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Abstract

Instrumental variables (IV) are widely used in economics to address selection on un-

observables. Standard IV methods produce estimates of causal effects that are specific

to individuals whose behavior can be manipulated by the instrument at hand. In many

cases, these individuals are not the same as those who would be induced to treatment

by an intervention or policy of interest to the researcher. The average causal effect for

the two groups can differ significantly if the effect of the treatment varies systematically

with unobserved factors that are correlated with treatment choice. We review the im-

plications of this type of unobserved heterogeneity for the interpretation of standard IV

methods and for their relevance to policy evaluation. We argue that drawing inference

about policy relevant parameters typically requires extrapolating from the individuals

affected by the instrument to the individuals who would be induced to treatment by

the policy under consideration. We discuss a variety of alternatives to standard IV

methods that can be used to perform this extrapolation rigorously. We show that

many of these approaches can be nested as special cases of a general framework that

embraces the possibility of partial identification.
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1 Introduction

Instrumental variable (IV) methods are widely used in empirical work in economics

and other fields. Their attraction stems from the hope that an instrument provides

a source of exogenous variation that can be used to infer the causal impact of an

endogenous treatment variable on an outcome of interest. IV methods attack the

problem of selection on unobservables by only using variation in the treatment that is

induced by the instrument. This variation only represents individuals whose treatment

choice would be affected by changes in the instrument. As a consequence, standard IV

methods, such as two-stage least squares, produce estimates of causal effects that are

specific to these individuals.

In some cases, these estimates can be of intrinsic interest, for example if the instru-

ment itself represents an intervention or policy change of interest. In many other cases,

the group of individuals who would be affected by the available instrument are different

from the group of individuals who would be affected by a policy.1 If the effect of the

treatment varies between the two groups, then the estimates produced by standard IV

methods may differ dramatically from the parameters relevant for drawing inference

about the effects of a policy of interest.2 This raises concerns about the external va-

lidity of estimates produced by standard IV methods, and about their relevance for

policy evaluation.

In this paper, we first review the implications of unobserved heterogeneity in treat-

ment effects for the interpretation and policy relevance of standard IV methods. Then,

we discuss alternatives to the standard methods that can be used to learn about policy

relevant parameters in settings with unobserved heterogeneity in treatment effects. We

argue that drawing inference about such parameters typically requires extrapolating

from the individuals affected by the instrument to the individuals who would be in-

duced to treatment by the policy under consideration. The external validity and policy

relevance of IV methods turns on the ability to do this extrapolation reliably.

The structure of our review is as follows. In the next section, we review a widely

1For example, many instruments are based on the lack of pattern or predictability in certain natural
events that cannot be shifted by policy, such as the weather (Angrist, Graddy, and Imbens, 2000; Miguel,
Satyanath, and Sergenti, 2004), or the gender composition of children (Angrist and Evans, 1998).

2A number of studies in diverse fields report evidence of this type of unobserved heterogeneity in treat-
ment effects. Heckman (2001) compiled a list of studies. More recent papers include Bitler, Gelbach, and
Hoynes (2006), Doyle Jr. (2007), Moffitt (2008), Carneiro and Lee (2009), Firpo, Fortin, and Lemieux (2009),
Carneiro, Heckman, and Vytlacil (2011), Maestas, Mullen, and Strand (2013), Bitler, Hoynes, and Dom-
ina (2014), Walters (2014), Felfe and Lalive (2014), French and Song (2014), Havnes and Mogstad (2015),
Kirkeboen, Leuven, and Mogstad (2016), Kline and Walters (2016), Hull (2016), Carneiro, Lokshin, and
Umapathi (2016), Cornelissen, Dustmann, Raute, and Schönberg (forthcoming), Nybom (2017), and Brinch,
Mogstad, and Wiswall (2017), among many others.
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studied IV model with a binary treatment. The model maintains the existence of an

exogenous instrument that has a monotonic effect on treatment in the sense developed

by Imbens and Angrist (1994). This monotonicity condition gives rise to the important

related concepts of the marginal treatment effect and response functions developed by

Heckman and Vytlacil (1999, 2005). Our review focuses on this model due to its central

role in the recent literature on IV methods.

In Section 3, we introduce a general definition of a target parameter as a weighted

average of the marginal treatment response functions. We view the target parameter

as an object chosen by the researcher to answer a specific well-defined policy question.

We argue here, and throughout the paper, that some conventional treatment param-

eters, such as the average treatment effect, often represent an uninteresting policy

counterfactual, and so make for uninteresting target parameters. We recommend that

researchers focus instead on target parameters in the class of policy relevant treatment

effects (PRTEs) introduced by Heckman and Vytlacil (2001a). These parameters allow

researchers to consider interventions that influence (but may not fully determine) an

individual’s treatment choice, for example by changing the costs associated with the

treatment alternatives. We discuss specific examples of PRTEs, and show that the

local average treatment effect of Imbens and Angrist (1994) can be viewed as a special

case of a PRTE.

In Section 4, we discuss two conditions under which the PRTE and other target

parameters are non-parametrically point identified. We argue that both of these condi-

tions are too restrictive for many settings that involve policies that represent meaningful

departures from the status quo. Evaluating such a policy requires extrapolating from

the individuals whose treatment choice is affected by the available instrument to the

individuals whose treatment choice would be affected by the policy.

This need to extrapolate motivates Section 5 where we consider a general framework

proposed by Mogstad, Santos, and Torgovitsky (2017), in which data and a priori

assumptions can be flexibly combined to produce bounds on PRTEs and other target

parameters. We show that the tightness of the bounds—that is, the strength of the

conclusions that one can obtain—naturally depends both on the extent of extrapolation

required, and on the strength of the a priori assumptions that are maintained. As a

result, the framework allows the researcher to achieve bounds that are as narrow as they

desire, while requiring them to honestly acknowledge the strength of their assumptions

and the degree of extrapolation involved in their counterfactual. In Section 6, we

discuss the relationship between the general framework of Mogstad et al. (2017) and

previous work, showing that it nests several previous approaches to extrapolation as

special cases. In Section 7, we summarize and conclude with some directions for future
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research.

Our review focuses on the identification problem of using the distribution of the

observed data to learn about parameters of interest. In practice, researchers do not

know the population distribution of the observed data with certainty. Features of

this distribution need to be estimated from the available sample, and most researchers

would agree that it is important to formally account for statistical uncertainty in these

estimates. We set these issues of statistical inference aside in our review. We view

the identification problem as both distinct from—and primary to—the problem of

statistical inference, since the conclusions one can make under imperfect knowledge of

the population distribution of the data are a subset of those that can be drawn under

perfect knowledge. Having said this, the general framework that we discuss in Section

5 involves some challenges for statistical inference. Mogstad et al. (2017) provide a

complete discussion of these challenges and develop a method for addressing them.

2 Model

2.1 Potential Outcomes

Our discussion focuses on the canonical program evaluation problem with a binary

treatment D ∈ {0, 1} and a scalar, real-valued outcome, Y . Corresponding to the two

treatment arms are potential outcomes, Y0 and Y1. These represent the realizations

of Y that would have been experienced by an agent had their treatment status been

exogenously set to 0 or 1. The relationship between observed and potential outcomes

is given by

Y = DY1 + (1−D)Y0. (1)

In economic applications with observational data, it is often implausible to assume

that D is exogenously determined relative to Y0 and Y1, especially if D is a choice

variable. When D is endogenous, contrasting the distribution of Y for the treated

(D = 1) and control (D = 0) groups confounds the effect of the treatment with

other differences across these groups. Conditioning on observed covariates, X, can

conceivably unconfound the effect of D on Y . However, one often expects that there

are important factors that influence the choice of D, such as an agent’s beliefs about Y0

and Y1, that are fundamentally difficult to observe, and therefore not part of X. The

idea of an IV method is to use the variation from an instrument, Z, to indirectly shift

D while holding X fixed. If Z is exogenous, then the resulting variation in Y results

solely from the causal effect of D on Y , i.e. from the difference between Y1 and Y0.
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2.2 Assumptions

A key theme of the literature, and of this paper, is that considering how Z affects the

choice of D is crucial when there is unobserved heterogeneity in the causal effect of D

on Y . Intuitively, if different individuals stand to gain or lose differently from receiving

treatment, then it is important to model which individuals select into treatment.

In an influential paper, Imbens and Angrist (1994) introduced a simple model of

choice behavior summarized by what they called the monotonicity condition. This

condition says that, given X, an exogenous shift of Z from one value to another either

weakly increases the choice of D for every agent, or else it weakly decreases it for

every agent. Vytlacil (2002) showed that under the standard exogeneity assumption

on Z, the monotonicity condition is equivalent to the existence of a weakly separable

selection (or choice) equation,

D = 1[ν(X,Z)− U ≥ 0], (2)

where ν is an unknown function and U is a continuously distributed random variable.

Our review is focused on approaches that maintain the monotonicity condition or,

equivalently, the choice model (2). This choice model is widely used, but of course

it is not beyond criticism. In Section 6.5, we compare these approaches with another

influential framework for extrapolation that does not maintain a choice model and

therefore does not use the monotonicity condition. Our view is that maintaining some

choice model (although not necessarily (2)) is crucial for considering counterfactual

policies that do not mandate a choice of treatment.

The period since Imbens and Angrist (1994) has witnessed the evolution of a large

literature that explores the implications of choice model (2) for IV methods. The

following set of assumptions are commonly maintained in this literature. We will

maintain them throughout our discussion as well.3

Assumptions IV

IV.1 D is determined by (2).

IV.2 (Y0, Y1, U)⊥⊥Z|X, where ⊥⊥ denotes conditional independence.

IV.3 U is continuously distributed, conditional on X.

Assumption IV.2 requires Z to be exogenous with respect to both the selection and

outcome processes after conditioning on covariates, X. If one is only concerned with

3Our discussion also requires some mild technical conditions involving the existence of moments that we
do not explicitly mention, but which will be clear from the context.
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mean outcomes, then this assumption can be weakened to the combination of U ⊥⊥Z|X
and E[Yd|U,X,Z] = E[Yd|U,X] for d = 0, 1. In applications, it can be difficult to

think of reasons for which this weaker assumption would hold while IV.2 would fail.

For simplicity, we maintain the stronger assumption throughout our discussion.

