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Abstract

A look-ahead-bias-free, ex-ante efficient portfolio from Size, B/M and Momen-

tum anomalies has an ex-post Sharpe ratio of 2.3. It picks up the non-monotonic

benefits from characteristics that cannot be captured by the multi-factors and elim-

inates 39 out of 42 unique anomalies. Using tests of cross-sectional regressions,

mean-variance efficiency, miss-specification, model comparison and spurious fac-

tors, the 1-factor significantly out-perform the combined (or separate) 11 factors:

MKT-Rf, SMB, HML, MOM, RMW, CMA, qME, qIA, qROE, QMJ, LIQ among com-

binations of 147 test assets. The efficient factor is priced at the firm-level with 12%

per year spread. Optimal mix of new exotic characteristics can be engineered to

pass existing testing tools as “unique anomalies”, yet are completely manifested

by the efficient factor.

A theory where assets are priced recursively w.r.t. the group-specific efficient

factor shows that “anomalous” predictabilities are equivalent to 1-factor pricing,

regardless of rational/behavioral cause. An implied Stochastic Discount Factor

return deduced from the efficient factor is consistent with economic theory.
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1 Introduction

This study:
This study attempts to find a ex-ante efficient return that potentially gets closer to

ex-post efficiency, yet turns out to: price assets, drive out a massive number of other
anomalies, can be used to engineer “exotic” anomalies and test against new anomalies.
It reveals that Size, B/M and Momentum are 3 “basis” anomalies that spans many
other acclaimed anomalies.

I use the 8 “corner” portfolios of 25 Size-B/M and 25 Size-Momentum sorts to
construct a simple mean-variance efficient excess return portfolio, with no look-ahead-
bias, and test the asset pricing performance of this portfolio. The results are:

(1) The portfolio is highly efficient ex-post, with a Sharpe Ratio of 2.3. It allocates
time-stable weights to the base portfolios that exploits the non-monotonic ben-
efits of characteristics, which cannot be captured by multi-factor model, result-
ing in a return performance that is virtually unaffected by market fluctuations
through-out time.

(2) Out of the 42 acclaimed anomalies that I can find and claims to survive common
multi-factor models, 39 of them cannot survive the 1-factor model, the rest 3
are high turnover or illiquid anomalies that may diminish after implementation
costs.

(3) While testing various combinations of a total of 147 portfolios (with 3 other
anomalous portfolio sorts) using cross-sectional regressions, mean-variance ef-
ficiency tests, performance comparison tests, miss-specification tests and spuri-
ous factor tests, the 1-factor significantly out-perform 11 acclaimed factors, sep-
arately or combined.

(4) A closer look at firm-level sorts yields that assets grouped by expected beta to the
efficient portfolio has 12%/year significant alpha w.r.t the multi-factor models,
but not w.r.t the 1-factor model.

(5) By constructing proxies for the expected efficient factor beta, one could engineer
an optimal mix of new exotic characteristics that will significantly predict future
returns, and pass all current testing tools as “unique anomalies”, while being
completely manifested by the efficient factor.

The efficient factor is designed to solve a portfolio optimization problem in order to
break the ex-ante/ex-post barrier, yet turned out to have robust pricing performance
even though it is not created for that particular purpose. To understand the theoreti-
cal implications of the efficient factor, I develop an recursive asset pricing model that
points a direction to reconcile debates around the “anomalies”. It has 2 main conclu-
sions and 2 useful applications:
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(a) Predictabilities are equivalent to 1-factor pricing. Whenever returns are pre-
dictable from a known characteristics, the predictive slope can be backed out
as an excess return. Pricing power of multiple slopes are completely captured by
one efficient portfolio, hence the common pricing factor. Conversely, whenever a
pricing factor portfolio exists, the weights assigned to each asset by the portfolio
are the predictive characteristics. The questions whether a particular predictabil-
ity is consistent with a rational or behavioral investment decision making pro-
cess, or, whether the return predictabilities from a particular characteristics are
stable over time, are completely irrelevant to beta pricing.

(b) To price a given set of assets, one is not required to obtain good proxy to an
“universal” factor, therefore by-passing the Roll (1977) Critique. In the presence
of predictability, for each cascading asset classes, there is a recursively defined
pricing factor obtainable ex-ante within each asset class, and will price all assets
of that class relative to the class specific group average return.

The empirical and theoretical results of this paper can be useful for other research:

(i) The 1-factor model can help to filter out “anomalies” that are in fact manifested
by a set of basis predictive characteristics. The discovery of new anomalies thus
should be disciplined by whether the “new” reliably improve the efficiency of
the “old”, subject to implementation constraint. The hundreds of unique anoma-
lies that emerged over the decades are possibly the results of in-adequate asset
pricing models, rather than market in-efficiency.

(ii) The efficient factor gives rise to an implied Stochastic Discount Factor return via
the Hansen and Richard (1987) decomposition. The conditional expectation of
the Stochastic Discount Factor return can be deduced to inversely relate to the
conditional risk-premium of the efficient excess return. Using cross-sectional
data, estimates the conditional risk-premium of the efficient factor is consistent
with economic theory that the Stochastic Discount Factor should be high during
recessions and low during expansions. In comparison, the opposite is observed
for the conditional risk-premium of the market, suggesting that market excess
return is not the efficient excess return.

Related Studies
Empirically, this study relies on extracting efficient portfolios from the “anomalous”
portfolios of Fama and French (1993, 2014); Carhart (1997). The discoveries in As-
ness, Frazzini, and Pedersen (2014); Frazzini and Pedersen (2014); Asness and Frazz-
ini (2013) hints that some ways to combine known firm-characteristics seem to have
better return predictabilities over-time than other ways; together with the “predicted
beta” framework developed by Pástor and Stambaugh (2003) jointly inspired the “en-
gineered anomalies” section. In a recent study, Malamud and Vilkov (2015) also ex-
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tracts an ex-ante efficient portfolio (but from the multi-factor portfolios instead of the
“anomalous” portfolios), and argue that the “next-period” beta significantly predicts
future return and is generated by investor’s non-myopic behavior. Brandt, Santa-
Clara, and Valkanov (2009) implements portfolio optimization at stock level exploring
size, B/M and momentum characteristics and found significant improvement over
the market portfolio. Ahn, Conrad, and Dittmar (2009) explore basis assets using clus-
ter analysis on correlations to generate return spreads. The recursive feature of asset
pricing is related the the recent evidence in Gandhi and Lustig (2015) where a bank
industry specific size factor governs bank specific stock returns and is distinct from
the market wide size factor, suggesting a class-specific factor structure exists. As-
ness, Frazzini, Israel, Moskowitz, and Pedersen (2015) documents that size premium is
weak in univariate sort, but strong when controlled for quality measures, confirming
that non-monotonicity of benefits is pervasive among anomalies.

This study helps understand the massive collection of anomalies that have been
discovered over time, and there is only a few anomalies that sufficiently span the
space. Other anomalies existence is simple due to the lack of a better control. For
example, Novy-Marx (2014) demonstrated in a sarcastic way how one could predict
asset returns using weather, stars and sunspots.

Theoretically, the cross-sectional and time-series dependence structure is adapted
from the thorough work of Gagliardini, Ossola, and Scaillet (2016) which also leads
to easy estimation of time-varying risk-premium of the efficient factor. The recursive
interpretation of asset pricing is closely related to the equivalence between efficiency
and linear pricing established early on by Roll (1977). The efficient factor is one of the
three orthogonal components in the Hansen and Richard (1987) decomposition, and I
follow Cochrane (2009)’s succinct summary to derive the Implied Stochastic Discount
Factor returns.

I structure the rest of the paper by first comprehensively present the empirical ev-
idence, and then derive the full theoretical model. A 1-click reproducible package is
available upon request.

2 Evidence

In this section, I (1) construct an efficient portfolio, then (2) test its asset-pricing per-
formance using an armory of tools, and further (3) investigate the firm-level portfolio
sorts, then (4) engineer an “anomaly”. The appendix describes the details of the data
used.

4



2.1 The Efficient Portfolio

2.1.1 Base Assets

To construct the efficient excess return portfolio m, I set the base excess returns, x to
the portfolios exploiting 3 “anomalies” (Size, Book-to-Market and Momentum). I use
the 4 corner portfolios of each of the 5 × 5 Size—Book-to-Market and 5 × 5 Size—
Momentum sorts from Kenneth French’s website, resulting in 8 portfolios of excess
returns in total that utilize the Size, Book-to-Market and Momentum “anomalies”.

2.1.2 Efficient Allocation

Given the monthly excess return of 8 “corner” portfolios x, I construct the mean-
variance efficient portfolios using weights proportional to the following:

ŵ∗t =
(
Σ̂

HF

t

)−1

µ̂t (1)

µ̂t is the historical mean excess return and Σ̂
HF

t is historical covariance of anomaly
portfolios, given information up to time t. To utilize higher frequency data in order to
ensure precision, the covariance Σ̂

HF

t is estimated using a method in the same spirit of
Frazzini and Pedersen (2014) that correlations and variances are estimated separately

Σ̂
HF

t =
{
σ̂ij
t

}
=
{
ρ̂ijt σ̂

i
tσ̂

j
t

}
(2)

The variances are estimated via realized variance estimator (Andersen and Bollerslev,
1998) from daily returns using 1 year rolling window, and correlations are estimated
from overlapping 3-day returns using 5 year rolling window, to account for asyn-
chronous trading (Epps, 1979; Scholes and Williams, 1977).

The efficient portfolio is unique up to a multiplicative constant (details in later the-
oretical section), the weights do not necessarily sum up to 1, I normalize the weights
ŵ∗t of the zero-cost portfolios by its L1 norm (sum of absolute values):

ŵn
t =

ŵ∗t
‖ŵ∗t‖

(3)

Table 1 summarizes the weights allocated to the 8 portfolios and their time-series
properties. The efficient allocations are all highly statistically significant over time,
even though the covariance matrix is calculated in rolling window. The efficient port-
folio takes heavy long-short positions amongst the small size firms compared with
large size firms, even though there is no significant long-short position across the size
dimension.
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Table 1: Efficient Portfolio Allocation

(1) (2) (3) (4) (5) (6) (7) (8)
Sort1 SZ1 SZ5 SZ1 SZ5
Sort2 BM1 BM5 BM1 BM5 MOM1 MOM5 MOM1 MOM5
Avg. -0.206 0.221 0.051 -0.004 -0.165 0.255 0.004 -0.054
Std. (0.08) (0.11) (0.05) (0.02) (0.11) (0.14) (0.03) (0.03)
T-stat. [-55.0] [44.8] [21.8] [-3.6] [-35.4] [42.5] [ 2.7] [-37.1]

This table reports the summary of efficient allocations assigned to each of the 8 portfolios. The “Sort1”
indicates the double-sorted portfolio’s first level sort, and “Sort2” indicates the double-sorted portfo-
lios’ second level sort. “Avg” reports the time-series sample average of the percentage weights allo-
cated by themn factor. “Std.” reports the sample standard deviation of the weights over time; “T-stat”
reports the T-test for the hypothesis that sample average weight is zero. Sample period: 1967.06.30—
2014.12.31, with the first 5 years used as starting sample;

2.1.3 Portfolio Performance

The efficient portfolio is constructed by investing in the zero-cost portfolios xt+1 using
time t available weights:

mn
t+1 = x′t+1ŵ

n
t (4)

The portfolio is rebalanced monthly, with weights re-estimated monthly. Table 2 presents
the summary statistics and correlations of different factors. The efficient excess return
portfolio mn and the risk-parity scaled1 efficient excess return portfolio mp both ex-
hibit high Sharpe Ratio. Modest correlations are reported between the efficient port-
folio and other acclaimed factors, except that it seems to be uncorrelated with Mkt-Rf,
SMB, QMJ and LIQ factors. With Sharpe ratios of 2.27 and 2.55, the return perfor-
mance of efficient portfolios mn and mp is remarkably stable compared to the market
portfolio whose Sharpe ratio is 0.38. Since the efficient portfolios mn and mp have no
look-ahead bias by construction, they could be attractive investment strategies. Figure
1 plots the cumulative excess returns of mn and mp compared with the market excess
return in log-scale. The robust performance of the efficient portfolio is not sensitive
to either: (1) choice of base assets, (2) estimation window, (3) data frequency, (4) scal-
ing. The appendix explore a total of 40 different variants2 as robustness check as well
as a basic sanity check, illustrated in Excel, to achieve a Sharpe ratio of 1.36 via an
extremely simple 2-asset long-short portfolio.

1Scaled to match expected volatility of the market excess return, with no-forward-bias. See the ap-
pendix for detailed construction.

2(2 variants: normalized weights, risk-parity weights)(2 variants: high frequency daily returns, low
frequency monthly return) (2 variants: expanding window, rolling window) (5 variants: 8 portfolios,
16 portfolios, 20 portfolios variant a, 20 portfolios variant b, 24 portfolios) (2) (3) (4) . In the appendix, I
present the portfolio performance exploring all 40 (5× 2× 2× 2) variants.
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Table 2: Summary Statistics

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
Factors mn mp Mkt-Rf SMB HML RMW CMA MOM qME qIA qROE QMJ LIQ

#Obs. 511 511 571 571 571 571 571 571 571 571 571 571 564
Avg. Ret. 7.34 54.40 6.01 2.78 4.39 3.12 4.34 8.09 3.63 5.35 6.57 4.58 5.19
Std. 11.23 74.03 54.78 37.23 35.33 26.25 24.41 51.93 37.25 22.57 30.51 29.46 42.20
t-Stat 14.78 16.61 2.62 1.79 2.97 2.84 4.24 3.72 2.33 5.67 5.14 3.72 2.92
Sharpe 2.27 2.55 0.38 0.26 0.43 0.41 0.62 0.54 0.34 0.82 0.75 0.54 0.43
AutoCorr1 19.0 28.6 7.8 5.5 16.0 18.2 13.9 7.0 3.8 9.4 9.8 17.7 8.0
AutoCorr2 20.4 25.3 -3.2 2.6 4.5 3.5 2.3 -7.4 2.7 0.2 -9.8 -1.8 -8.4

Correlations

ρ (mn, ·) 100.0 89.6 8.6 7.2 29.3 17.8 27.5 38.5 10.9 30.2 25.7 10.3 1.3
ρ (mp, ·) 100.0 14.0 6.8 21.5 11.7 17.7 32.5 9.2 22.3 21.2 4.0 -0.4

Observations are at monthly frequency. Sample period: 1967.06.30—2014.12.31. First 5 years are
used as starting sample to calculate the efficient factors;

2.1.4 The Reversal of Benefit from “Cheap & Quality”

Leading industry practitioners as well as academic literature suggest that high value
and momentum characteristics predict higher future return. For example, long-horizon
investors like GMO’s Jeremy Grantham advocates “high return, stable return, and low
debt” (high momentum and low leverage) as measures of quality; while value charac-
teristics with price in the denominator (Book-to-Market, Earnings-to-Price, Dividend-
to-Price, Cash flow-to-Price etc.) has been widely treated as signals for cheapness and
bargain. The “buy-low-sell-high” doctrine thereby leads to longing for “Cheap and
Quality” and shorting the opposite.

In the literature, the large and positive value and momentum premiums are widely
documented. Asness, Moskowitz, and Pedersen (2013) finds extensive evidence that
“value and momentum” are “everywhere”. Novy-Marx (2015) shows that price mo-
mentum is driven by the momentum of fundamentals, that signals the quality of firms’
earnings. Moreover, prominent multi-factor models like the Fama and French (1993);
Carhart (1997) 4-factor model uses the long-short portfolios to price assets and has
become a common practice.

However, in this study, the efficient allocation suggests that this “Cheap and Qual-
ity” characteristic is not beneficial in all circumstances. If we define “Cheap and Qual-
ity” as high B/M and momentum, then it is easy to see that among smaller firms,
the efficient allocation goes significantly short on low “Cheap and Quality” and sig-
nificantly long on high “Cheap & Quality” firms. Yet, this direction of position on
“Cheap and Quality” is reversed pertaining to larger firms. The efficient portfolio al-
locates long positions to low B/M and short positions to high Momentum firms, al-
though the magnitude of the weights are about 4 times smaller compared with the
weights on smaller firms, but nonetheless highly statistically significant in all sense

7



Figure 1: The Efficient Portfolios: Compared to Market

(t-statistics amounts to 21.8 and -37.1). This reversal of benefit is even more evident in
the time-series plot shown in Figure 2. By combining the weights allocated to the firms
that are “Small, Low ‘Cheap & Quality’ ”(SZ1BM1, SZ1MOM1), “Small, High ‘Cheap
& Quality’ ”(SZ1BM5,SZ1MOM5), and comparing with the larger firms “Large, Low
‘Cheap & Quality’ ”(SZ5BM1, SZ5BM1), “Large, High ‘Cheap & Quality’ ”(SZ5BM5,
SZ5MOM5), it is easy to see that an efficient portfolio goes long on “Cheap & Quality”
for small firms but goes short on “Cheap & Quality” for large firms, and it consistently
does so throughout the 40+ years of history.

