The spot covariance matrix of X is denoted by

ct =

 cZZ,t cZY,t

cY Z,t cZZ,t

 = σtσ
>
t .

The spot covariance matrix process c quantifies the diffusive risk of assets, which itself evolves in

a stochastic manner. In particular, during major market events (e.g., public announcements or

natural disasters), various components of c tend to jump simultaneously.

In this paper, the primary interest is in the dependency among the jumps of the spot covari-

ance matrix. More precisely, for real-valued transforms g(·) and h(·), the paper studies the linear

dependency between the jumps of g(ct) and h(ct). For example,

∆g (ct) = g (ct)− g (ct−) .

In this paper, the aim is to develop econometric tools for studying the dependencies among the

jump components of the spot covariance process.

2.2 Regularity conditions

Our basic regularity condition for X is given by the following assumption.

8



Assumption 1. (a) The process b is locally bounded; (b) σt is nonsingular, (c) δ is a 2-dimensional

predictable function on Ω× R+ × R which satisfies |δ(ω, t, z)| ≤ Jn(z) when t ≤ τn(ω), where (τn)

is a sequence of stopping times increasing to ∞ and each Jn is a non-random function satisfying∫
(Jn(z) ∧ 1)λ(dz) <∞.

Assumption 1 is not much stronger than the property of being an Itô semimartingale, in the

sense that, virtually all models using Itô semimartingales satisfy the assumption. Next we need a

representation for the latent spot volatility process. As before consider the “spot volatility” matrix

c = σσ> of X. Let

ct = c0 +

∫ t

0
b(c)s ds+

∫ t

0
σ(c)
s dW (c)

s + δc ∗ (pc − qc)t (5)

where b(c) and σ(c) are 2×2-dimensional and 2×2×2-dimensional stochastic processes respectively,

W (c) is a 2-dimensional Brownian motion, and p(c) is a Poisson measure on R+×R with compensator

q(c)(dt, dx) = dt⊗ λ(c)(dx). As before, the jump of c at time t is denoted by ∆ct ≡ ct − ct−, where

ct− ≡ lims↑t cs. The basic regularity condition for c is given by the following assumption.

Assumption 2. (a) The processes b(c) is locally bounded, (b) c(c) is nonsingular, (c) δ(c) is a

2-dimensional predictable function on Ω× R+ × R, and (d) q(c)([0, T ],R) <∞.

The representations in (3) and (5) and Assumptions 1 and 2 differ in the specification for the

jumps of X and c respectively. The representation in (3) allows X to have an infinite activity

jump component with only a few minor restrictions on the jump sizes and their activity given by

Assumption 1(c). In contrast, the restriction imposed by Assumption 2(d) restricts c to have a

finite activity jump process. This difference is mainly for simplicity as the focus of the paper is on

“big” jumps is c, i.e., jumps that not “sufficiently” close to zero. This assumption could be dropped

and a similar representation as in (3) could be made for c with the focus being on jumps with sizes

bounded away from zero.3 For further details on the representations in (3) or (5) or Assumptions 1

and 2 see Section 2.1.4 of Jacod and Protter (2012), Section 1.4.3 of Aı̈t-Sahalia and Jacod (2014),

or Grigelionis (1971).

3 Estimating the Latent Spot Volatility

This section details the econometric techniques used to estimate the latent spot volatilities as well

as the jump times in the market volatility.

3Alternatively, c can be defined as “long-memory” process with the focus of attention restricted on the “big”
jumps in c. To do so, we would assume ct to be a stochastic process with ρ-Hölder paths for ρ ∈ (0, 1] where, up to
some localization, we have E(|cS+s − cS | | FS) ≤ Ksρ for some constant K and all finite stopping times S. Doing so
however would come at the cost of a considerable increase in the technical details of the paper.
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3.1 Estimation and Asymptotic Theory the Spot Volatilities

The paper follows the now standard local averaging method to estimate the spot volatility. Let X

and c be defined as in Section 2. Let kn be a sequence of integers satisfying

kn →∞ and kn∆n → 0, (6)

and let un � ∆$
n be a sequence of truncation thresholds with 0 < $ < 1/2. Define

ĉ(kn, un)i =
1

kn∆n

kn−1∑
m=0

∆n
i+mX∆n

i+mX
>
1{||∆n

i+mX||<un}. (7)

Let ct− = lims↑t cs then the left and right spot volatility estimators for ct and ct− for t = i∆n are

defined as
ĉt = ĉ(kn, un)i+1

ĉt− = ĉ(kn, un)i−kn .
(8)

Notice that both the left and the right spot volatility estimators exclude the return corresponding

to t = i∆n.

The paper uses the following asymptotic theory for the spot volatility estimators which is due to

Aı̈t-Sahalia and Jacod (2014), Theorem 8.8. Let Sq be a sequence of finite stopping times. Under

the models in (3) and (5), Assumptions 1 and 2, and if kn
√

∆n → β ∈ [0,∞), we have the following

finite-dimensional stable convergence in law(√
kn
(
ĉ(Sq−, kn, un)− cSq−

)
,
√
kn
(
ĉ(Sq, kn, un)− cSq

))
q≥1

L−s−→
(
Uq− + βU ′q−, Uq + βU ′q

)
q≥1

(9)

where the variables Uq−, Uq, U
′
q−, and U ′q are defined on an extension (Ω̃, F̃ , P̃) of (Ω,F ,P) and,

conditionally on F , are all independent centered Gaussian with covariances

Ẽ[U ijq−U
kl
q−] = cikSq−c

jl
Sq−

+ cilSq−c
jk
Sq−

,

Ẽ[U ijq U
kl
q ] = cikSqc

jl
Sq

+ cilSqc
jk
Sq
,

Ẽ[U ′ijq−U
′kl
q−] = c

(c),ij,kl
Sq−

,

Ẽ[U ′ijq U ′klq ] = c
(c),ij,kl
Sq

.

(10)

Notice that the central limit theorem for estimating ct (or ct−) involves two random variables Uq

and U ′q (or Uq− and U ′q−). This is because the estimation of ct or ct− involves two “errors”: a

“statical error” corresponding the random variables Uq and due to estimating the spot volatility

using observed returns, and a “target error” corresponding the random variables U ′q.
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To think about this target error define En,t = ĉt − ct = Sn,t + Dn,t where Sn,t and Dn,t are

the statistical and target errors respectively. The random variables Uq and U ′q in (9) corresponding

to limiting distributions of Sn,t and Dn,t respectively. The target error arises from the fact that,

holding ∆n fixed, ĉt turns out to be an estimator of

1

kn∆n

∫ (i+kn)∆n

(i+1)∆n

csds (11)

rather than ct. It can be shown (see Aı̈t-Sahalia and Jacod (2014), Section 8.1) that Sn,t is

of order
√
kn and Dn,t is of order (kn∆n)−1/2 which would imply that the best possible rate of

convergence we could achieve would be n1/4 by setting kn � ∆
−1/2
n . The problem however is that

the asymptotic distribution of the target error, corresponding to U ′q in (9), involves the volatility-

of-volatility which is almost impossible to estimate in practice (see Aı̈t-Sahalia and Jacod (2014)

Section 8.3 for details). For this reason, the paper assumes from this point onwards that kn is

chosen so that kn
√

∆n → 0 in which case β = 0 in (9) and the limiting distribution depends only

on Uq and not U ′q. This can be achieved by taking kn � ∆−ρn where ρ ∈ (0, 1/2). Such a condition

amounts to “under-smoothing” the estimates of c and makes n1/4 an upper bound on the best

possible rate of convergence one can achieve.

3.2 Estimating the Jump Times in the Market Volatility

As volatilities are latent processes, an important issue in the present setting is identifying the

location of the jumps in the market volatility. A potential solution, motivated by the results in

Todorov and Tauchen (2011), is to identify the jump times from a volatility index such as the

Chicago Board of Options Exchange’s (CBOE) Volatility Index (VIX).

To see how this might work let d = 1 in (3) and assume that Xt and ct, in addition to their

jump-intensities, are smooth functions of a Markovian state vector St which itself has a jump-

diffusion representation. Whether explicitly stated as such or not this is a standard assumption in

nearly all asset pricing models.4 Next define the quadratic variation of Xt as [X,X]t. A volatility

index for X, such as the VIX, is defined as

vt ≡ EQ ([X,X]t+N − [X,X]t|Ft) (12)

where N > 0 is fixed and Q is the risk-neutral measure. The volatility index vt then is the expected

change in the quadratic variation of X over the period [t, t + N) under the risk-neutral measure.

Under the setup in (3) and (5), Assumptions 1 and 2, and the above assumptions on a Markovian

4In fact, many models assume the spot-volatility itself is the sole state variable.

11



state vector St we can write vt as a function of St, i.e., vt = V (St). Todorov and Tauchen (2011)

show that under these assumptions that V (St) is a smooth function of St. By Itô’s formula for

jump diffusions this implies that there is a jump in vt if and only if there is a jump in St and, by

extension, a jump in ct. This idea is formalized in Proposition 1(b) below.

Given a volatility index vt, such as the VIX, one can estimate the jumps in vt using the now

standard truncation based method introduced by Mancini (2001) as follows. To do so assume vt

has an Itô semi-martingale representation analogous to the ones for Xt and ct in Assumptions 1

and 2 (formalized in Assumption 3(a) below). Let (un)n≥1 ⊂ R+ be a sequence of thresholds of the

form

un � ∆$
n for some $ ∈ (0, 1/2) (13)

and define the set

I v
n = {i : |∆n

i vt| > un}. (14)

Following Li, Todorov, and Tauchen (2015) it can be shown that I v
n consistently locates the

sampling intervals that contain jumps. That is,

P(I v
n = I v∗

n )→ 1 (15)

where I v∗
n = {i : τ ∈ ((i − 1)∆n, i∆n) for some τ ∈ T v} and T v = (τvp )p≥1 where (τvp )p≥1 are the

successive jump times of vt.

The following proposition formalizes these arguments. Before presenting it however we need

some additional notation. Let cZZ,t denote the spot volatility of the market and define In = {i :

|∆n
i cZZ,t| > un} and I ∗n = {i : τ ∈ ((i − 1)∆n, i∆n) for some τ ∈ T } where, as for vt, we define

T = (τp)p≥1 where (τp)p≥1 are the successive jump times of cZZ,t.

Assumption 3. Let vt be defined as in (12). We have the following assumptions.

(a) Let

vt = v0 +

∫ t

0
b(v)
s ds+

∫ t

0
σ(v)
s dW (v)

s + δ(v) ∗ (p(v) − q(v))t (16)

where b(v) is locally bounded, σ
(v)
t is bounded and nonzero for t ∈ [0, T ], W (v) is a 1-dimensional

Brownian motion, p(v) is a Poisson measure on R+ × R with compensator q(v)(dt, dx) = dt ⊗
λ(v)(dx), and δ(v) is a predictable function on Ω×R+×R. Finally, assume q(v)([0, T ],R) <∞.

(b) Assume the following:
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(i) St is a k-dimensional vector with independent elements each of which solves, under Q,

the following

df
(i)
t =

di∑
j=1

g
(i)
j

(
f

(i)
t−

)
dZ

(i)
tj (17)

for j = 1, . . . , di and i = 1, . . . , k where the functions g
(i)
j are twice differentiable and Z

(i)
tj

are independent Lévy processes;

(ii) cZZ,t = G(c)(St) for some twice differentiable function G(c) : Rk → R+ with non-vanishing

first derivatives on the support of St;

(iii) the compensator of the jumps in Xt, i.e., q(dt, dx) = dt ⊗ λ(dx) in (3), takes the form

qQ(dt, dx) = G(d)(St)dt ⊗ λQ(dx) under Q where G(d) : Rk → R+ is twice differentiable

and λQ is a measure on R satisfying
∫
R(|x|2 ∧ 1)λQ(dx) <∞.

