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Abstract
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statistics. With private insurance, however, the formula involves additional terms
that reflect how the private market interact with public insurance. For example, in
our benchmark model–Huggett (1993), the optimal tax formula should also consider
pecuniary externalities as well as changes in asset holdings of households. According
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1 Introduction

What is the socially optimal shape of the income tax schedule? This has been one of the

classic and central questions in macroeconomics and public finance. Despite significant

progress in the literature, surprisingly few studies have investigated the role of private

intermediation in the optimal tax system. Understanding the impact of private insurance

on the optimal tax is important because, in practice, it is very rare that public insurance

can perfectly substitute for a private arrangement. Moreover, even when the govern-

ment insurance coverage is exactly at the same level that would have been selected by

a household from the private market in the absence of government, households may still

purchase additional private insurance, if there is moral hazard or a pecuniary externality

(see Kaplow (1994)).

In this paper, we study the optimal (fully) nonlinear income tax schedule that highlights

the role of the interaction between private and public insurance in determining the optimal

tax-and-transfer system. We study a fully nonlinear schedule but focus on a simple class

of tax system that is levied on current income only, which allows a direct comparison

of our results to those in classic optimal formulas (Saez (2001), Diamond (1998)). The

optimal tax formula is derived using a variational approach—the tax schedule is optimal,

if there is no welfare gain from a small deviation—as in Piketty (1997) and Saez (2001).

The benchmark model we consider for private insurance is incomplete market model

with state-noncontingent bond — Huggett (1993). In this economy, consumers can self

insure themselves against idiosyncratic income shock through saving and borrowing. The

insurance, however, is limited because (i) consumers can only trade non state-contingent

bond, and (ii) borrowing is constrained by the exogenous borrowing limit.

We choose Huggett (1993) for several reasons. First, it is one of the most commonly

used incomplete market structure in macroeconomic analysis. Second, since its capital

market features a pure insurance—households’ asset holdings sum to zero in equilibrium,

it provides a transparent comparison to those that abstract from private insurance such

as Saez (2001). Third, while it assumes a specific (incomplete) market structure, it

still allows ready comparisons to the optimal tax formulas from other market structures

considered in previous analyses (e.g., Chetty and Saez (2010)). Finally, but not the least,
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by yielding an analytical expression in the formula, it highlights the effect of pecuniary

externalities—emphasized in Dávila, Hong, Krusell, and Ríos-Rull (2012)—on the optimal

taxation in an incomplete market economy.

As in Saez (2001), the optimal tax rate can still be expressed in terms of standard

statistics—such as the Frisch elasticity of the labor supply and the hazard rate of the

income distribution. In the presence of a private insurance market, however, the formula

also includes additional terms that reflect the interaction of households’ savings with taxes

and its welfare effects.

First, the original formula in Saez (2001) needs to be modified to reflect the dispersion

of asset holdings. This is likely to lead to a larger inequality in consumption which

calls for a stronger redistribution. Second, pecuniary externalities should be considered.

As shown in Dávila, Hong, Krusell, and Ríos-Rull (2012), individual’s saving decision

has externalities because the change in equilibrium interest rate generates an additional

redistribution across households. This effect is likely to make the optimal tax schedule

less progressive, because providing more progressive tax reform reduces aggregate saving

and thus results in a decrease in equilibrium interest rate which makes the asset poor

worse off. Third, the formula should also consider the additional welfare effects of some

households who are released from the borrowing constraint as a result of tax reform.

Ideally, one would like to express the optimal tax formula in terms of sufficient statistics

that can be easily estimated from the data. While we present the generalization of our

formula in several directions, we also show that such an attempt is highly challenging

for (at least) two reasons. First, the optimal tax formula depends on the welfare effects

of the interaction between the private and public insurance. More precisely, the degree

to which the envelope theorem can be applied to the response of private intermediation

depends on the specifics of the market structure. We illustrate this point in a few well-

known market arrangements for private insurance. For example, the optimal formula in

Chetty and Saez (2010) is an example where the envelope theorem cannot be applied at

all because the savings rate is exogenously (not necessarily at an optimal level) given.

On the other hand, the incomplete-markets economy where the interest rate is fixed with

no borrowing constraint (Findeisen and Sachs (2017)) is an example where the envelope

theorem can still be fully applied. Our benchmark model presents an intermediate case
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where the envelope theorem can be partially applied due to market frictions—which we

view as highly common in real world.

Next, we further show that even if the formula can be expressed in terms of sufficient

statistic statistics, they are not easy to estimate from the data because because they are

not policy invariant. Given these difficulties, we combine the structural and sufficient-

statistics methods following the suggestion by Chetty (2009). We obtain the additional

statistics from a quantitative general-equilibrium model that is calibrated to resemble

some salient features (such a the income and wealth distributions) of the U.S. economy.

This allows us to quantify the role of private insurance in determining the optimal tax

rate. According to our analysis, the difference in optimal tax rates (with and without a

private insurance market) can be as large as more than 10 percentage points. Moreover,

these differences in tax rates do not necessarily exhibit the same sign across incomes.

For example, the optimal tax rates are higher than those without private markets for the

low-income group– mainly because of the increased consumption inequality. The optimal

tax rates are lower (than those without a private market) for the middle- to high-income

groups—mainly because of pecuniary externalities.

Our paper is most closely related to a literature on optimal labor income taxation using

a variational approach, originally pioneered by Piketty (1997) and Saez (2001). In a static

model, they express the optimal tax formula in terms of the so-called sufficient statistics

(e.g., elasticity of the labor supply and the hazard rate of income), which is obtained

by perturbations of a given tax system. This variational approach is a complement to

the traditional mechanism-design approach (Mirrlees (1971)) and allows us to understand

the key economic forces behind the formula. While this approach has been extended to

other contexts such as multi-dimensional screening (Kleven, Kreiner, and Saez (2009)) and

dynamic models (Golosov, Tsyvinski, and Werquin (2014), Saez and Stantcheva (2017)),

this literature largely abstracts from a private insurance market by assuming that the

government is the sole provider of insurance.1 Chetty and Saez (2010) is an exception

that allows for private insurance, but they assume that both private and public insurance

are linear, and thus have limited implications for the interactions between the two types

1The sufficient statistics approach has been widely used in the taxation literature (e.g., Diamond and
Saez (2011), Piketty and Saez (2013a), Piketty, Saez, and Stantcheva (2014), Piketty and Saez (2013b),
and Badel and Huggett (2017)).
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of insurance.

In the alternative Ramsey approach (Ramsey (1927)), which examines the optimal

tax schedule within a class of functional forms, many studies have provided quantitative

answers to the optimal amount of redistribution in the presence of self-insurance opportu-

nities (e.g., Aiyagari and McGrattan (1998), Conesa and Krueger (2006), Conesa, Kitao,

and Krueger (2009), Heathcote, Storesletten, and Violante (2014), and Bhandari, Evans,

Golosov, and Sargent (2016)). However, these studies assume a parametric form for the

tax schedule—either affine or log-linear. Moreover, they do not particularly focus on how

the introduction of private savings affects the optimal tax schedule. While we allow for a

fully nonlinear tax system, our analysis provides a transparent comparison to these papers,

as we also compute the optimal tax schedule in a general equilibrium incomplete-markets

economy—a workhorse model in macroeconomics. Our quantitative analysis shows that

the optimal tax schedule is very different from those commonly assumed—an affine or

log-linear tax function—in the literature.2

In the New Dynamic Public Finance literature, Golosov and Tsyvinski (2007) study

optimal taxation in the presence of private insurance under a specific market structure—

a competitive insurance industry with private information friction. With this market

friction, they also show that internalizing the pecuniary externalities is the role of the

government. However, their questions are centered on the welfare gains from government

intervention, while we focus on how the optimal tax schedule is affected by the private

insurance and understanding of optimal tax formula in general market structure.

Our benchmark analysis is also related to a paper by Findeisen and Sachs (2017), which

studies the optimal nonlinear labor income tax and linear capital income tax with self-

insurance opportunities. They focus on the interaction between the labor and capital

income taxes and as discussed above, their results are an example with full envelope

theorem, because they assume fixed interest rate and no borrowing constraint. Our paper

has more interaction between public and private insurance by relaxing these assumptions.

Outside the optimal taxation literature, Dávila, Hong, Krusell, and Ríos-Rull (2012)

2For example, Heathcote and Tsujiyama (2017) compare three tax systems (affine, log-linear, and
Mirrleesian) and find that the optimal tax schedule is close to a log-linear form. Our analysis shows that
under a more realistic productivity distribution and private market structure, the optimal tax schedule
is highly nonlinear—quite different from log-linear.
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analyze the implication of pecuniary externalities in general equilibrium incomplete mar-

kets economy. Our paper shows interesting policy implications of the externalities in

the context of optimal income taxation. Attanasio and Ríos-Rull (2000) examine the

relationship between compulsory public insurance (against aggregate shocks) and private

insurance against idiosyncratic shocks. Krueger and Perri (2011) study the crowding-out

effect of a progressive income tax on private risk-sharing under limited commitments.

The remainder of the paper is organized as follows. In section 2, we derive the opti-

mal tax formula in Huggett economy. In Section 3, we extend the formula to general

private insurance market. Section 4 provides a quantitative analysis. Section 5 studies

generalizations in several directions. Section 6 concludes.

2 Optimal Nonlinear Tax Formula with Private Insurance

In this section, we derive optimal nonlinear tax formula in our benchmark economy —

Huggett economy. Analyzing optimal tax formula with this special form of market struc-

ture is useful itself in understanding the role of private insurance in optimal tax formula,

and it will provide implications for an analysis with more general market structure.

In this section, we derive an optimal nonlinear tax formula in our benchmark economy—

Huggett-style incomplete market model. As we will show in detail below, the optimal tax

formula depends on whether the interaction between private insurance public insurance

has welfare effects. Thus, the formula inevitably depends on the structure of private

market. As we discuss in the introduction, we chose Huggett (1993) because: (i) it is one of

the most commonly used incomplete market structure in macroeconomics, (ii) comparison

with Saez (2001) is straightforward due to zero aggregate asset, (iii) it permits a ready

comparison with other market structures, (iv) it provides important policy implications

of well known pecuniary externalities in incomplete market.

2.1 Restrictions on the Tax System

While we consider a fully nonlinear income tax system without assuming a functional

form, we focus on a restrictive class of tax system. The class of tax system we consider is

a nonlinear labor income tax with a lump-sum transfer. More precisely, in the benchmark,
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(i) we consider a nonlinear labor income tax T (z) where z is current labor income; (ii)

the tax is levied on the current period’s income only (no history dependency); and (iii)

the nonlinear tax function T (z) is age-independent and time invariant. For expositional

simplicity, in the benchmark analysis, we assume that there is no capital income taxation,

and we relax this assumption later.

We impose these restrictions because they allow for a direct comparison to the static

Mirrleesian taxation and Ramsey taxation literature. On one hand, in a static Mirrleesian

analysis, the labor income tax depends on income only (not on productivity) because of

information frictions. However, in a dynamic environment with stochastic productivity—

which we study here—the optimal allocation that solves a mechanism design problem with

information frictions (as in the New Dynamic Public Finance literature) will depend on

the history of incomes. Moreover, it is well known that a tax system that can implement

the constrained-efficient allocation is highly complicated, and thus a direct comparison of

tax schedules between a static and a dynamic environment is not straightforward, even

without a private market.3 On the other hand, the Ramsey literature focuses on a tax

system with particular functional forms. As in the Ramsey literature, our analysis starts

with a simple and implementable tax system, but allows for a fully nonlinear functional

form. Thus, our analysis provides a transparent comparison to the theoretical results

from Mirrleesian taxation as well as those from Ramsey taxation.

2.2 Economic Environment with Private and Public Insurance

Consider an economy with a continuum of workers with measure one. Workers face

uncertainty about their labor productivity in the future. The individual productivity

shock xt follows a Markov process, with transition probability, f(xt+1|x), that has an

invariant stationary (cumulative) distribution F (x) whose probability density is f(x).

Individual workers have an identical utility function ∑∞t=0 β
tE0[U(ct, lt)], where an in-

stantaneous utility U(c, l) has the following form: U(c, l) = u(c − v(l)), where u(.) is

concave and increasing in consumption c and v(.) is convex and increasing in labor supply

l. We focus on households’ preferences that have no wealth effect on the labor supply

(the so-called GHH preferences by Greenwood, Hercowitz, and Huffman (1988)). This

3Most studies in the new dynamic public finance literature compare the implicit wedge from a dynamic
environment to the marginal tax rate from a static one.
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assumption is common in the literature because it significantly simplifies the optimal tax

formula even without private insurance.4 The earnings of a worker whose current pro-

ductivity is xt are z(xt) = xtl(xt). The cumulative distribution of earnings is denoted by

Fz(z) whose density function is fz(z).

The government provides insurance through a (time-invariant) nonlinear labor income

tax and a lump-sum transfer system where the net payment schedule is denoted by T (zt).

The after-tax labor income is yt = zt − T (zt). Workers can also participate in a private

market to insure against their income uncertainty. In this benchmark analysis, we consider

a Bewley-type incomplete market, where consumers can only self-insure themselves by

saving and borrowing via a noncontingent bond (e.g., Huggett (1993)). We also assume

that there is an exogenous borrowing limit, a.

Given prices and government policies, individual consumer solves

V (a0, x0) = max
c,l,a

∞∑
t=0

βt
∫
u(ct(a0, x

t)− v(l(xt)))f(xt|x0)dxt

s.t. ct(a0, x
t) + at+1(a0, x

t) = xtl(xt)− T (xtl(xt)) + (1 + rt)at(a0, x
t−1),

at+1(a0, x
t) ≥ a,

given a0, x0,

with solution {ct(a0, x
t), l(xt), at+1(a0, x

t)}. Alternatively, we can represent individual

allocation recursively using the individual state, (at, xt), where at is current asset holding.

Then the allocation will be determined by the policy functions : hct(a, x), hlt(x), hAt (a, x).

