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Abstract

We develop a methodology to analyze capital misallocation (dispersion in static marginal
products) measure the contributions of technological/informational frictions and a rich
class of firm-specific factors. An application to Chinese manufacturing firms reveals that
adjustment costs and uncertainty, while significant, generate only a modest amount of
MPK dispersion, which stems largely from other factors. For large US firms, adjustment
costs are relatively more salient, though firm-specific factors still account for the bulk of
observed misallocation. We also find that heterogeneity in technologies/markups account
for a limited fraction of observed misallocation in China, but a potentially large share for
US firms.
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1 Introduction

A large and growing body of work analyzes the ‘misallocation’ of productive resources across
firms, i.e., dispersion in static marginal products, and the resulting adverse effects on aggre-
gate productivity and output.1 A number of recent studies examine the role of specific factors
hindering period-by-period marginal product equalization. Examples of such factors include
adjustment costs, imperfect information, financial frictions, as well as firm-specific ‘distortions’
stemming from economic policies or other institutional features. The importance of disentan-
gling the role of these forces is self-evident. For one, a central question, particularly from a
policy standpoint, is whether misallocation stems largely from efficient sources e.g., technologi-
cal factors like adjustment costs or heterogeneity in production technologies, or inefficient ones,
such as policy-induced distortions or markups. Similarly, understanding the exact nature of
distortions – e.g., the extent to which they are correlated with firm characteristics – is essential
to analyze their implications beyond static misallocation, for example, on firm entry and exit
decisions and investments that influence future productivity.2

In this paper, we develop and implement a tractable methodology to distinguish various
sources of capital misallocation using observable data on revenues and inputs. Our analy-
sis proceeds in two steps. First, we augment a standard general equilibrium model of firm
dynamics with a number of forces that contribute to ex-post dispersion in static marginal
products, specifically (i) capital adjustment costs, (ii) informational frictions, in the form of
imperfect knowledge about firm-level fundamentals and (iii) a class of firm-specific factors,
meant to capture all other forces influencing investment. This includes, but is not limited
to, unobserved heterogeneity in markups and/or production technologies, financial frictions,
or institutional/policy-related distortions. In this first part of our analysis, rather than take
a stand on the exact nature of these factors, we adopt a flexible specification that allows for
time-variation and correlation with firm characteristics. The environment is an extension of
the canonical Hsieh and Klenow (2009) framework to include dynamic considerations in firms’
investment decisions. The main contribution of this part is an empirical strategy designed to
precisely measure the contribution of each of these forces using widely available firm-level data.

In the second part of our analysis, we analyze various candidates for the firm-specific factors
in (iii) above. First, we extend our methodology to investigate the role of unobserved hetero-
geneity in markups and production technologies in generating observed misallocation. Next, we
analyze the effect of policies that affect or restrict the size of firms. We also describe a model of
financial/liquidity considerations. We show that the latter two forces are, in a sense, isomorphic

1Throughout the paper we use the term misallocation to refer to dispersion in static marginal products,
whether stemming from distortionary factors or efficient ones, for example, adjustment costs.

2See, e.g., Restuccia and Rogerson (2017) for an in-depth discussion of these margins.
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to a broader set of firm-specific factors and so are difficult to disentangle using production-side
data alone. In other words, additional information (e.g., firm-level financial data) would be
required to separately quantify their impact.

Our key innovation is to explore the sources of marginal product dispersion within a unified
framework and thus provide a more robust decomposition of the observed misallocation in the
data. In contrast, we show that focusing on particular sources one-by-one while abstracting from
others – a common approach in the literature – is potentially problematic. To the extent the
data reflect the combined influence of a number of factors, examining them in isolation runs the
risk of reaching biased conclusions of their severity and contribution to observed misallocation.
Our strategy for disentangling these forces is based on a simple insight: although each moment
is a complicated function of multiple factors, making any single moment insufficient to identify a
particular factor, combining the information in a wider set of moments – specifically, elements of
the covariance matrix of capital and revenues – can be extremely helpful in disentangling these
factors. Indeed, we show that allowing these forces to act in tandem is essential to reconcile a
broad set of moments in firm-level investment dynamics.

To understand the measurement difficulty, consider, as an example, convex adjustment costs.
When they are the only force present, a single moment, for example, the variability of invest-
ment, has an intuitive, one-to-one mapping with their magnitude – the greater the adjustment
cost, the lower is investment volatility. However, suppose that there are other factors that
also dampen investment volatility (e.g., firm-specific distortions or implicit ‘taxes’ correlated
with fundamentals). In this case, using this single moment in isolation to make inferences re-
garding adjustment costs leads to an upward bias. As a second example, consider the effects
of firm-level uncertainty, which reduces the contemporaneous correlation between investment
and fundamentals. However, a low measured correlation could also be the result of other firm-
specific factors (e.g., distortions or markups) that are uncorrelated with fundamentals. Again,
using this moment in isolation runs the risk of incorrectly measuring the quality of information.

Our empirical strategy overcomes this difficulty by jointly examining a set of carefully chosen
moments. We formalize this identification strategy using a salient special case of our model
– when firm-level fundamentals follow a random walk. The tractability of this case allows us
to derive analytical expressions for the moments and prove that they uniquely identify the
underlying structural parameters that determine the contribution of each factor. Specifically,
four moments, namely, (1) the variance of investment, (2) the autocorrelation of investment, (3)
the correlation of investment with past fundamentals, and (4) the covariance of the marginal
(revenue) product of capital (mrpk) with fundamentals together identify adjustment costs,
uncertainty and the magnitude and correlation structure of other firm-specific factors.

The intuition behind this result is easiest to see in a simple pairwise analysis – this set
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of moments comprises pairs that have opposing effects on a corresponding pair of structural
parameters. As an example, consider the challenge described earlier of disentangling adjustment
costs from other idiosyncratic factors that dampen the firm’s incentives to respond to changing
fundamentals. Both of these forces depress the volatility of investment. However, they have
opposing effects on the autocorrelation of investment - convex adjustment costs create incentives
to smooth investment over time and so tend to make investment more serially correlated. A
distortion that directly reduces the response to fundamentals, on the other hand, increases the
relative importance of transitory factors in investment, reducing the autocorrelation. Holding
all else fixed, these two moments allow us to separate the two forces. Similar arguments can be
developed for the remaining factors as well. In our quantitative work, where we depart from
the polar random walk case, we demonstrate numerically that the same logic carries through.

This logic also emerges in the second part of our analysis, where we dig deeper into factors
other than adjustment/information frictions. First, we use moments of labor and materials
usage to investigate the role of unobserved firm-specific variation in markups and technologies.
Under some conditions, the former is pinned down by the dispersion in materials’ share of
revenues. For the latter, we show how the observed covariance between the marginal products
of capital and labor can be used to derive an upper bound on the potential for heterogeneity in
capital intensities. Intuitively, holding overall returns to scale fixed, a high production elasticity
of capital implies a low labor elasticity, so this type of heterogeneity in technologies is a source of
negative covariance between revenue-capital and revenue-labor ratios. Therefore, the observed
correlation between these objects disciplines the potential for misallocation from this channel.
Next, we show how policies that affect or restrict firm size and/or financial/liquidity costs can
show up as firm-specific factors that are correlated with fundamentals.

We apply our methodology to data on manufacturing firms in China over the period 1998-
2009. These data, taken from the Annual Surveys of Industrial Production, represent a census
of all state and non-state manufacturing firms above a certain size threshold. Our results show
evidence of economically significant adjustment and informational frictions. However, they ac-
count for only a relatively modest fraction of observed misallocation among Chinese firms (about
1% and 10% of overall dispersion in the marginal product of capital, respectively). Losses in
aggregate total factor productivity (TFP) from these two sources (relative to the undistorted
first-best) are 1% and 8%. These findings suggest that a substantial portion of observed misal-
location in China is due to other firm-specific factors, both correlated with fundamentals (and
therefore, vary over time with the fortunes of the firm) and ones that are essentially permanent.
These lead to TFP losses of 38% and 36%, respectively.3

3Our estimation also allows for distortions that are transitory and uncorrelated with firm characteristics.
However, our estimation finds them to be negligible.

4



We also apply the methodology to data on publicly traded firms in the US. Although the
two sets of firms are not directly comparable, the US numbers serve as a useful benchmark to
put our results for China in context.4 As one would expect, the overall degree of misallocation
is considerably smaller for publicly traded US firms. More interestingly, a larger share (about
11%) of observed mrpk dispersion is accounted for by adjustment costs. Uncertainty and other
correlated factors play a smaller role than among Chinese firms, reducing aggregate TFP by 1%
and 3%, respectively. However, even for these firms, other firm-specific fixed factors, although
considerably smaller in absolute magnitude than in China, remain quite significant as drivers
of mrpk dispersion. Our estimates suggest eliminating them could increase TFP by as much
as 13%. In sum, the US results underscore the importance of factors other than technological
and informational frictions in determining the allocation of capital.

How much of these firm-specific factors can be accounted for by variation in markups or
technologies? Our results reveal a modest scope for these forms of heterogeneity in China
– together, they account for at most 27% of mrpk dispersion. In contrast, for US publicly
traded firms, they can explain as much as 90%. These findings suggest that unobserved het-
erogeneity is a promising explanation for the observed ‘misallocation’ in the US, but that
the predominant drivers among Chinese firms lie elsewhere e.g., additional market frictions or
institutional/policy-related distortions. Our analysis shows that size-dependent policies and
certain forms of financial market imperfections are possible candidates.

Before concluding, we show that these patterns – specifically, the relative contributions of
the various forces to observed misallocation – are robust to a number of variations of our baseline
setup. For example, they are largely unchanged when we allow for non-convex adjustment costs
or when labor is also assumed to be subject to the same frictions and distortions as capital. In
the latter instance, since both inputs are affected by each of the forces, the absolute importance
of all factors – i.e., the impact on aggregate TFP and output – is much higher. For example,
adjustment costs and uncertainty in China are estimated to lead to TFP drops of 36% and
32%, respectively, and correlated and permanent factors 144% and 90%. We interpret these
estimates as an upper bound, with reality likely falling somewhere in between this and the
baseline version with frictionless labor. We also address several potential measurement-related
issues, including allowing for sectoral heterogeneity.

The paper is organized as follows. Section 2 describes our model of production and fric-
tional investment. Section 3 spells out our approach to identifying these frictions using the
analytically tractable random walk case, while Section 4 details our numerical analysis and

4We also report results for Chinese publicly traded firms as well as Colombian and Mexican manufacturing
firms. The results regarding the role of various factors in driving misallocation are quite similar to our baseline
findings for Chinese manufacturers.
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presents our quantitative results. Section 5 further investigates the potential sources of firm-
specific idiosyncratic factors. Section 6 explores a number of variants on our baseline approach.
We summarize our findings and discuss directions for future research in Section 7. Details of
derivations and data work are provided in the Appendix.

Related literature. Our paper relates to several branches of literature. We bear a direct
connection to the growing body of work focused on measuring and quantifying the effects of
resource misallocation.5 Following the seminal contributions of Hsieh and Klenow (2009) and
Restuccia and Rogerson (2008), recent attention has shifted toward analyzing the roles of spe-
cific factors in generating misallocation. Important contributions include work by Asker et al.
(2014) on adjustment costs, Buera et al. (2011), Moll (2014), Gopinath et al. (2017) and Midri-
gan and Xu (2014) on financial frictions, David et al. (2016) on uncertainty and Peters (2016)
on markup dispersion. Several recent papers study subsets of these factors in combination. For
example, Gopinath et al. (2017) show that the interactions of capital adjustment costs and size-
dependent financial frictions are important in determining the recent dynamics of misallocation
in Spain. Kehrig and Vincent (2017) combine financial and adjustment frictions to investigate
misallocation within firms, while Song and Wu (2015) estimate a model with adjustment costs,
permanent distortions and heterogeneity in markups/technologies.

Our primary contribution is to develop a unified framework that encompasses many of these
factors and devise an empirical strategy based on observable firm-level data to disentangle them.
We augment a standard adjustment cost model with information frictions and a flexible class
of additional, potentially distortionary, factors. Our modeling of these factors as implicit taxes
that can be correlated with fundamentals follows the approach taken by, e.g., Restuccia and
Rogerson (2008), Guner et al. (2008), Bartelsman et al. (2013), Buera et al. (2013), Buera
and Fattal-Jaef (2016) and Hsieh and Klenow (2014). An analytically tractable special case
of our model allows us to prove identification in an intuitive and transparent fashion. Our
findings underscore the importance of studying such a broad set of forces in tandem. This
breadth is partly what distinguishes us from the work of Song and Wu (2015), who abstract
from time-variation in firm-level distortions (as well as in firm-specific markups/technologies),
ruling out, by assumption, any role for so-called ‘correlated’ or size-dependent distortions.6

Many papers in the literature – e.g., Restuccia and Rogerson (2008), Bartelsman et al. (2013),
Hsieh and Klenow (2014) and Bento and Restuccia (2016) – emphasize the need to distinguish
such factors from those that are orthogonal to fundamentals. This message is reinforced by
our quantitative findings, which reveal a significant role for correlated factors (in addition to

5Restuccia and Rogerson (2017) and Hopenhayn (2014) provide recent overviews of this line of work.
6We also differ from Song and Wu (2015) in our explicit modeling (and measurement) of information frictions

and in our approach to quantifying heterogeneity in markups/technologies.
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uncorrelated, permanent ones), particularly in developing countries such as China.
Our methodology and findings also have relevance beyond the misallocation context, per-

haps most notably for studies of adjustment and informational frictions. A large literature
has examined the implications of adjustment costs, examples of which include Cooper and
Haltiwanger (2006), Khan and Thomas (2008) and Bloom (2009). Our analysis shows that
accounting for other firm-specific factors acting on firms’ investment decisions is potentially
crucial in order to accurately estimate the severity of these frictions and reconcile a broader
set of micro-level moments. A similar point applies to recent work on quantifying firm-level
uncertainty, for example, Bloom (2009), Bachmann and Elstner (2015) and Jurado et al. (2015).

2 The Model

We consider a discrete time, infinite-horizon economy, populated by a representative house-
hold. The household inelastically supplies a fixed quantity of labor N and has preferences over
consumption of a final good. The household discounts time at rate β. The household side of
the economy is deliberately kept simple as it plays a limited role in our study. Throughout the
analysis, we focus on a stationary equilibrium in which all aggregate variables remain constant.

Production. A continuum of firms of fixed measure one, indexed by i, produce intermediate
goods using capital and labor according to

Yit = K α̂1
it N

α̂2
it , α̂1 + α̂2 ≤ 1 . (1)

These intermediate goods are bundled to produce the single final good using a standard CES
aggregator

Yt =

(∫
ÂitY

θ−1
θ

it di

) θ
θ−1

,

where θ ∈ (1,∞) is the elasticity of substitution between intermediate goods and Âit represents
an idiosyncratic demand shifter. This is the only source of fundamental uncertainty in the
economy (i.e., we abstract from aggregate risk).

Market structure and revenue. The final good is produced frictionlessly by a representa-
tive competitive firm. This yields a standard demand function for intermediate good i:

Yit = P−θit Â
θ
itYt ⇒ Pit =

(
Yit
Yt

)− 1
θ

Âit ,
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where Pit denotes the relative price of good i in terms of the final good, which serves as
numeraire. Revenues for firm i at time t are

PitYit = Y
1
θ
t ÂitK

α1
it N

α2
it ,

where
αj =

(
1− 1

θ

)
α̂j, j = 1, 2 .

This framework accommodates two alternative interpretations of the idiosyncratic component
Âit: as a firm-specific shifter of either demand or productive efficiency, and so we simply refer
to Âit as a firm-specific fundamental.

Input choices. In our baseline analysis, we assume that firms hire labor period-by-period
under full information at a competitive wage Wt.7 At the end of each period, firms choose
investment in new capital, which becomes available for production in the following period.
Investment is subject to quadratic adjustment costs, given by

Φ (Kit+1, Kit) =
ξ̂

2

(
Kit+1

Kit

− (1− δ)
)2

Kit , (2)

where ξ̂ parameterizes the severity of the adjustment cost and δ is the rate of depreciation.8

Investment decisions are likely to be affected by a number of additional factors (other than
productivity/demand and the level of installed capital). These could originate, for example,
from distortionary government policies – e.g., taxes, size restrictions or regulations, or other
features of the institutional environment – from other market frictions that are not explicitly
modeled – e.g., financial frictions – or from un-modeled heterogeneity in markups/production
technologies. For now, we do not take a stand on the precise nature of these additional factors.
To capture them, we follow, e.g., Hsieh and Klenow (2009), and introduce a class of idiosyncratic
‘wedges’ that appear in the firm’s optimization problem as proportional taxes on the flow cost of
capital. We denote these wedges by TKit+1 and, in a slight abuse of terminology, refer to them as
‘distortions’ or wedges throughout the paper, even though they may partly reflect sources that
are efficient (for example, production function heterogeneity). In Section 5, we demonstrate
how progress can be made in further disentangling some of these sources.