Given IV.3, one can normalize the distribution of U |X = x to be uniformly dis-

tributed over [0, 1] for every x.4 Under this normalization, and given IV.2, it is straight-

forward to show that ν(x, z) is equal to the propensity score,

p(x, z) ≡ P [D = 1|X = x, Z = z]. (3)

Hence, the normalization allows (2) to be rewritten as

D = 1[U ≤ p(X,Z)] where U |X = x, Z = z ∼ Unif[0, 1] for all x, z. (4)

Working with (4) instead of (2) simplifies the subsequent expressions, without changing

the empirical implications of any of the results we discuss. It is worth repeating that

the work of Vytlacil (2002) proves that (4) together with Assumptions IV is equivalent

to the influential IV model introduced by Imbens and Angrist (1994).

2.3 Marginal Treatment Response Functions

An important unifying concept for IV methods that maintain the weakly separable

choice model (4) is the marginal treatment effect (MTE), which was developed in a

series of papers by Heckman and Vytlacil (1999, 2001a,b,c, 2005, 2007a,b).5 The MTE

is defined as

MTE(u, x) ≡ E[Y1 − Y0|U = u,X = x]. (5)

The dependence of the MTE on u for a fixed x reflects unobserved heterogeneity in

treatment effects, as indexed by an agent’s latent propensity to choose treatment, u.

The choice equation (4) implies that, given X, individuals with lower values of U are

more likely to take treatment, regardless of their realization of Z.6 An MTE function

that is declining in u would therefore indicate that individuals who are more likely to

choose D = 1 also experience larger gains in Y from receiving the treatment. The

4This type of normalization argument appears in many guises in the literature on nonparametric identi-
fication. It is one of many possible normalizations, see e.g. Matzkin (2007) for a complete discussion.

5As Heckman and Vytlacil recognize, the key ideas behind the MTE can be found in an earlier paper by
Björklund and Moffitt (1987), albeit in a parametric context.

6This is only a convention; if (2) were written instead as 1[ν(X,Z) + U ≥ 0], then higher values of U
would be more likely to take treatment.

6



case of no unobserved treatment effect heterogeneity corresponds to an MTE function

that is constant in u. Similarly, observed treatment effect heterogeneity is described

through the dependence of the MTE function on x for a fixed u.

Instead of working with the MTE function directly, we consider treatment parame-

ters that can be expressed as functions of the two marginal treatment response (MTR)

functions, defined as

m0(u, x) ≡ E [Y0 | U = u,X = x] and m1(u, x) ≡ E [Y1 | U = u,X = x] . (6)

Each pair m ≡ (m0,m1) of MTR functions generates an associated MTE function

m1(u, x)−m0(u, x), so there is no cost in generality from working with MTR functions

directly. As we discuss later, an important advantage of working with MTR functions

instead of MTE functions is that it allows one to consider parameters and estimands

that depend on m0 and m1 asymmetrically. For example, the OLS estimand can be

written as a weighted average of m0 and m1, whereas this interpretation is not available

when working only with their difference.

2.4 A Running Numerical Illustration

Throughout the paper, we will use a running numerical example to provide graphi-

cal explanations of the key concepts. The example is loosely based on the empirical

application in Mogstad et al. (2017). They analyze how a class of potential subsidy

regimes can promote the use of the health product, and compare increases in usage to

the costs of subsidization. In their application, D is a binary indicator for purchasing

a mosquito net (the health product), Z is an experimentally varied subsidy for the net

and (for simplicity) there are no covariates X. The data is taken from Dupas (2014)

and features a variety of different subsidy levels.

For the numerical illustration, we bin these subsidies into four ascending groups,

so that Z ∈ {1, 2, 3, 4}, with Z = 4 denoting the most generous subsidy. The groups

are approximately equally likely, so we take P [Z = z] = 1
4 for each z. We take the

propensity score in our simulation to be equal to the estimated propensity score in the

data, which is given by

p(1) = .12 p(2) = .29 p(3) = .48 p(4) = .78.

We take the outcome in our numerical example to be binary, i.e. Y ∈ {0, 1}. To fix

ideas, we think of Y as an indicator for whether an individual is infected by malaria.
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Figure 1: MTR and MTE Functions Used to Generate Data in the Numerical Illustration
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We take the MTR (and implied MTE) functions to be quadratic functions of u:

m0(u) = .9− 1.1u+ .3u2 and m1(u) = .35− .3u− .05u2,

so that m1(u)−m0(u) = −.55 + .8u− .35u2. (7)

As shown in Figure 1, the MTR functions for both the treated and untreated states

are decreasing in u. Recalling that higher values of u correspond to lower propensities

to choose treatment, this means that individuals less likely to purchase the mosquito

net (D = 1) are also less likely to be afflicted by malaria (Y = 1) regardless of whether

they purchase the mosquito net. This could arise because individuals differ in their

degree of susceptibility to malaria and have some private knowledge of their personal

vulnerability to the disease. Figure 1 shows that the m1 function is larger than the m0

function for all values of u, which means that the mosquito net reduces the incidence of

malaria for all individuals. However, the difference between m1 and m0 (the MTE) is

non-constant, and is larger for individuals who are more likely to purchase the net. This

increasing pattern in m1−m0 could arise if individuals have an idea of how likely they

are to benefit from a mosquito net—for example, due to the prevalence of mosquitoes

in their sleeping area—and partly base their purchase decision on this knowledge.
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3 What We Want to Know: Target Parameters

3.1 Definition

Before considering identification, the researcher needs to define their parameter of

interest, which we refer to as the target parameter, β?. We assume that the researcher

has a specific well-defined policy question that they are interested in, and that this

question suggests one or more relevant target parameters. A central theme of our

discussion is that different target parameters can be relevant for different applications

and policy questions. This motivates a framework in which the researcher is allowed

wide latitude in how they can specify the target parameter. To do this, we only require

that β? can be written as a weighted average of the unknown MTR functions. Formally,

we assume that

β? ≡ E
[∫ 1

0
m0(u,X)ω?0(u,X,Z) du

]
+ E

[∫ 1

0
m1(u,X)ω?1(u,X,Z) du

]
, (8)

for some identified weighting functions, ω?0 and ω?1.

Different target parameters are generated by choosing different pairs of (ω?0, ω
?
1).

We discuss several types of target parameters in the following sections. Our Tables

1–4 provide an extensive catalog of the weighting functions that correspond to these

parameters. Of course, it is impossible to specify the universe of target parameters

that could be of possible interest for an application. Fortunately, deriving the weighting

functions (ω?0, ω
?
1) that generate a given parameter can be accomplished relatively easily

by appropriately modifying the arguments in Heckman and Vytlacil (2005).7

3.2 Conventional Target Parameters

The average treatment effect (ATE) is a widely studied target parameter. As shown

in Table 1, the ATE can be written as (8) by specifying the weight functions as

ω?1(u, x, z) = 1 and ω?0(u, x, z) = −1. This equally weights the individual level treat-

ment effects regardless of differences across individuals. The ATE can be interpreted as

the average change in outcomes that would be realized if all individuals were required

to choose D = 1, compared to the regime in which all individuals are forbidden to

choose D = 1.

7Most of the expressions in Tables 1–4 can be found in Heckman and Vytlacil (2005). The expressions
for parameters with asymmetric weights (i.e. m0 6= −m1) were derived by Mogstad et al. (2017). Note also
that Mogstad et al. (2017) consider a slightly more general version of (8) in which the integrating measure
(i.e. “du”) can be something other than Lebesgue measure. For example, this allows one to define the target
parameter to be the MTE at a given value ũ, i.e. β? = E[m1(ũ, X)−m0(ũ, X)].
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Table 1: Weights for Conventional Treatment Effect Parameters

Weights

Target Parameter Expression ω?
0(u, x, z) ω?

1(u, x, z)

Average Untreated
Outcome

E[Y0] 1 0

Average Treated
Outcome

E[Y1] 0 1

Average Treatment
Effect (ATE)

E[Y1 − Y0] −1 1

ATE given X = x
where P [X = x] > 0

E[Y1 − Y0|X = x] −ω?
1(u, x, z)

1[x = x]

P [X = x]

Average Treatment on
the Treated (ATT)

E[Y1 − Y0|D = 1] −ω?
1(u, x, z)

1[u ≤ p(x, z)]
P [D = 1]

Average Treatment on
the Untreated (ATU)

E[Y1 − Y0|D = 0] −ω?
1(u, x, z)

1[u > p(x, z)]

P [D = 0]

Local Average
Treatment Effect
(LATE) for z → z′

given X = x, where
p(x, z′) > p(x, z)

E[Y1 − Y0|p(x, z) < U ≤
p(x, z′), X = x]

−ω?
1(u, x, z)

1[p(x, z) < u ≤ p(x, z′)]
p(x, z′)− p(x, z)

Another commonly considered target parameter is the average treatment on the

treated (ATT). Figure 2 plots the average d = 1 weights for the ATT and other

conventional target parameters discussed in this section using our running numerical

illustration. The horizontal axis indexes the weights by unobserved heterogeneity in

treatment choice u ∈ [0, 1], with smaller values of u corresponding to individuals that

are more likely to choose D = 1, c.f. (4). The vertical axis reports the average weights,

i.e. E[ω?1(u,X,Z)] in regions where they are non-zero. For all of these parameters, the

weights are symmetric in the sense that ω?0(u, x, z) = −ω?1(u, x, z), so we only plot the

average weights for d = 1. Figure 2 shows that the average weights for the ATT are

decreasing in u, indicating that this parameter places more weight on individuals that

are more likely to choose D = 1. This property can be confirmed by analyzing the

corresponding formula in Table 1.

The ATT provides the average decrease in outcomes that would be experienced

by the treated group by switching from a regime in which the treatment is optional

to a regime that forbids treatment. This counterfactual can be relevant for evaluating

optional government programs, such as active labor market programs, since it measures

the benefit to those who choose (or are chosen) to receive training (Heckman and Smith,

1998). Similarly, the average treatment on the untreated (ATU) measures the average
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increase in outcomes that would be experienced by the control group if treatment were

made mandatory. This counterfactual would be relevant for evaluating the impact of

requiring non-participants to participate in a program.

The ATE, ATT and ATU can all be defined without reference to the choice model

(4).8 Maintaining a choice model allows one to also consider parameters that are

defined in terms of choice behavior under actual or counterfactual manipulations of the

instrument. An important and well-known example of such a parameter is the local

average treatment effect (LATE), which was first studied by Imbens and Angrist (1994).

The LATE is informative about the average causal effect for the set of individuals whose

choice of D would be altered by a given change in the instrument.