Part (a) of Assumption 3 establishes an analogous representation for vt as is used for ct. Nearly

any jump-diffusion representation with a finite activity jump process would suffice. However, to

maintain consistency we assume the representation in (16). Part (b)(i) introduces and formalizes

the Markovian state vector St whereas parts (b)(ii)-(iii) introduce regularity conditions that will

ensure vt is continuously differentiable in St.

Proposition 1. Let vt be defined as in (12). We have the following results. (a) Under Assumption

3(a) we have P(I v
n = I v∗

n ) → 1. (b) Under Assumption 3(b) vt = V (St) for some continuously

differentiable function V : Rk → R. Furthermore, if ∂V/∂vi 6= 0 on the support of St for i = 1, . . . , k

and V is monotone in each of its arguments, then T v and T coincide almost surely.

Part (a) of Proposition 1 shows that the truncation based method presented here will correctly

identify the jumps in the volatility index vt. Part (b) shows, essentially, that if the spot volatility

and the volatility index are continuously differentiable functions of a state vector then the jump

times in the volatility index and the jump times in spot volatility of the market will coincide almost

surely. Note that the proposition does not say that the volatility index vt and the spot volatility of

the market cZZ,t are same rather it deals with the jump times in the two processes. In fact, because

the volatility index is an expectation under the risk-neutral measure, the magnitude of jumps in

the volatility index and in the spot volatility ct need not, and will likely not, be the same. For this

reason we will still need to estimate the jump sizes of the market volatility using the procedure in

(7).

There is an additional complication that needs to be addressed in using the VIX as our volatility

index. Andersen, Bondarenko, and Gonzalez-Perez (2015) document how the CBOE’s method of
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selecting the set of options to include in the calculation of the VIX leads to the inclusion of

“spurious” jumps in the VIX. To guard against the inclusion of these “spurious” jumps in the

empirical results, at the estimated jump times in the VIX, the corresponding changes in the spot

volatility of the market are examined using an additional truncation based jump detection method

to see if a jump in the spot volatility of the market was likely to have occurred or not.

4 Volatility Jump Regressions

This section details the estimation and theory behind jump regressions between two spot volatil-

ities. The first subsection provides a framework for thinking about volatility jump regressions, a

test for a constant volatility jump beta is introduced in the second subsection, the third subsec-

tion introduces a quasi-maximum-likelihood based estimator, and the final subsection introduces a

bootstrap procedure for conducting inference.

4.1 A Framework for the Volatility Jump Beta

Let X = (Z, Y )> and assume X and c are defined as in Section 2 and ĉt and ĉt− are estimated as

in Section 3. When Xt = (Zt, Yt)
> we see that ct takes the form

ct =

 cZZ,t cZY,t

cY Z,t cY Y,t

 . (18)

In many applications it proves useful to consider transformations of the spot volatility. To facilitate

this let g, h : R2×R2 → R be two continuous functions given by the researcher. To recover the spot

volatilities of Z and Y we would set g(c) = cY Y and h(c) = cZZ . An analysis of the spot volatilities

in standard deviation or log units could be performed by setting g(c) =
√
cY Y and h(c) =

√
cZZ or

g(c) = log cY Y and h(c) = log cZZ respectively. We might also consider g(c) = cY Y − (cZY )2/cZZ

which will recover the idiosyncratic volatility in Y . Let (τp)p≥1 be a set of jump times in cZZ,t. By

the delta method we can extend the result in (9) to the current setting. That is,√
kn
(
g(ĉτp)− g(cτp), g(ĉτp−)− g(cτp−), h(ĉτp)− h(cτp), h(ĉτp−)− h(cτp−)

)
p≥1

L−s−→
(
∇g(cτp)

>Uτp ,∇g(cτp−)>Uτp− ,∇h(cτp)
>Uτp ,∇h(cτp−)>Uτp−

)
p≥1

(19)

The (generalized) volatility jump regression considers the following model

∆g(cτp) = β0(g, h)∆h(cτp) (20)

for all (τp)p≥1 where ∆g(cτp) = g(cτp)− g(cτp−) and ∆h(cτp) = h(cτp)− h(cτp−). We can estimate

the model in (20) as follows. Let (ip)p≥1 be the set of estimated jump times in the market volatility
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following Section 3.2. The convergence of (ip)p≥1 to (τp)p≥1 follows from Proposition 1. Note that

the rate convergence is “infinitely fast.” Because of this the use of the estimated jump times (ip)p≥1

in (19) does not affect the asymptotic distributions. This implies√
kn
(
∆g(ĉip)−∆g(cτp),∆h(ĉip)−∆h(cτp)

)
p≥1

L−s−→
(
∇g(cτp)

>Uτp +∇g(cτp−)>Uτp− ,∇h(cτp)
>Uτp +∇h(cτp−)>Uτp−

)
p≥1

≡
(
ξτp(g), ξτp(h)

)
.

(21)

Using these result we can write

∆g(ĉip) = β0(g, h)∆h(ĉip) + εip(g, h) (22)

where

εip(g, h) =
(
∆g(ĉip)−∆g(cτp)

)
− β0(g, h)

(
∆h(ĉip)−∆h(cτp)

)
. (23)

Together with (21) we see √
knεip(g, h)

L−s−→ ξτp(g)− β0(g, h)ξτp(h)

≡ ϕτp(g, h)
(24)

for all p ≥ 1. The results above provide the bulk of the intuition for the theorems to follow.

4.2 A Constant Volatility Beta Test

This subsection considers a test of the model in (20). That is a test of whether or not the constant

volatility jump beta relationship in (20) holds at all jump times (τp)p≥1.5 Formally, the testing

problem is to decide which of the two sets the observed sample path falls within.

Ω0 ≡ {ω ∈ Ω : condition (20) holds for some β0(g, h)(ω) on path ω}, or

Ωa ≡ {ω ∈ Ω : condition (20) does not hold on path ω}.
(25)

To do so consider the test statistic

Qn(g, h) =

 QZZ,n QZY,n

QY Z,n QY Y,n

 =
∑
p≥1

(∆g(ĉip),∆h(ĉip))
>(∆g(ĉip),∆h(ĉip)). (26)

The result in (21) implies

Qn(g, h)
P−→
∑
p≥1

(∆g(cτp),∆h(cτp))
>(∆g(cτp),∆h(cτp))

=
∑
p≥1

 ∆g(cτp)
2 ∆g(cτp)∆h(cτp)

∆h(cτp)∆g(cτp) ∆h(cτp)
2


≡ Q(g, h).

(27)

5Out of necessity this paper only consider the case where |(τp)p≥1| ≥ 2, i.e., cZZ,t has at least two jumps over the
interval [0, T ]. This assumption is assumed to hold in all the results that follow.
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By the Cauchy-Schwartz inequality notice that the condition in (20) is equivalent to the singularity

of the matrix Q(g, h). This implies a test for Ω0, i.e., a test for a constant volatility jump beta,

could be carried out by a one-sided test for whether det[Q(g, h)] = 0. The determinant of Q(g, h)

can estimated by det[Qn(g, h)]. At a significance level α ∈ (0, 1) the test will reject the null of a

constant volatility jump beta if det[Q(g, h)] > cvαn for a sequence of critical values cvαn described

below.

Before specifying the critical values cvαn it is necessary to first discuss the asymptotic behavior

of det[Qn(g, h)] following the results in Section 4.1 above. Some algebra shows that in restriction

to Ω0 that

det[Qn(g, h)] =

∑
p≥1

∆h(ĉip)
2

∑
p≥1

ε2ip(g, h)

−
∑
p≥1

∆h(ĉip)εip(g, h)

2

. (28)

This, together with the result in (21), implies

kn det[Qn(g, h)]
L−s−→

∑
p≥1

∆h(cτp)
2

∑
p≥1

ϕ2
τp(g, h)

−
∑
p≥1

∆h(cτp)ϕτp(g, h)

2

. (29)

Using this result critical values cvαn can be constructed as follows.

Algorithm 1. 1. Simulate a collection of variables (Ũip , Ũip−)p≥1 consisting of copies of (Uτp , Uτp−)p≥1.

2. Set
ξ̃ip(g) = ∇g(ĉip)

>Ũip +∇g(ĉip−)>Ũip− ,

ξ̃ip(h) = ∇h(ĉip)
>Ũip +∇h(ĉip−)>Ũip− , and

ϕ̃ip(g, h) = ξ̃ip(g)− β̄n(g, h)ξ̃ip(h)

(30)

where β̄n(g, h) = QZY,n(g, h)/QZZ,n(g, h).

3. Compute

ζ̃n(g, h) =

∑
p≥1

∆h(ĉip)
2

∑
p≥1

ϕ̃2
ip(g, h)

−
∑
p≥1

∆h(ĉip)ϕ̃ip(g, h)

2

. (31)

4. Generate a large number of Monte Carlo simulations according to steps 1-3 and set cvαn as

the (1− α)-quantile of ζ̃n(g, h) in the Monte Carlo sample.

Theorem 1 below provides the asymptotic justification for the proposed test. To state it define

the following additional notation: recall ξτp(g) and ξτp(h) from (21) and set

ϕ̄τp(g, h) = ξτp(g)− β̄(g, h)ξτp(h) (32)
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for all p ≥ 1 where β̄(g, h) = QZY (g, h)/QZZ(g, h). Note that in restriction to Ω0 that ϕ̄τp(g, h) =

ϕτp(g, h).

Theorem 1. Under the setup in (3)-(5) and Assumptions 1-2 and provided |(τp)p≥1| ≥ 2 the

following statements hold.

(a). In restriction to Ω0, we have

kn det[Qn(g, h)]
L−s−→

∑
p≥1

∆h(cτp)
2

∑
p≥1

ϕ̄2
τp(g, h)

−
∑
p≥1

∆h(cτp)ϕ̄τp(g, h)

2

≡ ζ(g, h).

(33)

(b). The sequence cvan of variables defined in Algorithm 1 converges in probability to the F-

conditional (1− α)-quantile of ζ(g, h).

(c). The test defined by the critical region {kn det[Qn(g, h)] > cvαn} has asymptotic size α under

the null and asymptotic power one under the alternative. That is,

P (kn det[Qn(g, h)] > cvαn |Ω0)→ α and P (kn det[Qn(g, h)] > cvαn |Ωa)→ 1. (34)

Part (a) of Theorem 1 describes the stable convergence of the test statistic det[Qn(g, h)] under

the null hypothesis, which occurs at rate kn. The limiting variable ζ(g, h) is quadratic in the vari-

ables ϕ̄τp(g, h) which, conditional on F , are mutually independent mixed Gaussian variables with

a covariance structure derivable from (10). Comparing (31) and (33), it is easy to see ζ̃n(g, h) is

designed to mimic the limiting variable ζ(g, h). Part (b) shows the quantile of ζ̃n(g, h) will consis-

tently estimate that of ζ(g, h). Note that part (b) holds under both the null and the alternative.

Part (c) shows that the proposed test has valid size control and is consistent against general fixed

alternatives.

4.3 Estimating the Volatility Jump Beta

This subsection consider the estimation of the volatility jump beta, i.e., the estimation of β0(g, h)

in (20). The ordinary least squares (OLS) estimator, while asymptotically valid, will turn out to

have poor small sample properties due to the estimation error in estimating both ∆g(ĉ) and ∆h(ĉ).

To correct for this problem this paper proposes a quasi-maximum-likelihood approach based on the

asymptotic distribution in (24).

