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Abstract: I study reputation effects when players have persistent private information that directly affects their
opponents’ payoffs. I examine a repeated game between a patient informed player and a sequence of myopic
uninformed players. The informed player privately observes a persistent state, and is either a strategic type
who can flexibly choose his actions or is one of the several commitment types that mechanically plays the same
action in every period. Unlike the canonical reputation models, the uninformed players’ payoffs depend on
the state. This interdependence of values introduces new challenges to reputation building, as the informed
player faces a trade-off between establishing a reputation for commitment and signaling favorable information
about the state. I derive predictions on the informed player’s payoff and behavior that uniformly apply across
all the Nash equilibria. When the stage-game payoffs satisfy a monotone-supermodularity condition, I show
that the informed player can overcome this new challenge and secure a high payoff in every state and in every
equilibrium. Under a condition on the distribution over states, he will play the same action in every period
and maintain his reputation in every equilibrium. If the payoff structure is unrestricted and the probability of
commitment types is small, then the informed player’s return to reputation building can be low and can provide
a strict incentive to abandon his reputation.
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1 Introduction

Economists have long recognized that reputations can lend credibility to people’s threats and promises. This

intuition has been formalized in a series of works starting with Kreps and Wilson (1982), Milgrom and Roberts

(1982), Fudenberg and Levine (1989,1992) and others, who show that having the option to build a reputation

dramatically affects a patient individual’s gains in long-term relationships. Their reputation results are robust

as they apply across all equilibria, which enable researchers to make sharp predictions in many decentralized

markets where there is no mediator helping participants to coordinate on a particular equilibrium.

However, previous works on robust reputation effects restrict attention to private value environments. This

excludes situations where reputation building agents have persistent private information that directly affects
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their opponents’ payoffs. For example in the pharmaceutical, cable TV and passenger airline industries, in-

cumbents can benefit from a reputation for fighting potential entrants, but are also better informed about the

market demand curve.1 The latter directly affects the entrants’ profits from entry. In the markets for food,

electronics and custom software, merchants can benefit from a reputation for providing good customer service,

but can also have private information about their product quality (Banerjee and Duflo 2000, Bai 2016), which

can affect consumers’ willingness to pay. This coexistence of reputation for playing certain actions and payoff

relevant private information introduces new economic forces, as the reputation building agent’s behavior not

only shows his resolve to maintain his reputation but also signals his payoff relevant private information. The

dynamic interactions between the two can affect the value of a good reputation and the agent’s incentives to

maintain his reputation. Understanding these effects is important both for firms in designing business strategies

and for policy makers in evaluating the merits of quality-control programs and anti-trust regulations.

Motivated by these applications, this paper studies reputation building in interdependent value environ-

ments. In my model, a patient long-run player 1 (e.g. incumbent, seller) interacts with a sequence of myopic

short-run player 2s (e.g. entrants, buyers). The key modeling innovation is that player 1 has perfectly persistent

private information about two aspects: (1) the state of the world (e.g. market demand, product quality) that

can directly affect both players’ stage-game payoffs; (2) whether he is strategic or committed. The strategic

long-run player maximizes his discounted average payoff and will be referred to by the state he observes. The

committed long-run player mechanically follows some state-contingent stationary strategies. Every player 2

perfectly observes all the actions taken in the past but cannot observe their predecessors’ payoffs.

My results address the predictions on the long-run player’s payoff and behavior that uniformly apply across

all the Nash equilibria of this repeated game.2 I show that in general, interdependent values introduce new

challenges to reputation building as the long-run player faces a trade-off between maintaining reputation for

commitment and signalling the state. My second contribution is to identify an important class of interdependent

value games in which the long-run player can secure high payoffs by building reputations. Under a condition

on the state distribution, he will behave consistently over time and maintain his reputation in all equilibria.

To illustrate the new economic forces brought by interdependent values, consider an example of an incum-

bent firm facing a sequence of potential entrants. Every entrant chooses between staying out (O) and entering

the market (E). Her preference between O and E depends not only on whether the incumbent is fighting (F )

or accommodating (A), but also on the state θ, interpreted as the price elasticities of demand and is either high
1As incumbents have been in the market for a long time, they can better estimate many aspects of the market demand curve using

their sales data, which include the market size, the price elasticities of demand, the effectiveness of advertising, etc. See Ellison and
Ellison (2011), Seamans (2013), Sweeting, Roberts and Gedge (2016) for empirical evidence of such private information.

2To address the objection that Nash equilibrium is too permissive in the study of repeated games, I adopt the following double
standard throughout the paper. For the counterexamples, I use stringent solution concepts such as sequential equilibrium to make the
conclusion more convincing. For the positive results, I adopt permissive solution concepts in order to make the predictions more robust.
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(H) or low (L). This is modeled as the following entry deterrence game:

θ = High Out Enter

Fight 2, 0 0,−1

Accommodate 3, 0 1, 2

θ = Low Out Enter

Fight 2− η, 0 −η,1

Accommodate 3, 0 1, 2

where η ∈ R is a parameter. When θ = H is common knowledge (call it the private value benchmark),

Fudenberg and Levine (1989) establish the following commitment payoff theorem: if with positive probability

the incumbent is non-strategic and mechanically fights in every period, then a patient strategic incumbent can

secure his commitment payoff from fighting (equal to 2) in every Nash equilibrium of the repeated game.

Intuitively, if the strategic incumbent imitates the non-strategic one, then he will eventually convince the entrants

that F will be played with high enough probability and the latter will best respond by staying out.

The above logic no longer applies when θ is the incumbent’s private information. This is because an

entrant’s best reply to F depends on θ (it is O when θ = H and E when θ = L), which is signalled through the

incumbent’s past actions. In situations where F is more likely to be played in state L,3 the strategic incumbent

will be facing a trade-off between maintaining his reputation for fighting and signalling that the state is high.

Therefore, it is unclear whether he can still secure his commitment payoff. Furthermore, obtaining sharp

predictions on the incumbent’s equilibrium behavior faces additional challenges as he is repeatedly signalling

the state. This could lead to various self-fulfilling beliefs and multiple possible behaviors. Even the commitment

payoff theorem cannot imply that he will maintain his reputation in every equilibrium, as a strategy that can

secure himself a high payoff is not necessarily his optimal strategy.

My first result, Theorem 1, establishes the generality of the above trade-off by characterizing the set of type

distributions under which the commitment payoff theorem applies regardless of the long-run player’s payoff

function. The primary motivation for this exercise is to evaluate whether the economic mechanism behind the

private value reputation results remains valid in interdependent value environments. According to my theorem,

a sufficient and (almost) necessary condition is that the prior likelihood ratio between certain strategic types

and the commitment type be below some finite cutoff.4 This implies that the canonical reputation building

logic will fail as long as the short-run players’ best reply to the commitment action depends on the state and the

probability with which the long-run player is committed is relatively small.

My proof of Theorem 1 constructs the long-run player’s strategy that secures his commitment payoff (suf-

ficiency part) as well as equilibria that result in low payoffs (necessity part). Interestingly, the long-run player
3This is a serious concern as player 1’s action today can affect players’ future equilibrium play. Equilibria in which player 2 attaches

higher probability to state L after observing F are constructed in Appendix G for all signs of η.
4To be more precise, a strategic type is bad if player 2’s best reply to the commitment action under his state is different from that

under the target state. My conditions require the probability of each bad strategic type to be small compared to the probability of the
commitment type. My conditions are almost necessary as they leave out a degenerate set of beliefs.

3



cannot secure his mixed commitment payoff by replicating the mixed commitment strategy. This is because

playing certain actions in the support of a mixed commitment action can trigger negative inferences about the

state in the sense that it will increase some of those likelihood ratios. This implies that the timing of player 1’s

actions matters for his long-term payoff, which is a novel feature of interdependent value environments, mak-

ing the existing techniques in Fudenberg and Levine (1992), Sorin (1999), Gossner (2011), etc. inapplicable. I

overcome this challenge using martingale techniques and the central limit theorem to construct a non-stationary

strategy under which player 1 can achieve three goals simultaneously: (1) avoiding negative inferences about

the state; (2) matching the frequencies of his actions to the mixed commitment action; (3) player 2’s prediction

about his actions is close to the mixed commitment action in all but a bounded number of periods.

Motivated by Theorem 1 and the leading applications of reputation models, my Theorems 2 and 3 establish

robust reputation effects when players’ stage-game payoffs satisfy a regularity condition called monotone-

supermodularity (or MSM) and player 2’s action choice is binary. MSM requires that the states and actions be

ranked such that (1) player 1’s payoff is strictly increasing in player 2’s action but is strictly decreasing in his

own action (monotonicity); (2) the action profile and the state are complements in players’ stage-game payoff

functions (supermodularity).5 In the entry deterrence example, once we rank the states and actions according

to H � L, F � A and O � E, MSM translates into η > 0. This is the case when θ is the price elasticity of

demand, the market size, the effectiveness of advertising, etc. MSM is also satisfied in product choice games

when providing good service is costly to the seller and it is less costly when the seller’s quality is higher. This

fits into the custom software industry as both the effort cost of making a timely delivery and the quality of the

software’s design are correlated with the talent of the firm’s engineers. It also applies to the restaurant industry

as the effort cost of cooking delicious dishes is decreasing with the quality of raw materials.

I establish robust predictions on player 1’s equilibrium payoff and behavior when she can build a reputation

for playing her highest action. When the commitment payoff from the highest action profile is one of the

equilibrium payoffs in the benchmark game without commitment types (i.e. when the high states are relatively

more likely compared to the low states, or the optimistic prior case), I show that a patient player 1 can guarantee

his commitment payoff from playing the highest action in every state and in every equilibrium. In the example,

when stateH occurs with probability greater than 1/2, player 1 receives at least 2 in stateH and max{2−η, 1}

in state L. This payoff bound applies even when every commitment type is arbitrarily unlikely relative to

every strategic type. It is also tight in the sense that no strategic type can guarantee a strictly higher payoff by

establishing reputations for playing other pure commitment actions.6

5My results only require part of the supermodularity requirement, instead of full supermodularity. See Assumption 2 for details.
When player 2 has more than two actions, the results require additional conditions, see Online Appendix D.

6This conclusion extends to mixed commitment actions if (1) the short-run players’ best reply to the long-run player’s highest action
depends on the state; (2) the long-run player strictly prefers the highest action profile to the lowest action profile in every state. In the
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In the complementary scenario (the pessimistic prior case), I show that when the total probability of com-

mitment types is small, (1) player 1 can secure his highest equilibrium payoff in the benchmark game without

commitment types; (2) his on-path behavior is the same across all the Nash equilibria of this infinitely repeated

signalling game.7 According to this unique equilibrium behavior, there exists a cutoff state (in the example,

state L) such that the strategic player 1 plays his highest action in every period if the state is above this cutoff,

plays his lowest action in every period if the state is below this cutoff, and mixes between playing his highest

action in every period and playing his lowest action in every period at the cutoff state. That is to say, he will

behave consistently over time and maintain his reputation in every equilibrium.

The intuition behind this behavioral uniqueness result is the following disciplinary effect: (1) player 1 can

obtain a high continuation payoff by playing his highest action thanks to the commitment type; (2) but it is

impossible for him to receive a high continuation payoff after he has failed to do so, as player 2’s posterior

belief will attach higher probability to the low states compared to her prior. This contrasts to the private value

benchmark of Fudenberg and Levine (1989, 1992) and the optimistic prior case, in which a patient player 1

can still receive a high continuation payoff after deviating from his commitment action. As a result, behaving

inconsistently is strictly optimal in many equilibria, leading to multiple on-path behaviors for the long-run

player as well as strict incentives to abandon reputation.

Conceptually, the above comparison suggests that interdependent values can contribute to the sustainability

of reputation. This channel is novel compared to the ones proposed in the existing literature, such as imperma-

nent commitment types (Mailath and Samuelson 2001, Ekmekci, et al. 2012), competition between long-run

players (Hörner 2002), imperfect observation about the long-run player’s past actions (Ekmekci 2011), etc.8

In terms of the proofs of Theorems 2 and 3, a challenge comes from the observation that a repeated super-

modular game is not supermodular. This is because player 1’s action today can have persistent effects on future

equilibrium play. I apply a result in a companion paper (Liu and Pei 2017) which states that if a 1-shot sig-

nalling game has MSM payoffs and the receiver’s action choice is binary, then the sender’s equilibrium action

must be non-decreasing in the state. In a repeated signalling game with MSM stage game payoffs, it implies

that in equilibria where playing the highest action in every period is optimal for player 1 in a given state (call

them regular equilibria), then he must be playing the highest action with probability 1 in every higher state.

That is to say in every regular equilibrium, player 2’s posterior about the state will never decrease if player 1

example, it implies that the incumbent prefers (F,O) to (A,E) in every state, which translates into η ∈ (0, 1).
7Theorem 3 states the result when all the commitment actions are pure. Theorem 3’ in Appendix D.2 generalizes Theorem 3 by

incorporating mixed strategy commitment types. It shows that when the total probability of commitment types is small enough, player
1’s on-path behaviors across different equilibria are arbitrarily close in terms of the distributions over (player 1’s) action paths. When
the total probability of commitment types vanishes to 0, the maximal distance between those equilibrium distributions converges to 0
and the probability with which player 1 behaves consistently converges to 1 in every equilibrium.

8In contrast to these papers and Cripps, Mailath and Samuelson (2004), I adopt a more robust standard for reputation sustainability
by requiring that it be sustained in every equilibrium.
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has always played the highest action. Nevertheless, there can also exist irregular equilibria where playing the

highest action in every period is not optimal in any state, and it is possible that at some on-path histories, play-

ing the highest action will lead to negative inferences about the state. Examples of such sequential equilibria

are constructed in Appendix G.6. To deal with this, I establish a belief lower bound result that in every irregular

equilibrium, player 2’s belief about the state can never fall below a hyperplane as long as player 1 has always

played his highest action.

This paper contributes to the existing literature from several different angles. From a modeling perspec-

tive, it unifies two existing approaches to the study of reputation, differing mainly in the interpretation of the

informed player’s private information. Pioneered by Fudenberg and Levine (1989), the literature on reputation

refinement focuses on private value environments and studies the effects of reputations for commitment on an

informed player’s guaranteed payoff.9 A separate strand of works on dynamic signalling games, including Bar-

Isaac (2003), Lee and Liu (2013), Pei (2015), etc. examine the effects of persistent private information about

payoff-relevant variables (such as talent, quality, value of outside options) on the informed player’s behavior.

However, these papers have focused on some particular equilibria rather than on the common properties of

all equilibria. In contrast, I introduce a framework that incorporates commitment over actions and persistent

private information about the uninformed players’ payoffs. I evaluate the robustness of the private value rep-

utation mechanism against interdependent value perturbations. In games with MSM payoffs, I derive robust

predictions on the informed player’s payoff and behavior that apply across all equilibria.

In the study of repeated Bayesian games with interdependent values,10 my reputation results can be in-

terpreted as an equilibrium refinement, just as Fudenberg and Levine (1989) did for the repeated complete

information games in Fudenberg, Kreps and Maskin (1990). By allowing the informed long-run player to be

non-strategic and mechanically playing state-contingent stationary strategies, Theorem 2 shows that reputation

effects can sharpen the predictions on a patient player’s equilibrium payoff. Theorem 3 advances this research

agenda one step further by showing that reputations can also lead to sharp predictions on a patient player’s

equilibrium behavior, which requires values to be interdependent.

In terms of the applications, my result offers a robust explanation to the classic observation of Bain (1949)

that “...established sellers persistently forego high prices for fear of attracting new entry to the industry...”. This
9The commitment payoff theorem has been extended to environments with imperfect monitoring (Fudenberg and Levine 1992,

Gossner 2011), frequent interactions (Faingold 2013), long-lived uninformed players (Schmidt 1993a, Cripps, Dekel and Pesendorfer
2005, Atakan and Ekmekci 2012), weaker solution concepts (Watson 1993), etc. Another set of papers characterize Markov equilibria
(in infinite horizon games) or sequential equilibria (in finite horizon games) in private value reputation games with a stationary commit-
ment type, which includes Kreps and Wilson (1982), Milgrom and Roberts (1982), Schmidt (1993b), Phelan (2006), Ekmekci (2011),
Liu (2011), Liu and Skrzypacz (2014), etc. See Mailath and Samuelson (2006) for an overview of this literature.

10This is currently a challenging area and not much is known except for zero-sum games (Aumann and Maschler 1995, Pȩski and
Toikka 2017), undiscounted games (Hart 1985), belief-free equilibrium payoff sets in games with two equally patient long-run players
(Hörner and Lovo 2009, Hörner, Lovo and Tomala 2011).
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will only happen in some particular equilibria under private values when the incumbent has no private infor-

mation about market demand, but will occur in every equilibrium when the incumbent has private information

about market demand and the potential entrants are optimistic about their prospects of entry. In the study of

firm-consumer relationships, my result provides a robust foundation for Klein and Leffler (1981)’s reputational

capital theory, which assumes that consumers will coordinate to punish the firm after observing low effort. This

will only happen in some particular equilibria under private values, but will occur in every equilibrium when

the firm has persistent private information about quality and the consumers are initially pessimistic about it.

2 The Model

Time is discrete, indexed by t = 0, 1, 2.... A long-run player 1 (he) with discount factor δ ∈ (0, 1) interacts

with an infinite sequence of myopic short-run player 2s (she or they), arriving one in each period and each plays

the game only once. In period t, players simultaneously choose their actions (a1,t, a2,t) ∈ A1 × A2. Players

have access to a public randomization device, with ξt ∈ Ξ the realization in period t.

Player 1 has perfectly persistent private information about two aspects: a payoff relevant state of the world

θ ∈ Θ as well as whether he is strategic or committed. The strategic player 1 can flexibly choose his action in

every period. The committed player 1 mechanically follows some state-contingent commitment plan γ : Θ →

∆(A1). Let Γ be the set of commitment plans that the committed long-run player could possibly follow. My

model rules out non-stationary commitment strategies, the presence of which will be discussed in section 5.

Player 2’s full support prior belief is µ, which is a joint distribution of θ and player 1’s characteristics, i.e.

whether he is strategic or committed, and if committed which plan in Γ is he following. The two dimensions

can be arbitrarily correlated. I assume A1, A2, Θ and Γ are finite sets with |A1|, |A2| ≥ 2.

For every θ ∈ Θ, I say that player 1 is ‘(strategic) type θ’ if he is strategic and knew that the state is θ. Let

µ(θ) be the probability of the event that player 1 is type θ. Let

Ω ≡ {α1 ∈ ∆(A1)| there exist γ ∈ Γ and θ ∈ Θ such that γ(θ) = α1}, (2.1)

be the set of commitment actions. For every α1 ∈ Ω, I say that player 1 is ‘(commitment) type α1’ if he

is committed and is playing α1 in every period. Let µ(α1) be the probability that player 1 is type α1. Let

φα1 ∈ ∆(Θ) be the distribution of state conditional on player 1 being type α1, which can be derived from µ.

Players’ past action choices are perfectly monitored. Let ht = {a1,s, a2,s, ξs}t−1
s=0 ∈ Ht be the public history

in period t with H ≡
⋃+∞
t=0 Ht. Let σθ : H → ∆(A1) be type θ’s strategy. Let σ2 : H → ∆(A2) be player 2’s

strategy. Let σ ≡
(

(σθ)θ∈Θ, σ2

)
be a typical strategy profile and let Σ be the set of strategy profiles.
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Player i ∈ {1, 2}’s stage game payoff in period t is ui(θ, a1,t, a2,t). Both u1 and u2 are naturally extended

to the domain ∆(Θ) × ∆(A1) × ∆(A2). Unlike the canonical reputation models in Fudenberg and Levine

(1989,1992), my model has interdependent values as player 2’s payoff depends on θ, which is player 1’s pri-

vate information. Strategic type θ maximizes
∑∞

t=0(1 − δ)δtu1(θ, a1,t, a2,t). Every player 2 maximizes her

expected stage game payoff. Let BR2(α1, π) ⊂ A2 be the set of player 2’s pure best replies when a1 and θ are

independently distributed with marginal distributions α1 ∈ ∆(A1) and π ∈ ∆(Θ). For every (α1, θ) ∈ Ω×Θ,

let

vθ(α1) ≡ min
a2∈BR2(α1,θ)

u1(θ, α1, a2), (2.2)

be type θ’s (complete information) commitment payoff from playing α1. If α1 is pure, then vθ(α1) is a pure

commitment payoff. If α1 is non-trivially mixed, then vθ(α1) is a mixed commitment payoff.

The solution concept is Bayes Nash equilibrium (or equilibrium for short). Since Θ, Γ, A1 and A2 are finite

sets and the game is continuous at infinity, an equilibrium exists. Let NE(δ, µ) ⊂ Σ be the set of equilibria

under parameter configuration (δ, µ). Let V σ
θ (δ) be type θ’s discounted average payoff under strategy profile σ

and discount factor δ. Let V θ(δ, µ) ≡ infσ∈NE(δ,µ) V
σ
θ (δ) be type θ’s worst equilibrium payoff under (δ, µ).

The goal of this paper is to address the predictions on player 1’s payoff and behavior that uniformly ap-

ply across all equilibria of this infinitely repeated game. Specifically, I am interested in the following set

of questions. First, will the economic mechanism behind the private value reputation results remain valid in

interdependent value environments? Formally, for every u2 and (α1, θ) ∈ Ω×Θ, when does

lim inf
δ→1

V θ(δ, µ)︸ ︷︷ ︸
patient player 1’s guaranteed equilibrium payoff in state θ

≥ vθ(α1)︸ ︷︷ ︸
player 1’s complete information commitment payoff in state θ

(2.3)

apply across all u1? Second, can we find good lower bounds for player 1’s guaranteed equilibrium payoff,

namely lim infδ→1 V θ(δ, µ)? Third, will player 1 behave consistently over time, play the same action in every

period and maintain his reputation for commitment?

My first and second questions examine player 1’s guaranteed equilibrium payoff when he can build reputa-

tions for commitment. When player 2’s best reply to α1 does not depend on the state, inequality (2.3) is implied

by the results in Fudenberg and Levine (1989, 1992) and player 1 can guarantee his commitment payoff by

playing α1 in every period. This logic no longer applies in interdependent value environments, as convincing

player 2 that α1 will be played does not determine her best reply. In particular, playing α1 in every period could

signal a state other than θ under which player 2’s best reply is different and will give player 1 a low payoff.

My third question advances this literature one step further by examining the robust predictions on player

1’s equilibrium behavior. Nevertheless, delivering sharp behavioral predictions in infinitely-repeated signalling
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games is challenging as the conventional wisdom suggests that both infinitely-repeated games and signalling

games have multiple equilibria. The commitment payoff theorem does not imply an affirmative answer to this

question either, as a strategy that can secure player 1 a high payoff is not necessarily his optimal strategy.

For example, in the entry deterrence game (section 1) where θ = H is common knowledge, there are many

sequential equilibria in which the strategic incumbent will behave inconsistently and abandon his reputation.

3 Characterization Theorem in General Games

To evaluate the validity of the canonical reputation building mechanism in general interdependent value envi-

ronments, I characterize, for given (α1, θ) ∈ Ω×Θ, the set of µ under which (2.3) applies regardless of u1. My

conditions require that the likelihood ratios between certain strategic types and the relevant commitment type

to be below some cutoffs. My result implies that the economic mechanism behind the private value reputation

results will fail whenever (1) the short-run players’ best reply to the commitment action depends on the state,

and (2) the probability of commitment type is small. This highlights the generality of the trade-off between

maintaining reputations and signalling the state.