A possible explanation for this subtle yet significant contrast can be that the large
firms are easier to trade compared to small firms. A significant spread for the larger
firms is like “low hanging fruits” compared with the smaller firms that usually have
low liquidity and high trading costs. Yet, the “common sense” demand for “Cheap &
Quality” is so high throughout time that the spread for the “low hanging fruits” have
been squeezed so much so that it makes sense to do the opposite for the large firms
from a mean-variance efficiency optimization standpoint.

This type of “reversal of benefit” from the value and momentum characteristics
is an important reason why the efficient portfolio is able to get much closer to ex-post
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Figure 2: Efficient Allocations to 4 Types of Assets

Figure illustrates the time-varying weights assigned to 4 types of assets by the efficient excess return
portfolio mn. “Small, Low ‘Cheap & Quality’ ” represents the average of the efficient weights assigned
to the base asset portfolios SZ1BM1 and SZ1MOM1; “Small, High ‘Cheap & Quality’ ” for SZ1BM5
and SZ1MOM5, “Large, Low ‘Cheap & Quality’ ” for SZ5BM1 and SZ5BM1, “Large, High ‘Cheap &
Quality’ ” for SZ5BM5 and SZ5MOM5; Sample period: 1967.06.30—2014.12.31, with the first 5 years
used as starting sample;

efficiency as well as extract more pricing power than the commonly used multi-factors
that are based on univariate or double sorted characteristics. In fact, the Sharpe ratio
of the mean-variance efficient portfolio from all the 11 factors amounts to 1.74, not
significantly higher than the simple long-short portfolio explored in the sanity check,
1.36.

It is also important to point out that the above is only one illustrative mecha-
nism where efficient portfolio gets higher efficiency than the multi-factors combined,
as there are more “non-monotonicity” in the benefits interacting among all available
characteristic dimensions.

3 Asset Pricing Tests

After obtaining the ex-ante efficient portfoliomn, which turns out to be highly efficient
ex-post, it is natural to test its asset pricing performance. It has been established by
Roll (1977) that mean-variance efficiency is equivalent to linear beta pricing. When a
portfolio constructed ex-ante turns out to be ex-post efficient, such portfolio should
automatically serve as a pricing factor. To test this theoretical prediction rigorously,
I first discuss the results using standard cross-sectional regression methods, and then
explore other tests involving efficiency, model comparison, miss-specification and spu-
rious factors.
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3.1 The Cross-Sectional Regression Method

Introduced by Fama and MacBeth (1973), the 2-step cross-sectional regression is an
intuitive way to test the performance of an unconditional linear pricing model. Let
i be the cross-sectional index for a given security, rt(i) be the holing period return of
asset i at time t and rft be the risk-free rate, and f t be a set of factors at time t, the 2-step
procedure first estimate the time-series model for each asset i:

ret (i) = rt(i)− rft = α(i) + β(i)′f t + ut(i) (5)

After obtaining the factor loadings β(i) for each asset, perform the second step cross-
sectional regression, where the LHS variable is the average returns of each asset, and
RHS variables are the intercept and factor loadings β(i) :

E [ret (i)] = γ0 + γ ′β(i) + v(i)

The robust standard errors of the risk-premia γ’s in the second-step regression is es-
timated with Shanken (1992) errors-in-variables correction, Jagannathan and Wang
(1998) hetero-skedasticity adjustment and Gospodinov, Kan, and Robotti (2014) miss-
specification robust adjustment.

3.2 Pricing Assets of the Basis Anomalies

In this section, I present the evidence of a comprehensive series of tests to establish the
robust pricing performance of the efficient 1-factor model using the “basis anomalies”
portfolios, and further show that the 1-factor is able to drive-out a combined 11-factors.

To relieve from the concern that the 8 corner portfolios may be the main driver
of the pricing results (even though it is 8 random variables summarized into 1), I pur-
posefully remove the 8 corner portfolios from the test assets, resulting in 423 Size, B/M
and Momentum portfolios (the 5×5 Size–B/M, 5×5 Size–Momentum less the 8 corners
that were used in the efficient portfolio construction).

3.2.1 Risk-Premia, Specification and Mean-Variance Efficiency Tests

Table 3 reports OLS estimation results for the efficient 1 factor model compared with
the Sharpe (1964) and Lintner (1965) CAPM 1-factor model, as well as acclaimed em-
pirical multi-factor models commonly used in the literature, including Fama and French
(1993) 3-factor (Mkt-Rf, SMB, HML), Carhart (1997) 4-factor (3+MOM), Asness, Frazz-
ini, and Pedersen (2014) 4-factor (3+QMJ), Hou, Xue, and Zhang (2014) 4-factor (Mkt-

3These are 42 portfolios on 3 anomalies, not to be confused with the 42 “unique” anomalies that will
be priced later.
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Rf, qME, qIA, qROE), Pástor and Stambaugh (2003) 4-factor (3+LIQ), Fama and French
(2014) (3+RMW, CMA) 5-factor models as well as a combined 11-factor model.

At a glance, the efficient 1-factor model (RAP1, Recursive Asset Pricing model,
detailed in the theoretical section) achieves remarkable pricing performance. The effi-
cient factor has a significant t statistics that surpasses all acclaimed risk-factors. The ef-
ficient 1-factor model has an R2 of 82%. Pointed out by Lewellen, Nagel, and Shanken
(2010), the cross-sectional R2 as a random variable can be extremely unstable with
variability grow proportional to the number of factors used. A model with 5-factors
will need at least 69% R2 to be even statistically significant with 95% confidence. With
this in mind, I also employ the Kan, Robotti, and Shanken (2013) test to assess the
statistical significance of the R2 under different specification assumptions. Reported
in column (16), with a high p-value of 0.50, one cannot reject the hypothesis that the
1-factor model is correctly specified, i.e. the true R2 = 1, and one strongly reject the
hypothesis that the model is miss-specified, i.e. the true R2 = 0. However, the multi-
factor models do not have strong supportive results. Although the R2’s of CAPM1,
FF3, AFP4, FF5 have high point estimate, they are statistically indistinguishable from
0 with 95% confidence.

Moreover, as Gibbons, Ross, and Shanken (1989) (GRS) test shows, the hypothesis
that all asset’s pricing errors α(i) = 0 is not rejected for the efficient 1-factor model, but
rejected for all the other multi-factor models. Since GRS test is equivalent to testing
the factor model’s efficient frontier against the test assets, the result implies that the
efficient 1-factor is close to the mean-variance efficient frontier spanned by the entire
42 portfolios. This result is expected as previously illustrated that although based on
the same or less anomalies, (3 anomalies rather than 10), the efficient 1-factor is able
to utilize the non-monotonic benefits that cannot be captured by the multi-factors. Put
simply, the combined mean-variance efficient frontier of the 11 multi-factors is not
“efficient” enough.

A good asset pricing model should have its performance robust to the choice of
weighting matrix. The model’s overall performance may not necessarily hold for var-
ious weighting matrix, if its pricing performance mainly comes from some particular
observation in the sample. For example, some studies include the factor excess returns
in the test assets to boost the significance of the factor’s risk-premium estimate. Doing
so will mechanically cause part of the test assets to be perfectly explained by the factor.
It is also an interest to explore different weighting matrix depending on the particu-
lar economic application. Table 4 reports the results under GLS where the weighting
matrix W = Σ̂

−1

R , the sample covariance of the returns following Kan, Robotti, and
Shanken (2013), assuming potential miss-specification. Notice that under this weight-
ing matrix, the performance of all models significantly drop to similar magnitudes
reported by Kan, Robotti, and Shanken (2013) Table I. However, the R2 of the 1-factor
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model is at statistically significant 40%, yet the combined 11-factor model has an
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Table 3: Pricing 42 Size, B/M, Momentum Portfolios, OLS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)

γ0 γMKT γSMB γHML γRMW γCMA γMOM γqME γqIA γqROE γQMJ γLIQ γmn R2(%) p[R2 = 1] p[R2 = 0] p[α(i) = 0]

RAP1 5.96 4.21 81.6 0.50 0.00 0.07
(1.46) (3.18)
[1.44] [2.95]

CAPM1 15.78 -6.62 12.1 0.00 0.22 0.00
(3.92) (-1.53)
[3.17] [-1.23]

FF3 21.76 -14.24 2.25 2.08 44.6 0.01 0.05 0.01
(3.72) (-2.34) (1.32) (1.01)
[4.81] [-2.96] [1.24] [0.85]

FFC4 5.09 1.93 2.79 4.34 7.84 84.4 0.07 0.00 0.01
(1.60) (0.52) (1.60) (2.19) (2.94)
[1.59] [0.54] [1.60] [2.15] [2.94]

AFP4 10.31 -3.67 3.12 1.36 6.06 55.8 0.08 0.06 0.01
(2.23) (-0.84) (1.83) (0.57) (1.91)
[1.16] [-0.42] [1.58] [0.53] [2.44]

HXZ4 1.80 3.97 5.23 4.43 6.13 82.1 0.28 0.01 0.02
(0.50) (1.08) (2.55) (2.24) (2.22)
[0.46] [0.95] [2.58] [2.04] [2.31]

FF5 0.13 5.89 3.89 2.24 -0.15 13.19 74.0 0.14 0.07 0.01
(0.02) (0.90) (2.31) (0.90) (-0.06) (2.32)
[0.02] [0.81] [2.17] [0.79] [-0.04] [2.66]

PS5 5.13 1.86 2.79 4.31 7.82 0.02 84.4 0.06 0.00 0.01
(1.60) (0.50) (1.60) (2.18) (2.92) (0.33)
[1.57] [0.50] [1.61] [2.16] [2.92] [0.29]

ALL11 10.67 -4.64 3.64 4.82 -1.95 6.47 6.85 4.00 4.18 6.97 -2.44 -0.10 88.5 0.17 0.01 0.01
(1.65) (-0.72) (1.79) (2.16) (-0.50) (1.39) (2.92) (1.78) (1.29) (2.09) (-0.83) (-1.07)
[1.55] [-0.63] [1.97] [2.34] [-0.46] [1.37] [2.77] [1.43] [0.97] [1.83] [-0.94] [-0.94]

E [f ] 6.01 2.78 4.39 3.12 4.34 8.09 3.63 5.35 6.57 4.58 5.19 7.34

2-step OLS cross-sectional regression results. The second-step uses multiple regression beta as explanatory variables. The excess returns are the 42 portfolios
(25SZBM and 25 SZMOM less the 8 corner portfolios used to construct the efficient factor). The first row reports the estimated risk-premium annualized,
the second row reports the Jagannathan and Wang (1998) heteroskedasticity and error-in-variable corrected t-statistics in parenthesis, the third row reports
the Gospodinov, Kan, and Robotti (2014) miss-specification robust t-statistics. Column (15) report the 2-step cross-sectional R2; column (16) reports the
p-value Kan, Robotti, and Shanken (2013) specification test under the null hypothesis H0 : R2 = 1 and column (17) for the null hypothesis H0 : R2 = 0;
column (18) reports the p-value of Gibbons, Ross, and Shanken (1989) test for the hypothesis that all pricing errors are zero. The last row of the table reports
the annualized mean of the factors. The sample period is 1967.06.30—2014.12.31 with 511 effective months after excluding the first 5-year starting sample.
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Table 4: Pricing 42 Size, B/M, Momentum Portfolios, GLS, Assuming Miss-Specification

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)

γ0 γMKT γSMB γHML γRMW γCMA γMOM γqME γqIA γqROE γQMJ γLIQ γmn R2(%) p[R2 = 1] p[R2 = 0]

RAP1 3.53 5.29 39.4 0.21 0.00
[1.31] [3.70]

CAPM1 10.44 -3.23 0.8 0.00 0.42
[2.96] [-0.81]

FF3 9.48 -2.47 2.40 3.97 7.3 0.05 0.08
[2.85] [-0.60] [1.46] [1.96]

FFC4 7.28 -0.27 2.41 4.08 7.21 17.8 0.08 0.00
[2.10] [-0.07] [1.40] [1.97] [2.75]

AFP4 7.64 -0.64 2.42 3.86 0.76 8.7 0.08 0.11
[1.93] [-0.15] [1.34] [1.81] [0.40]

HXZ4 6.44 0.27 3.42 4.05 3.76 15.0 0.07 0.01
[1.83] [0.06] [1.95] [2.37] [1.63]

FF5 7.66 -0.82 2.59 3.82 0.84 3.92 9.6 0.05 0.26
[2.05] [-0.20] [1.43] [1.80] [0.32] [1.19]

PS5 7.88 -0.87 2.45 4.08 7.28 -0.05 19.0 0.08 0.01
[2.37] [-0.22] [1.45] [1.98] [2.75] [-0.90]

ALL11 8.69 -1.63 2.44 4.04 -0.33 3.27 7.14 1.69 3.04 2.99 -0.50 -0.06 22.6 0.01 0.31
[1.89] [-0.39] [1.21] [1.93] [-0.09] [0.82] [3.15] [0.66] [0.84] [0.81] [-0.19] [-0.87]

E [f ] 6.01 2.78 4.39 3.12 4.34 8.09 3.63 5.35 6.57 4.58 5.19 7.34

This table reports the 2-step GLS cross-sectional regression with weighting matrixW = Σ̂
−1
R following Kan, Robotti, and Shanken (2013) assuming model mis-

specification. The second-step regression uses multiple regression beta’s as explanatory variables. The LHS variables are the excess returns of the 42 portfolios
(25SZBM and 25 SZMOM less the 8 corner portfolios used to construct the efficient factor). The first row of each model reports the estimated multiple regression
beta risk-premium γ’s annualized, the second row reports the Gospodinov, Kan, and Robotti (2014) miss-specification robust t-statistics. Column (15) report
the 2-step cross-sectional R2; column (16) reports the p-value of Kan, Robotti, and Shanken (2013) specification test under the null hypothesis H0 : R2 = 1 and
column (17) for the null hypothesis H0 : R2 = 0; The last row of the table reports the annualized mean of the factors for comparison. The sample period is
1967.06.30—2014.12.31 with 511 effective months after excluding the first 5-year starting sample.
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statistically insignificant R2 of 22.6%. Moreover, the risk-premium estimate associated
with the efficient factor remain highly statistical significant after adjusting for potential
miss-specification, with a Gospodinov, Kan, and Robotti (2014) miss-specification ro-
bust t-statistics of 3.70, well pass the “new two is three” hurdle advocated by Harvey,
Liu, and Zhu (2015).

3.2.2 Performance Comparison Tests

Given the robust asset pricing performances of the efficient factor, I conduct a se-
ries of statistical tests using the most recent tools and further show that: (1) The 1-
factor model significantly out-perform the combined and separate multi-factor mod-
els in many ways (2) When the 1-factor model do not completely dominate a particu-
lar multi-factor model, it provides significant additional pricing power that virtually
drives out the significance of all the 11-factors.

To draw a statistical conclusion on the pricing performances of different mod-
els, I employ the tools developed by recent study Kan, Robotti, and Shanken (2013)
model comparison test based on R2 measure, in the context of potential model miss-
specification. Table 5 reports theR2 difference and p-values for the non-nested models
by comparing RAP1 directly against the multi-factor models and the combined 11-
factor model. When a particular multi-factor model has higher R2 estimate than the
1-factor model, the difference is small and easily rejected by the test. For example, in
the OLS case, FFC4, HXZ4, PS4 and ALL11 has slightly higher point estimate ofR2, but
the difference is insignificant at all common confidence levels (p-values of 0.18-0.22).
On the other hand, except for FF5 under OLS has a smaller R2 with statistically in-
significant difference, every multi-factor model under GLS is statistically significantly
dominated by the 1-factor model. This result is consistent with the previous tables that
the multi-factor model has weak or borderline significantR2 and have higher numbers
of factors that increases the variability of the R2 and are much farther away from the
mean-variance efficient frontier than the efficient 1-factor.