The firm’s problem in a stationary equilibrium can be represented in recursive form as (we
7We relax this assumption in Section 6.2.
8We generalize this specification to include non-convex costs in Section 6.1. Our quantitative results change

little.
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suppress the time subscript on all aggregate variables)

V (Kit, Iit) = max
Nit,Kit+1

Eit
[
Y

1
θ ÂitK

α1
it N

α2
it −WNit − TKit+1Kit+1 (1− β (1− δ))− Φ (Kit+1, Kit)

]
+ βEit [V (Kit+1, Iit+1)] ,

where Eit [·] denotes the firm’s expectations conditional on Iit, the information set of the firm
at the time of making its period t investment choice. We describe this set explicitly below. The
term 1− β(1− δ) is the user cost per unit of capital.

After maximizing over Nit, this becomes

V (Kit, Iit) = max
Kit+1

Eit
[
GAitK

α
it − TKit+1Kit+1 (1− β (1− δ))− Φ (Kit+1, Kit)

]
(3)

+ Eitβ [V (Kit+1, Iit+1)] ,

where G ≡ (1− α2)
(
α2

W

) α2
1−α2 Y

1
θ

1
1−α2 , Ait ≡ Â

1
1−α2
it and α ≡ α1

1−α2
is the curvature of operating

profits (revenues net of wages).9

Equilibrium. We can now define a stationary equilibrium in this economy as (i) a set of value
and policy functions for the firm, V (Kit, Iit) , Nit (Kit, Iit) and Kit+1 (Kit, Iit) , (ii) a wage W
and (iii) a joint distribution over (Kit, Iit) such that (a) taking as given wages and the law of
motion for Iit, the value and policy functions solve the firm’s optimization problem, (b) the
labor market clears and (c) the joint distribution remains constant through time.

Characterization. We solve the model using perturbation methods. In particular, we log-
linearize the firm’s optimality conditions and laws of motion around the undistorted non-
stochastic steady state, where Ait = Ā and TKit = 1. Appendix A.1.1 derives the following
log-linearized Euler equation:10

kit+1 ((1 + β)ξ + 1− α) = Eit [ait+1 + τit+1] + βξEit [kit+2] + ξkit , (4)

where ξ is a composite parameter that captures the degree of adjustment costs and τit+1 sum-
marizes the effect of TKit+1 on the firm’s investment decision.

9Allowing for labor market distortions that manifest themselves in firm-specific wages has no effect on our
identification strategy or our results about the sources of mrpk dispersion – see Appendix A.2. In Section
6.2, we subject the firm’s labor choice to the same frictions – whether due to adjustment costs, informational
frictions or distortionary factors – as its capital investment decision and show that this setup leads to a very
similar specification with suitably re-defined fundamentals and curvature.

10We use lower-case to denote natural logs, a convention we follow throughout, so that, e.g., xit = logXit.

9



Stochastic processes. We assume that Ait follows an AR(1) process in logs with normally
distributed i.i.d. innovations, i.e.,

ait = ρait−1 + µit, µit ∼ N
(
0, σ2

µ

)
, (5)

where the parameter ρ is the persistence of firm-level fundamentals and σ2
µ the variance of the

innovations.
For the distortion, τit, we adopt a specification that allows for a rich correlation structure,

both over time as well as with firm fundamentals. Specifically, τit is assumed to have the
following representation:

τit = γait + εit + χi, εit ∼ N
(
0, σ2

ε

)
, χi ∼ N

(
0, σ2

χ

)
, (6)

where the parameter γ controls the extent to which τit co-moves with fundamentals. If γ < 0, the
distortion discourages (encourages) investment by firms with stronger (weaker) fundamentals
– arguably, the empirically relevant case. The opposite is true if γ > 0. The uncorrelated
component of τit has an element, εit, that is i.i.d. over time and a permanent term, denoted χi.
Thus, the severity of these factors is summarized by 3 parameters: (γ, σ2

ε , σ
2
χ).

Information. Next, we spell out Iit, the information set of the firm at the time of choosing
period t investment, i.e., Kit+1. This includes the entire history of its fundamental shock
realizations through period t, i.e., {ait−s}∞s=0. Given the AR(1) structure of uncertainty, this
history can be summarized by the most recent observation, namely ait. The firm also observes
a noisy signal of the following period’s innovation in fundamentals:

sit+1 = µit+1 + eit+1, eit+1 ∼ N
(
0, σ2

e

)
,

where eit+1 is an i.i.d., mean-zero and normally distributed noise term. This is in essence an
idiosyncratic ‘news shock,’ since it contains information about future fundamentals. Finally,
firms also perfectly observe the uncorrelated transitory component of distortions, εit+1 (as well
as the fixed component, χi) at the time of choosing period t investment. They do not see the
correlated component but are aware of its structure, i.e., they know γ.

Thus, the firm’s information set is given by Iit = (ait, sit+1, εit+1, χi). Direct application of
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Bayes’ rule yields the conditional expectation of the fundamental ait+1:

ait+1|Iit ∼ N (Eit [ait+1] ,V) where

Eit [ait+1] = ρait +
V
σ2
e

sit+1, V =

(
1

σ2
µ

+
1

σ2
e

)−1

.

There is a one-to-one mapping between the posterior variance V and the noisiness of the signal,
σ2
e (given the volatility of fundamentals, σ2

µ). In the absence of any learning (or ‘news’), i.e.,
when σ2

e approaches infinity, V = σ2
µ, that is, all uncertainty regarding the realization of the

fundamental shock µit+1 remains unresolved at the time of investment. In this case, we have
a standard one period time-to-build structure with Eit [ait+1] = ρait. At the other extreme,
when σ2

e approaches zero, V = 0 and the firm becomes perfectly informed about µit+1 so that
Eit [ait+1] = ait+1. It turns out to be more convenient to work directly with the posterior vari-
ance, V, and so, for the remainder of the analysis, we will use V as our measure of uncertainty.

Optimal investment. Appendix A.1.1 derives the log-linearized version of the firm’s optimal
investment policy:

kit+1 = ψ1kit + ψ2 (1 + γ)Eit [ait+1] + ψ3εit+1 + ψ4χi (7)

where

ξ
(
βψ2

1 + 1
)

= ψ1 ((1 + β)ξ + 1− α) (8)

ψ2 =
ψ1

ξ (1− βρψ1)
, ψ3 =

ψ1

ξ
, ψ4 =

1− ψ1

1− α
.

The coefficients ψ1–ψ4 depend only on production (and preference) parameters, including the
adjustment cost, and are independent of assumptions about information and distortions. The
coefficient ψ1 is increasing and ψ2-ψ4 decreasing in the severity of adjustment costs, ξ. If there
are no adjustment costs (i.e., ξ = 0) , ψ1 = 0 and ψ2 = ψ3 = ψ4 = 1

1−α . At the other extreme,
as ξ tends to infinity, ψ1 approaches one and ψ2-ψ4 go to zero. Intuitively, as adjustment costs
become large, the firm’s choice of capital becomes more autocorrelated and less responsive
to fundamentals and distortions. Our empirical strategy essentially relies on identifying the
coefficients in the policy function, ψ1 and ψ2 (1 + γ), from observable moments. Expression (8)
shows that, for given values of α and β, we can use the estimate of ψ1 to compute ξ. Next, we
can use that value, along with the estimate of ψ2 (1 + γ) to compute γ.
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Aggregation. We now turn to the aggregate economy, and in particular, measures of aggre-
gate output and TFP. In Appendix A.1.2, we show that aggregate output can be expressed
as

log Y ≡ y = a+ α̂1k + α̂2n ,

where k and n denote the (logs of the) aggregate stock of capital and labor inputs, respectively,
and aggregate TFP, denoted by a, is given by

a = a∗ − (θα̂1 + α̂2) α̂1

2
σ2
mrpk

da

dσ2
mrpk

= −(θα̂1 + α̂2) α̂1

2
, (9)

where a∗ is the level of TFP in the absence of all frictions (i.e., where static marginal products
are equalized) and σ2

mrpk is the cross-sectional dispersion in (the log of) the marginal product
of capital (mrpkit = pityit−kit). Thus, aggregate TFP monotonically decreases in the extent of
capital misallocation, which in this log-normal world is summarized by σ2

mrpk. The effect of σ2
mrpk

on aggregate TFP depends on the elasticity of substitution, θ, and the relative shares of capital
and labor in production. The higher is θ, that is, the closer we are to perfect substitutability,
the more severe the losses from mis-allocated resources. Similarly, fixing the degree of overall
returns to scale in production, for a larger capital share, α̂1, a given degree of misallocation has
larger effects on aggregate outcomes.11

In our framework, a number of forces – adjustment costs, information frictions, and distor-
tions – will lead to mrpk dispersion. Once we quantify their contributions to σ2

mrpk, equation
(9) allows us to directly map those contributions to their aggregate implications.

Measuring the contribution of each factor is a challenging task, since all the data moments
confound all the factors (i.e., each moment reflects the influence of more than one factor). As
a result, there is no one-to-one mapping between moments and parameters – to accurately
identify the contribution of any factor, we need to explicitly control for the others. In the
following section, we overcome this challenge by exploiting the fact that these forces have
different implications for different moments.12

11Aggregate output effects are larger than TFP losses by a factor 1
1−α̂1

. This is because misallocation also
reduces the incentives for capital accumulation and therefore, the steady-state capital stock.

12Asker et al. (2014) make a similar observation – they find that a one period time-to-build model (but no
adjustment costs) produces very similar patterns in σ2

mrpk across countries compared to a model with a rich
structure of adjustment costs. But, the implications for other moments (e.g. the variability of investment) are
quite different – see columns (3) and (5) of Table 9 in that paper, along with the accompanying discussion and
footnote 37.
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3 Identification

In this section, we lay out our strategy to identify to overcome a primary challenge of our
framework – namely, we provide a methodology to tease out the role of adjustment costs,
informational frictions and other factors using observable moments from firm-level data on
revenues and investment. We use a tractable special case – when firm-level shocks follow a
random walk, i.e., ρ = 1 – to derive analytic expressions for key moments, allowing us to prove
our identification result formally and make clear the underlying intuition. When we return to
our general model in the following section, we will demonstrate numerically that this intuition
extends to the case with ρ < 1.

We assume that the preference and technology parameters – the discount factor, β, the cur-
vature of the profit function, α, and the depreciation rate, δ – are known to the econometrician
(e.g., calibrated using aggregate data). The remaining parameters of interest are the costs of
capital adjustment, ξ, the quality of firm-level information (summarized by V), and the severity
of distortions, parameterized by γ, σ2

ε and σ2
χ.

Our methodology uses a set of carefully chosen elements from the covariance matrix of firm-
level capital and fundamentals (since α is assumed known, the latter can be directly measured
using data on revenues and capital). Note that ρ = 1 implies non-stationarity in levels and so
we work with moments of (log) changes. This means that we cannot identify σ2

χ, the variance
of the fixed component.13 Here, we focus on the four remaining parameters, namely ξ, γ, V and
σ2
ε . Our main result is to show that these are exactly identified by the following four moments:

(1) the autocorrelation of investment, denoted ρk,k−1 , (2) the variance of investment, σ2
k, (3) the

correlation of period t investment with the innovations in fundamentals in period t−1, denoted
ρk,a−1 and (4) the coefficient from a regression of ∆mrpkit on ∆ait, which we denote λmrpk,a.

Several of these moments have been used in the literature to quantify the various factors in
isolation. For example, ρk,k−1 and σ2

k are standard targets in the literature on adjustment costs
– see, e.g., Cooper and Haltiwanger (2006) and Asker et al. (2014). The lagged responsiveness
to fundamentals, ρk,a−1 , is used by Klenow and Willis (2007) in a price setting model to quantify
information frictions. The covariance ofmrpk with fundamentals – which we proxy with λmrpk,a
– is often interpreted as indicative of correlated distortions, e.g., Bartelsman et al. (2013) and
Buera and Fattal-Jaef (2016). We will use the tractability of the random walk case to shed
light on the necessity of analyzing these moments/factors in tandem (and the potential biases
from doing so in isolation).

Our main result is stated formally in the following proposition:

13For our numerical analysis in Section 4, we use a stationary model (i.e., with ρ < 1) and use σ2
mrpk, a

moment computed using levels of capital and fundamentals, to pin down σ2
χ.
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Proposition 1. The parameters ξ, γ, V and σ2
ε are uniquely identified by the moments ρk,k−1,

σ2
k, ρk,a−1 and λmrpk,a.

3.1 Intuition

The proof of Proposition 1 (in Appendix A.3) involves tedious, if straightforward, algebra.
Here, we provide a more heuristic argument that highlights the intuition behind the result.
Specifically, we analyze the parameters of interest in pairs and show that they can be uniquely
identified by a pair of moments, holding the other parameters fixed. To be clear, this is a
local identification argument – our goal here is simply to provide intuition about how the
different moments can be combined to disentangle the different forces. The identification result
in Proposition 1 is a global one and shows that the four moments uniquely pin down all four
parameters.

Adjustment costs and correlated distortions. We begin with adjustment costs, param-
eterized by ξ and correlated distortions, γ. The relevant moment pair is the variance and
autocorrelation of investment, σ2

k and ρk,k−1 . Both of these moments are commonly used to
estimate quadratic adjustment costs – for example, Asker et al. (2014) target the former and
Cooper and Haltiwanger (2006) (among other moments), the latter. In our setting, these mo-
ments are given by:

σ2
k =

(
ψ2

2

1− ψ2
1

)
(1 + γ)2 σ2

µ +
2ψ2

3

1 + ψ1

σ2
ε (10)

ρk,k−1 = ψ1 − ψ2
3

σ2
ε

σ2
k

, (11)

where the ψ’s are defined in equation (8). Our argument rests on the fact that the two forces
have similar effects on the variability of investment, but opposing effects on the autocorrelation.
To see this, recall that ψ1 is increasing and ψ2 and ψ3 decreasing in the size of adjustment costs,
but all three are independent of γ. Then, holding all other parameters fixed, σ2

k is decreasing
in both the severity of adjustment costs (higher ξ) and correlated factors (more negative γ).14

The autocorrelation, ρk,k−1 , on the other hand, increases with ξ but decreases as γ becomes
more negative (through its effect on σ2

k). Intuitively, while both factors dampen the volatility
of investment, they do so for different reasons – adjustment costs make it optimal to smooth
investment over time (increasing its autocorrelation) while correlated factors reduce sensitivity
to the serially correlated fundamental (reducing the autocorrelation of investment).

14The latter is true only for γ > −1, which is the empirically relevant region.
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The top left panel of Figure 1 shows how these properties help identify the two parameters.
The panel plots a pair of ‘isomoment’ curves: each curve traces out combinations of the two
parameters that give rise to a given value of the relevant moment, holding the other parameters
fixed. Take the σ2

k curve: it slopes upward because higher ξ and lower γ have similar effects
on σ2

k – if γ is relatively small (in absolute value), adjustment costs must be high in order to
maintain a given level of σ2

k. Conversely, a low ξ is consistent with a given value of σ2
k only

if γ is very negative. An analogous argument applies to the ρk,k−1 isomoment curve: since
higher ξ and more negative γ have opposite effects on ρk,k−1 , the curve slopes downward. As a
result, the two curves cross only once, yielding the unique combination of the parameters that
is consistent with both moments. By plotting curves corresponding to the empirical values of
these moments, we can uniquely pin down the pair (ξ, γ) (holding all other parameters fixed).
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Figure 1: Pairwise Identification - Isomoment Curves

The graph also illustrates the potential bias introduced when examining these forces in
isolation. For example, estimating adjustment costs while ignoring correlated distortions (i.e.,
imposing γ = 0) puts the estimate on the very right-hand side of the horizontal axis. The
estimate for ξ can be read off the vertical height of the isomoment curve corresponding to the
targeted moment. Because the σ2

k curve is upward sloping, targeting this moment alone leads to
an overestimate of adjustment costs (at the very right of the horizontal axis, the curve is above
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the point of intersection, which corresponds to the true value of the parameters).15 Targeting
ρk,k−1 alone leads to a bias in the opposite direction – since the ρk,k−1 curve is downward sloping,
imposing γ = 0 yields an underestimate of adjustment costs.

The remaining panels in Figure 1 repeat this analysis for other combinations of parameters.
Each relies on the same logic as shown in the top left panel.

