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Abstract

Most decisions– from a job seeker appraising a job offer to a policymaker assessing

a novel social program– involve the consideration of numerous attributes of an object

of interest. This paper studies the optimal evaluation of a complex project of uncertain

quality by sampling a limited number of its attributes. The project is described by a unit

mass of correlated attributes, of which only one is observed initially. Optimal sampling

and adoption is characterized under both single-agent and principal-agent evaluation. In

the former, sampling is guided by the initial attribute but it is unaffected by its realization.

Sequential and simultaneous sampling are equivalent. The optimal sample balances vari-

ability of sampled attributes with the importance of neighboring unsampled ones. Un-

der principal-agent evaluation, the realization of the initial attribute informs sampling

so as to better influence adoption. Sampling hinges on (i) its informativeness for the

principal, and (ii) the variation of the agent’s posterior belief explained by the principal’s

posterior belief. Optimal sampling is not necessarily a compromise between the players’

ideal samples. I identify conditions under which mild or no ex-ante disagreement leads

to excessively risky or conservative sampling. Yet, drastic disagreement always induces

compromise.
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1 Introduction

Whether one evaluates a job candidate or a job offer, contemplates a purchase, or appraises

the benefits and shortcomings of a public policy –each of these decision situations involves

many considerations. Understanding how one chooses to explore some considerations rather

than others prior to making the decision is of fundamental importance in economics. An em-

ployer evaluating a prospective employee cares about a wide range of the employee’s skills

– from soft skills such as self-confidence, job ethic, and effective communication to hard

skills such as computer programming, proficiency in a foreign language, and data process-

ing. Given time constraints, however, the employer verifies only a few skills before the hir-

ing decision. A policymaker considering the large-scale implementation of a social program

weighs the potential impact of the policy on all communities. However she learns about

the effect on some particular communities through pilot projects or focus groups. An in-

vestigative journalist analyzing a long piece of written evidence is certainly interested in the

relevance and authenticity of the entire document before including it in a published report.

Yet she has to decide which aspects or passages of the document to focus on.1 An instructor

contemplating whether to adopt a new textbook selectively skims through its treatment of

some of the major topics of the subject before deciding.

All of these examples share some key features. A decisionmaker considers the adoption of

a multi-attribute object (an employee, a policy, an evidence source, or a textbook) with cor-

related attributes. Due to her inability to verify all relevant attributes, she perfectly samples

a subset of these attributes before making an adoption decision. This is the optimal evalua-

tion problem subject to a capacity constraint on attribute discovery. It consists of (i) optimal

sampling of attributes, and (ii) optimal adoption based on the sampled evidence.

This paper studies the evaluation of a single multi-attribute project in two natural sce-

narios: when evaluation is performed by a single agent, and when it is shared among a prin-

cipal and an agent who disagree on the relative importance of the attributes. In the single-

agent problem, we seek to understand what criteria guide optimal sampling and the sub-

sequent adoption decision. How does the capacity constraint, prior knowledge about some

attributes, and the relative importance of attributes affect optimal sampling? What shapes

the agent’s preference for depth versus breadth of sampling?

The second part of the paper studies the nature of the distortions that arise in principal-

agent evaluation. How does prior disagreement on the expected value of the project guide

such sampling? Is the sampled evidence always a compromise, in the sense that its infor-

mativeness for one player cannot be improved without hurting its informativeness for the

other? Is the sampling size ever purposely restricted?

Examples of shared evaluation between players with different attribute preferences are

abundant. Organizations routinely rely on evaluation units to produce evidence about day-

to-day decisions. Similarly, U.S. Congress relies on federal agencies to produce evidence on

1A similar observation can be made regarding an investigative journalist’s choice of databases. The journalist
cares about the potential evidence in all databases, but she has to decide which databases to focus on.
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the effectiveness of potential federal social programs.2 Such programs are expected to have

heterogeneous impact on different communities. The differences in how U.S. Congress and

the federal agency weigh the affected communities influences which communities are ex-

plored prior to the large-scale implementation of the program. Similarly, in the textbook

choice example, the review of the textbook might be conducted by a teaching assistant, while

the instructor decides whether to adopt it based on the sampled material. The teaching as-

sistant might want to learn about textbook’s treatment of topics that are more distant from

her research area (which require greater effort by her), whereas the instructor might be inter-

ested on topics that will be revisited in students’ future coursework.3

The first contribution of the paper consists in identifying a novel and tractable way of

modeling correlated attributes in the evaluation problem. We employ methods similar to

those used by Jovanovic and Rob (1990) and Callander (2011) in models of search and strate-

gic experimentation: the realizations of a unit mass of attributes are assumed to follow an

unknown Brownian path. The players know perfectly the realization of a single attribute,

and have limited sampling opportunities. That is, the policymaker and the evaluation unit

witness the effect of the policy under evaluation in one community, and can afford to ex-

pand it in a limited number of other communities in the form of small-scale pilot studies.

The evidence generated by the pilot studies informs the policymaker’s decision of whether

to launch the program at large scale. The chosen correlation structure captures some natural

features. Communities are ranked along a policy-relevant dimension, for instance the me-

dian household income. Two communities of comparable income are expected to witness

similar outcomes from the policy. Inferences for an untreated community are drawn from

treated communities that are most comparable to it. The more comparable an untreated

community is to a treated one, the less uncertain is its outcome. The magnitude of this un-

certainty is independent of observed outcomes. Hence in a nutshell, inference is local and

based on linear interpolation for untreated communities.

This framework, and this is in turn the second contribution of the paper, enables a com-

plete characterization of optimal single-agent evaluation for both simultaneous and sequen-

tial attribute sampling (section 3). We make precise the intuition that optimal sampling bal-

ances the variability of sampled attributes with how informative these attributes are about

unsampled neighboring attributes. A policymaker who knows the outcome of the policy on

a community of income x0 faces a sampling tradeoff. On the one hand, she prefers to sam-

ple (or treat) communities with income x1 very different from x0, as the outcome in such

2Starting with Weiss (1973), a growing literature on evaluation studies explores the political motivations be-
hind the evaluation of social and educational programs. For instance, Lipsky et al. (2007) study the interaction
between sponsors of ADR (Alternative Dispute Resolution) workplace programs and academic evaluators. Che-
limsky (1995) aptly pointed out that “a theory of evaluation has to be as much a theory of political interaction as
a theory of how to determine facts or how knowledge is constructed.”

3In a similar vein, Amazon offers the Look Inside the Book program, which allows publishers to make a few
pages of the book vieweable by prospective readers. That is, the publisher samples some pages, perfectly reveals
them to the reader, and the reader decides whether to buy the book. In contrast to examples modeled in this
paper, the publisher is arguably (i) primarily interested in selling the book, rather than discovering its quality,
and (ii) privately informed about the quality of the book.
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communities is highly uncertain. On the other hand, we show that the greater the difference

|x1 − x0|, the less informative the treated community is about other untreated communities.

This tradeoff induces the policymaker to never treat the richest and the poorest community.

Moreover, a larger sampling capacity leads to more dispersed exploration: if the policymaker

can sample more communities, the poorest sampled community is poorer and the richest

sampled one is richer than with fewer sampled communities (proposition 3.4). We also pro-

vide a number of other monotone comparative statics results with respect to the sampling

capacity, the initially known attribute, and the weight function over attributes (subsection

3.3).

The single-agent analysis further establishes that optimal sampling of attributes is in-

formed by the initially known attribute, but not by its particular observed realization. This re-

alization informs only the adoption decision; the informativeness of a sample for the agent’s

decision does not depend on the first realization. That is, whether the program was success-

ful in the initial community is immaterial to which communities receive the pilot project:

there is an objective way of distributing them across communities despite the initial success

of the program (proposition 3.2). Moreover, this insight is useful for establishing the equiv-

alence of optimal simultaneous sampling and optimal sequential sampling in single-agent

evaluation. The optimal samples coincide under these two modes of sampling (proposition

3.5). The policymaker does not benefit from the flexibility of rolling out pilot projects se-

quentially. This equivalence is due to the irrelevance of the expected value of the project to

the optimal sample, regardless of the number of attributes already sampled. That is, having

sampled k attributes, the current expected value for the project does not inform the choice

of the remaining n −k attributes.

The third contribution of the paper lies in the analysis of shared evaluation between a

principal (endowed with adoption authority) and an agent (endowed with sampling author-

ity) in section 4. We rule out the presence of any informational asymmetries by assuming

that at the start of the game both players observe only the initial attribute and its realization.

Because the players differ in the importance they attach to different attributes, their initial

expected values for the project might differ.4 Ex-ante disagreement takes two forms: it is

mild if the players agree on whether the project is initially promising, and it is drastic oth-

erwise. The agent uses this disagreement to decide on the optimal sample: accordingly, the

initial realization, which is irrelevant for sampling in the single-player problems, gains per-

suasive value. Because the sample choice now depends on the expected values held by the

two players, the equivalence between simultaneous and sequential sampling breaks down.

A key observation regarding the agent’s problem, established in proposition 4.1, is that

each feasible sample is described by two sufficient statistics: the informativeness of the sam-

ple for the principal, and the variation of the agent’s posterior belief explained by the princi-

pal’s posterior belief. The latter captures how well the principal’s decision reflects the agent’s

interests given the acquired sample. This explained variation consists of the informativeness

4In the case of a driftless Brownian process, the two expected values are the same.
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of the sample for the agent, weighted by the correlation that the sample induces on the two

players’ posterior expected values. Ceteris paribus, the agent prefers higher explained varia-

tion, because that makes him more optimistic after conditioning on the principal’s adoption.

We show that central to the agent’s problem is the comparison of (i) the principal’s expected

share of adopted projects with (ii) the share of projects that the agent would adopt if he ob-

served the principal’s posterior expected value but not particular realizations of attributes

within the sample. That is, if the agent had access only to the object based on which principal

decides on adoption –namely, the principal’s posterior expected value– what’s the expected

share of projects he would adopt? When the principal is ex-ante indifferent between adop-

tion and rejection, the agent samples the attributes that maximize the explained variation

(propositions 4.1 and 4.7).

With a minimal capacity of one additional sampled attribute, the sufficient statistics sim-

plify to the informativeness of the sampled attribute for each player, because the posterior

expected values held by the two players are perfectly correlated. Hence, the agency conflict

takes the form of whether the principal adopts more or less often than what the agent would

after observing the realization of the sampled attribute. We introduce a concept of local com-

promise: a sampled attribute is a compromise if it is between the single-player local optima.5

We show that under drastic disagreement, the optimal attribute is always a compromise. Due

to the difference in the players’ interpretation of the initial evidence, the agent prefers more

informative attributes for both himself and the principal. Revisiting the federal program ex-

ample, if Congress initially deems the program to be unpromising and the federal agency

deems it promising, the agency chooses to treat a community of income between what the

two players would prefer so as to overturn Congress’s initial bias against the program.

Moreover, we show that for any two given weight functions, there is a region of initial

mild disagreement that induces the agent to either overshoot or undershoot both single-

player optima (proposition 4.4). That is, the optimal attribute is either of excessively high

variance or of excessively low variance. For instance, if the federal agency in isolation from

Congress samples richer communities, it might be willing to treat a community even richer

when facing Congress. The outcome of the treated community is less informative than the

agency’s (or Congress’s) preferred community for both players.

Such sampling arises whenever the principal reacts less strongly than the agent for any

sampled attribute, that is, if she adopts a smaller (resp., larger) share of projects than the

agent when both players deem the project promising (resp., unpromising). To align the play-

ers’ expected share of adopted projects, the agent is willing to reduce the informativeness of

the sampled attribute for both players. For instance, this is always the case when the princi-

pal is relatively more uncertain about the project than the agent. A principal who is ex-ante

indifferent between adoption or rejection (hence, perfectly uncertain about the project) is al-

ways offered the most preferred attribute by the agent. If the principal is slightly more enthu-

siastic about the project, while the agent is moderately more enthusiastic about it, the agent

5Local optima are guaranteed to be unique under mild conditions on the weight functions of the two players.
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prefers to move away from his most preferred attribute by reducing the informativeness of

the sample for both himself and the principal, so as to induce a higher adoption rate by the

more skeptical principal. The unavoidable loss in the sample’s informativeness for the agent

is a second-order effect. We further illustrate that such overshooting/undershooting arises

even under ex-ante agreement when the weight functions are linear (example 2). Moreover,

the phenomenon extends to capacities greater than one as well: the agent might settle for an

optimal sample that can be locally modified to have both a higher informativeness for the

principal and a higher explained variation for the agent (proposition 4.8).

Section 2 introduces the model and discusses key assumptions. The main analysis is pre-

sented in sections 3 and 4, which analyze single-agent evaluation and principal-agent evalu-

ation respectively. We extend the analysis to two other configuration of sampling and adop-

tion authorities (i.e., collective adoption and preemptive sampling) in section 5. Section 6

discusses an alternative model with finitely many correlated attributes, where many of the

main results of our main model arise naturally. A comprehensive discussion of the related

literature is presented in section 7. Results in the main text are proved in appendices A and

B. Appendix C collects proofs and calculations related to the presented examples.

2 Model

2.1 Setup

An agent A (he) and a principal P (she) jointly consider the adoption of a multi-attribute

project of unknown quality. The principal decides whether to adopt (d = 1) or reject (d =
0) the project. The agent decides which attributes are to be sampled prior to the adoption

decision.

Project attributes. The project is characterized by a unit mass of attributes indexed by a ∈
[0,1]. The value of each attribute, B(a), is determined by an unknown mapping B : [0,1] →
R. This mapping is drawn according to the canonical probability measure from the set of

one-dimensional Brownian paths with drift µ, variance σ2, and constrained to go through

(a0,B(a0)) for some a0 ∈ [0,1] (Karatzas and Shreve (1991)).6 The mapping B is drawn prior to

the game between the principal and the agent. The players perfectly know (µ,σ). Without

loss, we set σ= 1.7

The principal and the agent know (a0,B(a0)) but do not know the realizations of other

attributes.8 Let B0 := B(a0) denote the realization for this known attribute. All other attribute

realizations are distributed normally:

B(a) ∼N
(
B0 +µ(a −a0), |a −a0|

)
(1)

6Note that unlike in the standard Brownian motion, B(0) need not be equal to zero.
7The variance σ scales the variance of the posterior expected value pertaining to each sample of attributes,

but does not affect optimal sampling.
8Fixing the realization of a0, attribute realizations in [0, a0] and [a0,1] follow two independent Brownian mo-

tions, each of which starts at (a0,B(a0)).
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Note that B0 determines the expected realization for all other attributes, but not their vari-

ances. Figure 1 illustrates this.

a0

B(a0)

Figure 1: Initial evidence (a0,B0) with drift µ> 0.

Timing and actions. Time is discrete and consists of two periods. At t = 1, the agent decides

on a finite set of attributes that is to be sampled publicly. The agent perfectly commits to not

sample further after the realizations of this sample are observed by both players. At t = 2, the

principal makes an approval decision d ∈ {0,1}. All actions are observable by both players.

Payoffs and conflict of interest. If the project is rejected (d = 0), each player obtains a sure

payoff of zero. If the project is adopted (d = 1), the payoff of player i ∈ {A ,P } is given by: 9

vi (B) :=
∫ 1

0
ωi (a)B(a)d a. (2)

Player i ’s payoff from the project is additive on the weighted realizations of all attributes. The

weight ωi (a) captures the importance of attribute a to player i . The weight functions satisfy

the following assumption.

Assumption 1. For i ∈ {P ,A }, the weight function ωi (·) : [0,1] → (0,∞) is continuous, differen-

tiable, and strictly positive on the attribute domain.

The continuity of ω coupled with a compact attribute space guarantees that the weight func-

tion is bounded. Nearby attributes are attached similar weights. Both players prefer positive

realizations for all attributes.

The ex-ante expected value of the project to player i is

νi
0 := E[vi (B) | (a0,B0)] =

∫ 1

0
(B0 +µ(a −a0))ωi (a)d a (3)

= B0

∫ 1

0
ωi (a)d a +µ

∫ 1

0
ωi (a)(a −a0)d a (4)

9Due to the almost sure continuity and boundedness of a realized Brownian path on [0,1], the payoff function
is a well-defined Riemann integral pathwise.
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We refer to νi
0 as the initial promise of the project. The project is deemed as initially promis-

ing for player i if ν0
i ≥ 0 and as initially unpromising otherwise. The sensitivity of νi

0 with

respect to B0 is captured by the sum of the weights of all attributes. Without loss, the analysis

normalizes these sums to unity.10 That is,

∫ 1

0
ωA (a)d a =

∫ 1

0
ωP (a)d a = 1.

This normalization implies that when µ = 0, the two players fully agree about the ex-ante

value of the project, equal to the initial observation B0. The two ex-ante values are generically

different for µ 6= 0.11

Sampling of attributes by the agent is costly. We assume that the agent is bound by an

exogenous finite capacity q ∈N. That is, the cost function of sampling any n attributes is:

c(k) =
0 for n ≤ q

+∞ for n > q.
(5)

Information and sampling strategies. The players are symmetrically informed at any point

of the game. All actions are publicly observable. Define the set of samples of size n as

Sn := {
(a1, . . . , an) ∈ [0,1]n : a1 < a2 < . . . < an

}
.

Let s denote an element in Sn , and let Sn(a0) ⊂Sn denote the subset of samples that include

a0. A sampling strategy of the agent sA maps initial evidence and capacity (a0,B0, q) into the

space of samples of size less than or equal to q +1:

sA : [0,1]×R×N→ ⋃
n≤q+1

Sn(a0).

Let {sn
P

}n∈N, where sn
P

: Sn ×Rn → {0,1}, denote the adoption strategy for the principal.

Strategy sn
P

maps a sample s of n distinct attributes and their respective realizations B(s) into

an adoption decision.

2.2 Basic observations on inference

This subsection establishes some useful facts regarding the posterior belief about the value

of the project after sampling takes place. Let s = (a1, . . . , an) ∈ Sn and respective realizations

10Formally, starting from two arbitrary weight functions (ωA ,ωP ) with respective sum of attributes (ΩA ,ΩP ),
define ω̃i (a) := ωi (a)/Ωi for each player. This modification scales νi

0 and the standard deviation of the posterior
expected value induced by a sample by 1/Ωi for each player. It does not affect the correlation among the players’
posterior expected values. It scales each player’s payoff by 1/Ωi , but does not affect their decisions.

11The normalization does not guarantee that the adjustment term
∫ 1

0 ωi (a)(a − a0)d a is the same for the two
players. E.g., if µ > 0 a player who values attributes close to one will have a higher ex-ante expected value than
one who values attributes close to zero.
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B(s) = (B(a1), . . . ,B(an)) . The realizations of other attributes are distributed normally:

B(a) ∼


N

(
B(a1)−µ(a1 −a), a1 −a

)
for 0 < a < a1

N
(
B(ai ) ai+1−a

ai+1−ai
+B(ai+1) a−ai

ai+1−ai
, (a−ai )(ai+1−a)

ai+1−ai

)
for ai < a < ai+1,∀i ∈ [1,n −1],

N
(
B(an)+µ(a −an), a −an

)
for an < a < 1.

The known realizations B(s) and µ appear in the mean of the distributions, but not in their

variances. Realizations of attributes between any two sampled attributes follow a Brownian

bridge. A sampled attribute (ai ,B(ai )) enters only the distribution of attributes in [ai−1, ai ]∪
[ai , ai+1]: hence, inference to unsampled attributes is local. Attributes beyond the farmost

sampled attributes a1 and an follow a Brownian motion with drift µ. The distribution of at-

tributes in [0, a1] and [an ,1] is informed only by a1 and an respectively.

Let ν(s,B(s)) denote the realized posterior expected value of the project given the real-

izations of sample s. This posterior expected value is a linear combination of all observed

realizations.

Lemma 2.1. The expected value of the project given sample s and realizations B(s) is:

ν(s,B(s)) =
n∑

i=1
B(ai )τ(ai ;s)+µ

 1∫
an

(a −an)ω(a)d a −
a1∫

0

(a1 −a)ω(a)d a

 , (6)

where

τ(ai ;s) =


∫ a1

0 ω(a)d a +∫ a2
a1

a2−a
a2−a1

ω(a)d a for i = 1,∫ ai
ai−1

a−ai−1
ai−ai−1

ω(a)d a +∫ ai+1
ai

ai+1−s
ai+1−ai

ω(a)d a for i = 2, . . . ,n −1,∫ an
an−1

a−an−1
an−an−1

ω(a)d a +∫ 1
an
ω(a)d a for i = n.

Each realization B(ai ) is scaled by a sample-dependent coefficient τ(ai ;s). This coefficient

reflects the interval of attributes in the vicinity of ai the distribution of which is affected by

the realized B(ai ). For instance, consider a two-attribute sample (a1, a2). The realization of

a1 informs the agent’s belief about attributes smaller than a1 and about those between a1

and a2. The first term of τ(a1; (a1, a2)) captures the fact that B(a1) is the agent’s only source of

information for extrapolation to attibutes in [0, a1]; hence the weights of these attributes are

fully accounted in τ(a1; (a1, a2)). On the other hand, the mean of attributes between a1 and

a2 is a weighted sum of both B(a1) and B(a2). Hence, the second term of τ(a1; (a1, a2)) reflects

the importance of B(a1) for forming beliefs about attributes in [a1, a2]: the weights of these

attributes are “prorated” by the share of B(a1) in the inferred means of these attributes. B(a1)

is irrelevant for inference to attributes in [a2,1], hence the weights of these attributes do not

appear in τ(a1; (a1, a2)). Similarly, τ(a2; (a1, a2)) reflects the importance of realization B(a2) for

inference to attributes in [a1, a2] and [a2,1]. In particular, notice that the sensitivity of the

expected value to each observed realization, captured by τ, is unaffected by the drift.

The expected value ν(s,B(s)) also features an additional term that reflects the importance

of the drift for extrapolation to peripheral attributes in [0, a1) and (an ,1]. For any other at-
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tribute strictly between two sampled attributes, inference is based solely on the realizations

of these sampled attributes (but not on the drift) due to the created Brownian bridge. To

understand better this term, consider µ > 0. Realizations of attributes in [an ,1] are expected

to be strictly greater than B(an), while those of attributes in [0, a1] are expected to be strictly

lower than B(a1). Therefore, the last term takes the difference between the sums of weights

in these two intervals of attributes.

Given a sequence of samples of varying sizes (st )∞t=0, define the random process

νt := E [v(B) | s0, . . . ,st,B(s0), . . . ,B(st)] ,

which describes the path followed by the posterior expected value as samples are taken in

order. Note that s0 = a0. The following lemma establishes three useful properties of this

process.

Lemma 2.2 (Evolution of the posterior expected value). Fix a sampling sequence (st )∞t=1. The

stochastic process (νt )t∈N is such that:

(i) νt is normally distributed for any t , given (s0, . . . ,sk ) and (B(s0), . . . ,B(sk )) for any k < t ;

(ii) (νt )t∈N is a martingale: E (νt+1 | ν0,ν1, . . . ,νt ) = νt and E (|νt |) <∞ for any t ;

(iii) (νt )t∈N is Markov: Pr(νt = ν̄ | ν0,ν1, . . . ,νt−1) = Pr(νt = ν̄ | νt−1).

2.3 Discussion of model features

Correlation structure across attributes. The model assumes the correlation structure among

attributes to be described by a Brownian process with constant drift and variance.12 This as-

sumption captures four main features: (i) attributes close together are not expected to have

dramatically different realizations, (ii) a conjecture about an unsampled attribute is formed

based only on the realizations of the closest sampled attribute(s), (iii) the closer an unsam-

pled attribute is to a sampled one, the less uncertain is its realization, and (iv) the magnitude

of this uncertainty is independent of observed realizations. While modeling based on a par-

ticular stochastic process is unavoidably restrictive, this process is tractable and captures

features that are natural in the motivating examples.

Common prior knowledge about a single attribute. The prior knowledge about (a0,B0) pro-

vides a context for further evaluation of the project by P and A . Not only does such knowl-

edge determine the players’ prior belief about the quality of the project, but it also pins down

the variability of all other attributes. By limiting this baseline knowledge to a single attribute,

we capture real-world examples in which individuals evaluate projects which they know little

12One might wonder whether our analysis can be extended to a Brownian motion with variable (e.g., attribute-
dependent) drift, e.g., µ(a) = a. The main barrier is that, when pinned down at two sampled attributes (a1,B(a1))
and (a2,B(a2)), such processes might no longer result in Brownian bridges. Hence, our methods and results do
not immediately extend to such processes.
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about, for instance due to limited exposure or experience with similar projects in the past.

Also, restricting attention to a single attribute permits a clearer analysis of how the centrality

of a0 in [0,1] (e.g., distance from the median attribute 1/2) affects optimal sampling.