For example, Table 1 shows the weights for the LATE that corresponds to an

instrument shift from Z = z to Z = z′ with p(x, z′) > p(x, z), and conditional on

X = x. These weights are only non-zero over the region (p(x, z), p(x, z′)]. Examining

(4), one can see that this region corresponds to realizations of U for which an agent

with X = x would choose D = 1 if assigned Z = z′, but would choose D = 0 if assigned

Z = z. Imbens and Angrist (1994) refer to this unobservable subgroup as the (z to z′)

compliers. In the next section, we show that LATEs are specific examples of the more

general concept of a policy relevant treatment effect.

3.3 Policy Relevant Treatment Effects

The ATE, ATT and ATU all measure the average effect on outcomes for policy coun-

terfactuals that hypothesize mandating a choice of treatment. The relevance of these

parameters, and the policy counterfactuals they address, is dubious when requiring

or preventing treatment is conceptually or ethically infeasible. Indeed, many policy

discussions are focused on interventions that change the costs or benefits of choosing

certain activities, while still allowing individuals to freely select into these activities.

For example, consider the important empirical question of the labor market returns

to investing in human capital, say through enrolling in higher education (D = 1).

The ATE, ATT and ATU all correspond to counterfactuals that conjecture mandating

enrollment or non-enrollment in higher education. These parameters do not speak

to ongoing debates over higher education policy. Instead, these debates are about

interventions that influence the decision to enroll in higher education, for example by

increasing the availability of colleges, or expanding student loan or tuition subsidies.

Another example, considered in more depth in Mogstad et al. (2017), is the decision

8Although, as we will see in Sections 5 and 6, the choice model facilitates thinking about identification
of these parameters as an extrapolation problem.
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Figure 2: Weights for Conventional Target Parameters in the Numerical Illustration
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to own a mosquito net (D = 1). This is an important preventative health care measure

in many parts of the developing world. Mandating non-ownership—which is implicitly

conjectured in the ATE and ATT—is not an interesting counterfactual. The ATU

conjectures mandating ownership, which is perhaps conceivable through a policy of

free provision, although this would still require full take-up. A more relevant policy

intervention would be to provide subsidies to purchase a mosquito net, taking into

account the potential benefits of usage and costs of subsidization.9

A choice model like (4) provides a framework for considering the effect of a policy

intervention that influences (but may not fully determine) choice behavior. We follow

Heckman and Vytlacil (1999, 2005) in considering policies that change the propensity

score, p, and/or the instrument, Z, but which are assumed to have no impact on

the model unobservables, (Y0, Y1, U), or the observed covariates X. For example, this

assumption requires that a policy that alters the effective price of a mosquito net—

modeled here as changing p and/or Z—would have no impact on the latent propensity

to buy a mosquito net, U , or on whether an individual would be afflicted by malaria in

either treatment state, (Y0, Y1). A policy a in this class can be summarized by a pair

9See e.g. Dupas and Zwane (2016) for a discussion of various policies that promote access to (and usage
of) preventive health products. None of these policies involve mandating ownership or usage of preventive
health products.

12



(pa, Za) consisting of a function pa that maps (X,Za) to [0, 1], and a random variable

Za that satisfies IV.2. Both the function, pa, and the joint distribution of (X,Za), are

assumed to be known or identified.

A policy with these properties generates random variables representing treatment

choice and outcomes. Treatment choice under a policy a is given by

Da ≡ 1[U ≤ pa(X,Za)]. (9)

The outcome of Y that would be observed under policy a is therefore

Y a = DaY1 + (1−Da)Y0. (10)

Given two policies, a1 and a0, Heckman and Vytlacil (1999, 2005) define the policy

relevant treatment effect (PRTE) of a1 relative to a0 as

PRTE ≡ E[Y a1 ]− E[Y a0 ]

E[Da1 ]− E[Da0 ]
, (11)

where we assume that E[Da1 ] 6= E[Da0 ], i.e. that the policy change also changes the

overall proportion of individuals who receive treatment.10

3.4 Examples of PRTEs

PRTEs can be expressed as target parameters with form (8). The choice of weights,

(ω?0, ω
?
1), depends on the policies being compared.11 Table 2 shows how different pol-

icy comparisons translate into different weights by way of three specific examples

considered by Carneiro et al. (2011). Each of the examples sets a1 to be a hypo-

thetical policy, and takes a0 to be the status quo policy observed in the data, i.e.

(pa0 , Za0) = (p, Z). The hypothetical policies are: (i) an additive α change in the

propensity score, i.e. pa1 = p+ α; (ii) a proportional (1 + α) change in the propensity

score, i.e. pa1 = (1 + α)p; and (iii) an additive α shift in the distribution the jth com-

ponent of Z, i.e. Za1 = Z + αej , where ej is the jth unit vector. The first and second

of these represent policies that increase (or decrease) participation in the treatment

by a given amount α or a proportional amount (1 + α). The third policy represents

the effect of shifting the distribution of an exogenous variable that impacts treatment

10The purpose of this assumption is simply to adjust the units of the PRTE to be per net change in
treatment participation. If this assumption is questionable, one can alternatively define the PRTE as
E[Y a1 ]−E[Y a0 ], see Heckman and Vytlacil (2001a) or Carneiro, Heckman, and Vytlacil (2010, pp. 380–381).

11Note that these weights are identified given the assumption that both pa and the distribution of (X,Za)
are known or identified with Za⊥⊥U |X for a = a0, a1.
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Table 2: Weights for Policy Relevant Treatment Effects

Target Parameter Expression ω?
1(u, x, z) = −ω?

0(u, x, z)

Generalized LATE for
U ∈ [u, u]

E[Y1 − Y0|U ∈ [u, u]]
1[u ∈ [u, u]]

u− u

Policy Relevant
Treatment Effect (PRTE)
for policy (pa1 , Za1)
relative to policy
(pa0 , Za0)

E[Y a1 ]− E[Y a0 ]

E[Da1 ]− E[Da0 ]

P [u ≤ pa1(x, Za1)|X = x]− P [u ≤ pa0(x, Za0)|X = x]

E[pa1(X,Za1)]− E[pa0(X,Za0)]

Additive PRTE with
magnitude α

PRTE with Z? = Z and
p?(x, z) = p(x, z) + α

1[u ≤ p(x, z) + α]− 1[u ≤ p(x, z)]
α

Proportional PRTE with
magnitude α

PRTE with Z? = Z and
p?(x, z) = (1 + α)p(x, z)

1[u ≤ (1 + α)p(x, z)]− 1[u ≤ p(x, z)]
αE[p(X,Z)]

PRTE for an additive α
shift of the jth

component of Z

PRTE with Z? = Z + αej
and p?(x, z) = p(x, z)

1[u ≤ p(x, z + αej)]− 1[u ≤ p(x, z)]
E[p(X,Z + αej)]− E[p(X,Z)]

choice, such as a subsidy.

In all of these definitions, α is a quantity that could either be estimated or hy-

pothesized by the researcher. Mogstad et al. (2017) consider PRTEs of type (i), and

they estimate the value of α by parametrically extrapolating a demand curve fit off of

experimentally varied prices. Since α is interpretable in terms of the change of treat-

ment participation probability, a simpler approach is to just specify a value of α that

represents an empirically interesting change in the probability of choosing treatment.

3.5 LATEs are PRTEs

The LATE is a particular example of a PRTE. To see this, suppose for simplicity that

there are no covariates X, and consider the PRTE that results from comparing a policy

a1 under which every agent receives Z = z′ against a policy a0 under which every agent

receives Z = z.12 Choices under these policies are

Da0 ≡ 1[U ≤ p(z)] and Da1 ≡ 1[U ≤ p(z′)],

12More formally, let pa0 = pa1 = p, and take Za1 and Za0 to be deterministically equal to z′ and z,
respectively.
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where p(z′) > p(z) are the propensity score values in the observed data. The PRTE

for this policy comparison is

E[Y a1 − Y a0 ]

E[Da1 −Da0 ]
=
E [(Da1 −Da0)(Y1 − Y0)]

p(z′)− p(z)
= E

[
Y1 − Y0

∣∣ p(z) < U ≤ p(z′)
]
, (12)

where we used Da1 − Da0 = 1[p(z) < U ≤ p(z′)]. The right-hand side of (12) is

precisely the z to z′ LATE introduced by Imbens and Angrist (1994).

More generally, Heckman and Vytlacil (2005) define a LATE as E[Y1−Y0|U ∈ [u, u]]

for two values u and u. We refer to this parameter as a counterfactual LATE in order

to distinguish it from a LATE for which u and u are given by values of the observed

propensity score. The weights for a counterfactual LATE are shown in Table 2. They

are equally weighted over [u, u], zero elsewhere, and scaled to integrate to 1.

3.6 Extrapolating LATEs

Viewing the LATE as a specific example of a more general class of parameters is

useful for thinking about parameters that represent subpopulations other than just

the compliers under the observed instrument. For example, suppose that a researcher

wants to perform a sensitivity analysis to investigate the robustness of the z to z′ LATE

to an expansion (or contraction) of the complier subpopulation. For this purpose, we

define right- and left-hand α-extrapolations of the z to z′ LATE as

LATE+
z→z′(α) ≡ E

[
Y1 − Y0 | p(z) < U ≤ p(z′) + α

]
and LATE−z→z′(α) ≡ E

[
Y1 − Y0 | p(z)− α < U ≤ p(z′)

]
. (13)

Similarly, we define a two-sided α-extrapolation as

LATE±z→z′(α) ≡ E
[
Y1 − Y0

∣∣∣ p(z)− α

2
< U ≤ p(z′) +

α

2

]
. (14)

These parameters are defined over subgroups that take the z to z′ complier group and

expand it by α, either to the left, right, or split between both sides. One could also

allow α < 0 in (13) and (14), in which case the parameters would be interpolated

LATEs.

Imbens and Angrist (1994) showed that the z to z′ LATE is nonparametrically point

identified for any observed z and z′, as long as p(z′) > p(z). This result has produced

a focus on these types of LATEs as parameters of interest. Since these LATEs only

reflect causal effects for z to z′ compliers, their external validity (or generalizability)

can be limited (Imbens, 2010). Some authors have criticized the practice of focusing
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Figure 3: Extrapolated LATEs in the Numerical Illustration
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on parameters with limited external validity, see e.g. Heckman (1996, 1997, 2010).

Analyzing extrapolated LATEs allows one to bridge these two viewpoints, since it

provides a precise way to gauge this lack of external validity. In particular, the extent

to which a given LATE is externally valid depends on how different it can be from the

extrapolated LATEs as α increases. As α→ 0, an extrapolated z to z′ LATE reduces

back to the usual, point identified z to z′ LATE.