We also note that the individual state can be expressed as (at, zt) instead of (at, xt). 5

The aggregate state of the economy in period t is described by joint measure of asset

and productivity, Φt(at, xt). By abusing the notation, we also denote the distribution of

income and asset by Φt(at, zt), and thus Φt(at, z(xt)) = Φ(at, xt). Let at ∈ A = [a, ā],

xt ∈ X = [x, x̄], and S = A×X. Let B ∈ S be a Borel set andM be the set of all finite

measures over the measurable space (S,B). An aggregate law of motion of the economy
4As we will discuss later, in the presence of private insurance, this assumption is even more crucial

for the simplicity of the formula, because we can abstract from the interaction between labor supply
response and private insurance.

5With no income effects on labor supply, labor income zt and productivity xt have a one-to-one
relationship and we can use them interchangeably. We also note that even with income effects on labor
supply, we can use state variables (at, xt) and (at, xt) interchangeably because zt(at, xt) = xtlt(at, xt)
and xt have a one-to-one relationship given at.
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is Φt+1 = Ht(Φt), where the function Ht :M →M is defined in the following way. Define

a transition function Q by

Q(Φt, at, xt, B;hA) =
∫
xt+1∈Bx

f(xt+1|xt)1hA(at,xt)∈Ba ,

where 1 is the indicator function. Then the distribution of the next period is determined

by :

Φt+1(B) =
∫
S
Q(Φt, a, e, B;hA)dΦt.

In our benchmark economy (Huggett economy), an equilibrium interest rate, rt, is

determined to clear the asset market:

∫
at(at, xt)dΦ(at, xt) = 0.

That is, in an equilibrium, net asset supplies sum to zero in every period.

In the benchmark, the government evaluates social welfare by:

W =
∫∫

G (V (a0, x0))φ0(a0, x0) da0 dx0,

where G(·) is an increasing and concave function that reflects the social preferences for

redistribution. The special case is the utilitarian welfare function with G(V ) = V . Es-

pecially, when we compare our optimal tax formula and its simulation with the standard

static Saez(2001) formula, we mostly focus on the utilitarian social welfare, since we think

this is the most natural comparison between the two economies (with and without private

insurance). In the dynamic economy with incomplete market, concave G reflects society’s

redistribution preferences across the asset as well as across the skills, which makes the

comparison with static economy more involved. Later, we will also generalize the social

welfare function to consider horizontal equity.

2.3 Deriving an Optimal Formula in a Huggett Economy

In deriving the optimal tax formula, we apply the variational approach (Piketty (1997);

Saez (2001)). That is, we consider a perturbation (a small deviation) from a given non-

linear tax schedule. If there is no welfare-improving perturbation within the class of tax
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system, the given tax schedule is optimal. We first derive the tax incidence on individual

variables and aggregate variables, then the optimal tax formula will be obtained directly.

2.3.1 Tax Incidence

We start with the tax incidence analysis — the first-order effects of arbitrary tax reforms

of a given tax schedule. For a given income tax schedule T (z), the economy we consider

converges to a steady state where the distribution of state variables Φ(a, x) is stationary.

We assume that in period 0 the economy starts from that steady state and consider a

(revenue-neutral) tax reform in period 0.

Formally, consider an arbitrary tax reform of the initial tax schedule T (·), which can

be represented by a continuously differentiable function τ(·) on R+. Then, a perturbed

tax schedule is T (·) + µτ(·) where µ ∈ R parametrizes the size of the tax reform. As

in Golosov, Tsyvinski, and Werquin (2014) and Sachs, Tsyvinski, and Werquin (2016),

the first-order effects of this perturbation can be formally represented by the Gateaux

derivative in the direction of τ . For example, the incidence on labor supply is

dl(x) ≡ lim
µ→0

1
µ

[l(x; T + µτ)− l(x; T )],

We can define the similar derivatives for the other variables such as indirect utilities of

individuals, V (x0, a0), government revenue, Rt, and social welfare, W .

From now on, we mostly focus on the elementary tax reforms, which can be represented

by τ(z) = 1
1−Fz(z∗)1{z ≥ z∗} for a given level of income z∗. Under this tax reform, the tax

payment of an individual with income above z∗ increases by constant amount 1
1−Fz(z∗) ,

and the marginal tax rate at the income level z∗ is increased by 1
1−Fz(z∗) (which is obtained

by the marginal perturbation: τ ′(z) = 1
1−Fz(z∗)δz∗(z)). Notice that with tax reform, the

increase in government revenue due to mechanical increase in tax payment is equal to $1.

We can focus on this elementary tax reform without loss of generality, because any other

perturbations can be expressed as a weighted sum of the elementary tax reforms. See

Sachs, Tsyvinski, and Werquin (2016) for further details.6

6This elementary tax reform is also consistent with the heuristic tax reform in Saez (2001), in which
the marginal tax rate T ′(z) is increased by δτ on a small income bracket [z∗, z∗+dz∗] and the tax payment
T (z) is increased by δτ · dz∗ (= 1

1−Fz(z∗) ) in the elementary tax reforms) for the income above z∗.
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Incidence of tax reforms on labor supplies

First, we define the elasticity of labor supply with respect to the retention rate 1 −

T ′(z(x)). The standard labor supply elasticity with respect to the retention rate along

the linear budget constraint is defined as7

e(x) = v′(l(x))
l(x)v′′(l(x)) ,

which only takes into account direct effects on labor supply from an exogenous increase in

the retention rate. With nonlinear tax system T (·), however, there are additional indirect

effects. A change in labor supply l(x) leads to an endogenous change in the marginal

tax rate T ′(z(x)), which in turn results in a further labor supply adjustment. As in

Sachs, Tsyvinski, and Werquin (2016), we can define the elasticity of l(x) with respect to

retention rate along the nonlinear budget constraint as

εl1−T ′(x) = dl(x)
d(1− T ′) ·

1− T ′(xl(x))
l(x) = e(x)

1 + ρ(z(x))e(x) (1)

where ρ(z(x)) = −∂ ln(1−T ′(z(x))
∂ ln z(x) = z(x)T ′′(z(x))

1−T ′(z(x)) denotes the local rate of progressivity of the

tax schedule. This elasticity takes into account both direct and indirect effects of change

in a retention rate. See appendix for further details.

Using the elasticity along the nonlinear budget, the incidence of a tax reform τ on labor

supplies l(·) is represented by

dl(x) = −εl1−T ′(x) τ ′(z(x))
1− T ′(z(x)) l(x) = −ε

l
1−T ′(x)

1− F (x∗) ·
δz∗(z(x))

1− T ′(z(x)) l(x).

Note that with GHH preferences (with no income effects in labor supply), the increase in

the tax level τ(·) does not have any impact on dl(x). By the definition of the elasticity

εl1−T ′ , dl(x) represents the change in the labor supply in response to the tax reform, taking

into account both exogenous and endogenous (change in T ′(xl(x)) due to dl(x)) changes

in the marginal tax rates.

We also remark that dl(x) is constant in all periods. This is the great simplicity we can

obtain by assuming no income effects in labor supply. Since the labor supply decision is
7With GHH preferences, there is no income effect in labor supply. Thus, the compensated elasticity

of labor supply is equal to the uncompensated elasticity of labor supply, and we do not distinguish the
notations of the two.
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not affected by the wealth level of the individual, dl(x) is time invariant regardless of the

private insurance.

Incidence of tax reforms on savings

Individual’s saving decision in period t can be represented recursively by the saving

policy function hA(at(a0, x
t−1), xt). Moreover, as long as the mapping x 7→ y(x) is one to

one, we can express the policy function hA(a, x) as a function of (a, y), so that hA(a, x) =

hA(a, y(x)), where y(x) = xl(x)−T (xl(x)) with l(x) that solves x(1−T ′(xl)) = v′(l). We

now derive a tax incidence on the saving policy rule hA(a, y).

Even in the absence of capital income taxation, individual’s savings will be changed

when the labor income tax schedule is changed.8 We denote changes in saving policy

rule hAt (a, y) with respect to current virtual income Rt, state-contingent virtual income

in the next period Rt+1(x′), current interest rate rt, and future interest rate rt+1 by

εta′,Rt(a, y) = ∂hAt (a,y)
∂Rt

, εta′,Rt(a, y) = ∂hAt (a,y)
∂Rt+1(x′) , εta′,rt(a, y) = ∂hAt (a,y)

∂rt
, and εta′,rt+1(a, y) =

∂hAt (a,y)
∂rt+1 , respectively. In the appendix, we show that the incidence of tax reform on saving

policy can be represented by

dhAt (a, y(x)) = −εta′,Rt(a, y) · τ(z(x))−
∫
εta′,Rt+1(x′)(a, y) · τ(z(x′))dx′

+εta′,rt(a, y)drt + εta′,rt+1(a, y)drt+1, (2)

where drt and drt+1 represent changes in current interest rate and future interest rate,

respectively.9

In Huggett economy, aggregate savings sum to zero in equilibrium. Thus, if there is

any change in aggregate savings due to tax reform given interest rate, the interest should

change to clear the asset market. The incidence on interest rate drt is very complicated

object, and we do not attempt to solve this analytically. In appendix, we show that the

incidence on interest rate drt can be expressed in terms of the slope of aggregate supply

curve and the incidence on aggregate savings given interest rate.

8In a Huggett economy, for example, a change in the labor-income-tax schedule will generate the
change in savings through three channels: (i) the change in current income (versus future income), (ii)
precautionary savings due to the change in income volatility, and (iii) the general equilibrium effects (the
change in equilibrium interest rate).

9In an infinite horizon Huggett economy, the responses of saving policy, εta′,Rt
(a, y), εta′,Rt

(a, y),
εta′,rt

(a, y), and εta′,rt+1
(a, y) are very complicated object because they require solving for an infinite

number of unknowns. In Appendix, we show the closed form solution for this in a two-period example.
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Incidence of tax reforms on individual welfare

Next, we derive the incidence of a tax reform τ on individual indirect utilities, V (a0, x0).

Lemma 1. The incidence of a tax reform τ of the initial tax schedule T on individual’s

indirect utilities, dV (·, ·), is

dV (a0, x0) =
∞∑
t=0

βt
∫
u′(a0, x

t)
[
−τ(z(xt)) + drt · at(a0, x

t−1)
]
f(xt|x0)dxt

−
∞∑
t=0

βt
∫ [

u′(a0, x
t)− β(1 + r)E[u′(a0, x

t+1)|xt]
]
· dhAt (at(a0, x

t−1), y(xt))f(xt|x0)dxt. (3)

Proof See Appendix. �

The first term on the right hand side of equation (3), −τ(z(xt)), is due to a higher

tax payment after the tax reform. This decrease in utility is the effect of the standard

tax incidence in an economy without private insurance. Note that the welfare effects via

dl(xt) does not show up because of the envelope condition in labor supply.

In the presence of private insurance, however, there are two additional effects on the

household’s utility. First additional incidence on the utility is the effect from the change

in the equilibrium price, drt, which arises due to pecuniary externalities: individual house-

holds take the market interest rate as given, without considering how their saving decision

affects the equilibrium interest rate. The second additional incidence, which is captured

by the second integration of equation (3), arises because of the borrowing constraint. If

the borrowing constraint is not binding at all, then the Euler equation holds with equality:

thus this term is zero. However, for some households who are released from the borrowing

constraint as a result of tax reform—i.e., who used to be constrained under the original

tax schedule but not any more after the reform, the change in savings, dhA(a, y), affects

welfare.10

To understand Equation (3) better, we further decompose the total change in savings

of a household with history (a0, x
t) into:

dat+1(a0, x
t) = dhA(at, y(xt)) + hAa (at, y(xt)) · dat(a0, x

t−1) + hAy (at, y(xt)) · dyt(xt),
10Technically, the second additional incidence arises because borrowing constrained individual’s opti-

mal decision is at the kink of the budget constraint, which does not allow application of the envelope
theorem.
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where hAa and hAy are marginal propensity to save out of additional asset holdings and

after-tax income, respectively. That is, dhA(a, y) captures the change in saving policy

function for give asset holding, a, and after tax income, y, and this change is the relevant

one for the tax incidence. Additional changes in savings due to the change in the state

(a, y) for given marginal propensity to save do not have any impact on utility because of

the envelope theorem.

We can also express the equation (3) in terms of elasticities, by substituting dhAt (a, y)

and drt with (2) and (15).

Incidence of tax reforms on government revenue and social welfare

The government revenue in period t under the original tax schedule, Rt =
∫
T (z(xt))f(xt)dxt,

is constant in the steady state. Thus, the incidence on government revenue, dRt, directly

follows from the change in labor supply dl(·) as:

dRt =
∫
τ(z(x))f(x)dx+

∫
T ′(z(x))

[
− εl1−T ′(x)) · τ ′(z(x))

1− T ′(z(x))z(x)
]
f(x) dx (4)

=
∫ ∞
x∗

f(x)
1− F (x∗) dx−

T ′(z(x∗))
1− T ′(z(x∗))ε

l
1−T ′(x∗)

z(x∗)
z′(x∗) ·

f(x∗)
1− F (x∗) , ∀t.

The second equality holds for the elementary tax reform–see Appendix.11 The change in

government revenue dRt = dR is constant in all periods because the households’ labor

supply depends on the current productivity only (no wealth effect in labor supply) and

the tax system is time invariant.

We now consider the tax incidence on social welfare. Since we consider revenue-neutral

tax reforms, any change in government revenue dR will be rebated back to individuals as

a lump-sum transfer. Thus, the incidence of a tax reform τ on social welfare dW is:

dW =
∫
G′(V (a0, x0))

∞∑
t=0

βt · dR ·
[ ∫

u
′(a0, x

t)f(xt | x0)dxt
]
· φ(a0, x0)da0dx0

+
∫
G′(V (a0, x0)) · dV (a0, x0)φ(a0, x0) da0 dx0.

11Note that the step function 1z≥z∗ is not differentiable. In appendix, we show that we can nevertheless
apply the formula (4) by constructing a sequence of smooth perturbations {τ ′n(z)}n≥1 which satisfies
lim

n→∞
τ ′n(z) = δz∗(z).
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2.3.2 Optimal Tax Formula

The optimal tax schedule maximizes the social welfare subject to the government’s budget

constraint:
∫
T (z(x))f(x)dx = Ē. Alternatively, given tax schedule, if there is no welfare-

improving (revenue-neutral) perturbation within the class of tax system, the given tax

schedule is optimal within the class of tax system. By imposing dW = 0, we obtain the

optimal tax formula.