My proof constructs a strategy that secures the long-run player his commitment payoff (sufficiency part)

and equilibria that result in low payoffs (necessity part). Interestingly, the long-run player cannot secure his

mixed commitment payoff by replicating the mixed commitment strategy, meaning that the timing of his actions

matters for his long-term payoff.

3.1 The Relevant Sets of Beliefs

First, I identify a sufficient statistic for my characterization, which I call the likelihood ratio vector. Then, I

define two sets of beliefs that will later be related to the attainability of pure and mixed commitment payoffs.

I focus on pairs of (α1, θ) ∈ Ω × Θ such that BR2(α1, θ) is a singleton, which is the case under generic

u2(θ, a1, a2). This assumption will be relaxed in Online Appendix B where I allow BR2(α1, θ) to have multiple

elements. For future reference, let a∗2 be the unique element in BR2(α1, θ). For every X ⊂ Rn, let co(X) be

its convex hull and cl(·) be its closure.

First, the set of bad states with respect to (α1, θ) is given by:

Θb
(α1,θ)

≡
{
θ̃ ∈ Θ

∣∣a∗2 /∈ BR2(α1, θ̃)
}
. (3.1)

Intuitively, this is the set of states under which player 2’s best reply to the commitment action is different from

that under state θ. Let k(α1, θ) ≡
∣∣Θb

(α1,θ)

∣∣ be the number of bad states. By definition, k(α1, θ) = 0 in private
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value models. If θ̃ ∈ Θb
(α1,θ)

, then type θ̃ is called a bad strategic type. For every belief µ̃ with µ̃(α1) > 0, let

λ̃(θ̃) ≡ µ̃(θ̃)/µ̃(α1) be the likelihood ratio between strategic type θ̃ and commitment type α1. Let

λ̃ ≡
(
λ̃(θ̃)

)
θ̃∈Θb

(α1,θ)

∈ Rk(α1,θ)
+ ,

be the likelihood ratio vector. The best response set with respect to (α1, θ) is defined as:

Λ(α1, θ) ≡
{
λ̃ ∈ Rk(α1,θ)

+

∣∣∣{a∗2} = arg max
a2∈A2

{
u2(φα1 , α1, a2) +

∑
θ̃∈Θb

(α1,θ)

λ̃(θ̃)u2(θ̃, α1, a2)
}}
. (3.2)

Intuitively, a likelihood ratio vector belongs to the best response set if a∗2 is player 2’s strict best reply to α1

conditional on the union of the following set of events: (1) player 1 is strategic and the state is bad; (2) player

1 is committed and is playing α1 in every period.

Nevertheless, the prior likelihood ratio vector belongs to the best response set is not sufficient for our

purpose as player 2s’ belief is updated over time and their posterior could fall outside of Λ(α1, θ). Such

concerns motivate us to find the largest subset of Λ(α1, θ) with the following property (∗):

(*) If the prior likelihood ratio vector belongs to this subset, then for every feasible belief updating process,

player 1 has a strategy under which the posterior likelihood ratio belongs to Λ(α1, θ) in every period.

By definition, this largest subset will depend on the set of feasible belief updating processes, which in turn will

depend on whether the commitment action α1 is pure or mixed.

When α1 is pure, none of the likelihood ratios can increase as long as player 1 is playing α1. The largest

subset of Λ(α1, θ) with property (*) is given by:

Λ(α1, θ) ≡
{
λ̃
∣∣∣λ′ ∈ Λ(α1, θ) for every 0� λ′ � λ̃

}
, (3.3)

where ‘�’ denotes weak dominance in product order on Rk(α1,θ) and 0 is the null vector in Rk(α1,θ). Examples

of Λ(α1, θ) and Λ(α1, θ) when there are two bad states are shown in Figure 1.

When α1 is mixed, the set of feasible belief updating processes becomes richer. A new concern arises which

is embodied in the updating process described by the dashed lines in Figure 1 (right panel). This can occur,

for example, when α1 = 1
2a
′
1 + 1

2a
′′
1 , the prior likelihood ratio vector is λ̃ ∈ Λ(α1, θ) and the set of bad states

is {θ1, θ2}. When player 2 believes that type θ1 plays a′1 and type θ2 plays a′′1 , no matter which action player

1 plays in the support of α1, the posterior likelihood ratio vector will be bounded away from Λ(α1, θ). This
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λ(θ1)

λ(θ2)

Λ(α1, θ)

ψ(θ2)

ψ(θ1)

λ(θ1)

λ(θ2)

Λ(α1, θ)

ψ(θ2)

ψ(θ1)

λ(θ1)

λ(θ2)

Λ(α1, θ)

ψ(θ2)

ψ(θ1)

λ̃

Figure 1: k(α1, θ) = 2 with Λ(α1, θ) in the left, Λ(α1, θ) in the middle and Λ(α1, θ) in the right.

implies that the largest subset with property (*) is even smaller, which is given by:

Λ(α1, θ) ≡ Rk(α1,θ)
+

∖
co
(
Rk(α1,θ)

+

∖
Λ(α1, θ)

)
. (3.4)

An example of Λ(α1, θ) is shown in the right panel of Figure 1. When BR2(α1, θ) is a singleton and Λ(α1, θ)

is non-empty, Λ(α1, θ) is characterized by a linear inequality:

Λ(α1, θ) =
{
λ̃ ∈ Rk(α1,θ)

+

∣∣∣ ∑
θ̃∈Θb

(α1,θ)

λ̃(θ̃)/ψ(θ̃) < 1
}
, (3.5)

where ψ(θ̃) is the intercept of Λ(α1, θ) on the λ(θ̃)-coordinate.

For future reference, I summarize some geometric properties of these sets. First, despite Λ(α1, θ) is not

necessarily bounded, both Λ(α1, θ) and Λ(α1, θ) are bounded. This is because ψ(θ̃) is a positive real number

for every bad state. Second, Λ(α1, θ) and Λ(α1, θ) are convex polyhedrons that are independent of u1. Third,

Λ(α1, θ) ⊂ Λ(α1, θ) ⊂ Λ(α1, θ). (3.6)

Fourth, if k(α1, θ) = 1 and Λ(α1, θ) 6= {∅}, then there exists a scalar ψ∗ ∈ (0,+∞) such that:

Λ(α1, θ) = Λ(α1, θ) = Λ(α1, θ) = {λ̃ ∈ R|0 ≤ λ̃ < ψ∗}. (3.7)

However, the three sets can be different from each other when k(α1, θ) ≥ 2, as illustrated in Figure 1. The

condition under which these three sets coincide is characterized in Online Appendix A.
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3.2 Statement of Result

My first result characterizes the set of µ under which the commitment payoff bound, namely inequality (2.3),

applies regardless of u1. Let µt be player 2’s belief in period t. Let λ and λt be the likelihood ratio vectors

induced by the prior µ and µt, respectively.

Theorem 1. For every (α1, θ) ∈ Ω×Θ with α1 being a pure action,

1. If λ ∈ Λ(α1, θ), then lim infδ→1 V θ(δ, µ) ≥ vθ(α1) for every u1.

2. If λ /∈ cl
(

Λ(α1, θ)
)

and BR2(α1, φα1) is a singleton, then there exists u1 such that

lim supδ→1 V θ(δ, µ) < vθ(α1).

For every (α1, θ) ∈ Ω×Θ with α1 being a non-trivially mixed action,

3. If λ ∈ Λ(α1, θ), then lim infδ→1 V θ(δ, µ) ≥ vθ(α1) for every u1.

4. If λ /∈ cl
(

Λ(α1, θ)
)

, BR2(α1, φα1) is a singleton and α1 /∈ co
(

Ω
∖
{α1}

)
, then there exists u1 such that

lim supδ→1 V θ(δ, µ) < vθ(α1).

According to Theorem 1, the private value reputation building logic applies if and only if the likelihood ratio

between every bad strategic type and the relevant commitment type be below some finite cutoff. Moreover, it

does not depend on the probabilities of the good strategic types and commitment types playing actions other

than α1. Intuitively, this is because type θ needs to come up with a strategy under which the likelihood ratio

vector will remain low along every dimension in every period and this strategy should exist regardless of player

2’s belief about the other types’ strategies. This includes the adverse self-fulfilling belief in which all the good

strategic types separate from, while all the bad strategic types pool with, the commitment type. This explains

why the probabilities of bad strategic types matter while those of the good strategic types do not. Since all the

commitment strategies are stationary, commitment types other than α1 will be statistically distinguished from

type α1 in the long-run, which explains why their probabilities do not matter either.

Theorem 1 has two interpretations. First, it evaluates the robustness of reputation effects in private value

reputation games against a richer set of perturbations. Starting from a private value reputation game where θ is

common knowledge and there is a positive chance of a commitment type, one can allow the short-run players

to entertain the possibility that their opponent is another strategic type who may have private information about

their preferences. My result implies that the private value reputation result extends when these interdependent

value perturbations are relatively less likely compared to the commitment type, and vice versa. In cases where

Λ(α1, θ) ( Λ(α1, θ), securing the commitment payoff requires more demanding conditions when the com-

mitment action is mixed. This implies that small trembles to a pure commitment action can lead to a large

12



decrease in player 1’s guaranteed equilibrium payoff. This highlights another distinction between private and

interdependent values, which will be formalized in Online Appendix A.

Second, Theorem 1 also points out the failure of the canonical reputation building mechanism in repeated

incomplete information games with non-trivial interdependent values. That is, starting from a repeated incom-

plete information game with interdependent values, and then perturb it by introducing a small probability of

commitment types. According to this view, every commitment type is arbitrarily unlikely compared to every

strategic type. Since Λ(α1, θ) is bounded and the prior has full support, the likelihood ratio does not belong

to Λ(α1, θ) whenever k(α1, θ) > 0. This motivates the study of games with regularity conditions on the un-

derlying payoff structure (for example stage games with monotone-supermodular payoffs in section 4), which

enables us to make progress in addressing the robust predictions in interdependent value reputation games.

I conclude this subsection by commenting on the technical conditions in Theorem 1. First, my character-

ization excludes two degenerate sets of beliefs, which are the boundaries of Λ(α1, θ) and Λ(α1, θ), respec-

tively. In these knife-edge cases, the attainability of the commitment payoff depends on the presence of other

mixed commitment types as well as their correlations with the state. Second, the assumption in statements

2 and 4 that BR2(α1, φα1) being singleton is satisfied under generic parameter values, and is only required

for the proof when Λ(α1, θ) = {∅}. This is to rule out pathological cases where a∗2 ∈ BR2(α1, φα1) but

{a∗2} 6= BR2(α1, φα1). An example of this issue will be shown in Appendix B. Third, according to the sepa-

rating hyperplane theorem, the requirement that α1 /∈ co
(
Ω\{α1}

)
guarantees the existence of a stage-game

payoff function u1(θ, ·, ·) under which type θ’s commitment payoff from any alternative commitment action

in Ω is strictly below vθ(α1). This convex independence assumption cannot be dispensed as no restrictions

are made on the probabilities of other commitment types. That is to say, commitment types other than α1 are

allowed to occur with arbitrarily high probability and can have arbitrary correlations with the state.

3.3 Proof Ideas of Statements 1 & 3

I start with the case where α1 is pure and then move on cases where α1 is mixed. Unlike the private value

benchmark, player 1 cannot guarantee his mixed commitment payoff by replicating the mixed commitment

action. This is because playing some actions in the support of the mixed commitment action can increase the

likelihood ratios, which is a novel feature of interdependent value environments.

Pure Commitment Payoff: Since α1 is pure, for every θ̃ ∈ Θb
(α1,θ)

, λt(θ̃) will not increase as long as player

1 plays α1 . Therefore, λt(θ̃) ≤ λ(θ̃) for every t ∈ N if player 1 imitates the commitment type. By definition,

if λt ∈ Λ(α1, θ) and a∗2 is not a strict best reply (call period t a bad period), then in period t, the strategic

types are playing actions other than α1 with probability bounded from below, after which they will be separated
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from the commitment type. Similar to Fudenberg and Levine (1989), the number of bad periods is uniformly

bounded from above, which implies that player 1 can approximately secure his commitment payoff as δ → 1.

Mixed Commitment Payoff when k(α1, θ) = 1: Let Θb
(α1,θ)

≡ {θ̃}. Recall that when Λ(α1, θ) 6= {∅},

there exists ψ∗ > 0 such that Λ(α1, θ) = {λ̃|0 ≤ λ̃ < ψ∗}. The main difference from the pure commitment

action case is that λt can increase after player 2 observes some actions in the support of α1. As a result, type

θ cannot secure his commitment payoff by replicating α1 since he may end up playing actions that are more

likely to be played by type θ̃, in which case λt will exceed ψ∗.

The key step in my proof shows that for every equilibrium strategy of player 2, one can construct a non-

stationary strategy for player 1 under which the following three objectives are achieved simultaneously: (1)

Avoid negative inferences about the state, i.e. λt < ψ∗ for every t ∈ N; (2) Every a1 ∈ A1 will be played

with discounted average frequency close to α1(a1); (3) In expectation, the short-run players believe that actions

within a small neighborhood of α1 will be played for all but a bounded number of periods.11

To understand the ideas behind my construction, note that {λt}t∈N is a non-negative supermartingale condi-

tional on α1. Since λ0 < ψ∗, the probability measure over histories (induced by α1) in which λt never exceeds

ψ∗ is bounded from below by the Doob’s Upcrossing Inequality.12 When δ is close to 1, the Lindeberg-Feller

Central Limit Theorem ensures that the set of player 1’s action paths, in which the discounted time average fre-

quency of every a1 ∈ A1 being close to α1(a1), occurs with probability close to 1 under the measure induced

by α1. Each of the previous steps defines a subset of histories, and the intersection between them occurs with

probability bounded from below. Then I derive an upper bound on the expected sum of relative entropies be-

tween α1 and player 2’s predicted action conditional on the aforementioned intersection. According to Gossner

(2011), the unconditional expected sum is bounded from above by a positive number that does not explode as

δ → 1. Given that the intersection occurs with probability bounded from below, the Markov Inequality implies

that the conditional expected sum is also bounded from above. Therefore, the expected number of periods that

player 2’s predicted action being far away from α1 is bounded from above.

Mixed Commitment Payoff when k(α1, θ) ≥ 2: Let St ≡
∑

θ̃∈Θb
(α1,θ)

λt(θ̃)/ψ(θ̃), which is a non-negative

supermartingale conditional on α1. The assumption that λ ∈ Λ(α1, θ) implies that S0 < 1. The Doob’s Up-

crossing Inequality provides a lower bound on the probability measure over histories under which St is always
11There is a remaining step to deal with correlations between the actions and the state, with details shown in Part II of Appendix A.2.
12My proof uses the upcrossing inequality for a different purpose compared to Fudenberg and Levine (1992). In private value

environments, they establish an upper bound on the number of periods in which player 2’s prediction about player 1’s action differs
significantly from the commitment action if player 1 plays the commitment action in every period. In contrast, I use the upcrossing
inequality to show that player 1 can cherry-pick actions in the support of his mixed commitment strategy in order to prevent negative
belief updating about a payoff relevant state that cannot be statistically identified via public signals.
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strictly below 1, i.e. λt ∈ Λ(α1, θ) for every t ∈ N. The proof then follows from the k(α1, θ) = 1 case.

To illustrate why λ ∈ Λ(α1, θ) is insufficient when k(α1, θ) ≥ 2 and α1 is mixed, I present a counterex-

ample in Appendix G.8 where λ ∈ Λ(α1, θ) but type θ’s equilibrium payoff is bounded below his commitment

payoff. The idea is to construct equilibrium strategies for the bad strategic types, under which playing every

action in the support of α1 will increase the likelihood ratio along some dimensions. As a result, player 2’s

belief in period 1 will be bounded away from Λ(α1, θ) regardless of the action being played in period 0.

3.4 Proof Ideas of Statements 2 & 4

To prove statement 2, let α1 be the Dirac measure on a∗1 ∈ A1. Let player 1’s stage-game payoff be:

u1(θ̂, a1, a2) = 1{θ̂ = θ, a1 = a∗1, a2 = a∗2}. (3.8)

I construct equilibria in which type θ’s payoff is bounded below 1 in the δ → 1 limit. The idea is to let the

bad strategic types pool with commitment type a∗1 with high probability (albeit not equal to 1) while the good

ones separate from type a∗1. As a result, type θ cannot simultaneously build a reputation for commitment while

separating away from the bad strategic types.

The key challenge comes from the presence of other commitment types that are playing mixed strategies.

To understand this issue, consider an example where Θ = {θ, θ̃} with θ̃ ∈ Θb
(a∗1,θ)

, Ω = {a∗1, α′1} with α′1

non-trivially mixed, attaching positive probability to a∗1 and {a∗2} = BR2(a∗1, φa∗1) = BR2(α′1, φα′1). The

naive construction in which type θ̃ plays a∗1 in every period does not work, as type θ can then obtain a payoff

arbitrarily close to 1 by playing a1 ∈ supp(α′1)\{a∗1} in period 0 and a∗1 in every subsequent period.

To overcome this challenge, I construct sequential equilibria in which all the bad strategic types are playing

non-stationary strategies. In the example, type θ̃ plays a∗1 in every period with probability p ∈ (0, 1) and plays

non-stationary strategy σ(α′1) with probability 1− p, with p being large enough such that λ1 is bounded away

from Λ(a∗1, θ) after observing a∗1 in period 0. Strategy σ(α′1) is described as follows:

– Play α′1 at histories that are consistent with type θ’s equilibrium strategy.

– Otherwise, play a completely mixed action α̂′1 that attaches higher probability to a∗1 compared to α′1.

To verify incentive compatibility, I keep track of the likelihood ratio between type θ̃ who plays σ(α′1) and

the commitment type α1. If type θ has never deviated before, then this ratio remains constant. If type θ has

deviated before, then this ratio increases every time a∗1 is observed. Therefore, once type θ has deviated from

his equilibrium play, he will be constantly facing a trade-off between obtaining a high stage-game payoff (by

playing a∗1) and reducing the likelihood ratio. This uniformly bounds his continuation payoff after any deviation
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from above, which is strictly below 1. Type θ’s on-path strategy is then constructed such that his payoff is strictly

between 1 and his highest post-deviation continuation payoff. This can be achieved, for example, by using a

public randomization device that prescribes a∗1 with probability less than 1 in every period.

The proof of statement 4 involves several additional steps, with details shown in Online Appendix A. First,

the stage-game payoff function in (3.8) is replaced by one that is constructed via the separating hyperplane the-

orem, such that type θ’s commitment payoff from every other action in Ω is strictly lower than his commitment

payoff from playing α1. Second, in Online Appendix A.3, I show that there exists an integer T (independent of

δ) and a T -period strategy for the strategic types other than θ such that the likelihood ratio vector in period T

is bounded away from Λ(α1, θ) regardless of player 1’s behavior in the first T periods. Third, the continuation

play after period T modifies the construction in the proof of statement 2. The key step is to construct the bad

strategic types’ strategies under which type θ’s continuation payoff after any deviation is bounded below his

commitment payoff from playing α1. The details are shown in Online Appendices A.5 and A.7.

4 Reputation Effects in Monotone-Supermodular Games

Motivated by Theorem 1 and the leading applications of reputation effects such as the entry deterrence game

and the product choice game, I focus on stage-game payoffs that satisfy a monotone-supermodularity condition

(or MSM). Theorems 2 and 3 derive results on player 1’s guaranteed payoff and on-path behavior that are valid

across all equilibria. Different from those in Theorem 1, these robust predictions apply even when the total

probability of commitment types is arbitrarily small compared to the probability of any strategic type.

4.1 Monotone-Supermodular Payoff Structure

Let Θ, A1 and A2 be finite ordered sets, with ‘�’, ‘%’, ‘≺’ and ‘-’ be the ranking among elements. The stage

game has MSM payoffs if u1, u2 satisfy a monotonicity condition and a supermodularity condition.

Assumption 1 (Monotonicity). u1(θ, a1, a2) is strictly decreasing in a1 and is strictly increasing in a2.

Assumption 2 (Supermodularity). u1(θ, a1, a2) has strictly increasing differences (in short, SID) in (a1, a2)

and θ. u2(θ, a1, a2) has strictly increasing differences in (θ, a1) and a2.13

Theoretically, MSM is related to a result on the monotonicity of the sender’s equilibrium strategy with re-

spect to the state in one-shot signalling games (Liu and Pei 2017). Economically, MSM has three implications.

First, player 1 faces a lack-of-commitment problem, i.e. he would like to commit to a higher a1 as it gives player
13First, the case in which u1(θ, a1, a2) is strictly increasing in a1 and strictly decreasing in a2 can be analyzed similarly by reversing

the orders of the states and each player’s actions. Second, Assumption 2 will be relaxed in section 5 (see Assumption 2’) to address
applications such as reciprocal altruism in repeated prisoner’s dilemma where u1 has decreasing differences in θ and a2.
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2 more incentives to play a higher a2, but he is tempted to save cost by reducing a1. This holds in the product

choice game and the entry deterrence game but fails in coordination games (battle of sexes) and zero sum games

(matching pennies) where player 1’s ordinal preference over a1 depends on a2 and vice versa. Second, player

1 always wants to signal that θ is high. This is a natural assumption when θ is product quality and sellers wish

to signal high quality, or when θ is the demand curve and incumbents want to convince entrants that the market

conditions are adverse to entry. It rules out zero-sum games in which senders want to signal the opposite state

and common interest games in which senders want to signal the true state. Third, there are complementarities

between the state and the action profile in the long-run player’s payoff. This is reasonable in settings such as,

fighting entrants is less costly in markets where the price elasticity is higher, exerting effort is less costly when

the seller’s quality is higher, etc. I will discuss the relevant applications in subsection 4.4.

For illustration purposes, I study games where player 2’s action choice is binary, which have been a pri-

mary focus of the reputation literature (Mailath and Samuelson 2001, Phelan 2006, Ekmekci 2011, Liu 2011).

Extensions to games with |A2| ≥ 3 under extra conditions can be found in Online Appendix D.

Assumption 3. |A2| = 2.

Let ai ≡ maxAi and ai ≡ minAi, with i ∈ {1, 2}. For every π ∈ ∆(Θ) and α1 ∈ ∆(A1), the following

expression measures player 2’s incentives to play a2 given her beliefs about θ and a1.

D(π, α1) ≡ u2(π, α1, a2)− u2(π, α1, a2), (4.1)

For future reference, I classify the states into good, positive and negative by partitioning Θ into the following

three sets:

Θg ≡
{
θ
∣∣D(θ, a1) ≥ 0 and u1(θ, a1, a2) > u1(θ, a1, a2)

}
,

Θp ≡
{
θ /∈ Θg

∣∣u1(θ, a1, a2) > u1(θ, a1, a2)
}

and Θn ≡
{
θ
∣∣u1(θ, a1, a2) ≤ u1(θ, a1, a2)

}
.

Intuitively, Θg is the set of good states in which a2 is player 2’s best reply to a1 and player 1 strictly prefers the

commitment outcome (a1, a2) to his minmax outcome (a1, a2). Θp is the set of positive bad states in which

player 2 has no incentive to play a2 but player 1 strictly prefers (a1, a2) to his minmax outcome. Θn is the set

of negative bad states in which player 1 prefers his minmax outcome to the commitment outcome. I show that

every good state is higher than every positive state, and every positive state is higher than every negative state:

Lemma 4.1. If the stage game payoff satisfies Assumption 2, then:

1. For every θg ∈ Θg, θp ∈ Θp and θn ∈ Θn, we have θg � θp, θp � θn and θg � θn.

2. If Θp,Θn 6= {∅}, then D(θn, a1) < 0 for every θn ∈ Θn.
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PROOF OF LEMMA 4.1: Since D(θg, a1) ≥ 0 and D(θp, a1) < 0, SID of u2 in θ and a2 implies that θg � θp.