Figure 3 illustrates this point for the Z = 2 to Z = 3 LATE in our running numerical

example. The figure contains the values of the left-hand, right-hand, and two-sided

extrapolations of this LATE as functions of the size of the extrapolation, α. As α

increases from 0, these parameters cover increasingly large subpopulations. The graph

shows that the Z = 2 to Z = 3 LATE is sensitive to extrapolation to either the left or

right, but relatively insensitive when extrapolating on both sides simultaneously. For

certain values of α, an extrapolated LATE can reduce to another ordinary LATE. For

example, when α = p(4)− p(3), the right-hand extrapolated Z = 2 to Z = 3 LATE is

equal to the usual Z = 2 to Z = 4 LATE, as indicated in Figure 3.
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4 When is the Target Parameter Point Identified?

Once the researcher has defined the target parameter, the next step is to consider its

identification. In this section, we consider two commonly discussed settings in which

the target parameter is point identified without any additional assumptions.

4.1 When the Target Parameter is a LATE

Imbens and Angrist (1994) showed that under Assumptions IV their monotonicity

condition (which, again, is equivalent to Assumptions IV and (4)), the z to z′ LATE,

conditional on X = x, is point identified by the Wald estimand, i.e.

E
[
Y1 − Y0|p(x, z) < U ≤ p(x, z′), X = x

]
=
E[Y |X = x, Z = z′]− E[Y |X = x, Z = z]

E[D|X = x, Z = z′]− E[D|X = x, Z = z]
.

The LATE may be an interesting target parameter if the observed instrument variation

from z to z′ represents an intervention or policy change. For example, Angrist and

Krueger (1991) report estimates of a LATE for which D is attaining an additional year

of schooling, Y is a measure of future earnings, and the shift from z to z′ represents

the impact of a compulsory schooling law. This parameter would clearly be useful for

evaluating how compulsory schooling laws affect labor market outcomes through their

impact on raising educational attainment.

However, in many other situations, the observed variation in the instrument might

be distinctly different than the variation relevant for the researcher’s policy question.

In such cases, the LATE is not a relevant target parameter. Consider, for example, the

large body of empirical research that has examined the relationship between family

size and observable child outcomes, such as educational attainment. Recent studies

that use IV methods to address the possible endogeneity of family size, such as Black,

Devereux, and Salvanes (2005), tend to conclude that family size has a small causal

effect on child outcomes. Two instruments commonly used in these studies are twin

births and the sex composition of prior births. The parameter estimates they report

can be interpreted as reflecting the LATEs for these instruments.

When interpreting the estimated LATEs, it is natural to consider whether variation

in these instruments can be used to address a counterfactual with interesting policy

implications. An obvious concern in doing so is that families that would only have an-

other child due to a twin birth, or due to the sex composition of their previous children,

likely differ in unobservable ways from other families. As a consequence, families whose

fertility decisions would be affected by these instruments may be dissimilar to families
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whose decisions would be affected by a proposed tax or transfer policy. For evaluating

such a policy, LATEs for either of these instruments are not relevant target parame-

ters. Arguing along these lines, Brinch et al. (2017) revisit the analysis of Black et al.

(2005) using an extrapolation approach discussed in Section 6. Their findings suggest

that there is a great deal of heterogeneity in the causal effect of family size on child

outcomes. Their results warrant caution in using LATEs for twin or sex composition

instruments as parameters for informing policy debates.

4.2 When There is Sufficient Variation in the Instrument

Heckman and Vytlacil (1999, 2001c) showed that if the random variable P = p(X,Z) is

continuously distributed, conditional on X = x, then under some regularity conditions

the MTE is point identified for any ũ in the interior of its support. To see this, note

that in general it can be shown by using (4) and IV.2 that

E
[
Y D

∣∣ p(x, Z) = u,X = x
]

=

∫ u

0
m1(u′, x) du′

and E
[
Y (1−D)

∣∣ p(x, Z) = u,X = x
]

=

∫ 1

u
m0(u′, x) du′. (15)

As a consequence, if the objects on the left-hand sides of (15) can be differentiated at

u = ũ, then

∂

∂u
E
[
Y D

∣∣ p(x, Z) = u,X = x
] ∣∣∣
u=ũ

= m1(ũ, x),

∂

∂u
E
[
Y (1−D)

∣∣ p(x, Z) = u,X = x
] ∣∣∣
u=ũ

= −m0(ũ, x),

and hence
∂

∂u
E
[
Y
∣∣ p(x, Z) = u,X = x

] ∣∣∣
u=ũ

= m1(ũ, x)−m0(ũ, x), (16)

so that the MTRs and MTE at (ũ, x) are point identified. The left-hand side of (16)

is what Heckman and Vytlacil (1999, 2001c) describe as the local IV estimand. A

consequence of their argument is that any target parameter is point identified if it

has weights (ω?0, ω
?
1) that are non-zero only for values of (ũ, x) for which ũ lies in

the interior of the support of P , conditional on x. Viewed in reverse, a given target

parameter is point identified if the distribution of P , given X = x, is continuous and

exhibits sufficient variation to cover the support of (ω?0, ω
?
1) for every x.

This support condition severely limits the types of target parameters that are point

identified without additional assumptions. It requires a continuous instrument, for if Z

is discrete, then the distribution of P ≡ p(X,Z), conditional on X, will also be discrete,

so that differentiation in (16) is not possible. Requiring an instrument to be continuous
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already eliminates perhaps the majority of instruments used in modern applications

of IV methods. Moreover, even if the instrument is continuous, only target parame-

ters with support contained within the observed support of P (conditional on X) can

be non-parametrically point identified. PRTEs for policies that involve extrapolating

beyond the currently available support will not be point identified without additional

assumptions.13 In many cases, however, these are precisely the types of policies that

are likely to be relevant to decision makers.

For example, an important and largely unanswered question for developing countries

is how to design cost effective policies that promote access to (and usage of) preventive

health products. To analyze this question, Mogstad et al. (2017) use data from an

experiment conducted in Kenya by Dupas (2014) in which the price for a preventative

health product was randomly assigned. They view different subsidy regimes as different

PRTEs and compare increases in usage to the cost of subsidization. For example, they

estimate the PRTE that compares a policy of free provision to a policy under which

all the product is offered at any given price. To do so, they use the randomly assigned

prices as a (discrete) instrument for purchasing the health product. Many of the PRTEs

they consider do not correspond to the variation in prices that were observed by the

experiment. These PRTEs are not point identified without additional assumptions, but

as Mogstad et al. (2017) show, informative bounds can still be constructed by using

the method described in the next section.

5 A General Framework for Inference about Treatment Effects

In the previous section, we discussed two cases in which the variation in the treatment

that is induced by the instrument can be used to point identify the target parameter

without additional assumptions. In many other cases, answering the policy question of

interest requires extrapolation from the individuals whose treatment choice is affected

by the available instrument to the individuals whose treatment choice would be affected

by the policy. In this section, we discuss how to use the general framework proposed

by Mogstad et al. (2017, “MST”) to conduct this extrapolation.

13The marginal PRTE considered by Carneiro et al. (2010, 2011) provides a possible exception to this
statement. This parameter can be viewed as the PRTE that results from contrasting the status quo, (p, Z),
to a marginal change to the status quo. This marginal change is formally defined as an infinitesimally small
change, so it is arguably not appropriate to view these parameters as conjecturing a significant departure
from existing policies.
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5.1 What We Know: IV-Like Estimands

The starting point for MST is the observation that a rich class of identified quantities

can also be written in the same form ((8)) as the target parameter, β?. For example,

consider the IV estimand that results from using Z as an instrument for D in a linear

instrumental variables regression that includes a constant term, but which does not

include any other covariates X. Assuming Cov(D,Z) 6= 0, this estimand is given by

βIV ≡
Cov(Y,Z)

Cov(D,Z)
. (17)

Heckman and Vytlacil (2005) showed that βIV can be written as

βIV =

∫ 1

0
[m1(u,X)−m0(u,X)] ωIV(u,X,Z) du, (18)

where ωIV is an identified weighting function. The similarity between (18) and (8)

suggests that βIV carries some useful information about the possible values of β?.

MST show that, more generally, any cross moment of Y with a known or identified

function of (D,X,Z) can also be expressed as the weighted sum of the two MTR

functions, m0 and m1. To be more precise, let s be a known or identified measurable

function of (d, x, z) and define βs ≡ E[s(D,X,Z)Y ]. MST call the function s an IV–

like specification, and they call the quantity βs that s generates an IV–like estimand.

Proposition 1 of MST shows that for any s,

βs = E

[∫ 1

0
m0(u,X)ω0s(u,X,Z) du

]
+ E

[∫ 1

0
m1(u,X)ω1s(u,X,Z) du

]
,

where ω0s(u,X,Z) ≡ s(0, X, Z)1[u > p(X,Z)]

and ω1s(u,X,Z) ≡ s(1, X, Z)1[u ≤ p(X,Z)]. (19)

The weights in (19) can be shown to reduce to the weights for βIV derived by

Heckman and Vytlacil (2005) by taking

s(d, x, z) =
z − E[Z]

Cov(D,Z)
, (20)

which is an identified function of D, X (both trivially), and Z. However, the expression

in (19) applies more broadly to include any well-defined weighted linear IV estimand

that uses some function of (D,X,Z) as included and excluded instruments for a set

of endogenous variables also constructed from (D,X,Z).14 Deriving these weights is

14The phrases “included” and “excluded” instrument are meant in the sense typically introduced in
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Table 3: Common IV–Like Estimands

Estimand βs s(D,X,Z) Notes

Wald (z to z′)
E[Y |Z = z′]− E[Y |Z = z]

E[D|Z = z′]− E[D|Z = z]

1[Z=z′]
P [Z=z′] −

1[Z=z]
P [Z=z]

E[D|Z = z′]− E[D|Z = z]

P [Z = z′], P [Z = z] 6= 0
and E[D|Z = z′]
6= E[D|Z = z]

IV slope
Cov(Y,Z)

Cov(D,Z)

Z − E[Z]

Cov(D,Z)
Z scalar

IV (jth
component)

e′jE[Z̃X̃ ′]−1E[Z̃Y ] e′jE[Z̃X̃ ′]−1Z̃

X̃ ≡ [1, D,X ′]′

Z̃ ≡ [1, Z,X ′]′

Z scalar
ej the jth unit vector

OLS slope
Cov(Y,D)

Var(D)

D − E[D]

Var(D)
—

OLS (jth
component)

e′jE[X̃X̃ ′]−1E[X̃Y ] e′jE[X̃X̃ ′]−1X̃
X̃ ≡ [1, D,X ′]′

ej the jth unit vector

TSLS (jth
component)

e′j

(
ΠE[Z̃X̃ ′]

)−1 (
ΠE[Z̃Y ]

)
e′j(ΠE[Z̃X̃ ′])−1ΠZ̃

Π ≡ E[X̃Z̃ ′]E[Z̃Z̃ ′]−1

Included variables X̃

Instruments Z̃
ej the jth unit vector

a matter of specifying the appropriate IV–like specification, s. Table 3 lists the IV–

like specifications that generate several common IV–like estimands, such as the Wald

estimand and the estimand corresponding to the two-stage least squares estimator.