Uncertainty and correlated distortions. To disentangle information frictions from corre-
lated factors (the top right panel), we use the correlation of investment with past innovations
in fundamentals, ρk,a−1 , and the regression coefficient λmrpk,a. These moments can be written
as:

ρk,a−1 =

[
V
σ2
µ

(1− ψ1) + ψ1

]
σµψ2 (1 + γ)

σk
(12)

λmrpk,a = 1− (1− α) (1 + γ)ψ2

(
1− V

σ2
µ

)
. (13)

A higher V implies a higher correlation of investment with lagged fundamental innovations.
Intuitively, the more uncertain is the firm, the greater the tendency for its actions to reflect
fundamentals with a 1-period lag. In contrast, a higher (more negative) γ increases the relative
importance of transitory factors in the firm’s investment decision, reducing its correlation with
fundamentals. Therefore, to maintain a given level of ρk,a−1 , a decrease in V must be accom-
panied by a less negative γ, i.e., the isomoment curve slopes downward. On the other hand,
higher uncertainty and a more negative gamma both cause mrpk to covary more positively
with contemporaneous fundamentals, a, leading to an upward sloping λmrpk,a curve. Together,
these two curves pin down V and γ, holding other parameters fixed.

As before, the graph also reveals the direction of bias when estimating these factors in
isolation. Assuming full information (V = 0) and using λmrpk,a to discipline the strength of
correlated distortions – e.g. as in Bartelsman et al. (2013) and Buera and Fattal-Jaef (2016)
– overstates their importance. Using the lagged responsiveness to fundamentals to discipline
information frictions while abstracting from correlated factors understates uncertainty.

Transitory and correlated distortions. To disentangle correlated from uncorrelated tran-
sitory factors, consider λmrpk,a and ρk,k−1 . The former is increasing in the severity of correlated
distortions, but independent of transitory ones, implying a vertical isomoment curve. The latter
is decreasing in both types of distortions – a more negative γ and higher σ2

ε both increase the
importance of the transitory determinants of investment, yielding an upward sloping isomoment

15This approach would also predict a counter-factually high level of the autocorrelation of investment.
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curve.

Uncertainty and adjustment costs. Finally, the bottom right panel shows the intuition for
disentangling uncertainty from adjustment costs. An increase in the severity of either of these
factors contributes to sluggishness in the response of actions to fundamentals, i.e., raises the
correlation of investment with past fundamental shocks ρk,a−1 . However, the autocorrelation
of investment ρk,k−1 is independent of uncertainty and determined only by adjustment costs
(and other factors). Thus, holding those other factors fixed, the autocorrelation of investment
in combination with the correlation of investment with lagged shocks jointly pin down the
magnitude of adjustment frictions and the extent of uncertainty.

4 Quantitative Analysis

The analytical results in the previous section showed a tight relationship between the moments(
ρk,a−1 , ρk,k−1 , σ

2
k, λmrpk,a

)
and the parameters (V, ξ, σ2

ε , γ) for the special case of ρ = 1. In
the first part of this section, we use this insight to develop an empirical strategy for the more
general case where fundamentals follow a stationary AR(1) process and apply it to data on
Chinese manufacturing firms. This allows us to quantify the severity of the various forces and
their impact on misallocation and economic aggregates. For purposes of comparison, we also
provide results for publicly traded firms in the US.16 In the second piece of this section, we
extend our methodology to explore some specific candidates behind our general specification of
alternative factors.

4.1 Parameterization

We begin by assigning values to the more standard preference and production parameters of
our model. We assume a period length of one year and accordingly set the discount factor
β = 0.95. We keep the elasticity of substitution θ common across countries and set its value to
6, roughly in the middle of the range of values in the literature. We assume constant returns to
scale in production, but allow the parameters α̂1 and α̂2 to vary across countries. In the US, we
set these to standard values of 0.33 and 0.67, respectively, which implies α = 0.62.17 A number

16The two sets of firms are not directly comparable due to their differing coverage (for example, the Chinese
data include many more small firms). To address this concern, in Appendix E, we repeat the analysis on the
set of Chinese publicly traded firms. We find patterns that are quite similar to those for Chinese manufacturing
firms, suggesting that the cross-country differences in the importance of different factors are a robust feature of
the data. This conclusion is further supported by results for two additional developing countries, Colombia and
Mexico, also presented in Appendix E.

17This value is very close to the estimate of 0.59 in Cooper and Haltiwanger (2006). We also directly
estimated α following the indirect inference approach in, e.g., Cooper et al. (2015). Specifically, we choose
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of recent papers, for example, Bai et al. (2006), have found that capital share’s of value-added
is about one-half in China and so we set α̂1 = α̂2 = 0.5 in that country. These values imply an
α equal to 0.71 in China.18

Next, we turn to the parameters governing the process for fundamentals, ait: the persistence,
ρ, and the variance of the innovations, σ2

µ. Under our assumptions, the fundamental is directly
given by (up to an additive constant) ait = vait−αkit where vait denotes the log of value-added.
Controlling for industry-year fixed effects to isolate the firm-specific idiosyncratic component
of fundamentals, we use a standard autoregression to estimate the parameters ρ and σ2

µ.19

To pin down the remaining parameters – the adjustment cost, ξ, the quality of firm informa-
tion, V, and the size of other factors, summarized by γ and σ2

ε – we follow a strategy informed
by the results in the previous section. Specifically, we target the correlation of investment
growth with lagged shocks to fundamentals (ρι,a−1), the autocorrelation of investment growth
(ρι,ι−1), the variance of investment growth (σ2

ι ) and the correlation of the marginal product of
capital with fundamentals (ρmrpk,a).20 Finally, to infer σ2

χ, the fixed component of distortions in
equation (6), we match the overall dispersion in the marginal product of capital, σ2

mrpk, which
is clearly increasing in σ2

χ. Thus, by construction, our parameterized model will match the
observed misallocation in the data, allowing us to decompose the contribution of each factor.
We summarize our empirical approach in Table 1.

4.2 Data

The data on Chinese manufacturing firms are from the Annual Surveys of Industrial Production
conducted by the National Bureau of Statistics. The surveys include all industrial firms (both
state-owned and non-state owned) with sales above 5 million RMB (about $600,000).21 We
use data spanning the period 1998-2009. The original data come as a repeated cross-section.

target the coefficient from an OLS regression of value-added on capital and match it to that from an identical
regression performed on model simulated data. This procedure also yields α = 0.62.

18The curvature of the profit function, α, plays a key role in determining the TFP/output implications of a
given degree of σ2

mrpk, but does not significantly affect the estimates of the contributions of the various factors,
the main focus of this paper. For example, using the same capital share for both countries yields a very similar
decomposition of observed misallocation. See also Section 6.2, where introducing labor distortions leads to a
higher α, as well as Section 6.4, where we allow for sectoral heterogeneity in α.

19It is straightforward to extend our analysis to allow for a firm-specific fixed component in the stochastic
process for the fundamental. We performed this exercise on the US data and arrived at very similar results.

20We work with the growth rate of investment to partly cleanse the data of firm-level fixed-effects, which
have been shown to be a significant component in cross-sectional variation in investment (in the analytical
cases studied earlier, we used the level of investment, i.e., the growth rate of capital). See Morck et al. (1990)
for a more detailed discussion of this issue. However, in Appendix D.1, we show that our results are largely
unchanged if we use the autocorrelation and variance of investment (in levels, rather than growth rates).

21Industrial firms correspond to Chinese Industrial Classification codes 0610-1220, 1311-4392 and 4411-4620,
which includes mining, manufacturing and utilities.
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Table 1: Parameterization - Summary
Parameter Description Target/Value

Preferences/production
θ Elasticity of substitution 6
β Discount rate 0.95
α̂1 Capital share 0.33 US/0.50 China
α̂2 Labor share 0.67 US/0.50 China

Fundamentals/frictions
ρ Persistence of fundamentals

}
ρa,a−1

σ2
µ Shocks to fundamentals σ2

a

V Signal precision

ρι,a−1

ξ Adjustment costs ρι,ι−1

γ Correlated factors ρmrpk,a
σ2
ε Transitory factors σ2

ι

σ2
χ Permanent factors σ2

mrpk

A panel is constructed following almost directly the method outlined in Brandt et al. (2014),
which also contains an excellent overview of the data for the interested reader. The Chinese
data have been used multiple times and are by now familiar in the misallocation literature –
for example, Hsieh and Klenow (2009) – although our use of the panel dimension is rather new.
The data on US publicly traded firms comes from Compustat North America. We use data
covering the same period as for the Chinese firms.

We measure the firm’s capital stock, kit, in each period as the value of fixed assets in
China and of property, plant and equipment (PP&E) in the US, and investment as the change
in the capital stock relative to the preceding period.22 We construct the fundamental as
ait = vait−αkit, where we compute value-added from revenues using a share of intermediates of
0.5. Ignoring constant terms that do not affect our calculations, we measure the marginal prod-
uct of capital as mrpkit = vait− kit. First differencing kit and ait gives investment and changes
in fundamentals between periods. To isolate the firm-specific variation in our data series, we
extract a time-by-industry fixed-effect from each and use the residual as the component that is
idiosyncratic to the firm. In both countries, industries are classified at the 4-digit level. This is
equivalent to deviating each firm from the unweighted average within its industry in each time
period and serves to eliminate any aggregate components, as well as render our calculations to

22Our baseline measure of the capital stock uses the book value of assets. In Section 6.4 (details in Appendix
D.2), we construct the capital stock using a perpetual inventory method on the US data, following the approach,
for example, in Eberly et al. (2012) and re-estimate the model parameters. Although the point estimates are
somewhat different, the overall patterns in terms of the role of various factors is unchanged.
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be within-industry, which is a standard approach in the literature. After eliminating duplicates
and problematic observations (for example, firms reporting in foreign currencies), outliers, ob-
servations with missing data etc., our final sample consists of 797,047 firm-year observations in
China and 34,260 in the US. Appendix B provides further details on how we build our sample
and construct the moments, as well as summary statistics from one year of our data, 2009.23

Table 2 reports the target moments for both countries. The first two columns show the
fundamental processes, which have similar persistence but higher volatility in China. The re-
maining columns show that investment growth in China is more correlated with past shocks,
is more volatile and less autocorrelated, that there is a higher correlation between firm fun-
damentals and mrpk, and that the overall dispersion in the mrpk is substantially higher than
among publicly traded US firms. This variation will lead us to find significant differences in
the severity of investment frictions and distortions across the two sets of firms.

Table 2: Target Moments

ρ σ2
µ ρι,a−1 ρι,ι−1 ρmrpk,a σ2

ι σ2
mrpk

China 0.91 0.15 0.29 −0.36 0.76 0.14 0.92
US 0.93 0.08 0.13 −0.30 0.55 0.06 0.45

4.3 Identification

Before turning to the estimation results, we revisit the issue of identification. Although we
no longer have analytical expressions for the mapping between moments and parameters, we
use a numerical experiment to show that the intuition developed in Section 3 for the random
walk case applies here as well. In that section, we used a pairwise analysis to demonstrate how
various moments combine to help disentangle the various sources of observed misallocation.
Here, we repeat that analysis by plotting numeric isomoment curves in Figure 2, using the
moments and parameter values for US firms (from Tables 2 and 3, respectively). The graph
reveals the same broad patterns as Figure 1, indicating that the logic of that special case goes
through here as well.24

23We have also examined the moments year-by-year. They are reasonably stable over time.
24The differences in the precise shape of some of the curves in the two figures come partly from the departure

from the random walk case and also from the fact that they use slightly different moments (Figure 2 works with
changes in investment and ρmrpk,a while Figure 1 used changes in k and λmrpk,a).
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Figure 2: Isomoment Curves - Quantitative Model

4.4 The Sources of Misallocation

Table 3 contains our baseline results. In the top panel we display the parameter estimates.
In the second panel, we report the contribution of each factor to dispersion in the mrpk,
which we denote ∆σ2

mrpk.25 These are calculated under the assumption that only the factor of
interest is operational, i.e., in the absence of the others, so that the contribution of each one
is measured relative to the undistorted first-best.26 The third panel expresses this contribution
as a percentage of the total mrpk dispersion measured in the data, denoted

∆σ2
mrpk

σ2
mrpk

. Because of
interactions between the factors, there is no a priori reason to expect these relative contributions
to sum to one. In practice, however, we find that the total is reasonably close to one, allowing
us to interpret this exercise as a decomposition of total observed misallocation. In the bottom
panel of the table, we compute the implied losses in aggregate TFP, again relative to the

25For adjustment costs, we do not have an analytic mapping between the severity of these costs and σ2
mrpk,

but this is a straightforward calculation to make numerically; for each of the other factors, we can compute
their contributions to misallocation analytically.

26An alternative would be to calculate the contribution of each factor holding the others constant at their
estimated values. It turns out that the interactions between the factors are small at the estimated parameter
values, so the two approaches yield similar results. Table 9 in Appendix C shows that the effects of each factor
on mrpk dispersion in the US are close under either approach. Interaction effects are even smaller in China.
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undistorted first-best level, i.e., ∆a = a∗ − a. Once we have the contribution of each factor to
mrpk dispersion, computing these values is simply an application of expression (9).

Table 3: Contributions to Misallocation

Other Factors

Adjustment Costs Uncertainty Correlated Transitory Permanent

Parameters ξ V γ σ2
ε σ2

χ

China 0.13 0.10 −0.70 0.00 0.41
US 1.38 0.03 −0.33 0.03 0.29

∆σ2
mrpk

China 0.01 0.10 0.44 0.00 0.41
US 0.05 0.03 0.06 0.03 0.29

∆σ2
mrpk

σ2
mrpk

China 1.3% 10.3% 47.4% 0.0% 44.4%
US 10.8% 7.3% 14.4% 6.3% 64.7%

∆a
China 0.01 0.08 0.38 0.00 0.36
US 0.02 0.01 0.03 0.01 0.13

Adjustment costs. Our results show evidence of economically significant adjustment fric-
tions. For example, for US firms, the estimate of ξ = 1.38 in Table 3 implies a value of 0.2

for the primitive parameter ξ̂ in the adjustment cost function (2).27 Though differences in
datasets and methods complicate direct comparisons with earlier estimates in the literature,
this is within the range, albeit towards the lower end, of those estimates. For example, Asker
et al. (2014) report an estimate of 8.8 for their convex adjustment cost parameter for US man-
ufacturing firms. To interpret this difference, consider a firm that doubles its capital stock in a
year. Our estimate for ξ̂ implies that such a firm would incur adjustment costs equal to about
11% of the value of this investment, whereas the corresponding figure using the Asker et al.
(2014) estimate would be 60%. Our estimates are closer, and slightly higher than Cooper and
Haltiwanger (2006), who find ξ̂ = 0.05 for US manufacturing firms and Bloom (2009), who
finds a value of zero using Compustat data.28

Apart from the differences across these studies in time period and the set of firms, these
estimates also vary for the reasons highlighted in Section 3. There, we discussed the poten-

27The mapping between ξ and ξ̂ is derived in equation (21) in Appendix A.1.1. We use an annual depreciation
rate of δ = 0.10 .

28These are estimates of the quadratic component alongside additional components in the cost function, e.g.,
fixed costs. Section 6.1 shows that our estimate of ξ̂ changes little in the presence of a fixed component.
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tial bias in estimating adjustment costs in isolation, i.e., without controlling for other factors
correlated with fundamentals. The papers mentioned abstract from these factors, though they
target different moments. For example, Asker et al. (2014) match the overall variability of
investment (among other moments), but do not try to match the autocorrelation, while Cooper
and Haltiwanger (2006) do the reverse. As the arguments in Section 3 showed, in the presence
of correlated factors, the former strategy would tend to overstate the true extent of adjust-
ment frictions, while the latter would understate it. This lies at the heart of the difference
in estimates.29 To show this more clearly, we also estimated a version of our model in which
we abstract from the other forces and parameterize the adjustment cost to match a single mo-
ment in the data. If we target the volatility of investment growth, σ2

ι , this procedure yields a
considerably larger estimate of ξ of 2.3 in the US, about 60% higher than the baseline value.
However, the implied autocorrelation of investment growth from this approach is much higher
than that observed in the data, −0.17 vs a true value of −0.30, exactly the pattern predicted
by the theory. A strategy targeting only the autocorrelation leads to the opposite conclusion (a
lower estimated value for ξ), but at the cost of a counterfactually high variability of investment.
This exercise partly explains the range of estimates of adjustment costs in the literature – when
adjustment costs are estimated without explicitly controlling for other factors, the results can
be quite sensitive to the particular moments chosen.30 Indeed, our results suggest that explicitly
accounting for these additional factors is essential in order to reconcile a broad set of moments
in firm-level investment dynamics.