Since u1(θp, a1, a2) > u1(θp, a1, a2) and u1(θn, a1, a2) ≤ u1(θn, a1, a2), we know that θp � θn due to the

SID of u1 in θ and (a1, a2). If Θp 6= {∅}, then statement 1 is proved. If Θp = {∅}, then since u1(θg, a1, a2) >

u1(θg, a1, a2) and u1(θn, a1, a2) ≤ u1(θn, a1, a2), we have θg � θn. If Θp,Θn 6= {∅}, then θn ≺ θp. SID of

u2 in θ and a2 implies that D(θn, a1) < D(θp, a1) < 0.

4.2 Statement of Results

I study player 1’s guaranteed payoff and on-path behavior when he can build a reputation for playing his highest

action a1. For this purpose, I assume that a1 ∈ Ω and D(φa1 , a1) > 0, i.e. the highest action is one of the

commitment actions and building a reputation for playing the highest action is valuable. I will state Theorems

2 and 3 in this subsection. In subsection 4.3, I examine a benchmark repeated game with the same state

distribution but without commitment types in order to motivate the study of reputations for playing a1 as well

as the conditions on the type distribution in the statement of the theorems. I will discuss the related economic

applications in subsection 4.4. I will sketch the proofs of these theorems in subsection 4.5 using an illustrative

example. The full proofs can be found in Appendices C and D. Counterexamples when each of the assumptions

fails are provided in Appendices G.1, G.2 and G.3.

Optimistic and Pessimistic Priors: Due to the presence of interdependent values and persistent private infor-

mation, players’ equilibrium payoffs and behaviors will depend on the distribution of the payoff relevant state

θ. For player 1’s guaranteed payoff and on-path behavior, the critical aspect is the relative likelihood between

the states in Θg and those in Θp. In particular, I say that player 2’s prior belief is optimistic if:

µ(a1)D(φa1 , a1) +
∑

θ∈Θg∪Θp

µ(θ)D(θ, a1) > 0, (4.2)

and her prior belief is pessimistic in the complementary scenario where:

µ(a1)D(φa1 , a1) +
∑

θ∈Θg∪Θp

µ(θ)D(θ, a1) < 0.14 (4.3)

Notice that (4.2) and (4.3) allow the commitment types to be arbitrarily unlikely compared to every strategic

type. When the total probability of commitment types µ(Ω) is small enough, the above inequalities are implied

by
∑

θ∈Θg∪Θp
µ(θ)D(θ, a1) ≥ 0 and

∑
θ∈Θg∪Θp

µ(θ)D(θ, a1) < 0, respectively.

14In the knife-edge case where equality holds, the guaranteed payoff in Theorem 2 applies and the unique prediction on player 1’s
behavior applies when there exists no α1 ∈ Ω\{a1} such that D(φα1 , α1) > 0.
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4.2.1 Reputation Effects on Guaranteed Payoffs

I start from introducing a payoff vector for every pessimistic µ which will be related to player 1’s guaranteed

payoff. For every µ satisfying (4.3), there exists a unique pair of
(
θ∗p(µ), q(µ)

)
∈ Θp × (0, 1] such that:

µ(a1)D
(
φa1 , a1

)
+ q(µ)µ(θ∗p(µ))D

(
θ∗p(µ), a1

)
+

∑
θ�θ∗p(µ)

µ(θ)D
(
θ, a1

)
= 0. (4.4)

Since u1(θp, a1, a2) > u1(θp, a1, a2) > u1(θp, a1, a2) for every θp ∈ Θp, there exists r(µ) ∈ (0, 1) such that:

r(µ)u1(θ∗p(µ), a1, a2) +
(

1− r(µ)
)
u1(θ∗p(µ), a1, a2) = u1(θ∗p(µ), a1, a2). (4.5)

Let

v∗θ(µ) ≡

 u1(θ, a1, a2) if θ - θ∗p(µ)

r(µ)u1(θ, a1, a2) +
(

1− r(µ)
)
u1(θ, a1, a2) if θ � θ∗p(µ).

(4.6)

By definition,
(
v∗θ(µ)

)
θ∈Θ

depends on µ only through the cutoff state θ∗p(µ). I will show in the next subsection

that v∗θ(µ) is type θ’s highest equilibrium payoff in the benchmark game with the same state distribution but

without commitment types. Theorem 2 establishes the patient long-run player’s guaranteed payoff.

Theorem 2. Suppose a1 ∈ Ω and D(φa1 , a1) > 0.

1. If µ satisfies (4.2), then lim infδ→1 V θ(δ, µ) ≥ u1(θ, a1, a2) for every θ ∈ Θ.

2. If µ satisfies (4.3), then lim infδ→1 V θ(δ, µ) ≥ v∗θ(µ) for every θ ∈ Θ.

The proof is in Appendix C. According to Theorem 2, the patient long-run player can secure high returns

from building a reputation for playing his highest action in an important class of games with non-trivial interde-

pendent values. The exact notion of high returns depends on the state distribution, which will be related to the

no-commitment-type benchmark in Propositions 4.1, 4.2 and 4.3. Mapping Theorem 2 back to the economic

applications, it implies that a seller can secure high payoffs by maintaining a reputation for exerting high effort

despite his customers’ skepticism about product durability/quality; an incumbent who might have unfavorable

information about the market demand curve (e.g. demand elasticities are low) can guarantee high profits by

building a reputation for pricing aggressively.

Different from the distribution conditions in Theorem 1, (4.2) allows the total probability of commitment

types to be arbitrarily small compared to that of every bad strategic type. Intuitively, this is because the strategic

types in Θg can also contribute to attaining the commitment payoff. This is driven by the following implication

of MSM stage-game payoffs in this repeated signalling game, which is derived from a companion result on
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one-shot signalling games with MSM payoffs (Liu and Pei 2017).

(*) In equilibria where some strategic type in Θp has an incentive to play a1 in every period, every strategic

type in Θg will play a1 with probability 1 at every on-path history.

In those equilibria, player 2’s belief about θ will not decline as long as a1 has always been played in the past.

Nevertheless, there also exist equilibria in which playing a1 in every period is not optimal for any strategic

type. This undermines the implications of MSM, and in particular, every strategic type could have incentives

to separate from type a1 at certain on-path histories. Moreover, playing a1 can also lead to negative inferences

about θ, with an example shown in Appendix G.6. Such equilibria exist as in repeated signalling games, player

1’s action choice today can affect the future equilibrium play. In particular, there exist self-fulfilling beliefs that

playing a1 in the current period will result in a lower frequency of a1 being played in the future. At histories

where this type of belief prevails, the bad strategic types will play a1 with strictly higher probability compared

to the good ones and as a result, player 2 will interpret a1 as a negative signal about θ.

To circumvent the aforementioned complications, I establish a lower bound on player 2’s posterior belief

about θ that uniformly applies across all the on-path histories where a1 has been played in every period. This

implies that in every period where a2 is not player 2’s strict best reply, the strategic types must be separating

from commitment type a1 with probability bounded from below. As a result, there exist at most a bounded

number of such periods, which establishes a patient long-run player’s guaranteed payoff in those equilibria.

4.2.2 Reputation Effects on Equilibrium Behavior

When the prior belief about θ is pessimistic and the total probability of commitment types is small enough,

reputation effects can also lead to sharp predictions on player 1’s on-path behavior in addition to his payoffs.

For the ease of exposition, I focus on the case where all commitment actions are pure in the main text. The

result will be generalized in Appendix D by incorporating mixed strategy commitment types (Theorem 3’).

Formally, let ht1 ≡ {a1,0, ..., a1,t−1} be player 1’s t-period action path. Let Ht1 be the set of ht1. Let

H1 ≡ ∪∞t=0Ht1 be the set of player 1’s action paths. I say that ht1 = {a1,0, ..., a1,t−1} is consistent if a1,0 =

... = a1,t−1, i.e. player 1 has played the same action in every period. For every σ and θ, let Pσ1 (θ) be the

probability measure over H1 induced by (σθ, σ2). Deriving sharp predictions on player 1’s on-path behavior

also requires the total probability of commitment types to be small enough, with one of the sufficient conditions

given by:15

µ(Ω)D(θ, a1) +
∑

θ∈Θg∪Θp

µ(θ)D(θ, a1) < 0. (4.7)

15In Appendix G.5, I show by counterexample that player 1 can have multiple equilibrium behaviors and his on-path play can be
inconsistent over time when µ satisfies (4.3) but the total probability of commitment types is large enough to violate (4.7).
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To motivate (4.7) and to see how it is related to the pessimistic prior condition in (4.3), note that first, (4.7) is

more demanding compared to (4.3) when D(φa1 , a1) > 0; second, for every µ satisfying (4.3), it also satisfies

(4.7) when the total probability of commitment types µ(Ω) is small enough.

Theorem 3. If a1 ∈ A1, D(φa1 , a1) > 0, all actions in Ω are pure and µ satisfies (4.7), then there exists

δ ∈ (0, 1) such that for every δ > δ, θ ∈ Θ and σ, σ′ ∈ NE(δ, µ), we have Pσ1 (θ) = Pσ′1 (θ). Moreover, Pσ1 (θ)

only attaches positive probability to consistent action paths.

Theorem 3 says that when the prior is pessimistic and the total probability of commitment types is small, the

patient long-run player’s on-path behavior is the same across all equilibria, according to which he will behave

consistently over time and maintain his reputation for commitment. To describe this unique behavior, let

Ωg ≡ {α1 ∈ Ω|D(φα1 , α1) > 0} (4.8)

be the set of good commitment actions, i.e. ones that can induce player 2 to play a2. In every equilibrium, an

action path occurs with positive probability if it is consistent and player 1’s action belongs to Ωg ∪ {a1}. The

probability with which each type plays each action is pinned down by two conditions (1) for every θ � θ′,

every action path played by type θ is no lower than every action path played by type θ′; (2) after observing

a1 ∈ Ωg\{a1} in period 0, player 2 is indifferent between a2 and a2 on the equilibrium path starting from

period 1. For example, in the simplest case where Ωg = {a1}, every strategic type strictly higher than θ∗p(µ)

plays a1 in every period, every strategic type strictly lower than θ∗p(µ) plays a1 in every period, type θ∗p(µ)

plays a1 in every period with probability q(µ) and plays a1 in every period with probability 1− q(µ).

This uniqueness and consistency of equilibrium behavior contrasts to the private value benchmark of Fuden-

berg and Levine (1989), in which the patient long-run player has multiple equilibrium behaviors and behaving

inconsistently can be strictly optimal. Intuitively, this is because interdependent values introduce a novel disci-

plinary effect, namely, the patient long-run player can obtain a high payoff by playing a1 consistently thanks to

the presence of the commitment type, but due to the existence of bad states (i.e. states in Θp), his continuation

payoff after behaving inconsistently will be low. My proof uses the observation that under a pessimistic prior,

playing a1 in every period is optimal for some types in Θp, which comes from the lower bound on player 2’s

posterior derived in the proof of Theorem 2. When stage-game payoffs are MSM, this implies that all the good

strategic types will play a1 in every period on the equilibrium path. Therefore, player 1’s reputation will be bad

once he fails to play a1, after which his continuation payoff will drop to its minmax.

This disciplinary effect is absent in Fudenberg and Levine (1989), as behaving inconsistently only signals

that player 1 is strategic, but cannot preclude him from obtaining a high continuation payoff according to the

folk theorem result in Fudenberg, Kreps and Maskin (1990). Therefore, he may have an incentive to separate
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from the commitment type at any given history, depending on the continuation equilibrium players coordinate

on in the future. Similarly when µ is optimistic, separating from the commitment type can still lead to an

optimistic posterior about the state, after which player 1’s continuation payoff can be high. This leads to

multiple possible behaviors with an example shown in Appendix G.6. Player 1’s on-path behavior also fails to

be unique in private value incomplete information games, for example when the long-run player has persistent

private information about his production cost (Schmidt 1993b) or his discount factor (Ghosh and Ray 1996).

This is because the bad types who have high costs or low discount factors either have no incentive to pool

with the commitment type, in which case the disciplinary effect only works temporarily; or they pool with

the commitment type but then they are equivalent to the latter in player 2’s best-response problem. Therefore,

attaching a high probability to those strategic types cannot discipline player 1 in the long-run.16

As a caveat, Theorem 3 does not imply the uniqueness of equilibrium or equilibrium outcome. This is

because first, Bayes Nash equilibrium has no restriction on players’ off-path behaviors. Second, player 2’s

behavior on the equilibrium path is not unique. To see this, suppose Ω = {a1, a1}, as player 2 is indifferent

after period 1 given that a1 has always been played, the dynamics of her behavior only face two constraints: (1)

type θ∗p’s indifference condition in period 0; (2) type θ∗p’s incentives to play a1 in period t ∈ N. The first one

only pins down the occupation measure of a2 conditional on a1 is played in every period. The second one only

requires that a2 not be too front-loaded. Nevertheless, there are still many ways to allocate the play of a2 over

time that can meet both requirements, leading to multiple equilibrium outcomes.

For an overview of the extension to incorporate mixed commitment types, if all the actions in Ωg are pure,

then player 1’s on-path behavior is still the same across all equilibria. However, after observing a1 ∈ Ωg\{a1},

player 2 won’t be indifferent between a2 and a2 starting from period 1. Instead, her on-path behavior will be

unique under generic µ, according to which she will have a strict incentive to play a2 in the initial N periods,

followed by one period in which she is indifferent, and after that, she will have a strict incentive to play a2. The

integer N depends on δ as well as the commitment action being played in period 0.

When Ωg contains mixed actions, then the distributions over player 1’s action paths are arbitrarily close

across different equilibria. In particular, there exists a cutoff state θ∗p ∈ Θp such that all strategic types above θ∗p

play a1 in every period, all strategic types below θ∗p play a1 in every period. Type θ∗p’s on-path behaviors across

different equilibria will coincide with (ex ante) probability at least 1− ε. Moreover, the action paths of playing

a1 in every period and playing a1 in every period will occur with probability at least 1− ε in every equilibrium,

with ε vanishes to 0 as µ(Ω)→ 0. To summarize the general lesson in words, when the prior is pessimistic and

the total probability of commitment types is small, player 1’s on-path behavior is almost unique and attaches
16Indeed, the aforementioned papers restrict attention to a subset of equilibria, such as weak Markov equilibia in Schmidt (1993b)

and renegotiation proof equilibria in Ghosh and Ray (1996).
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arbitrarily high probability to consistent action paths.

Remarks: I conclude this subsection by commenting on the assumptions in Theorem 3. To begin with, the

condition that µ(Ω) being small is only required when Ωg\{a1} is not a singleton. In Appendix G.5, I provide

an example where player 1 has multiple equilibrium behaviors when µ satisfies (4.3) but not (4.7). This is

driven by the presence of other good commitment actions. Intuitively, if commitment types that are playing

actions in Ωg\{a1, a1} occur with high probability, it will allow the bad strategic types to pool with those types

and obtain high payoffs. This weakens those bad types’ incentives to imitate commitment type a1 and softens

the punishment for behaving inconsistently, which undermines the disciplinary effect.

Next, my behavior uniqueness result requires player 1 to be patient. I show by counterexample in Appendix

G.7 that player 1 has multiple possible behaviors when δ is intermediate. Intuitively, this is because the bad

strategic types have no incentive to pay the cost of playing a1 when he is impatient. This lowers their rewards

from imitating the commitment type, which softens the punishment when a good strategic type plays a1 for a

finite number of periods and then deviates to a lower action.

4.3 Benchmark Game without Commitment Types

In this subsection, I analyze a benchmark repeated incomplete information game without commitment types and

then compare it to the reputation game with the same state distribution and a small probability of commitment

types. The objective is to motivate the questions, conditions and results in subsection 4.2. I also address the

implications of reputation effects on refining equilibria in repeated incomplete information games.

Let NE(δ, π) be the set of equilibria in the benchmark game with state distribution π ∈ ∆(Θ). The analogs

of the optimistic and pessimistic prior belief conditions in the benchmark game are given by:

∑
θ∈Θg∪Θp

π(θ)D(θ, a1) ≥ 0, (4.9)

and ∑
θ∈Θg∪Θp

π(θ)D(θ, a1) < 0. (4.10)

To see how they are related to (4.2), (4.3) and (4.7), take a benchmark game with state distribution π and perturb

it with a small probability of commitment types. Let µ be the type distribution in the perturbed reputation game

and suppose the probability of commitment types µ(Ω) is sufficiently small, a1 is one of the commitment actions

and D(φa1 , a1) > 0. If π satisfies (4.9), then µ satisfies (4.2). If π satisfies (4.10), then µ satisfies (4.3) and

(4.7). Proposition 4.1 relates whether a prior belief is optimistic or pessimistic to the attainability of player 1’s
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complete information commitment payoff in some equilibria of the benchmark game.

Proposition 4.1. There exists
{
σ(δ)

}
δ∈(0,1)

with σ(δ) ∈ NE(δ, π) such that

lim inf
δ→1

V
σ(δ)
θ (δ) ≥ u1(θ, a1, a2) for every θ ∈ Θ (4.11)

if and only if π satisfies (4.9).

Optimistic Prior: According to Proposition 4.1 and the first statement of Theorem 2, as long as the payoff

from the highest action profile is attainable in some equilibria of the benchmark game, it can be guaranteed

in all equilibria of the perturbed reputation game. In terms of equilibrium refinement, reputation effects rule

out equilibria with bad payoffs, for example those with payoff
{
u1(θ, a1, a2)

}
θ∈Θ

, and select ones that deliver

every strategic type a payoff no less than his highest equilibrium payoff in a repeated complete information

game where θ is common knowledge (Fudenberg, Kreps and Maskin 1990).

The remaining questions are: (1) Is u1(θ, a1, a2) type θ’s highest payoff in the benchmark repeated in-

complete information game? (2) Can player 1 guarantee strictly higher payoffs by building up reputations

for playing alternative commitment actions? In terms of the first question, u1(θ, a1, a2) is type θ’s highest

equilibrium payoff in the benchmark game when a1 is player 1’s pure Stackelberg action. Let

δ ≡ max
α2∈∆(A2)

{ u1(θ, a1, α2)− u1(θ, a1, α2)

u1(θ, a1, α2)− u1(θ, a1, α2) + u1(θ, a1, a2)− u1(θ, a1, a2)

}
.

The above observation is stated as Proposition 4.2:

Proposition 4.2. If π satisfies (4.9), a1 is player 1’s pure Stackelberg action in state θ and δ ≥ δ, then:

sup
σ∈NE(δ,π)

V σ
θ
∈
[
(1− δ)u1(θ, a1, a2) + δu1(θ, a1, a2), u1(θ, a1, a2)

]
.

Proposition 4.2 shows that by building reputations for playing the highest action, the highest type can secure

his highest equilibrium payoff in the benchmark game without commitment types. Nevertheless, types strictly

lower than θ can obtain higher payoffs compared to their payoff lower bounds in Theorem 2. This is because

they can extract information rent from imitating higher types. In Online Appendix C, I characterize player 1’s

limiting equilibrium payoff set in the entry deterrence game of section 1 and the resulting sets are depicted in

Figure 2. The takeaway lesson is: introducing a small probability of commitment types rules out low-payoff

equilibria and the highest equilibrium payoff for every type coincides with that in the benchmark game.

To answer the second question and to further motivate the study of player 1’s guaranteed payoff from

playing a1, I examine whether he can ensure himself a strictly higher payoff by establishing reputations for
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Figure 2: Limiting equilibrium payoff set in the interdependent value entry deterrence game (section 1) without
commitment types (in gray) and the selected payoffs under reputation effects (in black) when η ∈ (0, 1). The
horizontal axis: Player 1’s discounted average payoff in state H . The vertical axis: Player 1’s discounted
average payoff in state L. Left panel: π(H) > 1/2. Middle panel: π(H) = 1/2. Right panel: π(H) < 1/2.

playing alternative commitment actions. In Online Appendix F, I adopt a notion of tightness introduced by

Cripps, Schmidt and Thomas (1996) and show that when Θp 6= {∅}, no type of player 1 can guarantee a

strictly higher payoff by establishing reputations for playing other pure commitment actions. If Θp 6= {∅}

and Θn = {∅}, in another word it is common knowledge that player 1 prefers the commitment outcome to

his minmax outcome, then he cannot guarantee a strictly higher payoff by establishing reputations for playing

other commitment actions, no matter whether they are pure or mixed.

Pessimistic Prior: In the complementary scenario where π is pessimistic, despite the long-run player cannot

attain the payoff from the highest action profile, he is still facing a lack-of-commitment problem in the sense

that there are equilibria that lead to his minmax payoff
{
u1(θ, a1, a2)

}
θ∈Θ

and there are ones that result in

strictly higher payoffs. Formally, let

v∗θ(π) ≡

 u1(θ, a1, a2) if θ - θ∗p(π)

r(π)u1(θ, a1, a2) +
(

1− r(π)
)
u1(θ, a1, a2) if θ � θ∗p(π),

(4.12)

where the cutoff state θ∗p(π) ∈ Θp is the unique element in Θp under which there exists q ∈ (0, 1] satisfying

qπ(θ∗p(π))D
(
θ∗p(π), a1

)
+

∑
θ�θ∗p(π)

π(θ)D
(
θ, a1

)
= 0, (4.13)

and r(π) ∈ (0, 1) is uniquely pinned down by:

r(π)u1(θ∗p(π), a1, a2) +
(

1− r(π)
)
u1(θ∗p(π), a1, a2) = u1(θ∗p(π), a1, a2). (4.14)
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When the total probability of commitment types is small enough, we have θ∗p(π) = θ∗p(µ) and v∗θ(π) = v∗θ(µ)

for every θ ∈ Θ. Proposition 4.3 shows that v∗θ(π) is type θ’s highest payoff in the benchmark game:

Proposition 4.3. There exists δ̂ ∈ (0, 1) such that for every δ > δ̂ and π satisfying (4.10), we have:

max
σ∈NE(δ,π)

V σ
θ (δ) = v∗θ(π). (4.15)

The proof is in Appendix E. Comparing this to the second statement of Theorem 2, player 1’s highest payoff

in the benchmark game can be secured in all equilibria of the perturbed reputation game. For an alternative

interpretation,
(
v∗θ(π)

)
θ∈Θ

is player 1 equilibrium payoff in the informed principal game where he can publicly

commit to mixed actions after observing θ. Player 2 best responds to player 1’s committed action based on her

posterior belief about θ. In this sense,
(
v∗θ(π)

)
θ∈Θ

is player 1’s commitment payoff under a pessimistic prior

π, which can be secured in all equilibria when he can build reputations.

4.4 Related Applications

I discuss the implications of my MSM conditions in two economic applications: the entry deterrence game that

studies predatory pricing in monopolistic competition (Kreps and Wilson 1982, Milgrom and Roberts 1982)

and the product choice game that highlights the lack-of-commitment problem in business transactions (Mailath

and Samuelson 2001, Liu 2011, Ekmekci 2011).