Yet, this assumption precludes two other interesting scenarios: (i) no attribute realiza-

tions are known, but P and A share a common prior on B(a) for any a ∈ [0,1], and (ii) two

or more realizations are initially known. The first scenario requires and depends upon the

specification of a sensible prior over Brownian paths. Appendix D.1 offers some preliminary

remarks in this direction. Regarding the second scenario, the key insights presented in our

analysis extend to prior knowledge of multiple attributes.

Moreover, we assume that (a0,B0) is observable to both players. This informational sym-

metry focuses the analysis on the distortions in the production of new information rather

than in the truthful reporting of existing information. Nonetheless, an implication of our

analysis is that if P is privately informed about some realizations and A knows which at-

tributes P is informed about, A is unable to elicit truthfully this information from P by

conditioning the sampled attributes on P ’s report of the realizations.

Capacity-constrained sampling. The assumption of costless sampling up to an exogeneous

capacity q is a key feature of the model. The agent A is bound by limited time, material

and human resources, and/or cognitive capabilities to perform more than a given amount of

sampling. For instance, when asked to evaluate a piece of legislation, a legislative committee

has a limited number of subcommittees and teams to allocate to the investigation of partic-

ular aspects of the legislation. The committee staff is typically fixed, so evaluation cannot

involve more issues than what can be investigated by the fixed staff. A may also be con-

strained by the information that P can process within the decision timeframe. For example,

if Senate members can only deliberate on a limited number of aspects due to floor debate

limits, the informing committee has to consider this limit.13

Tangentially to the analysis of capacity-based sampling, appendix D.3 offers some results

on the single-player problem with a fixed cost per sampled attribute. It fully characterizes

optimal simultaneous sampling, and offers some insights into optimal sequential sampling.

The analysis reveals the added difficulties that this cost specification presents.

3 Single-agent evaluation

This section analyzes optimal sampling and adoption when both decisions are made by a

single agent. The ex-ante expected value of the project is:

ν0 = B0 +µ
∫ 1

0
(a −a0)ω(a)d a.

Subsection 3.1 characterizes optimal simultaneous sampling and it analyzes the effect of a

larger capacity on optimal sampling. Subsection 3.2 establishes an equivalence result be-

13For instance, per U.S. Senate rules, a so-called reconciliation bill is limited to 20 hours of floor debate.
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tween sequential and simultaneous sampling. Subsection 3.3 analyzes how the optimal sam-

ple changes with shifts in the weight function ω and in the initial attribute a0. The final sub-

section 3.4 entertains a one-directional interpretation of the attribute domain. It draws im-

plications for the special case in which attributes are reintepreted as inspection times of a

project of uncertain performance over time.

3.1 Optimal simultaneous sampling

Given the initial evidence (a0,B0) and capacity q, the agent first decides which additional

attributes s ∈ Sq+1(a0) to sample. Upon observing their realizations, she adopts the project

only if the posterior expected value of the project is above zero. Lemma 2.1 derived the con-

tribution of each attribute realization in the posterior expected value. Naturally, the closer

a sampled attribute is to other attributes in the sample and the smaller are the weights of

unsampled attributes in its vicinity, the smaller is its contribution to the posterior expected

value. Moreover, the drift serves only in the extrapolation to unsampled attributes beyond

the outermost attributes in the sample.

3.1.1 Features of the attribute-specific adoption threshold

Suppose the agent already knows the realizations of attributes a0, a1, . . . , an−1 –let them be

B(a0), B(a1), . . . ,B(an−1),– and is deciding how to judge the realization of a newly sampled at-

tribute an . We call adoption threshold of an the critical realization of an , denoted by B̄(an),

that leaves the agent indifferent between adoption and rejection. Naturally, this adoption

threshold depends on the other attributes a0, . . . , an and their realizations, which are sur-

pressed in the notation of the adoption threshold.

Proposition 3.1, presented below, shows that even if all observed realizations are nega-

tive (resp., positive)–hence, all the collected evidence is in itself discouraging (resp., encour-

aging), – the project is still adopted (resp., rejected) if the drift is sufficiently steep and at

least one of the endpoint attributes (a = 0 or a = 1) remains unsampled. The second part of

proposition 3.1 points to the possibility of radically different adoption standards even for at-

tributes very close to each other. For instance, suppose that q = 1 and consider the adoption

thresholds of a0 −ε and a0 +ε, i.e. the respective realizations that leave the agent indifferent

between adopting and rejecting. The two adoption thresholds are generically different, due

to the radically different implications that the agent draws from sampling these attributes. A

realization from a0+ε (resp., a0−ε) sets the expectation for all a ∈ (a0,1] (resp., [0, a0)), while B0

sets the expectation for all [0, a0) (resp., (a0,1]). Hence, the sampling of two attributes that are

arbitrarily close to each other and to a0, but on different sides of a0, generates very different

knowledge about the project. Figure 2 illustrates this discontinuity for µ= 0 and B0 > 0.

Proposition 3.1 (Optimal adoption). Consider sample s ∈ Sq+1(a0) with realizations B(s) ∈
Rq+1.
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Figure 2: Discontinuity of the adoption threshold around a0 for B0 > 0 and s = a0.

(i) Suppose that all realizations are positive (resp., negative), i.e. B(s) < 0 (resp., B(s) > 0). If

s does not include both a = 0 and a = 1, there exists µ 6= 0 with |µ| sufficiently large that

leads to adoption (resp., rejection) of the project.

(ii) Fix any a ∉ s. The adoption threshold B̄(a) is discontinuous at a = a′ for any a′ ∈ s.

Proposition 3.1 highlights two features of optimal sampling that, in the context of the ap-

plications mentioned in the introduction, might be naively mistaken as signs of lack of due

diligence in the evaluation process. First, adoption (rejection) in the face of discouraging

(encouraging) news might be justified if inference to unsampled attributes is sufficiently pos-

itive (negative). Second, different adoption thresholds for arbitrarily close attributes might

be optimal when the sampling of the two attributes leads to very different inferences for un-

sampled attributes.

3.1.2 Optimal sampling

Let us remind the reader that ν(s,B(s)) denotes the posterior expected value calculated from

the observed realizations B(s) from sample s. For any discovered sample s ∈ Sq+1(a0), the

project is adopted if and only if the posterior expected value ν(s,B(s)) ≥ 0. Therefore, given

capacity q, the problem of the agent consists in simultaneously choosing a sample of at-

tributes that maximizes the expected value of the project conditional on adoption scaled by

the probability of adoption:

max
s∈Sq+1(a0)

Pr
(
ν(s,B(s)) ≥ 0

)
E
[
ν(s,B(s)) | ν(s,B(s)) ≥ 0

]
(7)

From lemma 2.2, we know that for any sample s ∈ Sq+1(a0) the posterior expected value is

normally distributed with mean ν0. Let σ2(s) denote the variance of ν(s,B(s)). The adoption

probability is given by Φ
(
ν0
σ(s)

)
, where Φ denotes the cdf of the standard normal distribution.

Intuitively, an initially promising project is more likely to be adopted than not after sampling,
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i.e. it has an adoption probability greater than 1/2. Moreover, when conditioning on future

adoption, the expected value of the project is strictly higher than ν0:

E
[
ν(s,B(s)) | ν(s,B(s)) ≥ 0

]
= ν0 +σ(s)

φ
(
ν0
σ(s)

)
Pr(ν(s,B(s)) ≥ 0)

,

where φ is the pdf of the standard normal distribution. Hence, the objective of the agent can

be rewritten as:14

max
s∈Sq+1(a0)

ν0Φ

(
ν0

σ(s)

)
+σ(s)φ

(
ν0

σ(s)

)
. (Sampling problem)

This objective is increasing in σ(s) despite the ex-ante expected value ν0. Therefore, the agent

seeks to discover the sample with the highest induced variance on the posterior expected

value. This variance σ2(s) depends on a0 but not on B0: hence the ranking of any two samples

according to how informative they are for the agent’s problem does not depend on the initial

promise of the project. Therefore, the agent would be able to identify the optimal sample

even if B0 were unobservable to him (but not the optimal adoption decision).

Put differently, the adoption decision that the agent takes is a random variable before

sample realizations are observed. The agent seeks to discover samples that maximize the

variance of the adoption decision, which is just

Φ

(
ν0

σ(s)

)(
1−Φ

(
ν0

σ(s)

))
.

The adoption decision is most uncertain whenever Φ (ν0/σ(s)) is close to 1/2, which corre-

sponds to samples with the highest possible σ(s).

Proposition 3.2 (Optimal sampling under capacity q).

(i) Given capacity q, an optimal sample solves

s∗ ∈ argmax
s∈Sq+1(a0)

σ2(s).

(ii) For any optimal sample s∗ = (a∗
1 , a∗

2 , . . . , a∗
q+1), where a∗

n < a∗
n+1 for any n ∈ [1, q + 1] and

a∗
k = a0 for some k ∈ [1, q+1], the outermost sampled attributes are interior, i.e. if k < q+1,

then a∗
q+1 < 1, and if k > 1, then a∗

1 > 0.

The variance of ν(s,B(s)) is pinned down by the attributes in the sample and the weight

function. Given s let us relabel the attributes in increasing distance from a0 as a`1 > . . . > a`k−1

in [0, a0] and ar
1 < . . . < ar

q+1−k in [a0,1]. Lemma A.1 in appendix A provides an expression for

the variance of the posterior:

σ2(s) :=
k−1∑
i=1

τ2
(
a`i ; (a`i , a`i−1)

)
(a`i−1 −a`i )+

q+1−k∑
i=1

τ2 (
ar

i ; (ar
i−1, ar

i )
)

(ar
i −ar

i−1), (8)

14This expression is derived in the proof of proposition 3.2.
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where for any m ∈ {`,r }, τ(am
i ; (am

i , am
i−1)) denotes the coefficient corresponding to B(am

i ) in the

posterior expected value if only two attributes were known, am
i and am

i−1. The variance σ2(s)

is pairwise separable on any two adjacent attributes in the sample. Realizations of sampled

attributes on the same side of a0 are correlated; attributes closer to a0 are more informative

as their realizations set the expectation for attributes further away from a0.

In identifying an optimal sample, the agent faces a tradeoff between the variability of a

sampled attribute–determined by the distance of this attribute from other known attributes–

and how much this attribute is informative about other sorrounding attributes, captured by

τ. To see this, suppose that q = 1. An attribute further away from a0 is more uncertain, and

hence, in the absence of any correlation among attributes, more appealing to be discovered.

When factoring in the correlation structure, we observe that the further an attribute a is from

a0, the smaller is its τ(a; (a0, a)), hence its realization is weighted by less in forming the pos-

terior expected value. A more distant attribute from a0 (i) is less informative about attributes

between a0 and itself, and (ii) serves as the only basis of inference for fewer attributes that are

further away from a0. The agent resolves this tradeoff by sampling interior attributes only, as

proposition 3.2(ii) establishes.

The following examples illustrates optimal simultaneous sampling if the agent weighs all

attributes equally.

Example 1 (Quasi-representative sampling with uniform weights). Let ω(a) = 1 for all a ∈
[0,1]. Fixing the number of attributes sampled in [0, a0] to k ≤ q, the optimal sample consists

of:

a`i = a0 − 2i

2k +1
a0 for 1 ≤ i ≤ k

ar
i = a0 + 2i

2(q −k)+1
(1−a0) for 1 ≤ i ≤ q −k.

Two remarks are in order. First, attributes are sampled equidistantly between a0/(2k + 1)

and a0, and between a0 and (2(q −k)+a0)/(2(q −k)+1). This is akin to representative sampling

of the attribute continuum. The peripheral regions of attributes close to a = 0 and a = 1 remain

unsampled. Figure 3 illustrates optimal sampling for a0 = 1/3 as q varies from 1 to 5 attributes.

Note that the smallest (largest) sampled attribute is smaller (larger) under a greater capacity.

Moreover, as q increases, exploration becomes denser.

0.0 0.2 0.4 0.6 0.8 1.0

q=5

q=4

q=3

q=2

q=1

a0

Figure 3: Quasi-representative optimal sampling in example 1 for a0 = 1/3 and q ≤ 5.

Second, small changes in a0 might bring about very different optimal samples. Take, for
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instance, a0 = 1/2− ε and a′
0 = 1/2+ ε with q = 1, where ε is arbitrarily small. As ε shrinks to

zero, the optimal sample under a0 tends to 5/6, while that under a′
0 tends to 1/6. Two ex-ante

arbitrarily similar projects are evaluated very differently.15

Naturally, the agent prefers a greater capacity, because it allows her to gain a more thor-

ough understanding of the project by discovering more attributes. What is less immediate is

whether the added benefit from a marginally greater capacity (i.e., willingness to pay for one

additional attribute) strictly decreases as the capacity gets larger. The following proposition

confirms this. Let V (q) denote the added value from sampling under capacity q, i.e.

V (q) := max
s∈Sq+1(a0)

ν0Φ

(
ν0

σ(s)

)
+σ(s)φ

(
ν0

σ(s)

)

Naturally, this added value is strictly increasing and strictly convex in the maximum attained

variance of the posterior expected value under capacity q. The following proposition com-

pares V across capacities. The nontrivial part of the proof of proposition 3.3 establishes that

that increase in the maximum attained variance as capacity increases for q −1 to q is greater

than the increase in the maximum attained variance as capacity goes from q to q +1. An al-

lowance of one additional attribute is less valuable (in terms of the gain in the variance of the

posterior) the more thorough exploration is under the current capacity.16

Proposition 3.3 (Diminishing returns from exploration). Optimal sampling exhibits decreas-

ing marginal returns from a marginally greater capacity, i.e. for any q ∈N,

V (q +1)−V (q) <V (q)−V (q −1).

Figure 3 suggests that a larger sample is, roughly speaking, more spread out, denser, and

with a weakly larger number of attributes in each of the initial intervals [0, a0] and [a0,1].

These features are not specific to the case of equal weights; they generalize to any weight

function satisfying assumption 1. As capacity increases by exactly one attribute, the agent

allocates the additional attributes to either [0, a0] or [a0,1], without lowering the number of

attributes taken in any of these two intervals. In the interval that is allocated the additional

attribute, the smallest (resp., largest) sampled attribute becomes strictly smaller (larger). The

span of exploration strictly expands in this region. Moreover, any sampled attribute in the

larger sample falls between two sampled attributes in the smaller sample. Exploration be-

comes strictly denser. Proposition 3.4 formalizes these observations.

15Such discontinuities arise for q > 1 as well. Let q = 2. For a0 = 0.3, the optimal sample is (a0,0.58,0.86), but for
a0 = 0.31, it is (0.103̄, a0,0.77).

16Although motivated by a different problem, Tian (2015) uses similar arguments to study optimal interval
division for capacity-constrained problems. The approach differs technically from Tian (2015) in three respects:
(i) Tian (2015) assumes a value function that is pairwise additive; here such a value function (i.e. variance of
the posterior expected value which is pairwise additive in adjacent attributes) arises endogeneously from the
Brownian process, (ii) the variance is strictly supermodular, so methods from Edlin and Shannon (1998) and
Topkis (1998) can be invoked directly, and (iii) sampling attributes a = 0 and a = 1 in the sampling problem here is
less trivial to deal with than partitioning the state space at a = 0 and a = 1 in the optimal division problem (where
the partition simply creates degenerate cells).
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Proposition 3.4 (Gradual and expansive exploration). Given optimal samples s = (a1, . . . , aq+1)

and s′ = (a′
1, . . . , a′

q+2) corresponding to capacities q and q +1 respectively:

1. if ak = a0 for some k ∈ [1, q +1], then either a′
k = a0 or a′

k+1 = a0;

2. (a) if ak = a′
k+1 = a0, then a′

i < ai < a′
i+1 for any i ∈ [1,k −1],

(b) if ak = a′
k = a0, then a′

i < ai < a′
i+1 for any i ∈ [k +1, q +1].

To better appreciate the significance of proposition 3.4, consider a weight function that

assigns high weights to a small neighborhood of attributes and low weights to all other at-

tributes: for instance, such a weight function could be the pdf of a low-variance normal

distribution, such as the pdf of N (1/2,ε) for ε > 0 small. In this example, the agent cares

mostly about attributes around 1/2. Suppose a0 = 0. Proposition 3.4 establishes that despite

the strong interest the agent has in a neighborhood of attributes around 1/2, the two out-

ermost sampled attributes move further away from 1/2 as capacity increases.17 Rather than

exclusively using the extra capacity to learn more intensively about the same neighborhood

around 1/2, the agent expands the span of sampling to attributes he cares less about.

3.2 Equivalence of sequential and simultaneous sampling

Proposition 3.2 highlighted the irrelevance of the ex-ante expected value ν0 of the project

for optimal simultaneous sampling. This observation extends to sequential sampling: the

posterior expected value that the agent holds after having sampled any k attributes does not

inform optimal sampling of the remaining q − k attributes. Any two such subsamples can

be ranked solely based on the variance they induce on the posterior expected value, which

depends only on the attributes known thus far. As a result, the agent does not benefit from

the flexibility of sampling attributes sequentially; the full optimal sample can be identified

since the beginning of sampling. Put differently, it is not crucial for the agent to observe

realizations in real time in order to be able to carry out optimal sampling.

Proposition 3.5. The optimal sequence of attributes acquired through sequential sampling

coincides with the optimal simultaneous sample.

3.3 Shifts in the initial attribute and in the weight function

This subsection seeks to understand how the optimal sample changes with shifts of the ini-

tially known attribute a0 and of the weight function ω. First, keeping ω fixed, as a0 increases,

the agent becomes more interested in sampling in [0, a0] and less interested in sampling in

[a0,1]. That is, for a given capacity, the greater a0 is, the lower is the share of that capacity that

the agent spends in sampling attributes smaller than a0. In the context of the policymak-

ing example, despite how the policymaker weighs the outcomes of different communities, a

17For a sufficiently small ε> 0, the sampled attribute under q = 1 is arbitrarily close to 1/2, whereas under q = 2
the two sampled attributes a1 and a2 are such that a1 < 1/2 < a2.
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richer initial community encourages him to accord a higher share of the budget to the testing

of communities poorer than the initial community. Moreover, for any two initial communi-

ties of arbitrarily close income levels a0 and a0 +ε, the respective optimal samples that they

generate cannot differ too much. More specifically, the number of trials allocated to com-

munities richer than the initial community is either the same under both a0 and a0 +ε, or it

differs by one (i.e. x communities sampled in [a0,1] under a0 and x+1 communities sampled

in [a0 + ε,1] under a0 + ε).18 These two observations are summarized in proposition A.1 in

appendix A.

Let any two weight functions ω and ω̃ be such that ω(a0) = ω̃(a0) and for any a2 > a1, the

ratio of the weight functions is nondecreasing in the attribute, i.e.

ω(a2)

ω(a1)
≥ ω̃(a2)

ω̃(a1)
. (MLR)

The weight functions ω and ω̃ are said to satisfy the monotone likelihood ratio property: ω is

a monotone likelihood ratio shift of ω̃ around a0.19 Loosely speaking, this captures a shift of

the agent’s interest toward higher-indexed attributes. The more distant an attribute is from

a0, the more pronounced the increase in its weight relative to its original weight. Intuitively,

this shift should translate into more intensive sampling of higher-indexed attributes, both in

terms of the number of attributes allocated to [a0,1] and in terms of higher-indexed sampled

attributes within each interval [0, a0] and [a0,1].

The first part of proposition 3.6 establishes that an MLR shift of the weight function in-

duces weakly more sampling in [a0,1]. The weight of any attribute greater (resp., smaller)

than a0 increases (resp., decreases) as a result of the MLR shift. The variance induced by any

subsample in [a0,1] increases, thus making sampling in [a0,1] more attractive for the agent.

The second part of proposition 3.6 states that, conditional on allocating the same number

of attributes to [0, a0] and [a0,1], each sampled attribute in each interval shifts further to the

right. Sampling uniformly shifts towards higher-indexed attributes. This result is subject to

the following single-crossing condition on the weight function.

Assumption 2 (Single-crossing condition). For any a1, a2 ∈ [0,1] such that a1 < a2, the func-

tions

r (x) =
∫ 1

x
ω(a)d a −

∫ x

a2

a −a2

x −a2
ω(a)d a, x ∈ [a2,1]

`(x) =
∫ a1

x

a1 −a

a1 −x
ω(a)d a −

∫ x

0
ω(a)d a, x ∈ [0, a1]

m(x) =
∫ a2

x

a2 −a

a2 −x
ω(a)d a −

∫ x

a1

a −a1

x −a1
ω(a)d a, x ∈ [a1, a2]

18If the number of attributes sampled to the right of the initial attribute differs by one, the optimal sample
within this interval is quite different for a0 and a0 +ε. Sampling in this interval expands discontinuously as the
initial attribute increases from a0 to a0 +ε. This feature was illustrated earlier in the context of example 1.

19Because any weight function is normalized so that
∫ 1

0 ω(a)d a = 1, such a shift is akin to an MLR shift of a
probability density function on [0,1].
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cross zero only once from above in their respective domains.

This single-crossing condition essentially requires that the weight function does not drop

or peak too abruptly within a small neighborhood of attributes. In the context of the exam-

ple, this means that the policymaker does not assign radically different weights to commu-

nities of similar median income. Lemma A.5 in appendix A provides stronger –but easier to

interpret– conditions on the weight function that guarantee that assumption 2 holds. Within

the context of q = 1, assumption 2 guarantees that the varianceσ2(s) is single-peaked on [0, a0]

and [a0,1]. We return to this observation in the principal-agent analysis in section 4.

Proposition 3.6 (MLR shift of the weight function). Suppose ω is a MLR shift of ω̃ around

a0. Let s = (a1, . . . , aq+1) and s̃ = (ã1, . . . , ãq+1) be two optimal samples corresponding to ω and ω̃

respectively, and let ak = ãk ′ = a0.

(i) s features more sampled attributes in [a0,1] than s̃, i.e. k ′ ≥ k.

(ii) Suppose condition 2 holds, and k = k ′. Then, ai > ãi for any i 6= k.

3.4 One-directional sampling: attributes as time

This subsection briefly remarks on a special case of single-agent evaluation. Let us reinter-

pet the domain [0,1] as the lifespan of a (single) pilot program, by the end of which the agent

decides whether to roll out the program at large scale. The agent knows the initial state of the

program at t = 0; its state over time follows a Brownian process. The pilot program is too in-

significant to affect the agent’s utility if rejected for large-scale implementation. If approved,

the progress (i.e. realized state path) from the large-scale program is assumed to be identical

to that of the pilot program. The agent cares about the entire progress of the program; the

weight function captures the intrinsic interest the agent has in the state at different stages of

the program. The agent has limited opportunities to inspect its progress in real time.

If constrained to inspect the program only at q particular points in time, what is the opti-

mal timing of inspections? Our single-agent analysis offers the following insights:

1. The expected value of the program at t = 0 does not affect the optimal inspection sched-

ule. By all means, an initially unpromising pilot program has a lower chance of being

implemented at large scale at t = 1, but all pilot programs are inspected identically. The

program is never inspected at its end at t = 1.

2. Observed progress does not affect the optimal timing of future inspections. The player

knows the optimal timing of inspections since t = 0.

3. With more opportunities to inspect the program, the agent takes the first inspection

earlier and the last one later. Moreover, if given the opportunity to take one additional

inspection (i.e. as capacity increases by exactly one unit), the agent schedules the k th

inspection earlier than before, but later than the time of the (k −1)th inspection under

the smaller capacity.
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4. If the player takes an equal interest in all stages of the program (i.e. ω(t ) = 1 for all

t ∈ [0,1]), he schedules periodic inspections. That is, he inspects the program at equally

spaced intervals.

Tangentially, it is interesting to compare the optimal behavior described above with the

sequence of inspections chosen by a myopic player who decides on the next inspection as if

capacity is equal to one. It follows from our analysis that the myopic player waits too long

until the next inspection. He fails to recognize the benefit of an earlier inspection for the

informativeness of future inspections. As a result, she crams inspections towards the end of

the program horizon. Figure 4 contrasts the myopic and optimal schedules for ω(t ) = 1 ∀t

and q = 4.

Figure 4: A myopic player schedules delayed inspections.

4 Principal-agent evaluation game

This section turns attention to the strategic interaction between an agent endowed with

the authority to sample attributes and a principal endowed with the authority to adopt.

The agent decides which attributes are to be sampled simultaneously and publicly, subject

to sampling capacity q ∈ N. The principal observes the sampled realizations and decides

whether to adopt the project. The initial disagreement is captured by the ex-ante expected

values for the two players: νP
0 and νA

0 . We distinguish between two types of disagreement.

If the two ex-ante expected values hold opposite signs, the players disagree on the adoption

decision absent any sampling: we refer to this as drastic disagreement. If they hold the same

sign, the players agree on whether to adopt but differ in the expected payoff from this deci-

sion: we call this mild disagreement. After sample s is discovered, the players update to the

posterior expected values νP (s) := νP (s,B(s)) and νA (s) := νA (s,B(s)).