The estimated value of ξ is significantly lower in China compared to the US. Intuitively,
investment in China is both more volatile and less serially correlated than for US firms. Together
with the other moments, this implies a lower degree of adjustment frictions. Importantly, as
was the case with US firms, one would reach very different conclusions from examining a model
with only adjustment costs. For example, a strategy of estimating such a model by targeting
σ2
ι in China yields an estimate for ξ of about 1.5, roughly 10 times larger than the one in Table

3.
In both countries, however, the estimated adjustment costs do not contribute significantly

to observed misallocation. This is particularly so in China – if this were the only friction, mrpk
dispersion would be 0.01, which is about 1% of the observed σ2

mrpk. As we would expect from
the higher estimate of ξ, the contribution of adjustment costs in the US is higher, though still

29 Another potential source of differences is the fact that we work with investment growth rates rather than
levels, unlike those papers. It turns out that this makes only a small difference for the results. In Appendix
D.1 we re-estimate our model targeting the variance and autocorrelation of investment in levels (instead of the
corresponding moments in growth rates). The estimate of ξ changes only slightly.

30For example, Table IV in Bloom (2009) highlights the wide variation in these estimates, ranging from zero
to as high as 20.
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modest (by themselves, adjustment costs lead to mrpk dispersion of 0.05, about 11% of the
observed σ2

mrpk). The corresponding losses in aggregate TFP are about 1% and 2% in the two
countries, respectively.

This does not mean the adjustment costs are irrelevant for understanding firm-level invest-
ment dynamics. To see this, consider the implications of setting adjustment costs to zero in
the US while holding the other parameters at their estimated values: the variance of invest-
ment growth spikes to 1.68 (compared to 0.06 in the data) and the autocorrelation drops to
−0.62 (data: −0.30). However, σ2

mrpk falls only modestly, from 0.45 to 0.41. Re-estimating the
model without adjustment costs (and dropping the autocorrelation as a target) also leads to a
counterfactually low autocorrelation (−0.43).31 In other words, while adjustment frictions are
an important determinant of investment dynamics, they do not generate significant dispersion
in static marginal products.

Uncertainty. Table 3 shows that firms in both countries make investment decisions under
considerable uncertainty, with the information friction more severe for Chinese firms. As a share
of the prior uncertainty, σ2

µ, residual uncertainty,
V
σ2
µ
, is 0.42 in the US and 0.63 in China.32 In

an environment where imperfect information is the only friction, we have σ2
mrpk = V, so the

contribution of uncertainty alone to observed misallocation can be directly read off the second
column in Table 3 – namely 0.10 in China and 0.03 in the US. These represent about 10% and
7% of total mrpk dispersion in the two countries, respectively. The implications for aggregate
TFP are substantial in China – losses are about 8% – and are lower in the US, about 1%.
Note, however, that imposing a one period time-to-build assumption where firms install capital
in advance without any additional information about innovations in fundamentals, i.e. setting
V = σ2

µ, would overstate the role of uncertainty (and bias the estimates of adjustment costs
and other parameters). Indeed, doing so yields estimates of V that are about 55% higher in
China and a factor of 2.5 times higher in the US.

‘Distortions’. The last three columns of Table 3 show that other, potentially distortionary,
factors play a significant role in generating the observed mrpk dispersion in both countries.

31The estimates for the other parameters change as well: notably, γ becomes more negative in order to match
σ2
ι .

32Our values for V
σ2
µ
are similar to those in David et al. (2016), who find 0.41 and 0.63 for publicly traded

firms in the US and China, respectively. The absolute values of V are different but are not directly comparable
– David et al. (2016) focus on longer time horizons (they analyze 3-year time intervals). This might lead one
to conclude that ignoring other factors – as David et al. (2016) do – leads to negligible bias in the estimate
of uncertainty. But, this is not a general result and rests on the fact that adjustment costs and uncorrelated
distortions are estimated to be modest. Then, as Figure 2 shows, the sensitivity of actions to signals turns out
to be a very good indicator of uncertainty. If, on the other hand, adjustment costs and/or uncorrelated factors
were much larger, the bias from estimating V alone can be quite significant.
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Turning first to the correlated component, the negative values of γ suggest that they act to
disincentivize investment by more productive firms and especially so in China. The contribution
of these distortions to mrpk dispersion is given by γ2σ2

a, which amounts to 0.44 in China, or
47% of total misallocation. The associated aggregate consequences are also quite sizable – TFP
losses from these sources are 38%. In contrast, the estimate of γ in the US is significantly less
negative than in China, suggesting that these types of correlated factors are less of an issue for
firms in the US, both in an absolute sense – the mrpk dispersion from these factors in the US is
0.06, less than one-seventh that in China – and in relative terms – they account for only 14% of
total observed mrpk dispersion in the US. The corresponding TFP effects are also considerably
smaller for the US - losses from correlated sources are only about 3%.

Next, we consider the role of distortions that are uncorrelated with firm fundamentals. Table
3 shows that purely transitory factors (measured by σ2

ε) are negligible in both countries, but
permanent firm-specific factors (measured by σ2

χ) play a prominent role. Their contribution
to mrpk dispersion, which is also given by σ2

χ, amounts to 0.41 in China and 0.29 in the US.
Thus, their absolute magnitude in the US is considerably below that in China, but in relative
terms, these factors seem to account for a substantial portion of measured misallocation in both
countries. The aggregate consequences of these types of distortions are also significant, with
TFP losses of 36% in China and about 13% in the US.

In sum, the estimation results point to the presence of substantial distortions to investment,
especially in China, where they disproportionately disincentivize investment by more productive
firms. What patterns in the data lead us to this conclusion? The mrpk in both countries shows
significant dispersion and a high correlation with fundamentals, indicating a dampened response
of investment to fundamentals. In principle, this pattern could emerge from adjustment costs,
imperfect information or correlated distortions. However, the autocorrelation of investment
growth, ρι,ι−1 , in the data is relatively low, which bounds the severity of adjustment frictions.
Similarly, the response of investment to past shocks, ρι,a−1 , is also modest, limiting the role
of the informational friction. Hence, the estimation assigns a substantial role to correlated
distortions, particularly in China, as well as fixed distortions, in order to generate the observed
patterns in themrpk.33 Section 6 shows that this result is robust to a number of modifications to
our baseline setup, e.g. allowing for non-convex adjustment costs, a frictional labor choice and
additive measurement error. Further, we have applied the methodology to data on Colombian
and Mexican firms (in addition to the set of publicly traded firms in China) - the results resemble
those for Chinese manufacturing firms, in that they point to a substantial role for correlated
factors, as well as fixed ones (details are in Appendix E).

33A high value for ρmrpk,a also limits the scope for uncorrelated transitory distortions as an important driver
of investment decisions.
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5 Firm-Specific Factors: Some Candidates

In this section, we dig deeper into the firm-specific factors contributing to observed misalloca-
tion. Specifically, we extend our baseline framework and empirical methodology to investigate
three potential sources – heterogeneity in markups and production technologies, size-dependent
policies and financial considerations.

5.1 Heterogeneity in Markups and Technologies

In our baseline setup, all firms within an industry (1) had homogeneous production technologies
and (2) were monopolistically competitive facing CES demand curves and therefore, have iden-
tical markups. As a result, unobserved firm-level heterogeneity in technologies and/or markups
would show up in our estimates for firm-specific factors. Here, we explore this possibility using
a modified version of our baseline model which allows for such heterogeneity. This requires
more assumptions as well as additional data, but it allows to provide an upper bound on the
contribution of these elements to observed misallocation.

We begin by generalizing the production function from Section 2 to include intermediate in-
puts and to allow for (potentially time-varying) heterogeneity in capital intensities. Specifically,
the output of firm i is now given by

Yit = K α̂it
it N

ζ̂−α̂it
it M1−ζ̂

it ,

where Mit denotes intermediate or materials input. In what follows, we abstract from adjust-
ment/information frictions in firms’ input decisions. This is largely in the interest of simplicity,
but it can also be justified by the relatively modest role played by these dynamic considera-
tions in our baseline estimates.34 Capital and labor choices are each subject to a factor-specific
‘distortion’ (in addition to the markup), denoted TKit and TNit , respectively. The choice of inter-
mediates is distorted by the firm-specific markup. Under this structure, we can put to use the
powerful methodology pioneered by De Loecker and Warzynski (2012) to measure markups at
the firm level without taking a stand on the nature of competition/demand.35

34It is possible to extend the identification methodology from Section 3 to explicitly include heterogene-
ity in α̂ and markups. Although this would require more assumptions (e.g., on the correlation structure of
markups/technologies with fundamentals and over time) and make the intuition more complicated, the basic
insights should still go through.

35The method is also robust to the presence of distortions in the market for intermediate inputs, so long
as they are reflected in the price that the firm pays. In other words, even if firms pay idiosyncratic prices for
intermediate inputs, the method accurately identifies markup dispersion.
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The contribution of markup dispersion. Identification of markup dispersion makes use
of the following optimality condition from the firm’s cost minimization problem:

PM
t = MCit

(
1− ζ̂

) Yit
Mit

⇒ PM
t Mit

PitYit
= (1− ζ̂)

MCit
Pit

, (14)

where PM
t is the price of materials and MCit is the marginal cost of the firm. This condition

states that, at the optimum, the firm sets the materials share in gross output equal to the
inverse of the markup, MCit

Pit
, multiplied by the materials elasticity 1− ζ̂.

Expression (14) suggests a simple way to estimate the cross-sectional dispersion in markups.
The left-hand side is the materials’ share of revenue – the dispersion in this object (in logs) maps
one-for-one into (log) markup dispersion across firms.36 The results of applying this procedure
are reported in the first rows of the two panels in Table 4. The variance of the share of materials
in revenue is about 0.09 in the US Compustat data and 0.05 in China, accounting for about
28% of σ2

mrpk among the US firms, but only about 4% of σ2
mrpk among Chinese manufacturing

firms. Thus, markup heterogeneity composes a significant fraction of observed misallocation
among US publicly traded firms but seems to be an almost negligible force in China.

The contribution of heterogeneity in technology. Cost minimization also implies that
the average revenue products of capital and labor are given by:37

log

(
PitYit
Kit

)
= log

Pit
MCit

− log α̂it + τKit + Constant (15)

log

(
PitYit
Nit

)
= log

Pit
MCit

− log(ζ̂ − α̂it) + τNit + Constant (16)

≈ log
Pit
MCit

+
ᾱ

ζ̂ − ᾱ
log α̂it + τNit + Constant , (17)

where τKit and τNit are the logs of the capital and labor wedges TKit and TNit , respectively, and ᾱ
is the average capital elasticity across firms.38 Observed average revenue products are combi-
nations of the firm-specific production elasticities as well as markups and distortionary factors.
Importantly, the expressions reveal that the capital elasticity, α̂it has opposing effects on the
average products of capital and labor. Specifically, firms with a high α̂it will, ceteris paribus,
tend to have a low average product of capital and a high average product of labor. This prop-
erty enables us to use the observed covariance of the average products to bound the extent of

36Note that this assumes no heterogeneity in the materials elasticity, 1−ζ̂. To the extent there is heterogeneity
in 1− ζ̂ that is uncorrelated (or negatively correlated) with markups, the strategy would overestimate markup
variation.

37See Appendix A.4 for details.
38The third equation is derived by log-linearizing (16) around α̂it = ᾱ.
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variation in α̂it. Let

arpkit ≡ log

(
PitYit
Kit

)
− log

(
Pit
MCit

)
arpnit ≡ log

(
PitYit
Nit

)
− log

(
Pit
MCit

)
denote the markup-adjusted average revenue products of capital and labor. Appendix A.4
proves the following result:

Proposition 2. Suppose log α̂it is uncorrelated with the distortions τKit and τNit . Then, the
cross-sectional dispersion in log α̂it satisfies

σ2(log α̂it) ≤
σ2
arpkσ

2
arpn − cov (arpk, arpn)2

2 ᾱ

ζ̂−ᾱcov (arpk, arpn) +
(

ᾱ

ζ̂−ᾱ

)2

σ2
arpk + σ2

arpn

. (18)

The bound in (18) is obtained by setting the correlation between the distortionary factors
τKit and τNit to 1. Given the observed second moments of (arpkit, arpnit), this maximizes the
potential for variation in α̂it, which, as noted earlier, is a source of negative correlation between
arpkit and arpnit. The expression for the bound reveals the main insight: the more positive
the covariance between (arpkit, arpnit), the lower is the scope for heterogeneity in α̂it.

To compute this bound for the two countries, we set ζ̂, the share of materials in gross
output, to 0.5. The results, along with the moments, are reported in Table 4. Heterogeneous
technologies can potentially account for a substantial portion of σ2

mrpk in the US - as much as
62% - and a more modest, though still significant, fraction in China, about 23%.39 The last
row of Table 4 shows that in total, unobserved heterogeneity in markups and technologies can
potentially explain as much as 90% of measured misallocation in the US and at most about
27% in China.

Hsieh and Klenow (2009) perform an alternative experiment to bound the role of tech-
nological heterogeneity: they attribute all the variation in firm-level capital-labor ratios to
heterogeneity in α̂it. In our setting, this amounts to assuming that τKit = τNit , which implies:

kit − nit = arpnit − arpkit ≈
ζ̂

ζ̂ − ᾱ
log α̂it ⇒ σ2 (kit − nit) =

(
ζ̂

ζ̂ − ᾱ

)2

σ2(log α̂it) .

39There is some evidence that the share of intermediates may be higher in China than the US, see, e.g., Table
1 in Brandt et al. (2014). We re-computed the bound with ζ̂ = 0.25 and obtained very similar results. We also
verified the accuracy of the approximation by working directly with (16) instead of the log-linearized version in
(17). This yielded bounds that were slightly lower for both countries: 53% and 17% of σ2

mrpk in the US and
China, respectively.
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Table 4: Heterogeneous Markups and Technologies

China US
Moments
σ2
(

log PitYit
PMt Mit

)
0.05 0.09

cov (arpkit, arpnit) 0.41 0.12
σ2 (arpkit) 1.37 0.41
σ2 (arpnit) 0.76 0.25

Estimated ∆σ2
mrpk

Dispersion in Markups 0.05 (3.8%) 0.09 (28.3%)
Dispersion in log α̂it 0.30 (23.1%) 0.19 (62.2%)
Total 0.35 (26.9%) 0.28 (90.5%)

Notes: The values in parentheses in the bottom panel are the contributions to
mrpk dispersion expressed as a fraction of total σ2

mrpk.

This procedure yields estimates for σ2 (log α̂it) that are quite close to those in Table 4: 0.27
(compared to 0.30) for China and 0.16 (compared to 0.19) in the US.

5.2 Size-Dependent Policies

Our baseline results showed a significant role for factors correlated with firm-level fundamentals,
especially in developing countries such as China. Here, we discuss how policies that affect or
restrict the size of firms have very similar effects. A number of papers have pointed out the
prevalence of distortionary size-dependent policies across a range of countries, for example,
Guner et al. (2008). Many of these policies take the form of restrictions (or additional costs)
associated with acquiring capital and/or other inputs. To be clear, our goal is not to explore
the role of a particular policy in China or the US. Rather, we show how policies that are
common in a number of countries can generate patterns that are, in a sense, isomorphic to
factors correlated with fundamentals.

To analyze the effects of such policies, we generalize our baseline specification of firm-specific
factors in equation (6) to also allow for factors that vary systematically with chosen level of
capital. Formally,

τit = γkkit + γait + εit + χi ,

where the parameter γk indexes the severity of these additional factors. The empirically relevant
case is when γk < 0, which implicitly penalizes larger firms. This specification captures the
essence of the policies discussed above in a tractable way (e.g., it allows to continue to use
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perturbation methods). With this formulation, the log-linearized Euler equation takes the form

kit+1 ((1 + β)ξ + 1− α− γk) = (1 + γ)Eit [ait+1] + εit+1 + χi + βξEit [kit+2] + ξkit . (19)

Expression (19) is identical to expression to (4), but with α + γk taking the place of α. It
is straightforward to derive the firm’s investment policy function and verify that the same
adjustment goes through, i.e., expressions (7) and (8) hold, with α everywhere replaced by
α+ γk. Intuitively, the size-dependent component, γk, changes the effective degree of curvature
in the firm’s investment problem – although the curvature of the profit function remains α, the
firm acts as if it is α + γk. If γk < 0, the distortion dampens the responsiveness of investment
to shocks. If γk > 0, the responsiveness of investment is amplified.

Importantly, these effects are broadly similar to those coming from γ: indeed, if γk were
the only factor distorting investment choices, the implied law of motion for kit is identical
(up to a first-order) to one with only productivity-dependent factors, where γ = γk

1−α−γk
. The

implication of this isomorphism is that we cannot distinguish the two factors using observed
series of capital and revenues alone. This challenge also applies to the case when other factors
are present, though the mapping between the two is more complicated (and affects the other
parameters as well). We detail this mapping in Appendix A.5.