Limit Pricing & Predation with Unknown Price Elasticities: Player 1 is an incumbent choosing between

a low price (interpreted as limit pricing or predation) and a normal price, every player 2 is an entrant choosing

between out and enter. The incumbent has private information about the demand elasticities θ ∈ R+, which

measures the increase in his product’s demand when he lowers the per unit price. Players’ stage-game payoffs

are given by:

State is θ Out Enter

Low Price pL(QM + θ), 0 pL(QD + γθ),ΠL(θ)− f

Normal Price pNQM , 0 pNQD,ΠN − f

where pL and pN are the low and normal prices, f is the sunk cost of entry, QM and QD are the incumbent’s

monopoly and duopoly demands under a normal price, ΠL and ΠN are the entrant’s profits when the incumben-

t’s price is low and normal, γ ∈ (0, 1) is a parameter measuring the effect of price elasticity on the incumbent’s

demand in duopoly markets relative to monopoly markets. This parameter is less than 1 as the entrant captures

part of the market, which offsets some of the demand increase from the price cut.
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In this example, Assumptions 1 and 2 require that (1) setting a low price is costly for the incumbent and

he strictly prefers the entrant to stay out; (2) the entrant’s profit from entering the market is lower when the

incumbent sets a low price and when the demand elasticity is higher; (3) it is less costly for the incumbent to set

a low price when the demand elasticity is higher. The first and third requirements are natural. The second one is

reasonable, since lowering prices leaves the entrant a smaller market share, and this effect is more pronounced

when the demand elasticity is higher.

Among other entry deterrence games, my assumptions also apply when the entrant faces uncertainty about

the market size or the elasticity of substitution between her product and the incumbent’s. It is also valid when

the incumbent uses non-pricing strategies to deter entry, such as choosing the intensity of advertising. As

shown in Ellison and Ellison (2011), this is common in the pharmaceutical industry as advertising usually

have positive spillovers to the entrant’s product However, my supermodularity assumption fails in the entry

deterrence problem studied in Harrington (1986), where the incumbent’s and the entrant’s production costs are

positively correlated and the entrant does not know her own production cost before entering the market.

Product Choice Games: Consider an example of a software firm (player 1) and a sequence of clients (player

2). Every client chooses between the custom software (C) and the standardized software (S). In response to

his client’s request, the firm either exerts high effort (H) which can ensure a timely delivery and reduce the

cost overruns, or exerts low effort (L). A client’s willingness to pay depends not only on the delivery time and

the expected cost overruns, but also on the quality of the software, which can be either good (G) or bad (B),

and is the firm’s private information. In this example, quality is interpreted as the hidden running risks, the

software’s adaptability to future generations of operation systems, etc. Therefore, compared to delivery time

and the realized cost overruns, quality is much harder to observe, so it is reasonable to assume that future clients

learn about quality mainly through the firm’s past behaviors. This is modeled as a variant of the product choice

game in Mailath and Samuelson (2001,2006):

θ = Good Custom Standardized

High Effort 1, 3 −1, 2

Low Effort 2, 0 0, 1

θ = Bad Custom Standardized

High Effort 1− η, 0 −1− η, 1

Low Effort 2,−2 0, 0

My MSM condition requires that (1) exerting high effort is costly for the firm but it can result in more profit

when the client purchases the custom software; (2) clients are more inclined to buy the custom software if it

can be delivered on-time and its quality is high; (3) firms that produce higher quality software face lower effort

costs. The first and second requirements are natural. The third one is reasonable since both the cost of making

timely deliveries and the software’s quality are positively correlated with the talent of the firm’s employees.
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Indeed, Banerjee and Duflo (2000) provide empirical evidence in the Indian software industry, showing that

firms enhance their reputations for competence via making timely deliveries and reducing cost overruns.

4.5 Proof Ideas of Theorems 2 and 3

I start from listing the challenges one needs to overcome to show Theorems 2 and 3. First, since values are

interdependent and the commitment types can be arbitrarily unlikely compared to every strategic type, Theorem

1 suggests the necessity to exploit the properties of player 1’s stage-game payoff function. Therefore, the

standard arguments which are based purely on learning cannot be directly applied (for example the ones in

Fudenberg and Levine 1989,1992, Sorin 1999, Gossner 2011).

Second, a repeated supermodular game is not supermodular, as player 1’s action today can affect future equi-

librium play. Consequently, the monotone selection result on static supermodular games e.g. Topkis (1998) is

not applicable. Similar issues have been highlighted in complete information extensive form games (Echenique

2004) and 1-shot signalling games (Liu and Pei 2017). For an illustrative example, consider the following

1-shot signalling game where the sender is the row player and the receiver is the column player:

θ = H l r

U 4, 8 0, 0

D 2,4 0, 0

θ = L l r

U −2,−2 2,0

D 0,−4 5, 1

Suppose the states and players’ actions are ranked according to H � L, U � D and l � r, one can verify

that both players’ payoffs are strict supermodular functions of the triple (θ, a1, a2). However, there exists a

sequential equilibrium in which the sender plays D in state H and U in state L. The receiver plays l after she

observes D and r after she observes U . That is to say, the sender’s equilibrium action can be strictly decreasing

in the state, despite all the complementarities between players’ actions and the state.

The game studied in this paper is trickier than 1-shot signalling games, as the sender (or player 1) is repeat-

edly signalling his persistent private information. The presence of intertemporal incentives provides a rationale

for many different strategies and self-fulfilling beliefs that cannot be rationalized in 1-shot interactions. For

example, even when the stage game has MSM payoffs, there can still exist equilibria in the repeated signalling

game where at some on-path histories, player 1 plays a1 with higher probability in a lower state compared to a

higher state. As a result, player 1’s reputation could deteriorate even when he plays the highest action.

4.5.1 Proof Sketch in the Entry Deterrence Game

I illustrate the logic of the proof using the entry deterrence game in the introduction. Recall that players’ stage

game payoffs are given by:
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θ = H O E

F 2, 0 0,−1

A 3, 0 1, 2

θ = L O E

F 2− η, 0 −η, 1

A 3, 0 1, 2

LetH � L, F � A andO � E. One can check that Assumptions 1 and 3 are satisfied. I focus on the case where

η ∈ (0, 1), which satisfies Assumption 2 and moreover, L ∈ Θp. I make two simplifying assumptions which

will be relaxed in the Appendix. First, player 2 can only observe player 1’s past actions, i.e. ht = {a1,s}t−1
s=0.

Second, there is only one commitment plan in which the committed long-run player plays F in every period

when the state is H , and plays A in every period when the state is L. Translating this into the language of my

model, Ω = {F,A}, φF is the Dirac measure on state H and φA is the Dirac measure on state L.

Two Classes of Equilibria: I classify the set of equilibria into two classes, depending on whether or not

playing F in every period is type L’s best reply. Formally, let htF be the period t history at which all past

actions were F . For any given equilibrium σ ≡ ({σθ}θ∈{H,L}, σ2), σ is called a regular equilibrium if playing

F at every history in {htF }∞t=0 is type L’s best reply to σ2. Otherwise, σ is called an irregular equilibrium.

Regular Equilibria: I use a monotone selection result on 1-shot signalling games (Liu and Pei 2017):

• If a 1-shot signalling game has MSM payoffs and the receiver’s action choice is binary, then the sender’s

action is non-decreasing in the state in every equilibrium.

This result implies that in a repeated signalling game, if playing the highest action in every period is player

1’s best reply in a lower state, then he will play the highest action with probability 1 at every on-path history

in a higher state (see Lemma C.1 for the formal statement). In the context of the entry deterrence game, if an

equilibrium is regular, then playing F in every period is type L’s best reply. Since H � L, the result implies

that type H will play F with probability 1 at htF for every t ∈ N.

Irregular Equilibria: I establish two properties of irregular equilibria. First, at every history htF where player

2’s belief attaches higher probability to type H than to type L, either O is her strict best reply, or the strategic

types will be separated from the commitment type at htF with significant probability. Next, I show that when δ

is large enough, player 2’s posterior belief will attach higher probability to type H than to type L at every htF .

For some notation, let qt be the ex ante probability that player 1 is type L and he has played F from period 0 to

t− 1 and let pt be the ex ante probability that player 1 is type H and he has played F from period 0 to t− 1.

Claim 1. For every t ∈ N, if pt ≥ qt but O is not a strict best reply at htF , then:

(pt + qt)− (pt+1 + qt+1) ≥ µ(F )/2. (4.16)
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PROOF OF CLAIM 1: Player 2 does not have a strict incentive to play O at htF if and only if: µ(F ) + pt+1 −

(pt−pt+1)−qt+1−2(qt−qt+1) ≤ 0, which implies that µ(F )+2pt+1 +2qt+1 ≤ pt+2qt+qt+1 ≤ pt+3qt ≤

2pt + 2qt, where the last inequality makes use of the assumption that pt ≥ qt. By rearranging the terms, one

can obtain inequality (4.16).

Claim 2. If δ is large enough, then in every irregular equilibrium, pt ≥ qt for all t ≥ 0.

Claim 2 establishes an important property of irregular equilibria, namely, despite the fact that playing the

highest action could lead to negative inferences about the state, player 2’s belief about the strategic types cannot

become too pessimistic. Intuitively, this is because type L’s continuation payoff must be low if he separates

from the commitment type in the last period with a pessimistic belief, while he can guarantee himself a high

payoff by continuing to play F . This contradicts his incentive to separate in that last period.

PROOF OF CLAIM 2: Suppose towards a contradiction that pt < qt for some t ∈ N. Given that playing F in

every period is not type L’s best reply, there exists T ∈ N such that type L has a strict incentive to play A at

hTF .17 That is to say, ps ≥ qs = 0 for every s > T . Let t∗ ∈ N be the largest integer t such that pt < qt. The

definition of t∗ implies that (1) player 2’s belief at history (ht
∗
F , A) attaches probability strictly more than 1/2

to type L, (2) type L is supposed to play A with strictly positive probability at ht
∗
F .

Let us examine type L’s incentives at ht
∗
F . If he plays A, then his continuation payoff at (ht

∗
F , A) is 1. This

is because player 2’s belief is a martingale, so there exists an action path played with positive probability by

type L such that at every history along this path, player 2 attaches probability strictly more than 1/2 to state L,

which implies that she has a strict incentive to play E, and type L’s stage game payoff is at most 1.

If he plays F at ht
∗
F and in all subsequent periods, then according to Claim 1, there exists at most T ≡

d2/µ(F )e periods in which O is not player 2’s strict best reply. This is because by definition, ps ≥ qs for all

s > t∗. Therefore, type L’s guaranteed continuation payoff is close to 2 − η when δ is large. This is strictly

larger than 1. Comparing his continuation payoffs by playing A versus playing F reveals a contradiction.

Optimistic Prior Belief: When the prior belief is optimistic, i.e. µ(F ) + µ(H) > µ(L), I establish the

commitment payoff theorem for the two classes of equilibria separately. For regular equilibria, since type H

behaves in the same way as the commitment type F , one can directly apply statement 1 of Theorem 1 and obtain

the commitment payoff bound for playing F . For irregular equilibria, Claims 1 and 2 imply that conditional on

playing F in every period, there exist at most T periods in whichO is not player 2’s strict best reply. Therefore,

type H can guarantee a payoff close to 2 and type L can guarantee payoff close to 2− η.
17This is no longer true when player 2 can condition her actions on her predecessors’ actions and the realizations of public random-

ization devices, in which case it can only imply that type L has a strict incentive to play A at some on-path histories where he has
played F in every period. These complications will be discussed in Remark II and a formal treatment is provided in Appendix C.
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Pessimistic Prior Belief: When the prior belief is pessimistic, i.e. µ(F ) + µ(H) ≤ µ(L), we know that

p0 = µ(H) < µ(L) = q0. According to Claim 2, there is no irregular equilibria. So every equilibrium is

regular, and therefore, type H will play F with probability 1 at every htF .

Next, I pin down the probability with which type L plays F at every htF . I start by introducing a measure

of optimism for player 2’s belief at htF by letting

Xt ≡ µ(F )D(H,F ) + ptD(H,F ) + qtD(L,F ). (4.17)

Note that {Xt}∞t=0 is a non-decreasing sequence as D(H,F ) > 0, D(L,F ) < 0, pt is constant and qt is

non-increasing. The pessimistic prior assumption translates into X0 ≤ 0. The key step is to show that:

Claim 3. If δ is large enough, then Xt = 0 for all t ≥ 1.18

PROOF OF CLAIM 3: Suppose towards a contradiction that Xt < 0 for some t ≥ 1, then let us examine type

L’s incentives at ht−1
F . Since Xt < 0, type L will play F with positive probability at ht−1

F . If he plays F at

ht−1
F , then his continuation payoff at htF is 1. If he plays A at ht−1

F , then his continuation payoff at (ht−1
F , A) is

1, but he can receive a strictly higher stage game payoff in period t− 1. This leads to a contradiction.

Suppose towards a contradiction that Xt > 0 for some t ≥ 1, then let t∗ be the smallest t such that Xt > 0.

Since Xs ≤ 0 for every s < t∗, we know that type L will play A with positive probability at ht
∗−1
F . In what

follows, I examine type L’s incentives at ht
∗−1
F . If he plays A, then his continuation payoff at (ht

∗−1
F , A) is 1.

If he plays F forever, then I will show below that O is player 2’s strict best reply at hsF for every s ≥ t∗. Once

this is shown, we know that type L’s guaranteed continuation payoff at ht
∗
F is 2 − η, which is strictly greater

than 1 and leads to a contradiction.

I complete the proof by showing that O is player 2’s strict best reply at hsF for every s ≥ t∗. Suppose

towards a contradiction that player 2 does not have a strict incentive to play O at hsF for some s ≥ t∗, then:

µ(F )D(H,F ) + psD(H,F ) + qs+1D(L,F ) + (qs − qs+1)D(L,A) ≤ 0, (4.18)

⇒ qs − qs+1 ≥
Xs

D(L,F )−D(L,A)
≥︸︷︷︸

since Xs≥Xt∗

Xt∗

D(L,F )−D(L,A)︸ ︷︷ ︸
>0

≡ Y. (4.19)

Hence, there exist at most dq0/Y e such periods, which is a finite number. Let period t be the last of such

periods. Let us examine type L’s incentive at htF . On one hand, he plays A with positive probability at this

18When there are other commitment types playing mixed strategies, Xt is close to albeit not necessarily equal to 0. Nevertheless, the
variation of Xt across different equilibria vanishes as the total probability of commitment types goes to 0. When there are no mixed
commitment types under which player 2 has a strict incentive to play a2, the sequence {Xt}∞t=0 is generically unique.
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history in equilibrium, which results in a continuation payoff close to 1. On the other hand, his continuation

payoff from playing F in every period is 2− η, which results in a contradiction.

Remark: When L ∈ Θn, i.e. η ≥ 1, Claim 1 as well as the conclusion on regular equilibria will remain

intact. What needs to be modified is Claim 2: despite the fact that pt can be less than qt for some t ∈ N in some

equilibria (think about for example, when the prior attaches very high probability to state L such that p0 < q0),

type H can still guarantee a payoff close to 2 in every equilibrium.

To see this, in every irregular equilibrium where pt < qt for some t, let t∗ be the largest of such t and let us

examine type L’s incentives in period 0. For this to be an equilibrium, he must prefer playing F from period 0

to t∗ − 1 and then A in period t∗, compared to playing A forever starting from period 0. By adopting the first

strategy, his continuation payoff is 1 after period t∗+1, his stage game payoff from period 0 to t∗−1 is no more

than 1 if O is played, and is no more than −η if E is played. By adopting the second strategy, he can guarantee

himself a payoff of at least 1. For the first strategy to be better than the second, the occupation measure with

which E is played from period 0 to t∗ − 1 needs to be arbitrarily close to 0 as δ → 1. That is to say, if type

H plays F in every period, then the discounted average payoff he loses from period 0 to t∗ − 1 (relative to 2

in each period) vanishes as δ → 1. According to Claim 1, his guaranteed continuation payoff after period t∗ is

close to 2. Summing up, his guaranteed payoff in period 0 is at least 2 in the δ → 1 limit.

4.5.2 Overview of the Full Proof

In Appendices C and D, I extend the above idea and provide full proofs to Theorems 2 and 3, which incur

two additional complications. First, there can be many strategic types, and in particular, good, positive and

negative states could co-exist. Second, player 2’s actions can be conditioned on the past realizations of public

randomization devices as well as on her predecessors’ actions. This opens up new equilibrium possibilities and

therefore, can potentially undermine the robust predictions on payoff and behavior.

In terms of the proof, the main difference occurs in the analysis of irregular equilibria, as there may not

exist a last history at which the probability of the bad strategic types is greater than the probability of the good

strategic types. This is because the predecessor-successor relationship is incomplete on the set of histories

where player 1 has played a1 in every period once {a2,s, ξs}s≤t−1 is also included in ht.

My proof overcomes this difficulty by showing that every time a switch from a pessimistic to an optimistic

belief happens, the bad strategic types must be separating from the commitment type with ex ante probability

bounded from below. This implies that such switches can only happen finitely many times conditional on every

equilibrium action path. On the other hand, the bad strategic types only have incentives to separate at those

switching histories when their continuation payoffs from imitating the commitment type are low. This implies
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that another switch needs to happen again in the future. Therefore, such switches must happen infinitely many

times if it happens at least once, leading to a contradiction.

5 Concluding Remarks

Extensions: I discuss several extensions of my baseline model. First, players move sequentially rather than

simultaneously in some applications, such as a firm that chooses its service standards after consumers decide

which product to purchase; an incumbent sets prices before or after observing the entrants’ entry decisions. My

results are robust when the long-run player moves first. When the short-run players move first, my results are

valid when every commitment type’s strategy is independent of the short-run players’ actions. This requirement

is not redundant, as the short-run players cannot learn the long-run player’s reaction following an unchosen a2.

Along this line, my analysis can be applied to the following repeated bargaining problem, which models

conflict resolution between employers and employees, firms and clients and other contexts. In every period, a

long-run player bargains with a short-run player. The short-run player makes a take-it-or-leave-it offer, which

is either soft or tough, and the long-run player either accepts the offer or chooses to resolve the dispute via

arbitration. The long-run player has persistent private information about both parties’ payoffs from arbitration,

which can be interpreted as the quality of his supporting evidence. The short-run players observe the long-

run player’s bargaining postures in the past and update their beliefs about their payoffs from arbitration.19 In

this context, my results provide sharp predictions on the long-run player’s payoff and characterize his unique

equilibrium behavior when his (ex ante) expected payoff from arbitration is below a cutoff.

In some other applications where the uninformed players move first, the informed player cannot take actions

at certain information sets. For example, the firm cannot exert effort when its client refuses to purchase, the

incumbent cannot signal his toughness when the entrant stays out. My results in section 4 apply to these

scenarios as long as the informed long-run player can make an action choice in period t if a2,t 6= a2. This

condition is satisfied in entry deterrence games but is violated in sequential-move product choice games,20 or

more generally, participation games defined in Ely, Fudenberg and Levine (2008).

Second, analogies of my results can be derived when there are non-stationary commitment types. The

key difference is: the attainability of the commitment payoff from playing α1 will depend not only on the

probability of the commitment type playing α1 in every period and its correlation with the state, but also on the
19Lee and Liu (2013) study a similar game without commitment types, but the short-run players observe their realized payoffs in

addition to the long-run player’s past actions. Their model applies to litigation, where the court’s decisions are publicly available. My
model applies to arbitration, as arbitration hearings are usually confidential and the final decisions are not publicly accessible.

20Mailath and Samuelson (2015) provides an alternative interpretation of the product choice game. Instead of choosing whether to
purchase the product or not, the consumer chooses between the customized and the standardized product, and the seller can exert high
effort regardless of the consumer’s action choice. My results can be applied to this game.
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probabilities of those non-stationary commitment types and their correlations with the state. To illustrate this,

consider the entry deterrence game in the introduction. Suppose there exists a commitment type who plays F

in every period and another one who plays strategy σ̂1, where

σ̂1(ht) ≡

 1
2F + 1

2A if t = 0

F otherwise.

Conditional on commitment type σ̂1, state L occurs with certainty. Conditional on commitment type F , stateH

occurs with certainty. If the probability of type σ̂1 is three times larger than that of type F , then the conclusions

in Theorems 2 and 3 will fail. This is because starting from period 1, player 2 has no incentive to play O

conditional on the event that player 1 is committed and F will be played in every future period.

Nevertheless, as the state can only be learnt via the informed player’s action choices, one cannot construct

non-stationary commitment types in non-trivial interdependent value environments that can guarantee the in-

formed player his commitment payoff regardless of the probabilities of other non-stationary commitment types.

This is because for every non-stationary commitment plan σ∗1 : H × Θ → ∆(A1), one can construct another

commitment plan σ∗∗1 that

1. occurs with significantly higher probability compared to σ∗1;

2. generates the same distribution over public histories as σ∗1 , in another word, σ∗1 and σ∗∗1 are observation-

ally equivalent according to the uninformed players’ perspective;

3. there exists a permutation τ : Θ → Θ such that σ∗1(ht, θ) = σ∗∗1 (ht, τ(θ)) for every (ht, θ) ∈ H × Θ,

that is, the mapping from the states to the committed long-run player’s stage-game actions is flipped.

This observation contrasts to the conclusion in Deb and Ishii (2018) that studies a reputation model in which

the public signals can identify the state.

Third, Assumption 2 can be replaced by the following weaker condition as players’ incentives remain

unchanged under affine transformations on player 1’s state contingent payoffs.

– Assumption 2’: There exists f : Θ→ (0,+∞) such that ũ1(θ, a1, a2) ≡ f(θ)u1(θ, a1, a2) has SID in θ

and (a1, a2). u2 has SID in a2 and (θ, a1).

To see how this generalization expands the applicability of Theorems 2 and 3, consider for example a repeated

prisoner’s dilemma game between a patient long-run player (player 1) and a sequence of short-run players

(player 2s). Players are reciprocal altruistic in the sense that each of them maximizes a weighted average of

his own monetary payoff and that of his opponent’s, with the weight on the opponent’s payoff being a strictly
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increasing function of his belief about the opponents’ level of altruism (Levine 1998). This can be applied to

a number of situations in development economics, for example, a foreign firm, NGO or missionary (player 1)

trying to cooperate with different local villagers (player 2s) in different periods.

When player 1’s level of altruism is his private information, this game violates Assumption 2 as his cost

from playing a higher action (cooperate) and his benefit from player 2’s higher action (cooperate) are both

decreasing with his level of altruism. I show in Online Appendix G that the game satisfies Assumption 2’ under

an open set of parameters. I also provide a full characterization of Assumption 2’ based on the primitives.

Modeling Choices: I conclude by discussing several modeling assumptions and the connections to related

works. A central theme of my analysis is that reputation building is challenging when the uninformed players’

learning is confounded. Even though the informed player can convince his opponents about his future actions,

he may not teach them how to best reply when their payoffs depend on the state. Conceptually this is related

to the contemporary work of Deb and Ishii (2018) that revisits the commitment payoff theorem when the

uninformed players are uncertain about the monitoring structure, captured by a perfectly persistent state.21

Neither model nests the other and the insights from the two papers are complementary. The main difference

being: the state can be identified via the public signals in their model, while it can only be learnt via the

informed player’s actions in mine.22 When the public signals can identify the state, they construct a set of

non-stationary commitment types, under which the informed player can guarantee his commitment payoff

regardless of the presence of other non-stationary commitment types. In contrast, I study a model in which

the public signals cannot identify the state and all commitment types are playing state-contingent stationary

strategies. My result highlights the new challenges to reputation building brought by interdependent values

(Theorem 1). I also establish reputation effects on the long-run player’s payoff and behavior in an interesting

class of interdependent value games without state identification (Theorems 2 and 3).

In terms of the applications, their informational assumption fits in settings where informative signals about

the state arrive frequently, as for example, when the state is the performance of vehicles, mobile phones, etc.