4.1 Characterization of the agent’s problem

After the agent samples s publicly, the principal approves if and only if νP (s) ≥ 0. Hence, the

agent’s sampling problem is:

max
s

Pr
(
νP (s) ≥ 0

)
︸ ︷︷ ︸

adoption probability

· E
(
νA (s) | νP (s) ≥ 0

)
︸ ︷︷ ︸

expected value of an adopted project forA

subject to s ∈ ⋃
1≤k≤q+1

Sk (a0).

(A ’s problem)
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This formulation allows for the possibility that the agent does not exhaust q. Due to the con-

flict of interest inherent in the interaction, she might find it beneficial to restrict the number

of attributes that inform the decision of the principal.

A sample s = (a`n`
, . . . , a`1 , a0, ar

1 , . . . , ar
nr

), with attributes relabeled in increasing distance from

a0, induces a distribution over the pair of random variables
(
νP (s),νA (s)

)
. The two posterior

expected values are jointly normal, with covariance and variance respectively:

cov
(
νP (s),νA (s)

)
= ∑

k∈{`,r }

nk∑
i=1

τP (ak
i ; (ak

i , ak
i−1))τA (ak

i ; (ak
i , ak

i−1))|ak
i −ak

i−1| := cov(s),

σ2
j

(
ν j (s)

)
= ∑

k∈{`,r }

nk∑
i=1

τ2
j (ak

i ; (ak
i , ak

i−1))|ak
i −ak

i−1| :=σ2
j (s), for j =P ,A .

Note that the three sample statistics, cov(s),σ2
A

(s), and σ2
P

(s) are independent of the initial

observation B0. The first one captures the joint variability of the expected values νA (s) and

νP (s): the higher the covariance is, the more aligned the interests of the two players are ex-

pected to be in the adoption stage. Because higher attribute realizations are always good

news for both players, covariance is positive for any feasible sample. The second and the

third statistic capture the informativeness of the sample s for each player. The analysis in

section 3 showed that in the absence of the other player, each player discovers the sample

that induces the most variable posterior expected value, i.e. the one that maximizes σ2
j (s) for

j =P ,A .

Given (ν0, a0) and a sample s, let P (s;νP
0 ,νA

0 ) denote the expected payoff of the agent from

discovering this sample. The following lemma shows that for the purpose of the agent’s prob-

lem, each sample can be summarized by two sufficient statistics: cov(s) andσP (s). The adop-

tion decision is made with respect to the induced posterior of the principal. The agent trans-

lates the consequences of an adoption (i.e. νP (s) ≥ 0) into what that implies for her own

posterior expected value. But observe that the two posteriors are jointly normal, hence the

conditional distribution νA (s) | νP (s) is normal as well. This distribution is fully described

by the respective variances of νA (s) and νP (s), their correlation coefficient, and the ex-ante

values (νA
0 ,νP

0 ).

Proposition 4.1 (Sufficient statistics for A ’s problem). Given a sample s, the payoff of the

agent depends on s only through two sample statistics: cov(s) and σP (s), i.e.,

P (s;νP
0 ,νA

0 ) = νA
0 Φ

(
νP

0

σP (s)

)
+ cov(s)

σP (s)
φ

(
νP

0

σP (s)

)
. (9)

Writing the agent’s payoff in terms of the correlation coefficient ρ(s) and σA (s) rather than

cov(s) offers a natural interpretation of the strategic considerations at play here. The correla-

tion coefficient between the two posteriors νP (s) and νA (s) is given by

ρ(s) = cov(s)

σP (s)σA (s)
.
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The correlation ρ captures how much the players agree on the relative importance of the

realizations of particular attributes within the sample. The more they agree on this, the more

strongly the posterior expected values of the two players are related. The payoff of the agent

is given by:

P (s;νP
0 ,νA

0 ) = νA
0 Φ

(
νP

0

σP (s)

)
+ ρ(s)σA (s)︸ ︷︷ ︸

variation of νA (s) explained by νP (s)

φ

(
νP

0

σP (s)

)
.

For the jointly normal distribution of (νP (s),νA (s)), the correlation ρ(s) captures the pro-

portion of the dispersion in one player’s posterior that can be explained by the other player’s

posterior. That is, ρ2(s) measures the proportion of the variance of νA (s) that is accounted

for by νP (s): if the agent were to predict her posterior expected value νA (s) from observing

only the realized posterior of the principal νP (s), how good would that prediction be? Corre-

spondingly, ρ2(s)σ2
A

(s) measures the explained variation in νA (s). The higher is this explained

variation, the better the adoption decision made by the principal reflects the interests of the

agent, therefore ceteris paribus the agent prefers samples with higher explained variance. An

ideal sample would induce perfect correlation between the two posterior expected values, in

which case the explained variance of νA (s) would equal its actual variance σ2
A

(s). The condi-

tional expectation for the agent given that the principal adopts is

E[νA (s) | νP (s) ≥ 0] = νA
0 +ρ(s)σA (s)

φ
(
− νP

0
σP (s)

)
1−Φ

(
− νP

0
σP (s)

) .

The higher the explained variance, the higher is the expected quality of an adopted project.

Therefore, to summarize this discussion, the sample choice enters the payoff of the agent

only through (i) its informativeness for the principal, i.e. σP (s), and (ii) the variation in the

agent’s posterior expected value that is explained by the principal’s posterior, i.e. ρ(s)σA (s).

The sampling of s leads to a probability of adoption by the principal given by

Φ

(
νP

0

σP (s)

)
.

A more informative sample for the principal – captured by a higher σP (s) – leads to a lower

adoption probability if the principal finds the project initially promising (i.e. νP
0 > 0) and to a

higher adoption probability if she finds it unpromising (i.e. νP
0 < 0). Hence, providing more

information to the principal makes her ex-ante preferred decision less likely. As it will be ar-

gued in this section, the agent compares the principal’s adoption probability to the following

adoption probability:

Φ

(
νA

0

ρ(s)σA (s)

)
,

rather than to the probability he would adopt in his single-agent problem, namely Φ
(

νA
0

σA (s)

)
.
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Let us interpret this expression. Suppose that the agent does not observe the particular at-

tribute realizations within the sample, but only observes the realized posterior of the prin-

cipal νP (s). What is the predicted value of νA (s) based on νP (s)? By the joint normality, the

predicted value – let that be denoted by ν̂A (s) – is

ν̂A (s) = σA (s)ρ(s)

σP (s)

(
νP (s)−νP

0

)
+νA

0 .

Before νP (s) is realized, the distribution of ν̂A (s) is given by ν̂A (s) ∼ N
(
νA

0 ,ρ2(s)σ2
A

(s)
)

. The

agent would adopt if ν̂A (s) ≥ 0, hence Φ
(

νA
0

ρ(s)σA (s)

)
gives the probability of an adoption by the

agent if he were constrained to decide only based on the observed posterior of the principal.

To summarize, rather than simply comparing the adoption rates of the respective single-

player problems, i.e. Φ
(

νA
0

σA (s)

)
and Φ

(
νP

0
σP (s)

)
, the agent compares Φ

(
νA

0
ρ(s)σA (s)

)
and Φ

(
νP

0
σP (s)

)
in

order to account for the informational overlap among the players, captured by ρ.

Proposition 4.2 examines the effect of the initial realization B0 on the optimal sample

choice. With µ= 0, the two players fully agree on the ex-ante expected value of the project. If

B0 > 0, the principal initially prefers adoption, which guarantees both players a payoff of B0.

If instead the expected value is −B0 < 0, both players obtain a zero payoff from the principal’s

rejection. The added value of sampling in the two cases is equal: a realization B0 > 0 is as

suggestive that adoption is desirable as (−B0) is suggestive that rejection is desirable. Hence,

optimal sampling depends on the absolute value of B0 rather than its sign.

If the drift is nonzero, the optimal samples are generically different for B0 and (−B0). A

project with B0 need not be as promising as a project with (−B0) is unpromising. Both ob-

servations might suggest that adoption is desirable, or the former might be highly suggestive

of an adoption while the latter only slightly suggestive of a rejection. Yet, when comparing

across environments, an initial observation B0 coupled with drift µ induces the same optimal

sampling as an initial observation (−B0) with drift (−µ). Both players are as optimistic in one

case as they are pessimistic in the other.

Proposition 4.2 (Conclusiveness of initial evidence). For any (B0,µ) ∈ R2, if a sample is opti-

mal for (B0,µ), it is also optimal for (−B0,−µ).

4.2 Minimal capacity: q = 1

Here we analyze optimal attribute choice when the agent is limited to q = 1. A minimal ca-

pacity captures instances in which the agent is severely time-constrained or materially con-

strained in researching the uncertain project: at most one attribute of the project can be fully

learned before a decision is made. Alternatively, this is the problem of an agent who per-

suades a principal with very limited attention and is constrained to disclose to this principal

all the realizations that he gathers.

The first part (subsection 4.2.1) considers optimal sampling conditional on the agent

sampling an attribute. The discussion in this subsection builds up towards two key results:
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propositions 4.3 (the dependence of compromise sampling on the form of ex-ante disagree-

ment) and 4.4 (sufficient conditions for non-compromise sampling). The issue of whether

the agent prefers to sample this attribute or forgo sampling at all is treated separately in sub-

section 4.2.2.

4.2.1 Optimality of compromise sampling

We seek to understand how the optimal attribute in the principal-agent game compares to

the optimal attributes in the respective single-player problems. For such a comparison, it is

useful to impose the condition that each player has a single local optimum on either side of

a0. So, we assume that for each player, the variance σ2
i (a0, a) = |a−a0|τ2

i (a; (a0, a)) and σ2
i (a, a0)

are single-peaked in a in [a0,1] and [0, a0] respectively.20 This condition is not particularly

restrictive, and it is closely connected to assumption 2.

Assumption 3 (Single-peakedness of σ2
i ). For each player, a0 and ωi need to be such that the

functions `i (·) and ri (·) as defined in assumption 2 with domains [0, a0] and [a0,1] respectively:

ri (a) =
∫ 1

a
ωi (s)d s −

∫ a

a0

s −a0

a −a0
ωi (s)d s

`i (a) =
∫ a0

a

a0 − s

a0 −a
ωi (s)d s −

∫ a

0
ωi (s)d s

cross zero only once from above on [a0,1] and [0, a0] respectively.

Hereafter, we refer to the local optima of player i , i.e. the attributes chosen in the single-

player problem by i when sampling is constrained to [0, a0] and [a0,1], as (a`i , ar
i ) respectively,

and to her global optimal attribute as ai .

An attribute is a local compromise in [0, a0] if it is between the players’ local optima in this

interval; a local compromise in [a0,1] is defined analogously. Attributes that are further away

from (resp., closer to) a0 than both players’ local optima are referred to as locally overshoot-

ing (resp., undershooting) attributes. We occasionally refer to overshooting and undershoot-

ing with the common term of no-compromise sampling. Overshooting attributes are more

uncertain than what both players prefer, while undershooting attributes are less uncertain.

Definition 1 (Local compromise). An attribute ã is a local compromise in [a0,1] if it is strictly

between the single-player local optima, i.e.,

min{ar
P , ar

A } ≤ ã ≤ max{ar
P , ar

A }. (10)

An attribute ã undershoots in [a0,1] if ã < min{ar
P

, ar
A

} and overshoots in [a0,1] if ã > max{ar
P

, ar
A

}.

Figure 5a illustrates the definition for attributes in [a0,1], whereas figure 5b shows the

regions of local compromises, overshooting, and undershooting for the entire attribute do-

main. Note that by the single-peakedness assumption, at any compromise attribute one

20Only the proof of lemma 4.5 requires strict concavity of σ2
i rather than single-peakedness.
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player prefers sampling further to the right but the other player prefers it further to the left

if each were acting in isolation of the other (i.e. σ2
i is decreasing whereas σ2

−i is increasing).

In contrast, at any attribute that is not a compromise, the players agree whether sampling

further in one direction leads to more informative sampling or not. E.g., in figure 5a, moving

further to the right of ar
−i leads to less informative sampling about the posterior expected

value of both the principal and the agent.

a0 1

ar−iari

compromiseundershooting overshooting

σ2
−i

σ2
i

(a) Local compromise in [a0,1]

0 1a0

a`ia`−i ar−jarj

compromisecompromise

undershooting overshootingovershooting

(b) Regions of local compromise in [0,1]

Figure 5

Note, also, that definition 1 invokes only local optima of the single-player problems. This

highlights the conflict among players about whether a local modification of the attribute

would be desirable in their single-player problems. For a stark illustration of this definition,

consider a setting in which (i) the two players have identical local optima: ar
A

= ar
P

= ar and

a`
A

= a`
P

= a`, but (ii) the global optimum for the agent is a`, whereas for the principal it

is ar .According to definition 1 there are no local compromises in this setting. If we were to

instead define a compromise as any attribute between the global optima, i.e., any a ∈ [a`, ar ],

at any such attribute both single-player objective would increase from moving closer to a0.

No player would have to make a concession from such a local modification.

For the rest of the discussion, let νi (a) denote the posterior expected value of player i

after a is sampled, and let σ2
i (a) denote the variance of this posterior induced by sampling a.

Under q = 1, for any a ∈ [0,1] the two posterior expected values νP (a) and νA (a) are perfectly

correlated. Put differently, an outside observer that observes νP (a) and B0 but not νA (a) or

B(a) can fully infer νA (a).

Claim 1 (Perfect correlation of posteriors). Let q = 1. Then ρ(s) = 1 for any s ∈S2(a0).

From the agent’s perspective, each attribute is fully described by the pair (σP (a),σA (a)).

The agent’s objective (9) from sampling attribute a simplifies to:

P (a;νP
0 ,νA

0 ) = νA
0 Φ

(
νP

0

σP (a)

)
+σA (a)φ

(
νP

0

σP (a)

)
. (11)

If both sampling and adoption authority were perfomed by player i , the ex-ante expected

value νi
0 would affect the adoption decision but not sampling. However, under separate au-

thorities, the agent uses (νP
0 ,νA

0 ) to decide on optimal sampling as well. The ex-ante expected

values are of persuasive value to the agent: they guide him in how to best persuade the prin-

cipal to take an adoption decision well-aligned with his interest. Even in the case of prior

agreement, i.e. νP
0 = νA

0 , the common ex-ante expected value informs the sampling choice.
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So it is not merely the ratio of these two values, – a measure of the prior disagreement be-

tween the two players, –but also the magnitudes of the ex-ante expected values that matters

for optimal sampling.

We first examine optimal sampling when νi
0 = 0 for some i . Player i is ex-ante indifferent

between adoption and rejection: the initial evidence looks neutral from her perspective. If

this indifferent player is the principal, the optimal attribute chosen by the agent is the agent’s

ideal attribute, irrespective of the agent’s belief about the project. That is, the agent discovers

the attribute she would discover in the absence of the principal as well. If νP
0 = 0, the principal

is expected to adopt half of all projects despite which attribute is sampled. Confronted with

the inability to affect the principal’s decision through attribute choice, the agent chooses the

attribute that is most informative to him. The expected value of an adopted project for the

agent is highest when the attribute with the highest σ2
A

is sampled.

Lemma 4.1 (Neutral initial evidence).

(i) If νP
0 = 0, the optimal attribute is equal to the agent’s single-player optimum aA .

(ii) If νA
0 = 0, the optimal attribute is a strict compromise. It tends to a local optimum of the

principal as νP
0 approaches ±∞. The payoff of the agent strictly decreases in |νP

0 |.

(iii) The agent weakly prefers (νP
0 = 0 and νA

0 = x) to (νA
0 = 0 and νP

0 = x) if x > 0. That is, given

that one player perceives the initial evidence as neutral and the other as good news, the

agent is better off when the principal perceives the initial evidence as neutral rather than

when he himself does.

If the agent is ex-ante indifferent between adoption and rejection but the principal has

a strict preference between the two, the optimal attribute is strictly between the two local

optima, i.e. it is a strict compromise. When the initial evidence is very conclusive for the

principal, an indifferent agent samples an attribute arbitrarily close to one of the two local

optima of the principal. The conflict over adoption is sharp, as the principal either adopts

or rejects almost surely. The agent resorts to an attribute that the principal finds sufficiently

informative in hope of ameliorating this conflict.

A natural next question is whether, when all else is kept constant, the agent prefers to face

an indifferent principal or be indifferent herself. The last part of proposition 4.1 resolves this

question in favor of an indifferent principal when the agent herself is optimistic. This is due

to her optimism about the project and the benefit she obtains from having the flexibility to

choose her ideal attribute. This need not be the case when one of the players is pessimistic

and the other is indifferent. If the degree of pessimism is very small or very large, the agent

prefers to be herself the pessimistic player. The consideration that the ex-ante probability

of approval of an indifferent principal cannot be affected by the sample choice trumps the

disutility the agent obtains from a compromise attribute if the principal is pessimistic. For

a moderate degree of pessimism, the agent still prefers the principal to be the indifferent

player.
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The next result establishes conditions for the optimal attribute to be a compromise. If

the ex-ante expected values lead the two players to disagree on the adoption decision before

sampling, the optimal attribute is always a strict compromise. When the players disagree

initially, the agent unequivocally prefers a more informative attribute for the principal, all

else kept constant. As long as the agent can increase both σA and σP , she will do so. Hence,

the optimal attribute is a compromise: the agent cannot alter it without decreasing the vari-

ance of some player and increasing the variance of the other. Therefore, compromise is an

unavoidable consequence of the initial disagreement on approval. Alternatively, for the op-

timal attribute to undershoot or overshoot the single-player optima, it is necessary that the

players agree on what the right decision is based on the initial evidence.

Yet, compromise can arise when the players initially agree on the adoption decision as

well. The second part of proposition 4.3 identifies a condition for the optimal attribute to

be a compromise. Essentially, the condition requires that at any optimal attribute that is a

compromise the principal reacts more strongly than the agent: if the two players agree ex-

ante on adoption, the principal adopts a larger expected share of projects than the agent,

whereas if both agree on rejection, the principal adopts a smaller share than the agent.

Proposition 4.3 (Form of disagreement and compromise).

(i) Under drastic disagreement (νi
0 < 0 < ν−i

0 ) any optimal attribute is a strict compromise.

(ii) Under mild disagreement (sgn(νP
0 ) = sgn(νA

0 )), an interior optimal attribute a∗ is a com-

promise if and only if ∣∣∣∣∣ νP
0

σP (a∗)

∣∣∣∣∣>
∣∣∣∣∣ νA

0

σA (a∗)

∣∣∣∣∣ . (12)

A natural implication of proposition 4.3 is that undershooting or overshooting optimally

arises only if the initial evidence induces some minimal agreement among players, that is,

only if the principal and the agent at least agree on whether the project is promising. Ini-

tial agreement among players about the right decision might bring about the sampling of an

attribute that is more variable than both individual optima, or less variable than both indi-

vidual optima. In the first case, sampling entails excessive variability, while in the second,

sampling is too conservative compared to the single-player benchmarks.

Supposing that the two players agree initially on whether the project is promising, un-

der what conditions is it that the optimal attribute is a compromise? The following result

establishes a sufficient condition that follows immediately from part (ii) of proposition 4.3.

The optimal attribute is guaranteed to be a compromise if the discovery of any unsampled

attributes leads the principal to react more strongly than the agent. Lemma 4.2 simplifies

condition (12) by using the fact that σi (a) = |a − a0|τi (a), where τi (a) is the coefficient corre-

sponding to the sampled realization B(a) in the posterior expected value of player i .21 Com-

promise sampling is guaranteed to exist if, for any attribute other than a0, the principal starts

21The notation surpresses the dependence of τ on the entire sample, which is of the form (a0, a) or (a, a0).
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with a sufficiently stronger ex-ante belief: she is sufficiently more optimistic (pessimistic)

than the agent if the project is initially promising (unpromising) to the two players.

Lemma 4.2. Suppose that there is mild disagreement between the players.

(i) Compromise sampling emerges if for any a 6= a0,

νP
0

νA
0

> τP (a)

τA (a)
. (13)

(ii) Non-compromise (undershooting or overshooting) sampling emerges if the optimal at-

tribute is interior and for any a 6= a0,

νP
0

νA
0

< τP (a)

τA (a)
. (14)

Lemma 4.2 is instrumental in pinning down sufficient conditions for the optimal attribute

to undershoot or overshoot the single-player optima. Let us summarize the conditions in

terms of the initial observation B0 for any given pair of weight functions (ωP ,ωA ). Remember

that the ex-ante value of the project for player i is

νi
0 = B0 +µ

∫ 1

0
ωi (a)(a −a0)d a︸ ︷︷ ︸

:=Ki

. (15)

Player i is indifferent between adoption and rejection if B0 = −µKi . Hence, the two players

disagree on the adoption decision prior to any sampling if B0 is between −µKP and −µKA .22

By part (i) of proposition 4.3 any such intermediate B0 leads to the sampling of a compro-

mise. In the regions outside this interval, the two players agree on whether the initial ev-

idence suggests adoption. Lemma 4.2 implies that a compromise is guaranteed in a small

neighborhood around B0 =−µKA : in such a neighborhood, the ratio νP
0 /νA

0 is very high be-

cause νA
0 is close to zero. The opposite is true in a neighborhood around B0 =−µKP for which

the players ex-ante agree on rejection. In this neighborhood, the ratio is very close to zero:

the agent has much stronger views than the principal. Hence, any emerging interior optimal

attribute either undershoots or overshoots the individual optima. There is a non-degenerate

interval of values of B0 for which it is optimal to sample a non-compromise attribute (i.e.

undershooting or overshooting). Figure 6 summarizes this discussion.

Why is the agent willing to offer non-compromise sampling when the two players are in

mild disagreement? In figure 6, consider a B0 in the green region. Initial evidence suggests

to both players that the project should be rejected; yet the principal is only barely convinced

that B0 is bad news, while the agent is more strongly convinced. Hence, the agent seeks to

induce the principal to react more strongly in rejecting projects. She does so by decreasing

22If −µKA >−µKP , the agent is more demanding than the principal because she requests a higher B0 in order
to be indifferent between adoption and rejection.
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B0
−µKP −µKA︸ ︷︷ ︸

prior disagreement
︸ ︷︷ ︸
prior agreement: approve

︸ ︷︷ ︸
prior agreement: reject

compromisenon-compromise

Figure 6: The figure assumes that the agent is ex-ante more demanding than the principal, i.e. −µKA >−µKP .

the informativeness of the sampled attribute for the principal. Remember that for νP
0 = 0, the

optimal attribute is the agent’s ideal attribute; so for νP
0 in a sufficiently small neighborhood

around zero, the optimal attribute moves further away from both local optima. The expected

share of approved projects Φ
(

νP
0

σP (a)

)
goes down as a result. For sure, choosing a lower σP

comes at the cost of a lower σA for the agent as well. Yet, the agent is willing to bear this cost

for a sufficiently uncertain principal, i.e. sufficiently small |νP
0 |.

The following result provides sufficient conditions for the optimal attribute to overshoot

or undershoot the agent’s ideal attribute and the principal’s local optimum in that corre-

sponding interval. The optimal attribute is more variable than these two single-player op-

tima if (i) B0 induces the players to agree on the promise, but leaves the principal sufficiently

skeptic, and (ii) aA , which is the optimal attribute when the principal is exactly indifferent,

is further away from a0 than the principal’s single-player optimum in the same region. The

latter condition is akin to the agent seeking more breadth of sampling than the principal in

that side of a0. She is willing to expand sampling even further than what is ideal to her when

facing a principal who is sympathetic to her interpretation of the promise, but nonetheless

too skeptical.

Proposition 4.4 (Sufficient conditions for overshooting/undershooting). The optimal attribute

overshoots (resp., undershoots) the two single-player local optima if the following conditions

hold simultaneously:

(a) players have mild disagreement over the project: sgn(νP
0 ) = sgn(νA

0 );

(b) νP
0 is sufficiently close to zero;

(c) aA is more distant (resp., less distant) to a0 than the principal’s local optimum on the

same side of a0.

The rest of this discussion uses two examples to illustrate our results so far and other in-

teresting distortions that might arise in optimal sampling. It moreover illustrates that the

conditions of proposition 4.4 are not necessary: non-compromise sampling arises even in

the case in which νA
0 = νP

0 . We elaborate on two classes of environments: (a) linear ωi for

i = P ,A , and (b) a narrow-interest player whose ωi is centered around a single attribute,

interacting with a broad-interest player whose ω j (a) = 1 for all a. Both examples are in the

context of µ= 0 and σ= 1: the players are initially on full agreement about the promise, that

is, νP
0 = νA

0 = ν0. More importantly, both examples highlight instances in which: 1) the opti-

mal attribute is more variable (excessive sampling) or less variable (conservative sampling)

than both single-agent optima, 2) optimal sampling occurs in the cell of least interest to both
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players, 3) more conclusive initial promise encourages sampling increasingly close to one of

P ’s local optima.