Next I show that the efficient 1-factor provide significant incremental pricing power
that virtually drives out the significance of all multi-factor models. To show the nested
comparison, I add the efficient factor incrementally to each of the multi-factor mod-
els. Since the comparison is about competing factor specification, “what matters is
whether the prices of covariance risk are non zero”, as clarified by Kan, Robotti, and
Shanken (2013). Therefore, in the second-stage, instead of using the multiple-regression-
beta’s as explanatory variables, we must use the covariance between the test asset
returns and factors (simple beta scaled by factor’s variance). The resulting slope in
the second stage regression is the covariance risk λ (as oppose to γ, the risk-premium
with multiple beta). Table 6 reports both OLS and GLS estimation with covariance
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risk. Evidently, when the efficient factor is added to each of the multi-factor models,
the covariance risks of the multi-factor become statistically insignificant in all specifi-
cations, moreover, the appended model gains significant boost in the R2. In the OLS
case, the efficient factor brings all model R2 to around 90% and for the GLS case, to
about 40%. The covariance risk of the efficient factor λmn is strongly statistically sig-
nificant in all specifications with the harshest penalty4, except in HXZ4 model in OLS
case, it is significant only at 90% confidence level. This means that the pricing power
of all the multi-factor models are essentially driven-out in the presence of the efficient
1-factor.

Similar conclusion is made if one employ the nested model comparison test, also
developed in Kan, Robotti, and Shanken (2013). One advantage of the nested model
comparison test is that it accommodates different assumptions on the potential model
(miss-)specification, compared with the test of covariance risk. It tests the hypothesis
that the multi-factor pricing power are jointly zero. Table 7 reports the nested model
comparison with the R2 difference and p-values under different assumptions about
potential miss-specification. Shown in panel A, when the the multi-factors are added
to the 1 factor model, the combined model is not statistically better than the original
1-factor alone. However, when the efficient factor is added to the multi-factor specifi-
cation, the combined factor is significantly better than the original multi-factor models
(p-values less than 0.02), with the exception of Hou, Xue, and Zhang (2014) 4-factor
model in the OLS case (p-value less than 0.09), while still significant at 90% confidence.

Aside from comparison based on R2 measure, Kan and Robotti (2009) develops
a test for model comparison based on the Hansen and Jagannathan (1997) Distance
Measure. As pointed out by Kan, Robotti, and Shanken (2013), theR2 is a better model
comparison if the interest is the expected return due to the zero-beta rate. Appendix
includes the test comparison using Kan and Robotti (2009) methodology as another
robustness check.

4One could more or less rank the penalty for statistical significance from the different estimators
of standard errors as: Fama and MacBeth (1973) ≺ Shanken (1992) error-in-variable correction, which
is, in majority of the cases, less harsh than Jagannathan and Wang (1998) heteroskedasticity robust
adjustment and Gospodinov, Kan, and Robotti (2014) miss-specification robust adjustment
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Table 5: Model Comparison, R2 Difference and p-Value

“Row” Model - “Column” Model

OLS,W = IN
RAP1 CAPM1 FF3 FFC4 AFP4 HXZ4 FF5 PS5 ALL11

R2 81.6 12.1 44.6 84.4 55.8 82.1 74.0 84.4 88.5

RAP1 — 69.6 37.0 -2.8 25.8 -0.5 7.6 -2.8 -6.8
0.00 0.00 0.22 0.02 0.23 0.18 0.19 0.65

CAPM1 — -32.5 -72.3 -43.7 -70.1 -61.9 -72.4 -76.4
0.07 0.01 0.08 0.02 0.02 0.00 0.01

FF3 — -39.8 -11.2 -37.5 -29.4 -39.8 -43.9
0.02 0.05 0.02 0.01 0.02 0.01

FFC4 — 28.6 2.3 10.4 -0.0 -4.1
0.10 0.97 0.61 0.44 0.17

AFP4 — -26.3 -18.2 -28.6 -32.6
0.11 0.06 0.10 0.07

HXZ4 — 8.1 -2.3 -6.3
0.57 0.96 0.47

FF5 — -10.4 -14.5
0.62 0.40

PS5 — -4.0
0.13

GLS,W = Σ̂
−1
R

Model RAP1 CAPM1 FF3 FFC4 AFP4 HXZ4 FF5 PS5 ALL11

R2 39.4 0.8 7.3 17.8 8.7 15.0 9.6 19.0 22.6

RAP1 — 38.7 32.1 21.6 30.7 24.4 29.8 20.5 16.8
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CAPM1 — -6.6 -17.1 -8.0 -14.3 -8.9 -18.2 -21.9
0.13 0.01 0.13 0.01 0.14 0.01 0.01

FF3 — -10.5 -1.4 -7.7 -2.3 -11.6 -15.3
0.02 0.52 0.02 0.56 0.02 0.04

FFC4 — 9.1 2.8 8.2 -1.1 -4.8
0.03 0.66 0.03 0.41 0.76

AFP4 — -6.3 -0.9 -10.2 -13.9
0.02 0.81 0.03 0.06

HXZ4 — 5.4 -3.9 -7.6
0.01 0.53 0.48

FF5 — -9.3 -13.0
0.03 0.04

PS5 — -3.7
0.93

This table reports the OLS and GLS pricing performance comparison test results for the non-nested mod-
els, following Kan, Robotti, and Shanken (2013). The first number of each comparison reports the differ-
ence of row model R2 minus the column model R2, and the second number reports the p-value of the test
that the difference is zero. The sample period is 1967.06.30—2014.12.31 with 511 effective months after
excluding the first 5-year starting sample.
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Table 6: Incremental Pricing Power, Covariance Risk (Scaled Simple Beta)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

2-Pass OLS, Covariance Risk,W = IN

λ0 λMKT λSMB λHML λRMW λCMA λMOM λqME λqIA λqROE λQMJ λLIQV λmn R2 R2
w/o

RAP1 5.96 4.82 81.6 —
[1.46] [2.49]

CAPM1+1 -1.07 0.29 5.85 88.0 12.1
[-0.21] [1.24] [3.03]

FF3+1 1.86 0.11 0.18 0.04 5.24 91.2 44.6
[0.48] [0.64] [0.81] [0.14] [2.55]

FFC4+1 1.16 -0.05 0.13 -0.44 -0.34 8.28 92.3 84.4
[0.28] [-0.23] [0.53] [-1.16] [-1.37] [3.51]

AFP4+1 2.38 0.05 0.13 0.01 -0.15 5.35 91.2 55.8
[0.51] [0.13] [0.36] [0.02] [-0.18] [2.34]

HXZ4+1 3.06 -0.06 -0.05 -0.56 -0.51 6.84 91.7 82.1
[0.67] [-0.19] [-0.10] [-0.43] [-0.65] [1.72]

PS4+1 1.74 0.12 0.18 0.06 -0.21 5.24 91.2
[0.47] [0.72] [0.79] [0.22] [-0.36] [2.61]

PS5+1 0.72 -0.08 0.11 -0.50 -0.41 -0.51 8.88 92.7 84.4
[0.18] [-0.33] [0.42] [-1.27] [-1.72] [-0.70] [3.76]

FF5+1 3.56 -0.13 0.17 0.58 -0.26 -1.43 5.95 91.5 74.0
[0.66] [-0.29] [0.50] [0.67] [-0.32] [-0.63] [2.39]

ALL11+1 2.38 -0.15 4.03 0.08 -0.62 -0.63 -0.37 -4.08 -0.75 -0.30 0.65 -0.52 10.86 93.9 88.5
[0.33] [-0.21] [1.12] [0.08] [-0.30] [-0.14] [-0.63] [-1.11] [-0.20] [-0.09] [0.25] [-0.47] [2.61]

Continued on next page
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Table 6 Incremental Pricing Power, Covariance Risk (Scaled Simple Beta), Continued

Continued from previous page

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

2-Pass GLS, Covariance Risk,W = Σ̂
−1
R

λ0 λMKT λSMB λHML λRMW λCMA λMOM λqME λqIA λqROE λQMJ λLIQV λmn R2 R2
w/o

RAP1 3.53 6.05 39.4 —
[1.31] [3.18]

CAPM1+1 2.26 0.11 6.20 39.8 0.8
[0.61] [0.66] [3.20]

FF3+1 2.95 0.03 0.10 -0.13 6.34 40.4 7.3
[0.75] [0.15] [0.44] [-0.46] [3.11]

FFC4+1 2.44 -0.11 0.05 -0.53 -0.39 8.65 43.5 17.8
[0.61] [-0.44] [0.19] [-1.35] [-1.59] [3.77]

AFP4+1 3.59 -0.07 0.03 -0.20 -0.25 6.50 40.6 8.7
[0.89] [-0.26] [0.08] [-0.65] [-0.43] [2.93]

HXZ4+1 3.52 -0.18 -0.21 -1.14 -0.66 8.21 43.2 15.0
[0.80] [-0.60] [-0.54] [-1.07] [-1.07] [2.52]

PS4+1 3.62 -0.02 0.12 -0.13 -0.53 6.33 42.2
[0.98] [-0.09] [0.52] [-0.45] [-1.09] [3.14]

FF5+1 3.67 -0.17 0.09 0.44 -0.24 -1.51 7.08 42.2 9.6
[0.86] [-0.51] [0.30] [0.61] [-0.45] [-0.82] [2.86]

ALL11+1 3.02 -0.16 3.63 0.03 -0.32 -2.56 -0.18 -3.69 1.14 -1.33 1.05 -0.65 10.86 51.8 22.6
[0.53] [-0.26] [0.95] [0.03] [-0.15] [-0.70] [-0.37] [-0.97] [0.31] [-0.49] [0.45] [-0.86] [2.83]

This table reports results for the 2-step GLS and OLS cross-sectional regression. The second-step uses covariance between returns and factors
(scaled simple regression beta) as the explanatory variables following Kan, Robotti, and Shanken (2013) assuming miss-specification. The LHS
variables are the excess returns of the 42 portfolios (25SZBM and 25 SZMOM less the 8 corner portfolios used to construct the efficient factor).
The first row of each model reports the estimated covariance risk-premium λ’s annualized, the second row reports the Gospodinov, Kan, and
Robotti (2014) miss-specification robust t-statistics. Column (15) report the 2-step cross-sectional R2; column (16) reports the original R2 of the
common multi-factor models without adding the efficient factor mn (same as in Table 3 and 4). The sample period is 1967.06.30—2014.12.31 with
511 effective months after excluding the first 5-year starting sample.
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Table 7: Nesting Model Comparison: R2 Difference and p-Value

Panel A: X +m ≈ m? OLSW = IN
Statistics CAPM1 FF3 FFC4 AFP4 HXZ4 PS4 FF5 PS5 ALL11

∆ = R2
X+m −R2

m 6.4 9.5 10.7 9.6 10.1 9.6 9.9 11.1 12.3
χ2-test p

[
∆ = 0

∣∣R2 = 1
]

0.24 0.47 0.53 0.53 0.50 0.50 0.56 0.56 0.70
Wald-test p

[
∆ = 0

∣∣R2 = 1
]

0.24 0.57 0.41 0.71 0.67 0.62 0.62 0.23 0.63
χ2-test p

[
∆ = 0

∣∣R2 < 1
]

0.26 0.47 0.53 0.52 0.52 0.50 0.58 0.58 0.74
Wald-test p

[
∆ = 0

∣∣R2 < 1
]

0.26 0.58 0.45 0.72 0.70 0.67 0.83 0.35 0.76

Panel B: X +m ≈ m? GLSW = Σ̂
−1
R

Statistics CAPM1 FF3 FFC4 AFP4 HXZ4 PS4 FF5 PS5 ALL11

∆ = R2
X+m −R2

m 0.4 0.9 4.1 1.2 3.7 2.8 2.7 6.8 12.4
χ2-test p

[
∆ = 0

∣∣R2 = 1
]

0.40 0.83 0.53 0.90 0.51 0.61 0.80 0.39 0.73
Wald-test p

[
∆ = 0

∣∣R2 = 1
]

0.40 0.73 0.54 0.82 0.30 0.50 0.69 0.28 0.69
χ2-test p

[
∆ = 0

∣∣R2 < 1
]

0.56 0.84 0.60 0.90 0.68 0.68 0.86 0.48 0.87
Wald-test p

[
∆ = 0

∣∣R2 < 1
]

0.56 0.74 0.64 0.82 0.68 0.52 0.89 0.43 0.89

Panel C: X +m ≈ X? OLSW = IN
Statistics CAPM1 FF3 FFC4 AFP4 HXZ4 PS4 FF5 PS5 ALL11

∆ = R2
X+m −R2

X 75.9 46.5 7.9 35.4 9.6 46.3 17.5 8.3 5.5
χ2-test p

[
∆ = 0

∣∣R2 = 1
]

0.00 0.01 0.00 0.02 0.07 0.01 0.00 0.00 0.00
Wald-test p

[
∆ = 0

∣∣R2 = 1
]

0.00 0.01 0.00 0.02 0.07 0.01 0.00 0.00 0.00
χ2-test p

[
∆ = 0

∣∣R2 < 1
]

0.00 0.01 0.00 0.02 0.09 0.01 0.01 0.00 0.00
Wald-test p

[
∆ = 0

∣∣R2 < 1
]

0.00 0.01 0.00 0.02 0.09 0.01 0.01 0.00 0.00

Panel D: X +m ≈ X? GLSW = Σ̂
−1
R

Statistics CAPM1 FF3 FFC4 AFP4 HXZ4 PS4 FF5 PS5 ALL11

∆ = R2
X+m −R2

X 39.1 33.0 25.7 31.9 28.1 33.0 32.5 27.3 29.2
χ2-test p

[
∆ = 0

∣∣R2 = 1
]

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Wald-test p

[
∆ = 0

∣∣R2 = 1
]

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
χ2-test p

[
∆ = 0

∣∣R2 < 1
]

0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
Wald-test p

[
∆ = 0

∣∣R2 < 1
]

0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

This table reports pricing performance comparison based on R2 following Kan, Robotti, and Shanken
(2013) with GLS (panels B and D) weighting matrix assumes miss-specification. The LHS variables
are the excess returns of the 42 portfolios (25SZBM and 25 SZMOM less the 8 corner portfolios used
to construct the efficient factor). Panels A and B tests whether common multi-factor model “X” adds
additional pricing power to mn. Panels C and D tests whether mn adds additional pricing power to
the model “X”. The first row of each panel reports the R2 difference between the larger and smaller
models; the second and third rows report the p-value of the test that ∆ = 0 under correct specification,
based on χ2-test and Wald-test. the fourth and fifth rows report the p-values when miss-specification
is assumed. The sample period is 1967.06.30—2014.12.31 with 511 effective months after excluding the
first 5-year starting sample.

3.2.3 Spurious Factor?

Here I present evidence that the robust pricing performance of the efficient 1-factor
model is not spurious.
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Pointed out by recent study Bryzgalova (2014), a factor that is weakly correlated
with the stock returns, can sometimes disguise as a strong factor that generate high
statistical significance, high measure of fit via cross-sectional regression. Including
such factor in the cross-sectional regression can crowd-out useful factors and make
the estimation results unreliable. The study proposes to penalize the factors that have
a small absolute value of beta in the cross-section.

There is also another potential problem for identification in the second-stage re-
gression. Weak identification can also arise if a factor generates large but almost con-
stant value of beta in the cross-section. Since there is close to no variation in the betas
which enters the second-stage cross-sectional regression as an explanatory variable,
the matrix of explanatory variables will be close to rank deficient when an intercept is
also included (the intercept is required if zero-beta rates are estimated). The resulting
slope, i.e factor premium, is also weakly identified5. To address this additional po-
tential sources for weak identification concern, I present in Table 8 the cross-sectional
regression reporting both the cross-sectional average of absolute value of beta as well
as the cross-sectional standard deviation of betas for each factor. As reported, asset’s
beta w.r.t the efficient factor mn is high in both magnitude and cross-sectional disper-
sion. When the efficient factor is incrementally added to each multi-factor models, the
high magnitude and dispersion of betas persists.

3.3 Pricing Other Anomalies

Here I present the evidence that the pricing performance of the efficient factor mn sig-
nificantly extends to other assets: (1) The efficient factor can price a variety of different
test assets; (2) The efficient factor formed on merely 3 anomalies can drive out 90% of
other acclaimed anomalies.

3.3.1 Different Test Assets

Aside from testing on the 42 double-sorted portfolios, I also test the 30 univariate
decile portfolios sorted on the Size, B/M and Momentum. Moreover, the pricing
power of the efficient portfolio extracted from the 3 anomalies is able to price assets
sorted on other predictive characteristics as well. I illustrate the performances with 3
additional sets: 25 Size-Investment portfolios, 25 Size-Operating Profitability portfo-
lios and 25 Size-Net Issuance portfolios.