Proposition 2. Optimal marginal tax rate at income z∗ should satisfy

T ′(z∗)
1− T ′(z∗) = 1

εl1−T ′(z∗)
· 1− Fz(z∗)
z∗fz(z∗)

· (1− β)
∞∑
t=0

βt [At(z∗) +Bt(z∗) + Ct(z∗)] , (5)

where

At(z∗) =
∫∫ ∞

z∗
(1− g(a, z)) φ(a, z)

1− Fz(z∗)
dz da,

Bt(z∗) =
∫
g(a, z){drt · a}φ(a, z) da dz,

Ct(z∗) = −1
λ

∫
{u′(a, z)− β(1 + r)Ez′ [u′(a′(a, z), z′))|z]} · dhAt+1(a, y(z))φ(a, z) da dz,

λ =
∫
u′(a, z)φ(a, z)dadz, and g(a, z) = u(a,z)

λ
.

Proof See appendix. �

Note that the distributions are time invariant because we consider an economy starting

from the steady state and the labor supply adjusts instantaneously (no wealth effect).

However, private savings may adjust slowly over time, since asset holdings may change

slowly. Thus, rt and da′t+1(a, y(z)) can be time varying.

One of the nice features of Saez’s (2001) formula is that the optimal tax schedule can

be expressed in terms of “sufficient” statistics. According to Saez (2001), the optimal tax

rate (T ′) is decreasing in (i) the Frisch elasticities of the labor supply, e, (ii) the hazard

rate of the income distributions, z∗fz(z∗)
1−Fz(z∗) , and (iii) the average social marginal welfare

weight of income above z∗, E[g(a, z)|z ≥ z∗].12

12The cost of distortion is proportional to the number of workers (z∗h(z∗)) at the margin, while the
gain from the tax increase (the increased revenue) is proportional to the fraction of income higher than
z∗: 1−Fz(z∗). Thus, the optimal tax rate is decreasing in the hazard rate ( z∗fz(z∗)

1−Fz(z∗) ). The term 1− g(·)
measures the net benefit of additional lump-sum transfer (lump-sum transfer for all minus extra tax paid
by households whose incomes are above z∗) as a result of tax reform. Thus, a larger social welfare weight
for households above z∗ leads to a lower tax rate.
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All three channels remain operative in the new formula (5). However, in the presence

of a private insurance market, the standard sufficient statistics are not sufficient to pin

down the optimal tax schedule–there are additional terms. The optimal tax schedule also

depends on how the private insurance market interacts with public savings, such as drt
and da′(a, y(z)) (which can be expressed in terms of elasticities as shown above).

To simplify the exposition of (5), we rewrite the optimal tax formula (5) with respect to

the exogenous productivity distribution by applying change of variables and using the fact

that income and productivity densities are related through the equation fz(z(x))z′(x) =

f(x). We also use the following preliminary result.

Lemma 3. For any regular tax schedule T , the earnings function z(x) is nondecreasing

and satisfies:
z′(x)
z(x) = 1 + e(x)

e(x) · 1
x
· εl1−T ′(x)

Proof According to Lemma 2 of Saez (2001), z′(x)
z(x) = 1+e(x)

x
− z′(x)

z(x) ρ(z(x))e(x), where
ρ(z(x)) = z(x)T ′′

1−T ′ . This implies

z′(x)
z(x) = 1 + e(x)

x
· 1

1 + ρ(z(x))e(x) = 1 + e(x)
e(x) ·

εl1−T ′(x)
x

.

�

Using lemma 3, we express the optimal tax rate in terms of productivity distribution:

T ′(z(x∗))
1− T ′(z(x∗)) = 1 + e(x)

e(x) · 1− F (x∗)
x∗f(x∗) ·

1
1− β (6)

×
∞∑
t=0

βt
[ ∫∫ ∞

x∗
(1− u′(a, x)

λ
) φ(a, x)
1− F (x∗) dx da

+
∫ u′(a, x)

λ
{drt · a}φ(a, x) da dx

−
∫ [u′(a, x)

λ
− β(1 + r)

∫
f(x′ | x)u

′(a′(a, x), x′)
λ

dx′
]
{dhAt+1(a, y(x))} φ(a, x) da dx

]
.

2.3.3 Role of Incomplete Insurance Market

We now explain the optimal tax formula in detail, along with the comparison to the one

without private market in Saez (2001) and Diamond (1998). The optimal tax rate (5) can

be decomposed into three terms.
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The first term, At(z∗), is identical to the original formula in Saez (2001) except that

the integration of marginal utility is now over the cross-sectional distribution of assets as

well as income. The original Saez effect can be either amplified or mitigated depending

on the shape of Φ(z, a). Intuitively, incomplete private savings market is likely lead to a

larger consumption inequality via more dispersed cross-sectional asset distribution, which

in turn implies a larger gain from redistribution–i.e., a higher tax rate is called for. The

more incomplete the private insurance markets are, the higher the optimal tax rate is.13

The second term, Bt(z∗), reflects whether the tax reform improves pecuniary external-

ities in an incomplete market. More precisely, this term captures whether the effects of

tax reform on saving behavior has positive (or negative) redistribution effects through the

change in equilibrium interest rate. As discussed in Dávila, Hong, Krusell, and Ríos-Rull

(2012), in an economy with incomplete market where the only available asset is noncon-

tingent bond, a competitive equilibrium is inefficient. Social welfare can be improved by

increasing individuals’ savings, because a lower interest rate caused by increased savings

can improve the welfare of wealth-poor households who has relatively higher marginal

utility.14 The following proposition shows that the sign of the second term in the optimal

tax formula (5) is exactly determined by this pecuniary externalities.

Proposition 4. In the optimal tax formula (5), the sign of the second term Bt(z∗) is

determined by

sign(Bt(z∗)) = −sign(drt).

Proof Since drt is constant, Bt(z∗) = drt ·
∫
g(a, z)aφ(a, z)dadz. Thus, we only need to

show that the sign of the integral in Bt(z∗) is negative. We denote the mean of asset

13In Equation (5), a larger consumption inequality increases the dispersion of marginal social welfare
weight, g(a, z), without changing the mean E[g] = 1, which will in turn decrease E[1 − g(a, z)|z ≥ z∗],
∀z∗ > z.

14In Dávila, Hong, Krusell, and Ríos-Rull (2012), there is another channel of pecuniary externalities,
in which increasing individuals’ savings has the opposite welfare implications. Higher wage rate caused
by increased savings can generate negative insurance effects by scaling up the stochastic part of the
consumer’s income. In a Huggett economy, with linear production in labor, wage rate is not affected by
the aggregate amount of savings. Thus, we only have redistribution channel of pecuniary externalities.
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distribution by Ā, and note that in a Huggett economy, Ā = 0. We then obtain∫
g(a, z)aφ(a, z)dadz

=
∫

Z

[∫ Ā

a

u′(a, z)
λ

[a− Ā]φ(a|z)da+
∫ ∞

Ā

u′(a, z)
λ

[a− Ā]φ(a|z)da
]
fz(z)dz

<

∫
Z

[
u′(Ā)
λ

∫ Ā

a

[a− Ā]φ(a|z)da+
∫ ∞

Ā

[a− Ā]φ(a|z)da
]
fz(z)dz

=
∫

Z

u′(Ā, x)
λ

[
E[a|z]− Ā

]
fz(z)dz

<
u′(Ā, zm)

λ

[∫ zm

z

[
E[a|z]− Ā

]
fz(z)dz +

∫ z̄

zm

[
E[a|z]− Ā

]
fz(z)dz

]
(where zm is such that E[a|z] ≥ (<)Ā for z ≥ (<)zm)

= u′(Ā, zm)
λ

[∫
E[a|z]fz(z)dz − Ā

]
= 0.

�

Proposition 4 shows that if the elementary tax reform at specific income z∗ increases

(decreases) interest rate, this has negative (positive) effects on welfare, and thus optimal

tax rate at z∗ gets lowered (increased). Intuitively, higher interest rate is beneficial to the

consumers with positive asset, while it is harmful to the consumers with negative asset.

Since the wealth-poor households tend to be consumption poor and have higher marginal

utility of consumption, higher interest has negative redistribution effects.

More important, in the context of optimal labor income tax reform, this result implies

that pecuniary externalities make the optimal tax system less progressive.

A progressive tax reform tends to reduce the precautionary savings motive, which leads

to a higher equilibrium interest rate. Higher interest rate has a negative redistribution

effects by benefiting the wealth-rich. Thus, the pecuniary externalities makes such a

reform less effective in achieving the redistribution of consumption. the optimal tax

schedule becomes less progressive to improve pecuniary externalities in an incomplete

market.

The third term, Ct(z∗), reflects the change in welfare whose borrowing constraint is no

longer binding after the reform. When the tax reform makes some households–who used to

be constrained in borrowing—save more (by reducing consumption), this is an additional

welfare cost. Next proposition shows that alignment term reduces the optimal tax rate,
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but in the quantitative analysis, we will show the effect of Ct(z∗) is quantitatively very

small because this effect is applied for only small fraction among the borrowing constrained

individuals.

Proposition 5. In the optimal tax formula (5), Ct(z∗) ≤ 0, for all z∗.

2.3.4 Alternative Decomposition Comparison with Chetty and Saez (2010)

Chetty and Saez (2010) analyze the optimal tax when both public and private insurance

systems are linear–i.e., both tax rate (τ) and saving rate (p) are linear in a static environ-

ment.15 In an economy where private insurance is confined to a linear form, they show the

optimal tax rate is: τ
1−τ = −p− 1

e
(1−κ)(1−p)cov( z

z̄
, g(z)), where p is marginal propensity

to save, κ = −d log(1−p)/d log(1−τ) is crowding elasticity, and e = d log(z̄)/d log(1−τ).

To compare our formula to the one in Chetty and Saez (2010) more directly, we can

rewrite the formula using two facts: (i) changes in savings sum to zero (aggregate equilib-

rium condition), and (ii) changes in savings for the history of (a0, x
t) can be decomposed

into: dat+1(a0, x
t) = dhA(at, y(xt)) + hAa (at, y(xt)) · dat(a0, x

t−1) + hAy (at, y(xt)) · dyt(xt),

where hAa and hAy marginal propensity to save out of additional asset holdings and after-

tax income, respectively. By adding the changes in aggregate savings, which is equal to

zero, we obtain the following formula (see appendix for further detail):

T ′(z∗)
1− T ′(z∗) = −(1− β(1 + r))

∫
hAy (a, y(z))φ(a | z∗) da (7)

+ 1
εl1−T ′(z∗)

1− Fz(z∗)
z∗fz(z∗)

E [1− g(a, z)|z ≥ z∗]

+ 1
εl1−T ′(z∗)

1− Fz(z∗)
z∗fz(z∗)

(1− β)
∞∑
t=0

βt [∆3 +∆4 +∆5] ,

where

∆3,t = −cov(g(a, z),−drt · a)

∆4,t = −cov(g(a, z), dhAt (a, y(z))) + β(1 + r)cov(E[g(a′(a, z), z′)|z], dhAt (a, y(z)))

∆5,t = (1− β(1 + r))
[∫

hAa (a, y(z)) dadΦ(a, z)−
∫ ∞
z∗

∫
hAy (a, y(z)) φ(a, z)

1− Fz(z∗)
da dz

]
.

15More precisely, Chetty and Saez (2010) consider wage compression as a form of private insurance,
which is private insurance before paying taxes, but the timing of the private insurance does not change the
optimal tax formula as long as tax schedule is committed. That is, in an economy with linear insurance,
after tax income is y = (1− τ)z+ τ z̄ and consumption is c = (1− p)y+ pȳ, where z̄ = E[z] and ȳ = E[y].
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For comparison to our more general formula, the formula in Chetty and Saez (2010) can
decomposed into three terms:

τ

1− τ = −p− 1
e
cov(z

z̄
, g(z))− {p+ κ(1− p)}1

e
cov(z

z̄
, g(z)). (8)

Each term in our our formula (7) has a counterpart in (8) from Chetty and Saez (2010).

The first term in our formula (7) reflects the substitution between private and public

insurance, as in the first term, −p in (8), except the adjustment by (1 − β(1 + r)). The

second term (7) is standard equity-efficiency trade-off term, which is consistent with the

second term, −1
e
cov( z

z̄
, g(z)), in (8). The rest of the terms in our formula (7), however, are

more involved than the third term in (8), because in Huggett economy, only a part of the

change in net savings, a′(a, x)− (1+r)a, will have the welfare effects. Despite the optimal

response of households, changes in savings might not be optimal from the perspective of

government, if there are externalities in savings (shown in ∆3). The changes in savings

by the borrowing-constrained households generate additional welfare effects because the

envelope theorem does not hold (show in ∆4). However, the rest of changes in savings

(∆5) do not have welfare effects due to the envelope theorem. On the other hand, in

Chetty and Saez (2010), exogenous private insurance response is not optimal, thus the

total change in private savings −{p+ r(1− p)}z will have the welfare effects. We discuss

this in more detail in section 3.

We learned two important lessens from Chetty and Saez (2010): (i) The formula that

ignores the existence of private insurance overstates the optimal tax rate, and (ii) If private

insurance does not create moral hazard (in labor supply), the optimal tax formula is

identical with and without private insurance. Our analysis shows that these two properties

do not necessarily hold in a more general private market.

The optimal tax rate with private savings can be either higher or lower than those

without. First, the marginal propensity to savings can be negative, if households are

allowed to borrow for consumption smoothing. Second, the presence of private savings

can generate a larger consumption inequality, which amplifies the Saez (2001) effects.

Third, the pecuniary externalities have either positive or negative sign depending on

the change in the equilibrium interest rate as a result of tax reform. All three effects

together, we illustrate that the standard optimal formula that ignores the private savings
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opportunity can either over- or under-state the true optimal tax rate.16 In fact, our

quantitative analysis below shows that there are income regions where the optimal tax

rates with private savings are higher than those without.

The appearance of additional terms in the optimal tax formula under private savings

market does not necessarily depend on the existence of moral hazard. For example,

under an incomplete capital market with self-insurance (like our environment), even when

households’ labor supply does not depend on wealth, the optimal formula still retains the

additional terms that reflect the interaction between private and public insurance. In the

next section, we further show that this discrepancy between the formula with and without

private insurance crucially depends on whether the envelope theorem can be applied to

the response of private intermediation, which in turns depends on the nature of market

structure–i.e., frictions in the private insurance market.