Example 2 (Linear weight functions). Let µ = 0. Suppose linear weight functions ωi (a) = bi +
ki a such that bi > 0 and bi +ki > 0 for i = P ,A . The two players start with the same ex-ante

expected value for the project ν0.

1. Clear intervals of compromise and non-compromise: For any initial attribute a0, it

can be shown that the principal is more sensitive than the agent (i.e. τP (a) > τA (a))

to realizations of attributes in one side of a0, and the agent is more sensitive than the

principal to realizations of attributes in the other side of a0.23 That is, τi (a; (a, a0)) >
τ−i (a; (a, a0)) for a ∈ [0, a0] iff

ki

bi
< k−i

b−i
.

The more sensitive player on [0, a0] is the one for which the ratio of weights of extreme

attributes ωi (1)/ωi (0) is the smallest: this player cares more about lower-index attributes.

For the rest of this example, let the agent (resp., the principal) be the more sensitive player

on [0, a0] (resp., [a0,1]).24 By lemma 4.2, the optimum in [0, a0] is a compromise and the

optimum in [a0,1] either undershoots or overshoots. For this reason, we refer to [0, a0] and

[a0,1] as compromise and non-compromise regions respectively.

2. Ranking of local optima: The local optima of the two players can be ranked easily. In the

compromise region [0, a0], a`
A

< a`
P

. The opposite holds in the region of non-compromise

[a0,1]: i.e., ar
A

< ar
P

, hence the local optimum of the agent is closer to a0 in this region.

3. Sampling in the compromise interval: For any such two linear weight functions (ωP ,ωA ),

the local optimum a∗
`

monotonically increases from aA
`

to aP
`

as the initial promise be-

comes more conclusive (that is, as |ν0| increases). Although the added value of sampling

an attribute is smaller as |ν0| increases, –in fact, A ’s payoff approaches ν0 as ν0 becomes

more increasingly conclusive, – the local optimal attribute in the compromise region re-

mains in the interiority of [aA
`

, aP
`

].

4. Undershooting under the same ex-ante expected valueν0: Note that under initial agree-

ment, i.e. νi
0 = ν0 for i =A ,P , equation (13) simplifies to

1 > τP (a)

τA (a)
,

which is indeed the case for any a ∈ [a0,1]; hence, non-compromise sampling arises in

this interval. In fact, only undershooting can arise; this occurs when ar
A

is the (global)

23All proofs for results presented in this example are gathered in appendix C.2.
24This can also be interpreted in terms of the adoption threshold that the agent follows B̄(a) (as defined in

section 3). For any a ∈ [0, a0], the agent is more demanding than the principal towards unpromising projects and
less demanding than him towards promising projects. Roles are reversed for a ∈ [a0,1]. For instance, if ν0 < 0 and
either player could veto the final approval decision, the agent would be the effective decisionmaker for a ∈ [0, a0]
and the principal for a ∈ [a0,1].
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single-agent optimum for the agent. From lemma 4.1, the optimum is ar
A

for ν0 = 0. As

ν0 becomes more conclusive, the local optimal attribute decreases further away from aA
r

and towards a0. More conclusive projects promote more conservative sampling in this

region. Yet, there exists a critical value, such that for |ν0| greater than this critical value

the local optimal attribute jumps to a0. Sampling switches to the compromise region.

Example 3 (Narrow interests, broad interests). Suppose an agent with narrow interests cen-

tered around a = 1/3 interacts with a principal that deems all attributes to be of equal im-

portance. The weight functions are depicted and described in figure 7. The initially known

attribute is a0 = 1/2. Let µ= 0.

1. Optimal sampling is a compromise for anyν0: The single-player optima are aP ∈ {1/6,5/6},

and aA = 0.280488. The principal is indifferent between exploring the two sides of a0,

given that a0 = 1/2 and her weight function is symmetric around a0. The agent strictly

prefers to sample in [0,1/2), as the attributes of greatest interest to her are in this region.

Similarly to example 2, a0 divides the attribute space into a compromise region [0, a0]

and a non-compromise region [a0,1]. The agent samples to the left of a0 for any initial

promise ν0, which is (weakly) the area of most interest to both players. The optimal at-

tribute is a compromise for any initial promise: it monotonically decreases from aA to

aP = 1/6 as the initial promise becomes more conclusive.
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Figure 7: The weight function for P (in blue) is ωA (a) = 1
c

(
1
2 + 1

10φ
(

a−1/3
1/10

))
where φ is the standard normal pdf

and c is a normalizing constant. The weight function for P (in yellow) is ωP (a) = 1. The vertical line denotes the
initial attribute a0 = 1/2.

2. Overshooting: For the rest of this example suppose that the roles get reversed: the agent

is the player with broad interests, and the principal is the one primarily interested in

attributes close to 1/3. Consider a moderately promising project: ν0 = 1/3. The optimal

attribute to be discovered is a∗ = 0.0847334 < min{a`
A

, a`
P

}. The optimal attribute is more

distant from a0, and hence more variable, than both individually preferred attributes.

The agent has a stronger preference for breadth of sampling, hence she is willing to ex-

pand sampling to more distant attributes.

3. Sampling in the least interesting region for both players: For a0 = 1/2+1/100, both play-

ers’ single-player optima are in the region [0, a0]. Yet, for sufficiently large |ν0|, optimal
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attribute switches to the least interesting region [a0,1].

4. Switching sampling regions: The switching of sampling regions can happen more than

once as |ν0| increases. For a0 = 1/2−1/100, the principal prefers to sample on [0, a0] and the

agent on [a0,1]. With ν0 = 0, agent samples in her preferred region; as |ν0| increases, sam-

pling switches to the principal’s preferred region and it takes the form of overshooting.

As |ν0| goes up even more, sampling reverts back to the agent’s preferred region (which is

also the compromise region).

Finally, we seek to understand the tendency of optimal sampling as B0 becomes very con-

clusive. Let us restrict attention to pairs of weight functions for which all attributes in one

side of a0 are more informative for one player, and all attributes in the other side are more

informative for the other player. The two examples we discussed obviously fit into this class

of weights. As B0 becomes sufficiently conclusive, νP
0 and νA

0 get sufficiently close. There ex-

ists a sufficiently conclusive B0 beyond which the agent samples exclusively in the cell that is

more informative for her: the optimal attribute in this case is a compromise arbitrarily close

to the principal’s preferred attribute in this cell.

Proposition 4.5 (Eventual compromise). Suppose that τP (a) > τA (a) for a ∈ [0, a0) and τP (a) <
τA (a) for a ∈ (a0,1].

1. There exists a sufficiently high b̄ such that for sufficiently conclusive initial evidence |B0| >
b̄ the optimal attribute is a compromise in (a0,1].

2. The optimal attribute gets arbitrarily close to ar
P

∈ (a0,1] for an arbitrarily conclusive B0.

In particular, this result highlights that optimal sampling settles on a compromise for suf-

ficiently conclusive initial evidence. This is the case even if both players are more interested

in sampling in [0, a0] in the absence of the other player.

4.2.2 Optimal restriction of information

We next turn to whether the agent ever finds it beneficial to supply less information to the

principal by not exhausting the capacity q. The following result shows that this is never the

case under a minimal capacity q = 1 and µ= 0. For a driftless process –for which the two ex-

ante expected values are equal,– there is always some attribute that the agent strictly prefers

to sample. An immediate implication of this statement is that for any given capacity q, A

always mandates some sampling as long as the process is driftless. Under full agreement on

the ex-ante value of the project, the agent imposes some minimal sampling standards.

Assumption 4 (Divisive initial attribute). The initial attribute a0 is such that∫ a0

0
ωP (a)d a 6=

∫ a0

0
ωA (a)d a.
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Proposition 4.6 (Minimal provision of information). Suppose µ= 0 and assumption 4 holds.

For any (a0,B0), the agent strictly prefers sampling an additional attribute beyond a0.

We briefly explain the intuition behind the proof for proposition 4.6. For the agent to

prefer not to sample for some initial promise B0, it is necessary that all attributes be strictly

less informative for the agent than for the principal. That is, at any sampled attribute the

agent should prefer a lower variance σP for the principal. Assumption 4 guarantees that this

cannot happen: there always exists an attribute close to a0 that is more informative to the

agent than to the principal.25

Next, we show that with different ex-ante expected values, the agent might find it ben-

eficial to drastically curtail information. That is, the agent might forgo the opportunity to

sample even when subject to a very limited capacity (q = 1). This is never the case if the two

players disagree on the initial promise of the project, that is, if νi
0 and ν

j
0 have opposite signs.

In such cases, it is always better for the agent to sample an attribute. So a necessary condi-

tion for the agent to prefer forgoing sampling is for the players to agree on whether the initial

evidence suggests a promising project.

Example 4 (Optimal curtailment of information). ConsiderωA (a) = 2
9 (4+a) andωP (a) = 3

13 (1+
10a2). Letµ= 3,σ= 1, a0 = 2/3, and B0 =−1/10. The players agree that the project is unpromising

before any sampling:

(νA
0 ,νP

0 ) =
(
−49

90
,− 3

130

)
.

The agent is more convinced than the principal that the project is unpromising. The agent

finds it beneficial to forgo the sampling of any new attributes. The payoff from sampling any

attribute a 6= 2/3 grants her a strictly negative payoff, while in the absence of any further infor-

mation, the principal rejects the project, granting to both himself and the agent a zero payoff.

(If µ = 1 instead of µ = 3, while all else is kept constant, the agent prefers to sample a non-

compromise rather than forgo discovery).

To summarize, if the initial evidence is such that (i) the two players agree about whether

the project is promising, but (ii) the principal is sufficiently skeptic, i.e. νP
0 is sufficiently

close to zero, the agent either forgoes all sampling, or resorts to one of the two forms of non-

compromise sampling: excessive sampling (the optimal attribute overshoots both single-

player optima), or conservative sampling (the optimal attribute undershoots both single-

player optima). The agent discovers a non-compromise attribute if νA
0 is sufficiently incon-

clusive. If the initial evidence is sufficiently conclusive for her but the principal is very skep-

tic, she prefers to forgo all sampling. In the absence of further information, the principal has

to make the decision that the agent strongly believes is the right decision in light of the initial

evidence.
25It is straightforward to construct examples for which the agent refrains from sampling for sufficiently conclu-

sive initial evidence when assumption 4 is violated. For instance, let ωA (a) = 1/10, ωP (a) = (a−1/2)2 and a0 = 1/2.
For high enough |ν0| (e.g. ν0 = 3/2), the optimal attribute is a∗ = a0.
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4.3 Non-minimal capacities: q > 1

The problem of the agent becomes more complex for q > 1 as samples of greater size differ

not only in the variabilities of the posterior expected values νA (s) and νP (s) that they induce,

but also in the correlation ρ(s). Let us briefly remark on how to interpret the correlation

induced by a sample. The following lemma shows that a sample displays perfect correlation

if for any two attributes in that sample, the relative importance of the two attributes is the

same for both players.

Lemma 4.3 (Perfect correlation). Given q ≥ 2, a sample s = (a`n`
, . . . , a`1 , a0, ar

1 , . . . , ar
nr

) displays

perfect correlation if for any two attributes ak
i , ak ′

j in the sample:

τP (ak
i ; (ak

i , ak
i−1))

τP (ak ′
j ; (ak ′

j , ak ′
j−1))

= τA (ak
i ; (ak

i , ak
i−1))

τA (ak ′
j ; (ak ′

j , ak ′
j−1))

. (16)

Larger capacities introduce the possibility of ρ(s) 6= 1. Yet, the next result argues that given

any capacity, the optimal sample is straightforward to characterize if initial evidence is neu-

tral for the principal (νP
0 = 0). Similarly to the analogous case of q = 1, the principal approves

is expected to adopt half of the projects, and the agent cannot influence this adopted share

through her sampling choice. Whereas for q = 1 the agent chose the sample with the highest

variance for νA (s), for q > 1 the agent chooses the sample with the highest explained varia-

tion ρ2(s)σ2
A

(s). Unlike in the case of a minimal capacity, the agent might have to distort her

most preferred sample if the correlation it induces is too low: the explained variation scales

the informativeness of the sample for the agent’s posterior expected value by the (squared)

correlation that the sample induces. The optimal sample trades off distance from the agent’s

ideal sample for higher correlation.

Proposition 4.7 (Neutral evidence for the principal). Suppose νP
0 = 0. Given capacity q > 1,

the optimal sample solves the following:

s∗ ∈ argmax
s∈∪1≤k≤q+1Sk (a0)

ρ(s)σA (s). (17)

The next simple example illustrates such deviations from the agent’s sample preferred

sample in the case of linear weights for both players and q = 2. Considerations about corre-

lation might induce the agent to either bring both attributes closer to a0 than her preferred

sample, or to move them both further away from a0, or to narrow the sampling scope by

increasing one attribute and decreasing the other relative to the agent’s ideal sample.

Example 5 (Linear interests with q = 2). Let ωP (a) = 3/2−a, µ= 0, and a0 = 1/20. We alter ωA

and show three different patterns of the optimal sample as compared with A ’s ideal sample.

1. ωA (a) = 1/4(3+ 2a): the two attributes of the optimal sample are further away from a0

than the attributes in P ’s ideal sample;
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2. ωA (a) = 2/5(3− a): the two attributes of the optimal sample are closer together than the

attributes in P ’s ideal sample. This means that one attribute is further away from a0 and

the other is closer to a0;

3. ωA (a) = 1/6(10−8a): the two attributes of the optimal sample are both closer a0 than the

attributes in A ’s ideal sample.

If the slope of ωA is negative, so that the agent just like the principal has less of an interest in

higher-indexed attributes, the optimal sample, which is located in [a0,1], is either uniformly

closer to a0 or uniformly closer together. The opposite seems to be the case if ωA is positively

sloped: the optimal sample is either uniformly further away from a0, or the two attributes are

closer together. With linear weights and νP
0 = νA

0 = 0, the optimal attributes are never farther

apart from each other than in the agent’s optimal sample.

Proposition 4.7 is a first step in building an analogy between the case of q = 1 and the

case of any greater capacity q > 1. Whereas with a minimal capacity, the agent compares his

adoption probability with that of the principal, the discussion in subsection 4.1 explained

that with q > 1 the agent compares

νP
0

σP (s)
with

νA
0

ρ(s)σA (s)
.

The first is the adoption probability of the principal after s is sampled, and the second is the

adoption probability of the agent if he were constrained to decide on adoption after observ-

ing only the realized posterior of the principal. For instance, if both νP
0 and νA

0 are positive,

Does the agent ever optimally select an optimal sample that can be modified locally to

generate both higher informativeness for the principal σ2
P

and higher explained variation

ρ2σ2
A

? This is akin to undershooting/overshooting in sampling under a minimal capacity.

The answer is positive, but such optimal sampling can only arise if there is mild disagreement

between players. Based on an intuition similar to that for q = 1, such an optimal sample is

guaranteed to arise if νP
0 is sufficiently close to zero compared to νA

0 .

Proposition 4.8. Given capacity q, let s∗ = (a∗
1 , . . . , a∗

n) denote an optimal sample.

1. Under drastic disagreement, either σ2
P

(s∗) is decreasing and ρ2(s∗)σ2
A

(s∗) is increasing in

a∗
k for any k ≤ n such that a∗

k 6= a0, or vice versa.

2. Under mild disagreement, for any νA
0 there exists a sufficiently small |νP

0 | such thatσ2
P

(s∗)

and ρ2(s∗)σ2
A

(s∗) are both increasing in a∗
k 6= a0 for any k ≤ n.

5 Extensions

5.1 Collective adoption

The main analysis studied the case of fully separate authorities on sampling and adoption.

A natural variation on the configuration of authorities is the case in which only one player

36



has the expertise or authority to sample, but both players decide collectively on the adop-

tion decision. In particular, this subsection explores unanimous adoption: the project is

adopted if both players are in favor of adoption after sampling takes place. Let us briefly re-

visit the example of an investigative journalist sampling a vast primary source, mentioned

in the introduction. The editor, being unable to access the primary source himself, relies on

the investigation techniques chosen by the journalist. The journalist, on the other hand, has

a responsibility to report all the gathered hard evidence to the editor. Yet, when it comes to

the decision of publishing a report on this primary source, both the editor and the journalist

have to agree on whether publication is the right decision.

Upon sampling, each player favors adoption if and only if her posterior expected value is

greater than zero. The agent seeks to maximize the expected value of the project conditional

on unanimous adoption. The objective of the agent is:

max
s∈∪q+1

k=1Sk (a0)
Pr(νP (s) ≥ 0,νA (s) ≥ 0)E

[
νA (s) | νP (s) ≥ 0,νA (s) ≥ 0

]
(18)

Lemma 5.1. The objective of the agent simplifies to: 26

max
s∈∪q+1

k=1Sk (a0)
νA

0 B v N
(
cA ,cP ;ρ

)+σA

(
ρφ(cP )Φ

(
cA − cP ρ√

1−ρ2

)
+φ(cA )Φ

(
cP −ρcA√

1−ρ2

))
, (19)

where

ci (s) := νi
0

σi (s)
.

When the principal is the only player with adoption authority, the agent prefers sam-

ples that induce higher correlation, because they are more likely to guarantee that an adop-

tion by the principal (i.e., νP (s) ≥ 0) is the right adoption decision for the agent too (i.e.

νA (s) ≥ 0). Higher correlation implies higher expected value for the agent conditional on

adoption. When the adoption authority is shared, higher correlation implies higher probabil-

ity of unanimous adoption and higher expected value of the project for the agent conditional

on unanimous approval. Hence, all else constant, in both cases the agent prefers more highly

correlated samples. But, in the case of collective adoption the effect is more pronounced due

to correlation entering the adoption probability as well.

Corollary 5.2. Suppose q = 1. The expected payoff of the agent from sampling attribute a is:

νA
0 Φ

(
min

{
νA

0

σA (a)
,
νP

0

σP (a)

})
+σAφ

(
min

{
νA

0

σA (a)
,
νP

0

σP (a)

})
. (20)

It is instructive to compare this objective to the agent’s objective (11) when the principal

is the only one with adoption authority. Under unanimous adoption, the decisive or pivotal

“voter” for any sampled attribute a is the one with the smallest νi
0/σi (a). This is the player

with a smaller probability of adoption of the project before B(a) is realized: she is the more

26The argument s has been surpressed in ρ ≡ ρ(s),σi ≡σi (s), ci ≡ ci (s).
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demanding decisionmaker towards realizations of attribute a. As a consequence, the prob-

lem of collective adoption divides attributes into two subsets: (i) attributes the sampling of

which gives to the agent her single-player payoff, and (ii) attributes the sampling of which

gives to the agent her decentralized evaluation payoff.

Proposition 5.1 (Agent’s ideal sampling). If the agent’s ideal sample aA is such that the agent

is the decisive player when aA is sampled, i.e.,

νA
0

σA ((a0, aA ))
< νP

0

σP ((a0, aA ))
,

the optimal attribute is a∗ = aA .

We need to distinguish two important instances of the premise of proposition 5.1. First,

the agent samples her ideal attribute if νA
0 < 0 < νP

0 . When the players drastically disagree on

the promise of the project, and the agent believes that the project is unpromising, optimal

sampling consists of aA . Despite the form the weight functions might take, an agent who

considers the project unpromising samples her ideal attribute whenever the principal thinks

the project is promising. Second, when the two players agree on the sign of the promise,

aA arises as optimal whenever the ratio of sensitivities to the realization B(aA ), denoted by

τP (aA ; (a0, aA ))/τA (aA ; (a0, aA )), is (i) sufficiently small if the project seems promising to the

players, (ii) sufficiently large if the project seems unpromising to the agents. Put differently,

aA is optimal if νA
0 is sufficiently smaller than νP

0 . Under these conditions, the agent is the

decisive decisionmaker.

The following result establishes that unlike in decentralized evaluation, aA arises as an

optimal solution for a non-degenerate interval of values for the initial observation B0. Lemma

4.1 established that under decentralized evaluation aA arises as optimal only for

B0 =−µ
∫ 1

0
(a −a0)ωP (a)d a,

the value of B0 for which the principal is indifferent.

Proposition 5.2. For any pair of weights (ωA ,ωP ), there exists a non-degenerate interval of

values of B0 for which optimal sampling consists of the agent’s ideal attribute aA .

5.2 Preemptive sampling by an uncertain principal

This subsection relaxes the assumption that the principal does not possess any sampling au-

thority in a simple, yet instructive, way. Players start by observing attribute a0 with realization

B0 =−µ
∫ 1

0
ωP (a)ad a.

This observation leaves the principal indifferent towards adoption or rejection: he is highly

uncertain of the quality of the project. Because of this initial condition, the process across
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attributes is a standard Brownian motion. Before the agent decides on sampling, the prin-

cipal can ask her to include some attribute a1 in the sample. This requirement to sample a1

contextualizes how the agent views other attributes. Neither the agent nor the principal ob-

serves B(a1) before any additional sampling: the agent is aware of having to discover a1, but

she samples attributes simultaneously, as in the main setup.

By lemma 4.1, whenever the principal is highly uncertain, i.e. νP
0 = 0, the agent samples a

set of attributes that, given a0 and q, solves

max
s∈∪1≤k≤q+1Sk (a0)

ρ(s)σA (s).

The principal’s choice of a0 shapes the feasible set of samples
⋃

1≤k≤q+1 Sq+1(a0). Given a

selection s∗(a0) from the solution set of the agent’s problem, the principal seeks to maximize

max
a0

σP (s∗(a0)).

The principal chooses a0 that encourages the discovery of a sample that induces the highest

variability in her posterior νP (s). Note that the sample chosen jointly is not informed by the

promise of the project as perceived by the agent, i.e. νA
0 .

We illustrate preemptive sampling with the following example of a broad-interest agent

and an extreme-interest principal. Each player’s sampling is restricted by a minimal quota

q = 1.

Example 6 (Preemptive sampling). Let ωA (a) = 1 and ωP (a) = 12(a −1/2)2. Given the choice

of the principal a1, the optimal choice of the agent is

a∗
2 (a1) =

a1 +2/3(1−a1) if a1 < 0.63

a1/2 if a1 > 0.63.
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Figure 8: The agent cares equally about all attributes. The principal’s interests are centered in the extremes of
the attribute spectrum.

If the agent samples exclusively to the right of what the principal requests, the principal

prefers to sample an attribute as high as 0.74, so as to push agent’s sampling to higher-indexed

attributes. Yet, if the attribute requested by the principal is higher than 0.63, the agent switches

to the exploration of lower-indexed attributes in [0, a1]. If the agent samples exclusively in
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[0, a1], the principal has an interior optimal attribute at a1 = 0.91. In this way, the princi-

pal guarantees that sampling has shifted towards higher-indexed attributes while still being

sufficiently informative of lower-indexed attributes. Thus, the principal compares sampling

a1 = 0.63, which encourages a2 = 0.87 to sampling a1 = 0.91 which induces 0.451. The latter

is more informative to the principal. In the absence of preemptive sampling by the princi-

pal, the agent would choose a1 = 2/3 if restricted to q = 1, and (a1, a2) = (0.4,0.8) if restricted to

q = 2. Compared to the latter, sampling has shifted towards higher-indexed attributes due to

preemptive sampling.

6 Discussion: A finite-attribute model

This section briefly presents a finite-attribute model that exhibits common features with the

model of section 2. While the model with a continuum of attributes is both more tractable

and allows for a richer analysis, this alternative model is instructive in identifying what mod-

eling choices yield similar results.

A project is described by four attributes {a1, a2, a3, a4}, each taking a binary realization

θk ∈ {b, g }. The attributes are correlated according to a binary Markov chain, with transition

probability λ. That is, for any k ≥ 2, λ denotes the persistence of the realization of an attribute

to the next attribute:

Pr(θk = θk−1|θk−1) =λ ∈ (1/2,1].

The value of the project to each player i = 1,2 is a sum of the values from each individual

attribute. The attribute-specific payoff to player i is given by:

vi (ak ) =
1 if θk = g

−`i
k if θk = b,

where `i
k > 0 for any i ,k. An attribute with a greater loss `i

k is more important to the players.

The value of the project to each player is assumed to be additive:

Vi =
4∑

k=1
vi (ak ).

The players jointly consider whether to adopt the project. In the case of a rejection, the out-

side option is normalized to zero. Suppose the players perfectly observe θ1, and the players

can discover one additional attribute beyond this known attribute. Player 1 samples this ad-

ditional attribute publicly, and player 2 decides whether to adopt the project. Three features

of this simple sampling problem presented below echo key results in our main analysis in

sections 3 and 4.