5When factors are excess returns, the leverage of the factors (something that is irrelevant to pricing)
will automatically affect the magnitude of beta and the standard deviation. If one leverage up the excess
return factor by 2, the volatility of the factor is scaled by 2, and beta will be scaled by 1/2. However,
this issue is not a concern since the magnitude of the return of the efficient factor mn is comparable to
the other factors as shown in Table 2
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Table 8: Magnitudes and Variations of Beta’s

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
MKT SMB HML RMW CMA MOM qME qIA qROE QMJ LIQ mn

RAP1 |β|
∣∣0.80

∣∣
σ̂(β) (0.60)

CAPM1+1 |β|
∣∣1.06

∣∣ ∣∣0.56
∣∣

σ̂(β) (0.15) (0.64)

FF3+1 |β|
∣∣1.03

∣∣ ∣∣0.57
∣∣ ∣∣0.37

∣∣ ∣∣0.43
∣∣

σ̂(β) (0.12) (0.40) (0.32) (0.69)

FFC4+1 |β|
∣∣1.01

∣∣ ∣∣0.56
∣∣ ∣∣0.28

∣∣ ∣∣0.17
∣∣ ∣∣0.18

∣∣
σ̂(β) (0.09) (0.40) (0.29) (0.25) (0.20)

AFP4+1 |β|
∣∣1.06

∣∣ ∣∣0.58
∣∣ ∣∣0.39

∣∣ ∣∣0.18
∣∣ ∣∣0.43

∣∣
σ̂(β) (0.10) (0.39) (0.34) (0.20) (0.65)

HXZ4+1 |β|
∣∣1.01

∣∣ ∣∣0.52
∣∣ ∣∣0.35

∣∣ ∣∣0.17
∣∣ ∣∣0.33

∣∣
σ̂(β) (0.10) (0.37) (0.33) (0.24) (0.45)

PS4+1 |β|
∣∣1.03

∣∣ ∣∣0.57
∣∣ ∣∣0.37

∣∣ ∣∣0.03
∣∣ ∣∣0.43

∣∣
σ̂(β) (0.12) (0.40) (0.32) (0.03) (0.69)

FF5+1 |β|
∣∣1.04

∣∣ ∣∣0.58
∣∣ ∣∣0.35

∣∣ ∣∣0.18
∣∣ ∣∣0.10

∣∣ ∣∣0.43
∣∣

σ̂(β) (0.11) (0.39) (0.32) (0.17) (0.13) (0.66)

PS5+1 |β|
∣∣1.01

∣∣ ∣∣0.56
∣∣ ∣∣0.28

∣∣ ∣∣0.17
∣∣ ∣∣0.03

∣∣ ∣∣0.18
∣∣

σ̂(β) (0.09) (0.40) (0.29) (0.25) (0.03) (0.20)

ALL11+1 |β|
∣∣1.02

∣∣ ∣∣0.56
∣∣ ∣∣0.27

∣∣ ∣∣0.11
∣∣ ∣∣0.11

∣∣ ∣∣0.18
∣∣ ∣∣0.14

∣∣ ∣∣0.11
∣∣ ∣∣0.13

∣∣ ∣∣0.14
∣∣ ∣∣0.03

∣∣ ∣∣0.13
∣∣

σ̂(β) (0.06) (0.43) (0.29) (0.13) (0.14) (0.25) (0.16) (0.14) (0.12) (0.18) (0.03) (0.17)

This table reports the magnitudes (as cross-sectional average of the absolute value) and variations
(as cross-sectional sample standard deviations) of the β estimated in the first step of the 2-step cross-
sectional regression. The first row encased by | · | reports the magnitudes and the second row in paren-
thesis reports the variations. The LHS variables are the excess returns of the 42 portfolios (25SZBM
and 25 SZMOM less the 8 corner portfolios used to construct the efficient factor). The sample period is
1967.06.30—2014.12.31 with 511 effective months after excluding the first 5-year starting sample.

Table 9 summarizes the robust pricing performance of the efficient factor on these
alternative test assets. It is evident that on all of the assets the risk-premium are es-
timated at level comparable to the average excess return of mn, 7.34%. The robust
t-statistics is highly significant, compared with the typical statistical significance of
multi-factor models. The 1-factor model is able to price all these alternative test assets
at high R2 comparable to the levels achieved by the combined 11-factor model. Model
specification tests strongly favor the 1-factor model. At 95% confidence:

(1) The hypothesis for correct specification (H0 : R2 = 1) is far from being rejected
by the 1-factor model for each test assets, while the combined 11-factor model
has smaller p-values and being borderline rejected for the 25 Size-Net Issuance
portfolios.

(2) The hypothesis for complete miss-specification (H0 : R2 = 0) is consistently re-
jected for all test assets with p-value less that 0.01 when the 1-factor model is in
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Table 9: Different Test Assets: “RAP1” vs. “ALL11”

(1) (2) (3) (4) (5)

Test Assets
21SZ-BM

21SZ-
MOM

10SZ
10BM 25SZ-INV 25SZ-OP 25SZ-NI

10MOM
OLS,W = IN

γmn 4.21 4.67 6.58 5.66 5.71
tmn [3.18] [2.66] [4.39] [3.14] [3.57]
R2 81.6% vs. 88.5% 83.3% vs. 91.4% 81.1% vs. 82.0% 78.1% vs. 93.4% 62.8% vs. 76.1%
p[R2 = 1] 0.50 vs. 0.17 0.63 vs. 0.20 0.66 vs. 0.17 0.64 vs. 0.50 0.18 vs. 0.05
p[R2 = 0] 0.00 vs. 0.01 0.01 vs. 0.01 0.00 vs. 0.07 0.00 vs. 0.08 0.00 vs. 0.07
p[α(i) = 0] 0.07 vs. 0.01 0.14 vs. 0.04 0.10 vs. 0.01 0.18 vs. 0.09 0.05 vs. 0.02

WLS,W = diag(Σ̂u)
γmn 4.31 4.35 6.63 5.80 5.32
tmn [3.45] [2.72] [4.03] [2.93] [3.36]
R2 74.7% vs. 86.4% 74.0% vs. 90.8% 79.3% vs. 82.6% 75.3% vs. 93.8% 54.5% vs. 77.8%
p[R2 = 1] 0.42 vs. 0.12 0.59 vs. 0.36 0.70 vs. 0.08 0.59 vs. 0.51 0.19 vs. 0.09
p[R2 = 0] 0.00 vs. 0.01 0.01 vs. 0.06 0.00 vs. 0.06 0.00 vs. 0.09 0.00 vs. 0.04
p[α(i) = 0] 0.07 vs. 0.01 0.14 vs. 0.04 0.10 vs. 0.01 0.18 vs. 0.09 0.05 vs. 0.02

Top panel reports the 2-step OLS cross-sectional regression, and bottom panel for weighed least squares
with weights being the diagonal of the residual variance matrix. Results are reported across different
test assets. The LHS variables are the excess returns of the corresponding test assets. γ(mn) reports the
estimated risk-premium annualized for the efficient factor, t(mn) is the Jagannathan and Wang (1998)
heteroskedasticity and error-in-variable corrected t-statistics in square brackets; The rest is same as in
Table 3. The sample period is 1967.06.30—2014.12.31 with 511 effective months after excluding the first
5-year starting sample.

use, while for the combined 11-factor model, it fails to reject miss-specification 6
out of 10 times.

(3) GRS test for the joint hypothesis that all asset pricing errors are zero cannot be re-
jected for the 1-factor model (except the borderline case for 25 Size-Net Issuance
portfolios with a p-value of 0.05), yet for the 11-factor model it is rejected 8 out
of 10 times.

Additionally, for a quick overall view of the pricing power of the 1-factor model, I cal-
culate the model predicted excess returns for the pooled 147 portfolios6 (42+30+25+25+25).
Figure 4 plots the predicted return versus the realized excess return comparing the 1-
factor model with all 9 different multi-factor specifications including the combined
11-factor model.

3.3.2 Pricing Other “Unique” Factors

I present the evidence that the efficient factor is able to drive out a large number of
anomalies within the limits of market friction.

6Since the cross-sectional dimension is close to the time-series length, I only report the cross-sectional
predicted returns

23



Figure 3: R2 across Test Assets

The Efficient 1-factor extracted from the 8 portfolios utilizing the Size B/M and
Momentum anomalies is able to drive out 39 out of 42 “Unique” anomalies, with 3
anomalies likely to diminish after implementation cost. Table 10 reports the time-series
alpha’s of the 42 anomalies estimated according to various factor models. The test as-
sets include: 6 pricing factors from Kenneth French (SMB, HML, RMW, CMA, MOM,
LTR), 3 q-factors from Lu Zhang (qME, qIA, qROE), 3 pricing factors from Andrea
Frazzini (QMJ, BAB, DEV), 1 liquidity factor from Lubos Pastor and 32 trading strate-
gies from Robert Novy-Marx, with 7 high turnover strategies. The point estimates
of alpha’s are reported for every anomaly/model pair, and significance at 95% confi-
dence level is indicated by shaded point estimate. Different trading strategies may
have very different time-series distributional characteristics, and may lead to different
accuracy in the estimation of alpha. To put the significance into context, I simulated
a probability that a random 1-factor model number could eliminate the significance
of alpha’s for a given anomaly, reported in the last column. A high probability that a
random number could eliminate the significance of alpha indicates that the anomaly
itself maybe extremely unstable, while a low probability indicates that the anomaly is
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Figure 4: Pricing Performance: Realized vs Predicted Return

highly significant.
Out of all 42 anomalies, 4 has a shaded region, while one with “ValMom” has re-

versed sign of alpha in many factor models, moreover the probability that a random
number could “explain” the anomaly is 42%, this indicates that the anomaly itself is
very unstable, or that trading on such strategy may in fact lose money relative to the
multi-factors. The 3 stable anomalies remaining are liquidity (LIQ) from Pástor and
Stambaugh (2003), Short-Run Reversal and Seasonality. Notice that these 3 anomalies
all have their spreads reduced by the 1-factor model: the 1-factor model is the only
model that reduces the spread of liquidity factor (from 5.19 to 5.03), although the dif-
ference is small; while the spreads of the 2 high turnover strategies are reduced toward
zero (from -16.16 to -13.38 and from -8.30 to -7.55). As shown by Novy-Marx and Ve-
likov (2016), page 118, the Short-Run Reversal and Seasonality has monthly turnover
over 90%, and do not even have positive excess return after cost. On the other hand,
for the liquidity factor, it is unclear whether the implementation cost will exceed the
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liquidity spread, however, Pástor and Stambaugh (2003) Table 9 does show that firms
with high liquidity beta’s are the ones with the worst liquidity measure. Trading on
such firms could incur significant cost that will reduce the spread.

Table 10: Pricing 42 “Unique” Anomalies, Alpha’s

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Avg. CAPM1 FF3 FFC4 HSZ4 AFP4 FF5 PS5 ALL11 RAP1 p [Rand]

mn 7.34 7.23 6.53 5.40 4.95 5.39 5.67 5.37 4.37 0.00

Panel A: from Kenneth French
Reference: Fama and French (1993, 2014); Carhart (1997)

SMB 2.78 1.64 0.52 0.77 0.82

HML 4.39 5.60 0.32 -2.05 0.28

RMW 3.12 3.74 4.01 3.60 0.38 -2.71 3.50 0.21 0.36

CMA 4.34 5.40 2.84 2.36 -0.03 3.07 2.46 0.03 0.01

MOM 8.09 8.84 10.69 1.42 7.03 8.19 -4.93 0.04

LTR 3.46 3.56 0.76 0.56 0.95 2.11 0.32 0.86 0.58 -1.37 0.41

Panel B: from Lu Zhang
Reference: Hou, Xue, and Zhang (2014)

qME 3.63 2.55 0.69 0.39 0.48 0.57 0.47 0.76 0.52

qIA 5.35 6.30 4.11 3.58 3.91 1.56 3.67 0.73 0.00

qROE 6.57 7.23 8.67 5.79 2.40 5.20 5.96 1.60 0.00

Panel C: from Andrea Frazzini
Reference: Asness et al. (2013, 2014); Asness and Frazzini (2013)

QMJ 4.58 6.31 7.71 6.79 3.48 4.14 6.76 2.42 0.04

BAB 10.78 11.15 8.49 6.36 3.67 4.28 5.57 6.02 2.02 -0.61 0.00

DEV 4.46 5.08 -0.44 4.19 4.47 2.55 1.02 4.02 4.99 6.08 0.49

Panel D: from Lubos Pastor
Reference: Pástor and Stambaugh (2003)

LIQ 5.19 5.45 5.40 5.66 6.47 5.34 5.41 5.03 0.14

Panel E: from Robert Novy-Marx, Low or Medium Turnover Strategies
Reference: Novy-Marx and Velikov (2016)

Gross Prof. 4.22 4.31 6.43 5.74 1.64 -1.49 1.87 5.58 -0.43 0.46 0.43

ValProf 9.29 10.13 5.21 5.87 5.01 0.04 3.01 4.78 0.25 1.31 0.00

Accruals 2.15 2.99 2.47 2.21 3.94 5.10 2.99 1.58 3.02 1.85 0.91

Net Issu. Ann. 8.50 9.75 8.36 7.38 4.67 2.87 4.14 7.10 0.76 2.25 0.00

Asset Growth 4.03 5.10 0.78 0.23 -2.60 1.65 -2.29 0.86 -2.27 -1.03 0.64

Investment 5.33 6.04 3.90 3.24 1.95 5.25 2.42 3.79 1.38 2.31 0.07

Piotroski’s F 1.30 3.10 3.97 2.41 -2.83 -4.40 0.06 2.34 -3.95 -0.92 0.99

Continued on next page
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Table 10 Pricing 42 “Unique” Anomalies, Alpha’s

Continued from previous page
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Avg. CAPM1 FF3 FFC4 HSZ4 AFP4 FF5 PS5 ALL11 RAP1 p [Rand]

Asset Turn. 4.84 4.16 4.45 4.10 -0.64 -4.99 -1.06 3.71 -3.41 -1.43 0.47

Gross Margins 0.34 1.15 4.53 4.99 4.16 1.17 3.96 5.14 2.09 1.88 1.00

Ohlson’s O -0.37 2.09 5.87 3.14 -0.61 -1.45 1.87 3.20 -2.92 -4.20 1.00

Net Issu. Mon. 5.31 6.66 5.37 5.03 1.87 -0.94 0.87 4.21 -2.76 0.93 0.15

Ret-on-Bk-Eq. 3.96 6.24 9.09 5.08 -4.60 -3.11 1.72 5.82 -5.08 -2.73 0.93

Failure Prob. 2.94 7.74 13.07 3.60 -2.69 0.54 5.68 3.62 -5.64 -9.61 0.99

ValMomProf 12.26 13.63 12.42 4.04 5.65 7.35 9.39 3.72 2.06 -1.46 0.00

ValMom 6.24 7.68 3.34 -5.99 -2.92 2.46 2.34 -6.02 -4.36 -9.85 0.42

Idio. Vol. 2.66 7.92 7.38 3.66 -2.85 -5.00 0.46 3.70 -7.71 -9.47 0.99

PEAD (SUE) 3.09 3.36 5.67 1.22 -2.91 2.64 3.48 1.70 -2.29 -2.16 0.75

PEAD (CAR3) 4.08 4.56 5.74 3.39 3.41 4.52 5.35 3.27 2.11 1.84 0.28

Long-Run Rev. 1.22 1.06 -4.57 -3.34 -1.00 0.14 -3.54 -3.32 -1.73 -3.50 1.00

Ret-on-Mkt-Eq. 6.84 9.39 7.07 2.88 -3.35 -1.93 2.40 2.62 -4.07 -2.49 0.46

Ret-on-Assets 2.71 4.91 8.10 4.49 -3.45 -2.88 2.29 5.14 -4.34 -2.81 0.96

Beta Arb. 3.46 2.98 -0.06 -0.77 -2.64 -5.75 -3.21 -0.83 -7.61 -6.11 0.90

Panel F: from Robert Novy-Marx, High Turnover Strategies
Reference: Novy-Marx and Velikov (2016)

Ind. Mom. -3.83 -2.39 -1.68 -4.85 -4.12 -1.60 -1.83 -4.49 -4.96 -5.16 0.94

Ind. Rel. Rev. -10.47 -12.51 -13.36 -9.74 -9.64 -11.51 -11.67 -10.19 -8.86 -7.17 0.00

Hi-Freq Comb. 1.49 0.93 0.36 0.00 0.30 1.29 1.12 -0.09 -0.21 0.15 0.99

Short-Run Rev. -16.16 -18.46 -19.27 -15.14 -15.75 -17.80 -18.17 -15.70 -14.91 -13.38 0.00

Seasonality -8.30 -9.06 -7.58 -8.49 -7.14 -8.22 -7.21 -8.55 -6.92 -7.55 0.01

Ind.Rel.Rev.(LV) 1.41 0.20 -0.88 0.44 -0.15 0.57 -0.17 0.24 0.50 -1.27 0.99

Hi-Freq.(HS) 2.52 1.64 1.95 0.98 2.68 3.45 3.35 1.11 2.98 2.02 0.93

This table reports the time series alpha’s of the various returns against the multi-factor models and the
1-factor model. Significance at 95% confidence level is marked by shaded numbers. Standard errors
are calculated according to Newey and West (1987) with Newey and West (1994) automatic lag selection.
The LHS variables are the return series obtained from different sources according to the corresponding
publications. The last column reports the probability that a random 1-factor model could eliminate the
alpha of the corresponding anomaly. The random factor is drawn from normal distribution with mean
and variance equal to the efficient factor’s for 1000 iterations. Data series are either directly provided by
the corresponding author or downloaded from their websites. The detailed description of the trading
strategies is in Novy-Marx and Velikov (2016) Appendix B. The sample period is 1967.06.30—2014.12.31
with 511 effective months after excluding the first 5-year starting sample.
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4 Pricing at the Firm-Level

This section I present the evidence that the efficient factor is priced significantly in the
cross-section of stock returns at the firm-level. I first form a forward-bias-free decile
portfolio on the expected efficient factor beta to demonstrate its significant spread w.r.t
existing multi-factor models. Then I show that one could engineer an anomaly using
an optimal mixture of exotic characteristics to form an anomaly portfolio that would
pass existing tools as a “unique” anomaly, yet is completely manifested by the efficient
factor.