What about the contribution to misallocation? Table 5 reports the results for Chinese firms
for two different values of γk, namely -0.18 and -0.36 (these values imply effective curvatures
α+ γk equal to one-quarter and one-half of the true α, respectively). The table shows two key
results – first, a more negative γk reduces the estimated γ (i.e., makes it less negative), suggesting
that our baseline estimate of correlated factors could be picking up such size-dependent policies.
The total contribution of both types of correlated distortions remains quite stable, ranging
between 40% and 47%. Second, the estimates of adjustment costs remain quite modest over
this wide range of curvature.

5.3 Financial Frictions

In this section, we lay out an extension of our model that subjects firms to liquidity costs
and show that they can be mapped to the size-dependent distortions analyzed in the previous
subsection. We assume that firms face a liquidity cost Υ (Kit+1, Bit+1), where Bit+1 denotes
holdings of liquid assets, which earn an exogenous rate of return R < 1

β
. The cost is increasing

(decreasing) inKit+1 (Bit+1). This specification captures the idea that firms need costly liquidity
in order to operate (e.g., to meet working capital needs). Using a continuous penalty function
rather than an occasionally binding constraint allows us to continue using perturbation methods.
Note also that this differs from the standard borrowing constraint used widely in the literature
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Table 5: Size vs Productivity-Dependent Factors

Correlated Factors

Size-Dependent Prod.-Dependent Total Adj. Costs
γk γ ξ

α + γk = 0.71 (baseline)
Parameters 0.00 −0.70 0.13
∆σ2

mrpk

σ2
mrpk

0.0% 47.4% 47.4% 1.3%

α + γk = 0.54
Parameters −0.18 −0.51 0.21
∆σ2

mrpk

σ2
mrpk

14.2% 25.4% 39.6% 2.3%

α + γk = 0.36
Parameters −0.36 −0.33 0.29
∆σ2

mrpk

σ2
mrpk

29.6% 10.2% 39.8% 3.2%

on financial frictions. Our firms are not constrained in terms of their ability to raise funds. This
implies that self-financing, which often significantly weakens the long-run bite of borrowing
constraints, plays no role here.40

We use the following flexible functional form for the liquidity cost:

Υ (Kit+1, Bit+1) = ν̂
Kω1
it+1

Bω2
it+1

,

where ν̂, ω1 and ω2 are all positive parameters. The marginal liquidity cost of capital, after
optimizing over the choice of Bit+1 is given by (derivations in Appendix A.6)

Υ1,t+1 ≡
dΥ (Kit+1, Bit+1)

dKit+1

= ν (1− βR)
ω2
ω2+1 Kω

it+1 , (20)

where ν and ω are composite parameters. The former is always positive, while the latter is
of indeterminate sign. If ω is positive (negative), the marginal cost of liquidity is increasing
(decreasing) in Kit+1.

The log-linearized Euler equation takes the same form as (19), with

γk = −ω
(

Ῡ1

Ῡ1 + κ

)
,

40See, for example, Midrigan and Xu (2014) and Moll (2014). Gopinath et al. (2017) show that a richer
variant of the standard collateral constraint can have important implications during a period of transition, even
if it generates only modest amounts of misallocation in the long-run.
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where Ῡ1 is the marginal cost of liquidity in the deterministic steady state and κ = 1− β(1−
δ) + ξ̂δ(1 − β(1 − δ

2
)). Intuitively, the fraction Ῡ1

Ῡ1+κ
is the share of liquidity in the marginal

user cost of capital in the steady state. The result shows that liquidity considerations manifest
themselves as a size-dependent factor of the form described in Section 5.2. The sign depends
on the sign of ω: if ω > 0, then γk < 0, so costly liquidity dampens incentives to adjust capital
in response to fundamentals (since the liquidity cost is convex). The opposite happens if ω < 0.

Thus, liquidity considerations are a promising candidate for correlated and/or size-dependent
factors. Cross-country differences in liquidity requirements (summarized by the parameters ν
and ω) and/or costs (i.e., 1− βR) will translate into variation in the severity of our measures
of correlated firm-specific factors. However, our results here also highlight the difficulty in sep-
arating them from other factors using production-side data alone. One would need additional
data, e.g., on firm-level liquidity holdings, to disentangle the role of liquidity from other forces.

In sum, our findings in sections 5.1-5.3 provide some guidance on the factors beyond ad-
justment and information frictions that influence investment decisions. For US publicly traded
firms, observed dispersion in capital-output ratios could be driven to a large extent by unob-
served heterogeneity in production technologies and therefore, may not be a sign of misallocated
capital. On the other hand, the scope for this type of heterogeneity appears limited among
Chinese manufacturing firms, suggesting a greater role for inefficient factors like size-dependent
policies or financial imperfections.

6 Robustness and Extensions

In this section, we explore a number of variants on our baseline approach. We generalize our
specification of adjustment costs to include a non-convex component. We also use this exercise
to assess the accuracy of the log-linearized solution, since this case requires nonlinear solution
techniques. We consider the implications of a frictional labor choice. We explore a number of
measurement concerns, including the potential for measurement error. Our main conclusions
about the relative contribution of various factors to observed misallocation is robust across
these exercises.

6.1 Non-Convex Adjustment Costs

Our baseline model only allowed for convex adjustment costs. This allowed us to use pertur-
bation techniques which yielded both analytical tractability for our identification arguments as
well as computational efficiency. However, it raises two questions: one, is the log-linearization
a sufficiently good approximation for the true non-linear solution? And two, are the results
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robust to allowing for non-convex adjustment costs? Here, we address both of these concerns
by extending our baseline setup to include non-convex costs and solving the model without
linearization. Specifically, the adjustment cost function now takes the form:

Φ (Kit+1, Kit) =
ξ̂

2

(
Kit+1

Kit

− (1− δ)
)2

Kit + ξ̂fI {Iit 6= 0} π (Ait, Kit) ,

where Iit = Kit+1 − (1− δ)Kit denotes period t investment and I {·} the indicator function.
Capital adjustment costs are composed of two components: the first is the quadratic cost, the
same as before. The second is a fixed component that must be incurred if the firm undertakes
any non-zero investment. This component is parameterized by ξ̂f and scales with profits (so
that it does not become negligible for large firms), a common formulation in the literature, see,
e.g., Asker et al. (2014).

Because of the fixed component, we cannot use perturbation methods to solve this version
of the model. Therefore, we do so non-linearly using a standard value function iteration and
re-estimate the parameters. We now have an additional parameter, ξ̂f . To pin this down, we
add a new moment: the share of ‘non-adjusters,’ i.e., firms that make very small adjustments
to their capital stock in a particular period. Specifically, we match the share of firms with net
investment rates of less than 5% in absolute value, which is 14% of firms in China and 27% of
firms in the US.

We report the results in Table 6. The estimated value for ξ̂f is quite small in both countries.
The value in the US, which implies a cost of about 0.2% of annual profits, is somewhat lower
than previous estimates in the literature, underscoring the importance of controlling for other
factors when estimating adjustment frictions.41 The remaining parameters and their relative
contributions to σ2

mrpk are quite close to their values in the baseline analysis. These results
demonstrate that (1) non-convex costs play a limited role in leading to mrpk dispersion, (2)
abstracting from them does not significantly bias our estimates of other parameters and their
contributions to misallocation and (3) the perturbation approach used for our baseline results
is quite accurate.

6.2 Frictional Labor

Our baseline analysis makes the rather stark assumption of no adjustment or information fric-
tions in labor choice, making it a static decision with full information. Although this is not
an uncommon assumption in the literature, it may not be an apt description of labor markets

41For example, Bloom (2009) estimates a fixed adjustment cost of 1% of annual sales for US Compustat
firms. Asker et al. (2014) and Cooper and Haltiwanger (2006) work with data on US manufacturing firms and
estimate this parameter at 9% of annual sales and 4% of the capital stock, respectively.
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Table 6: Non-Convex Adjustment Costs

Parameters ξ̂ (ξ) ξ̂f V γ σ2
ε σ2

χ

China 0.034 (0.23) 0.000 0.09 −0.635 0.00 0.45
US 0.135 (0.92) 0.002 0.03 −0.320 0.02 0.29

∆σ2
mrpk

σ2
mrpk

China 4.3% 0.0% 10.0% 38.1% 0.0% 48.8%
US 11.1% 0.4% 7.5% 13.5% 4.4% 64.4%

Notes: The second column (in parentheses) reports the value of the normalized ad-
justment cost parameter, ξ, for purposes of comparison to Table 3. The mapping
between ξ and ξ̂ is given in expression (21).

in developing economies such as China. In this section, we extend our analysis to depart from
this assumption. In Appendix A.7.1, we show that when labor is subject to the same forces as
capital – adjustment and informational frictions and other factors – the firm’s intertemporal
investment problem takes the same form as in expression (3), but where the degree of curvature
is equal to α = α1 + α2 (and with slightly modified versions of the G and Ait terms). Thus,
the qualitative analysis of the model is unchanged, although the quantitative results will differ
since we now have α = α1 + α2 = 0.83. Table 7 reports results from this specification for the
Chinese firms. The top panel of the table displays the target moments recomputed under this
scenario. A comparison to the baseline moments in Table 2 shows that under the assumption
of frictional labor, the correlation of investment with lagged shocks increases, as does the cor-
relation of the mrpk with fundamentals. The second panel reports the associated parameter
estimates. They imply a higher level of adjustment costs, greater uncertainty and more severe
correlated distortions. As a result, a lower level of the permanent component of uncorrelated
distortions, σ2

χ, is needed to match the dispersion in the mrpk.
The bottom panel of Table 7 reports the contribution of each factor to total misallocation

and computes the implications for aggregate TFP. There is a noticeable increase in the impact of
adjustment costs from the baseline case – now, they account for almost 13% of mrpk dispersion
in China (compared to 1% above). There is also a slight increase in the impact of uncertainty
(from 10% to 11%). Further, the effects on aggregate productivity are much larger than in
the baseline scenario – here, these forces distort both inputs into production. Adjustment
costs and imperfect information now lead to TFP losses of about 36% and 32%, respectively.
Thus, this version of our model illustrates the potential for large aggregate consequences of
adjustment/information frictions. However, despite the increased impact of these forces (in
both relative and absolute terms), the results also confirm a key finding from before, namely,
the important role of other correlated and permanent factors. Indeed, these factors compose
about 80% of the measured mrpk dispersion, leading to TFP gaps relative to the first-best of
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about 144% and 90%, respectively.

Table 7: Frictional Labor - China

Moments ρ σ2
µ ρι,a−1 ρι,ι−1 ρmrpk,a σ2

ι σ2
mrpk

0.92 0.16 0.33 −0.36 0.81 0.14 0.94

Parameters ξ V γ σ2
ε σ2

χ

0.78 0.11 −0.68 0.04 0.30

Aggregate Effects
∆σ2

mrpk 0.12 0.11 0.48 0.04 0.30
∆σ2

mrpk

σ2
mrpk

12.8% 11.3% 51.2% 4.0% 32.2%

∆a 0.36 0.32 1.44 0.11 0.90

6.3 Measurement Error

Measurement error is an important and challenging concern, not just for our analysis but for the
misallocation literature more broadly. In an important recent contribution, Bils et al. (2017)
propose a method to identify additive measurement error. Here, we apply their methodology to
our data. The Bils et al. (2017) approach essentially involves estimating the following regression:

∆revit = Φmrpkit + Ψ∆kit −Ψ (1− λ)mrpkit ·∆kit +Djt + εit ,

where ∆revit and ∆kit denote changes in (log) revenues and capital respectively, Djt is a full set
of industry-year fixed effects and mrpkit is (the log of the) marginal revenue product of capital.
The key object is the coefficient on the interaction term. Bils et al. (2017) show that, under
certain assumptions, λ equals the ratio of the true dispersion in the mrpk to its measured
counterpart (and inversely, 1 − λ is the contribution of measurement error to the observed
σ2
mrpk). Intuitively, to the extent measured mrpk deviations are due to additive measurement

error, revenues of firms with high observed mrpk will display a lower elasticity with respect to
capital.

Estimating this regression in our data yields estimates for λ of 0.92 in China and 0.88 in
the US. These values suggest that, in both countries, only about 10% of the observed σ2

mrpk can
be accounted for by additive measurement error. Of course, it must be pointed out that this
method is silent about other forms of measurement error (e.g., multiplicative).42

42There are a few approaches in the literature to deal with multiplicative measurement error, e.g. Collard-
Wexler and De Loecker (2016) and Song and Wu (2015) make some progress on this dimension after imposing
additional structure.
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6.4 Additional Measurement Concerns

In this subsection, we address two other measurement-related issues. The first stems from
our use of book values for capital. Although this is a common approach in the misallocation
literature, e.g., Hsieh and Klenow (2009) and Gopinath et al. (2017), other papers use the
perpetual inventory method along with data on investment good price deflators to construct an
alternative measure for capital. To address this concern, we compute firm-level capital stocks
for US firms, where data on the relevant price indices are readily available, using the approach
outlined in Eberly et al. (2012). The results from re-estimating the model using these measures,
presented in Appendix D.2, are broadly in line with our baseline findings. They point to a
somewhat larger role for adjustment costs (the autocorrelation of investment growth is higher
under this method and the variance lower, leading to a higher estimate of ξ), which account for
about 27% of total σ2

mrpk (compared to 11% under our baseline approach). The contribution
of uncertainty is essentially unchanged at about 6%. Importantly, other firm-specific factors
continue to play a key role in generating the observed mrpk dispersion.

The second concern relates to sectoral heterogeneity in the structural parameters. We
have estimated our model separately for US firms for the 9 major sectors of the industrial
classification (e.g., manufacturing, construction, services, etc.). Specifically, we allowed for
sector-specific parameters in production (we infer sector-specific α’s using sectoral labor shares
obtained from the BEA), adjustment frictions, uncertainty, as well as other factors. The details
of this procedure are outlined in Appendix D.3 and the results are presented in Table 13 in
that appendix. Although there is some variation across sectors, the overall patterns in the role
of various factors (bottom panel of that table) are similar to those from our baseline analysis.
The contribution of adjustment costs to observed misallocation is generally quite modest – the
highest contribution is about 20% of σ2

mrpk in Manufacturing and the lowest is 2% in Finance,
Insurance and Real Estate. Uncertainty accounts for 5-10% across sectors, leaving the bulk of
observed misallocation within each sector to be accounted for by other factors.

7 Conclusion

In this paper, we have laid out a model of investment featuring multiple factors that interfere
with static marginal product equalization, along with an empirical strategy to disentangle them
using widely available firm-level production data. Figure 3 summarizes our main results on the
sources of misallocation in China (left panel) and the US (right panel). They suggest that
much of the observed misallocation stems not from technological and informational frictions
but, rather, from other firm-specific factors, in particular, ones that are correlated with firm pro-
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ductivity/size, and ones that are permanent. They also show that misspecification of demand
and production technologies can potentially account for a significant portion of observed misal-
location in a developed country like the US, but less so in China. There, size-dependent policies
or certain forms of financial imperfections may be more fruitful avenues to pursue. Crucially,
analyzing these factors in isolation would have led to very different conclusions, highlighting
the value of using a unified framework and empirical approach like the one here.

China US Compustat

Information
10%

Markup dispersion

5%

Tech. Dispersion

17%

Adj. Costs

1%

Other

67%

Information
7%

Markup dispersion

28%

Tech. Dispersion

53%

Adj. Costs

11%
Other1%

Notes: The numbers for the contribution of technological dispersion denote the upper
bound as calculated in footnote 39.

Figure 3: The Sources of Misallocation

There are several promising directions for future work. Our findings suggest that misalloca-
tion of productive resources, particularly in countries like China, are largely driven by factors
that systematically disincentivize investment by larger/more productive firms or are uncorre-
lated and permanent to the firm. They provide a guide for future research linking these factors,
for example, to specific policies and/or features of the institutional environment. A straightfor-
ward first step would be to analyze subsamples of firms – e.g., small vs. large, state-owned vs.
private in China, etc. Applying our methodology on a more disaggregated level (for example,
as we do across US sectors in Appendix D.3) might also be helpful in identifying segments of
developing economies that are more ‘distorted’ than others and the underlying sources. Buera
et al. (2013) show how irreversibility in government policy can result in fixed distortions at the
firm-level. Our results show that further progress in separating the effects of specific policies
and/or frictions is likely to require additional data (e.g., financial data). It also seems reason-
able to conjecture that observed misallocation is the combined effect of a number of policies,
so the main message of this paper – the need to use a broad set of data moments to discipline
the effects of individual factors – is relevant for this line of work as well.