In contrast, my informational assumption fits into applications where signals other than the informed player’s

actions are unlikely to arrive for a long time, or the variations of their realizations are mostly driven by noise

orthogonal to the state. This includes for example, when the state is the resilience of an architectural design to
21Related ideas also appear in Wolitzky (2011), who studies reputational bargaining with non-stationary commitment types and

shows the failure of the commitment payoff theorem. However, his negative result requires that the uninformed player being long-lived
and the commitment types playing non-stationary strategies, none of which are needed for the counterexamples (see Appendix G) and
negative results (statements 2 and 4 of Theorem 1) in my paper.

22Their Assumption 2.3 requires that for every pair of states θ, θ′ ∈ Θ, there exists α1 ∈ ∆(A1) such that for every α′1 ∈ ∆(A1),
the distribution over public signals under (θ, α1) is different from that under (θ′, α′1). This is violated in my model as well as Aumann
and Maschler (1995), Hörner and Lovo (2009), Kaya (2009), Roddie (2012), Pȩski and Toikka (2017), etc. where the public signals
cannot identify the state.
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earthquakes, the long-run health impact of a certain type of food, the demand elasticity in markets with high

sunk costs of entry, the adaptability of a software to future generations of operating systems, etc.

Ely and Välimäki (2003), Ely, Fudenberg and Levine (2008) study a class of private value reputation games

with imperfect public monitoring called participation games. They show a bad reputation result, that a patient

long-run player’s equilibrium payoff is low when the bad commitment types, namely ones that discourage the

short-run players from participating, are relatively more likely compared to the Stackelberg commitment type.

Although both my Theorem 1 and their results illustrate the possibilities of reputation failure, the economic

forces behind them are different. Their bad reputation results are driven by the tension between the long-run

player’s forward-looking incentives and the short-run players’ participation incentives. In particular, the long-

run player has an incentive to take actions that can generate good signals but harm the participating short-run

players. This discourages participation and prevents the long-run player from signalling his private information.

In contrast, reputation failure occurs in my model as the short-run players’ learning is confounded. Despite the

long-run player can always choose actions to signal his type, the informational contents of his action choices

are sensitive to equilibrium selection. If the bad strategic types are believed to be pooling with the commit-

ment type with high probability, then the strategic long-run player cannot simultaneously build a reputation for

commitment while separating from the bad types.

Another point that is worth discussing is that in many applications, the underlying payoff environment and

the characteristics of the long-run player can be changing over time. This has been taken into account in the

reputation models of Tadelis (1999), Mailath and Samuelson (2001), Phelan (2006), Wiseman (2008), Ekmekci,

Gossner and Wilson (2012), Board and Meyer-ter-Vehn (2013), etc.

My model abstracts away from such issues by focusing on settings where the long-run player’s type (captur-

ing both his characteristics and his knowledge about the payoff environment) is perfectly persistent. This is not

to deny the importance of state-changes, but rather because the trade-off between maintaining reputations and

signalling is most pronounced when the long-run player’s type is perfectly persistent. As argued before, such

a trade-off is the novel aspect of interdependent value environments and will be the focus of this paper. The

effects and economic forces revealed in my analysis are also relevant in settings where the state is sufficiently

persistent and changes infrequently, or the focus is within a certain time frame during which the probability of

state-change is sufficiently low.
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A Proof of Theorem 1, Statements 1 & 3

Recall the definitions of strategic types and commitment types in section 2. Abusing notation, I use Θ to denote
the set of strategic types and Ω to denote the set of commitment types. Let Ω ≡ Ω

⋃
Θ be the entire set of types

with ω a typical element of Ω. Let µt(ω) be the probability of type ω under the posterior in period t.
Let α∗1 ∈ Ω be the commitment action under consideration, in order to distinguish it from a generic action.

If α∗1 is a Dirac measure on a∗1, I will replace α∗1 with a∗1 for notation simplicity. Recall that BR2(a∗1, θ) ≡
{a∗2} (or BR2(α∗1, θ) ≡ {a∗2}). Since Λ(a∗1, θ) = {∅} (or Λ(α∗1, θ) = {∅}) if BR2(a∗1, φa∗1) 6= {a∗2} (or
BR2(α∗1, φα∗1) 6= {a∗2}), in which case statement 1 (or statement 3) is void. Therefore, it is without loss of
generality to assume that BR2(a∗1, φa∗1) = {a∗2} (or BR2(α∗1, φα∗1) = {a∗2}).

A.1 Proof of Statement 1

When Ω = {a∗1} and λ ∈ Λ(a∗1, θ), for every µ̃ with µ̃(θ̃) ∈ [0, µ(θ̃)] for all θ̃ ∈ Θ, we have:

{a∗2} = arg max
a2∈A2

{
µ(a∗1)u2(φa∗1 , a

∗
1, a2) +

∑
θ̃∈Θ

µ̃(θ̃)u2(θ̃, a∗1, a2)
}
.

Let ht∗ be the period t public history such that a∗1 is always played. For every ω ∈ Ω, let qt(ω) be the ex ante
probability that the history is ht∗ and player 1 is type ω. By definition, qt(a∗1) = µ(a∗1) for all t. Player 2’s
maximization problem at ht∗ is:

max
a2∈A2

{
µ(a∗1)u2(φa∗1 , a

∗
1, a2) +

∑
θ̃∈Θ

[
qt+1(θ̃)u2(θ̃, a∗1, a2) + (qt(θ̃)− qt+1(θ̃))u2(θ̃, α1,t(θ̃), a2)

]}
where α1,t(θ̃) ∈ ∆(A1\{a∗1}) is the distribution of type θ̃’s action at ht∗ conditional on it is not a∗1.

Fixing µ(a∗1) and given the fact that λ ∈ Λ(a∗1, θ), there exists ρ > 0 such that a∗2 is player 2’s strict best
reply if ∑

θ̃∈Θ

qt+1(θ̃) >
∑
θ̃∈Θ

qt(θ̃)− ρ.

Let T ≡
⌈
1/ρ
⌉
, which is independent of δ. There exist at most T periods in which a∗2 fails to be a strict best

reply conditional on a∗1 has always been played. Therefore, type θ’s payoff is bounded from below by:

(1− δT ) min
a∈A

u1(θ, a) + δT vθ(a
∗
1),

which converges to vθ(a∗1) as δ → 1.
When there are other commitment types, let p ≡ maxα1∈Ω\{a∗1} α1(a∗1). which is strictly below 1. There ex-

ists T ∈ N independent of δ, such that for every t ≥ T , a∗2 is player 2’s strict best reply at ht∗ if:
∑

θ̃∈Θ qt+1(θ̃) ≥∑
θ̃∈Θ qt(θ̃) − ρ/2. One can obtain the commitment payoff bound by considering the subgame starting from

hT∗ .

A.2 Proof of Statement 3

Notation: For every α1 ∈ Ω\{α∗1}, θ ∈ Θ and µ̃ ∈ ∆(Ω) with µ̃(α∗1) 6= 0, let

λ̃(α1) ≡ µ̃(α1)/µ̃(α∗1) and λ̃(θ) ≡ µ̃(θ)/µ̃(α∗1)

Abusing notation, let λ̃ ≡
((
λ̃(α1)

)
α1∈Ω\{α∗1}

,
(
λ̃(θ)

)
θ∈Θ

)
be the (expanded) likelihood ratio vector. Let

n ≡ |A1| and m ≡ |Ω| − 1. For convenience, I write Ω\{α∗1} ≡ {ω1, ..., ωm} and λ̃ ≡ (λ̃1, ..., λ̃m). The proof
consists of two parts.
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A.2.1 Part I

Let Σ2 be the set of player 2’s strategies with σ2 a typical element. Let

NE2(µ) ≡
{
σ2 ∈ Σ2

∣∣∣∃ δ ∈ (0, 1) such that (σ1, σ2) ∈ NE(δ, µ)
}
.

For every σω : H → ∆(A1) and σ2 ∈ Σ2, let P(σω ,σ2) be the probability measure overH induced by (σω, σ2),
let H(σω ,σ2) be the set of histories that occur with positive probability under P(σω ,σ2) and let E(σω ,σ2) be its
expectation operator. Abusing notation, I use α∗1 to denote the strategy of playing α∗1 in every period.

For every ψ ≡ (ψ1, ...ψm) ∈ Rm+ and χ ≥ 0, let

Λ(ψ, χ) ≡
{
λ̃
∣∣∣ m∑
i=1

λ̃i/ψi = χ
}
.

Let λ be the likelihood ratio vector induced by player 2’s prior belief µ. Let λ(ht) ≡ (λ1(ht), ..., λm(ht)) be
the likelihood ratio vector following history ht. For every infinite history h∞, let h∞t be its projection on a1,t.
Let α1(·|ht) ∈ ∆(A1) be player 2’s conditional expectation over player 1’s next period action at history ht. I
show the following Proposition:

Proposition A.1. For every χ > 0, λ ∈ Λ(ψ, χ), σ2 ∈ NE2(µ) and ε > 0, there exist δ ∈ (0, 1) and T ∈ N
such that for every δ > δ, there exists σω : H → ∆(A1) that achieves the three objectives simultaneously:

1.
λ(ht) ∈

⋃
χ̃∈[0,χ+ε)

Λ(ψ, χ̃) for every ht ∈ H(σω ,σ2). (A.1)

2. For every h∞ ∈ H(σω ,σ2) and every a1 ∈ A1,∣∣∣ ∞∑
t=0

(1− δ)δt1{h∞t = a1} − α∗1(a1)
∣∣∣ < ε

2(2χ+ ε)
. (A.2)

3.
E(σω ,σ2)

[
#
{
t
∣∣∣d(α∗1∥∥α1(·|ht)

)
> ε2/2

}]
< T. (A.3)

In words, Proposition A.1 claims that for every equilibrium strategy of player 2’s, there exists a map-
ping from the set of public histories to player 1’s mixed actions under which the following three goals can be
achieved simultaneously: (1) inducing favorable beliefs about the state; (2) the discounted average frequency
of player 1’s actions along every infinite action path is closely matched to α∗1; (3) the expected number of pe-
riods in which player 2’s believed action differs significantly from α∗1 is uniformly bounded from above by an
integer independent of δ. My proof consists of three steps, which shows how to achieve each objective without
compromising on the other two.

Step 1: Let A∗1 ≡ supp(α∗1). Recall that P(α∗1,σ2) is the probability measure over H induced by the commit-
ment type that plays α∗1 in every period.

Let χ(ht) ≡
∑m

i=1 λi(h
t)/ψi. Since λ ∈ Λ(ψ, χ), we have χ(h0) = χ. Using the observation that

{λi(ht),P(α∗1,σ2),F t}t∈N is a non-negative supermartingale for every i ∈ {1, 2, ...,m}, where {F t}t∈N is the
filtration induced by the public history,23 we know that {χt,P(α∗1,σ2),F t}t∈N is also a non-negative super-
martingale. For every a < b, let U(a, b) be the number of upcrossings from a to b. According to the Doob’s

23When α∗1 has full support, {λi(ht),P(α∗
1 ,σ2),F t}t∈N is a martingale. However, whenA∗1 6= A1 and type ωi plays action a′1 /∈ A∗1

with positive probability, then the expected value of λi(ht) can strictly decrease.
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Upcrossing Inequality (see Chung 1974),

P(α∗1,σ2)
{
U(χ, χ+

ε

2
) ≥ 1

}
≤ 2χ

2χ+ ε
. (A.4)

Let H̃∞ be the set of infinite histories that χ(ht) is below χ + ε
2 for all periods. According to (A.4), it occurs

with probability at least ε
2χ+ε .

Step 2: In this step, I show that for large enough δ, there exists a subset ofH∞, which occurs with probability
bounded from below by a positive number, such that the occupation measure over A1 induced by every history
in this subset is ε−close to α∗1. For every a1 ∈ A∗1, let {Xt} be a sequence of i.i.d. random variables such that:

Xt =

{
1 when a1,t = a1

0 otherwise .

UnderP(α∗1,σ2),Xt = 1 with probabilityα∗1(a1). Therefore,Xt has meanα∗1(a1) and variance σ2 ≡ α∗1(a1)(1−
α∗1(a1)). Recall that n = |A1|. I show the following Lemma:

Lemma A.1. For any ε > 0, there exists δ ∈ (0, 1), such that for all δ ∈ (δ, 1),

lim sup
δ→1
P(α∗1,σ2)

(∣∣∣ +∞∑
t=0

(1− δ)δtXt − α∗1(a1)
∣∣∣ ≥ ε) ≤ ε

n
. (A.5)

PROOF OF LEMMA A.1: For every n ∈ N, let X̂n ≡ δn(Xn − α∗1(a1)). Define a triangular sequence of
random variables {Xk,n}0≤n≤k,k,n∈N, such that Xk,n ≡ ξkX̂n, where

ξk ≡
√

1

σ2

1− δ2

1− δ2k
.

Let Zk ≡
∑k

n=1Xk,n = ξk
∑n

k=1 X̂n. According to the Lindeberg-Feller Central Limit Theorem (Chung
1974), Zk converges in law to N(0, 1). By construction,∑k

n=1 X̂n

1 + δ + ...+ δk−1
= σ

√
1− δ2k

1− δ2

1− δ
1− δk

Zk.

The RHS of this expression converges (in distribution) to a normal distribution with mean 0 and variance

σ2 1− δ2k

1− δ2

(1− δ)2

(1− δk)2
.

The variance term converges to O
(

(1 − δ)
)

as k → ∞. According to Theorem 7.4.1 in Chung (1974), we
have:

sup
x∈R
|Fk(x)− Φ(x)| ≤ A0

k∑
n=1

|Xk,n|3 ∼ A1(1− δ)
3
2 ,

where A0 and A1 are constants, Fk is the empirical distribution of Zk and Φ(·) is the cdf of the standard normal
distribution. Both the variance and the approximation error converge to 0 as δ → 1.

Using the properties of normal distribution, we know that for every ε > 0, there exists δ ∈ (0, 1) such that
for every δ > δ, there exists K ∈ N, such that for all k > K,

P(α∗1,σ2)
(∣∣∣ ∑k

i=1 X̂n

1 + δ + ...+ δk−1

∣∣∣ ≥ ε) < ε

n
.

Taking the k →∞ limit, one obtains the conclusion of Lemma A.1.
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Step 3: According to Lemma A.1, for every a1 ∈ A1 and ε > 0, there exists δ ∈ (0, 1), such that for all
δ > δ, there existsH∞ε,a1(δ) ⊂ H∞, such that

1.
P(α∗1,σ2)(H∞ε,a1(δ)) ≥ 1− ε/n, (A.6)

2. For every h∞ ∈ H∞ε,a1(δ), the discounted average frequency of a1 is ε-close to α∗1(a1).

LetH∞ε (δ) ≡
⋂
a1∈A1

H∞ε,a1(δ). According to (A.6), we have:

P(α∗1,σ2)(H∞ε (δ)) ≥ 1− ε. (A.7)

Take ε ≡ ε
2(2χ+ε) and let

Ĥ∞ ≡ H̃∞
⋂
H∞ε (δ), (A.8)

we have:
P(α∗1,σ2)(Ĥ∞) ≥ ε

2(2χ+ ε)
(A.9)

According to Gossner (2011), we have

E(α∗1,σ2)
[ +∞∑
τ=0

d(α∗||α(·|hτ ))
]
≤ − logµ(α∗1), (A.10)

where d(·‖·) is the Kullback-Leibler divergence between two action distributions. The Markov Inequality
implies that:

E(α∗1,σ2)
[ +∞∑
τ=0

d(α∗||α(·|hτ ))
∣∣∣Ĥ∞] ≤ −2(2χ+ ε) logµ(α∗1)

ε
. (A.11)

Let P∗ be the probability measure overH∞ such that for everyH∞0 ⊂ H∞,

P∗(H∞0 ) ≡ P
(α∗1,σ2)(H∞0

⋂
Ĥ∞)

P(α∗1,σ2)(Ĥ∞)
.

Let σω : H → ∆(A1) be player 1’s strategy that induces P∗. The expected number of periods in which
d(α∗1||α(·|ht)) > ε2/2 is bounded from above by:

T ≡
⌈
− 4(2χ+ ε) logµ(α∗1)

ε3

⌉
, (A.12)

which is an integer independent of δ. The three steps together imply Proposition A.1.

A.2.2 Part II

Proposition A.1 and λ ∈ Λ(α∗1, θ) do not imply that type θ can guarantee himself his commitment payoff.
This is because due to the correlations between player 1’s type and his action choice, player 2 may not have an
incentive to play a∗2 even if λ ∈ Λ(α∗1, θ) and the average action is close to α∗1. I address this issue using two
observations, which correspond to the two steps of my proof.

1. If λ ∈ Λ(α∗1, θ), is small in all but at most one entry and player 1’s average action is close to α∗1, then
player 2 has a strict incentive to play a∗2 regardless of the correlation. Let Λ0 be the set of beliefs that has
the above feature.
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2. If λ ∈ Λ(α∗1, θ) and player 1’s average action is close to α∗1 but player 2 does not have a strict incentive
to play a∗2, then different types of player 1’s actions must be sufficiently different. This implies that there
is significant learning about player 1’s type after observing his action choice.

I show that for every λ ∈ Λ(α∗1, θ), there exists an integer K and a strategy such that if player 1 picks
his action according to this strategy in periods with the above feature, then after at most K such periods,
player 2’s belief about his type will be in Λ0, which concludes the proof.

Recall that m ≡ |Ω| − 1. Let ψ ≡ {ψi}mi=1 ∈ Rm+ be defined as:

• If ωi ∈ Θb
(α∗1,θ)

, then ψi equals to the intercept of Λ(α∗1, θ) on dimension ωi.

• Otherwise, ψi > 0 is chosen to be large enough such that

m∑
i=1

λi/ψi < 1. (A.13)

Such ψ exists as λ ∈ Λ(α∗1, θ). Let ψ ≡ max{ψj |j = 1, 2, ...,m}. Recall that Part I has established the
existence of a strategy for player 1 under which:

1. Player 2’s belief always satisfies (A.13), or more precisely, bounded from above by some χ < 1.

2. The discounted average frequency of every action a1 ∈ A1 at every on-path history with infinite length
is ε-close to the probability attached to a1 in α∗1.

3. In expectation, there exists at most T periods in which player 2’s believed action differs significantly
from α∗1, where T is an integer independent of δ.

Step 1: For every ξ > 0, a likelihood ratio vector λ is of ‘size ξ’ if there exists ψ̃ ≡ (ψ̃1, ..., ψ̃m) ∈ Rm+ such
that: ψ̃i ∈ (0, ψi) for all i and moreover,

λ ∈
{
λ̃ ∈ Rm+

∣∣∣ m∑
i=1

λ̃i/ψ̃i < 1
}
⊂
{
λ̃ ∈ Rm+

∣∣∣#{i|λ̃i ≤ ξ} ≥ m− 1
}
. (A.14)

Intuitively, λ is of size ξ if there exists a downward sloping hyperplane such that all likelihood ratio vectors
below this hyperplane have at least m− 1 entries that are no larger than ξ. By definition, for every ξ′ ∈ (0, ξ),
if λ is of size ξ′, then it is also of size ξ. Proposition A.2 establishes the commitment payoff bound when λ is
of size ξ for ξ small enough.

Proposition A.2. There exists ξ > 0, such that for every λ of size ξ, we have:

lim inf
δ→1

V θ(µ, δ) ≥ u1(θ, α∗1, a
∗
2).

In the proof, I show that using the strategy constructed in Proposition A.1, one can ensure that a∗2 is player
2’s strict best reply at every ht where d(α∗1||α1(·|ht)) < ε2/2. This implies Proposition A.2.

PROOF OF PROPOSITION A.2: Let α1(·|ht, ωi) ∈ ∆(A1) be the equilibrium action of type ωi at history ht.
Let

Bi,a1(ht) ≡ λi(ht)
(
α∗1(a1)− α1(a1|ht, ωi)

)
. (A.15)

Recall that

α1(·|ht) ≡
α∗1 +

∑m
i=1 λi(h

t)α1(·|ht, ωi)
1 +

∑m
i=1 λi(h

t)
.
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is the average action anticipated by player 2. For evert λ ∈ Λ(α∗1, θ) and ε > 0, there exists ε > 0 such that at
every likelihood ratio vector λ̃ satisfying:

m∑
i=1

λ̃i/ψi <
1

2

(
1 +

m∑
i=1

λi/ψi

)
, (A.16)

a∗2 is player 2’s strict best reply to every {α1(·|ht, ωi)}mi=1 satisfying the following two conditions

1. |Bi,a1(ht)| < ε for all i and a1.

2.
∥∥α∗1 − α1(·|ht)

∥∥ ≤ ε.
This is because when the prior belief satisfies (A.16), a∗2 is player 2’s strict best reply when all types of player
1 are playing α∗1. When ε and ε are both small enough, an ε-deviation of the average action together with an ε
correlation between types and actions cannot overturn this strictness.

According to the Pinsker’s Inequality,
∥∥α∗1 − α1(·|ht)

∥∥ ≤ ε is implied by d(α∗1||α1(·|ht)) ≤ ε2/2. Pick ε
and ξ small enough such that:

ε <
ε

2(1 + ψ)
(A.17)

and
ξ <

ε

(m− 1)(1 + ε)
. (A.18)

Suppose λi(ht) ≤ ξ for all i ≥ 2, since
∥∥α∗1 − α1(·|ht)

∥∥ ≤ ε, we have:∥∥∥λ1(α∗1 − α1(a1|ht, ω1)) +
m∑
i=2

λi
(
α∗1 − α1(a1|ht, ωi)

)∥∥∥
1 + λ1 + ξ(m− 1)

≤ ε.

The triangular inequality implies that:∥∥∥λ1(α∗1 − α1(a1|ht, ω1))
∥∥∥ ≤

m∑
i=2

∥∥∥λi(α∗1 − α1(a1|ht, ωi))
∥∥∥+ ε

(
1 + λ1 + ξ(m− 1)

)
≤ ξ(m− 1) + ε

(
1 + ψ + ξ(m− 1)

)
≤ ε. (A.19)

where the last inequality uses (A.17) and (A.18). Inequality (A.19) implies that ||B1,a1(ht)|| ≤ ε. As a result,
for every λ of size ξ, a∗2 is player 2’s strict best reply at every history ht satisfying d(α∗1||α1(·|ht)) ≤ ε2/2. This
in turn implies the validity of the commitment payoff bound.

Step 2: In this step, I apply the conclusions of Propositions A.1 and A.2 to establish the mixed commitment
payoff bound for every λ satisfying (A.13). Recall the definition of Bi,a1(ht) in (A.15). According to Bayes
Rule, if a1 ∈ A∗1 is observed at ht, then

λi(h
t)− λi(ht, a1) =

Bi,a1(ht)

α∗1(a1)
and

∑
a1∈A∗1

α∗1(a1)
(
λi(h

t)− λi(ht, a1)
)
≥ 0.

Let
D(ht, a1) ≡

(
λi(h

t)− λi(ht, a1)
)m
i=1
∈ Rm.

Suppose Bi,a1(ht) ≥ ε for some i and a1 ∈ A∗1, we have ||D(ht, a1)|| ≥ ε where || · || denotes the L2-norm.
Pick ξ > 0 small enough to meet the requirement in Proposition A.2. I define two sequences of subsets of
Λ(α∗1, θ), namely {Λk}∞k=0 and {Λ̂k}∞k=1, recursively as follows:
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– Let Λ0 be the set of likelihood ratio vectors that are of size ξ,

– For every k ≥ 1, let Λ̂k be the set of likelihood ratio vectors in Λ(α∗1, θ) such that if λ(ht) ∈ Λ̂k, then
either λ(ht) ∈ Λk−1 or, For every {α1(·|ht, ωi)}mi=1 such that ||D(ht, a1)|| ≥ ε for some a1 ∈ A∗1, there
exists a∗1 ∈ A∗1 such that λ(ht, a∗1) ∈ Λk−1.