4.1 Portfolios Formed on Expected Beta

In this section I group portfolios according to assets’s expected beta to the efficient fac-
tor to demonstrate a significant 12% spread that cannot be explained by many multi-
factor models, except the Carhart (1997) 4-factor model and Hou, Xue, and Zhang
(2014) 4-factor model, and the Efficient 1-factor model.

If the efficient factor is a valid risk factor for cross-sectional asset returns, and that
the risk-premium is significantly positive in the cross-sectional regression, then port-
folios with securities having high conditional sensitivity (expected beta) to the efficient
factor should earn a higher expected return. To demonstrate this, I adopt the expected
beta approach similar to Pástor and Stambaugh (2003) by specifying a set of instru-
mental variables as the conditional information set. Also, in the theoretical framework,
I give exact form of the expected beta as a function of the characteristics instruments.
The expected beta for an asset i formed on time t information is determined by the set
of time t normalized instruments zt(i):

βt(i) = φ1,t + zt(i)
′φ2,t (6)

The characteristic instruments specified need to be “comprehensive” enough to
reflect the true conditional information set, but at the same time “succinct” enough to
allow reliable estimation. To do so, I include the 3 basis characteristics as well as an
additional total volatility characteristics. As shown by MacKinlay and Pástor (2000)
and further by Chen and Petkova (2012), the residual variance could proxy the amount
of miss-pricing a security has with respect to a particular asset pricing model. By the
same token, in the absence of factors, the total variance could proxy for the amount of
total miss-pricing that is available for a factor model to capture. Thus I set:

Zt(i) = {SZt(i), BMt(i),MOMt(i), TVt(i)}′

they are the firm size, B/M ratio, momentum (past 12 to 2 month return), total vari-
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ance (as measured by realized variance estimated on past month daily returns), re-
spectively.

For each original instrument Zk
t (i) in Zt(i), the normalized instrument zkt (γ) is

transformed to have cross-sectional uniform distribution on [0, 1] while preserving the
cross-sectional ranking7.

zkt (i) =F k
t

[
Zk

t (i)
]

F k
t (a) =

∑
i 1[Zk

t (i)<a]∑
i 1

meaning that at time t if asset i has the highest value of size characteristics SZt(i)

among all assets, then szt(i) = 1; while if asset j has the median value of characteristics
BMt(j) among all assets, then bmt(j) = 0.5. Moreover, as illustrated in Section 2.1.4,
there exists non-monotonic or even reversal of benefits from a given characteristics. To
accommodate the non-monotonicity, I include 3 “corner” indicators on the momentum
characteristics in order to capture any “reversal of benefits”:

mom5sz1
t (i) = 1[szt(i)<0.2,momt(i)>0.8]

mom5bm5
t (i) = 1[bmt(i)>0.8,momt(i)>0.8]

mom5tv1
t (i) = 1[tvt(i)<0.2,momt(i)>0.8]

resulting in the following specification of zt(i)

zt(i) =
{
szt(i), bmt(i),momt(i), tvt(i),mom

5sz1
t (i),mom5bm5

t (i),mom
5tv1

t (i)
}′ (7)

The coefficients φ’s are estimated in a pooled regression with expanding windows,
using all available observations up to time t:

r̃s+1(i) = φ0,t +
(
φ1,t + zs(i)

′φ2,t

)
mn

s+1 + us+1(i) s ≤ t− 1 (8)

Thus we can calculate the expected relative beta given the estimated φ̂1,t, φ̂2,t via Equa-
tion (6). Table 11 reports the summary of the estimated coefficients φt, together with a
full-sample estimated φT for comparison. As shown in the table, while momentum is
the strongest positive predictor of expected beta, size and volatility are strong negative
predictor of expected beta. If monotonic specification captures all conditional informa-
tion, then the non-monotonicity terms should be positive or insignificant, however, it
is evident that the combination of high momentum and low volatility stocks in fact
strongly and negatively predict expected beta, contrasting the direction of the char-

7This is equivalent to assigning quantile portfolios weights to each stock based on the characteristics
ranking. It is also motivated by the recursive asset pricing model in Section 5.
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acteristics’ monotonic predictability. This non-monotonicity is again similar to the
“reversal of benefits” observed earlier. Figure 5 plots the quantiles of the estimated
efficient factor beta over time.

Table 11: Estimated φ

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
φ0 φ1 szt(i) bmt(i) momt(i) tvt(i) mom5sz1t (i) mom5bm5

t (i) mom5tv1t (i)

φT 0.47 -0.08 -0.55 -0.01 2.47 -0.89 -0.04 -0.08 -0.65
σ(φT ) 0.03 0.09 0.07 0.07 0.09 0.08 0.16 0.10 0.07
t(φT ) 16.94 -0.85 -7.32 -0.20 27.48 -10.65 -0.24 -0.73 -9.73
φt -0.01 0.45 -0.93 0.03 2.74 -0.35 -0.28 -0.08 -0.90

This table summarize the time series of the estimated coefficients φt in the calculation of expected
beta. Sample Period: 1967.06.30—2014.12.31;

Figure 5: Quintiles of the Expected Efficient Factor Beta

Securities are grouped into quintile portfolios at the end of every month t, using
expected beta β̃t which is estimated using information up to time t. The securities are
then held for 1 month earning portfolio return for the next month t+ 1. The securities
are re-grouped into quintile portfolios every month. Figure 6 demonstrate the quintile
portfolios relative performance over time. Table 12 summarizes the portfolio’s details,
as well as reports their alpha’s with respect to each asset pricing model.

Patton and Timmermann (2010) monotonicity test[
Insert Figure Average Return About Here

]

4.2 Engineering An “Anomaly”

Using the expect beta framework, one can essentially engineer an anomaly based on
the full sample estimated φ’s. If one wish to find a certain function of observable firm
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Table 12: Portfolios Grouped on Expected Efficient Factor Beta

Value Weighted, Excess Return
Quintile Low 2 3 4 High High-Low

Avg. Ret. 3.71 5.59 8.36 9.45 15.60 11.89
[0.99] [2.05] [3.29] [3.34] [4.17] [3.12]

CAPM1 -5.19 -1.79 1.36 1.80 6.51 11.70
[-2.33] [-1.65] [1.34] [1.59] [3.19] [3.26]

FF3 -6.79 -3.21 0.73 2.01 7.34 14.13
[-3.19] [-3.25] [0.69] [1.93] [4.14] [4.33]

FFC4 0.43 -1.17 -0.07 -0.78 2.40 1.97
[0.27] [-1.27] [-0.07] [-0.80] [1.63] [0.89]

HSZ4 1.30 -2.35 -1.09 -1.52 3.99 2.68
[0.43] [-1.58] [-0.98] [-1.36] [1.81] [0.58]

PS4 -7.29 -3.40 0.88 1.94 7.61 14.90
[-3.44] [-3.30] [0.80] [1.79] [4.27] [4.57]

FF5 -3.22 -3.50 -0.59 -0.06 7.38 10.60
[-1.24] [-2.95] [-0.62] [-0.05] [3.46] [2.53]

ALL11 1.84 -2.30 -0.42 -1.25 5.89 4.05
[1.27] [-2.22] [-0.38] [-1.22] [3.94] [2.10]

RAP1 8.65 2.94 4.40 2.82 7.32 -1.33
[1.28] [0.73] [1.38] [0.82] [1.67] [-0.23]

Equal Weighted, Excess Return

Avg. Ret. 7.08 10.48 10.03 12.36 14.81 7.73
[1.65] [3.54] [4.00] [4.71] [4.49] [2.57]

CAPM1 -2.44 3.09 3.41 5.47 6.86 9.29
[-0.88] [1.76] [2.32] [3.53] [3.41] [3.52]

FF3 -5.04 0.42 1.13 3.63 5.77 10.81
[-2.38] [0.38] [1.31] [4.11] [5.10] [4.42]

FFC4 2.39 3.13 1.88 2.76 3.24 0.85
[1.21] [2.96] [2.12] [3.07] [3.19] [0.49]

HSZ4 5.15 3.50 1.03 2.76 4.88 -0.27
[1.55] [2.13] [0.84] [2.75] [3.52] [-0.07]

PS4 -5.31 0.39 1.09 3.61 5.88 11.19
[-2.57] [0.34] [1.26] [3.97] [5.07] [4.62]

FF5 -0.42 1.21 0.08 2.57 5.50 5.92
[-0.14] [0.90] [0.09] [2.93] [4.49] [1.76]

ALL11 8.10 4.06 0.99 3.02 6.13 -1.97
[3.79] [3.83] [1.16] [3.41] [5.38] [-1.00]

RAP1 13.67 8.19 4.25 5.25 6.13 -7.54
[1.61] [1.55] [1.02] [1.29] [1.34] [-1.39]

Portfolio Details, Averaged

# Firms. 225 226 226 226 225
Size (bl.$) 1.04 1.71 2.24 2.07 0.81
Expected β, vw 0.07 0.65 1.16 1.66 2.23
Post-Form. β, vw -0.08 0.67 0.90 1.18 1.58

This table reports the annualized alpha’s of the quintile portfolios grouped on expected efficient
factor beta. The top panel presents the value-weighted portfolios and the bottom panel for the
equal-weighted portfolios. The first row reports the return and the second row reports the Newey
and West (1987) robust t-statistics with Newey and West (1994) automatic lag selection. Sample
period: 1967.06.30—2014.12.31, with 10 years of starting sample.
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Figure 6: Value-Weighted Quintile Portfolios on Expected Efficient Factor Beta

characteristics such that it predicts future return but robust to all existing factors in a
multi-factor test. One could simply do the following steps:

(1) Choose a set of observable firm characteristics zet (i). For novelty, one could set
such observable characteristics to some un-explored features.

(2) Run a full-sample regression using Equation (8), with the chosen zet (i). One thus
obtains a full-sample optimal φe

T .
(3) Compute the engineered best mix of characteristics using the full-sample for-

mula aet (i) = zet (i)
′φe

2,T

(4) Group portfolios according to the engineered best mix aet (i). By design, it max-
imally proxies for the expected relative beta ex-post, and should significantly
predict return. Moreover, this characteristics is by design, robust to all other
risk-factors. Neither multi-factor tests, nor double sorts will be able to explain
such return predictability, therefore, a “unique anomaly” has been discovered.

(5) Seek economic or behavioral motivations for why such characteristics will pre-
dict returns, even though it will be completely explained by the efficient excess
return portfolio.

Table 13 shows the the engineered anomaly with the same set of characteristics as in
the previous section.

Double Sort controlling an array of other characteristics[
Insert Table ?? About Here

]
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Table 13: Engineered “Anomaly”: Alpha’s

Value Weighted, Excess Return
Quintiles Low 2 3 4 High High-Low
Avg. Ret. -0.67 1.84 5.60 5.22 14.48 15.16

[-0.18] [0.53] [1.99] [1.87] [4.86] [4.53]
CAPM1 -8.87 -4.82 0.02 -0.49 7.62 16.50

[-3.78] [-1.98] [0.01] [-0.27] [5.38] [5.54]
FF3 -10.53 -6.22 -0.36 -0.69 7.91 18.44

[-4.64] [-2.45] [-0.23] [-0.36] [6.05] [6.38]
FFC4 -1.99 -2.61 -0.17 -2.44 2.92 4.91

[-1.11] [-1.10] [-0.10] [-1.32] [2.54] [2.37]
HSZ4 -2.60 -4.02 -0.20 -2.64 4.23 6.83

[-0.83] [-1.53] [-0.12] [-1.38] [2.57] [1.63]
PS4 -10.89 -6.13 -0.21 -0.69 8.33 19.22

[-4.96] [-2.42] [-0.13] [-0.37] [6.10] [6.72]
FF5 -8.08 -6.11 -0.60 -1.56 7.31 15.40

[-2.94] [-2.46] [-0.40] [-0.79] [4.52] [4.04]
ALL11 -0.46 -3.91 0.84 -1.99 4.21 4.67

[-0.28] [-1.83] [0.41] [-1.22] [3.22] [2.23]
RAP1 5.00 1.62 2.52 1.33 5.90 0.89

[0.72] [0.39] [0.81] [0.41] [1.52] [0.15]

Equal Weighted, Excess Return
Quintiles Low 2 3 4 High High-Low
Avg. Ret. 6.14 7.84 7.65 8.60 14.09 7.96

[1.41] [2.20] [2.58] [3.04] [4.98] [2.87]
CAPM1 -2.37 1.17 2.01 3.05 7.66 10.04

[-0.81] [0.44] [1.09] [1.46] [4.26] [4.20]
FF3 -5.46 -1.40 -0.24 1.39 6.33 11.79

[-2.59] [-0.62] [-0.16] [0.79] [6.04] [5.27]
FFC4 2.03 1.65 1.27 0.37 3.70 1.67

[0.92] [0.77] [0.80] [0.21] [3.86] [0.95]
HSZ4 4.32 1.50 1.12 0.67 4.98 0.66

[1.33] [0.65] [0.66] [0.37] [4.11] [0.20]
PS4 -5.63 -1.34 -0.14 1.49 6.53 12.17

[-2.71] [-0.60] [-0.09] [0.86] [5.96] [5.37]
FF5 -1.98 -1.04 -0.32 0.80 5.98 7.96

[-0.69] [-0.46] [-0.22] [0.45] [5.62] [2.57]
ALL11 8.03 1.63 1.97 1.29 5.12 -2.91

[3.39] [0.91] [1.09] [0.91] [4.90] [-1.44]
RAP1 11.95 7.86 3.25 3.49 5.07 -6.88

[1.41] [1.51] [0.78] [0.89] [1.17] [-1.30]

This table reports the annualized alpha’s of the quintile portfolios grouped on engineered anomaly
characteristics at(i). The top panel presents the value-weighted portfolios and the bottom panel for
the equal-weighted portfolios. The first row reports the return and the second row reports the Newey
and West (1987) robust t-statistics with Newey and West (1994) automatic lag selection. Sample period:
1967.06.30—2014.12.31, with 10 years of starting sample.

5 A Recursive Asset Pricing Model

To formally setup the theoretical framework, I adopt an approach similar to that of
Gagliardini, Ossola, and Scaillet (2016) in order to specify both time and cross-sectional
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dependence.
Let (Ω,F ,P) be a probability space. Let τ be a measure-preserving, ergodic time-

shift transformation mapping Ω onto itself. If ω ∈ Ω is the state of the world at time
0, then τ t(ω) is the state at time t. In order to define the information sets, let F0 ⊂ F
be a sub sigma-field. Define Ft = {τ−t(A), A ∈ F0}, t = 1, 2, ..., through the inverse
mapping τ−t and assume that F1 contains F0. Then the filtration Ft, t = 1, 2, ..., char-
acterizes the flow of information available to investors. The conditional expectations
are defined as Et [·] = E [·|Ft] for t = 1, 2, ...

The economy has a continuum of assets indexed by i ∈ Γ ≡ [0, 1]. The index
set is endowed with the Borel sigma-field B and a probability distribution G that is
absolutely continuous w.r.t the Lebesgue measure8.

On this probability space, let κ, δ, together with z(i) and e(i) for any i ∈ Γ be
measurable functions w.r.t F0. Further define the random vector δt(ω) = δ(τ t−1ω)

admitting values in R
K , random variable κt(w) = κ(τ t−1(ω)) admitting values in

R; and for any i ∈ Γ, the collection of random vectors zt(i, ω) = z(i, τ t−1(ω)) ={
z1
t (i, ω), z2

t (i, ω), ..., zKt (i, ω)
}′ admitting values in RK , the collection of random vari-

ables et(i, w) = e(i, τ t−1(ω)), both admitting values in R.