Irrelevance of θ1 for optimal sampling: The optimal attribute is the same despite the

realization of θ1. First, only attributes the realization of which is consequential for the adop-

tion decision are worth sampling: that is, an attribute ak is sampled only if θk = g leads to an
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adoption and θk = b leads to a rejection. By the assumed symmetry of persistence and the

law of iterated expectations, any attribute that maximizes Pr(θk = g | θ1 = g )E[V | θ1 = θk = g ]

also maximizes

Pr(θk = g | θ1 = b)E[V | θ1 = b,θk = g ].

Hence this attribute is weakly optimal for θ1 = b as well.

Relative unimportance and interiority of optimal attribute: In the single-player prob-

lem in which the same player decides on both sampling and adoption, the optimal attribute

is not necessarily the one with the highest loss. The player might decide to sample an at-

tribute that is central rather than the one incurring the greatest loss upon a b realization. For

instance, suppose (`2,`3,`4) = (2,9/5,2) and λ = 2/3.27 The player optimally samples a3, even

though its loss is 9/5 < 2. By sampling this middle attribute, the player learns more valuable

information about a2 and a4 as well: as long as `3 is not too small relative to other attributes,

she is willing to sample it for this reason.

Moreover, given θ1, the most variable attribute is a4. Indeed, the variance of θ4 is equal to

Pr(θk = g | θ1)Pr(θk = b | θ1): due to the correlation structure, more distant attributes from a1

are more variable. Yet, the player might not optimally sample the most variable attributes.

Interior attributes might be more appealing due to their greater informativeness about sor-

rounding attributes. That is, interior attributes have stronger extrapolating power.

Overshooting by the optimal attribute: Suppose that player 1, who decides on sam-

pling, has loss profile (`1
1,`1

2,`1
3,`1

4) = (2,2,2,2) while player 2, who is the adopter, has profile

(`2
1,`2

2,`2
3,`2

4) = (1,4,3/2,7/2). Let λ = 35/64 and suppose that the initial evidence suggests a

promising project, i.e. θ1 = g . Despite θ1 = g , in the absence of additional information both

players reject the project because the respective expected payoffs from adoption are −0.35

and −1.76. Player 1, with uniform loss over attributes, ideally discovers a3. While other at-

tributes a2 and a4 are consequential to adoption as well, a3 is the one yielding the most useful

information for player 1. Player 2, on the other hand, prefers to discover a2. Any realization

of θ3 would lead her to reject the project, because `2 and `4 are so much larger that even

θ3 = g is not sufficiently strong evidence to convince her to adopt the project. In contrast, her

adoption decision would be responsive to θ4, but sampling a4 is not as valuable as sampling

a2. In the joint problem, from the perspective of player 1:

(i) sampling a3 leads to a sure rejection by player 2, from which both players obtain a zero

payoff;

(ii) sampling a2 gives player 1 an expected payoff of 0.64, while sampling a4 gives her an

expected payoff of 0.65. Hence, she prefers to sample a4. The optimal sampling choice

overshoots the two single-player optimal attributes.28

27The value of `1 is immaterial for the sampling decision.
28If θ1 = b instead, both players reject the project despite any realizations that additional sampling might reveal.
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7 Related literature

The central problem of this paper tangentially relates to a number of distinct literatures: op-

timal discovery of multi-attribute objects, experimentation with potentially correlated alter-

natives with and without shared control, as well as persuasion through hard evidence.

First, the paper contributes to a recent but growing literature on the gradual discovery

and adoption of multi-attribute objects, albeit interest on this issue has been longstanding

in economics at least since MacCrimmon (1968). Klabjan, Olszewski and Wolinsky (2014)

analyze optimal sequential and simultaneous discovery of a single object characterized by

finitely many independent attributes. Although the present paper models a continuum of

correlated attributes, the optimality criterion in its single-player benchmark is reminiscient

of Proposition 1 in Klabjan, Olszewski and Wolinsky (2014). They show that under equal dis-

covery cost, attributes that are dominated in the second-order stochastic dominance sense

(SOSD) are discovered first. In the present setting, although attributes are not ordered ac-

cording to SOSD, the distributions of the posterior expected values that they generate are.

The player optimally samples attributes that are dominated in this sense.

Other existing work combines optimal search across several multi-attribute objects with

optimal sampling of attributes within an object. All such work assumes independent at-

tributes and a single decision-maker. Neeman (1995) considers sequential search of ex-ante

identical objects with limited sampling of a single attribute. Olszewski and Wolinsky (2016)

consider search among two-attribute objects by a mass of identical searchers who check at

most one attribute. Sanjurjo (2017) identifies necessary conditions for optimal sequential

search across a small number of objects and attributes. Geng, Pejsachowicz and Richter

(2017) compare two search methods: sampling of all attributes of a single object, and sam-

pling of a single attribute across all objects. What distinguishes the present paper from this

line of work is its focus on a single-attribute object, the presence of correlated attributes, and

the separation of sampling and adoption authorities.

Eliaz and Frug (2016) embed attribute discovery into the bilateral trade of a multi-attribute

good. The seller and the buyer disagree on the relative importance of attributes, but only the

seller can sample attributes privately and make offers. The current paper also studies a set-

ting in which only one party can attributes, but she does so publicly in order to influence the

adoption decision. The case in Eliaz and Frug (2016) that is closer to my setup is that in which

the sampled attributes are observable, but not their respective realizations (rather than both

objects being unobservable).

My analysis makes use of the Brownian process construction first introduced in optimal

search models by Jovanovic and Rob (1990). They use it to model the uncertain and complex

nature of technological discovery, in order to analyze the link between inventive intensity

and productivity growth. A sequence of myopic agents gradually learn about an infinite fam-

ily of independent Brownian motions. Callander (2011) introduces the Brownian process in

the strategic experimentation literature. It is the unknown mapping from policies to out-

comes: a sequence of identical myopic players experiment with policies hoping to identify
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an outcome close to their ideal outcome. Garfagnini and Strulovici (2016) study the opti-

mal path of technological experimentation by a sequence of forward-looking agents, where

possible technologies are correlated according to a single Brownian process. In these three

papers, the players search over an unknown mapping to identify a point that maximizes their

reward. In contrast to the present paper, the players’ utilities do not depend on the entire re-

alized mapping, but rather just on the sampled realizations. A conceptual precursor to these

problems is Aghion et al. (1991).

The present model shares with the literature on collective experimentation (Strulovici

(2010), Callander and Hummel (2014)) the dependence of each player on the other regarding

learning about an object of common interest and its eventual adoption. In Strulovici (2010),

voters decide collectively whether to continue experimenting with a project, but each voter

learns about the project’s value for her as long as the group experiments. Callander and Hum-

mel (2014) adopt the Brownian framework to study two-player sequential experimentation:

each player experiments with a single policy but they both reap the payoff from the other’s

experimentation as well. In the current setup, the principal depends on the agent in order to

learn about the project, and the agent depends on the principal for adoption.

Callander and Hummel (2014) establish the possibility of the first player experimenting

with a policy that overshoots both players’ ideal policies. The reason for overshooting in their

setup is different from ours: in their problem, overshooting preempts more distant experi-

mentation by the second player and potentially causes her to settle for a tried compromise

policy. In this paper, the agent uses overshooting so as to better align the principal’s adoption

standard with her own.

The paper is also related to strategic communication with verifiable information. Glazer

and Rubinstein (2004) study cheap-talk communication about a two-dimensional state be-

tween an informed speaker and an uninformed listener. The latter perfectly verifies at most

one dimension. The current setting also features a binary adoption decision, but the players

are symmetrically informed and all accumulated information is verifiable by both. More-

over, the acquired information is endogeneous. Sher (2014) extends Glazer and Rubinstein

(2004) to any number of verifications and dimensions. More recently, Carroll and Egorov

(2017) study a similar problem, but their analysis focuses on the possibility of fully-revealing

communication with general payoff functions, an arbitrary decision set for the listener, and

multi-dimensional states.

Another related literature is that of Bayesian sequential testing (Wald (1945)). But unlike

in Wald’s framework in which the agent sequentially draws iid signals about an unknown pay-

off state, the agent in the current model samples attributes, the mean and variance of which

varies. Moreover, current sampling affects the informativeness of remaining unsampled at-

tributes, and therefore future sampling. Somewhat related, Moscarini and Smith (2001) study

the problem of an agent who, besides deciding whether to continue sampling, can also vary

the intensity of sampling by choosing the number of iid signals she draws at once.29 Roberts

29Morgan and Manning (1985) combines sequential testing with sequential search in a context in which the
agent determines the intensity of sampling of alternatives in each round.
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and Weitzman (1981) studied a similar problem, but with exogeneous intensity. In the man-

agement science literature, McCardle (1985), Lippman and McCardle (1987), Lippman and

McCardle (1991), and Branco, Sun and Villas-Boas (2012) use sequential testing to study op-

timal technology adoption and search across different uncertain technologies. This paper

also shares features with Wald persuasion games between an evaluator and an approver, as

introduced in Henry and Ottaviani (2017). The two players have separate authorities, as in

the current paper, but the sampling authority chooses the type of evidence to be disclosed

to the approver through her choice of stopping time. In contrast, in my setup the sampling

authority has to disclose publicly all sampled evidence. Moreover, the state space is rich, the

preferences of both players are state-dependent, and they disagree on the relative impor-

tance of attributes.

8 Concluding remarks

This paper studied the optimal sampling of a multi-attribute project of unknown quality.

We explored both the case of single-agent evaluation, in which sampling and adoption are

in the hands of a single player, and that of shared evaluation, in which a principal and an

agent have separate authorities on these decisions. The single-player optimal sample takes

a simple form: it balances the variability of the sampled attributes, on the one hand, with

their usefulness for inferring the realizations of unsampled attributes, on the other. Opti-

mal sampling treats projects with the same initially known attribute in the same way, despite

their ex-ante expected values. Moreover, the optimal sample can be implemented simultane-

ously. Principal-agent evaluation gives rise to optimal sampling that is biased by the ex-ante

expected value of the project for the two players. Sampling need not be a compromise be-

tween the samples the principal and the agent would choose in their respective single-player

problems: we characterized conditions under which the agent optimally restricts the infor-

mativeness of the sample for the principal and for himself.

The current analysis restricts attention to simultaneous sampling for principal-agent eval-

uation: the agent determines which attributes to sample prior to observing any of their real-

izations. Naturally, the equivalence between simultaneous and sequential sampling, which

was a key feature of the single-agent problem, breaks down in the presence of separate au-

thorities. An immediate extension is to study sequential sampling in principal-agent evalua-

tion.

Moreover, the model assumed positive weights across all attributes. This guarantees

that the players agree that higher attribute realizations are preferable. Allowing for negative

weights would introduce new distortions into principal-agent evaluation. Exploring such

distortions is a natural extension. Also, we intentionally assumed away all sources of asym-

metric information between players, so as to focus the analysis on distortions due to dis-

similar interests on attributes. Extending the analysis to scenarios in which the agent holds

private information over a0 and/or B0 is another interesting direction for future work. This
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direction opens up the possibility of studying optimal delegation of sampling to a privately

informed agent.

A Proofs for sections 2 and 3

Proof for lemma 2.1. Let s = (a1, . . . , an), where 0 ≤ a1 < a2 < . . . < an ≤ 1. The posterior expected value

given (s,B(s)) is:

ν(s,B(s)) = E
[∫ a1

0
B(a)ω(a)d a +

n−1∑
i=1

∫ ai+1

ai

B(a)ω(a)d a +
∫ 1

an

ω(a)B(a)d a
∣∣∣s,B(s)

]

= B(a1)
∫ a1

0
ω(a)d a −µ

∫ a1

0
(a1 −a)ω(a)d a +

n−1∑
i=1

{
B(ai )

(∫ ai+1

ai

ai+1 −a

ai+1 −ai
ω(a)d a

)
+B(ai+1)

(∫ ai+1

ai

a −ai

ai+1 −ai
ω(a)d a

)}
+B(an)

∫ 1

an

ω(a)d a +µ
∫ 1

an

ω(a)(an −a)d a

= B(a1)

(∫ a1

0
ω(a)d a +

∫ a2

a1

a2 −a

a2 −a1
ω(a)d a

)
︸ ︷︷ ︸

τ(a1;s)

+
n−1∑
i=2

B(ai )

(∫ ai

ai−1

a −ai−1

ai −ai−1
ω(a)d a +

∫ ai+1

ai

ai+1 −a

ai+1 −ai
ω(a)d a

)
︸ ︷︷ ︸

τ(ai ;s)

+B(an)

(∫ an

an−1

a −an−1

an −an−1
ω(a)d a +

∫ 1

an

ω(a)d a

)
︸ ︷︷ ︸

τ(an ;s)

+µ
(∫ 1

an

ω(a)(an −a)d a −
∫ a1

0
ω(a)(a1 −a)d a

)
.

Proof for lemma 2.2. (i) Up to t , agent has sampled st := s0 ∪ s1 ∪ . . .∪ st ; hence st is the profile of

all known attributes up to t . Given (st,B(st)), νt is a linear combination of realizations in B(st ).

Hence, given (sk,B(sk)) at some k < t , realizations of attributes in sk+1 ∪ . . .∪ st are normally dis-

tributed. νt is a sum of normally distributed random variables, hence it is normally distributed

for any k < t .

(ii) Fix an arbitrary t and let st = {at } be a singleton (the case of larger cardinality follows from iden-

tical reasoning). Suppose st−1 = s0∪s1∪. . .∪st−1 consists of N attributes. Index them in increasing

order as 0 ≤ a(1) < . . . < a(N ) ≤ 1. From lemma 2.1,

νt−1
(
st−1,B

(
st−1))= N∑

i=1
τ(a(i );st−1)B(a(i ))+µ

 1∫
a(N )

(s −a(t ))ω(s)d s −
a(1)∫
0

(a(1) − s)ω(s)d s

 .

We need to distinguish two cases.

Case I: Suppose first that a(k) < at < a(k+1) for some k ≤ N . Then,

E[B(at )] = a(k+1) −at

a(k+1) −a(k)
B(a(k))+

at −a(k)

a(k+1) −a(k)
B(a(k+1)).

When taking the expectation of νt with respect to the realization B(at ), the coefficient in front
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of B(a(k)) is:

τ(a(k);st )+ a(k+1) −at

a(k+1) −a(k)
τ(at ;st ) =

(∫ a(k)

a(k−1)

s −a(k−1)

a(k) −a(k−1)
ω(s)d s +

∫ at

a(k)

at − s

at −a(k)
ω(s)d s

)
+ a(k+1) −at

a(k+1) −a(k)

(∫ at

a(k)

s −a(k)

at −a(k)
ω(s)d s +

∫ a(k+1)

at

a(k+1) − s

a(k+1) −a(k)
ω(s)d s

)
=

∫ a(k)

a(k−1)

s −a(k−1)

a(k) −a(k−1)
ω(s)d s +

∫ a(k+1)

a(k)

a(k+1) − s

a(k+1) −a(k)
ω(s)d s

= τ(
a(k);st−1) .

Similarly, it can also be shown that: τ(a(k+1);st )+ at−a(k)
a(k+1)−a(k)

τ(at ;st ) = τ(a(k+1);st−1). Hence, taking

the expectation of νt with respect to realization B(at ) yields exactly νt−1.

Case II: Suppose that at ∈ [0, a(1)]∪ [a(N ),1]. Consider at < a(1). The expectation of its realization

is:

E[B(at )] = B(a(1))−µ(a(1) −at ).

Hence, when evaluating E[νt ], the coefficient in front of B(a(1)) is τ(a(1);st )+τ(at ;st ). It is straight-

forward to verify that

τ(a(1);st )+τ(at ;st ) = τ(a(1);st−1).

Moreover, νt and νt−1 differ in the last additive term featuring µ. When taking E[νt ], this last

term collects:

−µ(a(1) −at )τ(at ;st )−µ
∫ at

0
(at − s)ω(s)d s

which straightforwardly simplifies to −µ∫ a(1)
0 (a(1)− s)ω(s)d s. This is precisely the analagous term

in νt−1. Hence, E[νt ] = νt−1. Identical reasoning shows that E[νt ] = νt−1 for at > a(N ) as well.

(iii) From parts (i) and (ii), for any t , νt ∼N (νt−1,σt ) , where σt := var (νt | st−1,B(st−1)). This variance

term does not depend on (νt−1, . . . ,ν0), because the coefficients in front of B(a) for any a ∈ st , i.e.

τ(a;st ), do not depend on any realizations. Therefore, the density function for νt depends only

on νt−1.

Proof for lemma 3.1. (i) Let s = (a1, . . . , aq+1) denote the sample of known attributes. Suppose B(s) < 0.

Then,
q+1∑
i=1

B(ai )τ(ai ;s) < 0.

If extrapolation to peripheral attributes is such that:∫ 1

aq+1

ω(a)(a −aq+1)d a −
∫ a1

0
(a1 −a)ω(a)d a > (<)0

there exists µ> 0 sufficiently large (resp., µ< 0 sufficiently small) for which ν1 > 0. The proof for B(s) > 0

is similar and ommitted.

(ii) Let s = (a1, . . . , aq+1) denote the sample of known attributes. We show that for any arbitrary k,

the adoption threshold B̄(a) is discontinuous at a = ak . Consider attributes ak −ε and ak +ε, for ε> 0

sufficiently small so that ak −ε> ak−1 and ak +ε< ak+1. Suppose first that 1 < k < q +1, hence ak−1 > 0
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and ak+1 < 1. Note that the coefficient τ corresponding to ak −ε converges to

lim
ε→0

τ(ak −ε;s∪ak −ε) = lim
ε→0

∫ ak−ε

ak−1

s −ak−1

ak −ak−1
ω(s)d s +

∫ ak

ak−ε
ak − s

ε
ω(s)d s

=
∫ ak

ak−1

s −ak−1

ak −ak−1
ω(s)d s.

Similarly,

lim
ε→0

τ(ak−1;s∪ak −ε) = τ(ak−1;s), lim
ε→0

τ(ak +ε;s∪ak +ε) =
∫ ak+1

ak

ak+1 − s

ak+1 −ak
ω(s)d s.

Therefore, as ε shrinks to zero, the adoption threshold approaches

lim
ε→0

B̄(ak−ε) =
−B(ak )

∫ ak+1
ak

ak+1−s
ak+1−ak

ω(s)d s −∑
i 6=k τ(ai ;s)B(ai )−µ

(∫ 1
aq+1

ω(a)(a −aq+1)d a −∫ a1
0 (a1 −a)ω(a)d a

)
∫ ak

ak−1

s−ak−1
ak−ak−1

ω(s)d s
,

where a1 and aq+1 are the leftmost and the rightmost attributes in s. By similar reasoning,

lim
ε→0

B̄(ak+ε) =
−B(ak )

∫ ak
ak−1

s−ak−1
ak−ak−1

ω(s)d s −∑
i 6=k τ(ai ;s)B(ai )−µ

(∫ 1
aq+1

ω(a)(a −aq+1)d a −∫ a1
0 (a1 −a)ω(a)d a

)
∫ ak+1

ak

ak+1−s
ak+1−ak

ω(s)d s
.

Generically, ∫ ak+1

ak

ak+1 − s

ak+1 −ak
ω(s)d s 6=

∫ ak

ak−1

s −ak−1

ak −ak−1
ω(s)d s,

hence limε→0 B̄(ak −ε) 6= limε→0 B̄(ak +ε). The adoption threshold is discontinuous at a = ak .

The reasoning for the other two cases (i) k = q + 1, and (ii) k = 1 is similar and ommited. The

genericity conditions for these two cases respectively are:

∫ 1

aq+1

ω(s)d s 6=
∫ aq+1

aq

s −aq

aq+1 −aq
ω(s)d s,

∫ a1

0
ω(s)d s 6=

∫ a2

a1

a2 − s

a2 −a1
ω(s)d s.

Lemma A.1 (The variance of ν(s,B(s))). Consider a sample s ∈Sq+1(a0) such that

s =
(
a`m , . . . , a`1 , a0, ar

1 , . . . , ar
q−m

)
.

The posterior expected value ν(s,B(s)) is normally distributed:

ν(s,B(s)) ∼N

(
ν0,

m∑
i=1

τ2
(
a`i ; (a`i , a`i−1)

)
(a`i−1 −a`i )+

q−m∑
i=1

τ2 (
ar

i ; (ar
i−1, ar

i )
)

(ar
i −ar

i−1)

)
.

Proof for lemma A.1. Attributes a`1 > . . . > a`m and ar
1 < . . . < ar

q−m are sampled to the left and to the right

of a0 respectively. Note that for any t ∈ {`,r } and any k` ∈ {1, . . . ,m}, kr ∈ {1, . . . , q −m}, by the property of

independent increments of the Brownian motion, each random variable B(at
kt

) can be expressed as
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B0 +µ|at
kt
−a0|+∑kt

i=1 Z t
i , where Z t

i ∼N (0, |at
i −at

i−1|) are independent across i and t . Hence,

ν(s,B(s)) = τ(a0;s)B0 +
m∑

i=1
τ(a`i ;s)B(a`i )+

q−m∑
j=1

τ(ar
j ;s)B(ar

j )+µ
(∫ 1

ar
q−m

(a −ar
q−m)ω(a)d a −

∫ a`m

0
(a`m −a)ω(a)d a

)

= B0 +
m∑

k=1

(
m∑

i=k
τ(a`i ;s)

)
Z `

k +
q−m∑
k=1

(
q−m∑
i=k

τ(ar
i ;s)

)
Z r

kµ

(∫ 1

ar
q−m

(a −ar
q−m)ω(a)d a −

∫ a`m

0
(a`m −a)ω(a)d a

)

The manipulation of ν(s) into this new form has made use of the fact that the weights sum up to 1:

τ(a0;s)+
m∑

i=1
τ(a`i ;s)+

q−m∑
j=1

τ(ar
j ;s) = 1.

First, ν(s,B(s)) is a weighted sum of normally distributed random variables, so it is itself distributed

normally. Using the fact that E[Z t
i ] = 0 for any i , t , we have that the mean of ν(s,B(s)) is E[ν(s,B(s)) |

B0,s] = B0. Let us now consider the variance of ν(s,B(s)). Remember that Z t
i and Z t ′

k are independent

for any t , t ′, i ,k:

var [ν(s,B(s)) | B0,s] =
m∑

k=1

(
m∑

i=k
τ(a`i ;s)

)2

(a`k−1 −a`k )+
q−m∑
k=1

(
q−m∑
i=k

τ(ar
i ;s)

)2

(ar
k −ar

k−1).

Note that

m∑
i=k

τ(a`i ;s) =
∫ a`m

0
ω(a)d a +

∫ a`m−1

a`m

a`m−1 −a

a`m−1 −a`m
ω(a)d a +

∫ a`m−1

a`m

a −a`m
a`m−1 −a`m

ω(a)d a+
∫ a`m−2

a`m−1

a`m−2 −a

a`m−2 −a`m−1

ω(a)d a + . . .+
∫ a`k

a`k−1

a −a`k−1

a`k −a`k−1

ω(a)d a +
∫ a0

a`k

a0 −a

a0 −a`k
ω(a)d a

=
∫ a`k

0
ω(a)d a +

∫ a0

a`k

a0 −a

a0 −a`k
ω(a)d a

= τ
(
a`i ; (a`i , a`i−1)

)
.

A similar argument shows that

q−m∑
i=k

τ(ar
i ;s) =

∫ ar
k

a0

a −a0

ar
k −a0

ω(a)d a +
∫ 1

ar
k

ω(a)d a = τ(
ar

i ; (ar
i , ar

i−1)
)

.

This yields the desired expression for the variance.

Proof for proposition 3.2. (i) The objective of the agent is:

max
s∈Sq+1(a0)

Pr(ν(s,B(s)) ≥ 0)E[ν(s,B(s)) | ν(s,B(s)) ≥ 0].

Using the distribution of ν(s,B(s)) derived in lemma A.1,

Pr(ν(s,B(s))) = 1−Φ
(−ν0

σ(s)

)
=Φ

(
ν0

σ(s)

)
,

E[ν(s,B(s)) | ν(s,B(s)) ≥ 0] = ν0 +σ(s)
φ

(
ν0
σ(s)

)
Φ

(
ν0
σ(s)

) .
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Therefore, the objective of the agent simplifies to

max
s

ν0Φ

(
ν0

σ(s)

)
+σ(s)φ

(
ν0

σ(s)

)
.

The objective is strictly increasing in σ(s), hence an optimal sample maximizes σ(s).

Suppose that an optimal sample s∗ consists of strictly less than q + 1 distinct attributes; let s∗ =
(a`m , . . . , a`1 , a0, ar

1 , . . . , ar
m′ ) such that m′ +m < q. By the argument in part (ii) of this proof, a`m > 0 and

ar
m′ < 1. Consider the following modification of s∗ to a larger sample s̃: ãr

i = ar
i for all i = 1, . . . ,m′,

ãr
m′+1 = ar

m′ +ε < 1, and ã`i = a`i for all i = 1, . . . ,m. That is, s̃ differs from s∗ in that it samples one more

attribute between ar
m′ and 1. This strictly increases the sample variance by ετ(ar

m′ +ε; (ar
m′ +ε, ar

m′ )) > 0.