Our findings have implications beyond static marginal product dispersion. Midrigan and
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Xu (2014) show that the same factors behind static misallocation can have larger effects on
aggregate outcomes by influencing entry and exit decisions. Similarly, a number of recent
papers examine the impact of distortions on the life-cycle of the firm and the distribution of
productivity itself, e.g., Hsieh and Klenow (2014), Bento and Restuccia (2016) and Da-Rocha
et al. (2017). An important insight from these papers is that the exact nature of the underlying
distortions (e.g., their correlation with firm fundamentals) is key to understanding their dynamic
implications. An ambitious and important next step would be to use an empirical strategy like
the one in this paper to analyze richer environments featuring some of these elements.
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Appendix: For Online Publication

A Derivations

A.1 Baseline Model

This appendix provides detailed derivations for our baseline analysis.

A.1.1 Model Solution

The first order condition and envelope conditions associated with (3) are, respectively,

TKit+1 (1− β (1− δ)) + Φ1 (Kit+1, Kit) = βEit [V1 (Kit+1, Iit+1)]

V1 (Kit, Iit) = Π1 (Kit, Ait)− Φ2 (Kit+1, Kit)

and combining yields the Euler equation

Eit
[
βΠ1 (Kit+1, Ait+1)− βΦ2 (Kit+2, Kit+1)− TKit+1 (1− β (1− δ))− Φ1 (Kit+1, Kit)

]
= 0

where

Π1 (Kit+1, Ait+1) = αGAit+1K
α−1
it+1

Φ1 (Kit+1, Kit) = ξ̂

(
Kit+1

Kit

− (1− δ)
)

Φ2 (Kit+1, Kit) = −ξ̂
(
Kit+1

Kit

− (1− δ)
)
Kit+1

Kit

+
ξ̂

2

(
Kit+1

Kit

− (1− δ)
)2

=
ξ̂

2
(1− δ)2 − ξ̂

2

(
Kit+1

Kit

)2

In the undistorted
(
T̄K = 1

)
non-stochastic steady state, these are equal to

Φ̄1 = ξ̂δ

Φ̄2 =
ξ̂

2
(1− δ)2 − ξ̂

2
Π̄1 = αḠĀK̄α−1

Log-linearizing the Euler equation around this point yields

Eit
[
βΠ̄1π1,it+1 − βΦ̄2φ2,it+1 − τKit+1 (1− β (1− δ))− Φ̄1φ1,it

]
= 0
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where τKit+1 = log TKit+1 and

Π̄1π1,it+1 ≈ αḠĀK̄α−1 (ait+1 + (α− 1) kit+1)

Φ̄1φ1,it ≈ ξ̂ (kit+1 − kit)

Φ̄2φ2,it+1 ≈ −ξ̂ (kit+2 − kit+1)

Rearranging gives

kit+1 ((1 + β)ξ + 1− α) = Eit [ait+1 + τit+1] + βξEit [kit+2] + ξkit

where

ξ =
ξ̂

βΠ̄1

, τit+1 = −1− β (1− δ)
βΠ̄1

τKit+1

which is expression (4) in the text. Using the steady state Euler equation,

β(Π̄1 + 1− δ)− βΦ̄2 = 1 + Φ̄1 ⇒ αβḠĀK̄α−1 = 1− β (1− δ) + ξ̂δ

(
1− β

(
1− δ

2

))
we have

ξ =
ξ̂

1− β (1− δ) + ξ̂δ
(
1− β

(
1− δ

2

)) (21)

τit+1 = − 1− β (1− δ)
1− β (1− δ) + ξ̂δ

(
1− β

(
1− δ

2

))τKit+1

To derive the investment policy function, we conjecture that it takes the form in expression
(7). Then,

kit+2 = ψ1kit+1 + ψ2 (1 + γ)Eit+1ait+2 + ψ3εit+2 + ψ4χi

Eit [kit+2] = ψ1kit+1 + ψ2 (1 + γ) ρEit [ait+1] + ψ4χi

= ψ1 (ψ1kit + ψ2 (1 + γ)Eit [ait+1] + ψ3εit+1 + ψ4χi) + ψ2 (1 + γ) ρEit [ait+1] + ψ4χi

= ψ2
1kit + (ψ1 + ρ)ψ2 (1 + γ)Eit [ait+1] + ψ1ψ3εit+1 + ψ4 (1 + ψ1)χi

where we have used Eit [εit+2] = 0 and Eit [Eit+1 [ait+2]] = ρEit [ait+1]. Substituting and rear-
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ranging,

(1 + βξψ4 (1 + ψ1))χi + (1 + βξψ1ψ3) εit+1

+ (1 + βξ (ψ1 + ρ)ψ2) (1 + γ)Eit [ait+1] + ξ
(
1 + βψ2

1

)
kit

= ((1 + β) ξ + 1− α) (ψ1kit + ψ2 (1 + γ)Eit [ait+1] + ψ3εit+1 + ψ4χi)

Finally, matching coefficients gives

ξ
(
βψ2

1 + 1
)

= ψ1 ((1 + β)ξ + 1− α)

1 + βξ (ψ1 + ρ)ψ2 = ψ2 ((1 + β)ξ + 1− α)⇒ ψ2 =
1

1− α + βξ (1− ψ1 − ρ) + ξ

1 + βξψ1ψ3 = ψ3 ((1 + β)ξ + 1− α)⇒ ψ3 =
1

1− α + (1− ψ1) βξ + ξ

1 + βξψ4 (1 + ψ1) = ψ4 ((1 + β)ξ + 1− α)⇒ ψ4 =
1

1− α + ξ (1− βψ1)

A few lines of algebra yields the expressions in (8).

A.1.2 Aggregation

To derive aggregate TFP and output, substitute the firm’s optimality condition for labor

Nit =

(
α2Y

1
θ

W
ÂitK

α1
it

) 1
1−α2

into the production function (1) to get

Yit =

(
α2Y

1
θ

W

) α̂2
1−α2

Â
α̂2

1−α2
it K

α̂1
1−α2
it

and using the demand function, revenues are

PitYit = Y
1
θ

1
1−α2

(α2

W

) α2
1−α2 AitK

α
it

Labor market clearing implies

∫
Nitdi =

∫ (
α2Y

1
θ

W

) 1
1−α2

AitK
α
itdi = N
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so that (α2

W

) α2
1−α2 =

(
N∫

AitKα
itdi

1

Y
1
θ

1
1−α2

)α2

⇒ PitYit = Y
1
θ

AitK
α
it(∫

AitKα
itdi
)α2

Nα2

By definition,

MRPKit = α
AitK

α−1
it(∫

AitKα
itdi
)α2

Y
1
θNα2

so that

Kit =

(
αY

1
θAit

MRPKit

) 1
1−α (

N∫
AitKα

itdi

) α2
1−α

and capital market clearing implies

K =

∫
Kitdi =

(
αY

1
θ

) 1
1−α
(

N∫
AitKα

itdi

) α2
1−α
∫
A

1
1−α
it MRPK

− 1
1−α

it di

The latter two equations give

Kα
it =

 A
1

1−α
it MRPK

− 1
1−α

it∫
A

1
1−α
it MRPK

− 1
1−α

it di
K

α

Substituting into the expression for PitYit and rearranging, we can derive

PitYit =

A
1

1−α
it MRPK

− α
1−α

it(∫
A

1
1−α
it MRPK

− 1
1−α

it di

)α ∫
A

1
1−α
it MRPK

− α
1−α

it di(∫
A

1
1−α
it MRPK

− 1
1−α

it di

)α
α2

Y
1
θKα1Nα2

Using the fact that Y =
∫
PitYitdi, we can derive

Y =

∫
PitYitdi = Y

1
θAKα1Nα2

where

A =


∫
A

1
1−α
it MRPK

− α
1−α

it di(∫
A

1
1−α
it MRPK

− 1
1−α

it di

)α


1−α2
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or in logs,

a = (1− α2)

[
log

(∫
A

1
1−α
it MRPK

− α
1−α

it

)
− α log

(∫
A

1
1−α
it MRPK

− 1
1−α

it

)]
The first term inside brackets is equal to

1

1− α
a− α

1− α
mrpk +

1

2

(
1

1− α

)2

σ2
a +

1

2

(
α

1− α

)2

σ2
mrpk −

α

(1− α)2σmrpk,a

and the second,

α

1− α
a− α

1− α
mrpk +

1

2
α

(
1

1− α

)2

σ2
a +

1

2
α

(
1

1− α

)2

σ2
mrpk −

α

(1− α)2σmrpk,a

Combining,

a = (1− α2)

[
a+

1

2

1

1− α
σ2
a −

1

2

α

1− α
σ2
mrpk

]
and

y =
1

θ
y + (1− α2) ā+

1

2

1− α2

1− α
σ2
a −

1

2
α

1− α2

1− α
σ2
mrpk + α1k + α2n

=
θ

θ − 1
(1− α2) ā+

θ

θ − 1

1

2

1− α2

1− α
σ2
a −

θ

θ − 1

1

2
α

1− α2

1− α
σ2
mrpk + α̂1k + α̂2n

= a+ α̂1k + α̂2n

where, using ait = 1
1−α2

âit, σ2
a =

(
1

1−α2

)2

σ2
â and α = α1

1−α2
,

a =
θ

θ − 1
¯̂a+

1

2

θ

θ − 1

1

1− α1 − α2

σ2
â −

1

2
(θα̂1 + α̂2) α̂1σ

2
mrpk

= a∗ − 1

2
(θα̂1 + α̂2) α̂1σ

2
mrpk

which is equation (9) in the text.
To compute the effect on output, notice that the aggregate production function is

y = α̂1k + α̂2n+ a
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so that

dy

dσ2
mrpk

= α̂1
dk

da

da

dσ2
mrpk

+
da

dσ2
mrpk

=
da

dσ2
mrpk

(
1 + α̂1

dk

da

)
In the stationary equilibrium, the aggregate marginal product of capital must be a constant,
denote it by R̄, i.e., log α̂1 + y − k = r̄ so that

k =
1

1− α̂1

(log α̂1 + α̂2n+ a− r̄)

and
dk

da
=

1

1− α̂1

Combining,
dy

dσ2
mrpk

=
da

dσ2
mrpk

(
1 +

α̂1

1− α̂1

)
=

da

dσ2
mrpk

1

1− α̂1

A.2 Firm-Specific Wages

In this appendix, we show that to the extent distortions to the labor choice are reflected
in firm-specific wages, they change the interpretation of fundamentals but otherwise do not
affect our analysis of capital misallocation. In particular, they do not contribute to measured
mrpk dispersion and so our strategy for disentangling the various sources of capital misallocation
and our estimates for their magnitudes go through unchanged.

We allow wages to vary at the firm level due to distortions, i.e., introduce Wit ≡ WTNit into
the firm’s problem, which becomes

V (Kit, Iit) = max
Nit,Kit+1

Eit
[
Y

1
θ ÂitK

α1
it N

α2
it −WTNit Nit − TKit+1Kit+1 (1− β (1− δ))− Φ (Kit+1, Kit)

]
+ βEit [V (Kit+1, Iit+1)]

The labor choice satisfies the first order condition

Nit =

(
α2
Y

1
θ ÂitK

α1
it

WTNit

) 1
1−α2
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Substituting, we can derive operating profits (revenues net of total wages) as

PitYit −WTNit Nit = Y
1
θ
t ÂitK

α1
it

(
α2Y

1
θ
t

ÂitK
α1
it

WTNit

) α2
1−α2

−WTNit

(
α2Y

1
θ
t

ÂitK
α1
it

WTNit

) 1
1−α2

= (1− α2)
(α2

W

) α2
1−α2 Y

1
θ

1
1−α2

Â
1

1−α2
it

(TNit )
α2

1−α2

K
α1

1−α2
it

= GAitK
α
it

which is the same form as in the baseline version, except now the fundamental Ait also incor-
porates the effect of the labor distortion:43

Ait ≡

(
Âit

(TNit )
α2

) 1
1−α2

With this re-interpretation, the firm’s dynamic investment decision is still given by (3). To see
that these labor taxes do not contribute to mrpk dispersion, assume that they are the only
friction, i.e., the capital choice is made under full information with no adjustment costs or
uncertainty. The capital choice is then static and given by

Kit =

αGÂ 1
1−α2
it

(TNit )
α2

1−α2

 1
1−α

Combining this with the expression for revenues, the measured mrpk is equal to

mrpkit = Const. + pit + yit − kit
= Const. +

−α2

1− α2

τNit +
1

1− α2

âit + (α− 1)
−α2

1− α2

1

1− α
τNit + (α− 1)

1

1− α2

1

1− α
âit

= Const.

So, TNit does lead to any measured dispersion in the mrpk.

A.3 Identification

In this appendix we derive analytic expressions for the four moments in the random walk case,
i.e., when ρ = 1, and prove Proposition 1.

43Note that this is also the ait we would measure from the data using the definition ait = vait − αkit.
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Moments. From expression (7), we have the firm’s investment policy function

kit+1 = ψ1kit + ψ2 (1 + γ)Eit [ait+1] + ψ3εit+1 + ψ4χi

and substituting for the expectation,

kit+1 = ψ1kit + ψ2 (1 + γ) (ait + φ (µit+1 + eit+1)) + ψ3εit+1 + ψ4χi

where φ = V
σ2
e
so that 1− φ = V

σ2
µ
. Then,

∆kit+1 = ψ1∆kit + ψ2 (1 + γ) ((1− φ)µit + φµit+1 + φ (eit+1 − eit)) + ψ3 (εit+1 − εit)

We will use the fact that

cov (∆kit+1, µit+1) = ψ2 (1 + γ)φσ2
µ

cov (∆kit+1, eit+1) = ψ2 (1 + γ)φσ2
e

cov (∆kit+1, εit+1) = ψ3σ
2
ε

Now,

var (∆kit+1) = ψ2
1var (∆kit) + ψ2

2 (1 + γ)2 (1− φ)2 σ2
µ

+ ψ2
2 (1 + γ)2 φ2σ2

µ + 2ψ2
2 (1 + γ)2 φ2σ2

e + 2ψ2
3σ

2
ε

+ 2ψ1ψ2 (1 + γ) (1− φ) cov (∆kit, µit)− 2ψ1ψ2 (1 + γ)φcov (∆kit, eit)

− 2ψ1ψ3cov (∆kit, εit)

where substituting, rearranging and using the fact that the moments are stationary gives

σ2
k ≡ var (∆kit) =

(1 + γ)2 ψ2
2σ

2
µ + 2 (1− ψ1)ψ2

3σ
2
ε

1− ψ2
1

which can be rearranged to yield expression (10).
Next,

cov (∆kit+1,∆kit) = ψ1var (∆kit) + ψ2 (1 + γ) (1− φ) cov (∆kit, µit)

− ψ2 (1 + γ)φcov (∆kit, eit)− ψ3cov (∆kit, εit)

= ψ1var (∆kit)− ψ3cov (∆kit, εit)

= ψ1σ
2
k − ψ2

3σ
2
ε
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so that
ρk,k−1 ≡ corr (∆kit,∆kit−1) = ψ1 − ψ2

3

σ2
ε

σ2
k

which is expression (11). Similarly,

cov (∆kit+1,∆ait) = cov (∆kit+1, µit)

= ψ1cov (∆kit, µit) + ψ2 (1 + γ) (1− φ)σ2
µ

= ψ1ψ2 (1 + γ)φσ2
µ + ψ2 (1 + γ) (1− φ)σ2

µ

= (1− φ (1− ψ1))ψ2 (1 + γ)σ2
µ

and from here it is straightforward to derive

ρk,a−1 ≡ corr (∆kit,∆ait−1) =

[
V
σ2
µ

(1− ψ1) + ψ1

]
σµψ2 (1 + γ)

σk

as in expression (12).
Finally,

mrpkit = Const + pit + yit − kit = Const + ait + αkit − kit = Const + ait − (1− α) kit

so that
∆mrpkit = ∆ait − (1− α) ∆kit = µit − (1− α) ∆kit

which implies
cov (∆mrpkit, µit) = (1− (1− α) (1 + γ)ψ2φ)σ2

µ

and

λmrpk,a ≡
cov (∆mrpkit, µit)

σ2
µ

= 1− (1− α) (1 + γ)ψ2φ

= 1− (1− α) (1 + γ)ψ2

(
1− V

σ2
µ

)
which is expression (13).
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To see that the correlation ρmrpk,a is decreasing in σ2
ε , we derive

var (∆mrpkit) = σ2
µ + (1− α)2 σ2

k − 2 (1− α) cov (∆kit, µit)

= σ2
µ + (1− α)2

(
ψ2

2 (1 + γ)2 σ2
µ + 2 (1− ψ1)ψ2

3σ
2
ε

1− ψ2
1

)
− 2 (1− α)ψ2 (1 + γ)φσ2

µ

=
1

1− ψ2
1

(((
1− ψ2

1

)
(1− 2 (1− α) (1 + γ)ψ2φ) + (1− α)2 (1 + γ)2 ψ2

2

)
σ2
µ

)
+

1

1− ψ2
1

(
2 (1− α)2 (1− ψ1)ψ2

3σ
2
ε

)
so

ρmrpk,a =
(1− (1− α) (1 + γ)ψ2φ)σµ

√
1− ψ2

1√(
(1− ψ2

1) (1− 2 (1− α) (1 + γ)ψ2φ) + (1− α)2 (1 + γ)2 ψ2
2

)
σ2
µ + 2 (1− α)2 (1− ψ1)ψ2

3σ
2
ε

Proof of Proposition 1. Write the variance of investment as

σ2
k = ψ2

1σ
2
k + (1 + γ)2 ψ2

2σ
2
µ + 2 (1− ψ1)ψ2

3σ
2
ε

To rewrite the last term as a function of an observable moment, use the autocovariance of
investment,

σk,k−1 = ψ1σ
2
k − ψ2

3σ
2
ε (22)

and substitution yields

σ2
k = ψ2

1σ
2
k + (1 + γ)2 ψ2

2σ
2
µ + 2 (1− ψ1)

(
ψ1σ

2
k − σk,k−1

)
(23)

To eliminate the second term, use the equation for λmrpk,a to solve for

(1 + γ)ψ2φ =
1− λmrpk,a

1− α
= λ̃ (24)

where λ̃ is a decreasing function of λmrpk,a that depends only on the known parameter α.
Substituting into the expression for the covariance of investment with the lagged shock, σk,a−1 ,
and rearranging yields

(1 + γ)ψ2 =
σk,a−1

σ2
µ

+ λ̃ (1− ψ1) (25)

which is an equation in ψ1 and observable moments. Substituting into (23) gives

σ2
k = ψ2

1σ
2
k +

(
σk,a−1

σ2
µ

+ λ̃ (1− ψ1)

)2

σ2
µ + 2 (1− ψ1)

(
ψ1σ

2
k − σk,k−1

)
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and rearranging, we can derive

0 =
(
λ̂2 − 1

)
(1− ψ1)2 + 2

(
λ̂ρk,a−1 − ρk,k−1

)
(1− ψ1) + ρ2

k,a−1
(26)

where
λ̂ =

σµ
σk
λ̃ =

σµ
σk

(
1− λmrpk,a

1− α

)
Equation (26) represents a quadratic equation in a single unknown, 1− ψ1, or equivalently, in
ψ1. The solution features two positive roots, one greater than one and one less. The smaller
root corresponds to the true ψ1 that represents the solution to the firm’s investment policy.
The value of ψ1 pins down the adjustment cost parameter ξ as well as ψ2 and ψ3. We can then
back out γ from (25), φ (and so V) from (24) and finally, σ2

ε from (22).