5.2 From What We Know to What We Want

IV–like estimands are features of the observable data. In general, IV–like estimands

are not equal to the target parameter, and so are not themselves objects of interest. On

the other hand, equation (19) shows that any IV–like estimand is a weighted average

of the underlying MTR functions. This implies that only some MTR functions are

consistent with a given value of an IV–like estimand. Consequently, only some values

of the target parameter, β?, are consistent with a given IV–like estimand. In this

section, we show how to utilize this intuition to construct bounds on β?.

Let S denote some collection of IV–like specifications s chosen by the researcher.

textbook treatments of the linear IV model without heterogeneity.

21



Corresponding to each s ∈ S is an IV–like estimand, βs ≡ E[s(D,X,Z)Y ]. We assume

that the researcher has restricted the pair of MTR functions m ≡ (m0,m1) to lie in

some admissible set, M. The admissible set incorporates any a priori assumptions

that the researcher wishes to maintain about the MTR functions, such as parametric

or shape restrictions. Our goal is to characterize values of the target parameter β? that

could be generated by MTR functions that are elements of M and which also deliver

the collection of identified IV–estimands {βs : s ∈ S} through (19).

To do this, it is helpful to view the weighted integrals for the target parameter,

(8), and the IV–like estimands, (19), as functions of m. Specifically, for the target

parameter we define the function

Γ?(m) ≡ E
[∫ 1

0
m0(u,X)ω?0(u,X,Z)du

]
+ E

[∫ 1

0
m1(u,X)ω?1(u,X,Z)du

]
, (21)

and for any IV–like specification s we define the function

Γs(m) ≡ E
[∫ 1

0
m0(u,X)ω0s(u,X,Z) du

]
+ E

[∫ 1

0
m1(u,X)ω1s(u,X,Z) du

]
. (22)

Now, suppose that the data were generated according to (1) and (4) under Assumptions

IV with MTR pair m ∈ M. Then m must satisfy Γs(m) = βs for every s ∈ S. That

is, m must lie in the set

MS ≡ {m ∈M : Γs(m) = βs for all s ∈ S} . (23)

This in turn implies that β? must belong to the set

B?S ≡ {b ∈ R : b = Γ?(m) for some m ∈MS}. (24)

Intuitively, B?S is the set of values for the target parameter that could have been

generated by MTR functions that are consistent with both the assumptions of the

model and the values of the IV–like estimands {βs : s ∈ S} that were observed in the

data. Given knowledge of the distribution of observables, B?S could be determined by

checking for a candidate value b whether there exists an m ∈ M such that Γ?(m) = b

and Γs(m) = βs for all s ∈ S. If such an m exists, then b ∈ B?S ; otherwise b /∈ B?S .

Under weak conditions onM, B?S will be a closed interval, say [β?, β
?
]. In this case, the

process of characterizing B?S can be simplified to the task of solving two optimization
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problems:

β? ≡ inf
m∈M

Γ?(m) subject to Γs(m) = βs for all s ∈ S

and β
? ≡ sup

m∈M
Γ?(m) subject to Γs(m) = βs for all s ∈ S. (25)

5.3 Computing the Bounds

Both Γ? and Γs are linear functions of m. This endows the optimization problems

(25) with a great deal of structure that facilitates the speed and reliability of solving

these problems. However, two computational obstacles remain. First, the variables of

optimization in (25) are infinite dimensional. Second, (25) could be difficult to solve

unless the admissible set M has enough structure.

MST show that both problems can be solved by replacing M with a finite dimen-

sional linear basis. To see how this works, suppose that for every m ≡ (m0,m1) ∈M,

there exists a finite dimensional vector θ ≡ (θ0, θ1) ∈ RK0+K1 such that

md(u, x) =

Kd∑
k=0

θdkbdk(u, x) for d = 0, 1, (26)

where bdk(u, x) are known basis functions. Substituting (26) into the definition of

Γ?(m), we have

Γ?(m) =
∑

d∈{0,1}

Kd∑
k=0

θdkE

[∫ 1

0
bdk(u,X)ω?d(u,X,Z) du

]

≡
∑

d∈{0,1}

Kd∑
k=0

θdkγ
?
dk where γ?dk ≡ E

[∫ 1

0
bdk(u,X)ω?d(u,X,Z) du

]
. (27)

The γ?dk terms in (27) are identified population quantities that depend on the known

basis functions, bdk, and the known (or identified) weighting functions, ω?d, but which

do not depend on θ. Imposing (26) therefore turns the objective of (25) into a linear

function of the finite dimensional parameter, θ. Similarly, (26) implies that

Γs(m) =
∑

d∈{0,1}

Kd∑
k=0

θdkγsdk where γsdk ≡ E
[∫ 1

0
bdk(u,X)ωds(u,X,Z) du

]
,

for every s ∈ S, so that the constraints for the IV–like specifications in (25) are also

linear in θ.

Under (26), each m ∈ M is parameterized by a finite dimensional θ. In analogy
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Figure 4: Fourth Degree Polynomial Bounds (K0 = K1 = 4) on the ATT

Bounds: [-0.494,-0.073] – Shown at Upper Bound
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to M, one can specify an admissible set Θ to which θ is restricted to belong. For

computation, it is advantageous to specify Θ to be closed convex polyhedron, i.e. a set

determined by a finite collection of linear inequalities. In this case, the maximization

problem in (25) reduces to the linear program

β
?

= max
θ∈Θ

∑
d∈{0,1}

Kd∑
k=0

γ?dkθdk subject to
∑

d∈{0,1}

Kd∑
k=0

γsdkθdk = βs for all s ∈ S, (28)

and similarly for the minimization problem. Linear programs like these can be solved

reliably and are routinely used in empirical work using quantile regressions, see e.g.

Buchinsky (1994), Abadie, Angrist, and Imbens (2002) and Koenker (2005). We view

the computational benefits afforded by linear programming as sufficiently important

to restrict ourselves to this case in the following.

5.4 Parametric and Nonparametric Bounds

The interpretation of (26) and Θ depends on the choice of basis functions. For example,

suppose for simplicity that there are no covariates X, and that the basis functions are

chosen to be polynomials, i.e. bdk(u) = uk−1 for k = 1, . . . ,Kd. With small values of

Kd, this choice imposes a strong parametric restriction on the collection of admissible

MTR pairs. The restriction becomes weaker for larger values of Kd, since larger values
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Figure 5: Ninth Degree Polynomial Bounds (K0 = K1 = 9) on the ATT

Bounds: [-0.537,0.049] – Shown at Upper Bound
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of Kd add more variables of optimization to (25). We view this as a natural and

attractive property, since it allows a researcher to transparently trade off the strength

of their assumptions with the strength of their conclusions.

Figures 4 and 5 demonstrate this property in our running numerical illustration.

These graphs have two vertical axes, with the left-hand axis measuring the weight

functions for the target parameter and IV–like estimands, and the right-hand axis

measuring MTR functions. The graphs are split into two panels, with the left panel

displaying weights and an MTR function for d = 0, and the right panel displaying

these objects for d = 1. Figure 4 is generated by solving the maximization problem

(28) when the target parameter is the ATT, the basis functions are fourth degree

polynomials (so K0 = K1 = 4), and two IV–like estimands are included in S. The two

IV–like estimands are the slope terms for the IV estimand that uses Z as an instrument

for D, and a TSLS estimand that uses {1[Z = z]}4z=1 as instruments for D. In this

example, these two IV–like estimands yield similar (although not identical) weights,

shown by the colored curves in Figure 4.

The black curves in Figure 4 represent choices of m0 and m1 that yield the upper

bound on β?, which we are taking here to be the ATT. These choices are not unique.

What is unique is the attained upper bound of .049 for β?, which is indicated in

the header of Figure 4 along with the analogous lower bound. This upper bound is

constrained by the requirement that IV–like estimands generated by this black curve are
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Figure 6: Bounds on the ATT for Different K
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equal to the values observed in the data. Visually, this corresponds to a requirement

that the integrals of the products of the black and colored functions attain a given

value. The upper bound on the ATT is the largest that the integral of the product

of the black and gray dotted curves could be while ensuring that this requirement is

satisfied.

Figure 5 shows the result from the same problem with K0 = K1 = 9, so that the

basis functions are ninth degree polynomials. The bounds necessarily become wider

than in Figure 4, which reflects the fact that the set of fourth degree polynomials is a

subset of the set of ninth degree polynomials. Figure 6 demonstrates this phenomenon

for a large number of values of polynomial degrees, K. The upper and lower bounds for

the current problem are shown as a solid green line with circle marks. Intuitively, by

increasing the degree of the polynomial one is allowing for more wiggly MTR functions

that can adjust to become larger more quickly in regions where the target parameter

weights are most important.

For researchers who wish to remain fully nonparametric, MST show that (26) can

also be used to recover exact nonparametric bounds by specifying the basis functions

as segments of a constant spline with knots chosen at particular u values.15 Figure

15They also provide a statistical inference framework in which the dimension of θ enters into the asymp-
totics as in sieve estimation (Chen, 2007).
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Figure 7: Exact Nonparametric Bounds on the ATT

Bounds: [-0.587,0.154] – Shown at Upper Bound
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7 shows the impact of replacing the polynomial basis in Figures 4 and 5 with this

constant spline basis. The bounds widen—as they must—since they are computed

under strictly fewer restrictions than when a polynomial basis is maintained. Figure 6

shows that as K increases, the bounds using the polynomial basis approach the fully

nonparametric bounds, depicted there as constant dotted green lines with circle marks.

5.5 Nonparametric Shape Restrictions

One attractive aspect of the general framework is that it allows researchers to easily

incorporate nonparametric shape restrictions into their specification of the MTR func-

tions. These restrictions can be imposed either on the MTR functions m = (m0,m1)

or directly on the MTE function m1 − m0. For example, in some applications one

may be willing to assume that m(·, x) is weakly decreasing for every x. This restric-

tion would reflect an assumption that those more likely to select into treatment (those

with small realizations of U) are also more likely to have larger gains from treatment.