– Let Λk be the set of likelihood ratio vectors in Λ(α∗1, θ) such that for every λ̃ ∈ Λk, there exists ψ̃ ≡
(ψ̃1, ..., ψ̃m) ∈ Rm+ such that: ψ̃i ∈ (0, ψi) for all i and

λ ∈
{
λ̃ ∈ Rm+

∣∣∣ m∑
i=1

λ̃i/ψ̃i < 1
}
⊂
( k−1⋃
j=0

Λj
)⋃

Λ̂k. (A.20)

By construction, we know that:

{
λ̃ ∈ Rm+

∣∣∣ m∑
i=1

λ̃i/ψ̃i < 1
}
⊂

k⋃
j=0

Λj = Λk. (A.21)

Since (0, ..., ψi − υ, ..., 0) ∈ Λ0 for any i ∈ {1, 2, ...,m} and υ > 0, so co(Λ0) = Λ(α∗1, θ). By definition,
{Λk}k∈N is an increasing sequence with Λk ⊂ Λ(α∗1, θ) = co(Λk) for any k ∈ N, i.e. it is bounded from above

by a compact set. Therefore limk→∞
⋃k
j=0 Λj ≡ Λ∞ exists and is a subset of clo

(
Λ(α∗1, θ)

)
. The next Lemma

shows that clo(Λ∞) coincides with clo
(

Λ(α∗1, θ)
)

.

Lemma A.2. clo(Λ∞) = clo
(

Λ(α∗1, θ)
)

PROOF OF LEMMA A.2: Since Λk ⊂ Λ(α∗1, θ) for every k ∈ N, we know that clo(Λ∞) ⊂ clo
(

Λ(α∗1, θ)
)

.
The rest of the proof establishes the other direction. Suppose towards a contradiction that

clo(Λ∞) ( clo
(

Λ(α∗1, θ)
)

(A.22)

1. Let Λ̂ ⊂ Λ(α∗1, θ) be such that if λ(ht) ∈ Λ̂, then either λ(ht) ∈ Λ∞ or:

– For every {α1(·|ht, ωi)}mi=1 such that ||D(ht, a1)|| ≥ ε for some a1 ∈ A∗1, there exists a∗1 ∈ A∗1 such that
λ(ht, a∗1) ∈ Λ∞.

2. Let Λ̆ be the set of likelihood ratio vectors in Λ(α∗1, θ) such that for every λ̃ ∈ Λ̆, there exists ψ̃ ≡
(ψ̃1, ..., ψ̃m) ∈ Rm+ such that:

ψ̃i ∈ (0, ψi) for all i and λ ∈
{
λ̃ ∈ Rm+

∣∣∣ m∑
i=1

λ̃i/ψ̃i < 1
}
⊂
(

Λ∞
⋃

Λ̂
)
. (A.23)

Since Λ∞ is defined as the limit of the above operator, so in order for (A.22) to be true, it has to be the case that
Λ̆ = Λ∞, or Ξ

⋂
Λ̆ = {∅} where

Ξ ≡ clo
(

Λ(α∗1, θ)
)∖

clo(Λ∞). (A.24)

One can check that Ξ is convex and has non-empty interior. For every % > 0, there exists x ∈ Ξ, θ ∈ (0, π/2)

and a halfspace H(χ) ≡
{
λ̃
∣∣∣∑m

i=1 λ̃i/χi ≤ χ
}

with φ > 0 satisfying:

1.
∑m

i=1 xi/ψi = χ.
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2. ∂B(x, r)
⋂
H(χ)

⋂
Λ(α∗1, θ) ⊂ Λ∞ for every r ≥ %.

3. For every r ≥ ρ and y ∈ ∂B(x, r)
⋂

Λ(α∗1, θ), either y ∈ Λ∞ or d(y,H(χ)) > r sin θ, where d(·, ·)
denotes the Hausdorff distance.

The second and third property used the non-convexity of clo(Λ∞). Suppose λ(ht) = x for some ht and there
exists a1 ∈ A∗1 such that ||D(ht, a1)|| ≥ ε,

– Either λ(ht, a1) ∈ Λ∞, in which case x ∈ Λ̆ but x ∈ Ξ, leading to a contradiction.

– Or λ(ht, a1) /∈ Λ∞. Requirement 3 implies that d(λ(ht, a1), H(χ)) > ε sin θ. On the other hand,∑
a′1∈A∗1

α∗1(a′1)λi(h
t, a′1) ≤ λi(ht) (A.25)

for every i. Requirement 1 then implies that
∑

a′1∈A∗1
α∗1(a′1)λi(h

t, a′1) ∈ H(χ), which is to say:

∑
a′1∈A∗1

α∗1(a′1)
m∑
i=1

λi(h
t, a′1)/ψi ≤ χ. (A.26)

According to Requirement 2, λ(ht, a1) /∈ H(χ), i.e.
∑m

i=1 λi(h
t, a1)/ψi > χ + εκ for some constant

κ > 0. Take
ρ ≡ 1

2
min
a1∈A∗1

{α∗1(a1)}εκ,

(A.25) implies the existence of a∗1 ∈ A∗1\{a1} such that λ(ht, a∗1) ∈ H(χ)
⋂
B(x, ρ). Requirement 2

then implies that x = λ(ht) ∈ Λ̆. Since x ∈ Ξ, this leads to a contradiction.

Therefore, (A.22) cannot be true, which validates the conclusion of Lemma A.2.
Lemma A.2 implies that for every λ ∈ Λ(α∗1, θ), there exists an integer K ∈ N independent of δ such that

λ ∈ ΛK . Statement 3 of Theorem 1 can then be shown by induction on K. According to Proposition A.2, the
statement holds for K = 0. Suppose it applies to every K ≤ K∗ − 1, let us consider the case when K = K∗.
According to the construction of ΛK

∗
, there exists a strategy for player 1 such that whenever a∗2 is not player

2’s best reply despite d(α∗1‖α1(·|ht)) < ε2/2, then the posterior belief after observing a1,t is in ΛK
∗−1, under

which the commitment payoff bound is attained by the induction hypothesis.

B Proof of Theorem 1, Statement 2

In this Appendix, I show statement 2 and explain several related issues. The proof of statement 4 involves some
additional technical steps, which will be relegated to Online Appendix B. The key intuition behind the distinc-
tions between pure and mixed commitment actions will be summarized in Proposition B.3 and Proposition B.6
in Online Appendix B. I use a∗1 to denote the pure commitment action. Let Π(a∗1, θ), Π(a∗1, θ) and Π(a∗1, θ) be
the exteriors of Λ(a∗1, θ), Λ(a∗1, θ) and Λ(a∗1, θ), respectively. I start with the following Lemma, which clarifies
the role of the assumption that BR2(a∗1, φa∗1) being a singleton.

Lemma B.1. For every λ ∈ Π(a∗1, θ), there exist 0� λ′ � λ and a′2 6= a∗2 such that λ′ ∈ Π(a∗1, θ) and∑
θ̃∈Θb

(a∗1,θ)

λ′(θ̃)
(
u2(θ̃, a∗1, a

′
2)− u2(θ̃, a∗1, a

∗
2)
)
> 0 (B.1)

as long as one the following conditions hold:
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1. Λ(a∗1, θ) 6= {∅}.

2. Λ(a∗1, θ) = {∅} and BR2(a∗1, φa∗1) is a singleton.

3. Λ(a∗1, θ) = {∅} and a∗2 /∈ BR2(a∗1, φa∗1).

PROOF OF LEMMA B.1: When Λ(a∗1, θ) 6= {∅}, by definition of Π(a∗1, θ), there exists 0 � λ′ � λ and
a′2 6= a∗2 such that:(

u2(φa∗1 , a
∗
1, a
′
2)− u2(φa∗1 , a

∗
1, a
∗
2)
)

+
∑

θ̃∈Θb
(a∗1,θ)

λ′(θ̃)
(
u2(θ̃, a∗1, a

′
2)− u2(θ̃, a∗1, a

∗
2)
)
> 0. (B.2)

But Λ(a∗1, θ) 6= {∅} implies that {a∗2} = BR2(a∗1, φa∗1), so (B.2) implies (B.1).
When Λ(a∗1, θ) = {∅}, if BR2(a∗1, φa∗1) is a singleton, then BR2(a∗1, φa∗1) 6= {a∗2}. Therefore, un-

der condition 2 or 3, a∗2 /∈ BR2(a∗1, φa∗1), which implies the existence of θ′ 6= θ and a′2 6= a∗2 such that
u2(θ′, a∗1, a

′
2) > u2(θ′, a∗1, a

∗
2). By definition, θ′ ∈ Θb

(a∗1,θ)
. Let

λ′(θ̃) ≡
{
λ(θ̃) if θ̃ = θ′

0 otherwise

λ′ satisfies (B.1) due to the full support condition, i.e. µ(ω) > 0 for every ω ∈ Ω.

Remark: As long as one of the three conditions in Lemma B.1 applies, one can dispense the assumption that
BR2(a∗1, φa∗1) is a singleton.

Lemma B.1 leaves out the case in which Λ(a∗1, θ) = {∅} and a∗2 ∈ BR2(a∗1, φa∗1). In this pathological case,
whether player 1 can guarantee his commitment payoff or not depends on the presence of other commitment
types. For example, when Θ = {θ, θ′}, A1 = {a∗1, a′1}, A2 = {a∗2, a′2} and Ω = {a∗1, (1 − ε)a∗1 + εa′1}
with φa∗1(θ′) = 1 and φ(1−ε)a∗1+εa′1

(θ) = 1. Suppose {a∗2} = BR2(a∗1, θ) = BR2(a′1, θ) and {a∗2, a′2} =
BR2(a∗1, θ

′) = BR2(a′1, θ
′). Then type θ can guarantee himself payoff u1(θ, a∗1, a

∗
2) by playing a∗1 in every

period despite λ ∈ Π(a∗1, θ) since a′1 is always player 2’s strictly best reply given the presence of commitment
type playing (1− ε)a∗1 + εa′1.

Overview of Two Phase Construction: Let player 1’s payoff function be:

u1(θ̃, a1, a2) ≡ 1{θ̃ = θ, a1 = a∗1, a2 = a∗2}. (B.3)

By definition, vθ(a∗1) = 1. I construct a sequential equilibrium that consists of a normal phase and an abnormal
phase. Type θ’s equilibrium action is pure at every history occurring with positive probability under (σθ, σ2).
Play starts from the normal phase and remains in it as long as the history of play is consistent with type
θ’s equilibrium strategy. Otherwise, play switches to the abnormal phase, which is absorbing. Let A1 ≡
{a0

1, ..., a
n−1
1 }. I show there exists a constant q ∈ (0, 1) (independent of δ) such that:

1. After a bounded number of periods (uniform for all large enough δ), type θ obtains expected payoff 1− q
in every period of the normal phase, i.e. his payoff is approximately 1− q when δ → 1.

2. Type θ’s continuation payoff is bounded below 1− 2q in the beginning of the abnormal phase.
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Strategies in the Normal Phase: Let Θ(a∗1,θ)
≡ Θ\Θb

(a∗1,θ)
, which are the set of good strategic types.

– ‘Mechanical’ Strategic Types: Every strategic type in Θ(a∗1,θ)
\{θ} plays α1 ∈ Ω\{a∗1} in every period,

with α1 being arbitrarily chosen. If Ω = {a∗1}, then all types in Θ(a∗1,θ)
\{θ} play some arbitrarily chosen

α1 ∈ ∆(A1) such that α1 is not the Dirac measure on a∗1.

Recall the construction of λ′ in in Lemma B.1 and (B.2). For every strategic type θ̃ ∈ Θb
(a∗1,θ)

, he plays

α1 in every period with probability x(θ̃) ∈ [0, 1] such that:

The likelihood ratio equals to λ′ conditional on the union of the following set of events (1) player
1 is a bad strategic type and is not playing α1 in every period; (2) player 1 is the commitment type
that is playing a∗1 in every period.

In what follows, I treat the strategic types that are playing α1 in every period as the commitment type
playing α1. Formally, let

Ω̃ ≡
{
{α1} if |Ω| = 1
Ω\{a∗1} otherwise .

Let l ≡ |Ω̃|, which is at least 1. Let φ̃α1 ∈ ∆(Θ) be the distribution of state conditional on the union of the
following set of events: (1) player 1 is commitment type α1; (2) player 1 is strategic type θ̃ ∈ Θ(a∗1,θ)

\{θ}
and is playing α1 in every period.

– Other Bad Strategic Types: Conditional on not playing α1 in every period, for every θ̃ ∈ Θb
(a∗1,θ)

, type

θ̃ plays a∗1 in every period with probability p ∈ [0, 1). The probability p is chosen such that there exists
a′2 6= a∗2 with

u2(φa∗1 , a
∗
1, a
′
2) + p̃

∑
θ̃∈Θb

(a∗1,θ)

λ′(θ̃)u2(θ̃, a∗1, a
′
2) > u2(φa∗1 , a

∗
1, a
∗
2) + p̃

∑
θ̃∈Θb

(a∗1,θ)

λ′(θ̃)u2(θ̃, a∗1, a
∗
2) (B.4)

for every p̃ ∈ [p, 1].

This p exists according to (B.2). According to the construction of λ′, Lemma B.1 also implies that∑
θ̃∈Θb

(a∗1,θ)

λ′(θ̃)u2(θ̃, a∗1, a
′
2) >

∑
θ̃∈Θb

(a∗1,θ)

λ′(θ̃)u2(θ̃, a∗1, a
∗
2). (B.5)

For every θ̃ ∈ Θb
(a∗1,θ)

, type θ̃ plays a∗1 at every history with probability p. For every α1 ∈ Ω̃, type θ̃ plays

α1 at every history of the normal phase with probability 1−p
l and plays some other actions at histories of

the abnormal phase, which will be specified later on.

Call the bad strategic type(s) who play α1 ∈ Ω̃
⋃
{a∗1} in every period of the normal phase type θ(α1).

Let µt(θ(α1)) be the total probability of such type in period t.

My construction exhibits the following two properties. First, suppose µt(α1) = 0, then µt(θ(α1)) = 0
throughout the normal phase. Second, suppose µt(α1) 6= 0, then µt(θ(α1))/µt(α1) = µ0(θ(α1))/µ0(α1)
throughout the normal phase. That is to say during the normal phase, the likelihood ratio between the
commitment type and the bad strategic type imitating him remains constant.

Next, I describe type θ’s normal phase strategy:

1. Preparation Sub-Phase: This phase lasts from period 0 to n − 1. Type θ plays ai1 in period i for every
i ∈ {0, 1, ..., n− 1}. This is to separate from all the pure commitment types.
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2. Value Delivery Sub-Phase: This phase starts from period n. Type θ plays either a∗1 or some a′1 6= a∗1,
depending on the realization of ξt. The probability that a∗1 being prescribed is q.

I claim that type θ’s expected payoff is close to 1 − q if he plays type θ’s equilibrium strategy when δ is
sufficiently close to 1. This is because in the normal phase:

– After period n, player 2 attaches probability 0 to all pure strategy commitment types.

– Starting from period n, whenever player 2 observes player 1 playing his equilibrium action, there exists
% > 1 such that:

µt+1(θ)
/(

µt+1(α1) + µt+1(θ(α1))
)
≥ %µt(θ)

/(
µt(α1) + µt(θ(α1))

)
. (B.6)

for every α1 ∈ Ω̃ such that µt(α1) 6= 0.

So there exists T ∈ N independent of δ such that in period t ≥ T , a∗2 is player 2’s strict best reply
conditional on ξt prescribing a∗1 and play remains in the normal phase. Therefore, type θ’s expected
payoff at every normal phase information set must be within the following interval:[

(1− δT )0 + δT (1− q), (1− δT ) + δT (1− q)
]
.

Both the lower bound and the upper bound of this interval will converge to 1− q as δ → 1.

Strategies in the Abnormal Phase: In the abnormal phase, player 2 has ruled out the possibility that player
1 is type θ. For every α1 ∈ Ω̃, type θ(α1) plays:

α̂1(α1) ≡ (1− η

2
)a∗1 +

η

2
α̃1(α1)

at every history of the abnormal phase where:

α̃1(α1)[a1] ≡
{

0 when a1 = a∗1
α1(a1)/(1− α1(a∗1)) otherwise .

I choose η > 0 such that max
α1∈Ω̃

α1(a∗1) < 1− η, and moreover, for every α′1 ∈ ∆(A1) satisfying α′1(a∗1) ≥
1− η, we have: ∑

θ̃∈Θb
(a∗1,θ)

λ′(θ̃)u2(θ̃, α′1, a
′
2) >

∑
θ̃∈Θb

(a∗1,θ)

λ′(θ̃)u2(θ̃, α′1, a
∗
2).

Such η exists because of inequality (B.5).
Next, I verify that type θ has no incentive to trigger the abnormal phase. Instead of explicitly constructing

his abnormal phase strategy, I compute an upper bound on his payoff in the beginning of the abnormal phase.
Let β(α1) ≡ µt(θ(α1))/µt(α1). Since max

α1∈Ω̃
α1(a∗1) < 1− η, whenever a∗1 is observed in period t, then

βt+1(α1) ≥ 1− η/2
1− η

βt(α1),

for every α1 ∈ Ω̃. Let γ ≡ 1−min
α1∈Ω̃

α1(a∗1). If a1 6= a∗1 is observed in period t, by definition of α̃1(α1),

βt+1(α1) ≥ η

2γ
βt(α1).
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Let k ≡
⌈

log 2γ
η

/
log 1−η/2

1−η

⌉
. For every α1 ∈ Ω̃, let β(α1) be the smallest β ∈ R+ such that:

u2(φ̃α1 , α1, a
′
2) + β

∑
θ̃∈Θb

(a∗1,θ)

λ′(θ̃)u2(θ̃, α̂1(α1), a′2) ≥ u2(φ̃α1 , α1, a
∗
2) + β

∑
θ̃∈Θb

(a∗1,θ)

λ′(θ̃)u2(θ̃, α̂1(α1), a∗2)

The choice of η and (B.5) ensure the existence of such β(α1). Let β ≡ 2 max
α1∈Ω̃

β(α1) and β ≡ min
α1∈Ω̃

µ(θ(α1))
µ(α1) .

Let T1 ≡
⌈

log β
β

/
log 1−η/2

1−η

⌉
. In the beginning of the abnormal phase (regardless of when it is triggered),

βt(α1) ≥ β for all α1 ∈ Ω̃. After player 2 observing a∗1 for T1 consecutive periods, a∗2 is being strictly domi-
nated by a′2 until he observes some a′1 6= a∗1. Every time player 1 plays any a′1 6= a∗1, he can trigger outcome
(a∗1, a

∗
2) for at most k consecutive periods before a∗2 is being strictly dominated by a′2 again. Therefore, type θ’s

payoff in the abnormal phase is at most:

(1− δT1) + δT1
{

(1− δk−1) + δk(1− δk−1) + δ2k(1− δk−1) + ...
}

The term in the curly bracket converges to k
1+k

as δ → 1. Let

q ≡ k

2(k + 1) + 1
.

By construction, type θ’s payoff in beginning of the abnormal phase cannot exceed 1− 2q.

Remark: My construction of the abnormal phase is reminiscent of Jehiel and Samuelson (2012), in which
the short-run players mistakenly believe that the strategic long-run player is using a stationary strategy. In their
analogical-based equilibrium, the strategic long-run player alternates between his actions in order to exploit the
flaws in the short-run players’ reasoning process and to manipulate their beliefs.

This leads to similar behavioral dynamics compared to the abnormal phase of my construction. This is
because after reaching the abnormal phase, player 2’s belief only attaches positive probability to types that are
playing stationary strategies in the continuation game, i.e. types that are playing α1 in every period and types
that are playing α̂1(α1) in every period. Let the long-run player’s reputation be the likelihood ratio between the
commitment type α1 and the bad strategic types that are playing σ(α1). At every history of the abnormal phase,
type θ will be facing a trade-off between reaping high stage-game payoff (by playing a∗1) and building-up his
reputation (by playing actions other than a∗1). My construction ensures that the speed of reputation building
is bounded from above while the speed of reputation deterioration is bounded from below. When player 1’s
reputation is sufficiently low, player 2 has a strict incentive to play a′2, which punishes player 1 for at least one
period, making his payoff bounded away from 1 even in the δ → 1 limit.

C Proof of Theorem 2

I prove Theorem 2 for all games satisfying Assumptions 1-3. Compared to the proof sketch in the main text, the
key difficulty arises from the fact that player 2s can observe their predecessors’ actions and the past realizations
of public randomization devices, i.e. a2,t can depend on ht ≡ {a1,s, a2,s, ξs}s≤t−1. I show that when δ → 1,

1. Every strategic type in Θg ∪ Θp can secure himself payoff approximately u1(θ, a1, a2) by playing a1 in
every period when the prior is optimistic

2. For every θ % θ∗p(µ), type θ can secure himself payoff approximately v∗θ(µ) by playing a1 in every period
when the prior is pessimistic.
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To avoid cumbersome notation, I write v∗θ instead of v∗θ(µ). Furthermore, I focus on the case where all commit-
ment actions are pure. This is without loss of generality as the probability of other commitment types (pure and
mixed) becomes arbitrarily small relative to commitment type a1 after player 2 observes a1 for a finite number
of periods. Those finite number of periods have negligible payoff consequences as δ → 1.

The proof consists of seven parts. In subsections C.1-C.3, I introduce some useful concepts and define some
constants that will be referred to later on in the proof. In subsection C.4, I present four useful observations,
stated as Lemma C.1-C.4. Subsections C.5 and C.6 establish the first statement of Theorem 2, starting from
the case where Θn is empty and then generalizing it to the case where Θn is non-empty. I establish the second
statement of the theorem in subsection C.7 using conclusions from the previous subsections.

C.1 Several Useful Constants

I start from defining several useful constants which only depend on µ, u1 and u2, but are independent of σ and
δ. Let M ≡ maxθ,a1,a2 |u1(θ, a1, a2)| and

K ≡ max
θ∈Θ

{
u1(θ, a1, a2)− u1(θ, a1, a2)

}/
min
θ∈Θ

{
u1(θ, a1, a2)− u1(θ, a1, a2)

}
.

Since D(φa1 , a1) > 0, expression (4.2) implies the existence of κ ∈ (0, 1) such that:

κµ(a1)D(φa1 , a1) +
∑
θ∈Θ

µ(θ)D(θ, a1) > 0.

For any κ ∈ (0, 1), let

ρ0(κ) ≡ (1− κ)µ(a1)D(φa1 , a1)

2 max(θ,a1)∈Θ×A1
|D(θ, a1)|

> 0 (C.1)

and
T 0(κ) ≡ d1/ρ0(κ)e. (C.2)

Let

ρ1(κ) ≡ κµ(a1)D(φa1 , a1)

max(θ,a1) |D(θ, a1)|
. (C.3)

and
T 1(κ) ≡ d1/ρ1(κ)e. (C.4)

Let δ ∈ (0, 1) be close enough to 1 such that for every δ ∈ [δ, 1) and θp ∈ Θp,

(1− δT 0(0))u1(θp, a1, a2) + δT 0(0)u1(θp, a1, a2) >
1

2

(
u1(θp, a1, a2) + u1(θp, a1, a2)

)
. (C.5)

C.2 Random History & Random Path

Let Ω ≡ Ω
⋃

Θ be the entire set of types with ω a typical element of Ω. Let ht ≡ (at, rt), with at ≡ (a1,s)s≤t−1

and rt ≡ (a2,s, ξs)s≤t−1. Let at∗ ≡ (a1, ..., a1). I call ht a public history, rt a random history and r∞ a random
path. LetH andR be the set of public histories and random histories, respectively, with�, %,≺ and - naturally
defined. Recall that a strategy profile σ consists of (σω)ω∈Ω with σω : H → ∆(A1) and σ2 : H → ∆(A2).
Let Pσ(ω) be the probability measure over public histories induced by (σω, σ2). Let Pσ ≡

∑
ω∈Ω µ(ω)Pσ(ω).