A.4 Heterogeneity in Markups/Technologies

The firm’s cost minimization problem is

min
Kit,Nit,Mit

RtT
K
it Kit +WtT

N
it Nit + PM

t Mit s.t. Yit ≤ K α̂it
it N

ζ̂−α̂it
it M1−ζ̂

it

The first order condition on Mit gives

PM
t =

(
1− ζ̂

) Yit
Mit

MCit ⇒ PM
t Mit

PitYit
=
(

1− ζ̂
)MCit

Pit

where MCit is the Lagrange multiplier on the constraint (i.e., the marginal cost). Rearranging
gives expression (14). In logs,

log
Pit
MCit

= log
(

1− ζ̂
)

+ log
PitYit
PM
t Mit

⇒ σ2

(
log

Pit
MCit

)
= σ2

(
log

PitYit
PM
t Mit

)
Similarly, the optimality conditions for Kit and Nit yield:

log
PitYit
Kit

= log
Pit
MCit

− log α̂it + τKit + Constant

log
PitYit
Nit

= log
Pit
MCit

− log
(
ζ̂ − α̂it

)
+ τNit + Constant

Log-linearizing around the average α̂it, denote it ᾱ, and ignoring constants yields log
(
ζ̂ − α̂it

)
≈

− ᾱ

ζ̂−ᾱ log α̂it. Substituting gives expression (17).
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Proof of Proposition 2. Assuming log α̂it is uncorrelated with τKit and τNit ,

cov (arpkit, arpnit) = − ᾱ

ζ̂ − ᾱ
σ2

log α̂ + cov
(
τ kit, τ

n
it

)
σ2
arpk = σ2

log α̂ + σ2
τk

σ2
arpn =

(
ᾱ

ζ̂ − ᾱ

)2

σ2
log α̂ + σ2

τn

From here, we can solve for the correlation of the distortions:

ρ
(
τKit , τ

N
it

)
=

cov (arpkit, arpnit) + ᾱ

ζ̂−ᾱσ
2
log α̂√

σ2
arpk − σ2

log α̂

√
σ2
arpn −

(
ᾱ

ζ̂−ᾱ

)2

σ2
log α̂

which is increasing in σ2
log α̂. An upper bound for σ2

log α̂, denoted σ̄2
log α̂, is where ρ

(
τKit , τ

N
it

)
= 1,

and substituting and rearranging gives

σ̄2
α̂ =

σ2
arpkσ

2
arpn − cov (arpkit, arpnit)

2

2 ᾱ

ζ̂−ᾱcov (arpkit, arpnit) +
(

ᾱ

ζ̂−ᾱ

)2

σ2
arpk + σ2

arpn

A.5 Size-Dependent Policies

In this appendix, we detail the relationship between size and productivity-dependent factors.
First, note that our empirical strategy can be thought of as essentially recovering the law of
motion for kit – in particular, the coefficients ψ1, ψ2 (1 + γ), ψ3 and ψ4. Importantly, these
estimates are invariant to assumptions about γk, which only affects the mapping from these
coefficients to the underlying structural parameters. For example, suppose we assume γk = 0.
Then, given our values for (α, β, δ), the estimated ψ1 identifies the adjustment cost parameter
ξ. Next, the value of ξ can be used to pin down ψ2, allowing us to recover γ from the estimated
ψ2 (1 + γ). This procedure can be applied for any given γk as well. Since the estimated ψ1 and
ψ2 (1 + γ) do not change, for any γk, the adjustment cost parameter becomes, from (8),

ξ = ψ1
1− α− γk

βψ2
1 + 1− ψ1 (1 + β)

.

The next step is the same as before: the estimated ξ implies a value for ψ2, which then allows us
to back out γ from the estimated ψ2 (1 + γ). Table 5 applies this procedure for various values
of γk to trace out a set of parameters that are observationally equivalent, i.e., that cannot be
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distinguished using only data on capital and revenues.

A.6 Financial Frictions

Including the liquidity cost, the firm’s recursive problem can be written as

V (Kit, Bit, Iit) = max
Bit+1,Kit+1

Eit
[
Π (Kit, Ait) +RBit −Bit+1 − TKit+1Kit+1 (1− β (1− δ))

]
− Φ (Kit+1, Kit)−Υ (Kit+1, Bit+1) + βEit [V (Kit+1, Bit+1, Iit+1)]

The first order conditions are given by

Eit [βΠ1 (Kit+1, Ait+1)− βΦ2 (Kit+2, Kit+1)] = TKit+1 (1− β (1− δ)) + Φ1 (Kit+1, Kit) + Υ1 (Kit+1, Bit+1)

−Υ2 (Kit+1, Bit+1) + βR = 1

Note that

Υ2 (Kit+1, Bit+1) = −ν̂ω2

Kω1
it+1

Bω2+1
it+1

, Υ1 (Kit+1, Bit+1) = ν̂ω1

Kω1−1
it+1

Bω2
it+1

Using the FOC for Bit+1

1 = ν̂ω2

Kω1
it+1

Bω2+1
it+1

+ βR ⇒ Bit+1 =

(
v̂ω2

1− βR

) 1
ω2+1

K
ω1
ω2+1

it+1

Υ1 (Kit+1, Bit+1) = ν̂ω1

Kω1−1
it+1

Bω2
it+1

= ν̂ω1

Kω1−1
it+1(

v̂ω2

1−βR

) ω2
ω2+1

K
ω2ω1
ω2+1

it+1

=

(
ν̂

ωω2
2

) 1
ω2+1

ω1 (1− βR)
ω2
ω2+1 K

ω1−(ω2+1)
ω2+1

it+1

= ν (1− βR)
ω2
ω2+1 Kω

it+1 ,

where

ν ≡
(

ν̂

ωω2
2

) 1
ω2+1

ω1

ω ≡ ω1 − (ω2 + 1)

ω2 + 1
.

Log-linearizing,

Ῡ1 + Ῡ1υ1t+1 ≈ ν (1− βR)
ω2
ω2+1 K̄ω + ν (1− βR)

ω2
ω2+1 K̄ωωkit+1

Ῡ1υ1t+1 ≈ ν (1− βR)
ω2
ω2+1 K̄ωωkit+1 .
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Substituting into the FOC,

Eit
[
αβḠĀK̄α−1 (ait+1 + (α− 1) kit+1) + βξ̂ (kit+2 − kit+1)− τKit+1 (1− β (1− δ))

]
= ξ̂ (kit+1 − kit) + ν (1− βR)

ω2
ω2+1 K̄ωωkit+1 ,

or
kit+1 ((1 + β) ξ + 1− α− γk) = Eit [ait+1 + τit+1] + βξEit [kit+2] + ξkit ,

where

γk = −ν (1− βR)
ω2
ω2+1 ωK̄ω

αβḠĀK̄α−1
= − ν (1− βR)

ω2
ω2+1 ωK̄ω

ν (1− βR)
ω2
ω2+1 K̄ω + 1− β (1− δ) + ξ̂δ

(
1− β

(
1− δ

2

))
= − ωῩ1

Ῡ1 + κ

where we have substituted in from the steady state Euler equations and κ ≡ 1 − β (1− δ) +

ξ̂δ
(
1− β

(
1− δ

2

))
.

A.7 Frictional Labor

In this appendix, we provide detailed derivations for the case of frictional labor.

A.7.1 Model Solution

When labor is chosen under the same frictions as capital, the firm’s value function takes the
form

V (Kit, Nit, Iit) = max
Kit+1,Nit+1

Eit
[
Y

1
θ ÂitK

α1
it N

α2
it

]
(27)

− Eit [Tit+1Kit+1 (1− β (1− δ)) + Φ (Kit+1, Kit)]

− Eit [Tit+1WNit+1 (1− β (1− δ)) +WΦ (Nit+1, Nit)]

+ Eit [βV (Kit+1, Nit+1, Iit+1)]

where the adjustment cost function Φ (·) is as defined in expression (2). Because the firm makes
a one-time payment to hire incremental labor, the cost of laborW is now to be interpreted as the
present discounted value of wages. Capital and labor are both subject to the same adjustment
frictions, the same distortions, denoted Tit+1, and are chosen under the same information set,
though the cost of labor adjustment is denominated in labor units.
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The first order and envelope conditions yield two Euler equations:

Eit [Tit+1 (1− β (1− δ)) + Φ1 (Kit+1, Kit)] = Eit
[
βα1Y

1
θ Âit+1K

α1−1
it+1 N

α2
it+1 − βΦ2 (Kit+2, Kit+1)

]
Eit [WTit+1 (1− β (1− δ)) + Φ1 (Nit+1, Nit)] = Eit

[
βα2Y

1
θ Âit+1K

α1
it+1N

α2−1
it+1 − βWΦ2 (Nit+2, Nit+1)

]
To show that this setup leads to an intertemporal investment problem that takes the same

form as (3), we prove that there exists a constant η such that Nit+1 = ηKit+1 which leads to the
same solution as if the firm were choosing only capital facing a degree of curvature α = α1 +α2.

Under this conjecture, we can rewrite the firm’s problem in (27) as

Ṽ (Kit, Iit) = max
Kit+1

Eit
[

ηα2

1 +Wη
Y

1
θ ÂitK

α1+α2
it − Tit+1Kit+1 (1− β (1− δ))

]
+ Eit

[
−Φ (Kit+1, Kit) + βṼ (Kit+1, Iit+1)

]
Let {K∗it} be the solution to this problem. By definition, it must satisfy the following optimality
condition

Eit
[
Tit+1 (1− β (1− δ)) + Φ1

(
K∗it+1, K

∗
it

)]
= Eit

[
β

(α1 + α2)Y
1
θ Âit+1K

∗α1+α2−1
it+1 ηα2

1 +Wη

]
(28)

− Eit
[
βΦ2

(
K∗it+2, K

∗
it+1

)]
Now substitute the conjecture that N∗it = ηK∗it into the optimality condition for labor from the
original problem and rearrange to get:

Eit
[
Tit+1 (1− β (1− δ)) + Φ1

(
K∗it+1, K

∗
it

)]
= Eit

[
β
α2Y

1
θ Âit+1K

∗α1+α2−1
it+1 ηα2

Wη
− βΦ2

(
K∗it+2, K

∗
it+1

)]
(29)

If η satisfies
α1 + α2

1 +Wη
=

α2

Wη
⇒ Wη =

α2

α1

(30)

then (29) is identical to (28). In other words, under (30), the sequence {K∗it, N∗it} satisfies the
optimality condition for labor from the original problem. It is straightforward to verify that
this also implies that {K∗it, N∗it} satisfy the optimality condition for capital from the original
problem:

Eit
[
Tit+1 (1− β (1− δ)) + Φ1

(
K∗it+1, K

∗
it

)]
= Eit

[
βα1Y

1
θ Âit+1K

∗α1+α2−1
it+1 ηα2 − βΦ2

(
K∗it+2, K

∗
it+1

)]
= Eit

[
β
α2Y

1
θ Âit+1K

∗α1+α2−1
it+1 ηα2

Wη
− βΦ2

(
K∗it+2, K

∗
it+1

)]
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Thus, we can analyze this environment in an analogous fashion to the baseline setup, where
the firm’s intertemporal optimization problem takes the same form as expression (3), with

α = α1 + α2, G = ηα2Y
1
θ

1+Wη
and Ait = Âit.

A.7.2 Aggregation

To derive aggregate output and TFP for this case, we use the fact that, as shown above,
Nit = ηKit where η = α2

α1W
. Substituting into the revenue function gives

PitYit = Y
1
θ Âitη

α2Kα1+α2
it = Y

1
θ Âitη

α2Kα
it

By definition,
MPRKit = αY

1
θ Âitη

α2Kα−1
it

so that

Kit =

(
αY

1
θ Âitη

α2

MPRKit

) 1
1−α

so that

PitYit = Y
1
θ ηα2Âit

(
αY

1
θ ηα2Âit

MRPKit

) α
1−α

= α
α

1−αY
1
θ

1
1−αη

α2
1−α Â

1
1−α
it MRPK

− α
1−α

it

and
Y =

∫
PitYitdi = α

α
1−αY

1
θ

1
1−αη

α2
1−α

∫
Â

1
1−α
it MRPK

− α
1−α

it di

or, rearranging,

Y = α
α̂1+α̂2
1−α Y

1
θ
α̂1+α̂2
1−α η

α̂2
1−α

(∫
Â

1
1−α
it MRPK

− α
1−α

it di

) θ
θ−1

Capital market clearing implies

K =

∫
Kitdi = α

1
1−αY

1
θ

1
1−α

t η
α2
1−α

∫
Â

1
1−α
it MRPK

− 1
1−α

it di

so that

K α̂1N α̂2 = α
α̂1+α̂2
1−α Y

1
θ
α̂1+α̂2
1−α

t ηα̂2+
α2
1−α (α̂1+α̂2)

(∫
Â

1
1−α
it MRPK

− 1
1−α

it di

)α̂1+α̂2
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Aggregate TFP is

A =
Y

K α̂1N α̂2
=

(∫
Â

1
1−α
it MRPK

− α
1−α

it di

) θ
θ−1

(∫
Â

1
1−α
it MRPK

− 1
1−α

it di

)α̂1+α̂2

Following similar steps as in the baseline case, we can derive

a = a∗ − 1

2

θ

θ − 1

α

1− α
σ2
mrpk

Under constant returns to scale in production, this simplifies to

a = a∗ − 1

2
θσ2

mrpk

The output effects are the same as in the baseline case.

B Data

As described in the text, our Chinese data are from the Annual Surveys of Industrial Production
conducted by the National Bureau of Statistics. The data span the period 1998-2009 and are
built into a panel following quite closely the method outlined in Brandt et al. (2014). We
measure the capital stock as the value of fixed assets and calculate investment as the change in
the capital stock relative to the preceding period. We construct firm fundamentals, ait, as the
log of value-added less α multiplied by the log of the capital stock and (the log of) the marginal
product of capital, mrpkit (up to an additive constant), as the log of value-added less the log of
the capital stock. We compute value-added from revenues using a share of intermediates of 0.5
(our data does not include a direct measure of value-added in all years). We first difference the
investment and fundamental series to compute investment growth and changes in fundamentals.
To extract the firm-specific variation in our variables, we regress each on a year by time fixed-
effect and work with the residual. Industries are defined at the 4-digit level. This eliminates
the industry-wide component of each series common to all firms in an industry and time period
(as well the aggregate component common across all firms) and leaves only the idiosyncratic
variation. To estimate the parameters governing firm fundamentals, i.e., the persistence ρ and
variance of the innovations σ2

µ, we perform the autoregression implied by (5), again including
industry by year controls. We eliminate duplicate observations (firms with multiple observations
within a single year) and trim the 3% tails of each series. We additionally exclude observations
with excessively high variability in investment (investment rates over 100%). Our final sample
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in China consists of 797,047 firm-year observations.
Our US data are from Compustat North America and also spans the period 1998-2009.