5.1 Predictable Return

The following assumptions are made regarding the return rt+1(i) and prediction dy-
namics from relevant features zt(i):

Assumption 1. Linear Prediction:
For all asset i ∈ Γ, the net return rt+1(i) at dates t = 1, 2, ..., satisfy the conditional linear
prediction model

rt+1(i) = κt+1 + zt(i)
′δt+1 + et+1(i) (9)

where zt(i) are the collection of all features known at time t that satisfy:

Non-degenerated 0 <
∫

Γ

[
zkt (i)

]2
dG(i) <∞

Normalized
∫

Γ
zkt (i)dG(i) = 0

Relevant P

[
δkt+1 = 0

∣∣∣Ft

]
< 1

for all k = 1, 2, ..., K

The last condition of Assumption 1 states that if there are any other asset feature
zK+1
t (i) that are non-degenerated and normalized with a δK+1

t+1 that satisfies Equation

8A countable collection of assets from this economy is a sequence (ij) in Γ∞ = [0, 1]∞, endowed with
the product sigma-field B∞ and the product measure µ = G∞
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9, the feature must be useless because P
[
δK+1
t+1 = 0

∣∣∣Ft

]
= 1

Assumption 2. Identification:
For all i ∈ Γ:

(1) For any weighting scheme −∞ < wt(i) < ∞ known at time t, non-degenerated, i.e.
0 <

∫
Γ

[wt(i)]
2 dG(i) <∞, the individual errors et+1(i) satisfy

P

[∫
Γ

wt(i)et+1(i)dG(i) = 0
∣∣∣Ft

]
= 1 (10)

(2) The cross-sectional dispersion matrix St :=
∫

Γ
zt(i)zt(i)

′dG(i) is positive definite, al-
most surely

Assumption 2 part (1) ensure that the error terms are diversified away, as long as
the weighting scheme assigns finite, non-zero weights to infinitely many assets. How-
ever, it does not mean that the error terms are zero for each asset, because a weighting
scheme that picks finitely many assets will inevitably be degenerated as a finite collec-
tion of asset has measure 0 according to G(·). Assumption 2 part (2) ensures that the
features are themselves unique, that one cannot be completely linearly dependent on
others. The Assumption 2 is not restrictive as it is the necessary and sufficient condition
for identification of the model in Assumption 1 by the following proposition:

Proposition 1. Identification
κt+1 and δt+1 in equation (9) are identified with probability 1 with respect to Ft+1 if and only
if Assumption 2 is satisfied.

For readability, for the remainder of this section, I suppress all notations regarding
“almost sure” except when necessary, i.e. the remaining assumptions and derivations
holds when the above defined random-functions are restricted to Ω̄ ⊂ Ω whereP(Ω̄) =

1.

Remark 1. κt+1 is the market return
The time-specific intercept κt+1 has the special interpretation of the aggregate market
return. To see this, given Assumption 1 and Assumption 2, integrate over the asset
index set Γ immediately arrive at:∫

Γ

rt+1(i)dG(i) = κt+1 for any t = 1, 2, ... (11)

Now, consider the following investment strategy to exploit predictive feature k. At
the end of time t, with asset features zt known, first form a long-leg with assets high
in feature k:

lkt+1 =

∫
Γ

rt+1(i)
∣∣zkt (i)

∣∣1[zkt (i)>0]dG(i)
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where each asset i is weighted by |zkt (i)|1[zkt (i)>0] . Similarly a short-leg with assets low
in feature k:

skt+1 =

∫
Γ

rt+1(i)
∣∣zkt (i)

∣∣1[zkt (i)<0]dG(i)

The long-short portfolio is then

xkt+1 = lkt+1 − skt+1 =

∫
Γ

rt+1(i)zkt (i)dG(i) (12)

Notice that this portfolio is zero cost since the total value invested
∫
zkt (i)dG(i) = 0

from the normalization in Assumption 1. Thus K long-short zero cost portfolios could
be formed for all K features:

xt+1 =
{
x1
t+1, x

2
t+1, ...

}′
=

∫
Γ

zt(i)rt+1(i)dG(i) (13)

Directly substitute equation (9) into equation (13) and use the cross-sectional av-
erages from Assumption 1 and Assumption 2, we have the following diversification
result:

Remark 2. xt+1 are multi-factor portfolios
The randomness of the collection of long-short portfolios form by equation (13) for
each of the features depends only on the vector δt+1, thus are well-diversified such
that:

xt+1 = Stδt+1 (14)

Note that St is known at time t, while the individual error terms et+1(i), and time-
specific intercept, or market return κt+1 that belong to time t + 1 information set dis-
appears.

This is a generalization of the long-short factors various papers have proposed. For
example, an equal-weighted Size factor in Fama and French (1993) are such grouping
methods that set zkt (i) = 1[Sizet(i)>qt] − 1[Sizet(i)<qt], thereby going long in larger firms
and short smaller firms.

Remark 3. Consistent predictability do not imply consistent portfolio performance
The above Remark 2 illustrates that the long-short anomaly portfolios grouped on
features depend on both the predictability coefficient δt+1 and the cross-sectional dis-
persion of all relevant features St. Even when a certain feature consistently predict
asset returns, xt+1 may not be stable over time at all, since the dispersion matrix St

fluctuates and uses all relevant features.
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5.2 One-Factor Relative Pricing

The next step is to construct a global efficient excess return portfolio. Let Σt = V art(xt+1)

and µt = Et [xt+1] be the conditional variance and mean of the long-short portfolios
xt+1, and consider the following 2 problems an investor faces while allocating capital
among the long-short portfolios xt+1

Problem 1. Minimize Variance Given Return

arg min
w

V art [w′xt+1] s.t. Et [w′xt+1] = y1 (15)

Problem 2. Minimize Tracking Error towards a Fixed Return
For y2 ∈ R

arg min
w

Et

[
(y2 −w′xt+1)2

]
(16)

Assumption 3. No Redundancy:
For all i ∈ Γ, the K predictive features zt(i) are not redundant, i.e.

Dt = Et

[
δt+1δ

′
t+1

]
−Et [δt+1]Et

[
δ′t+1

]
(17)

is positive definite with probability 1, for t = 1, 2, ...

It is easy to show that the 2 problems are equivalent and the following special
portfolio:

mt+1 = x′t+1Σ
−1
t µt = δ′t+1D

−1
t Et [δt+1] (18)

with weights

w∗t = Σ−1
t µt (19)

is the unique (up to a scaler) solution to both problems:

Proposition 2. mt+1 is an efficient portfolio among xt+1 The set of solutions to Problems
1 and 2 are the same and if Assumptions 1, 2 and 3 are satisfied, the solutions are given by

{w|w = cw∗t , c ∈ R} (20)

Not only mt+1 is efficient among the particular portfolios xt+1, the efficiency in
fact extends to all universe of excess returns via the following proposition. One could
obtain global efficient excess return portfolio by only using the several “anomalous”
portfolios, thus significantly reduce the dimensionality of portfolio optimization.
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Assumption 4. Strict Exogenous Errors
For all i ∈ Γ, the individual residual errors et+1(i) of Equation (9) satisfy:

Et [et+1(i)|δt+1] = 0 (21)

for t = 1, 2, ...

Proposition 3. mt+1 is efficient for all excess returns
Given Assumptions 1, 2, 3 and 4, the zero-cost portfolio defined by Equation (18), with weights
defined by Equation (19) is a conditional efficient portfolio for all excess returns. Specifically,
any excess return portfolio ret+1, formed at time t, satisfy the orthogonal decomposition

ret+1 = ω′txt+1 + vt+1 (22)

for some ωt and vt+1, where Et [vt+1|xt+1] = 0

With the ex-ante efficient excess return portfolio obtained, we are ready to present
the main theoretical result.

Proposition 4. One-Factor Relative Pricing (extension of Roll (1977))
Given Assumptions 1, 2, 3 and 4, every asset i ∈ Γ satisfies the one-factor relative asset pricing
equation

r̃t+1(i) ≡rt+1(i)− κt+1

=β̃t(i)mt+1 + ut+1(i) (23)

where Relative Beta is defined as

β̃t(i) ≡
Covt [r̃t+1(i),mt+1]

V art [mt+1]
=
zt(i)

′
Et [δt+1]

Et [mt+1]
(24)

and has zero cross-sectional average: ∫
Γ

β̃t(i)dG(i) = 0 (25)

Moreover the idiosyncratic errors ut+1(i) has zero cross-sectional average:∫
Γ

ut+1(i)dG(i) = 0 (26)

and time-series strict exogeneity:

Et [ut+1(i)] = Et [ut+1(i)|mt+1] = 0 (27)
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Proposition 4 shows that in the presence of cross-sectional predictability, the assets’
relative return has a 1-factor pricing structure. This is consistent with Roll (1977)’s re-
sult that a mean-variance efficient return automatically prices assets. Here I present
the exact condition to construct the mean-variance efficient portfolio from a set of fac-
tor portfolios, instead of having to construct from the entire asset universe. A problem
that is often impossible due to the curse of dimensionality.

The proposition also implies that one could test the cross-sectional asset pricing
models in relative return form, rather than excess return form. It says that the market
return, in the perspective of cross-sectional asset pricing within the equity market, is
nothing but a intercept that shifts the level of returns. Although, the model does not
say whether all stocks have a market beta of 1, since market beta could be one of the
time t available characteristics that predict returns cross-sectionally. However, if one is
able to obtain the complete set of cross-sectional predictive characteristics, i.e. market
beta’s predictive power diminish in the presence of all predictable characteristics, mar-
ket becomes a mere level shift for all asset returns. Subtracting market return would
not cause any effect to the cross-sectional asset pricing, but will provide a convenience
that the zero-beta rate is gone.

5.3 A Recursive View of Asset Prices

Proposition 4 is simple and intuitive, that for the entire universe of available assets,
one only need to find the efficient excess return portfolio, it would price all assets
available. Certainly, for any specific class of asset, the global efficient excess return
portfolio will price the assets for that class. However, the recursive nature of the rela-
tive asset pricing model offers an insight: To price a class of asset, one does not need
the globally efficient excess return, an efficient excess return derived within the class
suffices. Intuitively, one can just pretend that assets out of the class do not exist, the
pricing derivation will survive as long as there are still predictabilities within the class.
To proceed, I assume:

Assumption 5. Non-Degenerate Class C
For a class of assets i ∈ C ( Γ, the cross-sectional weight Gc > 0 and the symmetric matrix
Sc

t has rank L ≥ 1 P-a.s, for t = 1, 2, ... where

Group Cross-Sectional Weight: Gc =
∫
C
dG(i)

Group Average Return: κct+1 ≡
∫
C
rt+1(i)dG(i)/Gc

Group Centered Features: zct(i) ≡ zt(i)−
∫
C
zt(i)dG(i)/Gc

Group Dispersion of Features: S
c

t ≡
∫
C
zct(i)z

c
t(i)

′dG(i)/Gc

(28)

Using the above definition, Equation (9) can thus be re-written for all assets in the
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class i ∈ C:

rt+1(i) =κct+1 + zct(i)
′δt+1 + et+1(i) (29)

Notice that Equation (29) satisfies Assumptions 1 and Assumption 2 part (1). To de-
rive result similar to Proposition 4, we need to ensure no redundancy in the features
pertaining to this asset class. However, it is possible that due to the restricted class C,
some variations among the features in the vector zt(i) had collapsed, making the sym-
metric matrix S

c

t no-longer positive definite. For example, one can construct C such
that one component of the features vector zt(i) is constant (e.g. assets of a specific size,
if size is a predictive feature), causing the re-defined features zct(i) having a zero com-
ponent. Therefore the goal is to select a cross-sectionally linearly independent subset
zct(i) among the features, as well as their corresponding predictabilities δct+1 that could
equivalently represent all asset returns in this class in the following way:

rt+1(i) = κct+1 + zct(i)
′δct+1 + et+1(i) for all i ∈ Γ (30)

The following proposition selects such subset of zct(i) and δct+1

Proposition 5. Selecting Relevant Features
If the collection of variables

{rt+1(i), κt+1, zt(i),St, δt+1, et+1(i)}

satisfy Assumptions 1, 2 3 and 4 for all i ∈ Γ. Moreover, if for a class of assets C ( Γ,
Assumption 5 is also satisfied, then there exist a L×K matrixBc

t with rank L known at time
t, such that:
The collection of variables

{
rt+1(i), κct+1, z

c
t(i),S

c
t , δ

c
t+1, et+1(i)

}
(31)

satisfy Assumptions 1, 2 3 and 4 for all i ∈ C where κct+1 is defined in Equation (28), and

zct(i) =Bc
tz

c
t(i) (32)

δct+1 =Bc
tδt+1 (33)

Sc
t =

∫
C

zct(i)z
c
t(i)

′dG(i) (34)

Then we can form the long-short portfolios, and excess return portfolio efficient
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among all assets in class C, using only assets of this class C:

xc
t+1 =

∫
C

zct(i)rt+1(i)dG(i) = Sc
tδ

c
t+1 (35)

mc
t+1 =

(
xc
t+1

)′
V art

[
xc
t+1

]−1
Et

[
xc
t+1

]
= δct+1 (Dc

t)
−1
Et

[
(δct+1)′

]
(36)

Proposition 6. Recursive Relative Pricing:
Given Assumptions 1, 2, 3, and 4 for an asset class, C ( Γ, satisfies Assumption 5, then for
every asset i ∈ C, the recursive one-factor relative asset pricing relation holds:

r̃ct+1(i) ≡rt+1(i)− κct+1

=β̃c
t (i)m

c
t+1 + uct+1(i) (37)

where Recursive Relative Beta is defined as

β̃c
t (i) ≡

Covt
[
r̃ct+1(i),mc

t+1

]
V art

[
mc

t+1

] =
zct(i)

′
Et

[
δct+1

]
Et

[
mc

t+1

] (38)

and has zero cross-sectional average: ∫
C

β̃c
t (i)dG(i) = 0 (39)

Moreover the idiosyncratic errors uct+1(i) has zero cross-sectional average:∫
C

uct+1(i)dG(i) = 0 (40)

and time-series strict exogeneity:

Et

[
uct+1(i)

]
= Et

[
uct+1(i)|mc

t+1

]
= 0 (41)

5.4 The Implied Stochastic Discount Factor

Assumption 6. Existence of Stochastic Discount Factor
There exists an investable unit cost asset at time t with payoff d∗t+1 and net return κ∗t+1 ≡
d∗t+1 − 1, such that for any asset i ∈ Γ satisfies

Et

[
rt+1(i)d∗t+1

]
= Et

[(
d∗t+1

)2
]
−Et

[
d∗t+1

]
(42)
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or equivalently

Et


rt+1(i) + 1

 d∗t+1

Et

[(
d∗t+1

)2
]
 = 1 (43)

Assumption 6 is directly implied if the underlying economy satisfies Law of One
Price, or linear pricing. See Theorem 2.1 of Hansen and Richard (1987) for derivation.
Moreover, when the stochastic discount factor payoff (gross return) d∗t+1 is positive
almost surely, then there is no arbitrage in the economy.

The following proposition helps relate the efficient portfolio mt+1 with existing lit-
erature. The efficient excess return is closely related to the orthogonal decomposition
of Hansen and Richard (1987):

Proposition 7. Hansen and Richard (1987) Decomposition
Given Assumptions 1, 2, 3, 4 and 6, every asset i ∈ Γ satisfy the decomposition:

rt+1(i) = κ∗t+1 + [βt(i)− β∗t ]mt+1 + u∗t+1(i) (44)

where

βt(i) ≡
Covt [rt+1(i),mt+1]

V art [mt+1]
(45)

β∗t ≡
Covt

[
κ∗t+1,mt+1

]
V art [mt+1]

(46)

Moreover the three components satisfies:

Et

[
u∗t+1(i)

]
= Et

[
u∗t+1(i)mt+1

]
= Et

[
u∗t+1(i)κ∗t+1

]
= Et

[
mt+1

(
κ∗t+1 + 1

)]
= 0 (47)

Assumption 7. Existence of Risk-Free Rate
There exists an investable asset with return rft known at time t, i.e. ∃ if ∈ Γ such that

rt+1(if ) = rft

Proposition 8. Relations between rft , mt+1 and κ∗t+1

Given Assumptions 1,2,3,4,6,7 the following equation holds for any t = 1, 2, ...

rft = κ∗t+1 − β∗tmt+1 (48)

Proposition 9. One Factor Absolute Pricing
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Given Assumptions 1,2,3,4,6,7, any asset i ∈ Γ satisfy

rt+1(i) = rft + βt(i)mt+1 + u∗t+1(i) (49)

where

Et

[
u∗t+1(i)

]
= Et

[
mt+1u

∗
t+1(i)

]
= 0

Proposition 10. Implied Stochastic Discount Factor
Given Assumptions 1,2,3,4,6,7 the Stochastic Discount Factor implied by asset prices can be
constructed in the following unit cost tradable portfolio

κ∗t+1 = rft −
1 + rft

1 +Et [mt+1]
mt+1 (50)

or in gross-return form

d∗t+1 = 1 + rft −
1 + rft

Et [1 +mt+1]
mt+1 (51)

with weight 1 on the risk-free asset and− 1 + rft
1 +Et [mt+1]

on the zero-cost efficient portfoliomt+1

5.5 Stochastic Discount Factor and the Conditional Risk-Premium

Given Proposition 10, the conditional expectation of the Stochastic Discount Factor
return is

Et

[
d∗t+1

]
=

1 + rft
1 +Et [mt+1]

(52)

Economic theory suggests that this conditional quantity should be high during bad
times and low during good times (counter-cyclical), since an economic agent val-
ues future payoff higher during bad times. Given the inverse relationships between
Et [mt+1] and Et

[
d∗t+1

]
, it means that the conditional expectation of the efficient excess

return must be strongly pro-cyclical. I estimate this conditional quantity to show that
it is indeed strongly pro-cyclical. Moreover for comparison I show that the market
return cannot be the efficient return leading to the Stochastic Discount Factor, as its
conditional expectation is highly counter-cyclical.