This is similar to the monotone treatment selection assumption of Manski and Pepper

(2000).16

Figure 8 demonstrates the effect of imposing the assumption that the MTR func-

tions are decreasing in our running numerical example. In particular, the figure shows

16See Chernozhukov, Newey, and Santos (2015) for a discussion of various shape restrictions implied by
economic theory in several empirical applications.
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Figure 8: Ninth Degree Decreasing Polynomial Bounds on the ATT

Bounds: [-0.467,-0.159] – Shown at Upper Bound
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the result of using a ninth degree polynomial basis, as in Figure 5, but further restrict-

ing the admissible MTR pairs so that both m0 and m1 must be decreasing in u, as in

Figure 1. The basis for this assumption would be an a priori belief in a selection story,

for example the one we described in which individuals who are more likely to purchase

mosquito nets would also be more likely to be afflicted by malaria due to variation in

their personal immunity. The additional monotonicity restriction mechanically tight-

ens the bounds by imposing an additional constraint on the optimization problem (28).

In particular, it ensures that the maximizing MTR functions shown in Figure 5 are no

longer feasible, since neither one is monotonically decreasing.

Figure 6 illustrates the impact of enforcing monotonicity for different order polyno-

mials. Monotonicity can also be imposed when using the fully nonparametric (constant

spline) bounds. As expected, the polynomial monotone bounds are always narrower

than the nonparametric monotone bounds, with the difference disappearing as the

degree of the polynomial increases. The figure shows that shape restrictions such as

monotonicity—which are inherently nonparametric—can contain a great deal of identi-

fying content. Indeed, the bounds for nonparametric but decreasing MTRs are roughly

the same as when allowing for MTRs that are non-monotone sixth degree polynomials.

Another type of nonparametric shape restriction that is often used is separability
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Figure 9: Ninth Degree Decreasing Polynomial Bounds with More IV–Like Estimands

Bounds: [-0.414,-0.275] – Shown at Upper Bound
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between the observed (X) and unobserved (U) components, i.e. the assumption that

md(u, x) = mU
d (u) +mX

d (x) for d = 0, 1, (29)

for some functions mU
d and mX

d . Separability implies that the slopes of the MTR

functions with respect to u do not vary with x. We discuss separability more fully

in Section 6.2. Maintaining combinations of assumptions simultaneously (e.g. both

monotonicity and separability) is simply a matter of imposing both restrictions on M
at the same time.

In practice, these shape restrictions are imposed through the specification of Θ for

a given finite basis (26). The restrictions involved in ensuring that a given θ generates

an MTR pair with a particular set of shape properties depends on the choice of basis.

As discussed in MST, the Bernstein polynomial basis is particularly attractive in this

regard, since many common shape restrictions can be phrased as linear constraints on

the components of θ. For a nonparametric analysis, the constant spline basis discussed

in the previous section is also easy to force into particular shapes by imposing linear

constraints on θ. The linearity involved in these constraints is computationally helpful,

since it ensures that (25) remains a linear program.
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5.6 Choosing IV–Like Specifications

The set S of IV–like specifications is chosen by the researcher. Intuitively, one can think

of S as the set of information from the data that the analyst uses to discipline their

inference. Examining (25) shows that including more specifications in S mechanically

reduces the identified set [β?, β
?
] for the target parameter, β?. For example, in Figure 9,

we recompute the bounds in Figure 8 after including two more IV–like estimands in S:

the OLS estimand, and the Z = 2 to Z = 4 Wald estimand. The effect is a substantial

decrease in the width of the bounds. MST show how to choose S systematically so as

to exhaust all of the information contained in the conditional mean of Y for any given

choice of the admissible set M.

For the purposes of identification, the only drawback to expanding S is increased

computational difficulty. When considering statistical inference, the situation becomes

more delicate, as including IV–like specifications with low content and large noise will

be unhelpful. A natural starting point is to choose IV–like specifications that generate

the estimands one would ordinarily be interested in when not being concerned about

endogeneity or unobserved heterogeneity. For example, one set of s would be the

vector of ordinary least squares (OLS) estimands, another would be the vector of IV

estimands, and a third could be a vector of two-stage least squares (TSLS) estimands

from including an additional instrument.

While this potentially leaves some information on the table, it has the interpretative

benefit of being a departure from a well-understood baseline. An attractive property

of this approach is that, by construction, any feasible value of the target parameter

must also be consistent with these baseline IV–like estimands. This allows one to

follow the advice of Imbens (2010, pp. 414–415), who recommends reporting both a

standard LATE, as well as parameters with higher external validity, while maintaining

a clear distinction between the assumptions that drive their identification. As long

as one includes a Wald estimand corresponding to such a LATE in the set of IV–like

specifications, all MTR pairs in MS and all potential values of the target parameter,

B?S , will necessarily be consistent with this LATE.17

5.7 Determinants of the Width of the Bounds

The width of the bounds is determined by three factors: The degree of extrapolation

required to evaluate the target parameter, the strength of the a priori assumptions

that the analyst maintains, and the information set of IV–like estimands, S. The

17Kline and Walters (2017) note that some fully parametric models for binary treatments also happen to
possess this property in certain settings. In contrast, our approach imposes this property.
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Figure 10: Bounds on LATE+
2→3(α) Under Different IV–Like Estimands
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Figure 11: Sharp Bounds on LATE+
2→3(α) Under Different Assumptions
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trade-off between these factors can be demonstrated by considering bounds on the

right-hand extrapolated Z = 2 to Z = 3 LATE, i.e. LATE+
2→3(α), which was plotted

in Figure 3. Figure 10 shows these bounds as a function of α for three information

sets (specifications of S) under the assumption that the MTR functions are decreasing

ninth order polynomials. The first information set is the least restrictive one used in

Figure 8, while the second information set is the one from Figure 9 that includes two

additional IV–like estimands. The sharp information set represents the best possible

bounds that can be achieved using the formulation that is discussed in MST.

As expected, the bounds are nested for any given value of α. For α = 0, only

the second and sharp information sets yield point identification of LATE+
2→3(0), which

is just equal to the usual Z = 2 to Z = 3 LATE. This is simply because the first

information set does not include either the Z = 2 to Z = 3 Wald estimand or a combi-

nation of other IV–like estimands that could generate this Wald estimand. Similarly,

at α = p(4) − p(3) = .3, the right-hand extrapolated Z = 2 to Z = 3 LATE is equal

to the usual Z = 2 to Z = 4 LATE. Consequently, the bounds for the second and

sharp information sets collapse to a point, reflecting the fact that this parameter is

point identified. For other values of α, the second and sharp information set bounds

are narrow, but not a point. Values of α that are farther away from 0 or .3 correspond

to extrapolated LATEs that require more significant extrapolations (or interpolations)

away from the instrument variation observed in the data. The intuition that these

parameters should be more difficult to identify is visible in the bounds in Figure 10.

In Figure 11, we maintain the sharp information set from Figure 10 and consider

a nested set of a priori assumptions on the MTR functions. Naturally, for any given

α, weaker assumptions lead to wider bounds. For α = 0 and α = .3, even the non-

monotone nonparametric bounds yield point identification, again as a consequence of

the results of Imbens and Angrist (1994). Figure 11 reveals that an analyst must face

up to the compromise between the extent to which they wish to extrapolate (α) and

the strength of the assumptions that they impose. There is no free lunch. Given a

desired tightness of the bounds, a more ambitious extrapolation can be obtained only

by imposing stronger assumptions. Given a set of assumptions, tighter bounds can be

obtained only by less ambitious extrapolations. The utility of the general framework

is that it gives the researcher the tools to decide exactly where they want to locate on

this frontier between assumptions and external validity. The solution to this location

problem is unlikely to be the corner solution of reporting only parameters that are

nonparametrically point identified, such as the LATE.
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Table 4: Weights for Measures of Selection

Weights

Quantity Expression ω?
0(u, x, z) ω?

1(u, x, z)

Average
Selection Bias

E[Y0|D = 1]

− E[Y0|D = 0]

1[u ≤ p(x, z)]
P [D = 1]

− 1[u > p(x, z)]

P [D = 0]
0

Average
Selection on
the Level

E[Y1|D = 1]

− E[Y1|D = 0]
0

1[u ≤ p(x, z)]
P [D = 1]

− 1[u > p(x, z)]

P [D = 0]

Average
Selection on
the Gain

E[Y1 − Y0|D = 1]

− E[Y1 − Y0|D = 0]

−ω?
1(u, x, z)

1[u ≤ p(x, z)]
P [D = 1]

− 1[u > p(x, z)]

P [D = 0]

5.8 Testable Implications

It is possible that no solution exists to the programs in (25) because the feasible set

(MS) is empty. This indicates that the model is misspecified: There does not exist a

pair of MTR functions m that can satisfy the researcher’s assumptions (m ∈M) while

also generating the observed data (Γs(m) = βs for all s ∈ S). This can happen even

if M is unrestricted, since the choice equation (4) with Assumptions IV is known to

have testable implications (Balke and Pearl, 1997; Imbens and Rubin, 1997; Kitagawa,

2015). On the other hand, if M is restricted, then misspecification could also be due

to falsification of these additional restrictions on the MTR functions.

This observation can be used to test a variety of interesting hypotheses. For ex-

ample, suppose that M is restricted to contain only MTR pairs with m0 components

consistent with E[Y0|D = 1] = E[Y0|D = 0]. This can be interpreted as the set of all

MTR pairs that lead to no average selection bias. Table 4 shows that this restriction

can be imposed as a linear constraint by defining

Γsel(m) ≡ E
[∫ 1

0
m0(u,X)

(
1[u ≤ p(X,Z)]

P [D = 1]
− 1[u > p(X,Z)]

P [D = 0]

)
du

]
(30)

and then constraining M to satisfy Γsel(m) = 0. As long as no other assumptions in

the model are deemed suspect, finding that the feasible set in (25) is empty when M
is constrained in this way can be interpreted as evidence against the hypothesis of no

selection bias. One could further restrictM to only contain m such that Γgain(m) = 0,

where Γgain(m) is defined like (30) using the weights for average selection on the gain

given in Table 4. Finding the feasible set in (25) to be empty with both Γsel(m) = 0

and Γgain(m) = 0 is evidence against the hypothesis of no unobserved heterogeneity.
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6 Other Approaches to Extrapolation

In this section, we compare the general MST framework discussed in Section 5 to

several other approaches that have been used in prior research. We show that many of

these approaches can be viewed as a special cases of this framework in which the set

of admissible MTR functions, M, is restricted to only contains functions with certain

functional forms.