This contradicts the supposed optimality of s∗.

(ii) Let s∗ = (a∗
1 , . . . , a∗

q+1). Suppose, towards a contradiction, a0 = ak for some k < q + 1 and that

a∗
q+1 = 1 in the optimal sample. The term

(a∗
q+1 −a∗

q )τ2(a∗
q+1; (a∗

q , a∗
q+1))

is strictly decreasing at a∗
q+1 = 1 because its derivative with respect to a∗

q+1 is

τ(a∗
q+1; (a∗

q , a∗
q+1))

(∫ 1

a∗
q+1

ω(a)d a −
∫ a∗

q+1

a∗
q

a −a∗
q

a∗
q+1 −a∗

q
ω(a)d a

)∣∣∣
a∗

q+1=1
< 0.

Because a∗
q+1 appears in σ2(s) only through this term, σ2(s) is strictly decreasing at a∗

q+1 = 1. Hence,

σ2(s) strictly increases if a∗
q+1 decreases by a sufficiently small ε, so that 1−ε > a∗

q . Hence, the agent’s

payoff is strictly improved by this modification. This contradicts the optimality of the original sample.

A similar argument shows that if k > 1, then a∗
1 6= 0 as well.

Proof for proposition 3.3. Let σ2
q := maxs∈Sq+1(a0)σ

2(s) denote the maximum attained variance of the

posterior expected value if q attributes are sampled beyond a0. The proof proceeds in two steps: (i)

we show that

σ2
q+1 −σ2

q <σ2
q −σ2

q−1,

and (ii) we show that Vq+1 −Vq <Vq −Vq−1.

(i) We show this property for an arbitrary sample under capacity q constrained to be in [a0,1].

The reasoning is identical for samples constrained in [0, a0]; taken together, these two observations

establish the property for unconstrained samples in [0,1].

Let Rq := {
(a0, a1, . . . , aq ) ∈ [a0,1]q+1 : a0 < a1 < a2 < . . . < aq

}
. A sample s = (a0, a1, a2, . . . , aq ) ∈ Rq in-

duces variance on the posterior expected value equal to σ2(s) =∑q−1
k=0 v(ak , ak+1), where

v(ak , ak+1) = (ak+1 −ak )τ2(ak+1; (ak , ak+1)).

Lemma A.2. The function v(ai−1, ai ) := (ai − ai−1)τ2(ai ; (ai , ai−1)) is strictly supermodular in (ai−1, ai ) ∈
R2.

Proof. Given (ai−1, ai ), consider an arbitrary a′ ∈ [ai−1, ai ]. The added value from splitting [ai−1, ai ] into

two subcells [ai−1, a′] and [a′, ai ] is ∆v(a′, ai−1, ai ) := v(ai−1, a′)+v(a′, ai )−v(ai−1, ai ). This added value is

strictly increasing in ai and strictly decreasing in ai−1:

∂∆v

∂ai−1
= τ2(ai ; (ai−1, ai ))−τ2(a′; (ai−1, a′)) < 0,
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∂∆v

∂ai
= τ(ai ; (ai−1, ai ))

(∫ ai

ai−1

s −ai−1

ai −ai−1
ω(s)d s −

∫ 1

ai

ω(s)d s

)
−τ(ai ; (a′, ai ))

(∫ ai

a′

s −a′

ai −a′ω(s)d s −
∫ 1

ai

ω(s)d s

)
=

(∫ ai

ai−1

s −ai−1

ai −ai−1
ω(s)d s

)2

−
(∫ ai

a′

s −a′

ai −a′ω(s)d s

)2

> 0.

The first inequality uses the observation that because a′ < ai , τ2(a′; (ai−1, a′)) > τ2(ai ; (ai−1, ai )). The

second inequality uses the fact that
∫ ai

ai−1

s−ai−1
ai−ai−1

ω(s)d s is increasing in ai−1.

Take (ãi−1, ãi ) such that ai−1 < ãi−1 < ãi < ai . Applying the property we just established for a′ = ãi ,

∆v(ãi , ãi−1, ai ) <∆v(ãi , ai−1, ai ). Simplifying this inequality, it yields

v(ai−1, ãi )+ v(ãi−1, ai ) > v(ãi−1, ãi )+ v(ai−1, ai ).

Letting a := (ai−1, ai ) and ã := (ãi−1, ãi ), this translates into the familiar strict supermodularity inequal-

ity v(a∧ ã)+v(a∨ ã) > v(a)+v(ã), where ∧ and ∨ denote the componentwise minimum and maximum,

respectively. Hence, v is strictly supermodular in its pair of arguments.

Lemma A.3. The variance σ2(a0, a1, . . . , aq ) :=σ2(s) is strictly supermodular in (a1, . . . , aq ).

Proof. By lemma A.2, σ2 is a sum of strictly supermodular functions of the form v(ak , ak+1), hence it is

strictly supermodular.

By lemma A.3, σ2
q is supermodular for any q. We want to show that for any q ≥ 1,

σ2
q+1 −σ2

q <σ2
q −σ2

q−1 ⇔ σ2
q+1 +σ2

q−1 < 2σ2
q .

Let s = (a0, a1, . . . , aq−1) ∈ Rq−1 and s̃ = (a0, ã1, . . . , ãq+1) ∈ Rq+1 be two arbitrary samples of sizes q −1 and

q +1 respectively. The sample s is equivalent to the extended sample (a0,s, aq−1) (where both a0 and

aq−1 is repeated twice). Hence,

σ2(s̃)+σ2(s) =σ2(s̃)+σ2(a0,s,1)− (1−aq−1)τ2(1; (aq−1,1)) (21)

<σ2(s̃∧ (a0,s,1))+σ2(s̃∨ (a0,s,1))− (1−aq−1)τ2(1; (aq−1,1)) (22)

≤ 2σ2
q . (23)

The first inequality follows from the fact that the sample (a0,s,1) is strictly more variable than (a0,s, aq−1)

(in which aq−1 is repeated twice). The second inequality uses strict supermodularity. Notice that the

first two attributes in sample s̃∧ (a0,s,1) are necessarily a0, hence s̃∧ (a0,s,1) ∈ Rq . Sample s̃∨ (a0,s,1)

starts with a0 and necessarily ends with attribute 1. If aq−1 ≥ ãq ,

σ2(s̃∨ (a0,s,1)) =σ2(s̃ \ ãq+1 ∨ (a0,s))+ (1−aq−1)τ2(1; (aq−1,1)),

where s̃ \ ãq+1 ∨ (a0,s) ends with aq−1. This reduces the second line (22) to a sum of variances of two

samples of size q. By optimality, it must be that this sum is less than 2σ2
q . If, on the other hand,

aq−1 < ãq ,

σ2(s̃∨ (a0,s,1)) =σ2(s̃ \ ãq+1 ∨ (a0,s))+ (1− ãq+1)τ2(1; (ãq+1,1))

<σ2(s̃ \ ãq+1 ∨ (a0,s))+ (1−aq−1)τ2(1; (aq−1,1)),
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because aq−1 < ãq+1, hence τ(1; (ãq+1,1)) < τ(1; (aq−1,1)). This again gives the last inequality in (23).

(ii) Consider

V (q) := ν0Φ

(
ν0

σq

)
+σqφ

(
ν0

σq

)
.

V is strictly increasing and strictly convex in σ. Moreover, σ2
q−1 < σ2

q < σ2
q+1, and by part (i) of this

proof, σ2
q > 1

2

(
σ2

q+1 +σ2
q−1

)
. Therefore,

Vq =V (σ2
q ) >V

(
1

2

(
σ2

q+1 +σ2
q−1

))
> 1

2
V (q +1)+ 1

2
V (q −1),

where the first line follows from strict monotonicity and the second follows from strict convexity.

Proof for proposition 3.4. (i) Consider samples s and s̃ respectively optimal for capacities q and q +1.

Suppose that s samples m ≤ q attributes in [a0,1] while s̃ samples m̃ ≤ q+1 attributes in [a0,1]. Without

loss, let m̃ < m. The allocation of attributes in [0, a0] and [a0,1] is (q−m,m) and (q+1−m̃,m̃) respectively.

Let (σi
k )2, where i ∈ {`,r }, denote the variance attained by the k attributes on side i (left or right) of a0.

By optimality of s,

(σ`q−m)2 + (σr
m)2 ≥ (σ`q−m̃)2 + (σr

m̃)2

Also by optimality of s̃,

(σ`q+1−m̃)2 + (σr
m̃)2 ≥ (σ`q+1−m)2 + (σr

m)2.

Combining these two,

(σ`q−m̃)2 − (σ`q−m)2 ≤ (σ`q+1−m̃)2 − (σ`q+1−m)2.

Because q −m < q − m̃, this contradicts proposition 3.3. Hence, it must be that m̃ ≥ m and q +1− m̃ ≥
q −m. Therefore, m ≤ m̃ ≤ m +1.

(ii) We show the property for constrained samples in [0, a0] and [a0,1]. Without loss, consider

s = (a0, ar
1 , . . . , ar

m), s̃ = (a0, ãr
1 , . . . , ãr

m+1)

for m ∈ [1, q]. We want to show that ãr
1 < ar

1 < ãr
2 < . . . < ãr

m < ar
m < ãr

m+1. Let s̃m = (a0, ãr
1 , . . . , ãr

m). By

optimality of s, σ2(s̃) ≥ σ2(s∧ s̃m , ãr
m+1). Let a > ãr

m+1. By strict supermodularity of σ2 established in

lemma A.3, if s̃ and (s, a) for a ∈ (ar
m ,1] are unordered,

σ2(s∨ s̃m , a)−σ2(s, a) >σ2(s̃)−σ2(s∧ s̃m , ar
m+1) ≥ 0.

But a −max{ar
m , ãr

m} < a −ar
m and τ(a; (max{ar

m , ãr
m}, a)) < τ(a; (ar

m , a)). Therefore, if σ2(s∨ s̃m , a) >σ2(s, a),

then σ2(s∨ s̃m) > σ2(s). This contradicts the optimality of s for capacity q. Hence s̃ and (s, a) for a >
ãr

m+1 are weakly ordered. That is, for any i , ãr
i ≤ ar

i for i ≤ q. Repeating this argument with s̃1 =
(a0, ãr

2 , . . . , ãr
m+1) and a ∈ [a0, ãr

1), we obtain that ãr
1+i ≥ ar

i for i = 1, . . . , q. Hence, ãr
i ≤ ar

i ≤ ãr
i+1 for all

i ≤ q.

To show strict monotonicity, we invoke Theorem 3 in Edlin and Shannon (1998)(pg. 212). By

proposition 3.2(ii), ãr
1 > a0. Let a ∈ {a0, ar

1}, where ar
1 is the second attribute in s. We consider the choice

of an optimal sample of capacity m with initial attribute a, constrained in [a,1]. It is already estab-

lished that the variance σ2(s′) is continuous and strictly supermodular in the sample s′ = (a, a′
1, . . . , a′

m)

and in the m-tuple of discovered attributes (a′
1, . . . , a′

m). Moreover, the marginal returns to a′
1 is increas-
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ing in a because

∂σ2

∂a′
1

= τ(a′
1; (a, a′

1))

(∫ 1

a′
1

ω(s)d s −
∫ a′

1

a

s −a

a′
1 −a

ω(s)d s

)
−τ(a′

2; (a′
1, a′

2))

(∫ 1

a′
1

ω(s)d s +
∫ a′

2

a′
1

a′
2 − s

a′
2 −a′

1

ω(s)d s

)

=
(∫ 1

a′
1

ω(s)d s

)2

−
(∫ a′

1

a

s −a

a′
1 −a

ω(s)d s

)2

−τ(a′
2; (a′

1, a′
2))

(∫ 1

a′
1

ω(s)d s +
∫ a′

2

a′
1

a′
2 − s

a′
2 −a′

1

ω(s)d s

)
.

The term
∫ a′

1
a

s−a
a′

1−a
ω(s)d s is decreasing in a. Hence, this derivative is increasing in a. Moreover, the op-

timal samples for a = a0 and a = ãr
1 are interior, as established in proposition 3.2. Hence, by Theorem

3 in Edlin and Shannon (1998), (ãr
2 , . . . , ãr

m+1) > (ar
1 , . . . , ar

m). Also, by the optimality of s and s̃, it must

be that ãr
1 < ar

1 . Hence, these strict inequalities combined with the weak inequalities derived above

imply that for any i = 1, . . . ,m,

ãr
i < ar

i < ãr
i+1.

Lemma A.4 (Strictly ordered optimal samples). Given capacity q, any two distinct optimal samples s

and s′ such that for some i ≤ q ai 6= a′
i are strictly ordered, i.e. ai > a′

i for all i or ai < a′
i for all i .

Proof. By theorem 2.7.5. in Topkis (1998), the strict supermodularity ofσ2(s) implies that argmaxs σ
2(s)

is a chain, i.e., for any s′,s′′ ∈ argmaxsσ
2(s), either a′

i ≤ a′′
i for all i or a′′

i ≤ a′
i for all i . Without loss,

suppose that for some i , ar ′
i = ar ′′

i . The FOC with respect to ai is

τ(ai ; (ai−1, ai ))

(∫ 1

ai

ω(s)d s −
∫ ai

ai−1

s −ai−1

ai −ai−1
ω(s)d s

)
−τ(ai+1; (ai , ai+1))

(∫ 1

ai

ω(s)d s +
∫ ai+1

ai

ai+1 − s

ai+1 −ai
ω(s)d s

)
= 0

The first term is increasing in ai−1 and the second term is decreasing in ai+1. Hence, the RHS is in-

creasing in both ai−1 and ai+1. By the fact that s′ and s′′ are ordered, it must be that ar ′
i−1 = ar ′′

i−1

and ar ′
i+1 = ar ′′

i+1. Repeating this argument, we obtain that s′ and s′′ coincide in all attributes. There-

fore, for any two optimal samples s′ and s′′ either they are identical in all attributes or they are strictly

ordered: ar ′
i < ar ′′

i for all i .

Proof for proposition 3.5. (i) We establish the result by recursive reasoning, starting from the last sam-

pling step q. Suppose attributes sq−1 = (a0, a1, . . . , aq−1) is sampled and the corresponding realizations

are Bq−1 = (B0,B(a1), . . . ,B(aq−1)).30 Let νq denote the posterior expected value of the project. There-

fore, for any unsampled aq ,

νq ∼N
(
νq−1,σ2(aq ;sq−1)

)
,

whereσ2(·;s) gives the variance in the posterior induced by sampling a after observing the realizations

of s. The optimal attribute is a∗
q ∈ argmaxa σ

2(a;sq−1). Consider sampling step (q − k), for q > k > 1.

Suppose the agent has sampled sq−k−1, with respective realizations Bq−k−1 and posterior expectation

νq−k , and the optimal choice of the next attributes
(
a∗

q−k , a∗
q−k+1, . . . , a∗

q

)
does not depend on (νq−t )k

t=0.

Consider now stage q −k −1, with sampled attributes sq−k−2 and posterior expected value νq−k−1. For

any aq−k−1,

νq−k−1 ∼N
(
νq−k−2,σ2(aq−k−1;sq−k−2)

)
.

30In this proof, in order to more clearly denote sequentiality of sampling, the subindices of attributes denote
timing of sampling rather than rank order.
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Because by hypothesis (νq−t )k
t=0 does not inform the choice of subsequent attributes, the optimal

choice of a∗
q−k−1 is such that

(a∗
q−k−1, a∗

q−k , . . . , a∗
q ) ∈ arg max

(aq−k−1,aq−k ,...,aq )∈[0,1]k

σ2 (
(aq−k−1, aq−k , . . . , aq );sq−k−2

)
.

This concludes the proof.

(ii) By part (i), at any stage k the choice of (a∗
k , . . . , a∗

q ) is not informed by (νt )q
t=k . Hence, at stage k =

1, the agent chooses a sample (a∗
1 , . . . , a∗

q ) that maximizes σ((a∗
1 , . . . , a∗

q ); a0). This is the same problem as

that faced in simultaneous sampling with capacity q. It remains to establish the sequential rationality

of (a∗
1 , . . . , a∗

q ) implemented in some order.

Relabel the optimal sample (a∗
1 , . . . , a∗

q ) as (a`1 , . . . , a`m , ar
1 , . . . , ar

q−m) in terms of distance from a0. Con-

sider a sequential strategy ãt that takes attributes in increasing distance from a0 in either side of a0:

let ãt = a`t for t ≤ m and ãt = ar
t−m for m < t ≤ q. Consider ãk at step k < m.

1. It is suboptimal to pick m′ 6= m attributes in [0, a0) and q −m′−k +1 attributes in [a0,1]. Hence,

the player continues to sample only (q −m −k +1) attributes in [a0,1].

2. Conditional on all (q −m −k + 1) attributes being on [ar
k−1,1], ã continues to be optimal. This

follows from the sample variance being pairwise separable in adjacent attributes.

3. Consider an alternative ã′
k ∈ [0, ar

k−1] and its continuation play (ã′
t )q

t=k . The variance of this sub-

sample at stage k is strictly lower than what it was before sampling ãk−1 (due to strictly lower

variance for ã′
k ), which in turn was strictly lower than the variance of continuation play (ãt )q

t=k .

Hence it is suboptimal to deviate to ã′
k .

Proposition A.1 (Optimal sample as a function of a0). Fix capacity q. There exist thresholds

0 = a0 < a1 < . . . < aq < aq+1 = 1

such that if a0 ∈ (ak , ak+1), where k ∈ [0, q], any optimal sample corresponding to a0 includes exactly k

attributes smaller than a0.

Proof for proposition A.1. Let m(a0) denote the number of attributes sampled in [0, a0]. The proof pro-

ceeds in two steps. We first show that for any a′
0, a′′

0 ∈ [0,1] such that a′
0 < a′′

0 :

m(a′′
0 ) ≥ m(a′

0).

Second, we show that for any x ∈ {0,1, . . . , q}, there exists ã0 such that m(ã0) = x.

(i) Suppose m(a′′
0 ) < m(a′

0). Let sside(a0,m) := (σside(a0,m))
2

denote the maximum variance of one

of the two cells [0, a0] (with side= `), or [a0,1] (with side= r ) when m attributes are allocated optimally

to this interval. By the Envelope theorem,

∂sr (a0,m)

∂a0
=−τ(a1; (a0, a1))

(∫ 1

a0

ω(a)d a +
∫ a1

a0

a1 −a

a1 −a0
ω(a)d a

)
.

The term −τ(a1; (a0, a1)) is increasing in a0; so is the term
∫ a1

a0

a1−a
a1−a0

ω(a)d a. Hence, sr (a0,m) is convex in

a0. Moreover, because for any a0 the optimal a1 for capacity m is smaller than for m−1, for any m′ < m,

∂(sr (a0,m)− sr (a0,m′))

∂a0
< 0.
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By similar reasoning, in [0, a0],
∂(s`(a0,m)− s`(a0,m′))

∂a0
> 0.

By optimality of m(a′
0), s`(a′

0,m(a′
0))−s`(a′

0,m(a′′
0 )) ≥ sr (a′

0, q−m(a′′
0 ))−sr (a′

0, q−m(a′
0)). But, by the mono-

tonicity in a0,

s`(a′′
0 ,m(a′

0))− s`(a′′
0 ,m(a′′

0 )) > s`(a′
0,m(a′

0))− s`(a′
0,m(a′′

0 ))

sr (a′′
0 , q −m(a′′

0 ))− sr (a′′
0 , q −m(a′

0)) < sr (a′
0, q −m(a′′

0 ))− sr (a′
0, q −m(a′

0)).

This contradicts the optimality of m(a′′
0 ) for a′′

0 . Hence, m(a′′
0 ) ≥ m(a′

0).

(ii) Suppose, towards a contradiction, that there exists a0 such that (i) the agent is indifferent be-

tween m and m′ > m + 1, (ii) the agent prefers m and m′ to any other m′′ 6= m,m′. Surpressing the

argument a0, the indifference condition is:

s`(m)+ sr (q −m) = s`(m′)+ sr (q −m′),

whereas the optimality conditions for m′′ = m +1 ∈ (m,m′) give,

s`(m +1)− s`(m) < sr (q −m)− sr (q −m −1),

s`(m′)− s`(m +1) > sr (q −m −1)− sr (q −m′).

But by part (i) of the proof for proposition 3.3,

1

m′− (m +1)

(
s`(m′)− s`(m +1)

)
< s`(m +1)− s`(m).

Combining this inequality with the optimality conditions above, we obtain that

1

m′− (m +1)

(
sr (q −m −1)− sr (q −m′)

)< sr (q −m)− sr (q −m −1).

But q −m′ < q −m −1 < q −m. For this to hold, it must be that

sr (q −m)− sr (q −m −1) > sr (q −m −k)− sr (q −m −k −1)

for k = 1, ...,m′−m −1. This contradicts proposition 3.3.

Lemma A.5 (Sufficient conditions for single-peakedness of σ(a; {a0, a}). 31 Suppose that for each i =
P ,A , the initial attribute a0 is such that for any a′′ < a0 < a′,

ωi (a′) > 1

2(a′−a0)

∫ a′

a0

s −a0

a′−a0
ωi (s)d s,

ωi (a′′) > 1

2(a0 −a′′)

∫ a0

a′′

a0 − s

a0 −a′′ωi (s)d s.

Then, σ(a; {a0, a}) is single peaked on [0, a0] and [a0,1].

31An example of a weight function that violates the single-peakedness condition for some value of a0 is ωi (a) =
1

10+ sin2(10)
10

(sin(20a)+10). The left and right single-crossing conditions fail for a0 = 0.63 and a0 = 0.8 respectively.
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Proof for lemma A.5. Suppose a ∈ [a0,1]. If a0 is such that for any a′ > a0,

ωi (a′) > 1

2(a′−a0)

∫ a′

a0

s −a0

a′−a0
ωi (s)d s,

then the second derivative of σi (a; {a0, a}) is strictly decreasing in a. Hence, σi is single-peaked. The

proof for a ∈ [0, a0] follows a similar reasoning.

Proof for proposition 3.6. (i) By the premise ω(a0) = ω̃(a0), for any a1 > a0, ω(a1) ≥ ω̃(a1) and for any

a′
1 < a0, ω(a′

1) ≤ ω̃(a′
1). It is immediate that for any sample of attributes s constrained in [a0,1], its

variance σ2(s) is greater under ω than under ω̃. For any sample of attributes on [0, a0], its variance

σ2(s) is lower under ω than under ω̃. As a result, sampling in [a0,1] becomes more attractive.

(ii) Let s = (a1, . . . , aq+1) and s̃ = (ã1, . . . , ãq+1). Suppose that 1 < k < q +1; the following argument can

be easily adapted for the cases when k = 1 or k = q +1. Consider first a1 and ã1. Dividing the FOC by

ω(a1) and using the MLR property, we obtain

0 =
∫ a1

0

ω(a)

ω(a1)
d a −

∫ a2

a1

a2 −a

a2 −a1

ω(a)

ω(a1)
d a ≤

∫ a1

0

ω̃(a)

ω̃(a1)
d a −

∫ a2

a1

a2 −a

a2 −a1

ω̃(a)

ω̃(a1)
d a.

By assumption 2, these functions cross zero once from below. But ω̃(a1) > 0, and ã2 > a2. this means

that
∫ a1

0 ω̃(a)d a − ∫ a2
a1

a2−a
a2−a1

ω̃(a)d a ≥ 0. Therefore, supposing that the second attribute is equal across

the two samples ã2 = a2, the optimum ã1 on [0, a2] for ω̃ is weakly smaller than a1. The argument to

follow shows that ã2 < a2, hence ã1 is even smaller than what it would be under ã2 = a2. The proof that

ãq+1 < aq+1 in [a0,1] is similar and ommited.

Consider aq and ãq . Dividing the FOC with respect to ω(aq ), we obtain

0 =
∫ aq+1

aq

aq+1 −a

aq+1 −aq

ω(a)

ω(aq )
d a−

∫ aq

aq−1

a −aq−1

aq −aq−1

ω(a)

ω(aq )
d a ≥

∫ aq+1

aq

aq+1 −a

aq+1 −aq

ω̃(a)

ω̃(aq )
d a−

∫ aq

aq−1

a −aq−1

aq −aq−1

ω̃(a)

ω̃(aq )
d a.