Let V σ(ht) ≡ (V σ
θ (ht))θ∈Θ ∈ R|Θ| be the continuation payoff vector for strategic types at ht.

Let Hσ ⊂ H be the set of histories ht such that Pσ(ht) > 0, and let Hσ(ω) ⊂ H be the set of histories ht

such that Pσ(ω)(ht) > 0. Let

Rσ∗ ≡
{
r∞
∣∣∣(at∗, rt) ∈ Hσ for all t and rt ≺ r∞

}
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be the set of random paths consistent with player 1 playing a1 in every period. For every ht = (at, rt), let
σ1[ht] : H → A1 be a continuation strategy at ht satisfying σ1[ht](hs) = a1 for all hs % ht with hs =
(at, a1, ..., a1, r

s) ∈ Hσ. Let σ1[ht] : H → A1 be a continuation strategy that satisfies σ1[ht](hs) = a1 for all
hs % ht with hs = (at, a1, ..., a1, r

s) ∈ Hσ. For every θ ∈ Θ, let

Rσ(θ) ≡
{
rt
∣∣∣σ1[at∗, r

t] is type θ’s best reply to σ2

}
andRσ(θ) ≡

{
rt
∣∣∣σ1[at∗, r

t] is type θ’s best reply to σ2

}
.

C.3 Beliefs & Best Response Sets

Let µ(at, rt) ∈ ∆(Ω) be player 2’s posterior belief at (at, rt) and specifically, let µ∗(rt) ≡ µ(at∗, r
t). Let

Bκ ≡
{
µ̃ ∈ ∆(Ω)

∣∣∣κµ̃(a1)D(φa1 , a1) +
∑
θ∈Θ

µ̃(θ)D(θ, a1) ≥ 0
}
. (C.6)

By definition, Bκ′ ( Bκ for every κ, κ′ ∈ [0, 1] with κ′ < κ.
For every rt ∈ Rt and ω ∈ Ω, let q∗(rt)(ω) be the (ex ante) probability that (1) player 1 is type ω; (2)

player 1 has played a1 from period 0 to t − 1, conditional on the realization of random history being rt. Let
q∗(rt) ∈ R|Ω|+ be the corresponding vector of probabilities. For every δ and σ ∈ NE(δ, µ),

1. For every at and rt, r̂t � rt−1 satisfying (at, rt), (at, r̂t) ∈ Hσ, we have µ(at, rt) = µ(at, r̂t).

2. For every rt, r̂t � rt−1 with (at∗, r
t), (at∗, r̂

t) ∈ Hσ, we have q∗(rt) = q∗(r̂t).

This is because player 1’s action in period t−1 depends on rt only through rt−1, so is player 2’s belief at every
on-path history. Since the commitment type plays a1 in every period, we have q∗(rt)(a1) = µ0(a1).

For future reference, I introduce two sets of random histories based on player 2’s posterior beliefs. Let

Rσg ≡
{
rt
∣∣∣(at∗, rt) ∈ Hσ and µ∗(rt)

(
Θp ∪Θn

)
= 0
}
, (C.7)

and let
R̂σg ≡

{
rt
∣∣∣∃rT % rt such that rT ∈ Rσg

}
. (C.8)

Intuitively, R̂σg is the set of on-path random histories under which all the strategic types in Θp ∪ Θn will be
separated from commitment type a1 at some random histories in the future.

C.4 A Few Useful Observations

I present four Lemmas, which are useful preliminary results towards the final proof. Recall that σθ : H →
∆(A1) is type θ’s strategy. The first one shows the implications of MSM on player 1’s equilibrium strategy:

Lemma C.1. Suppose σ ∈ NE(δ, µ), θ � θ̃ and ht∗ = (at∗, r
t) ∈ Hσ(θ) ∩Hσ(θ̃),

1. If rt ∈ Rσ(θ̃), then σθ(as∗, r
s)(a1) = 1 for every (as∗, r

s) ∈ H(σ1(ht∗),σ2)(θ) with rs % rt.

2. If rt ∈ Rσ(θ), then σθ̃(a
s, rs)(a1) = 1 for every (as, rs) ∈ H(σ1(ht∗),σ2)(θ̃) with (as, rs) % (at∗, r

t).

PROOF OF LEMMA C.1: I only need to show the first part, as the second part is symmetric after switching
signs. Without loss of generality, I focus on history h0. For notation simplicity, let σ1[h0] = σ1. For every σω
and σ2, let P (σω ,σ2) : A1 ×A2 → [0, 1] be defined as:

P (σω ,σ2)(a1, a2) ≡
+∞∑
t=0

(1− δ)δtp(σω ,σ2)
t (a1, a2)
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where p(σω ,σ2)
t (a1, a2) is the probability of (a1, a2) occurring in period t under (σω, σ2). Let P (σ1,σ2)

i ∈ ∆(A2)
be P (σ1,σ2)’s marginal distribution on Ai, for i ∈ {1, 2}.

Suppose towards a contradiction that σ1 is type θ̃’s best reply and there exists σθ with P (σθ,σ2)
1 (a1) < 1

such that σθ is type θ’s best reply, then type θ̃ and θ’s incentive constraints require that:∑
a2∈A2

(
P

(σ1,σ2)
2 (a2)−P (σθ,σ2)

2 (a2)
)
u1(θ̃, a1, a2) ≥

∑
a2∈A2,a1 6=a1

P (σθ,σ2)(a1, a2)
(
u1(θ̃, a1, a2)−u1(θ̃, a1, a2)

)
,

and∑
a2∈A2

(
P

(σ1,σ2)
2 (a2)−P (σθ,σ2)

2 (a2)
)
u1(θ, a1, a2) ≤

∑
a2∈A2,a1 6=a1

P (σθ,σ2)(a1, a2)
(
u1(θ, a1, a2)−u1(θ, a1, a2)

)
.

Since P (σθ,σ2)
1 (a1) < 1 and u1 has SID in θ and a1, we have:∑

a2∈A2,a1 6=a1

P (σθ,σ2)(a1, a2)
(
u1(θ̃, a1, a2)− u1(θ̃, a1, a2)

)

>
∑

a2∈A2,a1 6=a1

P (σθ,σ2)(a1, a2)
(
u1(θ, a1, a2)− u1(θ, a1, a2)

)
which implies that:∑

a2∈A2

(
P

(σθ,σ2)
2 (a2)− P (σ1,σ2)

2 (a2)
)(
u1(θ, a1, a2)− u1(θ̃, a1, a2)

)
> 0. (C.9)

On the other hand, since u1 is strictly decreasing in a1, we have:∑
a2∈A2,a1 6=a1

P (σθ,σ2)(a1, a2)
(
u1(θ̃, a1, a2)− u1(θ̃, a1, a2)

)
> 0

Type θ̃’s incentive constraint implies that:∑
a2∈A2

(
P

(σ1,σ2)
2 (a2)− P (σθ,σ2)

2 (a2)
)
u1(θ̃, a1, a2) > 0. (C.10)

Since both P (σθ,σ2)
2 and P (σ1,σ2)

2 are probability distributions, we have∑
a2∈A2

(
P

(σθ,σ2)
2 (a2)− P (σ1,σ2)

2 (a2)
)

= 0.

Since u1(θ, a1, a2)−u1(θ̃, a1, a2) is weakly increasing in a2, (C.9) implies that P (σθ,σ2)
2 (a2)−P (σ1,σ2)

2 (a2) >

0. Since u1(θ̃, a1, a2) is strictly increasing in a2, (C.10) implies that P (σθ,σ2)
2 (a2)− P (σ1,σ2)

2 (a2) < 0, leading
to a contradiction.

The next Lemma places a uniform upper bound on the number of ‘bad periods’ in which a2 is not player
2’s best reply despite a1 has always been played and µ∗(rt) ∈ Bκ.

Lemma C.2. If µ∗(rt) ∈ Bκ and a2 is not a strict best reply at (at∗, r
t), then for every rt+1 � rt with

(at+1
∗ , rt+1) ∈ Hσ, we have: ∑

θ∈Θ

(
q∗(rt)(θ)− q∗(rt+1)(θ)

)
≥ ρ0(κ). (C.11)
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PROOF OF LEMMA C.2: If µ∗(rt) ∈ Bκ, then:24

κµ(a1)D(φa1 , a1) +
∑
θ∈Θ

q∗(rt)(θ)D(θ, a1) ≥ 0.

Suppose a2 is not a strict best reply at (at∗, r
t), then,

µ(a1)D(φa1 , a1) +
∑
θ∈Θ

q∗(rt+1)(θ)D(θ, a1) +
∑
θ∈Θ

(
q∗(rt)(θ)− q∗(rt+1)(θ)

)
D(θ, a1) ≤ 0,

for every rt+1 � rt with (at+1
∗ , rt+1) ∈ Hσ, or equivalently

κµ(a1)D(φa1 , a1) +
∑
θ∈Θ

q∗(rt)(θ)D(θ, a1)︸ ︷︷ ︸
≥0

+ (1− κ)µ(a1)D(φa1 , a1)︸ ︷︷ ︸
>0

+
∑
θ∈Θ

(
q∗(rt+1)(θ)− q∗(rt)(θ)

)
D(θ, a1) +

∑
θ∈Θ

(
q∗(rt)(θ)− q∗(rt+1)(θ)

)
D(θ, a1) ≤ 0,

According to (C.1), we have:∑
θ∈Θ

(
q∗(rt)(θ)− q∗(rt+1)(θ)

)
≥ (1− κ)µ(a1)D(φa1 , a1)

2 max(θ,a1)∈Θ×A1
|D(θ, a1)|

= ρ0(κ).

Lemma C.2 implies that for every σ ∈ NE(δ, µ) and along every r∞ ∈ Rσ∗ , the number of rt such that
µ∗(rt) ∈ Bκ but a2 is not a strict best reply is at most T 0(κ). The next Lemma obtains an upper bound for
player 1’s drop-out payoff at any unfavorable belief.

Lemma C.3. For every σ ∈ NE(δ, µ) and ht ∈ Hσ with

µ(ht)(a1)D(φa1 , a1) +
∑
θ

µ(ht)(θ)D(θ, a1) < 0. (C.12)

Let θ ≡ min
{

supp
(
µ(ht)

)}
, then:

Vθ(h
t) = u1(θ, a1, a2).

PROOF OF LEMMA C.3: Let
Θ∗ ≡

{
θ̃ ∈ Θp ∪Θn

∣∣∣µ(ht)(θ̃) > 0
}
.

Since D(φa1 , a1) > 0, (C.12) implies that Θ∗ 6= {∅}. The rest of the proof is done via induction on |Θ∗|.
When |Θ∗| = 1, there exists a pure strategy σ∗θ : H → A1 in the support of σθ such that (C.12) holds for all hs

satisfying hs ∈ H(σ∗θ ,σ2) and hs % ht. At every such hs, a2 is player 2’s strict best reply. When playing σ∗θ ,
type θ’s stage game payoff is no more than u1(θ, a1, a2) in every period.

Suppose towards a contradiction that the conclusion holds when |Θ∗| ≤ k − 1 but fails when |Θ∗| = k,
then there exists hs ∈ Hσ(θ) with hs % ht such that

1. µ(hτ ) /∈ Bκ for all hs % hτ % ht.

2. Vθ(hs) > u1(θ, a1, a2).

24According to Bayes Rule, µ∗(rt)(θ) ≥ q∗(rt)(θ) for all θ ∈ Θ and µ∗(rt)(θ)
q∗(rt)(θ) is independent of θ as long as q∗(rt)(θ) 6= 0.
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3. For all a1 such that µ(hs, a1) /∈ Bκ, σθ(hs)(a1) = 0.25

According to the martingale property of beliefs, there exists a1 such that (hs, a1) ∈ Hσ and µ(hs, a1) satisfies
(C.12). Since µ(hs, a1)(θ) = 0, there exists θ̃ ∈ Θ∗\{θ} such that (hs, a1) ∈ Hσ(θ̃). Our induction hypothesis
suggests that:

Vθ̃(h
s) = u1(θ̃, a1, a2).

The incentive constraints of type θ and type θ̃ at hs require the existence of (α1,τ , α2,τ )∞τ=0 with αi,τ ∈ ∆(Ai)
such that:

E
[ ∞∑
τ=0

(1−δ)δτ
(
u1(θ, α1,τ , α2,τ )−u1(θ, a1, a2)

)]
> 0 ≥ E

[ ∞∑
τ=0

(1−δ)δτ
(
u1(θ̃, α1,τ , α2,τ )−u1(θ̃, a1, a2)

)]
,

where E[·] is taken over probability measure Pσ. However, the supermodularity condition implies that,

u1(θ, α1,τ , α2,τ )− u1(θ, a1, a2) ≤ u1(θ̃, α1,τ , α2,τ )− u1(θ̃, a1, a2),

leading to a contradiction.
The next Lemma outlines an important implication of rt /∈ R̂σg .

Lemma C.4. If rt /∈ R̂σg and (at∗, r
t) ∈ Hσ, then there exists θ ∈

(
Θp ∪ Θn

)⋂
supp

(
µ∗(rt)

)
such that

rt ∈ Rσ(θ).

PROOF OF LEMMA C.4: Suppose towards a contradiction that rt /∈ R̂σg but no such θ exists. Let

θ1 ≡ max
{(

Θp ∪Θn

)⋂
supp

(
µ∗(rt)

)}
.

The set on the RHS is non-empty according to the definition of R̂σg andRσg
Let (at1∗ , r

t1) % (at∗, r
t) be the history at which type θ1 has a strict incentive not to play a1 with (at1∗ , r

t1) ∈
Hσ. For any (at1+1

∗ , rt1+1) � (at1∗ , r
t1) with (at1+1

∗ , rt1+1) ∈ Hσ, on one hand, we have µ∗(rt1+1)(θ1) = 0.
On the other hand, the fact that rt /∈ R̂σg implies that µ∗(rt1+1)(Θn ∪Θp) > 0.

Let
θ2 ≡ max

{(
Θp ∪Θn

)⋂
supp

(
µ∗(rt1+1)

)}
,

and let us examine type θ1 and θ2’s incentive constraints at (at1∗ , r
t1). According to Lemma C.1, there exists

rt2 � rt1 such that type θ2 has a strict incentive not to play a1 at (at2∗ , r
t2) ∈ Hσ.

Therefore, we can iterate this process and obtain rt3 � rt4 ... Since∣∣∣supp
(
µ∗(rtk+1)

)∣∣∣ ≤ ∣∣∣supp
(
µ∗(rtk)

)∣∣∣− 1,

for any k ∈ N, there exists m ≤ |Θp ∪Θn| such that (atm∗ , r
tm) ∈ Hσ, rtm % rt and µ∗(rtm)(Θn ∪Θp) = 0,

which contradicts rt /∈ R̂σg .

C.5 Proof of Statement 1 Theorem 2: Θn = {∅}

This subsection examines the case in which Θn = {∅}. I will incorporate states in Θn in subsection C.6. The
main result in this part is the following Proposition:

Proposition C.1. If Θn = {∅} and µ ∈ Bκ, then for every θ ∈ Θ, we have:

Vθ(a
0
∗, r

0) ≥ u1(θ, a1, a2)− 2M(1− δT 0(κ)).

25I omit (a2,s, ξs) in the expression for histories since they play no role in the posterior belief on Ω at every on-path history.
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Despite Proposition C.1 is stated in terms of player 1’s guaranteed payoff at h0, the conclusion applies to
all rt and θ ∈ Θg ∪ Θp as long as µ∗(rt) ∈ Bκ and (at∗, r

t) ∈ Hσ(θ)\
⋃
θn∈Θn

Hσ(θn). I show Lemma C.5
and Lemma C.6, which together imply Proposition C.1.

Lemma C.5. For every σ ∈ NE(δ, µ), if µ∗(rt) ∈ Bκ for all rt ∈ R̂σg , then for every r∞ ∈ Rσ∗ ,∣∣∣{t ∈ N
∣∣∣r∞ � rt and a2 is not a strict best reply at (at∗, r

t)
}∣∣∣ ≤ T 0(κ). (C.13)

PROOF OF LEMMA C.5: Pick any r∞ ∈ Rσ∗ , if r0 /∈ R̂σg , then let t∗ = −1. Otherwise, let

t∗ ≡ max
{
t ∈ N ∪ {+∞}

∣∣∣rt ∈ R̂σg and r∞ � rt
}
.

According to Lemma C.2, for every t ≤ t∗, if a2 is not a strict best reply at (at∗, r
t), then we have inequality

(C.11).
Next, I show that µ∗(rt

∗+1) ∈ Bκ. If t∗ = −1, this is a direct implication of (4.2). If t∗ ≥ 0, then there
exists r̂t

∗+1 � rt
∗

such that r̂t
∗+1 ∈ R̂σg . Let rt

∗+1 ≺ r∞, we have q∗(rt
∗+1) = q∗(r̂t

∗+1). Moreover, since
µ∗(rt) ∈ Bκ for every rt ∈ R̂σg , we have µ∗(rt

∗+1) = µ∗(r̂t
∗+1) ∈ Bκ.

Since rt
∗+1 /∈ R̂σg , Lemma C.4 implies the existence of

θ ∈
(
Θp ∪Θn

)⋂
supp

(
µ∗(rt

∗+1)
)

such that rt
∗+1 ∈ Rσ(θ). Since θg � θ for all θg ∈ Θg, Lemma C.1 implies that for every θg and r∞ � rt %

rt
∗+1, we have σθg(a

t
∗, r

t) = 1, and therefore, q∗(rt)(θg) = q∗(rt+1)(θg). This implies that µ∗(rt) ∈ Bκ for
every r∞ � rt % rt

∗+1. If a2 is not a strict best reply at (at∗, r
t) for any t > t∗, inequality (C.11) again applies.

To sum up, for every t ∈ N, if a2 is not a strict best reply at (at∗, r
t), then:∑

θ∈Θ

(
q∗(rt)(θ)− q∗(rt+1)(θ)

)
≥ ρ0(κ),

from which we obtain (C.13).
The next result shows that the condition required in Lemma C.5 holds in every equilibrium when δ is large

enough. Moreover, it applies regardless of the short-run players’ prior belief, which will be useful in the proof
of the second statement in subsection C.7.

Lemma C.6. For every σ ∈ NE(δ, µ) with δ > δ, µ∗(rt) ∈ B0 for every rt ∈ R̂σg with µ∗(rt)(Θn) = 0.

PROOF OF LEMMA C.6: For any given δ > δ, according to (C.5), there exists κ∗ ∈ (0, 1) such that:

(1− δT 0(κ∗))u1(θp, a1, a2) + δT 0(κ∗)u1(θp, a1, a2) >
1

2

(
u1(θp, a1, a2) + u1(θp, a1, a2)

)
. (C.14)

Suppose towards a contradiction that there exist rt1 and rT1 such that:

B rT1 � rt1 , rT1 ∈ Rσg and µ∗(rt1) /∈ B0.

Since µ∗(rT1) ∈ B0, let t∗1 be the largest t ∈ N such that µ∗(rt) /∈ B0 for rT1 � rt % rt1 . Then there exists
a1 6= a1 and rt

∗
1+1 � rt∗1 such that µ

(
(a
t∗1
∗ , a1), rt

∗
1+1
)
/∈ B0 and

(
(a
t∗1
∗ , a1), rt

∗
1+1
)
∈ Hσ. This also implies the

existence of θp ∈ Θp
⋂

supp
(
µ
(
(a
t∗1
∗ , a1), rt

∗
1+1
))

.

According to Lemma C.3, type θp’s continuation payoff at (a
t∗1
∗ , r

t∗1) by playing a1 is at most

(1− δ)u1(θp, a1, a2) + δu1(θp, a1, a2). (C.15)
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His incentive constraint at (a
t∗1
∗ , r

t∗1) requires that his expected payoff from σ1 is weakly lower than (C.15), i.e.
there exists rt

∗
1+1 � rt

∗
1 satisfying (a

t∗1+1
∗ , rt

∗
1+1) ∈ Hσ and type θp’s continuation payoff at (a

t∗1+1
∗ , rt

∗
1+1) is

no more than:
1

2

(
u1(θp, a1, a2) + u1(θp, a1, a2)

)
. (C.16)

If µ∗(rt) ∈ Bκ∗ for every rt ∈ R̂σg ∩ {rt % rt
∗
1}, then according to Lemma C.5, his continuation payoff at

(a
t∗1
∗ , r

t∗1) by playing σ1 is at least:

(1− δT 0(κ∗))u1(θp, a1, a2) + δT 0(κ∗)u1(θp, a1, a2),

which is strictly larger than (C.16) by the definition of κ∗ in (C.14), leading to a contradiction.
Suppose on the other hand, there exists rt2 � rt∗1 such that:

B rt2 ∈ R̂σg while µ∗(rt2) /∈ Bκ∗ .

There exists rT2 � rt2 such that rT2 ∈ Rσg and rT2 � rt2 . Again, we can find rt
∗
2 such that t∗2 be the largest

t ∈ [t2, T2] such that µ∗(rt) /∈ B0 for rT2 � rt % rt2 . Then there exists a1 6= a1 and rt
∗
2+1 � rt

∗
2 such that

µ
(
(a
t∗2
∗ , a1), rt

∗
2+1
)
/∈ B0 and

(
(a
t∗2
∗ , a1), rt

∗
2+1
)
∈ Hσ.

Iterating the above process and repeatedly apply the aforementioned argument, we know that for every
k ≥ 1, in order to satisfy player 1’s incentive constraint to play a1 6= a1 at (a

t∗k
∗ , r

t∗k), we can find the triple
(rtk+1 , rt

∗
k+1 , rTk+1), i.e. this process cannot stop after finite rounds of iteration. Since µ∗(rtk) /∈ Bκ∗ but

µ∗(rt
∗
k+1) ∈ B0 as well as rtk+1 � rt∗k+1, we have:∑

θ∈Θ

q∗(rtk)(θ)− q∗(rtk+1)(θ) ≥
∑
θ∈Θ

q∗(rtk)(θ)− q∗(rt∗k+1)(θ) ≥ ρ1(κ∗) (C.17)

for every k ≥ 2. (C.17) and (C.4) together suggest that this iteration process cannot last for more than T 1(κ∗)
rounds, which is an integer independent of δ, leading to a contradiction.

The next Lemma is not needed for the proof of Proposition C.1 but will be useful for future reference.

Lemma C.7. For every δ ≥ δ and σ ∈ NE(δ, µ). If rt satisfies (at∗, r
t) ∈ Hσ, µ∗(rt)(Θn) = 0, rt /∈ R̂σg

and
µ(a1)D(φa1 , a1) +

∑
θ∈Θ

q∗(rt)(θ)D(θ, a1) > 0, (C.18)

then a2 is player 2’s strict best reply at every (as∗, r
s) % (at∗, r

t) with (as∗, r
s) ∈ Hσ.