6.1 Independence, Constant Effects, and Random Choices

The primary motivation for using an IV method is the concern that D and (Y0, Y1) are

dependent. In the notation of the choice model, this dependence arises from dependence

between U and (Y0, Y1) that remains even after conditioning on X. If Y0 and Y1 were

independent of U , conditional on X, then the MTR functions would be constant in u,

i.e. md(u, x) = md(x) for d = 0, 1. In this case, m0 and m1 could be directly recovered

from the conditional means of Y , since

E[Y |D = 1, X = x] = E [m1(U, x)|D = 1, X = x] = m1(x)

and similarly for m0. Any target parameter is then point identified. Indeed, most

target parameters we have considered will be identical, since the potential outcomes

do not vary systematically with the unobservable factors that are related to treatment

status.18 This independence condition is useful to keep in mind as an extreme case.

However, it is unattractive as an assumption, since it assumes away the identification

problem that originally motivated considering an IV strategy.

A slightly weaker alternative to independence is to assume that the MTE function

m1(u, x)−m0(u, x) is constant in u. While this assumption allows for selection bias, in

the sense that m0 and m1 can still themselves be functions of u, it implies no selection

on the unobserved gains from treatment. In other words, while Y0 is still allowed

to depend on D, the treatment effect Y1 − Y0 is assumed to be independent of D,

conditional on X. Under this condition, the z to z′ Wald estimand (conditional on

X = x) point identifies MTE(u, x) = MTE(x) for all u, i.e.

E[Y |Z = z′, X = x]− E[Y |Z = z,X = x]

E[D|Z = z′, X = x]− E[D|Z = z,X = x]

=

∫ p(x,z′)
p(x,z) [m1(u, x)−m0(u, x)] du

p(x, z′)− p(x, z)
=

∫ p(x,z′)
p(x,z) MTE(x) du

p(x, z′)− p(x, z)
= MTE(x).

18These observations date back at least to Heckman and Robb (1985a,b).
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As a result, any target parameter that depends only on the MTE—but not on the

MTRs per se—is point identified. This includes any target parameter with symmetric

weights (i.e. ω?0 = −ω?1), such as the ATE, ATT, ATU, and any counterfactual LATE.

The intuition behind this is straightforward. If the average causal effect does not vary

with unobservables, then it is sufficient to identify this effect for a single subgroup,

such as the complier group picked up by the z to z′ Wald estimand.19

As Heckman and Vytlacil (2007a,b) argue, justifying an MTE function that is con-

stant in u requires strong economic assumptions. In particular, it requires one to

assume either that the causal effect of D on Y is identical for all individuals with

X = x, or else that these individuals either do not know (or do not act on) their id-

iosyncratic differences in this causal effect. A dissenting opinion is provided by Angrist

and Fernández-Val (2013), who argue that this assumption, which they describe as

“conditional effect ignorability,” can be attractive.20 We are not sympathetic to this

view. Indeed, allowing for unobserved heterogeneity in the effect of D on Y is a key

motivation in the modern program evaluation literature, and one which is supported

by a large body of empirical work. Assuming it away also disposes of key concep-

tual distinctions, such as the difference between the LATE and the ATE discussed by

Imbens and Angrist (1994).

6.2 Separability of Observed and Unobserved Heterogeneity

In Section 4.2, we saw that a key obstacle to nonparametric point identification is a

lack of sufficient instrument variation. One way to ameliorate this problem is to exploit

variation in the propensity score that arises from the covariates, X. Carneiro et al.

(2011) show how to do this by first writing

Yd = µd(X) + Vd for d = 0, 1, (32)

19Using similar intuition, Angrist (2004) shows if the observed propensity score is symmetric around .5,
then symmetry assumptions on (Y0, Y1, U) are sufficient to point identify the ATE. However, even if the
propensity score is fortuitously symmetric in this way, it is not clear how one could motivate the symmetry
assumption on unobservables without appealing to one of the explicit parametric approaches discussed in
Section 6.3.

20The assumption used by Angrist and Fernández-Val (2013) is actually that∫ p(x,z′)

p(x,z)
[m1(u, x)−m0(u, x)] du

p(x, z′)− p(x, z)
=

∫ 1

0

[m1(u, x)−m0(u, x)] du for all x and z. (31)

While this is mathematically weaker than assuming that m1(u, x)−m0(u, x) is constant in u, it is difficult
to see how one could justify (31) without making the stronger assumption.
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where µd(x) ≡ E[Yd|X = x] and E[Vd|X] = 0. This by itself is not an assumption,

since it is satisfied by letting Vd = Yd − µd(X). However, Carneiro et al. (2011)

then strengthen IV.2 to the assumption that (V0, V1, U)⊥⊥(X,Z). Under this stronger

independence assumption,

md(u, x) ≡ E[Yd|U = u,X = x] = µd(x) + E[Vd|U = u] for d = 0, 1, (33)

which is an additively separable function of x and u. Returning to (15), this implies

that

E[Y D|p(x, Z) = u,X = x] = uµ1(x) +

∫ u

0
E[V1|U = u′] du′, (34)

and similarly for d = 0.

Under additive separability, variation in P = p(X,Z) conditional on X = x traces

out the same function E[Vd|U = u] for any x. By parameterizing µd(x), this property

can be exploited to point identify the MTR functions for every (u, x) with u on the

interior of the unconditional support of P , using a modification of the idea behind

Robinson’s (1988) partially linear estimator.21 In contrast, without separability the

MTR functions are only point identified on the interior of the support of P , condi-

tional on X = x, which is necessarily smaller. Continuous variation in the propensity

score is still needed under separability, however the continuity is for the unconditional

distribution of P , so it could in principle come from a continuous component of X,

even if Z is discrete.

A growing empirical literature has started using this type of separability approach

to circumvent limitations in instrument variation.22 It is important to notice that

21For example, suppose that µ1(x) = x′τ1 is linear in parameters. Then from (34), one has

E
[
Ỹ D|P,X

]
= PX̃ ′τ1,

where Ỹ D ≡ Y D − E[Y D|P ], X̃ ≡ X − E[X|P ], and P ≡ p(X,Z) as usual. Given sufficient variation in

PX̃, this enables one to point identify τ1, and therefore µ1(x) for any x. Treating τ1 as known, it follows
that

E [Y D − PX ′τ1|P = u] =

∫ u

0

E[V1|U = u′] du′,

so that E[V1|U = u] is point identified for any u in the interior of the support of P by differentiating the
left-hand side. It follows from (33) that m1(u, x) = µ1(x) + E[V1|U = u] is point identified for any x and
any u in the interior of the unconditional support of P . See Carneiro et al. (2011) for more details on this
argument.

22Examples include Carneiro and Lee (2009), Carneiro et al. (2011), Maestas et al. (2013), Eisenhauer,
Heckman, and Vytlacil (2015), Carneiro et al. (2016), Kline and Walters (2016), Brinch et al. (2017), and
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assuming (V0, V1, U)⊥⊥(X,Z) does not imply that Y0 or Y1 are independent of X.

Rather, the dependence of Y0 and Y1 on X is captured through the conditional mean

function µd(X), which is often specified as linear-in-parameters in applications. Still,

the stronger independence assumption implies, among other things, that X and U are

independent. This nearly elevates X to the status of an instrument, albeit one which

does not need to obey the usual exclusion restriction. In applications, the types of

variables usually included in X, such as socio-demographic controls, are unlikely to be

exogenous in this way.

Brinch et al. (2017) observe that the stronger independence assumption is not ac-

tually necessary for the purpose of expanding the effective support of the propensity

score. Instead, the separability in (33) can be achieved by writing (32) and adding the

assumption that E[Vd|U,X] = E[Vd|U ] to IV.2. This assumption still allows for X and

U to be dependent in arbitrary ways, thereby addressing the previous concerns while

still allowing the researcher to exploit the separability assumption. In Section 5.5, we

showed that separability can be imposed in the general MST framework as a direct

restriction on the set M of admissible MTR functions.

In some settings, the separability in (33) can be motivated by economic theory

through standard classes of technologies or preferences. For example, suppose that md

is a production function in state d, with Yd denoting output and X denoting observed

input factors. Additive separability in md is then implied by perfect substitutability

between X and unobserved input factors. Alternatively, if input and output factors

are measured in logs, then additive separability is implied by unit elasticity between

observable and unobservable inputs, as in a Cobb-Douglas production function. More

generally, additive separability in md is compatible with a production technology in

which unobserved productivity differences across agents are factor neutral, which is a

standard assumption for methods of estimating production functions.

6.3 Parametric Assumptions

Another natural response to the problem of limited instrument variation is to impose

parametric structure. Using parametric assumptions to correct for unobserved hetero-

geneity has a long history, dating back to Gronau (1974) and Heckman (1974, 1976,

1979). Heckman, Tobias, and Vytlacil (2001, 2003) apply this approach to the binary

treatment setting considered in this paper. The case they study, which is the most

widely used, maintains (32) and the assumption that (Vd,Φ
−1(U)) is bivariate normal

and independent of X for d = 0, 1, where Φ−1 is the inverse of the standard normal

Cornelissen et al. (forthcoming).
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cumulative distribution function (CDF).23

Under this assumption, (33) reduces to

md(u, x) = µd(x) + Corr(Vd, U) Var(Vd)Φ
−1(u) for d = 0, 1, (35)

since the conditional mean function for bivariate normal random variables is linear in

the conditioning value. Assuming that there is at least one value x for which p(x, Z)

has two support points, say p(x, z′) ≡ ũ1 > ũ2 ≡ p(x, z), it follows from (15) that

E[Y D|p(x, Z) = ũ1, X = x]− E[Y D|p(x, Z) = ũ2, X = x]

= Corr(V1, U) Var(V1)

∫ ũ1

ũ2

Φ−1(u) du, (36)

and similarly for d = 0. This implies that Corr(V1, U) Var(V1) is identified, and hence

that the functional form restriction in (35) is sufficient to point identify the MTR

functions everywhere, at least as long as there is enough variation in X to identify the

µd component.

This identification argument hinges heavily on the assumption of bivariate normal-

ity, which ensures that E[Vd|U = u] is a function that is completely determined by the

single unknown quantity, Corr(Vd, U) Var(Vd). Two points of exogenous variation, i.e.

z and z′, are sufficient to identify this quantity. Once it is known, the functional form

of the normal distribution is used to extrapolate to any other value required to evaluate

a given target parameter. This argument should be concerning whenever normality of

an unobserved error lacks an economic motivation. In our view, it is an exceptional

case when one actually can motivate normality as anything other than a convenient

functional form assumption.