To proceed define the OLS estimator of β0(g, h) as

β̂OLSn (g, h) =

∑
p≥1 ∆h(ĉip)∆g(ĉip)∑

p≥1(∆h(ĉip))
2

. (35)

17



By (21) we see that asymptotically

β̂OLSn (g, h)
P−→
∑

p≥1 ∆h(cτp)∆g(cτp)∑
p≥1(∆h(cτp))

2
= β0(g, h) (36)

as kn → ∞ and kn
√

∆n → 0. However, while this remains an asymptotically valid approach to

estimating β0(g, h), in small samples the estimator will likely be biased due to the estimation error

in estimating both ∆g(ĉ) and ∆h(ĉ). The intuition for this result follows analogously to problems

of “attenuation bias” or the classical “errors-in-variables” problem. These problems are present

in any ordinary least squares estimation, but are especially acute here due to the high estimation

error in estimating the spot volatilities.

To see this consider the following heuristic model. Let

∆g(cτp) = β0(g, h)∆h(cτp) (37)

as before and assume
∆g(ĉip) = ∆g(cτp) + eip(g),

∆h(ĉip) = ∆h(cτp) + eip(h)
(38)

for all p ≥ 1 where eip(g) and eip(g) are independent with eip(g)
iid∼ N(0, σ2

g,ip
) and eip(h)

iid∼
N(0, σ2

h,ip
). In this heuristic setting we have

β̂OLSn (g, h) =
Ĉov(∆g(ĉip),∆h(ĉip))

V̂ ar(∆h(ĉip))
(39)

and in expectation
Cov(∆g(ĉip),∆h(ĉip)) = β0(g, h)V ar(∆h(cτp))

V ar(∆h(ĉip)) = V ar(∆h(cτp)) + σ2
h,ip .

(40)

Which implies that β̂OLSn (g, h) is actually an estimator of

β0(g, h)
V ar(∆h(cτp))

V ar(∆h(cτp)) + σ2
h,ip

(41)

rather than β0(g, h).

To motivate an alternative estimator recall the results in (19)-(24) where it was shown that

∆g(ĉip) = β0(g, h)∆h(ĉip) + εip(g, h) (42)

and
√
kn(εip(g, h))p≥1

L−s−→ (ϕτp(g, h))p≥1 where ϕτp(g, h))p≥1 are independent Gaussian. A potential

estimator could be based on this result, i.e. the result that εip(g, h) are asymptotically Gaussian

and independent. The reason for such a proposal is that a likelihood based approach can correct
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for the attenuation bias or the errors-in-variables problem by considering the estimating error in

both the independent and dependent variables of the regression. Ordinary least squares in contrast

is limited because, by solely minimizing the residuals of the dependent variable, it cannot take into

account the estimation error in the independent variable.

What this paper proposes then is a quasi-maximum-likelihood estimator of β(g, h) based on an

asymptotic approximation of the limiting distribution of εip(g, h). To do so, recall ϕτp(g, h) =

ξτp(g) − β0(g, h)ξτp(h) where (ξτp(g), ξτp(h)) were defined in (21). Denote the covariances of

(ξτp(g), ξτp(h)) as Στp and note that by (10) we can express Στp = Σ(g, h, cτp− , cτp+). Closed

form solutions for Στp are easy to derive from (10) given functional forms of g and h. With Στp

so defined the variances of ϕτp(g, h) take the form Σ11
τp + β0(g, h)2Σ22

τp − 2β0(g, h)Σ12
τp for all p ≥ 1.

This gives us a limiting log-likelihood for (42) of the form

logL
(
b|Στp

)
= −1

2

∑
p≥1

log
(

2π(Σ11
τp + b2Σ22

τp − 2bΣ12
τp )
)
−
∑
p≥1

(
∆g(cτp)− b∆h(cτp)

)2
2
(

Σ11
τp + b2Σ22

τp − 2bΣ12
τp

) . (43)

However, an estimator based on the likelihood in (43) is infeasible since the likelihood is based on

the limiting variables ϕτp(g, h) and Στp . Instead we can use an approximating log-likelihood of the

form

log L̂n
(
b|Σ̂ip

)
= −1

2

∑
p≥1

log
(

2πk−1
n (Σ̂11

ip + b2Σ̂22
ip − 2bΣ̂12

ip )
)

−
∑
p≥1

(
∆g(ĉip)− b∆h(ĉip)

)2
2k−1

n

(
Σ̂11
ip

+ b2Σ̂22
ip
− 2bΣ̂12

ip

) . (44)

where Σ̂ip = Σ(g, h, ĉip− , ĉip+). The feasible quasi-ML estimator then is the arg-max of the approx-

imating log-likelihood above, i.e.,

β̂MLE
n (g, h) = arg max

b∈R
log L̂n

(
b|Σ̂ip

)
. (45)

The following theorem establishes the asymptotic properties of β̂MLE
n (g, h). To do define the

following. Let

Ξ(g, h) ≡ 1

2

∑
p≥1

ϕτp(g, h)(∆g(cτp)− β0∆h(cτp))
(

2β0Σ22
τp − 2Σ12

τp

)
(

Σ11
τp + β2

0Σ22
τp − 2β0Σ12

τp

)2

+
∑
p≥1

∆h(cτp)ϕτp(g, h)

Σ11
τp + β2

0Σ22
τp − 2β0Σ12

τp

(46)
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and

H(g, h) ≡
∑
p≥1

−
2∆h(cτp)(∆g(cτp)− β0∆h(cτp))(2β0Σ22

τp − 2Σ12
τp )(

Σ11
τp + β2

0Σ22
τp − 2β0Σ12

τp

)2

− 1

2
(∆g(cτp)− β0∆h(cτp))

2

 2(2β0Σ22
τp − 2Σ12

τp )2(
Σ11
τp + β2

0Σ22
τp − 2β0Σ12

τp

)3 −
2Σ22

τp(
Σ11
τp + β2

0Σ22
τp − 2β0Σ12

τp

)2


−

(
∆h(cτp)

)2
Σ11
τp + β2

0Σ22
τp − 2β0Σ12

τp

(47)

where for the ease of notation let β0 = β0(g, h) above.

Theorem 2. Under Assumptions 1 and 2, provided g and h are both continuously differentiable,

and provided |(τp)p≥1| ≥ 2 the following statements hold. We have

(a). β̂MLE
n (g, h)

P−→ β0(g, h)

(b).
√
kn

(
β̂MLE
n (g, h)− β0(g, h)

)
L−s−→ −(H(g, h))−1Ξ(g, h)

as kn →∞ and kn
√

∆n → 0.

Note that the theorem holds under both Ω0 and Ωa. In restriction to Ωa one could think

of β0(g, h) as the “pseudo-true parameter” being the arg-max of the likelihood in (43) without

its implications on the volatility jump regression framework in (20). Notice that not only is the

distribution in Theorem 2(b) highly non-standard but that it depends on the latent variables β0,

cτp− , and cτp+ . For these reasons this paper proposes a bootstrap method for conducting inference

below in Section 4.4.

4.4 Bootstrap Based Inference

As the distribution of β̂MLE
n (g, h) is highly non-standard this paper follows Li, Todorov, Tauchen,

and Chen (2016) and introduces a bootstrap procedure to provide feasible inference followed by a

justification of its asymptotic validity. The bootstrap procedure was first introduced to the high-

frequency setting by Goncalves and Meddahi (2009) for making inference about the integrated

variance and covariance matrices and is conceptually simple to grasp. The researcher need only

repeatedly compute estimators in the bootstrap samples following the algorithm below. Other

papers that have used the bootstrap in a high-frequency setting are Dovonon, Gonçalves, and

Meddahi (2013), Dovonon, Gonçalves, Hounyo, and Meddahi (2014), and Hounyo (2013). Note

that this paper uses a form of the i.i.d. bootstrap in Goncalves and Meddahi (2009) as opposed to
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a bootstrap based on the local Gaussianity of returns as in Li, Todorov, Tauchen, and Chen (2016)

and introduced in Hounyo (2013).

Algorithm 2. Let kn be the number of returns in the local averaging window of the spot volatility

estimator as before.

1. For each {ip}p≥1 re-sample, with replacement, the kn returns before and after each jump time.

That is, re-sample from the sets

{∆n
jX}j for j = ip − kn, . . . , ip − 1, and

{∆n
kX}k for k = ip + 1, . . . , ip + kn.

(48)

Denote the resampled sets as {∆n
jX
∗}j and {∆n

kX
∗}k where j = ip − kn, . . . , ip − 1 and

k = ip + 1, . . . , ip + kn for each {ip}p≥1.

2. For each bootstrap sample {∆n
i X
∗} compute ∆g(ĉ∗ip) and ∆h(ĉ∗ip) as in (7).

3. Compute β̂∗MLE
n (g, h) using ∆g(ĉ∗ip) and ∆h(ĉ∗ip) for all {ip}p≥1.

In summary, Algorithm 2 suggests computing β̂∗MLE
n (g, h) in the same manner as β̂MLE

n (g, h)

using the bootstrap sample. Theorem 3 below shows that the bootstrap spot volatility estimates

(ĉ∗ip− , ĉ
∗
ip+

)p≥1 converge in probability to (cτp− , cτp+)p≥1 and describes the convergence in probability

of the F-conditional law of the bootstrap estimator β̂∗MLE
n (g, h).

Theorem 3. Suppose the same conditions as Theorem 2.

(a). We have (
ĉ∗ip− , ĉ

∗
ip+

)
p≥1

=
(
cτp− , cτp+

)
p≥1

+ op(1), (49)

as kn →∞ and kn
√

∆n → 0.

(b). We can decompose√
kn

(
β̂∗MLE
n (g, h)− β̂MLE

n (g, h)
)

= − (H∗n(g, h))−1 Ξ∗n(g, h) + op(1), (50)

such that

(H∗n(g, h),Ξ∗n(g, h))
L|F−→ (H(g, h),Ξ(g, h) (51)

where (H(g, h),Ξ(g, h)) are defined as in (46) and (47).

21



Theorem 3 justifies using the F-conditional distribution
√
kn(β̂∗MLE

n (g, h) − β̂MLE
n (g, h)) to

approximate the F-conditional distribution
√
kn(β̂MLE

n (g, h) − β0(g, h)). Note that the limiting

bootstrap distribution in Theorem 3 is not symmetric. Because of this two-sided confidence intervals

computed using methods designed to place equal probability on either end of the confidence interval,

such as the basic or simple bootstrap, will not in general result in confidence intervals symmetric

around the estimated volatility jump beta.

5 Simulation Results

This section examines the performance of the proposed techniques on simulated data in a series of

Monte Carlo experiments designed to mimic the empirical setting in Section 6. The study examines

a volatility jump regression setting in log units, that is g(c) = log cY Y and h(c) = log cZZ . The

sample span is set as T = 252 to match the trading days in a typical year. The study considers

both the case when n = 78 corresponding to five-minute sampling and the case when n = 390

corresponding the one-minute sampling. When n = 78 the local averaging windows are of size

kn = 10, 15, and 20 and when n = 390 the local averaging windows are of size kn = 20, 30, 40 and

50. There are 1000 Monte Carlo trials.

The study uses the following data generating process

d log cZZ,t = ρZ(µZ − log cZZ,t−1) + σZdBZ,t + JtdNt

d log cY Y,t = ρY (µY − log cY Y,t−1) + σY dBY,t + βtJtdNt

(52)

and
dZt =

√
cZZ,tdWZ,t

dYt =
√
cY Y,tdWY,t

(53)

where {BZ,t, BY,t,WZ,t,WY,t} are independent Brownian, Nt is a Poisson process with intensity λ,

and

Jt
iid∼ N(0, φ2). (54)

The data generating process necessarily includes volatility co-jumps. Price-volatility co-jumps could

be included but would not materially impact the results. This is because the estimation of the jump

in the spot-volatility only includes returns before and after the jump time in the volatility and not

the return that overlaps the volatility jump.