The inequality follows from the MLR property, keeping aq−1 and aq+1 fixed in this comparison. By

assumption 2, this FOC (as a function of aq ) crosses zero only once from above. Hence, ãq < aq ,

supposing that samples s̃ and s have the same aq−1 and aq+1. But the argument above established that

for any ãq = aq , ãq+1 < aq+1; hence

∫ aq+1

aq

aq+1 −a

aq+1 −aq

ω̃(a)

ω̃(aq )
d a >

∫ ãq+1

aq

ãq+1 −a

ãq+1 −aq

ω̃(a)

ω̃(aq )
d a.

Hence, ãq+1 > aq+1 and ãq > aq , keeping aq−1 fixed across the two samples.

By following a recursive argument, it follows that for any q +1 > m > k, ãm < am . Similarly, for any

1 < m < k, ãm < am . This concludes the proof.

B Proofs for sections 4 and 5

Proof for lemma 4.1. First, note that νi (s) ∼ N
(
νi

0,σi
2(s)

)
are each normal random variables. More-

over, νP (s) and νA (s) are jointly normal, because for any i ∈ {P ,A }, νi (s) can be expressed as a linear

combination of the form

c i
0B0 +

n∑̀
j=1

c i
j Z `

j +
nr∑
j=1

d i
j Z r

j +γi ,
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where c i
0, (c i

j ), (d i
j ) are player-specific constants and Z `

i , Z r
i are independent normal random shocks.

Constant γi captures the drift term, independent of any realizations. Here, we are invoking the fact

that for any ak
j ∈ s, the random variable B(ak

j ) can be decomposed into a weighted sum of B0 and a

sequence of independent normal random variables Z k
1 , Z k

2 , . . . , Z k
j , k ∈ {r,`}. The covariance between

νP (s) and νA (s) is:

cov(νP (s),νA (s)) = cov

(
n∑̀

i=1
τP (a`i ;s)B(a`i )+

nr∑
i=1

τP (ar
i ;s)B(ar

i ),
n∑̀

i=1
τA (a`i ;s)B(a`i )+

nr∑
i=1

τA (ar
i ;s)B(ar

i )

)

= cov

(
n∑̀

i=1
τP (a`i ;s)B(a`i ),

n∑̀
i=1

τA (a`i ;s)B(a`i )

)
+cov

(
nr∑

i=1
τP (ar

i ;s)B(ar
i ),

nr∑
i=1

τA (ar
i ;s)B(ar

i )

)

=
n∑̀

k=1

(
n∑̀

i=k
τP (a`k ;s)

)(
n∑̀

i=k
τA (a`k ;s)

)
(a`k−1 −a`k )+

nr∑
k=1

(
nr∑

i=k
τP (ar

k ;s)

)(
nr∑

i=k
τA (ar

k ;s)

)
(ar

k −ar
k−1)

=
n∑̀

k=1
τP (a`k ; (a`k , a`k−1))τA (a`k ; (a`k , a`k−1))(a`k−1 −a`k )+

nr∑
k=1

τP (ar
k ; (ar

k , ar
k−1))τA (ar

k ; (ar
k , ar

k−1))(ar
k −ar

k−1).

The first line has ommitted the terms τi (a0;s)B0 by using the fact that cov(c + X ,c +Y ) = cov(X ,Y ) for

any two random variables X ,Y and constant c. The second line has used the fact that for any j ,k,

cov(B(a`j ),B(ar
k )) = 0. The third equality has used a number of observations. First, for any j < k and

s ∈ {`,r }, cov(B(as
j ),B(as

k )) = a j − a0. Second, it is useful to break down terms of the form: as
j − a0 =∑ j

i=1(as
i −as

i−1). After recombining terms, we get

cov

(
n∑̀

i=1
τP (a`i ;s)B(a`i ),

n∑̀
i=1

τA (a`i ;s)B(a`i )

)
=

(
n∑̀

i=1
τP (a`1 ;s)

)(
n∑̀

i=1
τA (a`1 ;s)

)
(a0 −a`1 )+(

n∑̀
i=2

τP (a`2 ;s)

)(
n∑̀

i=2
τA (a`2 ;s)

)
(a`1 −a`2 )+ . . .+τP (a`n` ;s)τA (a`n` ;s).

The fourth equality uses the fact that
∑ns

i=k τi (as
k ;s) = τi

(
as

k ; (as
k , as

k−1)
)
.

Claim 2.

f (νA (s) | νP (s) ≥ 0) =
φ

(
νA (s)−νA

0
σA (s)

)
σA (s)Φ

(
νP (s)−νP

0
σP (s)

)Φ
νP

0 (s)+ρ(s)σP (s)
σA (s)

(
νA (s)−νA

0

)
σP (s)

√
1−ρ(s)2

 ,

where σi ≡σi (s) and ρ(s) ≡ ρ(νP (s),νA (s)) denotes the correlation between νP (s) and νA (s) .

Proof. Let x1, x2 be jointly normal with means µ1,µ2, variances σ2
1,σ2

2 and covariance σ12. Let f1, f2 and

F1,F2 denote the pdf and cdf, respectively, of x1 and x2. Let f (·, ·) and f (· | ·) denote the joint pdf and
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the conditional pdf respectively. Then,

f (x1 | x2 ≥ 0) = 1

1−F2(0)
Pr(x2 ≥ 0) f (x1 | x2 ≥ 0)

= 1

1−F2(0)

∫ ∞

0
f (x1, x2)d x2

= 1

1−F2(0)

∫ ∞

0
f (x2 | x1) f1(x1)d x2

= f1(x1)

1−F2(0)

∫ ∞

0
f (x2 | x1)d x2

= f1(x1)

1−F2(0)
(1−Fx2|x1 (0)).

The first line multiplies and divides by Pr(x2 ≥ 0). The second line rewrites Pr(x2 ≥ 0) f (x1 | x2 ≥ 0) using

the joint density. The third line uses the fact that f (x1, x2) = f (x2 | x1) f1(x1). The last two lines use the

conditional distribution of x2 | x1. But,

x2 | x1 ∼N

(
µ2 +ρσ2

σ1
(x1 −µ1), (1−ρ2)σ2

2

)
and ρ = σ12

σ1σ2
. Therefore, we can insert the expression for Fx2|x1 to obtain:

f (x1 | x2 ≥ 0) = f1(x1)

1−F2(0)

(
1−Φ

(
−
µ2 +ρ σ2

σ1
(x1 −µ1)

σ2
√

1−ρ2

))

Switching back to our variables of interest, let x1 := νA (s) ∼N (νA
0 ,σA (s)) and x2 := νP (s) ∼N (νP

0 ,σP (s)).

Therefore,

f (νA (s)|νP (s) ≥ 0) =
φ

(
νA (s)−νA

0
σA (s)

)
σA (s)

(
1−Φ

(
− νP

0
σP (s)

))
1−Φ

−νP
0 +ρ(s)σP (s)

σA (s) (νA (s)−νA
0 )

σP (s)
√

1−ρ(s)2



=
φ

(
νA (s)−νA

0
σA (s)

)
σA (s)Φ

(
νP

0
σP (s)

)Φ
νA

0 +ρ(s)σP (s)
σA (s) (νA (s)−νA

0 )

σP (s)
√

1−ρ(s)2

 .

Using the claim, the objective simplifies to the following integral:

Pr(νP (s) ≥ 0)E[νA (s) | νP (s) ≥ 0] =Φ
(
νP

0

σP (s)

)∫ ∞

−∞
νA (s) f (νA (s) | νP (s) ≥ 0)dνA (s)

=
∫ ∞

−∞
νA (s)

1

σA (s)
φ

(
νA (s)−νA

0

σA (s)

)
Φ

νP
0 +ρ(s)σP (s)

σA (s) (νA (s)−νA
0 )√

(1−ρ(s)2)(σP (s))2

dνA (s).

Let x ≡ νA (s)−νA
0

σA (s) ; then, νA (s) = xσA (s)+νA
0 . Substituting this into the expression above, we get:

Pr(νP (s) ≥ 0)E[νA (s) | νP (s) ≥ 0] =
∫ ∞

−∞
(xσA (s)+νA

0 )φ(x)Φ

(
νP

0 +ρ(s)σP (s)x√
(1−ρ(s)2)(σP (s))2

)
d x (24)

From Owen (1980), we have the following identities (respectively, numbered 10,010.8 and 10,011.1
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therein): ∫ ∞

−∞
φ(x)Φ(a +bx)d x =Φ

(
ap

1+b2

)
∫ ∞

−∞
xφ(x)Φ(a +bx)d x = bp

1+b2
φ

(
ap

1+b2

)
.

In equation 24, a = νA
0

σP (s)
p

1−ρ(s)2
and b = ρ(s)p

1−ρ(s)2
. Hence, expression 24 simplifies to:

Pr(νP (s) ≥ 0)E[νA (s) | νP (s) ≥ 0] = νA
0 Φ

(
νP

0

σP (s)

)
+ρ(s)σA (s)φ

(
νP

0

σP (s)

)
.

Using the fact that ρ = cov(s)
σP (s)σA (s) ,

Pr(νP (s) ≥ 0)E[νA (s) | νP (s) ≥ 0] = νA
0 Φ

(
νP

0

σP (s)

)
+ cov(s)

σP (s)
φ

(
νP

0

σP (s)

)
.

Proof for proposition 4.2.

Let P (s;νP
0 ,νA

0 ) denote the payoff of A from sampling s given (νP
0 ,νA

0 , a0). Let s∗ be such that

s∗ ∈ arg max
s∈Sq+1(a0)

P (s;νP
0 ,νA

0 ).

We want to show that s∗ ∈ argmaxs∈Sq+1(a0) P (s;−νP
0 ,−νA

0 ) as well. The ex-ante expected value νi
0(B0,µ) =

B0 +µ
∫ 1

0 ωi (a)(a −a0)d a is such that νi
0(B0,µ) =−νi

0(−B0,−µ). Hence,

P (s;−νP
0 ,−νA

0 ) = (−νA
0 )Φ

(
− νP

0

σP (s)

)
+σA (s)φ

(
− νP

0

σP (s)

)
=−νA

0 +P (s;νA
0 ,νP

0 ).

Hence, any s∗ that maximizes P (s;νP
0 ,νA

0 ) also maximizes P (s;−νP
0 ,−νA

0 ).

Proof for lemma 4.1. (i) Consider the objective of the agent:

P (a;νP
0 ,νA

0 ) = νA
0 Φ

(
νP

0

σP (a)

)
+σA (a)φ

(
νP

0

σP (a)

)
.

For νP
0 = 0, this objective reduces to P (a;0,νA

0 ) = νA
0
2 + σA (a)p

2π
. This objective is maximized by a∗ ∈

argmaxa σA (a). The optimal attribute a∗ is independent of νA
0 .

(ii) When νA
0 = 0,

P (a;νP
0 ,0) =σA (a)φ

(
νP

0

σP (a)

)
.

By the Envelope Theorem, the value P (a∗;νP
0 ,0) is strictly decreasing in ν

p
0 if νP

0 > 0 and strictly in-

creasing otherwise; hence it is strictly decreasing in |νP
0 |. The first-order condition with respect to a

gives us:
∂σA (a)

∂a
+ νP

0

σ3
P

(a)
(νP

0 σA (a)−νA
0 σP (a))

∂σP (a)

∂a
= 0.

For νA
0 = 0, any a that satisfies the FOC is one at which ∂σA (a)

∂a and ∂σP (a)
∂a have opposite signs. Hence,
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any local optimum a is a compromise. If νP
0 = 0, the FOC simplifies to

∂σA (a)

∂a
= 0,

hence by the assumed single crossing condition, a∗ = aA . As νP
0 →∞, the second term

νP
0

σ3
P

(a)
(νP

0 σA (a)−
νA

0 σP (a)) ∂σP (a)
∂a dominates the RHS of the FOC. For any a within (as

P
−ε, as

P
), there exists a νP

0 suffi-

ciently large so that a∗
s = a.

(iii) The value function of the agent is

V (νP
0 ,νA

0 ) =


νA

0
2 + σA (a∗)p

2π
if νP

0 = 0,

σA (a∗)φ

(
νP

0
σP (a∗)

)
if νA

0 = 0.

The difference V (0, x)−V (x,0) is increasing in x for x ≥ 0 and it is exactly zero at x = 0. Hence, for x > 0,

the agent prefers νP
0 = 0 and νA

0 = x to the opposite case.

Proof of proposition 4.3. The FOC with respect to a is:

∂σA (a)

∂a
+ νP

0

σ3
P

(a)

(
νP

0 σA (a)−νA
0 σP (a)

) ∂σP (a)

∂a
= 0.

(i) If νA
0 and νP

0 have opposite signs, the term νP
0

(
νP

0 σA (a)−νA
0 σP (a)

) > 0. Therefore, any a∗ that

satisfies the FOC is such that ∂σA (a)
∂a

∣∣∣
a∗ and ∂σP (a)

∂a

∣∣∣
a∗ hold opposite signs. By the single-crossing con-

dition, this implies that a∗ is a local compromise.

(ii) If a∗ is a compromise, ∂σA (a)
∂a

∣∣∣
a∗ and ∂σP (a)

∂a

∣∣∣
a∗ hold opposite signs. For a∗ to satisfy FOC, it is

necessary that νP
0

(
νP

0 σA (a∗)−νA
0 σP (a∗)

)> 0. This yields the condition in the statement. Conversely,

suppose that for a given a∗, νP
0

(
νP

0 σA (a∗)−νA
0 σP (a∗)

) > 0. For a∗ to satisfy FOC, it is necessary that
∂σA (a)
∂a

∣∣∣
a∗ and ∂σP (a)

∂a

∣∣∣
a∗ hold opposite signs. Hence, such an attribute a∗ must be a compromise.

Proof of proposition 4.4. Without loss, fix ωA and ωP such that aA = ar
P

in [a0,1] and such that ar
A

>
ar

P
. Let Ki :=µ∫ 1

0 ωi (a)(a −a0)d a. By the boundedness of ωi , the ratio τA
τP

is bounded over a ∈ [0,1].

For B0 sufficiently close to −µKP , the ratio
νP

0

νA
0

is sufficiently close to zero, therefore for all a ∈ [0,1]:

νP
0

νA
0

< τA (a)

τP (a)
.

By part (ii) of corollary 4.2, this condition guarantees that the optimal attribute either overshoots or

undershoots. By lemma 4.1, for νP
0 = 0, i.e. for B0 = −µKP , the optimal attribute is exactly aA . For

νP
0 sufficiently close to zero, the optimal attribute is in an ε-neighborhood of aA . Condition (c) in the

statement guarantees that the optimal attribute overshoots rather than undershoots.

Proof for proposition 4.5.

1. The proof proceeds in two steps. First, we show that there exists a sufficiently large |B0| above

which the constrained-optimal attribute in [0, a0] is equal to a0. Second, we show that for any (νP
0 ,νA

0 ),

sampling in the compromise region guarantees to the agent a payoff strictly greater than νA
0 (the

payoff from sampling a0).
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(i) Suppose, without loss, that −µKA ≥ −µKP . Suppose, towards a contradiction, that the payoff

achieved by sampling in [0, a0] is weakly greater than the adoption payoff νA
0 > 0 for any B0 >

−µKA . That is, for any B0 and any a ∈ [0, a0),

νA
0 Φ

(
νP

0

σP (a)

)
+σA (a)φ

(
νP

0

σP (a)

)
≥ νA

0

⇔ φ(x)

1−Φ(x)
≥ x

νA
0

νP
0

σP (a)

σA (a)
,

where x := νP
0 /σP (a). As B0 → +∞, x → +∞, while νP

0 /νA
0 converges to 1 from above. For a

sufficiently large B0, for any a ∈ [0, a0), the RHS is strictly greater than x. The LHS is inverse Mill’s

ratio for the standard normal distribution.

Claim 3. φ(x)
1−Φ(x) → x as x →+∞.

Proof. Using L’Hôpital’s rule:

lim
x→∞

φ(x)

1−Φ(x)
=−φ

′(x)

φ(x)
=−xφ(x)

φ(x)
= x,

where the second-to-last equality has used the property of the standard normal pdf: φ′(x) =
xφ(x).

For a sufficiently large x, the LHS of the inequality approaches x, while the RHS is strictly greater

than x. Hence, this inequality is violated for sufficiently large x. For sufficiently good initial

evidence, the payoff from sampling any a ∈ [0, a0) is stricly worse than no sampling. By a similar

reasoning, we want to show that as B0 → −∞, no sampling is strictly preferred to sampling in

[0, a0). By contradiction, suppose that for any B0 <−µKA and any a ∈ [0, a0),

νA
0 Φ

(
νP

0

σP (a)

)
+σA (a)φ

(
νP

0

σP (a)

)
≥ 0,

⇔ φ(x)

1−Φ(x)
≥−x

νA
0

νP
0

σP (a)

σA (a)
,

where x is as before. As x →−∞, the LHS goes to zero, while the RHS goes to +∞. Contradiction.

(ii) In [a0,1], the agent’s payoff is strictly increasing in both σA and σP . Therefore, for any (νP
0 ,νA

0 ),

the optimum in [a0,1] is interior to the two optima, and hence it guarantees a payoff greater

than νA
0 , which is what the agent obtains by not sampling any attributes.

2. Consider the FOC of the agent’s objective with respect to a.

∂σA (a)

∂a
+ νP

0

σ3
P

(a)

(
νP

0 σA (a)−νA
0 σP (a)

) ∂σP (a)

∂a
= 0.

As |B0| → ±∞, the term νP
0 converges to ∞, and the term

(
νP

0 σA (a)−νA
0 σP (a)

)
converges to 0 for any

a at a slower rate. Therefore, its product converges to ∞. In (a0,1], any solution to the FOC is such

that σP (a) 6= 0 and νP
0

(
νP

0 σA (a)−νA
0 σP (a)

)> 0. Therefore, given any arbitrary a in an ε-neighborhood

around ar
P

, there exists a sufficiently large |B0| for which a is a solution to the FOC.
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Proof of proposition 4.6. Suppose there exists some ν0 ∈ R such that A prefers to disclose no addi-

tional attributes. That is, no sampling is preferred to the discovery of any a 6= a0. This means that for

any a 6= a0,

ν0Φ

(
ν0

σP (a)

)
+σA (a)φ

(
ν0

σP (a)

)
≤ max{0,ν0}.

The RHS term captures the fact that absent any additional attribute discovery, P approves iff ν0 ≥ 0.

Because σA (a) 6= 0 for any a 6= a0, this simplifies to
ν0

σA (a)
≥λ

(
ν0

σP (a)

)
for ν0 ≥ 0

− ν0
σA (a)

≥λ
(
− ν0
σP (a)

)
for ν0 < 0,

where λ(·) denotes the inverse Mill’s ratio (or hazard ratio) for the standard normal distribution. It is a

known property of this ratio that λ(x) > x for any x.32 It must therefore be that for any a 6= a0,

σA (a) <σP (a) ⇔ τA (a) < τP (a).

Claim 4. If τA (a) < τP (a) for all a ∈ [0,1] \ {a0}, then

∫ 1

a0

(ωA (a)−ωP (a))d a =
∫ a0

0
(ωA (a)−ωP (a))d a = 0.

Proof. Let ᾱ ≡ ∫ 1
a0

(ωA (a)−ωP (a))d a and α ≡ ∫ a0
0 (ωA (a)−ωP (a))d a. Suppose first that ᾱ < 0. But, be-

cause
∫ 1

0 ωi (a)d a = Ω for i = P ,A , it follows that ᾱ = −α. Hence, α > 0. By continuity of the weight

functions, there exist ε1,ε2 such that∫ 1

a0+ε1

(ωA (a)−ωP (a))d a < 0,
∫ a0−ε2

0
(ωA (a)−ωP (a))d a > 0.

In particular,

τA (a0 −ε2)−τP (a0 −ε2) =
∫ a0−ε2

0
(ωA (a)−ωP (a))d a +

∫ a0

a0−ε2

a0 − s

ε2
(ωA (a)−ωP (a))d a.

For ε2 sufficiently small, the first integral of the RHS, which is strictly positive, dominates. Hence,

there exists a small enough ε2 such that τA (a0 −ε2)−τP (a0 −ε2) > 0. Therefore it must be that ᾱ≥ 0.

By a similar argument, assuming that α< 0 would lead us to a contradiction, and hence the con-

clusion that α≥ 0. So it must be that ᾱ≥ 0 and α≥ 0: hence, ᾱ=α= 0.

The conclusion of claim 4 contradicts assumption 4. Hence, there exists some a 6= a0 for which

τA (a) ≥ τP (a). The agent strictly prefers to discover this attribute compared to no attributes.

Proof for lemma 5.1. Using the fact that (νA
1 ,νP

1 ) are distributed according to a bivariate normal dis-

32Suppose, toward a contradiction, that ∃x1 > 0 such that λ(x1) ≤ x1. But, ∂λ(x)
∂x = λ(x) (λ(x)−x) . Hence,

∂λ(x)
∂x |x=x1≤ 0. Hence, λ(x) is weakly decreasing at x1. Therefore, for any x > x1, λ(x)− x < 0. But this contradicts

the fact that limx→∞ λ(x)
x = 1.
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tribution, the objective of the agent simplifies as follows:

∫ ∞

0

∫ ∞

0
νA

1 f (νA
1 ,νP

1 )dνP
1 dνA

1 =
∫ ∞

0
νA

1
1

σA
φ

(
νA

1 −νA
0

σA

)
Φ

(
ρ√

1−ρ2

νA
1 −νA

0

σA
+ νP

0

σP

√
1−ρ2

)
dνA

1

=
∞∫

−νA
0 /σA

(xσA +νA
0 )φ(x)Φ

(
ρ√

1−ρ2
x + νP

0√
1−ρ2σP

1

)
d x

The following two identities (10,010.3) and (10,011.1) from Owen (1980) are useful to evaluate this

integral:

∫
φ(x)Φ(a +bx)d x = T (x,

a

x
p

1+b2
)+T (

ap
1+b2

,
x
p

1+b2

a
)−T (x,

a +bx

x
)

−T (
ap

1+b2
,

ab +x(1+b2))

a
)+Φ(x)Φ

(
ap

1+b2

)
,

∫
xφ(x)Φ(a +bx)d x = bp

1+b2
φ

(
ap

1+b2

)
Φ

(
x
√

1+b2 + abp
1+b2

)
−Φ(a +bx)φ(x).

where

T (h, a) =
∫ a

0

φ(h)φ(hx)

1+x2 d x.

Using the first identity, and also the fact that T (∞,0) = 0, T (∞,1) = 0:33

∞∫
−cA

φ(x)Φ

(
ρ√

1−ρ2
x + cP√

1−ρ2

)
d x =Φ (cP )−Φ (−cA )Φ (cP )−

(
T (−cA ,− cP

cA
)+

T (cP ,−cA

cP
)−T (−cA ,

ρcA − cP

cA

√
1−ρ2

)−T (cP ,
cA ρ− cP

cA

√
1−ρ2

)
)

=Φ(cP )Φ(cA )+T (cA ,
cP

cA
)+T (cP ,

cA

cP
)

−T (cA ,
cP −ρcA

cA

√
1−ρ2

)−T (cP ,
cA −ρcP

cP

√
1−ρ2

)

= B v N
(
cA ,cP ;ρ

)
,

where ci = νi
0/σi . The function T (h, a) is even in h and odd in a. The last step follows from identity

3.2 in Owen (1980), where B v N denotes the cdf of the standard bivariate normal. Using the second

identity, we obtain:

∞∫
−νA

0 /σA

xφ(x)Φ

(
ρ√

1−ρ2
x + νP

0√
1−ρ2σP

1

)
d x = ρφ(cP )−ρφ(cP )Φ

(
cP ρ− cA√

1−ρ2

)

+φ(−cA )Φ

(
cP −ρcA√

1−ρ2

)

= ρφ(cP )Φ

(
cA − cP ρ√

1−ρ2

)
+φ(cA )Φ

(
cP −ρcA√

1−ρ2

)
33These follow from the fact that for any h, T (h,0) = 0 and T (h,1) =Φ(h)(1−Φ(h))/2.
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Putting together all the expressions we derived, the objective of the agent simplifies to

νA
0 B v N

(
cA ,cP ;ρ

)+σA

(
ρφ(cP )Φ

(
cA − cP ρ√

1−ρ2

)
+φ(cA )Φ

(
cP −ρcA√

1−ρ2

))
.

Proof for lemma 5.2. For q = 1, ρ = 1. But B v N (h,k,1) =Φ(min{h,k}) from identity 3.4 in Owen (1980).

Hence the payoff of the agent simplifies toνA
0 Φ(cA )+σAφ(cA ) if cP > cA ,

νA
0 Φ(cP )+σAφ(cP ) otherwise.

Proof for proposition 5.1. If
νA

0

σA (aA )
< νP

0

σP (aA )

the agent’s payoff from sampling aA in the principal-agent problem is the same as the maximum

payoff attained in her single-player problem. The agent prefers this payoff to the payoff attained from

sampling any other attribute.

Proof for proposition 5.2. We need to distinguish two cases, based on which player requests higher B0

in order to be ex-ante indifferent between adoption and rejection.