3 Implications for Sufficient-Statistics Approach
So far, we have analyzed optimal tax formula with a specific market structure—Huggett

(1993). Ideally, one would like to extend the formula to a more general market structure

of private insurance market and express the formula in terms of sufficient statistics that

can be easily estimated from the data. In this section, we show that such attempt are ex-

tremely challenging because of (at least) two reasons. First, the optimal tax rate depends

on the welfare effects of the interaction between private and public insurance. Thus, the

optimal tax depends on the specific structure of private insurance market. Second, even

if we can express the formula in terms of sufficient statistics, they are far more difficult to

estimate from the available data compared to the standard ones without private insurance

market.

3.1 Optimal Formula with General Incomplete Market

We first analyze how much the optimal tax formula can be generalized to general private

insurance market. Our analysis will show that despite a general representation of a wide

16In Chetty and Saez (2010) where both the tax rate and private savings are linear, the standard tax
formula always overstates the degree of public insurance. This is because of both positive private savings
rate and own crowding-out effect.
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class of private insurance markets, whether the response of private intermediation has

welfare effects depends on the specifics (such as incompleteness) of the private insurance

market. More precisely, the degree to which the envelope theorem can be applied to the

response of private insurance will be different for each structure of the private insurance

market. By illustrating how the optimal formula is modified to a few well-known structure

of private insurance market, we can better understand the economic insights of previous

results in the literature.

We start with a general representation of private insurance markets. Denote the in-

dividual state in period t by (xt, st), where st = (s1,t, · · · , sM,t) ∈ RM is the vector of

individual state variables other than individual productivity. For example, if the private

insurance market is a Bewley-type incomplete market with non-contingent bond (e.g.,

Huggett (1993)), we need only one additional state variable: bond holdings at: st = at.

We denote the net payment from private insurance (payment - receipts) by Pt(xt, st;T ).

Thus, consumption is ct(xt, st) = z(xt) − T (z(xt)) − Pt(xt, st;T ). This representation is

very general, which can be applied to a wide class of private insurance markets. Note

that he private intermediation P (·;T ) depends on the government tax/transfer schedule

T . From now on, to simplify the notation, we will suppress T in P (·) unless necessary.

For expositional simplicity, we assume that the sum of the net payment in the private

intermediation is zero:
∫
P (·) = 0,17 but this can be extended to a more general case. In a

Huggett economy with self-insurance only, Pt(xt, at) = at+1(xt, at)− (1 + r)at where r is

the rate of return on bond holdings.

We can derive the optimal tax formula using the same perturbation (elementary tax

reform). Suppose that in period 0, the economy has converged to a steady state and the

steady state distribution is denoted by Φ(xt, st), with its density φ(xt, st). The tax reform

occurs in period 0. We maintain the assumption of GHH preferences, then the incidence

of tax reform on labor supply and government revenue are exactly the same as those

in Section 2. However, the incidence of tax reform on private intermediation Pt(xt, st)

17That is, we consider a pure insurance market where the aggregate transfer is exactly funded by the
aggregate payment in each period.

22



depends on market structure. The optimal tax formula can be obtained from dW = 0:

T ′(z(x∗))
1− T ′(z(x∗)) =

(
1 + 1

e(x∗)

)
1− F (x∗)
x∗f(x∗)

×(1− β)
∞∑
t=0

βt

 ∫ ∫∞x∗ (1− g(x, s)) φ(x,s)
1−F (x∗)dxds

−
∫ ∫

g(xt, s0)dPt(xt, s0)f(xt|x0)dxtdΦ(x0, s0)

 , (9)
where dPt(xt, s0) denotes the incidence of tax reform on private intermediation in period

t. Without more information on market structure, we cannot proceed further. From now

on, we show that whether the envelope theorem can be applied to the response of private

intermediation dPt(xt, s0) depends on the market structure.

3.1.1 Case1: No Envelope Theorem

If the private intermediation is determined exogenously (not necessarily optimal), the

total response of private intermediation will affect individual welfare, and thus none of

the second term in the bracket of formula (9) can be ignored when computing optimal

tax rate. We first consider an example from Chetty and Saez (2010)—a spot market with

a linear payment schedule.18 With a spot market, we do not need an additional state

variable, and the private intermediation can be expressed as follows:

P (x) = p · (y(x)− ȳ),

where p is time-invariant and constant rate of payment to the private intermediaries,

y(x) = xl(x) − T (xl(x)) is after tax income, and ȳ = E[y(x)]. As in Chetty and Saez

(2010), we consider the case where the rate of payment p does respond to the tax schedule,

but it is not necessarily optimal from the perspective of the government (or that of an

individual household).

With this private insurance scheme, the incidence of tax reform on the labor supply

and the government revenue are exactly as those in Section 2.19 On the other hand, the

18As mentioned above, more precisely, Chetty and Saez (2010) consider a wage compression, but this
is essentially identical to a linear-payment spot market.

19Individual’s first order condition with respect to labor supply is slightly changed: x(1−T ′(xl(x)))(1−
p) = v′(l(x)), but we can easily show that the elasticity of labor supply with respect to retention rate
1− T ′ along the nonlinear budget constraint does not change. See appendix.
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incidence on private intermediation yields an analytical expression:

dP (x) = −κ(x∗) 1− p
1− T ′(z(x∗)) [y(x)− ȳ]− pτ(z(x)) + p(1− T ′(z(x)))xdl(x)

+pεl1−T ′(x∗)
z(x∗)
z′(x∗)

f(x∗)
1− F (x∗) + p

∫
τ(z(x))f(x)dx,

where κ(x) = − dlog(1−p)
dlog(1−T ′(z(x))) denotes a degree of crowding out.

That is, private intermediation can vary via changes in (i) payment rate, (ii) after tax

income, and (iii) transfer from the private intermediaries. Among these changes, only the

term associated with the labor supply, dl(x), can be ignored (by applying the envelope the-

orem) in computing the welfare effects of tax reform. One cannot apply the envelope theo-

rem to all the other terms in dP (x). Then, the second term in the bracket of (9) in this lin-

ear spot market is: −λ·p·εl1−T ′(x∗)
z(x∗)
z′(x∗)

f(x∗)
1−F (x∗)−

∫ u′(x)
λ

[
−p

{ 1z(x)≥z∗

1−F (x∗) − 1
}
− κ(x∗) 1−p

1−T ′(z∗)(y(x)− ȳ)
]
.

By rearranging the terms, we obtain the optimal formula consistent with that in Chetty

and Saez (2010):

T ′(z(x∗))
1− T ′(z(x∗)) = −p−

(
1 + 1

e(x∗)

)
1− F (x∗)
x∗f(x∗) (1−p)

∫
g(x)

[
1z(x)≥z∗

1− F (x∗) − 1− κ(x∗) y(x)− ȳ
1− T ′(z(x∗))

]
f(x)dx.

This illustrates that the optimal tax formula in Chetty and Saez (2010) is a special

case of private insurance market where the response of private intermediation is highly

inefficient from the perspective of the government.

3.1.2 Case 2: Full Envelope Theorem

The other extreme case we consider is the private insurance market where the envelope

theorem can be fully applied to the response of private intermediation dPt(xt, s0). In this

case, the second term in the bracket of (9) is zero.

The most straightforward example is the complete market with fully spanned state-

contingent assets. Then, the private insurance market can achieve full insurance for any

tax schedule. More precisely, with the preferences without income effects on the labor

supply, consumption net of the labor supply cost is constant across states under any tax

schedule:
c(x)− v(l(x)) = c̃, ∀x, for some constant c̃.
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Thus, g(x) = u′(x)
λ

= 1 for all x, which implies that the response of private intermediation

to the tax reform does not have any welfare effects as long as E[dP (x)] = 0.20 With

complete market, not only the second term but also the first term in the bracket of

optimal tax formula (9) is zero, which implies that optimal tax schedule is zero. That is,

if the private market is complete, there is no role for government insurance.

Another example where the envelope theorem can be fully applied is the incomplete

market with state noncotingent bond but with exogenously given constant interest rate

and natural borrowing limit. For the constant interest rate, we can think of an open

economy. In this case, the response of private intermediation dP (a0, x
t) = dat+1(a0, x

t)−

(1 + r)dat(a0, x
t−1) does not have any welfare effects, because we can apply the envelope

theorem to the total change in private intermediation. Recall that in Huggett economy,

the incidence of tax reform on private savings had welfare effects through the pecuniary

externalities and borrowing constraint. In the absence of both channels, the second term

in the bracket of optimal tax formula (9) does not show up. This example shows that even

if the private market is incomplete, if the policy tool of the government cannot improve the

inefficiency of the incomplete market, we don’t need to consider the interaction between

the private and public insurance in the optimal tax formula.

Findeisen and Sachs (2017) and Saez and Stantcheva (2017) consider this type of incom-

plete market with a constant interest rate and natural borrowing limit in their optimal

tax analysis. Our analysis illustrate that their optimal tax formula can be viewed as a

private insurance market where the envelope theorem is fully applied.

3.1.3 Case 3: Partial Envelope Theorem

The intermediate case is the private insurance market where the envelope theorem is par-

tially applied due to market frictions—which we view as highly common in real world.

Individual households’ optimal responses (to a tax reform) have no effects on social wel-

fare, if the induced changes in savings neither generate any externalities nor affect the

degree of market frictions.

20Using the definition of the private intermediation P (x) = z(x) − T (z(x)) − c(x), the private inter-
mediation is represented by P (x) = z(x)− T (z(x))− c̃− v(l(x)). We can easily show that E[dP (x)] = 0.
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The benchmark economy we consider in this paper—Huggett (1993)—is a good example

of this sort. The private intermediation in Huggett economy is net savings: Pt(a0, x
t) =

at+1(a0, x
t) − (1 + rt)at(a0, x

t−1). Out of the total change in private intermediation, a

change in interest rate has welfare effects, because (i) the change in equilibrium interest

rate generates pecuniary externalities and (ii) borrowing constrained households’ change

in borrowing is not subject to the envelope theorem.

Another example is endogenous incomplete markets with limited commitment (Alvarez

and Jermann (2000); Kehoe and Levine (1993)). In this market, households can trade

Arrow securities subject to credit lines Āt+1(xt, xt+1) that are contingent on productivity

histories. Consumer’s problem is

max
ct,at+1,lt

∞∑
t=0

βt
∫
f(xt|x0)u(ct(a0, x

t)− v(lt(xt)))dxt

s.t. ct(a0, x
t) +

∑
xt+1

qt(xt, xt+1)at+1(a0, x
t, xt+1) = xtl(xt)− T (xtl(xt)) + a+ t(a0, x

t), ∀xt

at+1(a0, x
t, xt+1) ≥ Āt+1(xt, xt+1), ∀xt, xt+1.

The borrowing limits {Āt+1(xt, xt+1)} are endogenously determine to guarantee that in-

dividuals have no incentive to default on an allocation at any point in time and any

contingency. Following Alvarez and Jermann (2000), the borrowing limits are set as the

solvency constraints that are not too tight, which satisfies:

Vt+1(Āt+1(xt, xt+1), xt+1) = UAut
t+1 (xt+1), ∀(xt, xt+1),

where the continuation utility Vt(a, xt) denotes the continuation utility of a consumer

with history xt and asset holding a in period t, and the value of autarky is given by

UAut
t (xt) = max

cs,ls

∞∑
s=t

βs−t
∫
f(xs|xt)u(cs(xs)− v(ls(xs)))dxs

s.t. cs(xs) = xsls(xs)− T (xsls(xs)).

We denote the price of risk-free bond by qt = 1
1+rt+1

and no arbitrage implies that

qt(xt, xt+1) = f(xt+1|xtt)qt = f(xt+1|xt)
1+rt+1

. Private intermediation in this economy is repre-

sented by Pt(a0, x
t) = qt

∫
f(xt+1|xt)at+1(a0, x

t, xt+1)dxt+1 − at(a0, x
t), and the incidence

of tax reform on Pt is dPt(a0, x
t) = dqt

∫
f(xt+1|xt)at+1(a0, x

t, xt+1)dxt+1 − dat(a0, x
t) +
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qt
∫
f(xt+1|xt)dat+1(a0, x

t, xt+1)dxt+1. Then, by rearranging the terms, the second term in

the bracket of optimal tax formula (9) writes

−dqt ·
∫ ∫

f(xt|x0)u′(a0, x
t)
∫
f(xt+1|xt)at+1(a0, x

t, xt+1)dxt+1dx
tdΦ(a0, x0)

−
∫ ∫

f(xt+1|x0)[qtu′(a0, x
t)− βu′(a0, x

t+1)]dat+1(a0, x
t, xt+1)dxt+1dΦ(a0, x0), (10)

where the first term reflects the pecuniary externalities, and the second term represents

the welfare effects of change in borrowing for the borrowing constrained consumers.

Although theses terms in the tax formula look similar to those in the Huggett econ-

omy, the sign and the source of pecuniary externalities are quite different. With state-

contingent assets, the consumption poor in the current period want to borrow from the

high productivity state in the future, but this is limited by the endogenous borrowing

constraint, and thus the consumption poor’s total asset purchase E[at+1(a0, x
t, xt+1)] is

relatively higher which makes sign of the integral positive. In addition, the sign of dqt
is also determined by the degree to which the borrowing constraint is binding in the

economy—more binding borrowing constraints lead to lower interest rate and higher qt.

Thus, a progressive tax reform will tighten the endogenous borrowing limit and thus in-

crease price of asset (qt), which has negative welfare effects in this economy because the

poor consumer purchase relatively more asset (higherE[at+1(a0, x
t, xt+1)]). We show this

in more detail in the appendix.

3.2 Structural Sufficient-Statistics Approach
A powerful feature of Saez (2001) is that the optimal tax schedule can be expressed in

terms of “sufficient” statistics—such as the Frisch elasticity of the labor supply and the

cross-sectional distributions of income and marginal utility—which can be estimated or

imputed from the data. In principle, we can also express our optimal tax formula in terms

of statistics—for example, the marginal propensity to save for dPt(·). In the presence of a

private market, however, it is far more challenging because the formula includes additional

statistics that capture the interaction between private and public insurance, which are

difficult to obtain from the available data.

Most important, the formula requires the relevant statistics and the distribution of the

economy at the optimal steady state, which is hard to observe, unless the current tax
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schedule is already optimal. While the same is true in Saez (2001), given the elasticity of

the labor supply, one can still infer the optimal distribution of hours and consumption from

an exogenously given distribution of productivity and tax schedule in a static environment.