The volatility jump beta is set as{
βt = β0 for all t ∈ [0, T ] under H0

dβt = ρβ(1− βt−1) + σβ
√
βt−1dBβ,t under Ha

(55)
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Table 1: Monte Carlo Rejection Rates for the Constant Volatility Jump Beta Test

Under H0 Under Ha

n kn 1% 5% 10% 1% 5% 10%

σ = 0.1 78 10 1.4 4.7 8.6 44.5 54.1 60.3

78 15 0.9 5.5 9.9 55.6 64.7 70.5

78 20 1.0 6.1 11.5 63.1 71.5 77.0

390 20 1.3 5.1 8.8 63.7 71.1 75.9

390 30 1.3 5.0 8.9 72.4 79.6 83.2

390 40 1.2 5.0 10.8 79.1 84.7 87.1

390 50 1.8 5.4 10.2 82.8 87.2 90.0

σ = 0.2 78 10 1.0 4.4 8.4 45.8 56.4 61.6

78 15 0.8 4.5 10.4 55.7 64.3 69.6

78 20 1.4 5.6 12.2 64.4 70.8 75.9

390 20 1.0 4.6 10.0 62.8 70.8 75.3

390 30 0.9 5.5 10.4 72.4 79.7 83.9

390 40 1.5 6.8 13.3 79.3 84.7 87.4

390 50 1.6 6.2 12.8 82.8 87.9 90.2

σ = 0.3 78 10 1.4 5.2 9.3 43.4 54.2 59.9

78 15 1.7 6.2 11.6 54.2 63.9 69.6

78 20 2.8 6.8 12.4 62.3 71.0 75.0

390 20 1.3 5.5 11.2 63.5 71.9 75.8

390 30 1.5 6.7 12.7 73.3 81.2 84.7

390 40 1.6 7.2 13.2 81.6 87.0 88.9

390 50 2.9 9.4 15.6 84.9 89.0 91.0

Note: Reported are the Monte Carlo rejection rates of the constant volatility jump beta test at significance levels of 1%, 5%,
and 10%. Results are given both under the null hypothesis (H0) and under the alternative hypothesis (Ha) for various sampling
schemes and local estimation windows (kn = 10, 15, and 20 when n = 78 and kn = 20, 30, 40, and 50 when n = 390) as well
as various volatility-of-volatility specifications (σ = 0.1, 0.2, and 0.3). Each experiment had 1000 Monte Carlo trials.
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Table 2: Monte Carlo Volatility Jump Beta Estimation Results and Confidence Interval Coverages

OLS MLE

n kn Bias 99% 95% 90% Bias 99% 95% 90%

σ = 0.1 78 10 -0.306 73.6 50.0 34.6 -0.184 98.5 92.3 85.8

78 15 -0.250 84.2 63.2 49.0 -0.116 98.5 93.9 88.2

78 20 -0.224 89.3 70.5 56.2 -0.078 99.0 96.2 91.7

390 20 -0.164 82.9 61.8 48.6 -0.132 96.7 88.9 80.9

390 30 -0.123 88.7 71.5 59.3 -0.090 97.8 91.1 84.9

390 40 -0.105 92.8 78.7 66.6 -0.070 98.5 94.3 88.0

390 50 -0.094 93.9 81.5 71.7 -0.057 99.1 96.1 90.4

σ = 0.2 78 10 -0.293 74.3 49.4 34.6 -0.172 98.7 93.2 87.5

78 15 -0.242 86.2 62.5 46.2 -0.116 99.1 95.2 90.6

78 20 -0.218 90.0 71.0 56.3 -0.077 99.4 96.8 92.3

390 20 -0.174 80.8 57.3 44.1 -0.133 96.7 87.8 80.1

390 30 -0.132 87.4 70.0 58.1 -0.094 97.1 90.5 84.3

390 40 -0.109 91.5 74.5 63.0 -0.069 98.1 92.6 86.1

390 50 -0.095 92.9 78.2 67.0 -0.052 98.7 94.2 88.4

σ = 0.3 78 10 -0.289 79.0 54.2 41.0 -0.158 98.6 93.1 86.6

78 15 -0.235 89.5 66.4 51.9 -0.103 98.7 95.4 90.5

78 20 -0.205 91.4 75.6 61.1 -0.062 99.1 96.0 93.1

390 20 -0.168 83.9 63.9 50.7 -0.132 96.4 89.4 81.8

390 30 -0.129 90.0 73.9 60.3 -0.094 97.4 92.0 86.1

390 40 -0.109 91.6 78.8 67.6 -0.069 98.4 93.1 87.6

390 50 -0.098 93.8 81.9 70.6 -0.055 98.5 94.7 90.3

Note: Reported are the mean bias across Monte Carlo trials and the Monte Carlo coverage rates for the confidence intervals
(CIs) at levels 99%, 95%, and 90%. Results are given for various sampling schemes and local estimation windows (kn = 10, 15,
and 20 when n = 78 and kn = 20, 30, 40, and 50 when n = 390) as well as various volatility-of-volatility specifications (σ = 0.1,
0.2, and 0.3). The CIs are constructed using Algorithm 2 and the basic or simple bootstrap based on 1000 bootstrap draws.
Each experiment had 1000 Monte Carlo trials.
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where Bβ,t is a Brownian motion independent of {BZ,t, BY,t,WZ,t,WY,t}. Under this setup the

unconditional mean of βt under the alternative is the same as β0.

The following parameter specifications are used

µZ = 0.05, µY = 0.55, with log cZZ,0 = µZ and log cY Y,0 = µY ,

φ = 1.1

λ = 15/252

σZ = σY = σ, with σ=0.1, 0.2, or 0.3,

ρZ = ρY = 0.15

β0 = 1, with ρβ = 0.15 and σβ = 0.7.

(56)

The parameter σ controls the volatility-of-volatility and thereby the signal-to-noise ratio of the

estimated volatility jump beta. This parameter is varied over three different specifications. While

the empirical volatility-of-volatility is almost impossible to estimate in practice these specifications

led to realistic paths for the spot volatilities. The jump intensity λ is set so that there should

be on average 15 volatility jumps in each sample which is close to what is observed in the data.

The parameters µZ and µY determine the means of cZ and cY . With µZ = 0.05 and µY = 0.55

the mean annualized volatility of Z is approximately 16.2 and the mean annualized volatility of

Y is approximately 20.8. The parameters ρZ and ρY control the degree of mean reversion in the

spot volatilities. With ρZ = ρY = 0.15 the spot volatilities have a half-life of approximately 4.6

days. Finally, the parameter φ controls the size of the log-volatility jumps. Given the log-volatility

setting with φ = 1.1 the volatility jumps have a standard deviation of 1.1 percent.

Table 1 reports the finite-sample rejection rates for the constant volatility jump beta test as

described in Theorem 1. In general, the test appears to have good size and power properties. Under

the null-hypothesis the rejection rates are fairly close to their nominal levels though they increase

both as kn increases and σ increases. Under the alternative the rejection rates are well above their

nominal levels. The increase in the rejection rates as kn increases is due to the target error described

in Section 3.1. Recall that for a fixed n the target error grows with kn. While asymptotically

dominated by the statistical error the target remains in finite-samples and necessitates the need

to “under-smooth” our estimates, i.e. to choose a kn smaller than might be suggested solely by

the asymptotics for the statistical error. In particular using kn = 10 or 15 when n = 78 and using

kn = 30 when n = 390 appears to mitigate the effect of the target error in this context while

maintaining the asymptotic convergence properties of the test. The increase in the rejection rates

under the null as σ increases is due to the increased volatility-of-volatility as σ increases which in

turn exacerbates the target error.

Table 2 reports summary statistics for the ordinary least squares (OLS) estimator and the
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quasi-maximum-likelihood estimator (MLE) of the volatility jump beta and coverage results for

the confidence intervals. The OLS and ML estimators are detailed in Section 4.3 and the confi-

dence intervals were constructed using the bootstrap procedure of Algorithm 2 detailed in Section

4.4 and the basic or simple bootstrap confidence interval procedure with 1000 replications. Other

bootstrap confidence intervals, such as the bias corrected and acceleration adjusted (BCa) confi-

dence intervals in Efron (1987), were tried but were found to have worse coverage properties than

the basic bootstrap confidence intervals. (For an overview of different bootstrap confidence interval

methods see DiCiccio and Efron (1996) or Davison and Hinkley (1997).) In terms of the mean bias

of the estimators in Table 2 the results quite strongly support the hypothesis of Section 4.3 where

it was proposed that the OLS estimator would be significantly biased downwards by an attenuation

or an errors-in-variables bias due the estimation error in estimating both the spot volatility jumps

of the market and the asset. The biases for the ML estimator, while not completely eliminated,

are significantly smaller in every case supporting its use over the OLS estimator. The coverage

results for the ML estimator are significantly closer to their nominal levels compared to the OLS

estimator which is again consistent again with the theory that the OLS estimator is significantly

biased. In light of the poor coverage result and the biases this paper does not believe the OLS

estimator should be used to conduct inference.

6 Empirical Applications

This section contains three empirical applications. The first on estimating and conducting inference

on a series of volatility jump betas, the next on an examination of the jump beta for the idiosyncratic

volatility, and the last on the pricing of volatility jumps. The data used in these studies and the

specifics in how the algorithms and theorems of the paper are implemented are detailed in the

subsection below.

6.1 Data and Implementation

The empirical applications in this section use two sets of data. The first set of data consist of

the ETFs on the nine industry portfolios comprising the S&P500 index. These portfolios are,

with ticker symbols in parenthesis, as follows: materials (XLB), energy (XLE), financials (XLF),

industry (XLI), technology (XLK), consumer staples (XLP), utilities (XLU), healthcare (XLV),

and consumer discretionary (XLY). The second set of data are the thirty stocks comprising the

Dow Jones Industrial Average Index (DOW30) as of December 2015 with the exception that Visa

(V) is replaced with Bank of America (BAC) to make a balanced panel covering January 3, 2007
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to December 21, 2015. The proxy for the market is the front-month E-mini S&P500 index futures

contract (ES), which is among the most liquid assets in the world. Market holidays and half

trading days are removed. The two Flash Crashes (May 6, 2010 and April 23, 2013) are removed

as well because the dramatic market fluctuations in these days are known to be due to market

malfunctioning. The resultant sample contains 2225 trading days. The intraday observations

are sampled at a one-minute frequency from 9:35 to 15:55 EST; the prices at the first and the

last five minutes are discarded to guard against possible adverse microstructure effects near the

market opening and closing and to avoid issues relating to the opening and closing auctions. In

the predictive regressions of Section 6.4 the three-month treasury bill rate is used to proxy for the

risk free rate. As in the Monte Carlo section the analysis is done in log units and, due to the poor

coverage and bias results of the OLS estimator in the Monte Carlo study of Section 5, only results

for the ML estimator are provided. In addition, the local averaging window is set to kn = 30.

The estimation of the jumps in the market volatility follows Section 3.2 and uses the Chicago

Board of Options Exchange’s (CBOE) Volatility Index (VIX). To be especially careful to guard

against the inclusion of “spurious” jumps, the VIX is sampled at a five-minute frequency and the

jump truncation scheme used to identify jumps is set for moves slightly larger in magnitude than

six local standard deviations. As in prior work, the truncation threshold is also scaled to account

for the deterministic diurnal volatility pattern, but the details are omitted for brevity. (See the

supplementary material of Todorov and Tauchen (2012) for details on the procedure.) These jump

times were then verified against the corresponding changed in the spot volatility of the E-mini as

explained in Section 3.2. Together these procedures led to the detection of 97 market volatility

jumps across the whole sample.