Since we only have 1 universe, thus 1-observation for each conditional information
set, estimating the conditional expectation is difficult. It cannot be obtained via mak-
ing usual smoothness assumptions, i.e. assuming that Et [mt+1] do not change and
equals to the local average. Doing so is equivalent to making the strong assumption
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that the conditional information set do not change. Instead, I propose another way
around, by going into the cross-sectional dimension. A priced risk-factor should have
its conditional expectation equals to its conditional risk-premium in the cross-section.
Even though we have only 1 observation in the time-series dimension, we have an
abundance of observations in the cross-section given any point in time, allowing us
to obtain a reliable estimate of the conditional risk-premium. Therefore, the quantity
Et [mt+1] has the special interpretation that it is the conditional risk-premium of the
efficient factor. Given the large cross-section, we are able to estimate it using the most
recent econometric tools.

I employ the recent development of Gagliardini, Ossola, and Scaillet (2016) to
achieve this goal. The appendix provides details on the variable specification includ-
ing test assets, common and firm-specific instruments. Figure 7 plots the estimated

Figure 7: Conditional Risk Premium ofmn and Mkt-Rf

conditional risk-premium of the efficient factor. The conditional λt,mn is positive over
time, consistent with the previously documented evidence that its un-conditional risk-
premium λmn is significantly positive. Moreover, it exhibits strongly pro-cyclical pat-
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tern, dropping significantly during NBER recessions, while remaining at high level
during economic expansion.

In stark contrast, the conditional risk-premium of the market is not significantly
above or below zero, and is highly counter-cyclical, with conditional risk-premium
being high during recession while low during expansion. This behavior of the market
risk-premium indicates that market return is not the mean-variance efficient return.
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A Empirical Details

A.1 Details on Data

Daily and monthly stock return files are obtained from CRSP(Center for Research in
Security Prices), using all common stocks (with share code of 10 or 11), listed in NYSE,
AMEX or NASDAQ (exchange code 1, 2 or 3), from June 30, 1967 to December 31,
2014, resulting in 23,142 unique securities, and on average about 5,000 securities at
a given point in time. To help avoid survivorship bias, I further adjust the individ-
ual stock returns for delisting, using the delisting return provided by CRSP as the
return after the last trading month. Firm book information is obtained from COM-
PUSTAT database and merged with CRSP database via the CRSP PERMNO num-
ber. The firm-level characteristics (Size, B/M ratio, Momentum, Long-term Rever-
sal, Short-term Reversal, Operating Profitability and Investment) are calculated ac-
cording to Fama and French (2014). Daily and monthly return series of the 8 fac-
tors (Mkt-Rf, Small-Minus-Big, High-Minus-Low, Robust-Minus-Weak, Conservative-
Minus-Aggressive, Momentum, Long-term Reversal, Short-term Reversal), 5 sets of
5× 5 portfolios (25 Size—Book-to-Market, 25 Size—Momentum, 25 Book-to-Market—
Investment, 25 Size—Investment, 25 Size—Operating Profitability), and monthly re-
turn series of the 3 sets of 5 × 5 portfolios (25 Size—Net Income, 25 Size—Total Vari-
ance, 25 Size—Residual Variance) are taken from the website of Kenneth French9. De-
fault spread (return difference between Aaa and Baa bonds) and term spread (return
difference between 10-year U.S. government bond and 3-month Treasury Bill) series
are obtained from WRDS (Wharton Research Data Services). Monthly series of liq-
uidity factor and decile portfolios are obtained from Stambaugh’s website10. Monthly
series of Quality-Minus-Junk, Betting-Against-Beta and the Devil factors and respec-
tively their decile portfolios are obtained from Andrea Frazzini’s website11. Monthly
series of q-factors are provided by Lu Zhang. Monthly series of Novy-Marx and Ve-
likov (2016) anomalies are obtained from Robert Novy-Marx’s website12.

A.2 Details on the Efficient Portfolio

A.2.1 Risk-Parity Efficient Allocation

In order to compare directly with the market, I compute a “risk-parity” scaled weight
ŵp

t , so that the resulting portfolio have the same expected volatility as the market excess

9URL:http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
10URL:http://finance.wharton.upenn.edu/~stambaugh/liq_data_1962_2014.txt
11URL:http://www.econ.yale.edu/~af227/data_library.htm
12URL:http://rnm.simon.rochester.edu/data_lib/index.html
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return:

ŵp
t = ŵ∗t ·

 (
σ̂mkt
t

)2

(ŵ∗t )
′
Σ̂

HF

t ŵ∗t

det
(
Σ̂

HF

t

)
det
(
Σ̂

LF

t

)
1/2

(53)

where σ̂mkt
t is the realized volatility of the market excess return in the same expanding

window.

A.2.2 Time-Varying Allocations for 8 Assets

Figure 8: Efficient Portfolio Allocation for 8 Assets

Figure 8 plots the time-series dynamics of the efficient allocation over time. Among
smaller stocks, the efficient allocation go short in low value and momentum stocks
(SZ1BM1, SZ1MOM1) and go long in high value and momentum stocks (SZ1BM5,
SZ1MOM5) while within each pair are highly negatively correlated over time. The
reverse is observed for larger stocks, the efficient allocation go long in low value and
momentum stocks (SZ5BM1,SZ5MOM1) and short in high value momentum stocks
(SZ5BM5, SZ5MOM5);

It is evident from the time-series plot that the efficient weights between the pairs
(SZ1BM1, SZ1MOM1) and (SZ1BM5, SZ1MOM5) are highly negatively correlated. It is
also evident (but harder to see because of the scale) that the pairs (SZ5BM1,SZ5MOM1,
green and pink), and (SZ5BM5,SZ5MOM5, orange and gray) are highly negatively
correlated.

A.2.3 Sanity Check

Table 1 and Figure 8 suggest that the efficient allocation is concentrated on strong
long short positions on the two pairs of asset: (SZ1BM1, SZ5BM1) and (SZ1MOM1,
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SZ5MOM1). Indeed, the two pairs contribute large part of efficiency gain in terms of
Sharpe Ratio for the efficiency portfolio.

A.2.4 Alternative Efficient Portfolios

Figure 9: The Efficient Portfolios: Alternative Construction

A.3 Robustness Checks

A.4 Common Questions

Is it a tautology?
“The Fama-French model is not a tautology, despite the fact that factors and test portfolios

are based on the same set of characteristics.”
— John Cochrane Asset Pricing 2005, p. 442, para. 3

FF3 model(s) take(s) the portfolios that cannot be priced well by CAPM
as base assets, then forms 2 new factor(s) from the base assets to price base anoma-
lies and many other new anomalies.

ALL12 - FF3 model(s) take(s) the portfolios that cannot be priced well by FF3
as base assets, then forms 8 new factor(s) from the base assets to price base anoma-
lies and many other new anomalies.

RAP1 model(s) take(s) the portfolios that cannot be priced well by FF3
as base assets, then forms 1 new factor(s) from the base assets to price base anoma-
lies and many other new anomalies.
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Figure 10: Non-Miss-Specification-Robust R2 Across Models and Test Assets

A.5 Conditional Risk-Premium Estimation

B Proofs

Proof of Proposition 1

(a) Assumption 2⇒ “identification”
The Equation (9) can be written as

rt+1(i) = {1, zt(i)′} ×
{
κt+1, δ

′
t+1

}′
+ et+1(i)
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Then using Assumption 2, with probability 1, we have∫
Γ

{1, zt(i)′}′ rt+1(i)dG(i) =

∫
Γ

{1, zt(i)′}′ × {1, zt(i)′} ×
{
κt+1, δ

′
t+1

}′
dG(i)

=

{
1 0

0 St

}
×
{
κt+1, δ

′
t+1

}′
+

∫
Γ

{1, zt(i)′}′ et+1(i)dG(i)

=

{
1 0

0 St

}
×
{
κt+1, δ

′
t+1

}′
Using invertibility of St, with probability 1, we have

{
κt+1, δ

′
t+1

}′
=

{
1 0

0 S−1
t

}
×
∫

Γ

{1, zt(i)′}′ rt+1(i)dG(i)

a unique solution to Equation (9)
(b) Not “Assumption 2 part (1)”⇒ No “identification”

First suppose there exists a weighting scheme wt(i) < ∞ known at time t, such
that

xt =

∫
Γ

[wt(i)]
2 dG(i) ∈ (0,∞)

and, there exists a Ω0 ⊂ Ω, with P(Ω0) > 0, such that the realizations of the
random variables restricted to Ω0 makes∫

Γ

wt(i)et+1(i)dG(i) = ct+1 6= 0

Then define

wt =

∫
Γ

wt(i)dG(i)

w̃t(i) =wt(i)− wt

yt+1 =

∫
Γ

w̃t(i)et+1(i)dG(i)

κ0
t+1 =wt

∫
Γ

et+1(i)dG(i)

ẽt+1(i) =et+1(i)− κ0
t+1 − w̃t(i)

yt+1

xt

κ̃t+1 =κt+1 + κ0
t+1

δ̃t+1 =

{
δ′t+1,

yt+1

xt

}′
z̃t+1(i) = {zt+1(i)′, w̃t(i)}′
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Notice for ω ∈ Ω0, by construction, ct+1 = κ0
t+1 + yt+1 6= 0, thus at least one of

κ0
t+1, yt+1 not zero for ω ∈ Ω0.

Moreover, for all ω ∈ Ω, since xt ≥ w2
t (second moment versus square of first

moment), consider four possible cases:

Case 1: ω ∈ Ω1 :=
{
ω
∣∣∣w2

t = xt, ω ∈ Ω0
}

,
This means that the weights wt(i) is almost constant in the cross-section, in
this case, yt+1 = 0 then κ0

t+1 = ct+1 6= 0. The collection of variables

{κ̃t+1, δt+1, ẽt+1(i), zt+1(i)}

satisfy all the conditions of the Assumption 1, they generate exactly the
same distribution for rt+1(i) and zt(i), while κ̃t+1 6= κt+1, so not identified.

Case 2: ω ∈ Ω2 :=
{
ω
∣∣∣w2

t < xt, yt+1 = 0, ω ∈ Ω0
}

yt+1 = 0 implies that κ0
t+1 = ct+1 6= 0, thus the collection of variables

{κ̃t+1, δt+1, ẽt+1(i), zt+1(i)}

satisfy all the conditions of the Assumption 1, they generate exactly the
same distribution for rt+1(i) and zt(i) as the original variables, while κ̃t+1 6=
κt+1, so not identified.

Case 3: ω ∈ Ω3 :=
{
ω
∣∣∣w2

t < xt, κ
0
t+1 = 0, ω ∈ Ω0

}
This means that w̃t(i) satisfies

∫
Γ

[wt(i)]
2 dG(i) = xt − w2

t ∈ (0,∞).
Also κ0

t+1 = 0 implies that yt+1 6= 0, then the collection of variables{
κ̃t+1, δ̃t+1, ẽt+1(i), z̃t+1(i)

}
satisfy all conditions of the Assumption 1, and the new additional feature
w̃t(i) is relevant with its corresponding component in vector δ̃t+1, i.e.

yt+1

xt
non-zero. They generate exactly the same distribution for rt+1(i) and z̃t(i)
as the original variables while δ̃t+1 6= δt+1, so not identified.

Case 4: ω ∈ Ω4 :=
{
ω
∣∣∣w2

t < xt, κ
0
t+1 6= 0, yt+1 6= 0, ω ∈ Ω0

}
The collection of variables{

κ̃t+1, δ̃t+1, ẽt+1(i), z̃t+1(i)
}

satisfy all conditions of the Assumption 1, and the new additional feature
w̃t(i) is relevant with its corresponding component in vector δ̃t+1, i.e.

yt+1

xt
non-zero. They generate exactly the same distribution for rt+1(i) and z̃t(i)
as the original variables while δ̃t+1 6= δt+1 and κ̃t+1 6= κt+1, so not identified.
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Since Ω0 = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4, and P(Ω0) > 0, for all ω ∈ Ω0, it is alway possible
to redefine variables that are different from original parameters such that the
resulting distributions are observationally equivalent, thus Equation (9) is not
identified.

(c) Not “Assumption 2 part (2)”⇒ No “identification”
Suppose there exist Ω0 ⊂ Ω, with P(Ω0) > 0, for ω ∈ Ω0, St is singular.
Let L = rank(St), we have 1 ≤ L < K. Since St is symmetric positive semi-
definite real matrix, there exists an orthonormal matrixQt and a diagonal matrix
Λt, such that St have the following singular value decomposition

St = QtΛtQ
′
t

By construction, Λt has rank L and thus L non-zero entries on the diagonal (and
in the whole matrix), and N = K − L zero entries on the diagonal. Let their
locations be: Non-zero entries: {l1, l2, ..., lL}, zero-entries {i1, i2, ..., iN}.
Define the selection matrices:

JL =


· · ·

l1-th col.
1 0 0 0 0 0 · · ·

· · · 0
l2-th col.

1 0 0 0 0 · · ·
...

...
...

...
...

...
...

...

· · · 0 0 0 0
lL-th col.

1 0 · · ·


L×K

JN =


· · ·

i1-th col.
1 0 0 0 0 0 · · ·

· · · 0
i2-th col.

1 0 0 0 0 · · ·
...

...
...

...
...

...
...

...

· · · 0 0 0 0
iN -th col.

1 0 · · ·


L×N

By construction, JLΛtJ
′
L selects non-zero entries of Λt and produce a L× L full

rank diagonal SL matrix, and JNΛtJ
′
N produce a N ×N null matrix SN with all

entries equal to zero. Moreover the identity matrix IK can be decomposed as

IK = J ′LJL + J ′NJN

The K × K matrix QtJ
′
NJNQ

′
t has rank N > 0, therefore there exists a K × 1

vector ηt, such that the K × 1 vector θt := QtJ
′
NJNQ

′
tηt 6= 0K×1
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Now consider the following scaler:

at(i) = zt(i)
′θt = zt(i)

′QtJ
′
NJNQ

′
tηt

This scaler is zero, to see this∫
Γ

at(i)
2dG(i) =

∫
Γ

QtJ
′
NJNQ

′
tzt(i)zt(i)

′QtJ
′
NJNQ

′
tdG(i)

=QtJ
′
NJNQ

′
t

[∫
Γ

zt(i)zt(i)
′dG(i)

]
QtJ

′
NJNQ

′
t

=QtJ
′
NJNQ

′
tStQtJ

′
NJNQ

′
t

=QtJ
′
NJNQ

′
tQtΛtQ

′
tQtJ

′
NJNQ

′
t

=QtJ
′
NJNΛtJ

′
NJNQ

′
t

=0

The last identity comes from the fact that JNΛtJ
′
N = 0N×N . Thus, it must be

that at(i) = zt(i)
′θt = 0, even though θt 6= 0K×1 Thus we have showed that

the re-defined vector δ̃t+1 = δt+1 + θt 6= δt+1 satisfies Equation (9) and generate
exactly the same distribution as the original parameters. Thus Equation (9) is not
identified with probability P(Ω0) > 0

Proof of Proposition 2
First, I show the equivalence of Problems 1 and 2, then derive the solution.

The objective function of Problem 1 is

L1(y1,w) = V art [w′xt+1] s.t. Et [w′xt+1] = y1

The objective function of Problem 2 is

L2(y2,w) =y2
2 − 2y2Et [w′xt+1] +Et

[
(w′xt+1)

2
]

= {y2 −Et [w′xt+1]}2
+ V art [w′xt+1]

Thus

L2(y1,w) = L1(y1,w)

Next, I derive the solution.