(i) −µKA >−µKP : For any B0 ∈ (−µKP ,−µKA ), the optimal attribute is aA . For any such B0, νA
0 /σA

is negative for all a, and νP
0 /σP is positive for all a. By proposition 5.1, the optimal attribute is

aA .

(ii) −µKA ≤ −µKP : Using proposition 5.1, if τP (aA )/τA (aA ) < 1, aA is optimal for any B0 ∈ (B̄ ,∞),

where B̄ >−µKP . If τP (aA )/τA (aA ) ≥ 1, aA is optimal for any B0 ∈ (−∞,B), where B <−µKA .

C Calculation and proofs for in-text examples

C.1 Calculations for example 1

Consider a subsample of size k on [a0,1]. Let ε1,ε2, . . . ,εk denote the distance of a1 from a0, a2 from a1,

and so on, until ak from ak−1. The variance of this sample for ω(a) = 1 is:

ε1

(
1−a0 − ε1

2

)2
+ε2

(
1−a0 −ε1 − ε2

2

)2
+ . . .+εk

(
1−a0 −ε1 −ε2 − . . .−εk−1 −

εk

2

)2

Let Ti = 1− a0 − ε1 − . . .− εi denote the remaining distance from ai to 1. Taking the first-order condi-

tions with respect to εi for i = 1, . . . ,k, and then solving backwards starting from ε∗k , we obtain that

ε∗k−i = 2
2i+3 Tk−i . Therefore, starting from ε∗1 such that ε∗1 = 2

2(k−1)+3 (1− a0), we can iteratively pin down

all (ε∗i )k
i=1. The general term is not dependent on i , i.e., all distances are equal: ε∗i = 2

2k+1 (1−a0). Then,

ai = a0 + 2i

2k +1
(1−a0).
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Plugging ε∗i into the initial expression for the variance of the sample, we obtain 2
(2k+1)3 (1−a0)3 ∑k

i=1(2(k−
i )+2)2. Observing that

∑k
i=1(2(k − i )+2)2 = 4 k(k+1)(2k+1)

6 gives us the desired expression for the variance

of k attributes on [a0,1]:
4

3
(1−a0)3 k(k +1)

(2k +1)2 .

The optimal sample s∗ under capacity q is the one among all constrained-optimal samples (that al-

locate k attributes in [0, a0]) that maximizes the variance σ2(s). That is, the agent chooses k ≤ q that

solves the following problem:

max
k

4

3

(
(1−a0)3 (q −k)(q +1−k)

(2(q −k)+1)2 +a3
0

k(k +1)

(2k +1)2

)
.

C.2 Proofs for example 2 in section 4

This subsection formally states and proves the claims made in example 2, in which both players have

linear weight functions.

Claim 5 (Ordering of single-agent constrained optima). aA
r < aP

r and aA
`

< aP
`

.

Proof of claim 5. Consider first the claim a0 < aA
r < ap

r < 1. The proof proceeds through the following

steps: (i) as a → a0, f P (a) > f A (a); (ii) for a = 1, f P (1) < f A (1); (iii) f P and f A cross only once on [a0,1],

(iv) the unique crossing attribute ã ∈ (a0,1) is such that f A (ã) = f P (ã) < 0. First, note that f A (a) < f P (a)

given that a ∈ [a0,1] and kA bP < bA kP if and only if the following inequality holds:

10a2 + (3−2a0)a0 < a(9+2a0).

(i) At a = a0, the inequality is true. Hence f A (a0) < f P (a0) as we approach a0 from the right.

(ii) At a = 1, the inequality is false. Hence f A (1) > f P (1).

(iii) The two curves f P and f A intersect only once at

ã = 1

20

(
9+2a0 +

√
81−84(1−a0)a0

)
.

(iv) It is straightfoward to show that f A (ã) = f P (ã) < 0.

Therefore, f A (a) < f P (a) for any a for which any of the two functions is positive. Hence, f A hits zero

at a smaller attribute, i.e. aA
r < aP

r . The proof for the second part aA
`

< aP
`

is analogous.

Claim 6 (Monotonicity in compromise region). a∗
`

is monotonically increasing in |ν0|. It approaches

aP
`

as |ν0|→∞.

Proof for claim 6. From claim 5, aP
`

> aA
`

. For ν0 = 0, a∗
`

(0) = aA
`

. Also, from the proof of claim 5,

f P (a) > f A (a) for any a ∈ [aA
`

, aP
`

]. Suppose for some ν0, a∗(ν0) is an optimal attribute, and consider a

small increase of |ν0| by ε. Consider the FOC condition:

(
ν0

(σP (a; a0))

)2 (
τA (a; a0)

τP (a; a0)
−1

)
f P (a)+ f A (a) = 0. (FOC)

Because a∗(ν0) is interior, it satisfies FOC. As |ν0| → |ν0| +ε, LHS of FOC evaluated at a∗(ν0) becomes

strictly positive, because f P (a∗(ν0)) > 0. We want to argue that a∗(|ν0|+ε) > a∗(|ν0|).
Claim 7. For any a ∈ (a0,1], the term τA (a;a0)

τP (a;a0)
−1 is strictly decreasing in a.
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Proof. Observe that:

τA (a; a0)

τP (a; a0)
−1 = (2a2 + (a +a0)(−3+2a0))(−bA kP +bP kA )

(3(−2+a +a0)bP + (−3+a2 +aa0 +a2
0)kP )(2bA +kA )

.

The first derivative of this with respect to a is:

∂
(
τA (a;a0)
τP (a;a0)

−1
)

∂a
= 3(−1+a)(−3+a +2a0)(2bP +kP )(−bA kP +bP kA )

(3(−2+a +a0)bA + (−3+a2 +aa0 +a2
0)kP )2(2bA +kA )

.

By assumption in this example, bP kA < bA kP . Moreover, a0 < a < 1. Hence, this derivative is strictly

negative.

By increasing the attribute marginally from a∗(ν0) to a∗(ν0)+ ε̃, the first additive term in FOC goes

down because both τA

τP −1 and f P go down, while σP (a) goes up. The second additive term f A goes

down as well (becomes more negative). Hence, the LHS of FOC goes down.

Claim 8 (Undershooting). Consider the constrained problem on [a0,1]. Then,

(i) a∗
r (ν0) ∈ [a0, aA

r ] for sufficiently inconclusive ν0;

(ii) There exists a sufficiently large c such that a∗
r (ν0) = a0 for |ν0| > c and a∗

r (ν0) > a0 otherwise;

Proof. (i) For ν0 = 0, a∗
r (0) = aA

r . By continuity, for a sufficiently small |ν0|, a0 < a∗
r (ν0) < aA

r .

(ii) From lemma 4.5, we know that there exists a sufficiently large |ν0| = c such that for all |ν0| > c,

the optimal attribute a∗
r = a0.

D Model variations

D.1 No initial attributes are perfectly known

This section briefly remarks on the scenario in which: 1) evaluation is centralized, 2) no prior at-

tributes are known, 3) the player has a normal prior on B(0) ∼N (0,1). The parameters of the underly-

ing Brownian process are (µ,σ) = (0,1). The realization of each attribute a > 0 is distributed normally

according to B(a) ∼N (m,1+a). Given a sampled realization of attribute a > 0, the posterior distribu-

tion of B(0) has density:

Pr(B(0) | B(a)) = Pr(B(a) | B(0))Pr(B(0))

Pr(B(a))
=
φ

(
B(a)−B(0)

a

)
φ (B(0))

φ
(

B(a)p
1+a

) .

The posterior expected value of the project when B(a) is observed is:

ν(a,B(a)) :=
∫ ∞

−∞
(B(0)τ(0; (0, a))+B(a)τ(a; (0, a)))Pr(B(0) | B(a))dB(0)

= B(a)τ(a; (0, a))+τ(0; (0, a))B̄ ,

where B̄ is the conditional expectation of B(0) given that B(a) is observed. The project is adopted only

if the observed B(a) is sufficiently high so that the posterior expected value is positive.

max
a

(
1−Pr(ν(a,B(a)) ≥ 0)

)
E
(
ν(a,B(a))

∣∣ ν(a,B(a)) ≥ 0
)
.
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Naturally, for a positive drift, attributes greater than zero have higher mean and higher variance.

Yet, the distributions of the corresponding posterior expected value have the same mean due to the

law of iterated expectations, that is EB(a)EB(0) [B(0) | B(a)] = E[B(0)] = 0. Hence,

ν(a,B(a)) ∼N
(
0, aτ2(a)+τ2(0)var (B̄)+2τ2(a)τ2(0)cov(B(a), B̄)

)
.

The covariance term cov(B(a), B̄) is positive because a higher B(a) implies higher E[B(0) | B(a)]. It can

be shown easily that var (B̄) is increasing in a as well. But as a increases, τ(0) increases and τ(a) de-

creases. The agent explores the attribute that induces the highest variance on ν.

D.2 Agent cares only about adoption

Suppose that the agent cares only about adoption. Given a realized path B on [0,1], her payoff function

is

u(d ,B) =
1 if d = 1

0 if d = 0.

Given sample a, the probability of adoption is:

Pr(νP
0 ≥ 0) =Φ

(
νP

0

σP (a)

)
.

This is increasing in σP if νP
0 < 0, and decreasing otherwise. If νP

0 > 0, the principal is willing to adopt

based on what she knows about a0, hence the agent does not sample further. If νP
0 < 0, the principal

needs to be convinced to approve. Approval is most likely if the discovered sample is the one that is

most informative to the principal. This observation leads to the following proposition.

Proposition D.1. The agent samples the principal’s ideal sample if the project is initially unpromising

to the principal (νP
0 ≤ 0), and samples no additional attributes otherwise (i.e. if νP

0 > 0).

Proof. See preceding paragraph.

D.3 Simultaneous sampling at a fixed per-attribute cost

This section considers sampling at a fixed cost c > 0 per attribute for the driftless case (µ = 0). The

agent is no longer constrained in the number of attributes she can sample, as in the case of quota-

based sampling: she can take as many attributes as she sees fit as long as she affords the cost c. In

the case of simultanous costly sampling, the agent decides on a bundle of attributes and pays the cost

(c×size of bundle) upfront, without the possibility of purchasing additional attributes after observing

the realizations of this bundle. In the case of sequential costly sampling, the agent discovers attributes

one at a time: the decision whether to stop or acquire an additional costly attribute (and if so, which

attribute) is potentially informed by the realizations of attributes observed thus far.

Let us first analyze the case of simultaneous sampling. The agent observes (a0,ν0) and has to

decide on 1) the number n of attributes to be discovered, 2) conditional on taking n attributes, which

ones to take. But, the analysis of quota-based sampling assures us that for a fixed n, the optimal

bundle of n attributes is independent of ν0. The initial attribute a0 is sufficient to identify the optimal

bundle of size n. Hence, the problem of the agent is reduced only to solving for the optimal bundle

size n∗ for a given initial promise ν0. Hereafter, the optimal bundle among all those of size n is referred

to simply as bundle of size n.
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Let V (ν0,n) denote the benefit attained by the bundle of size n when ν0 is the initial expected value

of the project. Also, let σ∗
n denote the standard deviation of the random variable νn = E[v |An], where

An is the partition created from the bundle of size n and the initial attribute a0. Then, the payoff from

acquiring this bundle is

V (ν0,n)− cn = ν0Φ

(
ν0

σ∗
n

)
+σ∗

nφ

(
ν0

σ∗
n

)
− cn

In the absence of any further information beyond (a0,ν0) (i.e. n = 0), the payoff is

V (ν0,0) =
ν0 if ν0 ≥ 0

0 if ν0 < 0.

For bundle n to be preferred to no information, the standard deviation of νn should be sufficiently

high compared to the cost, i.e. σ∗
n ≥ cn

p
2π.

Lemma D.1.

(i) Suppose that V (0,n)− cn > V (0,0) = 0. Then, there exists ν̄n > 0 such that the bundle of size n is

preferred to no information for ν0 ∈ [−ν̄n , ν̄n], and no information is preferred to the bundle of size

n otherwise.

(ii) Suppose ν0 = 0. If a bundle of size n > 0 is preferred to no further information, then any smaller

bundle of size n′ < n is so as well.

(iii) Suppose n is preferred to n′ at ν0 = 0. If n > n′, there exists a unique ν̄n,n′ such that n is preferred to

n′ for ν0 ∈ [−ν̄n,n′ , ν̄n,n′ ] and n′ is preferred otherwise. If n < n′, then n is preferred to n′ for all ν0.

Proof. (i) Consider the difference f (ν0) :=V (ν0,n)−V (ν0,0) for ν0 ∈ [0,∞). From the premise, f (0) > cn.

Moreover, it is strictly decreasing in ν0:

∂ f (ν0)

∂ν0
=Φ

(
ν0

σ∗
n

)
−1 < 0.

As ν0 →∞, f (ν0) → 0. Hence, there is a unique ν̄n > 0 such that f (ν̄n) = cn, i.e.

ν̄nΦ

(
ν̄n

σ∗
n

)
+σ∗

nφ

(
ν̄n

σ∗
n

)
− cn = ν̄n .

Similarly, consider f (ν0) on (−∞,0]. By a similar argument, f (ν0) is strictly increasing on this domain:

∂ f (ν0)

∂ν0
=Φ

(
ν0

σ∗
n

)
> 0.

As ν0 →−∞, f (ν0) → 0. Hence, there exists a unique νn < 0 such that f (νn) = cn, i.e.

νnΦ

(
νn

σ∗
n

)
+σ∗

nφ

(
νn

σ∗
n

)
− cn = 0.

Finally, observe that applying the facts that φ(x) =φ(−x) and Φ(−x) = 1−Φ(x), we obtain that f is sym-

metric around ν0 = 0, i.e. for any ν0 > 0, f (ν0) = f (−ν0). Therefore, ν̄n =−νn .

(ii) If V (0,n)− cn >V (0,0), then σ∗
n

n ≥ c
p

2π. By the claim in lemma ??, for any n and n′ < n,

σ∗
n′

n′ ≥ σ∗
n

n
.
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Therefore, for any n′ < n,
σ∗

n′
n′ ≥ c

p
2π as well.

(iii) Suppose n > n′. Then σ∗
n > σ∗

n′ . Define g (ν0) := V (ν0,n)−V (ν0,n′)− c(n −n′). By the premise,

g (0) > 0.
∂g (ν0)

∂ν0
=Φ

(
ν0

σ∗
n

)
−Φ

(
ν0

σ∗
n′

)
.

For ν0 > 0, g is strictly decreasing. Moreover, as ν0 → ∞, g tends to −c(n −n′) < 0. Therefore, there

exists a unique ν̄n,n′ such that g (ν̄n,n′ ) = 0. Bundle n is preferred to n′ for ν0 ∈ [0, ν̄n,n′ ] and bundle n′

is preferred for ν0 ∈ (ν̄n,n′ ,∞). Consider now the negative half line, ν0 < 0. By a similar argument, g is

strictly increasing in ν0 on (−∞,0) and g (ν0) →−c(n−n′) < 0 as ν0 →−∞. Therefore, there exists νn,n′ < 0

for which g (νn,n′ ) = 0. By the fact that g is an even function, ν̄n,n′ =−νn,n′ .

Suppose now that n < n′, so σ∗
n < σ∗

n′ . It is immediate to observe that the difference function g is

strictly increasing in ν0 for ν0 > 0 and strictly decreasing in ν0 for ν0 < 0. But g (0) > 0, hence, g (ν0) >
g (0) > 0 for all ν0.

The previous lemma provides some crucial features of the optimal bundle size for a given ν0. For

the most neutral initial promise possible ν0 = 0, the agent has a set of costly bundle sizes of the form

{1,2, . . . ,k} that she prefers to the option of remaining uninformed. From this set, she chooses the size

that solves the following problem:

max
n∈{1,...,k}

V (0,n)− cn.

Let n∗ be the solution to this problem. First, any bundle of greater size n such that k ≥ n > n∗ is not

taken for any ν0. The greatest bundle is taken precisely for the most neutral initial promise, that is,

when the agent is most uncertain about the value of the project. Secondly, the lemma highlights the

symmetry of the optimal rule: if n is optimal for a given ν0, then n is optimal for −ν0 as well. To see

this how this observation follows from the lemma, it might be helpful to make two remarks. First,

the bundle of size n is preferred to the absence of any sampling for ν0 within a given distance from

ν0 = 0, despite the sign of ν0, if preferred at ν0 = 0. Secondly, the ranking of any two bundles n and n′ is

symmetric around ν0 = 0: if n is preferred to n′ for ν0 > 0, then it is so for −ν0 < 0 as well.

On the other hand, lemma D.1 does not rule out the possibility that some bundle size n < n∗ might

be suboptimal for all ν0. The following example illustrates such an instance.

Example 7. Let ω(a) = 1 for all a ∈ [0,1] and a0 = 2/5. Suppose c = 1/400. For this cost, the optimal

pattern of sampling is:34

n∗ =


3 for |ν0| ∈ [0,0.239104]

2 for |ν0| ∈ (0.239104,0.495794]

0 for |ν0| ∈ (0.495794,∞)

At ν0 = 0, the optimal bundle size is n∗ = 3. As the initial promise ν0 becomes more conclusive (i.e. its

absolute value increases), the optimal bundle size decreases to two and then to no information at all.

A bundle of size n = 1 is never taken: n = 1 is preferred to n = 2 for |ν0| ≥ 0.502103. Yet, such values of ν0

are sufficiently conclusive that the agent prefers to acquire no information at all over acquiring n = 1 or

n = 2 (or any other bundle size, for that matter).

Lemma D.2. For any ν0,ν′0 such that |ν′0| > |ν0|, the optimal bundle size for ν0 is weakly greater than for

ν′0.

34For the given value of a0, the bundle of size n = 2 consists of {a1, a2} = {16/25,22/25} and the bundle of size
n = 3 consists of {a1, a2, a3} = {4/7,26/35,32/35}.
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Proof. By part (iii) of lemma D.1, the optimal rule is symmetric around ν0 = 0, i.e. if n is optimal for

ν0, then n is optimal for −ν0 as well. So it is without loss to suppose ν′0 > ν0 > 0, and let n′ and n be

the respective optimal bundle sizes for ν′0 and ν0 respectively. By way of contradiction, suppose that

n′ > n. Optimality of n′ at ν′0 implies that

V (ν′0,n′)−V (ν′0,n) > c(n′−n).

As in the proof of lemma D.1, V (ν′0,n′)−V (ν′0,n) is strictly decreasing in ν′0 for ν′0 ∈ [0,∞). Hence, for

ν0 < ν′0,

V (ν0,n′)−V (ν0,n) > c(n′−n).

By the optimality of n at ν0, it must be that n′ is not affordable at ν0, i.e. V (ν0,n′) < cn′. But for the

inequality to hold, it must be that V (ν0,n) < cn as well. This contradicts the premise that n is affordable

and optimal at ν0.

Lemma D.2 establishes that the agent acquires smaller bundles of attributes for more conclusive

ν0. This is an intuitive observation, as a more conclusive initial promise implies that the agent is

closer to an approval/rejection decision before any discoveries, so less additional information will

be needed to reach a final decision. To put this differently, the added benefit of a greater bundle n′

compared to n is decreasing in ν0 for initial promises ν0 ∈ [0,∞). Hence, if the agent is willing to pay

the cost difference c(n′−n), it must be for higher initial promises.

Lemma D.3 (Ordering of thresholds ν̄k ).

(i) If the indifference point between n and n′ is such that ν̄n,n′ < min{ν̄n , ν̄n′ }, then ν̄n′ < ν̄n .

(iii) If the indifference point ν̄n,n′ > max{ν̄n , ν̄n′ }, then ν̄n < ν̄n′ .

(ii) If n is preferred to n′ for all ν0 ∈ (−∞,∞), then ν̄n > ν̄n′ .

Proof. (i) Suppose by way of contradiction that ν̄n,n′ < min{ν̄n , ν̄n′ } and ν̄n′ ≥ ν̄n . In other words, sup-

pose

−ν̄n′ <−ν̄n <−ν̄n,n′ .

By the indifference condition,

V (ν̄n,n′ ,n′)−V (ν̄n,n′ ,n) = c(n′−n).

But the function f (ν0) := V (ν0,n′)−V (ν0,n) is strictly increasing for ν0 < 0 and strictly decreasing for

ν0 > 0 because due to σ∗
n′ >σ∗

n ,

f ′(ν0) = 1

2

(
Φ

(
ν0

σ∗
n′

)
−Φ

(
ν0

σ∗
n

))
< 0.

Therefore, f (ν0) < c(n′−n) for all ν0 <−ν̄n,n′ . The assumption that −ν̄n >−ν̄n′ implies that at ν0 = ν̄n′ ,

V (νn′ ,n)− cn < 0.

Hence,

V (νn′ ,n′)− cn′− (V (νn′ ,n)− cn) > 0 ⇒ f (νn′ ) > c(n′−n).

This contradicts our earlier observation that f (ν0) < c(n′−n) for all ν0 <−ν̄n,n′ .

(ii) It follows from reasoning almost identical to that in the proof of part (ii), assuming initially

(towards a contradiction) that −ν̄n,n′ <−ν̄n <−ν̄n′ .
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(iii) By the premise, V (ν0,n)−V (ν0,n′) > 0 for all ν0. Hence, in particular at ν0 = −ν̄n′ , it must be

that V (−ν̄n′ ,n) > 0. By the fact that V (ν0,n) is strictly increasing in ν0, it follows that −ν̄n <−ν̄n′ ⇔ ν̄n >
ν̄n′ .

D.4 Player-specific outside option from rejection

The main analysis assumes that the players have different weight functions, but they both enjoy the

same outside value from rejection, normalized to zero. In the single-player problem, the normaliza-

tion of the outside option to zero is without loss: optimal sampling is the same despite the outside

option. Here, we briefly explain the consequences of another form of conflict: the players share the

same weight function, but they disagree on the value of rejection. Let (α,π) be the outside option of

the agent and the principal, respectively. Suppose that π < ν0, so in the absence of further informa-

tion, the principal adopts the project. The objective of the agent is to choose a feasible sample that

maximizes the following:

max
s∈Sq+1(a0)

ν0 + (α−ν0)Φ

(
π−ν0

σ(s)

)
+σ(s)φ

(
π−ν0

σ(s)

)
.

The following lemma establishes that conditional on the agent sampling, attribute choice is not dis-

torted by the different outside options. Yet, unlike in the single-player problem, the agent might de-

cide not to sample at all if the principal is too demanding towards the project, i.e. if she has too high

of an outside option compared to the agent.

Lemma D.4. Given the weight function ω and a0, there exists a threshold c(ω, a0) < 0 such that:

(i) ifα−π≥ c(ω, a0), the optimal sample coincides with the optimal sample in the single-player prob-

lem;

(ii) if α−π< c(ω, a0), the agent does not sample at all.

Proof. The objective is increasing in σ if (π−ν0)(π−α)+σ2 > 0 and decreasing otherwise. If (π−ν0)(π−
α) > 0, i.e. if α > π, the objective is always increasing in σ, hence the agent picks the sample with the

highest σ.

Let σ̄ := argmaxs σ(s). Suppose α < π. If −σ̄2 < (π−ν0)(π−α) < 0, the objective is decreasing in σ(s)

for σ(s) below a certain threshold and increasing otherwise. Therefore, there can only be two local

maxima, at σ= 0 and at σ= σ̄. Because α<π< ν0, α−ν0 < 0. If

ν0 ≤ ν0 + (α−ν0)Φ
(π−ν0

σ̄

)
+ σ̄φ

(π−ν0

σ̄

)
,

the agent prefers to disclose the highest-variance sample; otherwise she prefers to disclose no addi-

tional attributes beyond a0. For α = π, the strict inequality holds (the problem reduces to a single-

agent problem). Therefore, by continuity, it also holds for α<π sufficiently close to π.

If α−π< −σ̄2

ν0−π , the agent prefers not to sample at all.

No further sampling guarantees adoption. If the agent benefits more than the principal from

rejection (α>π), she is always willing to sample. Even though the principal adopts more than what the

agent would after sampling, the lottery on the adoption decision induced by sampling is still preferred

to immediate sure adoption. Suppose, instead, that α<<π< ν0. Upon sampling, the principal rejects

much more frequently than what the agent would. Because the agent can guarantee herself adoption

by not sampling any further, she discovers no attributes and the principal adopts immediately.
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Naturally, the opposite holds when the principal favors rejection given ν0, i.e. π > ν0. If π > α,

the principal adopts less frequently than what the agent would prefer; yet, sampling further promises

adoption of a high-quality project, while discovering no additional attributes guarantees a sure rejec-

tion. On the other hand, if π is too small relative toα, the agent ex-ante prefers rejection too. Sampling

risks a very probable adoption decision, so the agent forgoes sampling completely.
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