6.2 Volatility Jump Regressions

This set of empirical applications estimates the volatility jump beta and performs tests of a constant

volatility jump beta for both the S&P Sector ETFs and the DOW30 stocks described above. Figures

2 and 3 display scatter plots of the estimated spot volatility jumps in the S&P industry portfolios

and the DOW30 stocks against the estimated spot volatility jumps in the E-mini. These scatter

plots are estimates, in a sense, of the proposition that a constant volatility jump beta exists. The

figures also show the line of best fit based on the ML estimator developed in Section 4.3. While

the plots do not display a perfectly linear fit this not be expected since, even under the null of a

constant volatility jump beta, the plots would display noisy estimates of the volatility co-jumps

and not the true underlying co-jumps themselves. However, even with this estimation error the

co-jumps do generally appear to lie more tightly along the line of best fit than one might expect
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if no relationship existed, especially for the portfolios. This is despite the estimation error, the

tail nature of the jumps, and the fact that the sample spans both tranquil and turbulent market

environments.

Figure 2: Estimated Volatility Co-Jumps: E-mini vs S&P Industry Portfolios (2007-2015)
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Note: This figure displays scatter plots of the estimated volatility co-jumps between the E-mini and the listed asset at estimated
jump times in the market for the period 2007-2015. The magnitudes of the volatility co-jumps are estimated following the
procedure in Section 3 whereas the market volatility jump times were estimated from the VIX using the procedure detailed in
Section 3.2.

Tables 3 and 4 provide summary statistics for the test of a constant volatility jump beta using

the determinant test of Section 4.2. The test was conducted for the whole sample and year-by-year.

Table 3 provides p-values for the portfolios whereas, to better summarize the results, Table 4 lists

the number of stocks in the DOW30 for which one would fail to reject the null of a constant volatility

jump beta at significance levels 1%, 5%, and 10%. In general there appears to be little evidence

for a constant volatility jump beta across the whole sample. However, analyzed year-by-year the

evidence for a constant volatility jump beta is much stronger. Here, with only a few exceptions,
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Figure 3: Estimated Volatility Co-Jumps: E-mini vs DOW30 Stocks (2007-2015)
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Note: This figure displays scatter plots of the estimated volatility co-jumps between the E-mini and the listed asset at estimated
jump times in the market for the period 2007-2015. The magnitudes of the volatility co-jumps are estimated following the
procedure in Section 3 whereas the market volatility jump times were estimated from the VIX using the procedure detailed in
Section 3.2.
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Table 3: Tests for a Constant Volatility Jump Beta (p-values)

Asset 2007 2008 2009 2010 2011 2012 2013 2014 2015 Full Sample

XLB 0.01 0.04 0.44 0.21 0.00 0.00 0.98 0.31 0.19 0.00

XLE 0.06 0.80 0.42 0.00 0.00 0.25 0.45 0.24 0.13 0.00

XLF 0.85 0.00 0.87 0.08 0.00 0.00 0.00 0.51 0.01 0.00

XLI 0.92 0.03 0.47 0.24 0.00 0.22 0.34 0.38 1.00 0.01

XLK 0.03 0.00 0.30 0.03 0.11 0.17 0.68 0.10 0.11 0.00

XLP 0.22 0.18 0.42 0.61 0.00 0.01 0.70 0.16 0.02 0.00

XLU 0.02 0.01 0.21 0.01 0.02 0.00 0.21 0.08 0.01 0.00

XLV 0.01 0.10 0.14 0.04 0.00 0.00 0.28 0.99 0.00 0.00

XLY 0.53 0.00 0.37 0.06 0.07 0.00 0.36 0.28 0.58 0.00

Number of Estimated Jumps

11 13 13 8 9 26 4 4 9 97

Note: This table reports p-values for the test of a constant volatility jump beta using the determinant test of Section 4.2.
It does so both year-by-year and for the full sample. The lower section of the table lists the number of estimated market
volatility jumps in each year and the entire sample following the details explained in Section 3.2 and implemented following the
specifications discussed in Section 6.

Table 4: Failures to Reject a Constant Volatility Jump Beta for the DOW30 Stocks

Significance Full

Level 2007 2008 2009 2010 2011 2012 2013 2014 2015 Sample

1% 13 24 19 24 23 9 23 28 14 0

5% 8 19 13 19 18 4 20 24 6 0

10% 5 18 8 18 12 1 19 19 4 0

Note: The table lists the number of stocks in the DOW30 for which one would fail to reject the null of a constant volatility
jump beta at significance levels 1%, 5%, and 10%. The test was done using the determinant test of Section 4.2. The estimation
is done both year-by-year and for the full sample.
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a constant volatility jump beta cannot be rejected for nearly all of the portfolios at the 1%, 5%,

and even 10% level and for a considerable number of the stocks, especially at the 1% level. Such

a result might be consistent with variants of a conditional asset pricing model in which the betas

change over time (see, for example, Hansen and Richard (1987)).

Figure 4: Time Series Plot of the Volatility Jump Betas for the S&P Industry Portfolios (2007-2015)

Note: This figure plots the estimated volatility jump betas for S&P Industry Portfolios across the years 2007-2015 and their
associated 95% confidence intervals. The volatility jump betas are estimated using the quasi-maximum-likelihood method
described in Section 4.3 whereas the confidence intervals are calculated using the bootstrap procedure of Section 4.4 and the
basic bootstrap using 1000 replications.

Table 5 lists the estimated volatility jump betas for the portfolios together with their 95%

confidence intervals whereas Figures 4 and 5 provide a time series plot of these betas and their

confidence intervals. Figure 4 doing so for the portfolios and Figure 5 doing so for the stocks. The

volatility jump betas in both the figures and the table were estimated using the quasi-maximum-
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Figure 5: Time Series Plot of the Volatility Jump Betas for the DOW30 Stocks (2007-2015)

Note: This figure plots the estimated volatility jump betas for the DOW30 stocks across the years 2007-2015 and their associated
95% confidence intervals. The volatility jump betas are estimated using the quasi-maximum-likelihood method described in
Section 4.3 whereas the confidence intervals are calculated using the bootstrap procedure of Section 4.4 and the basic bootstrap
using 1000 replications.

33



likelihood method described in Section 4.3 and the confidence intervals were calculated using the

bootstrap procedure of Section 4.4 and the basic bootstrap with 1000 replications. As noted before,

because the limiting bootstrap distribution in Theorem 3 is not symmetric, the confidence intervals

will not in general be symmetric.

With a few exceptions the confidence intervals are decently tight, especially if one considers the

estimation error involved in estimating the volatility jumps. This shows the fairly good performance

of the bootstrap method. For many assets the volatility jump beta does appear to vary from year

to year confirming the rejections earlier of a constant volatility jump beta across the sample.

Interestingly many of the volatility jump betas appear to be very near, or just slightly below, one.

Recall that we are considering changes in the log-volatilities of the assets in this setting. Given

this the volatility jump betas correspond to elasticities between the market volatility and the asset

volatilities. A log-volatility jump beta of one, or slightly less, would imply that a jump in the market

volatility of given percentage would have an equal, or slightly less than equal, percentage change

in the volatility of the asset. Such a result would arise if a linear relationship existed between

the market volatility jumps and the volatility jumps of the asset. Finding a log-volatility jump

beta near one then lends support to modeling asset volatilities as a linear function of the market

volatility.

6.3 Idiosyncratic Volatility Jump Regressions

This empirical application estimates and conducts inference for the volatility jump beta between

the idiosyncratic volatility of an asset and the market volatility. To illustrate this idea let Z denote

the market, or potentially some observed aggregate risk factor, and Y the asset under consideration.

We can decompose the continuous parts of Z and Y as follows

Y c
t = βZ0,t + βZ1,tZ

c
t + Ỹ c

t (57)

where Ỹ c is the “idiosyncratic” component in Y c. If Zc were the sole risk factor in the economy

than Ỹ c would be, by construction, an unpriced source of risk. Denoting the volatility of Ỹt as σ̃2
Y,t

and the volatility of Zc as σ2
Z , this empirical application considers volatility jump regressions of

the form

∆σ̃2
Y,τp = β∆σ2

Z,τp (58)

at the set (τp)p≥1 of jump times in σ2
Z . The idiosyncratic volatility is easy to estimate since

σ̃2
Y,t = σ2

Y,t− (σ2
ZY,t)

2/σ2
Z,t where σ2

ZY,t is the co-volatility between Y c and Zc. Note that, as before,

the analysis is performed in log units.
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Table 6 provides estimates of the idiosyncratic volatility jump betas for the DOW30 stocks

and their significance levels. The empirical analysis here only considers the DOW30 stocks since

the S&P Sector ETFs are themselves aggregate portfolios. The estimation was conducted for

the whole sample and for three consecutive three-year intervals. The significance levels of the

estimated betas, that is, whether the betas are estimated to be significantly different from zero

are indicated by the stars corresponding to significance levels of 1% (***), 5% (**), or 10% (*).

The estimation was performed using the quasi-maximum-likelihood procedure detailed in Section

4.3 and the significance levels were estimated based on the bootstrap confidence intervals detailed

in Section 4.4 and the basic bootstrap. Notice the high degree of significance of the estimated

betas. With only a few exceptions all the estimated betas are estimated to be significantly different

from zero at the 1% level. This provides evidence that, at least at jump times, the idiosyncratic

volatility correlates with the market volatility. The R2s of the regressions are listed in Table 7.

Examined across the entire sample the R2s range from a low of 0.179 for Intel (INTC) to a high of

0.47 for Goldman Sachs (GS) and, examined across the three-year intervals, reach as high as 0.661

for Goldman Sachs during the 2007-2009 period. The high R2s in this table shows that, not only

does the idiosyncratic volatility appear to correlate with the market volatility at jump times, but

the market volatility jumps often explains a substantial fraction of the variation in the idiosyncratic

volatility jumps themselves.

The magnitudes of the estimated betas are interesting as well. Notice that nearly all of the

betas are estimated to be between zero and one and many are in the range 0.4 to 0.7. Recall

that we are considering changes in the log-volatilities of the assets in this setting. Given this the

volatility jump betas correspond to elasticities between the market volatility and the idiosyncratic

volatilities of the assets. A beta less than one then implies a concave relationship between the

market volatility jumps and the idiosyncratic volatility jumps.

The results of this empirical application shed light on the growing literature on idiosyncratic

risk and the so-called “idiosyncratic volatility puzzle.” The “puzzle” was first documented in Ang,

Hodrick, Xing, and Zhang (2006) and concerns the fact that the idiosyncratic volatility of assets

appears to be priced in the cross-section. Ang, Hodrick, Xing, and Zhang (2006) used changes in

the VIX to proxy for changes in the market volatility and calculated the idiosyncratic volatility

based on the residuals from regressions of asset returns on the changes in the VIX together with

the three factors in Fama and French (1993). Sorting stocks based on their average idiosyncratic

volatility they found that stocks with higher idiosyncratic volatilities had lower average returns and

analogously stocks with lower idiosyncratic volatilities had higher average returns. They explored
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Table 6: Estimated Idiosyncratic Volatility Jump Betas for the DOW30 Stocks (2007-2015)