This is no longer the case in a dynamic environment with private savings. We need to

know the consumption rule and distribution over individual states (e.g., productivity

and assets) under the optimal tax. Moreover, these statistics are not policy invariant in

general. Thus, it requires out-of-sample predictions. Second, the optimal tax formula

involves very detailed micro estimates —e.g., marginal private savings across individual

state variables.21 The formula also requires the elasticity of savings across states, along

the transition path of each alternative tax reform.

Faced with these difficulties, we combine the structural and sufficient-statistics meth-

ods, following the suggestion by Chetty (2009). We compute the optimal tax schedule

using quantitative general equilibrium models calibrated to match some salient features of

the U.S. economy. We consider two incomplete markets that are widely used in macroe-

conomic analysis: Huggett (1993) and Kehoe and Levine (1993).

4 A Quantitative Analysis

4.1 Calibration

We first assume that the individual productivity x can take values from a finite set of

N grid points {x1, x2, · · · , xN} and follows a Markov process that has an invariant dis-

tribution. We approximate an optimal nonlinear tax and private intermediation with a

piecewise-linear over N grid points.22

Preferences, Government Expenditure, and Borrowing Constraints

21While there are empirical analyses on the marginal propensity to consume (MPC)—e.g., Jappelli and
Pistaferri (2014) and Sahm, Shapiro, and Slemrod (2010), these estimates are available for the average
or coarsely defined groups of households only.

22More precisely, T (z) = T (0) +
∑i−1

k=1 T
′
k(zxk

− zxk−1) + T ′i (z − zxi−1), zxi−1 < z ≤ zxi , and P̃ (y) =
P̃ (yx0) +

∑i−1
k=1 P̃

′
k(yxk

− yxk−1) + P̃ ′i (y − yxi−1), yxi−1 < y ≤ yxi , where zx0 = 0 and yx0 = −T (0).
Consider a tax reform with an alternative marginal tax rate—suggested by the right-hand side of optimal
tax formula (1)—on a grid point T ′i , i = 1, · · · , N . If the tax reform for every grid point no longer
improves social welfare—i.e., Equation (1) is satisfied, the optimal tax schedule is found.
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The utility function of households is assumed to be a constant relative risk aversion

(CRRA):

u(c, l) = (c− v(l))1−σ

1− σ , v(l) = l1+1/e

1 + 1/e,

where σ = 1.5 and the Frisch elasticity of the labor supply (e) is 0.5.23

We choose the discount factor (β) so that the rate of return from asset holdings is

4% in the steady state. The government purchase Ē is chosen so that the government

expenditure-GDP ratio is 0.188 under the current U.S. income tax schedule (approximated

by a log-linear functional form: T (z) = z − λz1−τ ) as in Heathcote, Storesletten, and

Violante (2014)).24

The exogenous borrowing constraint (a = −90.84) is set so that 10% of households are

borrowing constraint. This value is also close to the average annual earnings of households

in our model economy under the current U.S. tax schedule. This value is in the range

of the credit card limits (between 50% ∼ 100% of average annual earnings) in the data.

According to Narajabad (2012), based on the 2004 Survey of Consumer Finances data,

the mean credit limit of U.S. households is $15,223 measured in 1989 dollars. Finally, we

assume that the social welfare function is utilitarian: G(.) is linear. Table 1 summarizes

the parameter values in our benchmark case. In Section 4.4 and the appendix below, we

perform the sensitivity analysis with respect to different values of σ, e and a.

Productivity Process

As shown in the optimal tax formula (5), the shape of the income distribution (which

is dictated by the stochastic process of a productivity shock and our preferences with

no wealth effect in the labor supply) is crucial for the optimal marginal tax schedule.

We generate an empirically plausible distribution of productivity as follows. Consider an

AR(1) process for log productivity x: ln x′ = (1−ρ)µ+ρ · ln x+σεε′, where ε is distributed

normally with mean zero and variance one. The cross-sectional standard deviation of

ln x is σx = σε√
1−ρ2

. While this process leads to stationary log-normal distributions of

23There is ample evidence of an inter-temporal elasticity of substitution in consumption is smaller than
one—e.g., according to the meta analysis by Havránek (2015) based on 169 published articles. The labor
supply elasticity ranges between 0.2 and 1—e.g., according to the survey article by Keane and Rogerson
(2012).

24Given the estimated value for the progressivity, τUS = 0.161 from Heathcote, Storesletten, and
Violante (2014), we set λ to match the government expenditure-GDP ratio ( Ē

Y ).
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Table 1: Benchmark Parameter Values

Parameter Description

σ = 1.5 Relative Risk Aversion
β = 0.9002 Discount Factor
e = 0.5 Frisch Elasticity of Labor Supply

a = −90.84 Borrowing Constraint
Ē
Y

= 0.181 Government Expenditure to GDP Ratio under U.S. Tax
G
′′(·) = 0 Utilitarian Social Welfare Function

ρx = 0.92 Persistence of Log Productivity (before modification)
σx = 0.561 S.D. of Log Productivity
xf(x)

1−F (x) = 1.6 Hazard Rate at Top 5% of Wage (Income) Distribution

productivity and earnings, it is well known that the actual distributions of productivity

(wages) and earnings have much fatter tails than a log-normal distribution.25

We modify the Markov transition probability matrix to generate a fatter tail as follows.

First, we set the persistence of the productivity shock to be ρ = 0.92 following Floden and

Linde (2001), which is based on PSID wages and largely consistent with other estimates

in the literature. We obtain a transition matrix of x in a discrete space using the Tauchen

(1986) method, with N = 10 states and (µ, σx) = (2.757, 0.5611), which are Mankiw,

Weinzierl, and Yagan’s (2009) estimates from the U.S. wage distribution in 2007. We

set the end points of the productivity grid to 3.4 standard deviations of log-normal so

that the highest productivity is the top 1% of the productivity distribution in Mankiw,

Weinzierl, and Yagan (2009): (x1, xN) = (exp(µ − 3.4σx), exp(µ + 3.4σx)). Second, in

order to generate a fat right tail, we modify the transition matrix of the high productivity

grids. More specifically, we increase the transition probability π(x′|x) of the highest 3

grids so that the hazard rate of the stationary distribution is xf(x)
1−F (x) = 1.6 for the top 5%

of productivities.26 Finally, we also increase the transition probability of the lowest grid,

25Saez (2001) and Heathcote, Storesletten, and Violante (2014) estimate the earnings distribution and
use tax data to obtain the underlying skill distribution, while Mankiw, Weinzierl, and Yagan (2009) use
the wage distribution as a proxy for the productivity distribution.

26This hazard rate of 1.6 for the top 5% is slightly smaller than the one reported (which is 2.0) in
Mankiw, Weinzierl, and Yagan (2009).
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π(x1|x), so that the stationary distribution has a little bit fatter left tail than log normal.

This adjustment of the bottom tail of the productivity distribution is designed to take

into account disabled workers or those not employed. As Figure 1 shows, the hazard rates

of the productivity distribution from our model almost exactly match those in the wage

distribution in the data. In Section 4.4, we also study the model economy under a simple

log-normal distribution of productivity to examine the impact of fat tails.

Figure 1: Hazard Rates of Wage (Productivity)
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Note: The hazard rates are from Mankiw, Weinzierl, and Yagan (2009).

4.2 Indirect Diagnostics

As we described above, difficult-to-estimate statistics in our tax formula call for a numeri-

cal simulation of a quantitative model Before we simulate the model economy to compute

the optimal tax schedule, we report some key (standard) statistics from our model econ-

omy under the current U.S. tax schedule because it might still be of interest to compare

these statistics to the available estimates in the literature as an indirect diagnostic of our

quantitative model.

Distribution of MPC

First, we compare the marginal propensity to consume (MPC) under the current U.S.

tax schedule (approximated by the HSV form) to the existing empirical values in the

literature. While there are ample empirical studies on the MPC, the MPCs across detailed

income and asset levels are not available. Most estimates of MPC are based on the

2001 and 2008 tax rebate policies (e.g., Johnson, Parker, and Souleles (2006) and Sahm,

Shapiro, and Slemrod (2010) among others). The estimated MPCs in the literature vary
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between 0.2 and 0.4. Using a quantile regression method, Misra and Surico (2011) report

a wide range of heterogeneity in MPC across households. Jappelli and Pistaferri (2014)

also provide detailed MPCs by income and financial assets using the 2010 Italian Survey

of Household Income and Wealth.

The average MPC in our benchmark model is 0.88, much higher than the 0.48 reported

by Jappelli and Pistaferri (2014) or the 0.33 in Sahm, Shapiro, and Slemrod (2010). This

gap is inevitable because the income process is highly persistent in our model—making

the MPC close to 1, whereas most empirical estimates are based on idiosyncratic events

associated with temporary changes in income, such as tax rebates, which typically im-

ply a small MPC.27 For this reason, it is not fair to directly compare the levels of MPC

between the model and the available estimates. Thus, we rather focus on the relative

MPCs across different income and asset groups, for which the model is not very far from

the data. Table 2 compares the MPCs in our model to those in Jappelli and Pistaferri

(2014)—the average and those at the 1st and 5th quintiles (the bottom and top 20%) in

the income and asset distributions. The MPCs in the data at the 1st and 5th quintiles

are computed using the regression coefficients on dummy variables for the corresponding

group (from Table 4 in Jappelli and Pistaferri (2014)). For example, according to Jappelli

and Pistaferri (2014), the households in the 1st quintile of the income distribution exhibit

MPCs that are 9 to 12% higher than the average MPC of the entire sample, whereas in

our model their average MPC is 17% larger than the population average. The households

at the 5th quintile show the MPCs that are 11 to 14% smaller than the entire sample

average in the data, and they are 14% smaller than the average in our model. Thus, the

model generates MPCs that are a little bit more dispersed than those in the data. By

assets, the model generates MPCs that are somewhat less dispersed than those in Jappelli

and Pistaferri (2014).

Distributions of Income and Assets

Our model is designed to match the income distribution of the U.S. economy fairly well

because we calibrate the stochastic process of productivity to mimic the hazard rates

27In fact, the average MPC Dupor, Karabarbounis, Kudlyak, and Mehkari (2017)) –which features
a Huggett-style incomplete market economy like ours—is 0.22 with respect to a one-time unexpected
increase in income, well within the range of empirical estimates.
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Table 2: Relative MPC by Income and Assets

By Income By Assets
Data Model Data Model

Bottom 20% +9 ∼ +12% +17% +22 ∼ +25% +14%
Top 20% −14 ∼ −11% −14% −30 ∼ −22% −11%

Notes: The numbers represent the average MPC of each group relative to the entire sample mean (0.48
in the data and 0.85 in the model). The data statistics are based on Jappelli and Pistaferri (2014).

of the wage distribution in Mankiw, Weinzierl, and Yagan (2009) (shown in Figure 1).

Table 3 shows that the Gini coefficient of earnings in our model is 0.51, not far from

those of the U.S. (0.53 − 0.67). The distribution of assets is not necessarily close to

that in the data. While the Gini coefficient of wealth in our model is 0.91, even higher

than those in the data (0.76-0.86), this comparison is misleading. Given that our model

requires zero aggregate savings in equilibrium, there are a large number of households with

negative assets. Thus, the Gini is not an appropriate measure and we need a dispersion

measure that can accommodate a large fraction of the population with negative values.

Instead we report the relative dispersion such as a80−a20
a60−a40

where a80 is asset holdings at

the 80th percentile of the asset distribution. According to Table 3, the model generates

an asset distribution whose dispersion is fairly close to that in the data for a wide range

of distributions. For example, the relative dispersions in the model are a90−a10
a60−a40

= 4.1,
a90−a10
a60−a40

= 8.9, and a95−a05
a60−a40

= 18.5, fairly close to 3.9, 8.6, and 17.3, respectively, in the

data. But the dispersion at the tail 2% of the asset distribution, a99−a01
a60−a40

, is only 39 in the

model, much smaller than the 72 in the data. As is well known, this type of incomplete-

markets models has difficulty in generating super-rich households. The income and assets

are somewhat more strongly correlated in the model (with a correlation coefficient of 0.75)

than they are in the data (0.53).

4.3 Optimal Tax Schedule

In our quantitative analysis, for computational convenience, we focus on the optimal tax

formula using the so-called “utility-based steady state” approach — optimal tax formulas

with the steady-state elasticities. This approach, proposed by Saez and Stantcheva (2018)
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Table 3: Distribution of Assets

Data Model
Gini (earnings) 0.53-0.67 0.51
Gini (assets) 0.76-0.86 0.91

corr(assets, earnings) 0.53 0.75
a80−a20
a60−a40

3.9 4.1
a90−a10
a60−a40

8.6 8.9
a95−a05
a60−a40

17.3 18.5
a99−a01
a60−a40

72.8 39.1

Notes: The data statistics are based on Ríos-Rull and Kuhn (2016) and Chang and Kim (2006). a80

denotes asset holdings at the 80th percentile of the asset distribution.

further simplifies the tax formula to:28

T ′(z∗)
1− T ′(z∗) = 1

εl1−T ′(z∗)
· 1− Fz(z∗)
z∗fz(z∗)

· [A(z∗) +B(z∗) + C(z∗)] (11)

where

A(z∗) =
∫∫ ∞

z∗
(1− g(a, z)) φ(a, z)

1− Fz(z∗)
dz da

B(z∗) =
∫
g(a, z){dr · a}φ(a, z) da dz,

C(z∗) = −1
λ

∫
{u′(a, z)− β(1 + r)Ez′ [u′(a′(a, z), z′))|z]} · da′(a, y(z))φ(a, z) da dz,

λ =
∫
u′(a, z)φ(a, z)da dz, and g(a, z) = u(a,z)

λ
.