L1(y,w) = w′Σtw s.t.w′µt = y
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Using Equation 14, we have Σt = V art(pt+1) = StDtSt, and by Assumption 3, we
have that

∂2

(∂w)(∂w′)
w′Σtw = Σt = StDtSt

is positive definite. Therefore the objective function in L1(y) is globally convex, con-
tinuous and has a global minimum.

Now consider the Lagrangian

L(w, λ) = w′Σtw + λ(w′µt − y)

The first order conditions are:

∂L
∂w

: 2Σtw + λµt = 0

∂L
∂λ

: w′µt − y = 0

Solving for λ first and then for w to arrive at the solution

λ =
−2y

µ′tΣ
−1
t µt

w =
y

µ′tΣ
−1
t µt

Σ−1
t µt = cw∗t

where the scaling constant c =
y

µ′tΣ
−1
t µt

�

Proof of Proposition 3
Consider any excess return ret+1 formed at time t with weights wt(i) for asset i

ret+1 =

∫
Γ

wt(i)rt+1(i)dG(i)

For it to be excess return it must have zero cost, thus∫
Γ

wt(i)dG(i) = 0

Using Equation (9), we have

ret+1 =

∫
Γ

wt(i)κt+1dG(i) +

∫
Γ

wt(i)zt(i)
′δt+1dG(i) +

∫
Γ

wt(i)et+1(i)dG(i)

=0 +

[∫
Γ

wt(i)zt(i)
′dG(i)

]
δt+1 +

∫
Γ

wt(i)et+1(i)dG(i)
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Using Equation 14, we have

ret+1 = ω′txt+1 + vt+1

where

ω′t =

[∫
Γ

wt(i)zt(i)
′dG(i)

]
S−1

t

vt+1 =

∫
Γ

wt(i)et+1(i)dG(i)

and

Et [vt+1|xt+1] =

∫
Γ

wt(i)Et [et+1(i)|Stδt+1] dG(i) = 0

by the conditional exogeneity in Assumption 4.
Further sincemt+1 is efficient for all portfolios formed among xt+1,mt+1 is therefore

efficient for all such ret+1 �

Proof of Proposition 4
First I show the relationships among expectations:

Et [rt+1(i)− κt+1] = β̃t(i)Et [mt+1] ∀i ∈ [0, 1]

By direct algebraic manipulation, using Equation 14 and Equation (9)

mt+1 =x′t+1Σ
−1
t µt

=δ′t+1St (StDtS
′
t)
−1
StEt [δt+1]

=δt+1
′D
−1
t Et [δt+1]

Covt [rt+1(i),mt+1] =Covt [κt+1,mt+1]

+ zt(i)
′
Et

[
δt+1δ

′
t+1

]
D−1

t Et [δt+1]

− zt(i)′Et [δt+1]Et

[
δ′t+1

]
D−1

t Et [δt+1]

+ Covt [et+1(i),mt+1]

=Covt [κt+1,mt+1] + zt(i)
′
Et [δt+1]

V art [mt+1] =Et

[
m′t+1mt+1

]
−Et

[
m′t+1

]
Et [mt+1]

=Et

[
δ′t+1

]
D−1

t Et [δt+1]

=Et [mt+1]
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Therefore, we have

Et [rt+1(i)] = Et [κt+1] + zt(i)
′
Et [δt+1]

= Et [κt+1] +
Covt [rt+1(i),mt+1]

V art [mt+1]
Et [mt+1]− Covt [κt+1,mt+1]

V art [mt+1]
Et [mt+1]

= Et [κt+1] + β̃t(i)Et [mt+1]

where

β̃t(i) ≡
Covt [r̃t+1(i),mt+1]

V art [mt+1]

and ∫
Γ

β̃t(i)dG(i) = 0

follows immediately.
Now define ut+1(i) ≡ rt+1(i) − κt+1 − β̃t(i)mt+1, we have Et [ut+1(i)] = 0 by defini-

tion.
Moreover,

Et [ut+1|mt+1] =Et [r̃t+1(i)|mt+1]−Et

{
β̃t(i)mt+1|mt+1

}
Using Assumption 1, the law of iterated expectation, and the fact thatmt+1 = δ′t+1D

−1
t Et [δt+1]

we have

Et [r̃t+1(i) | mt+1] =Et [zt(i)
′δt+1 + et+1(i) | mt+1]

=Et {Et [zt(i)
′δt+1 + et+1(i) | δt+1] | mt+1}

=zt(i)
′
Et [δt+1 | mt+1]

and by definition

Et

{
β̃t(i)mt+1 | mt+1

}
=Et

{
Covt [r̃t+1(i),mt+1]

V art [mt+1]
mt+1 | mt+1

}
=Et

{
zt(i)

′
Et [δt+1]

Et

[
δ′t+1

]
D−1

t Et [δt+1]
δ′t+1D

−1
t Et [δt+1] | mt+1

}

=Et

{
Et

{
zt(i)

′
Et [δt+1]

Et

[
δ′t+1

]
D−1

t Et [δt+1]
δ′t+1D

−1
t Et [δt+1] | δt+1

}
| mt+1

}
=zt(i)

′
Et [δt+1 | mt+1]
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Therefore,

Et [ut+1|mt+1] = 0

Next, integrate the equation

rt+1(i) = κt+1 + β̃t(i)mt+1 + ut+1(i)

over asset index set Γ we have that∫
Γ

ut+1(i)dG(i) = 0

�

Proof of Proposition 5
Using Assumption 5, the matrix S

c

t has rank L ≥ 1 for ω ∈ Ω0 ⊂ Ω, and P(Ω0) = 1.
Let N = K−L > 0, similar to the proof of Proposition 1, we can use singular value

decomposition of S
c

t = QtΛtQ
′
t, with Qt orthonormal matrix and Λt diagonal, and

define the selection matrices exactly the same as before, JL and JN , such that JNΛtJ
′
N

produce a N ×N null matrix with all entries being zero, and JLΛtJ
′
L produce a L×L

full rank matrix with diagonals being the L non-zero elements of Λt. Moreover, the
following decomposition of identity matrix holds:

IK = J ′NJN + J ′LJL

Now define the L×K matrix

Bc
t := JLQ

′
t

it has rank L since rank(JL) = L andQt is full rank.
Let

zct(i) =Bc
tz

c
t(i)

δct+1 =Bc
tδt+1

and verify all parts of Assumptions 1,2,3,4 are satisfied for all i ∈ C.

(a) “Assumption 1, Equation (9)”: Notice that since Qt is orthonormal, its inverse is
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its transpose, the following identity holds

zct(i)
′δt+1 =zct(i)

′QtIKQ
′
tδt+1

=zct(i)
′Qt {J ′NJN + J ′LJL}Q′tδt+1

=zct(i)
′QtJ

′
NJNQ

′
tδt+1

+ zct(i)
′QtJ

′
LJLQ

′
tδt+1

=zct(i)
′QtJ

′
NJNQ

′
tδt+1

+ zct(i)
′δct+1

What is the scaler at(i) := zct(i)
′QtJ

′
NJNQ

′
tδt+1?

Lets integrate it’s square over the set C to uncover its value∫
C

[at(i)]
2 dG(i) =

∫
C

δ′t+1QtJ
′
NJNQ

′
tz

c
t(i)z

c
t(i)

′QtJ
′
NJNQ

′
tδt+1dG(i)

=δ′t+1QtJ
′
NJNQ

′
t

{∫
C

zct(i)z
c
t(i)

′dG(i)

}
QtJ

′
NJNQ

′
tδt+1

=δ′t+1QtJ
′
NJNQ

′
t {St}QtJ

′
NJNQ

′
tδt+1

=δ′t+1QtJ
′
NJNQ

′
tQtΛtQ

′
tQtJ

′
NJNQ

′
tδt+1

=δ′t+1QtJ
′
NJNΛtJ

′
NJNQ

′
tδt+1

=δ′t+1QtJ
′
N0K×KJNQ

′
tδt+1

= 0

Therefore, we have established Equation (30).
(b) “Assumption 1, non-degeneracy part” + “Assumption 2, part (2)”:

Sc
t =

∫
C

zct(i)z
c
t(i)

′dG(i) = Bc
tS

c

t(B
c
t)
′

has rank L, full rank, therefore, it is symmetric positive definite. Assumption
2 part (2). Also, all symmetric positive definite matrices has positive diagonal
elements, thus ∫

C

[
zc,lt (i)

]2

dG(i) > 0

for all l ≤ L, and Assumption 1 non-degeneracy are satisfied.
(c) “Assumption 1 normalization”

58



Integrate ∫
C

zct(i)dG(i) =

∫
C

Bc
tz

c
t(i)dG(i)

=Bc
t

∫
C

zct(i)dG(i)

= 0

thus Assumption 1 normalization is satisfied.
(d) “Assumption 1 relevance”

Next, suppose for some l element of vector δct+1, P
[
δc,lt+1 = 0

∣∣∣Ft

]
= 1, that means

there exist a L × 1 vector at = (..., 0, 1, 0, ...)′ with l-th element equals to 1 while
every other element equals to zero, such that P

[
a′tδ

c
t+1 = 0

∣∣∣Ft

]
= 1. Now com-

pute its conditional second moment, with probability 1,

0 = Et

[
a′tδ

c
t+1(δct+1)′at

]
= a′tB

c
tEt

[
δt+1δ

′
t+1

]
(Bc

t)
′at

subtract both sides by a number squared a′tB
c
tEt [δt+1]Et

[
δ′t+1

]
(Bc

t)
′at

0 >− a′tBc
tEt [δt+1]Et

[
δ′t+1

]
(Bc)′at

=a′tB
c
tEt

[
δt+1δ

′
t+1

]
(Bc

t)
′at

− a′tBc
tEt [δt+1]Et

[
δ′t+1

]
(Bc

t)
′at

=a′tB
c
tDt(B

c
t)
′at

Consider the K × 1 vector bt = (Bc
t)
′at, its inner product with itself is

a′tB
c
t(B

c
t)
′at =a′tJLQ

′
tQtJ

′
Lat

=a′tJLJ
′
Lat

=a′tILat

=a′tat = 1

Thus with probability 1, we have bt 6= 0K×1, yet b′tDtbt < 0, contradict with the
almost sure positive definite assumption about Dt from Assumption 3. There-
fore, no element of vector δct+1 is zero with probability 1. Hence, Assumption 1
relevance part is satisfied.

(e) “Assumption 2 part (1)”
This is automatically satisfied since et+1(i) is the same as original, and C ⊂ Γ

(f) “Assumption 3
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Define

Dc
t :=Et

[
δct+1

(
δct+1

)′]−Et

[
δct+1

]
Et

[(
δct+1

)′]
=Bc

tDt (Bc
t)
′

Let any a 6= 0L×1, we have previously shown that (Bc
t)
′a 6= 0K×1 Since, Dt is

symmetric positive definite,

a′Dc
ta =a′Bc

tDt(B
c
t)
′a > 0

Thus,Dc
t is also symmetric positive definite.

(g) “Assumption 4”
Notice for all i ∈ C ⊂ Γ

Et

[
et+1(i)

∣∣∣δct+1

]
= Et

[
et+1(i)

∣∣∣Bc
tδt+1

]
= Et

[
et+1(i)

∣∣∣δt+1

]
= 0

�

Proof of Proposition 6
Apply directly Proposition 5, and Theorem 4 to the collection of variables:

{
rt+1(i), κct+1, z

c
t(i),S

c
t , δ

c
t+1, et+1(i)

}
and set C �

Proof of Proposition 7
Consider the decomposition of returns in Equation (9):

rt+1(i) = κ∗t+1 +
(
κt+1 − κ∗t+1

)
+ zt(i)

′δt+1 + et+1(i)

The portfolio κt+1 − κ∗t+1 is an excess return, therefore by Equation 14 and 3, it can be
decomposed into

κt+1 − κ∗t+1 =(ω∗t )
′pt+1 + v∗t+1

=(ω∗t )
′Stδt+1 + v∗t+1
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where Et

[
v∗t+1|δt+1

]
= 0 We have

Covt [rt+1(i),mt+1] =Covt
[
κ∗t+1,mt+1

]
+ Covt

[
κt+1 − κ∗t+1,mt+1

]
+ zt(i)

′
Et

[
δt+1δ

′
t+1

]
D−1

t Et [δt+1]

− zt(i)′Et [δt+1]Et

[
δ′t+1

]
D−1

t Et [δt+1]

+ Covt [et+1(i),mt+1]

=Covt
[
κ∗t+1,mt+1

]
+Et

[
κt+1 − κ∗t+1

]
+ zt(i)

′
Et [δt+1]

Thus

Et [rt+1(i)] =Et

[
κ∗t+1

]
+Et

[
κt+1 − κ∗t+1

]
+ zt(i)

′
Et [δt+1] +Et [et+1(i)]

=Et

[
κ∗t+1

]
+
Covt [rt+1(i),mt+1]− Covt

[
κ∗t+1,mt+1

]
V art (mt+1)

Et [mt+1]

=Et

[
κ∗t+1

]
+
[
βt(i)− β∗t+1

]
Et [mt+1]

Define u∗t+1(i) ≡ rt+1(i)− κ∗t+1 −
[
βt(i)− β∗t+1

]
mt+1, we have Et

[
u∗t+1(i)

]
= 0. Also

βt(i)V art [mt+1] =Covt [rt+1(i),mt+1]

=Covt
[
κ∗t+1 − β∗t+1mt+1,mt+1

]
+ Covt [βt(i)mt+1,mt+1]

+ Covt
[
u∗t+1(i),mt+1

]
=0 + βt(i)V art [mt+1] + Covt

[
u∗t+1(i),mt+1

]

Therefore Et

[
u∗t+1(i)mt+1

]
= 0

Moreover, since κ∗t+1 is the Stochastic Discount Factor net return, and d∗t+1 = κ∗t+1 + 1

is the Stochastic Discount Factor gross return, using Assumption 4, and the fact that
mt+1 is an excess return. We have Et

[
mt+1d

∗
t+1

]
= 0, and

Et

[
rt+1(i)d∗t+1

]
=Et

[
(d∗t+1)2

]
−Et

[
d∗t+1

]
=Et

[
κ∗t+1d

∗
t+1

]
+Et

[
[βt(i)− β∗t ]mt+1d

∗
t+1

]
+Et

[
d∗t+1u

∗
t+1(i)

]
Therefore Et

[
d∗t+1u

∗
t+1(i)

]
= Et

[
κ∗t+1u

∗
t+1(i)

]
= 0 �

Proof of Proposition 8
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Using Proposition 5

rft = rt+1(if ) = κ∗t+1 +
[
βt(i

f )− β∗t
]
mt+1 + u∗t+1(if )

Since

Et

[
u∗t+1(i)

]
= Et

[
u∗t+1(i)mt+1

]
= Et

[
u∗t+1(i)κ∗t+1

]
= 0

It must be that

0 = V art

[
rft

]
=V art

[
κ∗t+1 +

[
βt(i

f )− β∗t
]
mt+1

]
+ 2Covt

[
κ∗t+1 +

[
βt(i

f )− β∗t
]
mt+1, u

∗
t+1(if )

]
+ V art

[
u∗t+1

]
=V art

[
κ∗t+1 +

[
βt(i

f )− β∗t
]
mt+1

]
+ 0 + V art

[
u∗t+1

]
Therefore u∗t+1 = 0 and κ∗t+1 +

[
βt(i

f )− β∗t
]
mt+1 = rft

Moreover, by definition

βt(i
f ) = Covt

[
rft ,mt+1

]
/V art [mt+1] = 0

Therefore we have

rft = κ∗t+1 − β∗tmt+1

�

Proof of Proposition 10
Using Propositions 8 and 9

1 + rft =d∗t+1 − β∗tmt+1

=d∗t+1 −
Covt

[
d∗t+1 − 1,mt+1

]
V art [mt+1]

mt+1

=d∗t+1 −
Et

[
d∗t+1mt+1

]
−Et

[
d∗t+1

]
Et [mt+1]

V art [mt+1]
mt+1

=d∗t+1 +Et

[
d∗t+1

]
mt+1

Take expectation w.r.t time t information set,

1 + rft = Et

[
d∗t+1

]
+Et

[
d∗t+1

]
Et [mt+1]
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solve for Et

[
d∗t+1

]
, which is equal to −β∗t to arrive at

rft = κ∗t+1 +
1 + rft+1

1 +Et [mt+1]
mt+1

Thus we have

κ∗t+1 = rft −
1 + rft

1 +Et [mt+1]
mt+1

Notice that mt+1 is the zero-cost efficient portfolio. �
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