Asset Full Sample 2007-2009 2010-2012 2013-2015

AAPL 0.620∗∗∗ 0.951∗∗∗ 0.385∗ 0.367∗∗∗

AXP 0.628∗∗∗ 0.900∗∗∗ 0.280∗ 0.533∗∗∗

BA 0.622∗∗∗ 0.760∗∗∗ 0.727∗∗∗ 0.348∗∗∗

BAC 0.708∗∗∗ 0.830∗∗∗ 0.453∗∗∗ 0.792∗∗∗

CAT 0.543∗∗∗ 0.865∗∗∗ 0.507∗∗∗ 0.258∗∗∗

CSCO 0.459∗∗∗ 0.654∗∗∗ 0.109 0.484∗∗∗

CVX 0.389∗∗∗ 0.586∗∗∗ 0.326∗∗ 0.262

DD 0.515∗∗∗ 0.696∗∗∗ 0.433∗∗∗ 0.417∗∗

DIS 0.714∗∗∗ 0.989∗∗∗ 0.337∗∗∗ 0.701∗∗∗

GE 0.597∗∗∗ 0.785∗∗∗ 0.352∗∗ 0.614∗∗∗

GS 0.643∗∗∗ 0.804∗∗∗ 0.619∗∗∗ 0.489∗∗∗

HD 0.735∗∗∗ 0.986∗∗∗ 0.479∗∗∗ 0.717∗∗∗

IBM 0.575∗∗∗ 0.798∗∗∗ 0.470∗∗∗ 0.455∗∗∗

INTC 0.292∗∗∗ 0.335∗∗∗ 0.412∗∗∗ 0.150

JNJ 0.758∗∗∗ 0.872∗∗∗ 0.504∗∗∗ 0.916∗∗∗

JPM 0.734∗∗∗ 0.874∗∗∗ 0.369∗∗ 0.784∗∗∗

KO 0.596∗∗∗ 0.836∗∗∗ 0.447∗∗∗ 0.449∗∗∗

MCD 0.553∗∗∗ 0.886∗∗∗ 0.376∗∗ 0.384∗∗∗

MMM 0.766∗∗∗ 1.146∗∗∗ 0.575∗∗∗ 0.595∗∗∗

MRK 0.632∗∗∗ 0.902∗∗∗ 0.531∗∗∗ 0.461∗∗∗

MSFT 0.487∗∗∗ 0.759∗∗∗ 0.405∗∗ 0.299∗∗

NKE 0.540∗∗∗ 0.768∗∗∗ 0.502∗∗∗ 0.387∗∗∗

PFE 0.502∗∗∗ 0.633∗∗∗ 0.397∗∗∗ 0.463∗∗∗

PG 0.606∗∗∗ 0.855∗∗∗ 0.458∗∗∗ 0.466∗∗∗

TRV 0.602∗∗∗ 0.732∗∗∗ 0.551∗∗ 0.531∗∗∗

UNH 0.668∗∗∗ 0.620∗∗∗ 0.683∗∗∗ 0.699∗∗∗

UTX 0.660∗∗∗ 0.937∗∗∗ 0.404∗∗∗ 0.564∗∗∗

VZ 0.687∗∗∗ 0.780∗∗∗ 0.507∗∗ 0.739∗∗∗

WMT 0.752∗∗∗ 0.965∗∗∗ 0.463∗∗∗ 0.755∗∗∗

XOM 0.492∗∗∗ 0.711∗∗∗ 0.426∗∗∗ 0.311∗∗

Note: This table displays the estimated idiosyncratic volatility jump betas between the DOW30 stocks and the E-mini for the entire sample and
for three consecutive three-year intervals. The stars are indications that the estimated beta is significantly different from zero at either the 1%
(***), 5% (**), or 10% (*) level. The volatility jump betas were estimated by a quasi-maximum-likelihood procedure detailed in Section 4.3 and
the significance levels were estimated based on the bootstrap confidence intervals detailed in Section 4.4 and the basic bootstrap.
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Table 7: Idiosyncratic Volatility Jump Regression R2s for the DOW30 Stocks (2007-2015)

Asset Full Sample 2007-2009 2010-2012 2013-2015

AAPL 0.233 0.589 0.009 0.315

AXP 0.317 0.601 0.018 0.605

BA 0.383 0.475 0.470 0.252

BAC 0.405 0.595 0.245 0.383

CAT 0.277 0.467 0.148 0.371

CSCO 0.288 0.549 0.012 0.542

CVX 0.231 0.356 0.194 0.166

DD 0.241 0.317 0.271 0.161

DIS 0.361 0.493 0.132 0.507

GE 0.348 0.488 0.195 0.373

GS 0.470 0.661 0.331 0.472

HD 0.400 0.497 0.388 0.348

IBM 0.286 0.380 0.112 0.469

INTC 0.179 0.135 0.316 0.120

JNJ 0.415 0.415 0.502 0.359

JPM 0.325 0.512 0.028 0.548

KO 0.346 0.571 0.223 0.288

MCD 0.228 0.316 0.108 0.331

MMM 0.411 0.404 0.420 0.504

MRK 0.289 0.343 0.242 0.324

MSFT 0.187 0.353 0.051 0.266

NKE 0.269 0.260 0.226 0.370

PFE 0.362 0.497 0.197 0.432

PG 0.252 0.433 0.109 0.286

TRV 0.306 0.328 0.139 0.520

UNH 0.190 0.290 0.081 0.214

UTX 0.444 0.659 0.292 0.411

VZ 0.353 0.452 0.194 0.423

WMT 0.263 0.428 0.178 0.204

XOM 0.304 0.534 0.158 0.284

Note: This table displays the estimated idiosyncratic volatility jump betas between the DOW30 stocks and the E-mini for the entire sample and
for three consecutive three-year intervals. The stars are indications that the estimated beta is significantly different from zero at either the 1%
(***), 5% (**), or 10% (*) level. The volatility jump betas were estimated by a quasi-maximum-likelihood procedure detailed in Section 4.3 and
the significance levels were estimated based on the bootstrap confidence intervals detailed in Section 4.4 and the basic bootstrap.
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the possibility that such a finding might be due to fact that stocks with high idiosyncratic volatilities

may have a high exposure to market volatility risk, which would be in line with the findings here.

They however found this to be an incomplete explanation. In particular, they found that stocks

that high (low) idiosyncratic volatilities had a high (low) loading on market volatility risk, but

that this relationship only existed for stocks with low previous loadings on the market volatility.

One potentially issue with their results is their use of changes in the VIX to proxy for changes

in the market volatility. Since the VIX is the expectation of the future implied volatility of the

market under the risk-neutral density, using the VIX in place of measures of volatility based on

realized returns conflates changes in the market volatility with potential changes in the volatility

risk premium. The results here, while obviously limited to volatility jump events, do not have this

problem since the estimates are based on realized high-frequency returns. Many of the explanations

for the negative price of idiosyncratic risk following Ang, Hodrick, Xing, and Zhang (2006) have

involved positing lottery-like preferences for investors or have examined market fractions. For a

thorough overview of these explanations and the literature on idiosyncratic risk since Ang, Hodrick,

Xing, and Zhang (2006) see Hou and Loh (2016).

6.4 The Pricing of Volatility Jumps

In addition to providing a method for estimating volatility jump betas, the procedures in this

paper provide a means to estimate the timing and magnitude of jumps in the market volatility.

Such methods can be used to explore the pricing of volatility risk. To do so this study performs

a series of predictive regressions between the estimated market volatility jumps and future excess

returns. To examine these regressions let ert,t+h be the excess return of some asset between days t

and t+h and let tp be the day on which the p-th market volatility jump takes place. The regressions

take the form

ertp+1,tp+h = γ0 + γ1∆σ̂2
m,ip + εtp (59)

for all p ≥ 1 where σ̂2
m,ip

is the estimated p-th market volatility jump.

Figures 6 and 7 plot the R2s and t-statistics from these predictive regressions. Figure 6 doing so

for the predictive regressions of the excess returns on the market, with the E-mini being the proxy

for the market, and Figure 7 doing so for the excess returns on the DOW30 stocks. The t-statistics

were calculated using the heteroskedastic-robust method in White (1980).6 Examining Figure 6

6Note that due to the stochastic arrival of the jump times that any serial correlation in the process is greatly
reduced and would not be dealt with correctly by standard time-series methods. A more detailed study might consider
appropriate methods to handle the error structure in these predictive regressions. Also note that these regressions
require the use of both in-fill and long-span asymptotics. The in-fill asymptotics to estimate the spot volatility jumps
and the long-span asymptotics to justify the convergence properties of the regressions.
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Figure 6: Predictive Regressions: Market Volatility Jumps and the Market Excess Returns
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Note: This figure plots predictive regression results for predictive regressions between the estimated market volatility jumps
and the market excess returns using the E-mini as the proxy for the market and the three-month T-bill rate as the proxy for
the risk-free rate. The sample spans the years 2007-2015. The top panel plots the R2s from these regressions and the bottom
panel the absolute value of the t-statistic. The t-statistics were calculated using the heteroskedastic robust procedure in White
(1980).

39



Figure 7: Predictive Regressions: Market Volatility Jumps and the DOW30 Excess Returns
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Note: This figure plots predictive regression results for predictive regressions between the estimated market volatility jumps
and the excess returns of the DOW30 stocks where the three-month T-bill rate is used as the proxy for the risk-free rate. The
sample spans the years 2007-2015. The top panel plots the 75th, 50th, and 25th quantiles of the R2s from these regressions
and the bottom panel plots the corresponding absolute t-statistics. The t-statistics were calculated using the heteroskedastic
robust procedure in White (1980).
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notice the high degree of predictability that the market volatility jumps have on future market

excess returns especially at a three to five month horizon. The series peaks at the 75 day horizon

excess return with an R2 = 0.09. Figure 7 provides corresponding results for the DOW30 stocks.

The figure plots quantiles of the R2s and t-statistics across the thirty stocks for these predictive

regressions. While not as large in magnitude as the results for the market excess return, the

figure shows that market volatility jumps remain highly predictive for future excess stock returns.

These result are similar to the findings of other studies. Bollerslev, Tauchen, and Zhou (2009), for

example, found the variance risk premium to be most predictive for future excess returns at a three

to six month horizon and found an R2 of about 0.07 at most. Whereas, Andersen, Fusari, and

Todorov (2015c) found their left-jump tail-risk factor to be most predict for future excess returns

at about a six month horizon found R2s of no more than about 0.14.

A guide to understand the pricing of volatility jumps follows from the recent work of Andersen,

Fusari, and Todorov (2015a) and Andersen, Fusari, and Todorov (2015c). To do so we will need

to introduce a risk-neutral dynamic for the log-price process Xt under the risk-neutral measure Q.

Recall the dynamics of Xt under the physical measure P as originally defined in (3). To specify the

dynamics of Xt under Q define

WQ
t = W P

t +

∫ t

0
λWs ds (60)

where WQ is a Brownian motion under Q and λWs is the price of risk due to W , i.e., the price

of diffusive risk. The Poisson measure under Q is given by pQ with associated compensator

qQ(dt, dx) = dt ⊗ λQ(dx) where the mapping λQ(dx) → λP(dx) reflects the compensation for

jump risk. With these definitions a risk-neutral dynamic for Xt exists with the following structure

dXt = (rt − δt)dt+ σtdW
Q
t

+

∫
R

(
δ(x)1{||δ(x)||≤1}

)
∗
(
pQ − qQ

)
(dt, dx) +

(
δ(x)1{||δ(x)||>1}

)
∗ pQ(dt, dx)

(61)

where σt is the same volatility process as in (3), rt is the risk-free rate, and δt is the dividend-yield.

Recall that under P the drift in Xt was denoted by bt. With these definitions the spot equity risk

premium is given by

bt − (rt − δt) = λWt σt +

∫
R
δ(x)(λP − λQ)(dx) (62)

where the two components reflects compensation for diffusive risk and jump risk respectively. Notice

how volatility jumps, that is jumps in σt, enter into the equity risk premium (and by extension into

the drift of the log-price process). This shows that future excess returns will be affected by volatility

jumps through their cumulative impact on the path of the spot equity risk premium process.
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7 Conclusion

This paper develops econometric tools for studying the jump dependencies between functions of

the underlying or latent spot co-volatilities of two assets from high-frequency observations on a

fixed time interval with a particular interest on the relationship between functions of the spot

volatility of different traded assets and the spot volatility of aggregate risk factors such as the

market volatility. This paper derives a test for deciding whether a linear relationship between

functions of the latent spot volatility jumps of two assets exists on a given time interval which,

as explained in the paper, could have potentially very interesting implications for the modeling

or pricing of volatility processes. The test is shown to have power for detecting both nonlinearity

in functional form and time-varying parameters. Next, after providing evidence that an ordinary

least squares estimator for the volatility jump beta will be biased in finite samples, the paper

proposes a quasi-maximum-likelihood based estimator to correct for this bias and shows it to be

asymptoticly valid and consistent for the volatility jump beta. The quasi-maximum-likelihood

estimator is based on an asymptotic approximation of the error distribution in estimating the

volatility jump relationship. Because the limiting distribution of the estimator is non-standard a

simple and intuitive bootstrap method is provided and shown to be valid for feasible inference.