Using this formula, we compute the optimal tax schedule quantitatively. We start with

a given T ′. We compute the competitive equilibrium for given T ′ and the equilibrium

with the tax reform to obtain the other statistics—such as dr, da′(a, y(z)), φ(a, z)), and

g(a, z). We then use the formula to compute the new vector of T ′. More precisely, we
28There are two possible interpretations for this formula: (i) an approximation of the optimal tax

formula where the equilibrium prices and households’ asset adjustment during transition are replaced by
the change in prices and assets between new and old steady states: drt = dr and a′t+1 = da′ where dr
and da′ are the change in the equilibrium interest rate and assets holdings, respectively, from the old
to new steady state. (ii) this is the formula under the utility-based steady state approach proposed by
Saez and Stantcheva (2018). In our context, this is equivalent to steady state welfare maximization but
deliberately ignoring the effect of da0 — change in asset holding in the initial period of new steady state
— on individual welfare. Intuitively this means that the government does not consider the change in
individual’s initial budget in the first period of new steady state, because this change in initial budget is
at the cost of individual’s past sacrificed consumption in the transition period.
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use the formula with respect to the exogenous productivity distribution— formula (6).

We repeat the algorithm until the vector converges to a fixed point. This algorithm is a

modification of the one used in Brewer, Saez, and Shephard (2010).

Figures 2 and 3 show the optimal marginal tax schedule across productivity and income,

respectively, with and without a private insurance market. We normalize the units of

quantities in our model so that the average productivity (wage) is $20 and the average

labor income is $40,000 (comparable to those in 2015 in the U.S.). Without a private

insurance market (dotted line), the optimal marginal tax schedule exhibits a well-known

U-shape as in the standard Mirrleesian taxation literature (Diamond (1998), Saez (2001)).

High marginal tax rates at the very low income levels indicate that net transfers to

low-income households should quickly phase out. As seen in Figure 1, the hazard rate

of productivity sharply increases, implying that the cost of distorting the labor supply

quickly increases (relative to the benefit): the optimal marginal tax rate should start

decreasing with income. As income increases, the marginal social welfare weight gradually

diminishes—which eventually becomes a dominant factor and results in a higher marginal

tax at the high-income group.

Figure 2: Optimal Marginal Tax by Productivity
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Figure 3: Optimal Marginal Tax by Income
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While the same driving forces are operative in an economy with a private insurance

market, there are additional factors that make the optimal tax schedule different from

that without a private insurance market. Looking at Figures 2 and 3 again, the optimal

tax rates in the presence of private insurance (solid line) are higher than those without a
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private market (dotted line) at the low-income group (wage rates less than $20). For the

middle- and high-income groups (wage rates above $20), the optimal tax rates are lower

than those without private insurance.

We now examine the factors that account for the difference in optimal tax rates with

and without private insurance in detail. Comparing our optimal tax formula (11) to that

of Saez (2001), the difference between the two formulas consists of three components. The

first term in the bracket, A(z∗), is similar to Saez (2001) except that now the distribution

of marginal utility of consumption depends on assets as well as income. The second term,

B(z∗), reflects the pecuniary externality whose importance in incomplete markets is well-

explained by Davilla, Hong, Krusell, and Rios-Rull (2012). That is, a decrease in the

equilibrium interest rate (which will make the rich less richer) due to tax reform justifies

less progressive tax schedule. The third term, C(z∗), captures the effect of borrowing

constraint as explained above. To see the importance of each component, we provide the

decomposition of the difference between our optimal tax rate and that of Saez (2001) as:

T ′(z∗)
1− T ′(z∗) −

T ′Saez(z∗)
1− T ′Saez(z∗)

= 1
εl1−T ′(z∗)

· 1− Fz(z∗)
z∗fz(z∗)

·
[
A(z∗)− ASaez(z∗) +B(z∗) + C(z∗)

]
, (12)

where

A(z∗)− ASaez(z∗) =
∫∫ ∞

z∗
(1− g(a, z)) φ(a, z)

1− Fz(z∗)
dz da−

∫ ∞
z∗

(1− gSaez(z)) fz(z)
1− Fz(z∗)

dz.

Figure 4 plots each of these three components. The first figure show the difference from

all three terms together. The second figure shows 1
εl1−T ′ (z

∗)
1−Fz(z∗)
z∗fz(z∗) [A(z∗) − ASaez(z∗)],

labeled as “Dynamic Saez - Static Saez.” The third shows the effect of pecuniary exter-

nality, 1
εl1−T ′ (z

∗)
1−Fz(z∗)
z∗fz(z∗) B(z∗), and the last shows the effect due to the borrowing constraint,

1
εl1−T ′ (z

∗)
1−Fz(z∗)
z∗fz(z∗) C(z∗).

The distribution of consumption becomes more dispersed in an economy with private

savings (due to a skewed asset distribution). Thus, the original Saez formula is amplified

and the first term (Dynamic Saez - Static Saez) is always positive, making the optimal

tax rate higher. The second term, which represents the effect of pecuniary externality,

however, depends on the sign of the equilibrium interest rate change as explained above.

This effect is positive for the low-income bracket (less than wage rate of $15) but becomes

negative as income increases, and the negative effect become quite large at the top income.
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Figure 4: Decomposition of the Difference in T ′
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A progressive tax reform of increasing marginal tax rate at the high income bracket reduces

the precautionary motive of savings and results in a high equilibrium interest rate (which

makes the rich richer) which dampens the redistribution effect of a tax reform. As this

effect starts dominating the dynamic Saez - Static Saez term (at wage rates around $20),

the optimal tax rates become lower than those without private insurance market. Finally,

the third term, the effect of borrowing constraint, is always negative but quantitatively

negligible. All three terms together, the optimal tax rates are higher for the low income

group (wages below $20) but lower for higher income group. In sum, the difference in

tax rates with and without a private insurance market is quantitatively important, as the

difference between the two can be more than 10 percentage points.

As we have shown in section 2.3.4, an alternative way to decompose the difference

between our formula and Saez formula is using the approach in Chetty and Saez (2010),

which shows the role of marginal propensity to save more visibly. By comparing the

formula (7) with steady state elasticities to that of Saez (2001), the difference between
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the two formulas consists of three components.

T ′(z∗)
1− T ′(z∗) −

T ′Saez(z∗)
1− T ′Saez(z∗)

= Ω1 + Ω2 + Ω3, (13)

where

Ω1 = −(1− β(1 + r))
∫
hAy (a, y(z))φ(a | z∗) da

Ω2 = 1
εl1−T ′(z∗)

1− Fz(z∗)
z∗fz(z∗)

{
E [1− g(a, z)|z ≥ z∗]−ASaez(z∗)

}
Ω3 = 1

εl1−T ′(z∗)
1− Fz(z∗)
z∗fz(z∗)

[∆3 +∆4 +∆5] ,

Figure 5: Alternative Decomposition of the Difference in T ′
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Figure 5 plots each of three components: Ω1,Ω2,Ω3. The first term Ω1 (the second

figure) shows the role of marginal propensity to save (MPS), which reflects the substitu-

tion between private and public insurance. We can see that MPS has very small effects

quantitatively in optimal tax formula, which is because of dynamic adjustment factor

(1 − β(1 + r)) in Ω1. Different from spot insurance market in Chetty and Saez (2010),
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in a dynamic Huggett economy, current saving is asset holding in the future, and thus

the direct effect of MPS (substitution effect) is quantitatively small, while MPS can have

indirect effect through the distribution of asset.

Finally, we compare our optimal tax schedule to the current U.S. income tax rates.

Figure 6 compares the optimal marginal tax rates implied by our model (solid line) to the

current U.S. income tax schedule approximated by the HSV functional form (dotted line).

First, the optimal marginal tax rates are higher than the current rates in the U.S. for all

income groups.29 However, for the top-income group (i.e., individual income ranges above

$250K), the current tax rates are not so far from optimal. This result is very different

from those without private insurance seen in Figure 3, where the optimal tax rates are

much higher than the current ones.

Figure 6: Marginal Tax Rate: Current vs. Optimal
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Note: “US (Federal)” reflects the statutory federal income tax rates for singles in 2015. “US (CBO)”
shows the median of effective marginal tax rates for low- and moderate-income workers (single parent
with one child) in 2016 published by the CBO.

29Heathcote and Tsujiyama (2017) find that the optimal tax schedule is close to a log-linear form.
There are at least two important differences between the results of Heathcote and Tsujiyama (2017) and
ours. First, we match the exact shape of the hazard rate of the productivity distribution in the data,
while they approximate the productivity distribution by an exponentially modified Gaussian. Second,
they assume a complete separation between perfectly insurable and noninsurable productivity shocks,
whereas we assume a partial insurance market.
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4.4 Comparative Statics

In this section, we investigate how the optimal tax schedule changes with respect to differ-

ent specifications on (i) the right tail of the income distribution (log-normal rather than

Pareto) and (ii) the persistence of productivity shocks. For each alternative specification,

we find a new value for the time discount factor β to clear the private insurance market

at the given interest rate r = 4% under the current U.S. tax schedule (approximated

by a log-linear form as in HSV). Simultaneously, we recalibrate the exogenous borrowing

limit a so that about 10% of households are credit-constrained in the steady state. In the

appendix, we also carry out the sensitivity analysis with respect to other parameters of

the model economy such as relative risk aversion, the Frisch elasticity, and the borrowing

constraint. The results are consistent with our economic priors. The optimal tax rates

are higher when (i) households are more risk averse, (ii) the labor supply is inelastic, and

the role of private insurance is less significant when the borrowing constraint is tighter.

4.4.1 Log-normal Distribution of Income: Effects of Fat Tails

In the benchmark analysis, we have modified the transition probability (from the dis-

cretized log-normal distribution) to match the fat tail in the income (and wage) distribu-

tion in the data. To examine the role of the fat tail, we compute the optimal tax under

a pure log-normal productivity process without modification. The hazard rate xf(x)
1−F (x) of

the log-normal distribution monotonically increases. This results in the monotonically

decreasing tax rate without a private insurance market in Figure 7. The pattern prevails

in the presence of private insurance, suggesting that the fat tail is crucial for the U-shaped

optimal marginal tax schedule.

In addition, due to very small fraction of workers at the top income, increasing marginal

tax rate at the top has relatively small effects on pecuniary externalities, because rela-

tively few individuals change savings behaviors and thus response of interest rate will be

relatively small for the tax reform of increasing marginal tax rate at the top. Thus, the

effects of pecuniary externalities becomes weaker at the top.
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Figure 7: Log-normal Distribution of Productivity
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4.4.2 Persistence of Productivity Shock

Note that the persistence of the productivity shock, ρ, does not appear in the optimal

tax formula because we restrict our tax system to be noncontingent on history and the

government maximizes steady-state welfare only in the benchmark analysis. However, the

persistence of shocks affects households’ savings pattern and, as a result, the optimal tax

rate in the presence of a private insurance market. We examine the model with ρ = 0.8

(lower persistence). We recalibrate the standard deviation to the innovation σε to obtain

the same standard deviation of log productivity, σx = 0.561, in the benchmark. We also

modify the transition probability matrix at both ends of the productivity distribution to

match the hazard rates in the data, as we did in our benchmark case.

Figure 8 shows that the optimal tax rates under ρ = 0.8 are smaller than those in the

benchmark model except for the very low-income (productivity) group. The decomposi-

tion of the difference is shown in Figure 9. As the persistence of productivity falls, given

the same size of overall income risk, households would like to save more when productivity

is high (i.e., a high productivity does not last long). This generates a larger dispersion

of asset distribution. This has two effects on the optimal tax rates. (i) It magnifies the

Saez term which makes the “Dynamic vs. Static Saez” term larger especially at the low

income bracket. (ii) But, at the same time, it leads to a bigger negative pecuniary exter-

nality, and this leads to even less progressive optimal tax schedule to improve pecuniary

externalities.
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Figure 8: Optimal Tax with Private Market

0 20 40 60 80 100 120

Productivity

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

T
ax

 R
at

e

Figure 9: Decomposition (ρ = 0.8)
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5 Generalizations

In this section we show how the results of Section 2 can be generalized to a more realistic

environment. We provide brief descriptions of these extensions only here. The details are

gathered in Appendix.

5.1 Aiyagari Economy with Physical Capital

The benchmark endowment economy can be extended to the one with physical production

capital (Aiyagari (1994)). In this economy, individual’s labor income depends on wage

rate wt, and the budget constraint of the consumer is

c(a0, x
t) + at+1(a0, x

t) = wtxtl(xt)− T (wtxtl(xt)) + (1 + rt)at(a0, x
t−1).

Production is governed by a constant returns to scale production function F (Kt, Lt),

and the aggregate amount of factors of production and their prices are determined by

Kt =
∫
atdΦ(at, xt), Lt =

∫
xtl(xt)dΦ(at, xt) =

∫
xtl(xt)f(xt)dxt, rt = FK(Kt, Lt)− δ, and

wt = FL(Kt, Lt), respectively.

In this economy, even with GHH preferences (no income effects), the incidence of tax

reform on labor supply is more involved because the responses of labor supply and savings
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to a tax reform change the wage rate, which in turn further affects the labor supply. The

wage rate is affected by the change in all individuals’ labor supplies and savings:

dwt = −αwL(Kt, Lt)·wt
∫ x′tdl(x′t)

Lt
f(x′t)dx′t+αwK(Kt, Lt)·wt

∫ ∫
f(xt−1|x0)dat(a0, x

t−1)
K

dxt−1dΦ(a0, x0),

where αwL(K,L) = − dlogw
dlogK

= −FLL L
FL

denotes the elasticity of wage rate with respect to
aggregate labor, and αwK = dlogw

dlogK
= FLK

K
FL

denotes the elasticity of wage rate with respect
to aggregate capital. Then, the incidence of tax reform on labor supply should solve the
following integral equation:

dlt(xt) = −εl1−T ′(xt)
τ ′(wxtl(xt))

1− T ′(wxT l(xt))
l(xt)

+εlw(xt)
[
−αwL(K,L)

∫
x′tdl(x′t)
Lt

f(x′t)dx′t + αwK(K,L)
∫ ∫

f(xt−1|x0)dat(a0, x
t−1)

K
dxt−1dΦ(a0, x0)

]
l(xt),

where εlw(x) = dlogl(x)
dlogw

= εl1−T ′(x)(1 − ρ(wxl(x))) denotes the elasticity of labor supply

with respect to wage rate along the nonlinear budget constraint.

Similarly, the interest rate responds to the changes in all individual’s labor supply and

savings

drt = −αrK(Kt, Lt)·rt
∫ ∫

f(xt−1|x0)dat(a0, x
t−1)

K
dxt−1dΦ(a0, x0)+αrL(Kt, Lt)·rt

∫ x′tdl(x′t)
Lt

f(x′t)dx′t,

where αrK(K,L) = − dlogr
dlogK

= −FKK K
FK−δ

and αrL = dlogr
dlogL

= FKL
L

FK−δ
. In turn, this change

in interest rate affects saving as in Huggett economy.