We measure the capital stock using gross property, plant and equipment. We treat the data
in exactly the same manner as just described for the set of Chinese firms. We additionally
eliminate firms that are not incorporated in the US and/or do not report in US dollars. Our
final sample in the US consists of 34,260 firm-year observations.

Table 8 reports a number of summary statistics from one year of our data, 2009: the number
of firms (with available data on sales), the share of GDP they account for, and average sales
and capital.

Table 8: Sample Statistics 2009

No. of Firms Share of GDP Avg. Sales ($M) Avg. Capital ($M)

China 303623 0.65 21.51 8.08
US 6177 0.45 2099.33 1811.35

For the analyses in Section 5.1, labor is measured as the number of employees in the US
Compustat data and wage bill in the Chinese data. Expenditures on intermediate inputs are
reported in the Chinese data. In the US, we construct a measure of intermediates following the
method outlined in İmrohoroğlu and Tüzel (2014), i.e., as total expenses less labor expenses,
where total expenses are calculated as sales less operating income (before depreciation and
amortization, Compustat series OIBDP). From here we can calculate materials’ share and the
markup-adjusted revenue products of capital and labor. We isolate the firm-specific variation
in these series following a similar procedure as described above, i.e., by extracting a full set
of industry by time fixed effects and working with the residual. We trim the 1% tails of each
series.

C Interactions Between Factors

In the main text (specifically, Table 3), we measured the contribution of each factor in isolation,
i.e., setting all other forces to zero. The top panel of Table 9 reproduces those estimates (labeled
‘In isolation’) and compares them to the case where all the other factors are held fixed at their
estimated levels (labeled ‘Joint’). The table shows some evidence of interactions, but since
adjustment and informational frictions are modest, the numbers are quite similar under both
approaches.
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Table 9: Interactions Between Factors - US

Other Factors

Adj Costs Uncertainty Correlated Transitory Permanent

In isolation
∆σ2

mrpk 0.05 0.03 0.06 0.03 0.29
∆σ2

mrpk

σ2
mrpk

10.8% 7.3% 14.4% 6.3% 64.7%

Joint
∆σ2

mrpk 0.04 0.03 0.08 0.00 0.29
∆σ2

mrpk

σ2
mrpk

8.0% 5.7% 17.4% 0.3% 64.7%

D Robustness

D.1 Investment Moments

As discussed in footnotes 20 and 29, in this subsection, we re-estimate our model targeting the
autocorrelation and variance of investment in levels, rather than growth rates. The values of
these moments are 0.25 and 0.04, respectively, in the US and 0.04 and 0.08 in China. The other
target moments are the same as in Table 2. Table 10 reports the results. A comparison to Table
3 shows that the parameter estimates are quite close to the baseline, as are the contributions
to mrpk dispersion – adjustment costs and uncertainty account for between 15% and 20% of
σ2
mrpk in the two countries, correlated factors play a large role in China and less so in the US,

while fixed factors are quite significant in both countries.

Table 10: Using Moments from Investment in Levels

Other Factors

Adjustment Costs Uncertainty Correlated Transitory Permanent

Parameters ξ V γ σ2
ε σ2

χ

China 0.37 0.11 −0.72 0.02 0.38
US 1.77 0.04 −0.31 0.19 0.28

∆σ2
mrpk

σ2
mrpk

China 4.3% 11.9% 48.9% 2.5% 40.8%
US 12.1% 8.1% 13.2% 42.4% 62.8%
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D.2 Measurement of Firm-Level Capital

Our baseline analysis uses reported book values of firm-level capital stocks. Here, we use
the perpetual inventory method along with investment good price deflators to construct an
alternative measure of capital for the US firms. To do this, we follow the approach in Eberly
et al. (2012). Here, we briefly describe the procedure and refer the reader to that paper for
more details. We use the book value of capital in the first year of our data as the starting value
of the capital stock and use the recursion:

Kit =

(
Kit−1

PKt
PKt−1

+ Iit

)
(1− δj)

to estimate the capital stock in the following years, where It is measured as expenditures on
property, plant and equipment, PK is the implicit price deflator for nonresidential investment,
obtained from the 2013 Economic Report of the President, Table 7, and δj is a four-digit
industry-specific estimate of the depreciation rate. We calculate the useful life of capital goods
in industry j as Lj = 1

Nj

∑
Nj

PPENTit−1+DEPRit−1+Iit
DEPRit

whereNj is the number of firms in industry
j, PPENT is property, plant and equipment net of depreciation and DEPR is depreciation
and amortization. The implied depreciation rate for industry j is δj = 2

Lj
. We use the average

value for each industry over the sample period.
Table 11 reports the estimation results. The parameters governing firm fundamentals, ρ

and σ2
µ, are quite close to the baseline values, as is the total amount of observed misalloca-

tion, σ2
mrpk.44 The autocorrelation of investment growth is somewhat higher and its volatility

somewhat lower, which together lead to a higher estimate of the adjustment cost parameter, ξ.
This is reflected in the higher contribution of these costs to mrpk dispersion, which is about
27% of the total (compared to 11% in the baseline). The estimated degree of uncertainty is
close to the baseline value. Together, these two forces account for about 33% of the observed
misallocation, compared to about 18% under our baseline calculations. Thus, our finding of
a key role for other firm-specific factors continues to hold – these factors account for roughly
two-thirds of σ2

mrpk. The largest component shows up as a permanent factor that is orthogonal
to firm fundamentals. The time-varying correlated and uncorrelated components contribute
only modestly.

Similar to the exercise in Appendix D.1, we have also re-estimated the model using this
alternative measure of firm-level capital stocks and targeting the autocorrelation and variability
of investment in levels, rather than growth rates. The results are reported in Table 12. The
estimates are broadly in line with those in Table 11 and are extremely close to the baseline

44Even in the last year of the sample, the correlation of the two capital stock measures exceeds 0.95.
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Table 11: Perpetual Inventory Method for Capital - US firms

Moments ρ σ2
µ ρι,a−1 ρι,ι−1 ρmrpk,a σ2

ι σ2
mrpk

0.94 0.07 0.15 −0.18 0.55 0.01 0.43

Parameters ξ V γ σ2
ε σ2

χ

5.80 0.02 −0.17 0.05 0.26

Aggregate Effects
∆σ2

mrpk 0.12 0.02 0.02 0.05 0.26
∆σ2

mrpk

σ2
mrpk

27.5% 5.7% 4.3% 12.8% 59.9%

∆a 0.05 0.01 0.01 0.02 0.11

ones in Table 3. To see why, we have also computed the implied values of the autocorrelation
and variance of investment using the parameter estimates from Table 11. This gives values of
0.69 and 0.02, respectively, compared to the empirical values of 0.57 and 0.02. Because the
estimation in Table 11 already matches these (non-targeted) moments fairly closely, explicitly
targeting them does not have a large effect.

Table 12: Perpetual Inventory Capital and Invest-
ment in Levels - US

ξ V γ σ2
ε σ2

χ

Parameters 1.65 0.03 −0.32 0.00 0.28
∆σ2

mrpk

σ2
mrpk

12.0% 6.9% 14.0% 0.7% 64.3%

D.3 Sectoral Analysis

In this appendix, we repeat our analysis for US firms at a disaggregated sectoral level, allowing
for sector-specific structural parameters.

We begin by computing sector-specific α’s (curvature in the profit function) using data on
value-added and compensation of labor by sector from the Bureau of Economic Analysis, Annual
Industry Accounts.45 To match the SIC (or NAICS) classifications in Compustat, we compute
labor’s share of value-added for the 9 major sectors of the industrial classification – Agriculture,
Forestry and Fishing; Mining; Construction; Manufacturing; Transportation, Communications
and Utilities; Wholesale Trade; Retail Trade; Finance, Insurance and Real Estate; Services.46

45The data are available at https://www.bea.gov/industry/iedguide.htm.
46Most of these correspond one-for-one with sectors reported by the BEA data. There, Transportation and

Utilities are reported separately, as are several subcategories of services, which we aggregate. The only sector
we were unable to include from the BEA data was Information, as it does not line up one-for-one with an SIC
or NAICS category. The shares are calculated as the average over the most recent period available, 1998-2011
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To translate these shares into a value of α, note that under our assumptions of monopolistic
competition and constant returns to scale in production, labor’s share of value-added is equal
to LS = θ−1

θ
(1− α̂1) where 1 − α̂1 is the labor elasticity in the production function. Then,

solving for α̂1 and substituting into the definition of α, we have

α =
α1

1− α2

=
θ−1
θ
− LS

1− (1− α̂1) θ−1
θ

=
θ−1
θ
− LS

1− LS

Implementing this procedure yields the values of α in the top panel of Table 13.47

Next, we re-compute our cross-sectional moments for each sector, using the values of α to
estimate fundamentals. We continue to control for time and industry fixed-effects to extract
the firm-specific components of the series (there are multiple four-digit industries within each
sector). We report the target moments in the first panel of Table 13. We then estimate
the model separately for each sector, allowing the structural parameters governing the various
sources of misallocation to vary across sectors. The resulting parameter estimates are presented
in the second panel of the table and the implied contribution of each factor to mrpk dispersion
in the last two panels.

There is some heterogeneity across the sectors, both in the overall extent of misallocation
as well as in the estimates for the underlying factors. For example, adjustment costs are largest
in manufacturing, where they account for as much as 20% of the observed misallocation and
are smallest in FIRE. But, overall, the main message from our baseline analysis continues to
hold – adjustment and information frictions, although significant, do not create a lot of mrpk
dispersion, leaving a substantial role for other firm-specific factors. While the results point
to some heterogeneity in the correlation structure of these factors, the permanent component
seems to play a key role across all sectors.

E Estimates for Other Countries/Firms

In this appendix, we apply our empirical methodology to two additional countries for which we
have firm-level data - Colombia and Mexico - as well as to publicly traded firms in China.

The Colombian data come from the Annual Manufacturers Survey (AMS) and span the
years 1982-1998. The AMS contains plant-level data and covers plants with more than 10
employees, or sales above a certain threshold (around $35,000 in 1998, the last year of the
data). We use data on output and capital, which includes buildings, structures, machinery

(which roughly lines up with the period of the firm-level data, 1998-2009).
47We have also calculated this value for the entire US economy by summing across all the sectors reported

by the BEA. This gives an aggregate labor share of 0.56 and an implied α of 0.62, exactly our baseline value.
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and equipment. The construction of these variables is described in detail in Eslava et al.
(2004). Plants are classified into industries defined at a 4-digit level. The Mexican data are
from the Annual Industrial Survey over the years 1984-1990, which covers plants of the 3200
largest manufacturing firms. They are also at the plant-level. We use data on output and
capital, which includes machinery and equipment, the value of current construction, land,
transportation equipment and other fixed capital assets. A detailed description is in Tybout
and Westbrook (1995). Plants are again classified into industries defined at a 4-digit level.
Data on publicly traded Chinese firms are from Compustat Global. Due to a lack of a sufficient
time-series for most firms, we focus on single cross-section for 2015 (the moments use data going
back to 2012). Similarly, due to the sparse representation of many industries, we focus on those
with at least 20 firms. For all the datasets, we compute the target moments following the same
methodology as outlined in the main text of the paper. Our final samples consist of 44,909 and
3,208 plant-year observations for Colombia and Mexico, respectively, and 1,055 firms in China.

Table 14 reports the moments and estimated parameter values for these sets of firms, as
well as the share of mrpk dispersion arising from each factor and the effects on aggregate
productivity. The results are quite similar to those for Chinese manufacturing firms in Table
3 in the main text. The contribution of adjustment costs and uncertainty to misallocation is
rather limited, and that of uncorrelated transitory factors negligible - across these sets of firms,
a large portion of misallocation stems from correlated and permanent firm-specific factors.
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Table 13: Sector-Level Results

Moments α ρ σ2
µ ρι,a−1 ρι,ι−1 ρmrpk,a σ2

ι σ2
mrpk

Agr., Forestry and Fishing 0.77 0.92 0.11 0.13 −0.37 0.92 0.03 0.61
Mining 0.76 0.91 0.10 0.16 −0.29 0.74 0.07 0.35
Construction 0.49 0.93 0.15 0.17 −0.28 0.71 0.07 0.69
Manufacturing 0.59 0.94 0.08 0.10 −0.32 0.50 0.05 0.43
Trans., Comm. and Utilities 0.67 0.94 0.04 0.13 −0.32 0.58 0.03 0.38
Wholesale Trade 0.65 0.94 0.08 0.18 −0.31 0.67 0.05 0.57
Retail Trade 0.61 0.96 0.02 0.20 −0.30 0.25 0.02 0.20
Finance, Insurance and Real Estate 0.78 0.90 0.09 0.28 −0.32 0.77 0.07 0.61
Services 0.38 0.95 0.10 0.03 −0.28 0.31 0.08 0.53

Parameters ξ V γ σ2
ε σ2

χ

Agr., Forestry and Fishing 0.83 0.05 −0.78 0.01 0.09
Mining 0.49 0.04 −0.56 0.00 0.13
Construction 0.65 0.08 −0.50 0.00 0.32
Manufacturing 3.35 0.03 −0.17 0.18 0.28
Trans., Comm. and Utilities 0.55 0.02 −0.55 0.00 0.25
Wholesale Trade 0.55 0.04 −0.54 0.00 0.30
Retail Trade 1.97 0.01 −0.07 0.03 0.17
Finance, Insurance and Real Estate 0.18 0.06 −0.80 0.00 0.26
Services 0.81 0.04 −0.14 0.00 0.44

Contribution to misallocation: ∆σ2
mrpk

Agr., Forestry and Fishing 0.07 0.05 0.45 0.01 0.09
Mining 0.06 0.04 0.19 0.00 0.13
Construction 0.04 0.08 0.26 0.00 0.32
Manufacturing 0.09 0.03 0.02 0.18 0.28
Trans., Comm. and Utilities 0.01 0.02 0.10 0.00 0.25
Wholesale Trade 0.02 0.04 0.20 0.00 0.30
Retail Trade 0.02 0.01 0.00 0.03 0.17
Finance, Insurance and Real Estate 0.01 0.06 0.31 0.00 0.26
Services 0.02 0.04 0.02 0.00 0.44

Share of misallocation:
∆σ2

mrpk

σ2
mrpk

Agr., Forestry and Fishing 0.11 0.08 0.74 0.02 0.15
Mining 0.18 0.10 0.54 0.00 0.37
Construction 0.05 0.11 0.37 0.00 0.47
Manufacturing 0.21 0.07 0.05 0.41 0.63
Trans., Comm. and Utilities 0.03 0.05 0.26 0.01 0.65
Wholesale Trade 0.04 0.07 0.35 0.00 0.54
Retail Trade 0.08 0.05 0.01 0.14 0.85
Finance, Insurance and Real Estate 0.02 0.09 0.51 0.00 0.42
Services 0.05 0.07 0.04 0.00 0.83
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Table 14: Additional Countries/Firms

Moments ρ σ2
µ ρι,a−1 ρι,ι−1 ρmrpk,a σ2

ι σ2
mrpk

Colombia 0.95 0.09 0.28 −0.35 0.61 0.07 0.98
Mexico 0.93 0.07 0.17 −0.39 0.69 0.02 0.79
China Compustat 0.96 0.04 0.30 −0.42 0.76 0.04 0.41

Parameters ξ V γ σ2
ε σ2

χ

Colombia 0.54 0.05 −0.55 0.01 0.60
Mexico 0.13 0.04 −0.82 0.00 0.42
China Compustat 0.15 0.03 −0.69 0.00 0.18

∆σ2
mrpk

Colombia 0.02 0.05 0.30 0.01 0.60
Mexico 0.00 0.04 0.36 0.00 0.42
China Compustat 0.00 0.03 0.22 0.00 0.18

∆σ2
mrpk

σ2
mrpk

Colombia 2.5% 5.6% 30.9% 0.7% 61.3%
Mexico 0.5% 4.9% 44.9% 0.0% 52.8%
China Compustat 0.8% 6.3% 54.0% 0.2% 43.7%

∆a
Colombia 0.01 0.02 0.13 0.00 0.26
Mexico 0.00 0.02 0.16 0.00 0.18
China Compustat 0.00 0.02 0.19 0.00 0.16
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