There are other parametric approaches that yield the same payoff, but which may

sometimes be easier to interpret and motivate than bivariate normality. For example,

suppose that instead of (35), we assume that md(u, x) is linear in its u component for

every x, i.e.

md(x, u) = µd(x) + λd(x)u for d = 0, 1, (37)

where both µd and λd are unknown functions of x. From (15), we have

E[Y D|p(x, Z) = u,X = x] = uµ1(x) +
1

2
u2λ1(x),

23Alternatively, and equivalently, the same assumption can be made about (Vd, U) using the pre-
normalized choice equation (2).
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and similarly for d = 0. Since P [D = 1|p(x, Z) = u,X = x] = u by definition of the

propensity score, it follows that

E[Y |D = 1, p(x, Z) = u,X = x] = µ1(x) +
1

2
uλ1(x). (38)

Using (38) with two values ũ1 ≡ p(x, z′) 6= p(x, z) = ũ2 and X = x fixed shows that

both µ1(x) and λ1(x) are point identified. The same argument could be repeated

for any other x for which the distribution of p(x, Z)|X = x has two support points.

Alternatively, if separability is imposed (i.e. λd(x) = 1), then this propensity score

variation is needed conditional on only a single value of x, as in (36).

This linearity assumption was first suggested by Brinch, Mogstad, and Wiswall

(2012).24 The assumption yields point identification through effectively the same ex-

trapolation argument as bivariate normality. Linearity has a straightforward inter-

pretation: Holding X = x fixed, a one percentage point change in the unobserved

willingness to pay for treatment u results in an average increase in Yd of λd(x). In con-

trast, under normality, a one unit increase in u results in a different average increase

in Yd depending on the base value of u, where the form of this difference is dictated

by the shape of the inverse normal CDF. Since the two assumptions are not nested,

their implications must be considered on a case by case basis.25 However, at least in

some applications, the comparative ease of interpreting linearity should make it easier

to motivate.

Another benefit of considering a functional form restriction like linearity is that

it is straightforward to relax the restriction. As discussed by Brinch et al. (2012,

2017), whereas a linear MTR can be point identified with a binary instrument, point

identifying a quadratic MTR requires a ternary instrument, a cubic MTR requires a

quaternary instrument, etc.26 However, the notion that the richness of the data should

constrain the assumptions of the model is, in our view, backward. The assumptions of

the model should be considered on their own; if the data is insufficiently rich to point

identify the desired model then this must be recognized.

24See Kowalski (2016) for a more recent application of the same idea.
25It should also be noted that bivariate normality imposes a restriction on the entire distributions of

(Y0, U) and (Y1, U), while the linearity assumption (37) is a restriction only on the means, i.e. the MTR
functions. That is, bivariate normality leads to a fully parametric model, whereas under (37) the model is
still semiparametric. This engenders several differences for identification of other features of the distribution
of Y0 and Y1, as well for the efficiency of statistical inference. A more direct comparison would be between
(35) and (37) as different restrictions on the forms of the MTR functions.

26These observations are related to proposed series estimators of the local instrumental variables estimand
(16), as in Moffitt (2008) and French and Song (2014). Brinch et al. (2012, 2017) show that more flexible
specifications of the MTE functions can be point identified by first point identifying the MTR functions
separately, as in (38).
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The general framework in Section 5 provides a disciplined solution to this criticism,

since it allows researchers to maintain parametric restrictions without requiring point

identification. Point identification is still allowed as a special case, however. In particu-

lar, notice that the setMS in (23) is a system of |S| linear equations, with the number

of variables given by the combined dimensions of m ≡ (m0,m1). The assumption that

S can be specified to include enough non-redundant IV–like estimands to exactly pin

down a single m ∈ M is a higher dimensional analog to the arguments in (36) and

(38). As always, where such a specification is possible depends both on the richness

of the data, i.e. how many distinct IV–like estimands can be found, as well as how

flexibly the researcher wishes to specify M.

6.4 Rank Invariance

Rank invariance is an assumption about unobserved heterogeneity that was introduced

to the program evaluation literature by Heckman, Smith, and Clements (1997). The

formal assumption is that F0|x(Y0) = F1|x(Y1) (almost surely), where F0|x and F1|x

denote the marginal distributions of Y0 and Y1, conditional on X = x. In words,

F0|x(Y0) ∈ [0, 1] can be viewed as an agent’s rank (order) in the distribution of Y0|X =

x, and rank invariance postulates that this order remains the same in the D = 1

counterfactual outcome distribution. While rank invariance allows Y0 and Y1 to be

dependent with D, conditional on X, it has the unusual implication that the joint

conditional-on-X distribution of Y1 and Y0 is degenerate, since it implies that Y1 is a

deterministic function of Y0 and X.27

Chernozhukov and Hansen (2005) showed that rank invariance can be used to point

identify the ATE under a somewhat non-standard relevance condition for the relation-

ship between D and Z. Their model does not impose the choice equation (4). Vuong

and Xu (2017) show that also imposing a choice equation allows one to obtain point

identification of conventional parameters, such as the ATE and ATT, under the usual

relevance condition used to ensure the existence of Wald estimands. Their argument

works by identifying the relationship (mapping) between Y0 and Y1 among the com-

pliers, i.e. those individuals whose choices would be affected by a given shift in the

instrument. Under rank invariance, one can then infer the distribution of Y0 for the

subpopulation that would always choose D = 1 by applying this mapping to their ob-

27Assuming rank invariance in this way only makes sense in settings where Y is continuously distributed.
Rank invariance can be interpreted as a restriction on the dimension of unobserved heterogeneity. In this
sense, it is intuitively similar to models for discrete outcomes with a threshold crossing form, as considered for
example by Vytlacil and Yıldız (2007), Chesher (2010), Shaikh and Vytlacil (2011), Bhattacharya, Shaikh,
and Vytlacil (2012), Machado, Shaikh, and Vytlacil (2013), Mourifié (2015), and Torgovitsky (2017), among
others.
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served Y = Y1 outcomes. Similarly, one can infer the distribution of Y1 for individuals

who would always choose D = 0. This strategy effectively uses the rank invariance

assumption to extrapolate from individuals whose treatment choices are affected by

the instrument to those whose choices are not.

6.5 Analytical Bounds

The approach in Section 5 is influenced by an important line of work primarily due to

Manski (1989, 1990, 1994, 1997, 2003) and Manski and Pepper (2000, 2009). Unlike

most of Manski’s work on IV methods, the MST approach maintains the choice equation

(4).28 Maintaining a choice equation such as this places a substantive restriction on

behavior, but one that is indispensable for considering the effects of policy interventions

that do not mandate treatment or non-treatment.29 As we argued in Section 3, we

view such policies as being typical of interesting counterfactual questions in economic

applications.

Another difference between the MST framework and Manski’s research is more

practical. Instead of deriving explicit expressions for bounds, it takes a computational

approach of solving linear programs. The benefit of the computational approach is

flexibility: The same procedure can be used for a large class of target parameters un-

der a wide range of assumptions without requiring new analytical derivations. These

derivations can be extremely challenging for models that maintain multiple assump-

tions. The cost of a computational approach is that without analytical expressions for

the bounds it is difficult to understand specific details of their structure. Our view is

that the benefits of the computational approach outweigh this cost in many settings.

As an example of this benefit, recall Figures 5 and 7 of our numerical illustration.

For Figure 7, we specified the MTR functions to be constant splines in a way that

exactly replicates the nonparametric bounds. With some effort, one could derive the

analytical bounds for this case. In contrast, for Figure 5, we specified the MTR func-

tions as ninth degree polynomials. This narrowed the bounds considerably by ruling

out the discontinuous MTR functions that are permitted in Figure 7. We view this

28Incidentally, the monotonicity assumption underlying the choice equation is exactly Manski’s (1997)
monotone treatment response assumption, but applied to the counterfactual relationship between Z and D,
rather than between D and Y .

29An interesting result due to Heckman and Vytlacil (2001b) shows that when the implications of the
choice model (4) are not rejected (c.f. Section 5.8), the choice model has no impact on the sharp nonpara-
metric bounds for the ATE derived by Manski (1994). This result extends to the ATT and the ATU, but
clearly not to parameters, such as PRTEs, that are defined only given a choice equation. Similarly, the result
also loses meaning when placing assumptions on the MTR functions that have no clear interpretation in the
absence of a choice equation.
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as attractive for many applications, since these discontinuous functions are unlikely

to represent important cases to guard against in many economic settings. However,

analytic expressions for the bounds under a ninth degree polynomial are unknown,

and seem difficult to derive. Using the MST computational approach, this deriva-

tion was not necessary, and the bounds were returned using standard software almost

instantaneously.

7 Conclusion and Directions for Future Research

We have discussed the implications of unobserved heterogeneity in treatment effects for

using IV methods to answer specific well-defined policy questions. The identification

challenge inherent in doing this can be viewed as a problem of extrapolating from

the individuals whose treatment choices are affected by the variation in the data to

the individuals relevant for the counterfactual question. Several methods for formally

conducting this extrapolation have been proposed in the literature. We reviewed these

approaches, and argued that their reliance on point identification is a weakness. We

discussed a general framework, developed fully in Mogstad et al. (2017), that nests

these approaches but allows for more flexibility by recognizing the possibility of partial

identification.

Partial identification approaches are sometimes criticized for yielding empirical con-

clusions that are insufficiently informative for practitioners (e.g. Imbens, 2013, pp.

F407–F409). We view computational methods, such as the one discussed in Section

2, as important tools for answering this criticism. The flexibility of the MST method

means that a researcher can smoothly adjust their policy question (target parameter),

or the assumptions they are willing to maintain, in a way that approaches point iden-

tification as a special case. As a result, the tightness of the bounds they report is at

their discretion, while still being disciplined by the reality that stronger conclusions

require stronger assumptions. We view this as an important improvement over the

current practice—common in applied work—of hoping that a given estimand is rel-

evant for the policy change of interest to the researcher. This type of “faith-based

extrapolation” is ad hoc and potentially misleading.30

There are many avenues down which the partial identification approaches to iden-

tification and extrapolation of treatment effects can be further developed. While we

focused on the widely studied case of a binary treatment, applying similar ideas to

models with continuous or discrete (ordered or unordered) treatments would be useful

30For a different view, see Angrist (2016).
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and involves many complications.31 The issues of policy relevance and need for extrap-

olation that arises in IV models is also a concern in other common program evaluation

strategies. For example, it may be interesting to apply ideas similar to those discussed

here to help ameliorate the local nature of regression discontinuity designs.32 Similar

ideas could also be applied to more complicated evaluation settings involving dynamics,

mediation, peer effects, or other challenges for identification.
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