We can obtain the optimal tax formula by imposing dW = 0.

Proposition 6. In Aiyagari economy, optimal marginal tax rate at income z∗ should satisfy

T ′(z∗)
1− T ′(z∗) = 1

εl1−T ′(z∗)
· 1− Fz(z∗)
z∗fz(z∗)

· (1− β)
∞∑
t=0

βt [At(z∗) +Bt(z∗) + Ct(z∗) +Dt(z∗)] , (14)

where

At(z∗) =
∫∫ ∞

z∗
(1− g(a, z)) φ(a, z)

1− Fz(z∗)
dz da,

Bt(z∗) =
∫
g(a, z)[dwt · (1− T ′(wz))z + drt · a]φ(a, z) da dz,

Ct(z∗) = −1
λ

∫
{u′(a, z)− β(1 + r)Ez′ [u′(a′(a, z), z′))|z]} · da′t+1(a, y(z))φ(a, z) da dz,

Dt(z∗) = dwt ·
∫
T ′(wz(x))xl(x)f(x)dx.
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The formula (14) is different from (5) in our benchmark Huggett economy in two aspects.

First, there is an additional term Dt(z∗) which captures additional fiscal externalities due

to changes in equilibrium wage rate. Second, the pecuniary externalities term Bt(z∗)

captures two channels of pecuniary externalities as:

Bt(z∗) = drtK

[∫
g(a, z)

(
a

K
− 1

)
dΦ(a, z)−

∫
g(a, z)

(
(1− T ′(wz))z

L
− 1

)
dΦ(a, z)

]
.

Compared to the term Bt(z∗) in formula (5), there is one more term in the bracket, which

captures the insurance channel of pecuniary externalities. If the tax reform decreases the

wage rate (and increases the interest rate), it generates positive welfare effects because the

stochastic component of household’s income–labor earnings— is scaled down. Thus, the

sign of the additional pecuniary externalities term is the opposite of that the pecuniary

externalities in redistribution of capital.

According to Dávila, Hong, Krusell, and Ríos-Rull (2012), under a realistic calibration,

the pecuniary externalities through redistribution dominates the pecuniary externalities

through insurance. Thus, the sign of Bt(z∗) term is not likely to change. Moreover, the

sign of the additional term in Dt(z∗) is the opposite to that of drt, which also makes the

optimal tax schedule less progressive.

5.2 Allowing Capital Income Taxes

In the benchmark, we assume that there is no capital income taxation for expositional

simplicity. In this section, we show that the formula and intuitions we derived in the

benchmark economy carry over to the economy with capital income taxation, as long

as the capital income taxation cannot fully complete the market. If the capital income

tax function is sophisticated enough (e.g., fully nonlinear history dependent tax), the

economy goes back to the complete market case, and there is no need to use labor income

taxation to provide insurance. However, with the typical restrictions on the tax system

(e.g., history independence), capital income tax cannot complete the market.

If we assume a linear constant capital income tax rate τk (either optimally chosen or

an arbitrary) in our benchmark, introducing an capital income tax does not change the

optimal labor income tax formula (5). We only need to replace rt into after tax interest
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rate rt(1 − τk) in the formula. This is, because in a Huggett economy, aggregate asset

sum to zero, and thus there is no government revenue from the capital income taxation.

The quantitative effects of pecuniary externalities could be dampened with a positive τk.

Once we allow for nonlinear capital income taxation, there will be an additional term in

the formula because of fiscal externalities caused by capital income tax. Consider a time-

invariant capital income tax function Tk(·). The household’s budget constraint becomes

c(a0, x
t) + at+1(a0, x

t) = xtl(xt) − T (xtl(xT )) + (1 + rt)at(a0, x
t−1) − Tk(rTat(a0, x

t−1)).

With this nonlinear asset income taxation, the government revenue from capital income

tax is no longer zero. Moreover, the incidence of tax reform on savings will change the

government revenue. Thus, the optimal tax formula becomes:

T ′(z∗)
1− T ′(z∗) = 1

εl1−T ′(z∗)
· 1− Fz(z∗)
z∗fz(z∗)

· (1− β)
∞∑
t=0

βt [At(z∗) +Bt(z∗) + Ct(z∗) +Dt(z∗)] ,

where At(z∗), Bt(z∗), and Ct(z∗) are the same as those in (5) except that rt is replaced by

rt(1−T ′k(rtat)). The additional termDt(z∗) =
∫ ∫

f(xt−1|x0)T ′k(rtat(a0, x
t−1))[drtat(a0, x

t−1)+

rtdat(a0, x
t−1)]dxt−1dΦ(a0, x0) represents the fiscal externalities due to capital income tax.

5.3 Income Effects in Labor Supply

[to be filled out]

5.4 Generalized Social Welfare Function

[to be filled out]

6 Conclusion
We study a fully nonlinear optimal income tax schedule in the presence of a private (in-

complete) insurance market–Huggett (1993). As in Saez (2001), the optimal tax formula

includes standard statistics such as the Frisch elasticity of the labor supply and the in-

come distribution. In the presence of a private market, however, these statistics are no

longer sufficient. The optimal tax formula depends on how the private market interact

with public insurance and its welfare effects. First, the the optimal tax depends on the
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shape of joint distribution of assets and income. An economy with incomplete insurance

market is likely to lead to a larger inequality in consumption (due to a skewed asset

distribution) which typically calls for a stronger redistribution and a more progressive

income tax schedule than without private insurance. Second, the optimal tax schedule

should consider its pecuniary externalities. As shown in Dávila, Hong, Krusell, and Ríos-

Rull (2012), an attempt to reform tax schedule generates changes in equilibrium prices

(e.g., interest rate) which have differential welfare impacts across households. This pe-

cuniary externality is likely to deter the optimal tax schedule from being too progressive

because a progressive tax is likely to result in an increase in market-clearing interest rate

(via reduced precautionary savings), which in turn makes the asset-poor (i.e., borrowers)

worse off. Finally, the formula should also consider the additional welfare effects of the

households who are released from the borrowing constraint as a result of tax reform.

While we can still express the optimal tax formula in terms of economically meaningful

statistics, we argue that it is not practical to adopt a conventional sufficient-statistics

approach because it involves additional terms that are hard to estimate from available

data. Given these difficulties, we compute the optimal tax schedule based on a structural

model—by obtaining those hard-to-measure statistics from a model calibrated to resemble

the salient features of U.S. economy (such as the cross-sectional distributions of income

and marginal propensity). The presence of a private market is quantitatively important,

as the difference in optimal tax rates (with and without private insurance) can be as large

as 10 percentage points. For the low-income group, the optimal tax rate is higher in the

presence of a private market–mainly due to a more dispersed consumption distribution

when savings are allowed. For the middle- and high-income groups, the optimal tax rates

are lower in the presence of a private market—as the pecuniary externalities dominates.

Unlike previous studies which calls for a very high tax rates at the top income bracket,

according to our benchmark simulation, the current U.S. income tax rate for the very rich

is not far from optimal.
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Appendix (For Online Publication)

A Proof of the Main Text

A.1 Incidence of tax reforms on labor supplies

Proof of eqautions(1). We derive elasticity of l(x) with respect to retention rate 1 −

T ′(z(x)) along the nonlinear budget constraint. The perturbed first order condition when

perturbing the retention rate 1− T ′(z(x)) by dr(x) writes

v′(l(x) + dl(x)) = x{1− T ′[x(l(x) + dl(x))] + dr(x)}.

A first-order Taylor expansion around the initial equilibrium implies:

v′(l(x)) + v′′(l(x))dl(x) = {1− T ′(xl(x))}x− T ′′(xl(x))x2dl(x) + xdr(x),

and thus

εl1−T ′(x) = dl(x)
dr(x)

1− T ′(xl(x))
l(x) = x

v′′(l(x)) + T ′′(xl(x))x2
1− T ′(xl(x))

l(x)

=
v′(l(x))

v′′(l(x))l(x)

1 + T ′′(xl(x))
1−T ′(xl(x))xl(x) v′(l(x))

v′′(l(x))l(x)

= e(x)
1 + ρ(z(x))e(x) ,

where e(x) = v′(l(x))
l(x)v′′(l(x)) and ρ(z(x)) = z(x)T ′′(z(x))

1−T ′(z(x)) .

We now derive the incidence of tax reforms on labor supply. We denote the perturbed

tax function by T (z) + µτ(z). As we define in the main text, dl(x) denotes the Gateaux

derivative of the labor supply of type x in response to this tax reform. The labor supply

response dl(x) should solve the perturbed first-order condition:

0 = v′(l(x) + µdl(x))− x{1− T ′[x(l(x) + µdl(x))]− µτ ′[x(l(x) + µdl(x))]}.

A first-order Taylor expansion implies that

v′(l(x)) + v′′(l(x))µdl(x) = x{1− T ′(xl(x))} − T ′′(xl(x))x2µdl(x)− µτ ′(xl(x))x.

51



Solving for dl(x),

dl(x) = −τ ′(xl(x))x
v′′(l(x)) + T ′′(xl(x))x2

=
−τ ′(xl(x)) v′(l(x))

v′′(l(x))l(x)

1 + T ′′(xl(x))
1−T ′(xl(x))xl(x) v′(l(x))

v′′(l(x))l(x)

= −τ(xl(x))
1− T ′(xl(x))

e(x)
1 + ρ(z(x))e(x) l(x) = −ε

l
1−T ′(x)τ ′(z(x))
1− T ′(z(x)) l(x)

A.2 Incidence of tax reforms on savings and interest rate

We start with driving the response of saving policy ht(a, y) to change in (current and

future) virtual income and interest rate. Note that the saving policy functions and and

interest rate can have the negative value, the following parameters denote the change in

savings policy with respect to change in income (or interest rate), instead of percentage

change.

The response of saving policy ht(a, y) to change in current virtual income R given
interest rate r can be obtained by taking Taylor expansion of the perturbed Euler equation:

u′((1 + r)a+ y(x) + dR− a′ − da′ − v(l(x)))

= β(1 + r)E[u′((1 + r)(a′ + da′) + y(x′)− hA(a′ + da′, y(x′))− dhA(a′, y(x′))− v(l(x′)))].

Taking the first-order Taylor expansion, we obtain

u′(a, y)− u′′(a, y)da′ + u′′(a, y)dR = β(1 + r)E[u′(a′, y(x′))] + β(1 + r)2E[u′′(a′, y(x′))]da′

−β(1 + r)E[u′′(a, y(x′))hAa (a′, y(x′))]da′ − β(1 + r)E[u′′(a′, y(x′))dhAt+1(a′, y(x′))].

Thus,

εta′,Rt = dhAt (a, y)
dRt

=
u′′(a, y) + β(1 + r)E[u′′(a′, y(x′))dh

A
t+1(a′,y(x′))

dRt
]

u′′(a, y) + β(1 + r)2E[u′′(a′, y(x′))]− β(1 + r)E[u′′(a′, y(x′))hAa (a′, y(x′))] .

Notice that the right hand side of the equation does involve dhAt+1(a′,y(x′))
dRt

and solving for
dhAt+1(a′,y(x′))

dRt
requires dhAt+w(a′,y(x′))

dRt
and so on. That is, change in current income affects

savings in all future periods, and thus it is very hard to get analytical expression for

εta′,Rt . We can obtain the closed form expression in a simple two period model: εta′,Rt =
u′′(a,y)

u′′(a,y)+β(1+r)2E[u′′(a′,y(x′))]] .
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Next, we can derive the response of saving policy ht(a, y) to change in state-contingent
virtual income in next period R(x′) given interest rate r in a similar way. When the
virtual income is perturbed by dR(x′) = dR(x̂′) · 1x′=x̂′ , the perturbed Euler equation
writes

u′((1 + r)a+ y(x)− a′ − da′ − v(l(x))) = β(1 + r)E[u′((1 + r)(a′ + da′)

+y(x′) + dR(x′)− hA(a′ + da′, y(x′) + dR(x′))− dhAt+1(a′, y(x′))− v(l(x′)))].

Using the first-order Taylor expansion of the perturbed Euler equation, we obtain

εta′,Rt+1(x̂′) = dhAt (a, y)
dRt+1(x̂′) = −

β(1 + r){f(x̂′|x)u′(z, y(x̂′))(1− hAy (a′, y(x̂′)))− E[u′′(a′, y(x′))dh
A
t+1(a′,y(x′))
dRt+1(x̂′) ]}

u′′(a, y) + β(1 + r)2E[u′′(a′, y(x′))]− β(1 + r)E[u′′(a′, y(x′))hAa (a′, y(x′))] ,

which requires dhAt+1(a′,y(x′))
dRt+1(x̂′) for all x′ realizations.

So far, we have derived the response of saving policy given interest rate. The response
of saving policy to change in interest rate can be obtained similar way. The perturbed
Euler equations with respect to change in current interest rate and future interest rate
are

u′((1 + r + drt)a+ y(x)− a′ − da′ − v(l(x)))

= β(1 + r)E[u′((1 + r)(a′ + da′) + y(x′)− hA(a′ + da′, y(x′))− dhA(a′, y(x′))− v(l(x′)))],

and

u′((1 + r)a+ y(x)− a′ − da′ − v(l(x)))

= β(1 + r + drt+1)E[u′((1 + r + drt+1)(a′ + da′) + y(x′)− hA(a′ + da′, y(x′))− dhA(a′, y(x′))− v(l(x′)))],

respectively. The first-order Taylor expansions yield

εta′,rt = dhAt (a, y)
drt

=
u′′(a, y)a+ β(1 + r)E[u′′(a′, y(x′))dh

A
t+1(a′,y(x′))

drt
]

u′′(a, y) + β(1 + r)2E[u′′(a′, y(x′))]− β(1 + r)E[u′′(a′, y(x′))hAa (a′, y(x′))] ,

and

εta′,rt+1
= dhAt (a, y)

drt+1
=
−βE[u′(a′, y(x′))]− β(1 + r)E[u′′(a′, y(x′))]a′ + β(1 + r)E[u′′(a′, y(x′))dh

A
t+1(a′,y(x′))
drt+1

]
u′′(a, y) + β(1 + r)2E[u′′(a′, y(x′))]− β(1 + r)E[u′′(a′, y(x′))hAa (a′, y(x′))] .