The bootstrap is based on a simple i.i.d. re-sampling of the returns in a neighborhood around

the volatility jump times. In addition, the paper also shows how a volatility index, such as the

Chicago Board of Option Exchange’s (CBOE) Volatility Index (VIX), can be used to identify the

latent jump times in the market volatility under fairly minor assumptions. This addresses the issue

of locating the spot volatility jump times. In a set of Monte Carlo experiments over a range of

parametric specifications and sampling frequencies the paper reports good size and power properties

for the specification test and good coverage properties for confidence intervals. In addition, the

study shows the proposed quasi-maximum-likelihood estimator to have a markedly smaller bias

than the ordinary least squares estimator in these trials.

The paper contains three empirical applications. The first study employs a panel consisting of

the E-mini S&P500 index futures, the nine S&P portfolio ETFs, and the thirty stocks in the Dow

Jones Industrial Average over the period 2007-2015 with the E-mini being the proxy for the market.

Comparing log-volatility jumps the study documents that the market volatility jump beta of many

financial assets appears to remain stable over a period of one year, but finds evidence for temporal

variation over the entire sample. Interestingly, the volatility jump beta for many assets appears to

be very near one which, given the comparison between log-volatilities, would imply a unit elastic

relationship between the volatility of the market and the volatility of the assets at jump times in
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the market volatility. This would in turn would imply a linear relationship between the volatility of

these assets and the market volatility at jump times. The next study examines the beta between the

“idiosyncratic” volatilities of assets and the market volatility. The study finds many of these betas

to be statistically different from zero implying a correlation between the idiosyncratic volatilities

of these assets and the market volatility at jump times. Even further, the R2s of these regressions

are often in excess of 0.50 implying that, at jump times, the market volatility often explains a

substantial fraction of the variation in the idiosyncratic volatilities. The final empirical application

examines the pricing of market volatility jumps. Through a series of predictive regressions between

future market excess returns and the estimated market spot volatility jumps, the study documents

market spot volatility jumps to be particularly predictive of future excess returns at a three to four

month horizon with R2s of nearly ten percent.
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8 Appendix: Proofs

We now prove the theorems in the main text. Throughout this appendix, we use K to denote a

generic positive constant that may change from line to line; we sometimes emphasize the dependence

of this constant on some parameter q by writing Kq. Below, the convergence (ξn,p)p≥1 → (ξp)p≥1

as n→∞, is understood to be under the product topology. We use the following sets of notation.

First, we write w.p.a.1 for “with probability approaching one.” Next we define T = (τp)p≥1 where

(τp)p≥1 are the successive jump times of cZZ,t and denote P = {p ≥ 1 : τp ∈ [0, T ]}. Finally, we use

ip to denote the unique integer such that τp ∈ ((i− 1)∆n, i∆n].

By a standard localization procedure (see Section 4.4.1 of Jacod and Protter (2012)), we can

respectively strengthen Assumptions 1 and 2 to the following stronger versions without loss of

generality.

Assumption 4. We have Assumption 1. Moreover, the processes Xt, bt, and σt are bounded.

Assumption 5. We have Assumption 2. Moreover, the processes b
(c)
t and σ

(c)
t are bounded.

Proof of Proposition 1. Part (a) follows by a simple application of Proposition 1 in Li, Todorov,

and Tauchen (2015). Part (b) follows by verifying the assumptions in Theorem 1 in Todorov and

Tauchen (2011).

Proof of Theorem 1. By Proposition 1 we have that

P(In = I ∗n )→ 1. (63)

Then, by Theorem 9.3.2 in Jacod and Protter (2012) we derive that(
g(ĉip−) , g(ĉip+), h(ĉip−), h(ĉip+)

)
ip∈In

=
(
g(ĉip−), g(ĉip+), h(ĉip−), h(ĉip+)

)
ip∈I ∗n

w.p.a.1 by (63)

P−→
(
g(cτp−), g(cτp+), h(cτp−), h(cτp+)

)
p∈P .

(64)

Recall the notation in Sections 3 and 4. By Theorem 8.8 in Aı̈t-Sahalia and Jacod (2014) and the

delta method we have√
kn
(
∆g(ĉip)−∆g(cτp),∆h(ĉip)−∆h(cτp)

)
ip∈In

=
√
kn
(
∆g(ĉip)−∆g(cτp),∆h(ĉip)−∆h(cτp)

)
ip∈I ∗n

w.p.a.1 by (63)

L−s−→
(
∇g(cτp)

>Uτp +∇g(cτp−)>Uτp− ,∇h(cτp)
>Uτp +∇h(cτp−)>Uτp−

)
p∈P

≡
(
ξτp(g), ξτp(h)

)
p∈P .

(65)
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where the variables Uq−, Uq, U
′
q−, and U ′q are defined on an extension (Ω̃, F̃ , P̃) of (Ω,F ,P) and,

conditionally on F , are all independent centered Gaussian with covariances given by (10).

(a) Define

ε̄ip(g, h) =
(
∆g(ĉip)−∆g(cτp)

)
− β̄(g, h)

(
∆h(ĉip)−∆h(cτp)

)
(66)

and note that in restriction to Ω0 we have

∆g(ĉip) = β0(g, h)∆h(ĉip) + ε̄ip(g, h) (67)

since β̄(g, h) = β0(g, h) in restriction to Ω0. Consequently by (65) we have√
knε̄ip(g, h)

L−s−→ ϕ̄τp(g, h) (68)

for all p ≥ 1 where ϕ̄τp(g, h) = ξτp(g)− β̄(g, h)ξτp(h).

Because P(In = I ∗n )→ 1 w.p.a.1,

det[Qn(g, h)] =

 ∑
ip∈I ∗n

∆h(ĉip)
2

 ∑
ip∈I ∗n

∆g(ĉip)
2

−
 ∑
ip∈I ∗n

∆h(ĉip)∆g(ĉip)

2

. (69)

Plugging (66) into (69) we see, after some algebra, that

det[Qn(g, h)] =

 ∑
ip∈I ∗n

∆h(ĉip)
2

 ∑
ip∈I ∗n

ε̄2ip(g, h)

−
 ∑
ip∈I ∗n

∆h(ĉip)ε̄ip(g, h)

2

. (70)

Combining the convergence in (64) with the convergence in (68) we use the property of stable

convergence to derive the joint convergence

(
∆h(ĉip), ε̄ip(g, h)

)
p≥1

L−s−→
(
∆h(cτp), ϕ̄τp(g, h)

)
p≥1

. (71)

Since the set P is a.s. finite, the assertion of part (a) follows from (70), (71), and the continuous

mapping theorem.

(b) By a standard localization argument (see Section 4.4.1 of Jacod and Protter (2012)), we

can assume that Assumptions 4 and 5 hold without loss of generality. Since P is a.s. finite, we

can also assume that |P| ≤M for some constant M > 0 for the purpose of proving convergence in

probability; otherwise, we can fix some large M to make P(|P| > M) arbitrarily small and restrict

the calculation below on the set {|P| ≤M}.
By (63) we have

Qn(g, h)
P−→ Q(g, h) (72)
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which implies

β̄n(g, h)
P−→ β̄(g, h). (73)

Together with (63) these imply

ζ̃n(g, h) =

 ∑
ip∈I ∗n

∆h(ĉip)
2

 ∑
ip∈I ∗n

ϕ̃2
ip(g, h)

−
 ∑
ip∈I ∗n

∆h(ĉip)ϕ̃ip(g, h)

2

w.p.a.1. (74)

Next, fix any subsequence N1 ⊆ N. By (65) and (73), we can extract a further subsequence

N2 ⊆ N1, such that along N2,((
ĉip− , ĉip+

)
1≤p≤M , β̄n(g, h)

)
→
((
cτp− , cτp+

)
1≤p≤M , β0(g, h)

)
(75)

on some set Ω∗ with P(Ω∗) = 1. Then, for each ω ∈ Ω∗ fixed, the transition kernel of ζ̃n(g, h) given

F converges weakly to the F-conditional law of ζ(g, h). Moreover, observe that the F-conditional

law of the variables (ϕ̄τp(g, h))1≤p≤M does not have atoms and has full support on RM . Therefore,

the F-conditional distribution function of ζ(g, h) is continuous and strictly increasing. By Lemma

21.2 in van der Vaart (1998), we deduce that on each ω ∈ Ω∗ and along the subsequence N2 that

cvαn → cvα, where cvα is the F-conditional (1 − α)-quantile of ζ(g, h). Since the subsequence N1

was arbitrarily chosen, we further deduce that cvαn → cvα by the subsequence characterization of

convergence in probability. This concludes the proof of (b).

(c) By parts (a) and (b), as well as the property of stable convergence, we have

(kn det[Qn(g, h)], cvαn ,1(Ω0))
L−s−→ (ζ(g, h), cvα,1(Ω0)) . (76)

In particular,

P ({kn det[Qn(g, h)] > cvαn} ∩ Ω0) −→ P ({ζ(g, h) > cvα} ∩ Ω0) . (77)

Since P(ζ(g, h) > cvα|F) = α and Ω0 ∈ F , we have

P ({ζ(g, h) > cvα} ∩ Ω0) = αP(Ω0). (78)

The first assertion of part (c) then follows from (77). To show the second assertion of part (c),

we first observe that (72) implies det[Qn(g, h)]
P−→ det[Q(g, h)]. In restriction to Ωa we have

that det[Q(g, h)] > 0 which implies that kn det[Qn(g, h)] diverges to +∞ in probability. Part (b)

implies that cvαn is tight in restriction to Ωa. Consequently, P (kn det[Qn(g, h)] > cvαn |Ωa) → 1 as

asserted.
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Proof of Theorem 2. Before proceeding to the proofs of parts (a) and (b) we provide some initial

results. First by Proposition 1 we have that

P(In = I ∗n )→ 1. (79)

Next, we formalize some notation and results in the text. Let logL and log L̂n be defined as (43)

and (44). Next, let Uq− and Uq be defined on an extension (Ω̃, F̃ , P̃) of (Ω,F ,P) and, conditionally

on F , all independent centered Gaussian with covariances

Ẽ[U ijq−U
kl
q−] = cikSq−c

jl
Sq−

+ cilSq−c
jk
Sq−

,

Ẽ[U ijq U
kl
q ] = cikSqc

jl
Sq

+ cilSqc
jk
Sq
.

(80)

and define
ξτp(g) = ∇g(cτp)

>Uτp +∇g(cτp−)>Uτp−

ξτp(h) = ∇h(cτp)
>Uτp +∇h(cτp−)>Uτp−

(81)

By Theorem 8.8 in Aı̈t-Sahalia and Jacod (2014), together with the delta method, we have that√
kn
(
∆g(ĉip)−∆g(cτp),∆h(ĉip)−∆h(cτp)

) L−s−→ (
ξτp(g), ξτp(h)

)
(82)

for all p ≥ 1 as kn → ∞ and kn
√

∆n → 0. For all p ≥ 1, let the covariance matrix of(
ξτp(g), ξτp(h)

)
be defined as Στp = Σ(g, h, cτp− , cτp+) and define its finite sample approximation

as Σ̂ip = Σ(g, h, ĉip− , ĉip+). By Theorem 8.6 in Aı̈t-Sahalia and Jacod (2014) together with the

continuous mapping theorem and the result in (79) we have√
kn

(
Σ̂ip

)
ip∈In

=
√
kn

(
Σ̂ip

)
ip∈I ∗n

w.p.a.1 by (79)

P−→
(
Στp

)
p∈P .