We now express the incidence of tax reforms on saving policy in terms of the (semi)
elasticities we defined above. We denote the Gateaux derivatives of savings in period t

of a consumer with current state (a, y) in response of the tax reform by dhAt (a, y). The
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saving response dhAt (a, y) should solve the perturbed Euler equation:

u′((1 + r + µdrt)a− µτ(z(x))− a′ − µda′ − v(l(x))) = β(1 + r + µdrt+1)E[u′((1 + r + µdrt+1)(a′ + µda′)

+y(x′)− µτ(z(x′))− hA(a′ + µda′, y(x′)− µτ(z(x′))))− µdhA(a′, y(x′))− v(l(x′)))].

Solving for dhAt (a, y),

dhAt (a, y(x)) = −u
′′(a, y)
χ

τ(z(x)) +
β(1 + r)E[u′′(a′, y(x′))(1− hAy (a′, y(x′)))τ(z(x′))]

χ
+ u′′(a, y(x))a

χ
drt

−βE[u′(a′, y(x′))] + β(1 + r)E[u′′(a′, y(x′))]a′

χ
drt+1 +

β(1 + r)E[u′′(a′, y(x′))dhAt+1(a′, y(x′))]
χ

= −εta′,Rt(a, y) · τ(z(x))−
∫
εta′,Rt+1(x′)(a, y) · τ(z(x′))dx′ + εta′,rt(a, y)drt + εta′,rt+1(a, y)drt+1,

where χ = u′′(a, y) + β(1 + r)2E[u′′(a′, y(x′))]− β(1 + r)E[u′′(a′, y(x′))hAa (a′, y(x′))], and

the second equality uses

dhAt+1(a′, y(x′)) = −dhAt+1(a′,y(x′))
dR

τ(z(x))−
∫ dhAt+1(a′,y(x′))

dR(x̂′) τ(z(x̂′))dx̂′+dhAt+1(a′,y(x′))
drt

drt+
dhAt+1(a′,y(x′))

drt+1
drt+1.

We now briefly discuss how we can express the incidence on the interest rate in terms

of the slope of aggregate asset supply curve and the incidence on aggregate savings given

interest rate. In Huggett econmy, when there is any change in aggregate asset supply,

interest rate should adjust to clear the market (to guarantee that asset sum to zero). Thus,

we can define the semi elasticity of interest rate with respect to aggregate asset as α =
dr

d
∫
adΦ

= − 1
As′(r) , where A

s(r) =
∫
adΦ(a, x; r) denotes the aggregate asset supply curve,

in which Φ(a, x; r) denotes the steady state distribution associated with the consumer’s

saving policy function hA(a, x; r) given interest rate. Then the incidence of tax reforms

on interest rate is obtained by

drt = α · dAst(r), (15)

where dAst(r) denotes the incidence of tax reform on aggregate savings given interest rate,∫ ∫
dat(xt−1; r)f(xt−1|x0)dxt−1dΦ(a0, x0).

A.3 Incidence of tax reforms on individual welfare

Proof of lemma 1

In this section, we derive the incidence of tax reforms on individual welfare (before rebating

54



the change in government revenue as a transfer).

dV (a0, x0)

= d
[ ∞∑
t=0

βt
∫
f(xt | x0)u(xtl(xt)− T (xtl(xt))− at+1(a0, x

t) + (1 + rt)at(a0, x
t−1)− v(l(xt))) dxt

]
=
∞∑
t=0

βt
∫
f(xt | x0)u′(a0, x

t)
[
− τ(z(xt))− dat+1(a0, x

t) + (1 + r)dat(a0, x
t−1) + drtat(a0, x

t−1)
]
dxt

=
∞∑
t=0

βt
∫
f(xt | x0)u′(a0, x

t)
[
− τ(z(xt)) + drt · at(a0, x

t−1)
]
dxt

−
∞∑
t=0

βt
∫
f(xt | x0)

[
u′(a0, x

t)− β(1 + r)
∫
f(xt+1 | xt)u′(a0, x

t+1)dxt+1
]
dat+1(a0, x

t)dxt,

where the second equality is due to the Envelope theorem, using the intratemporal first

order condition of the consumer.

Note that at+1(a0, x
t) can be recursively represented by hA(at(a0, x

t−1), xt). In ad-

dition, as long as x → y(x) is one-to-one mapping, we can express the saving policy

function as a function of (a, y) so that hA(a, x) = hA(a, y(x)). Thus, at+1(a0, x
t) =

hA(at(a0, x
t−1), y(xt))

Then the total change in savings, dat+1(a0, x
t), can be decomposed into

dat+1(a0, x
t) = dhA(at(a0, x

t−1), y(xt))

+hAa (at(a0, x
t), y(xt)) · dat(a0, x

t−1) + hAy (at(a0, x
t), y(xt)) · dyt(xt),

where hAa and hAy marginal propensity to save out of additional asset holdings and after-tax

income, respectively, and hAy satisfies hAx (a, x) = hAy (a, y(x)) · (1− T ′(xl(x))[l(x) + xl′(x)].

When the borrowing constraint is binding, hAa (a, y(x)) = hAy (a, y(x)) = 0. On the other

hand, if the borrowing constraint is not binding, u′(c)−β(1 + r)E[u′(c′)] = 0 . Therefore,

{u′(c)− β(1 + r)E[u′(c′)]} × {hAa (a, y(x)) da+ hAy (a, y(x))dy(x)} = 0. Thus,

dV (a0, x0)

=
∞∑
t=0

βt
∫
f(xt | x0)u′(a0, x

t)
[
− τ(z(xt)) + drt · at(a0, x

t−1)
]
dxt

−
∞∑
t=0

βt
∫
f(xt | x0)

[
u′(a0, x

t)− β(1 + r)Ext+1 [u′(a0, x
t+1)|xt]

]
dhA(at(a0, x

t−1), y(xt))dxt.
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A.4 Incidence of tax reforms on government revenue - elementary tax
reform

We derive the tax incidence on government revenue for the elementary tax reform. As we

discuss in the main text, the elementary tax perturbation τ(z) = 1z≥z∗ is not differentiable.

To apply the formula (4) to this non-differentiable perturbation, we apply the construction

technique discussed in Sachs, Tsyvinski, and Werquin (2016). That is, we can construct a

sequence of smooth perturbation functions κz∗,ε(z) such that lim
ε→0

κz∗,ε(z) = δz∗(z), in the

sense that for all continuous function h(·) with compact support,

lim
ε→0

∫
R
κz∗,ε(z)h(z)dz = h(z∗),

and by changing variables in the integral, this also implies

lim
ε→0

∫
X
κz∗,ε(z(x′))

{
h(z(x′))dz(x′)

dx

}
dx′ = h(z∗).

Letting τz∗,ε(·) denote the function such that τ ′z∗,ε = κz∗,ε(·), the tax incidence of a tax

reform τz∗,ε on government revenue dR(τz∗,ε) is

dR(τz∗,ε) =
∫
τz∗,ε(z(x))f(x)dx+

∫
T ′(z(x))

[
− εl1−T ′(x) · κz

∗,ε(z(x))
1− T ′(z(x))z(x)

]
f(x)dx.

Thus, we can obtain the dR of the elementary tax reform at z∗:

lim
ε→0

dR(τz∗,ε) = dR =
∫ ∞
x∗

f(x)
1− F (x∗)dx−

T ′(z(x∗))
1− T ′(z(x∗))ε

l
1−T ′(x∗)

z(x∗)
z′(x∗) ·

f(x∗)
1− F (x∗)

=
∫ ∞
z∗

f(z)
1− Fz(z∗)

dz − T ′(z∗)
1− T ′(z∗) · ε

l
1−T ′(z∗) ·

z∗fz(z∗)
1− Fz(z∗)

.

A.5 Derivation of Optimal Tax Formula

Proof of proposition 2

We start with deriving the incidence of tax reforms on social welfare. We denote the

Gateaux derivative of social welfare in response to the elementary tax reform by dW .

Then,

dW =
∫ ∞∑

t=0
βtdR

[ ∫
f(xt | x0)u′(a0, x

t)dxt
]
·φ(a0, x0)da0dx0+

∫
dV (a0, x0)φ(a0, x0) da0 dx0
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The updating operator for the sequence of distribution densities φt of savings a and pro-

ductivity x is φ(at+1, xt+1) =
∫
f(xt+1 | xt) φ(a′)−1(at+1,xt),xt)

a′a((a′)−1(at+1,xt),xt) dxt at any period t. Therefore,

for some function h̃ such that h̃(a0, x
t) = h(at(xt−1), xt), we can obtain

∫∫
h̃(a0, x

∗)f(x∗ | x0)dxtφ(a0, x0)da0dx0 =
∫
h(at, xt)φ(at, xt) dat dxt,

by applying change of variables sequentially.

Thus, we obtain

dW =
∫ ∞∑

t=0
βtdR ·

∫
u′(at, xt)φ(at, xt) datdxt

+
∞∑
t=0

βtu′(at, xt)
[
− τ(z(xt)) + drt · at

]
φ(at, xt) dat dxt

−
∞∑
t=0

βt
∫ [

u′(at, xt)− β(1 + r)
∫
f(xt+1 | xt)u′(at+1(at, xt), xt+1)dxt+1

]
dhAt (at, y(xt))φ(at, xt) dat dxt

= λ

1− β
[ ∫ ∞

x∗

f(x)
1− F (x∗) dx−

T ′(z(x∗))
1− T ′(z(x∗)) ·

εl1−T ′(x∗)z(x∗)
z′(x∗) · f(x∗)

1− F (x∗)
]

− 1
1− β

∫∫ ∞
x∗

u′(a, x) φ(a, x)
1− F (x∗) dxda+

∞∑
t=0

βt
∫
u′(a, x){drt · a}φ(a, x) da dx

−
∞∑
t=0

βt
∫ [

u′(a, x)− β(1 + r)
∫
f(x′ | x)u′(a′(a, x), x′) dx′

]
{dhAt (a, y(x))}φ(a, x) da dx,

where λ =
∫
u′(at, xt)φ(at, xt) dat dxt.

Optimal tax formula can be obtained if no tax reform improves welfare. That is, dW = 0

implies

T ′(z(x∗))
1− T ′(z(x∗)) = 1

εl1−T ′(x∗)
· z
′(x∗)
z(x∗) ·

1− F (x∗)
f(x∗)

× 1
1− β

∞∑
t=0

βt
[ ∫∫ ∞

x∗
(1− u′(a, x)

λ
) φ(a, x)
1− F (x∗) dx da−

∫ u′(a, x)
λ
{−drt · a}φ(a, x) da dx

−
∫ [u′(a, x)

λ
− β(1 + r)

∫
f(x′ | x)u

′(a′(a, x), x′)
λ

dx′
]
{dhAt (a, y(x))} φ(a, x) da dx

]

By applying change of variables, we get the formula (5).
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B Additional Comparative Statics

B.1 Risk Aversion and Labor Supply Elasticity

We consider the relative risk aversion σ = 1 (lower than the benchmark risk aversion:

σ = 1.5). Figure 10 shows the optimal tax rates without a private insurance market for

σ = 1 and 1.5. With a smaller risk aversion, the optimal tax rates are lower than those in

our benchmark at all productivity levels because there is less need for insurance.30 This

driving force is still present in an economy with a private market.

In the presence of a private insurance market, however, the optimal tax rates at the

upper-middle and high-income groups are in fact higher when σ = 1 (lower risk aversion)

in Figure 11. This is because of the general equilibrium effect. With a smaller risk

aversion, households save less (a weaker precautionary savings motive). The real interest

rate has to increase to clear the private savings market. For example, the real interest rate

net of discounting β(1+r) increases from 0.9647 (under σ = 1.5) to 0.9808 (under σ = 1).

This encourages high-income households to save more and makes the marginal private

savings (P ′) schedule steeper, which leads to a larger cross-sectional dispersion in assets

and consumption. Thus, the second term and the third term in our formula (amplified

Saez effects and aligned private progressivity effects) become larger. For upper-middle

and high-income groups (wages above $35), this general equilibrium effect (larger second

and third terms in the formula) dominates a weaker precautionary savings (smaller first

term in the formula), resulting in higher marginal tax rates.

Next, we consider a smaller Frisch elasticity of the labor supply (e = 0.25). Figure 12

shows that for all income levels the optimal tax rates under e = 0.25 are higher than those

in our benchmark (e = 0.5) because an inelastic labor supply is associated with a smaller

cost of distortion.

B.2 Borrowing Constraints

In the benchmark economy, we set the borrowing limit a = −86.55, which is the average

annual earnings in the steady state under the current U.S. tax schedule (approximated by
30Under utilitarian social welfare, for example, the social welfare weights at high-income levels (u′(c)

A )
are relatively high when risk aversion is low.
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Figure 10: Optimal Tax without Private Insurance
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Optimal Marginal Tax: without Private Market

Figure 11: Optimal Tax with Private Insurance
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Optimal Marginal Tax with Private Market

Figure 12: Optimal Tax with Private Market
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a log-linear form as in HSV). Under this borrowing limit, 9.7% of households are credit-

constrained under the current U.S tax schedule. We consider a tighter borrowing limit,

which is half of our benchmark case (a = −43.3) so that workers can borrow one-half of

the average earnings in the economy. With this tighter borrowing limit, about 34% of

the population is credit-constrained under the current U.S. tax schedule in our model.

Figure 13 shows the optimal tax rate schedules under this tighter borrowing constraint.

The optimal tax rates are roughly between those in the benchmark and those without a

private insurance market, except for the highest productivity group.

Under the tighter borrowing constraint, households tend to save more due to a stronger

precautionary savings motive. To clear the private savings market, the equilibrium interest

rate has to decrease. This increases the MPS of the low-income group and decreases the

MPS of the high-income group. This will lead to a lower marginal tax for the low-income
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Figure 13: Optimal Tax under Tighter Borrowing Constraint
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group and a higher marginal tax for the high-income group. In addition, the crowding

in/out effects become larger under the tighter borrowing constraint as the tax reform

induces a more progressive response of private savings. At the top income group, this

effect is strong enough to generate an even higher optimal tax rate.

C Proof of Section 5

[to be filled out]
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