(83)

(a) The proof proceeds by verifying the conditions of Theorem 2.7 in Newey and McFadden

(1994). First, by the information inequality it is easy to verify that β0(g, h) uniquely maximizes

logL. The concavity of log L̂n is also readily verifiable. We proceed then by showing the convergence

in probability of log L̂n to logL.

Let

ϕτp(g, h) = ξτp(g)− β0(g, h)ξτp(h) (84)

and

εip(g, h) =
(
∆g(ĉip)−∆g(cτp)

)
− β0(g, h)

(
∆h(ĉip)−∆h(cτp)

)
. (85)

for all p ≥ 1 as in the text. By (79), (82), and the continuous mapping theorem note that√
kn
(
εip(g, h)

)
ip∈In

=
√
kn
(
εip(g, h)

)
ip∈I ∗n

w.p.a.1 by (79)

L−s−→
(
ϕτp(g, h)

)
p∈P .

(86)
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This implies

εip(g, h) = k−1/2
n ϕτp(g, h) + op(1) (87)

for all p ≥ 1. The log-likelihood of
(
k
−1/2
n ϕτp(g, h)

)
p∈P

is given by

logLn
(
b|Στp

)
= −1

2

∑
p≥1

log
(

2πk−1
n (Σ11

ip + b2Σ22
ip − 2bΣ12

ip )
)

−
∑
p≥1

(
∆g(ĉip)− b∆h(ĉip)

)2
2k−1

n

(
Σ11
ip

+ b2Σ22
ip
− 2bΣ12

ip

) . (88)

By (83) note that

log L̂n
(
b|Σ̂ip

)
= logLn

(
b|Στp

)
+ op(1). (89)

Combing these results and the property of stable convergence we see(√
knεip(g, h), Σ̂ip

)
p≥1

L−s−→
(
ϕτp(g, h),Στp

)
p≥1

(90)

which implies the convergence of log L̂n to logL in probability. This concludes part (a).

(b) We follow the standard procedure of using a mean value decomposition of the log-likelihood.

(Note that to ease the notation we drop the dependence of β̂MLE
n (g, h) and β0(g, h) on g and h and

write simply β̂MLE
n and β0.) Before doing so however we provide functional forms for ∇b log L̂n(b)

and ∇bb log L̂n(b) along with associated convergence results. Note that

∇b log L̂n(b) = −1

2

∑
p≥1

2bΣ̂22
ip
− 2Σ̂12

ip

Σ̂11
ip

+ b2Σ̂22
ip
− 2bΣ̂12

ip

+ kn
1

2

∑
p≥1

(
∆g(ĉip)− b∆h(ĉip)

)2 (
2bΣ̂22

ip
− 2Σ̂12

ip

)
(

Σ̂11
ip

+ b2Σ̂22
ip
− 2bΣ̂12

ip

)2 + kn
∑
p≥1

∆h(ĉip)
(
∆g(ĉip)− b∆h(ĉip)

)
Σ̂11
ip

+ b2Σ̂22
ip
− 2bΣ̂12

ip

(91)

and

∇bb log L̂n(b) =
∑
p≥1

−
2kn∆h(ĉip)(∆g(ĉip)− b∆h(ĉip))(2bΣ̂

22
ip
− 2Σ̂12

ip
)(

Σ̂11
ip

+ b2Σ̂22
ip
− 2bΣ̂12

ip

)2

− 1

2
kn(∆g(ĉip)− b∆h(ĉip))

2

 2(2bΣ̂22
ip
− 2Σ̂12

ip
)2(

Σ̂11
ip

+ b2Σ̂22
ip
− 2bΣ̂12

ip

)3 −
2Σ̂22

ip(
Σ̂11
ip

+ b2Σ̂22
ip
− 2bΣ̂12

ip

)2


−

kn
(
∆h(ĉip)

)2
Σ̂11
ip

+ b2Σ̂22
ip
− 2bΣ̂12

ip

+
1

2

 (2bΣ̂22
ip
− 2Σ̂12

ip
)2(

Σ̂11
ip

+ b2Σ̂22
ip
− 2bΣ̂12

ip

)2 −
2Σ̂22

ip

Σ̂11
ip

+ b2Σ̂22
ip
− 2bΣ̂12

ip

 .

(92)
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We provide two convergence results that will be used later. To do so let βn be such that βn
P−→ β0.

First notice

k−1/2
n ∇b log L̂n(β0) = k−1/2

n − 1

2

∑
p≥1

2bΣ̂22
ip
− 2Σ̂12

ip

Σ̂11
ip

+ b2Σ̂22
ip
− 2bΣ̂12

ip

+
√
kn

1

2

∑
p≥1

(
∆g(ĉip)− b∆h(ĉip)

)2 (
2bΣ̂22

ip
− 2Σ̂12

ip

)
(

Σ̂11
ip

+ b2Σ̂22
ip
− 2bΣ̂12

ip

)2 +
√
kn
∑
p≥1

∆h(ĉip)
(
∆g(ĉip)− b∆h(ĉip)

)
Σ̂11
ip

+ b2Σ̂22
ip
− 2bΣ̂12

ip

L−s−→ 1

2

∑
p≥1

ϕτp(g, h)(∆g(cτp)− β0∆h(cτp))
(

2β0Σ22
τp − 2Σ12

τp

)
(

Σ11
τp + β2

0Σ22
τp − 2β0Σ12

τp

)2 +
∑
p≥1

∆h(cτp)ϕτp(g, h)

Σ11
τp + β2

0Σ22
τp − 2β0Σ12

τp

≡ Ξ
(
β0, g, h, (cτp− , cτp+)p≥1

)
(93)

by (79), (82)-(90), and the continuous mapping theorem. Next notice

k−1
n ∇bb log L̂n(βn)

P−→
∑
p≥1

−
2∆h(cτp)(∆g(cτp)− β0∆h(cτp))(2β0Σ22

τp − 2Σ12
τp )(

Σ11
τp + β2

0Σ22
τp − 2β0Σ12

τp

)2

− 1

2
(∆g(cτp)− β0∆h(cτp))

2

 2(2β0Σ22
τp − 2Σ12

τp )2(
Σ11
τp + β2

0Σ22
τp − 2β0Σ12

τp

)3 −
2Σ22

τp(
Σ11
τp + β2

0Σ22
τp − 2β0Σ12

τp

)2


−

(
∆h(cτp)

)2
Σ11
τp + β2

0Σ22
τp − 2β0Σ12

τp

≡ H
(
β0, g, h, (cτp− , cτp+)p≥1

)
(94)

by the convergence in probability of βn to β0, (79), (82)-(90), and the continuous mapping theorem.

Proceeding with the proof note that

∇b log L̂n
(
β̂MLE
n |Σ̂ip

)
= 0 (95)

since β̂MLE
n is the maximizer of log L̂n. By the mean value theorem there exists a β̄n falling between

β̂MLE
n and β0 such that

0 = ∇b log L̂n
(
β̂MLE
n

)
= ∇b log L̂n (β0) +

(
β̂MLE
n − β0

)
∇bb log L̂n

(
β̄n
)
.

(96)

In addition, since βMLE
n

P−→ β0 and β̄n is bounded between β̂MLE
n and β0, we see β̄n

P−→ β0. These

results imply

β̂MLE
n − β0 = −

(
∇bb log L̂n

(
β̄n
))−1 (

∇b log L̂n (β0)
)

(97)

and by (92) and (93)√
kn

(
β̂MLE
n − β0

)
L−s−→ −

(
H
(
β0, g, h, (cτp− , cτp+)p≥1

))−1
Ξ
(
β0, g, h, (cτp− , cτp+)p≥1

)
(98)
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concluding the proof.

Proof of Theorem 3. First, defining Ωn = {In = I ∗n }, we see P(Ωn)→ 1 by Proposition 1. This

allows us to restrict the calculations below to the sample paths in Ωn without loss of generality.

(a) For the ease of exposition we focus on the convergence of ĉ∗ip+ to cτp+ . The convergence of

ĉ∗ip− to cτp− can be derived analogously and their joint convergence follows readily.

Recall

ĉip+ =
1

kn∆n

kn∑
m=1

∆n
ip+mX∆n

ip+mX
> (99)

and

ĉ∗ip+ =
1

kn∆n

kn∑
m=1

∆n
ip+mX

∗∆n
ip+mX

∗>. (100)

By an application of Lemma B.2 in Dovonon, Gonçalves, and Meddahi (2013) w.p.a.1 we have∣∣∣∣∣ 1

kn∆n

kn∑
m=1

∆n
ip+mX

∗∆n
ip+mX

∗> − 1

kn∆n

kn∑
m=1

∆n
ip+mX∆n

ip+mX
>

∣∣∣∣∣ P∗−→ 0 (101)

where P∗ is the probability measure induced by the bootstrap sample. Combining these results and

the convergence of ĉip+ to cτp+ under P we have

P
(
P∗
(∣∣∣ĉ∗ip+ − cτp+∣∣∣)) ≤ P

(
P∗
(∣∣∣ĉ∗ip+ − ĉip+∣∣∣+

∣∣ĉip+ − cτp+∣∣))
→ 0

(102)

by (101) and, as kn →∞ and kn
√

∆n → 0, by Theorem 8.6 in Aı̈t-Sahalia and Jacod (2014).

(b) For each bootstrap sample define the bootstrap log-likelihood as

log L̂∗n
(
b|Σ̂ip

)
= −1

2

∑
p≥1

log
(

2πk−1
n (Σ̂∗11

ip + b2Σ̂∗22
ip − 2bΣ̂∗12

ip )
)

−
∑
p≥1

(
∆g(ĉ∗ip)− b∆h(ĉ∗ip)

)2

2k−1
n

(
Σ̂∗11
ip

+ b2Σ̂∗22
ip
− 2bΣ̂∗12

ip

) (103)

where ∆g(ĉ∗ip) and ∆h(ĉ∗ip) are defined as in Algorithm 2 and Σ∗ip = Σ(g, h, ĉ∗ip− , ĉ
∗
ip+

) for all p ≥ 1.

By part (a) and the continuous mapping theorem we see

log L̂∗n
(
b|Σ̂∗ip

)
= logL

(
b|Σ̂ip

)
+ op(1) (104)

since log L̂∗ and Σ∗ip are continuous in (ĉ∗ip− , ĉ
∗
ip+

)p≥1. Then, by an analogous argument as in the

proof of Theorem 2(a), the result in (104) implies β̂∗MLE
n

P−→ β0.
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Since β̂∗MLE
n is the maximizer of log L̂∗n for each bootstrap sample, by the mean value theorem

there exists a β̄∗n falling between β̂∗MLE
n and β̂MLE

n such that

0 = ∇b log L̂∗n
(
β̂∗MLE
n

)
= ∇b log L̂∗n

(
β̂MLE
n

)
+
(
β̂∗MLE
n − β̂MLE

n

)
∇bb log L̂∗n

(
β̄∗n
)
.

(105)

Which implies

β̂∗MLE
n − β̂MLE

n = −
(
∇bb log L̂∗n

(
β̄∗n
))−1 (

∇b log L̂∗n
(
β̂MLE
n

))
. (106)

Since both β̂MLE
n and β̂∗MLE

n converge in probability to β0 and β̄∗n falls between β̂MLE
n and β̂∗MLE

n

we see β̄∗n
P−→ β0 as well. This implies

β̂∗MLE
n − β̂MLE

n = −
(
∇bb log L̂∗n (β0)

)−1 (
∇b log L̂∗n (β0)

)
+ op(1). (107)

Since ∇bb log L̂∗n and ∇b log L̂∗n are continuous in (ĉ∗ip− , ĉ
∗
ip+

)p≥1 by the part (a) and the continuous

mapping theorem we have

∇bb log L̂∗n = ∇bb log L̂n + op(1) and ∇b log L̂∗n = ∇b log L̂n + op(1). (108)

Combining (107) and (108) the result follows by an application of Theorem 2(b).
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