PROOF OF LEMMA C.7: Since µ∗(rt)(Θn) = 0 and rt /∈ R̂σg , Lemma C.4 implies the existence of θp ∈ Θp ∩
supp(µ∗(rt)) such that rt ∈ Rσ(θp). According to Lemma C.1, σθ(as∗, r

s)(a1) = 1 for every (as∗, r
s) ∈ Hσ(θ)

with rs % rt. From (C.18), we know that a2 is not a strict best reply only if there exists type θp ∈ Θp who
plays a1 6= a1 with positive probability. In particular, (C.18) implies the existence of κ ∈ (0, 1) such that:26

κµ(a1)D(φa1 , a1) +
∑
θ∈Θ

q∗(rt)(θ)D(θ, a1) > 0.

According to (C.11), we have: ∑
θ∈Θp

(
q∗(rs)(θ)− q∗(rs+1)(θ)

)
≥ ρ0(κ)

whenever a2 is not a strict best reply at (as∗, r
s) % (at∗, r

t). Therefore, there can be at most T 0(κ) such periods.
Hence, there exists rN with (aN∗ , r

N ) ∈ Hσ such that:
26There are two reasons for why one cannot directly apply the conclusion in Lemma C.2. First, a stronger conclusion is required for

Lemma C.7. Second, κ can be arbitrarily close to 1, while κ is uniformly bounded below 1 for any given µ.
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1. a2 is not a strict best reply at (aN∗ , r
N ).

2. a2 is a strict best reply for all (as∗, r
s) � (aN∗ , r

N ) with (as∗, r
s) ∈ Hσ.

Then there exists θp ∈ Θp that plays a1 6= a1 in equilibrium at (aN∗ , r
N ), his continuation payoff by always

playing a1 is at least (1 − δ)u1(θp, a1, a2) + δu1(θp, a1, a2) while his equilibrium continuation payoff from
playing a1 is at most (1− δ)u1(θp, a1, a2) + δu1(θp, a1, a2) according to Lemma C.3. The latter is strictly less
than the former when δ > δ, leading to a contradiction.

C.6 Proof of Statement 1 Theorem 2: Incorporating Types in Θn

Next, we extend the proof in subsection C.5 by allowing for types in Θn. Lemmas C.5 and C.6 imply the
following result in this general environment:

Proposition C.2. For every δ > δ and σ ∈ NE(δ, µ), there exists no θp ∈ Θp, random histories rt+1 and
rt with rt+1 � rt and a1 6= a1 that simultaneously satisfy the following three requirements:

1. rt+1 ∈ R̂σg .

2.
(
(at∗, a1), rt+1

)
∈ Hσ(θp).

3. Vθp
((

(at∗, a1), r̂t+1
))

= u1(θp, a1, a2) for all r̂t+1 � rt.

PROOF OF PROPOSITION C.2: Suppose towards a contradiction that such θp ∈ Θp, rt, rt+1 and a1 exist.
From requirement 3, we know that rt ∈ Rσ(θp). According to Lemma 4.1, θn ≺ θp for all θn ∈ Θn. The
second part of Lemma C.1 then implies that µ∗(r̂t+1)(Θn) = 0 for all r̂t+1 � rt with (at+1

∗ , r̂t+1) ∈ Hσ.
If µ∗(rt+1) ∈ Bκ, then requirement 2 and Proposition C.1 result in a contradiction when examining type

θp’s incentive at (at∗, r
t) to play a1 as opposed to a1. If µ∗(rt+1) /∈ Bκ, since δ > δ and rt+1 ∈ R̂σg , we obtain

a contradiction from Lemma C.6.
The rest of the proof consists of several steps by considering a given σ ∈ NE(δ, µ) when δ is large enough.

First,
µ(a1)D(φa1 , a1) +

∑
θ∈Θ

q∗(rt)(θ)D(θ, a1) ≥ 0 (C.19)

for all t ≥ 1 and rt satisfying (at∗, r
t) ∈ Hσ. This is because otherwise, according to Lemma C.3, there exists

θ ∈ supp(µ∗(rt)) such that Vθ(at∗, r
t) = u1(θ, a1, a2). But then, at (at−1

∗ , rt−1) with rt−1 ≺ rt, he could
obtain strictly higher payoff by playing a1 instead of a1, leading to a contradiction.

Next comes the following Lemma:

Lemma C.8. If µ is optimistic, then Vθ(at∗, r
t) ≥ u1(θ, a1, a2) − 2M(K + 1)(1 − δ) for every θ and

rt /∈ R̂σg satisfying the following two requirements:

1. (at∗, r
t) ∈ Hσ.

2. Either t = 0 or t ≥ 1 but there exists r̂t such that rt, r̂t � rt−1, (at∗, r̂
t) ∈ Hσ and r̂t ∈ R̂σg .

PROOF OF LEMMA C.8: If µ∗(rt) ∈ Bκ and rt /∈ R̂σg , then Lemmas C.1 and C.4 suggest that µ∗(rs) ∈ Bκ for
all rs % rt and the conclusion is straightforward from Lemma C.2.

Therefore, for the rest of the proof, I consider the adverse circumstance in which µ∗(rt) /∈ Bκ. I consider
two cases. First, when µ∗(rt)(Θn) > 0, then according to (C.19),27

µ(a1)D(φa1 , a1) +
∑

θ∈Θp∪Θg

q∗(rt)(θ)D(θ, a1) > 0.

27To see this, consider three cases. If Θp = {∅}, then this inequality is obvious. If Θp 6= {∅}, then D(θn, a1) ≤ 0 for all θn ∈ Θn

according to Lemma 4.1. When D(θn, a1) < 0 for all θn, then the inequality follows from (C.19). When D(θn, a1) = 0 for some
θn ∈ Θn, then D(θp, a1) = 0 for all θp ∈ Θp. The inequality then follows from D(θg, a1) > 0 for all θg ∈ Θg as well as θ̂ ∈ Θg .
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Since rt /∈ R̂σg , according to Lemma C.4, there exists θ ∈ Θp∪Θn with (at∗, r
t) ∈ Hσ(θ) such that rt ∈ Rσ(θ).

According to Lemma C.1, for all θg ∈ Θg with (at∗, r
t) ∈ Hσ(θg) and every (as∗, r

s) ∈ Hσ(θ) with rs % rt,
we have σθg(a

s
∗, r

s)(a1) = 1.
This implies that for every hs = (as, rs) � (at∗, r

t) with as 6= as∗ and hs ∈ Hσ, we have µ(hs)(Θg) = 0.
Therefore, for every θ we have:

Vθ(h
s) = u1(θ, a1, a2). (C.20)

Let τ : Rσ∗ → N ∪ {+∞} be such that for rτ ≺ rτ+1 ≺ r∞, we have:

B µ∗(rτ )(Θn) > 0 while µ∗(rτ+1)(Θn) = 0.

Let
θn ≡ max

{
supp(µ∗(rt))

⋂
Θn

}
.

The second part of Lemma C.1 and (C.20) together imply that µ∗(rτ )(θn) > 0. Let us examine type θn’s
incentive at (at∗, r

t) to play his equilibrium strategy as opposed to play a1 in every period. This requires that:

E
[ τ−1∑
s=t

(1−δ)δs−tu1(θn, a1, α2,s)+(δτ−t−δτ+1−t)u1(θn, a1,τ , α2,τ )+δτ+1−tu1(θn, a1, a2)
]
≥ u1(θn, a1, a2).

where E[·] is taken over Pσ and α2,s ∈ ∆(A2) is player 2’s action in period s.
Using the fact that u1(θn, a1, a2) ≥ u1(θn, a1, a2), the above inequality implies that:

E
[ τ−1∑
s=t

(1−δ)δs−t
(
u1(θn, a1, α2,s)−u1(θn, a1, a2)

)
+(δτ−t−δτ+1−t)

(
u1(θn, a1, α2,τ )−u1(θn, a1, a2)

)]
≤ 0.

According to the definitions of K and M , we know that for all θ,

E
[ τ∑
s=t

(1− δ)δs−t
(
u1(θn, a1, α2,s)− u1(θn, a1, a2)

)]
≤ 2M(K + 1)(1− δ). (C.21)

This bounds the loss (relative to the payoff from the highest action profile) from above in periods before all
types in Θn separate from the commitment type. For every r∞ ∈ Rσ∗ , since rt /∈ R̂σg , we have:

µ(a1)D(φa1 , a1) +
∑
θ∈Θ

q∗(rτ(r∞)+1)(θ)D(θ, a1) ≥ µ(a1)D(φa1 , a1) +
∑

θ∈Θp∪Θg

q∗(rt)(θ)D(θ, a1)

> µ(a1)D(φa1 , a1) +
∑
θ∈Θ

q∗(rt)(θ)D(θ, a1) ≥ 0

According to Lemma C.7, we know that Vθ(a
τ(r∞)+1
∗ , rτ(r∞)+1) = u1(θ, a1, a2) for all θ ∈ Θg ∪ Θp and

r∞ ∈ Rσ∗ . This together with (C.21) gives the conclusion.
Second, when µ∗(rt)(Θn) = 0. If t = 0, the conclusion directly follows from Proposition C.1. If t ≥ 1

and there exists r̂t such that rt, r̂t � rt−1, (at∗, r̂
t) ∈ Hσ and r̂t ∈ R̂σg . Then, since

µ∗(rt) = µ∗(r̂t),

we have µ∗(r̂t)(Θn) = 0. Since r̂t ∈ R̂σg , according to Lemma C.6, µ∗(r̂t) = µ∗(rt) ∈ Bκ. The conclusion
then follows from Lemma C.7.

The next Lemma puts an upper bound on type θn ∈ Θn’s continuation payoff at (at∗, r
t) with rt /∈ R̂σg .
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Lemma C.9. For every θn ∈ Θn such that a2 /∈ BR2(a1, θn) and rt /∈ R̂σg with (at∗, r
t) ∈ Hσθn and

µ∗(rt) /∈ Bκ, we have:
Vθn(at∗, r

t) ≤ u1(θn, a1, a2) + 2(1− δ)M. (C.22)

This is implied by Lemma C.8 (Part I). Let

A(δ) ≡ 2M(K + 1)(1− δ), B(δ) ≡ 2M(1− δT 0(κ))

and
C(δ) ≡ 2MK|Θn|(1− δ).

Notice that when δ → 1, all three functions converge to 0. The next Lemma puts a uniform upper bound on
player 1’s payoff when rt ∈ R̂σg .

Lemma C.10. When δ > δ and σ ∈ NE(δ, µ), for every rt ∈ R̂σg ,

Vθ(a
t
∗, r

t) ≥ u1(θ, a1, a2)−
(
A(δ) +B(δ)

)
− 2T 1(κ)

(
A(δ) +B(δ) + C(δ)

)
.28 (C.23)

for all θ such that (at∗, r
t) ∈ Hσ(θ).

PROOF OF LEMMA C.10: The non-trivial part of the proof deals with situations where µ∗(rt) /∈ Bκ. Since
rt ∈ R̂σg , Lemma C.6 implies that µ∗(rt)(Θn) 6= 0. Without loss of generality, assume Θn ⊂ supp

(
µ∗(rt)

)
.

Let me introduce |Θn|+ 1 integer valued random variables on the spaceRσ∗ .

B τ : Rσ∗ → N ∪ {+∞} be the first period s along random path r∞ such that either one of the following
two conditions is met.

1. µ∗(rs+1) ∈ Bκ/2 for rs+1 � rs with (as+1
∗ , rs+1) ∈ Hσ.

2. rs /∈ R̂σg .

In the first case, there exists a1 6= a1 and rτ+1 � rτ such that

–
(
(aτ∗ , a1), rτ+1

)
∈ Hσ(θ̃) for some θ̃ ∈ Θp ∪Θn.

– µ
(
(aτ∗ , a1), rτ+1

)
/∈ B0.

Lemma C.3 implies the existence of θ ∈ Θp ∪Θn with
(
(aτ∗ , a1), rτ+1

)
∈ Hσ(θ) such that

Vθ
(
(aτ∗ , a1), rτ+1

)
= u1(θ, a1, a2).

Suppose towards a contradiction that θ ∈ Θp, then Lemma C.1 implies that µ∗(rτ+1)(Θn) = 0. Since
µ∗(rτ+1) ∈ Bκ/2, Proposition C.1 implies that type θ’s continuation payoff by always playing a1 is at
least

(1− δT 0(κ/2))u1(θ, a1, a2) + δT 0(κ/2)u1(θ, a1, a2),

which is strictly larger than his payoff from playing a1, which is at most 2M(1 − δ) + u1(θ, a1, a2),
leading to a contradiction.

Hence, there exists θn ∈ Θn such that Vθn
(
(aτ∗ , a1), rτ+1

)
= u1(θn, a1, a2), which implies that Vθn

(
aτ∗ , r

τ
)
≤

u1(θn, a1, a2) + 2(1− δ)M .

In the second case, Lemma C.9 implies that Vθn
(
aτ∗ , r

τ
)
≤ u1(θn, a1, a2) + 2(1− δ)M for all θn ∈ Θn

with rτ ∈ Hσ(θn).

28One can further tighten this bound. However, (C.23) is sufficient for the purpose of proving Theorem 2.
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B For every θn ∈ Θn, let τθn : Rσ∗ → N ∪ {+∞} be the first period s along random path r∞ such that
either one of the following three conditions is met.

1. µ∗(rs+1) ∈ Bκ/2 for rs+1 � rs with (as+1
∗ , rs+1) ∈ Hσ.

2. rs /∈ R̂σg .

3. µ∗(rs+1)(θn) = 0 for rs+1 � rs with (as+1
∗ , rs+1) ∈ Hσ, .

By definition, τ ≥ τθn , so τ ≥ maxθn∈Θn{τθn}. Next, I show that

τ = max
θn∈Θn

{τθn}. (C.24)

Suppose on the contrary that τ > maxθn∈Θn{τθn} for some r∞ ∈ Rσ∗ . Then there exists (as∗, r
s) % (at∗, r

t)
such that rs ∈ R̂σg , µ∗(rs) /∈ Bκ and µ∗(rs)(Θn) = 0, which contradicts Lemma C.6 when δ > δ.

Next, I show by induction over |Θn| that:

E
[ τ∑
s=t

(1− δ)δτ−t
(
u1(θ, a1, a2)− u1(θ, a1, α̂2,s)

)]
≤ 2MK|Θn|(1− δ), (C.25)

for all θ ∈ Θ and
Vθ̃n(a

τθn
∗ , rτθn ) ≤ u1(θn, a1, a2) + 2(1− δ)M, (C.26)

for
θ̃ ≡ min

{
Θn

⋂
supp

(
µ∗(rτθn+1)

)}
with θn, θ̃n ∈ Θn, where E[·] is taken over Pσ and α̂2,s ∈ ∆(A2) is player 2’s (mixed) action at (as∗, r

s).
When |Θn| = 1, let θn be its unique element. Consider player 1’s pure strategy of playing a1 until rτ and

then play a1 forever. This is one of type θn’s best responses according to (C.24), which results in payoff at
most:

E
[ τ−1∑
s=t

(1− δ)δs−tu1(θn, a1, α̂2,s) + δτ−t
(
u1(θn, a1, a2) + 2(1− δ)M

)]
.

The above expression cannot be smaller than u1(θn, a1, a2), which is the payoff he can guarantee by playing
a1 in every period. Since u1(θn, a1, a2) ≥ u1(θn, a1, a2), and from the definition of K, we get for all θ,

E
[ τ−1∑
s=t

(1− δ)δs−t
(
u1(θ, a1, a2)− u1(θ, a1, α̂2,s)

)]
≤ 2MK(1− δ).

We can then obtain (C.26) for free since τ = τθn and type θn’s continuation value at (aτ∗ , r
τ ) is at most

u1(θn, a1, a2) + 2(1− δ)M by Lemma C.3.
Suppose the conclusion holds for all |Θn| ≤ k − 1, consider when |Θn| = k and let θn ≡ min Θn. If

(aτ∗ , r
τ ) /∈ Hσ(θn), then there exists (a

τθn
∗ , rτθn ) ≺ (aτ∗ , r

τ ) with (a
τθn
∗ , rτθn ) ∈ Hσ(θn) at which type θn plays

a1 with probability 0. I put an upper bound on type θn’s continuation payoff at (a
τθn
∗ , rτθn ) by examining type

θ̃n ∈ Θn\{θn}’s incentive to play a1 at (a
τθn
∗ , rτθn ), where

θ̃ ≡ min
{

Θn

⋂
supp

(
µ∗(rτθn+1)

)}
This requires that:

E
[ ∞∑
s=0

(1− δ)δsu1(θ̃n, α1,s, α2,s)
]
≤ u1(θ̃n, a1, a2) + 2(1− δ)M︸ ︷︷ ︸

by induction hypothesis

.
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where {(α1,s, α2,s)}s∈N is the equilibrium continuation play following (a
τθn
∗ , rτθn ). By definition, θ̃n � θn, so

the supermodularity condition implies that:

u1(θn, a1, a2)− u1(θ̃n, a1, a2) ≥ u1(θn, α1,s, α2,s)− u1(θ̃n, α1,s, α2,s).

Therefore, we have:

Vθn(a
τθn
∗ , rτθn ) = E

[ ∞∑
s=0

(1− δ)δsu1(θn, α1,s, α2,s)
]

≤ E
[ ∞∑
s=0

(1− δ)δs
(
u1(θ̃n, α1,s, α2,s) + u1(θn, a1, a2)− u1(θ̃n, a1, a2)

)]
≤ u1(θn, a1, a2) + 2(1− δ)M.

Back to type θn’s incentive constraint. Since it is optimal for him to play a1 until rτθn and then play a1 forever,
doing so must give him a higher payoff than playing a1 forever starting from rt, which gives:

E
[ τθn−1∑

s=t

(1− δ)δs−tu1(θn, a1, α̂2,s) + δτθn
(
u1(θn, a1, a2) + 2(1− δ)M

)]
≥ u1(θn, a1, a2).

This implies that:

E
[ τθn−1∑

s=t

(1− δ)δs−t
(
u1(θn, a1, a2)− u1(θn, a1, α̂2,s)

)]
≤ 2M(1− δ),

which also implies that for every θ ∈ Θ,

E
[ τθn−1∑

s=t

(1− δ)δs−t
(
u1(θ, a1, a2)− u1(θ, a1, α̂2,s)

)]
≤ 2MK(1− δ). (C.27)

When τ > τθn , the induction hypothesis implies that:

E
[ τθ−1∑
s=τθn

(1− δ)δs−τθn
(
u1(θ, a1, a2)− u1(θ, a1, α2,s)

)]
≤ 2MK(k − 1)(1− δ). (C.28)

According to (C.27) and (C.28).

E
[ τ∑
s=t

(1− δ)δτ−t
(
u1(θ, a1, a2)− u1(θ, a1, α̂2,s)

)]
≤ 2MKk(1− δ),

which shows (C.25) when |Θn| = k. (C.26) can be obtained directly from the induction hypothesis.
Next, I examine player 1’s continuation payoff at on-path histories following (aτ+1

∗ , rτ+1) ∈ Hσ. I consider
three cases:

1. If rτ+1 /∈ R̂σg , by Lemma C.8, then for every θ,

Vθ(a
τ+1
∗ , rτ+1) ≥ u1(θ, a1, a2)−A(δ).

2. If rτ+1 ∈ R̂σg and µ∗(rs) ∈ Bκ for all rs satisfying rs % rτ+1 and rs ∈ R̂σg , then for every θ,

Vθ(a
τ+1
∗ , rτ+1) ≥ u1(θ, a1, a2)−B(δ).
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3. If there exists rs such that µ∗(rs) /∈ Bκ with rs % rτ+1 and rs ∈ R̂σg , then repeat the procedure in the
beginning of this proof by defining random variables

B τ ′ : Rσ∗ → {n ∈ N ∪ {+∞}|n ≥ s}
B τ ′θn : Rσ∗ → {n ∈ N ∪ {+∞}|n ≥ s}

similarly as we have defined τ and τθn , and then examine continuation payoffs at rτ
′+1...

Since µ∗(rτ+1) ∈ Bκ/2 but µ∗(rs) /∈ Bκ, then∑
θ∈Θ

(
q∗(rτ+1)(θ)− q∗(rs)(θ)

)
≥ ρ1(κ)

2
. (C.29)

Therefore, such iterations can last for at most 2T 1(κ) rounds.

Next, I establish the payoff lower bound in case 3. I introduce a new concept called ‘trees’. Let

Rσb ≡
{
rt
∣∣∣µ∗(rt) /∈ Bκ and rt ∈ R̂σg

}
Define setRσ(k) ⊂ R for all k ∈ N recursively as follows. Let

Rσ(1) ≡
{
rt
∣∣∣rt ∈ Rσb and there exists no rs ≺ rt such that rs ∈ Rσb

}
.

For every rt ∈ Rσ(1), let τ [rt] : Rσ∗ → N ∪ {+∞} as the first period s > t (starting from rt) such that either
one of the following two conditions is met:

1. µ∗(rs+1) ∈ Bκ/2 for rs+1 � rs with (as+1
∗ , rs+1) ∈ Hσ.

2. rs /∈ R̂σg .

I call
T (rt) ≡

{
rs
∣∣∣rτ [rt1 ] % rs % rt

}
a ‘tree’ with root rt. For any k ≥ 2, let

Rσ(k) ≡
{
rt
∣∣∣rt ∈ Rσb , rt � rτ [rs] for some rs ∈ Rσ(k−1) and there exists no rs ≺ rt that satisfy these two conditions

}
.

Let T be the largest integer such that Rσ(T ) 6= {∅}. According to (C.29), we know that T ≤ 2T 1(κ).
Similarly, we can define trees with roots inR(k) for every k ≤ T .

In what follows, I show that for every θ and every rt ∈ Rσ(k),

Vθ(a
t
∗, r

t) ≥ u1(θ, a1, a2)− (T + 1− k)
(
A(δ) +B(δ) + C(δ)

)
. (C.30)

The proof is done by inducting on k from backwards. When k = T , player 1’s continuation value at (a
τ [rt]+1
∗ , rτ [rt]+1)

is at least u1(θ, a1, a2)− A(δ)− B(δ) according to Lemma C.2 and Lemma C.8. His continuation value at rt

is at least:
u1(θ, a1, a2)−A(δ)−B(δ)− C(δ).

Suppose the conclusion holds for all k ≥ n+ 1, then when k = n, type θ’s continuation payoff at (at∗, r
t) is at

least:
E
[
(1− δτ [rt]−t)u1(θ, a1, a2) + δτ [rt]−tVθ(a

τ [rt]+1
∗ , rτ [rt]+1)

]
− C(δ)

Pick any (a
τ [rt]+1
∗ , rτ [rt]+1), consider the set of random paths r∞ that it is consistent with, let this set be

R∞(a
τ [rt]+1
∗ , rτ [rt]+1). Partition it into two subsets:
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1. R∞+ (a
τ [rt]+1
∗ , rτ [rt]+1) consists of r∞ such that for all s ≥ τ [rt] + 1 and rs ≺ r∞, we have rs /∈ Rσb .

2. R∞− (a
τ [rt]+1
∗ , rτ [rt]+1) consists of r∞ such that there exists s ≥ τ [rt] + 1 and rs ≺ r∞ at which rs ∈

Rσ(n+ 1).

Conditional on r∞ ∈ R∞+ (a
τ [rt]+1
∗ , rτ [rt]+1), we have:

Vθ(a
τ [rt]+1
∗ , rτ [rt]+1) ≥ u1(θ, a1, a2)−A(δ)−B(δ).

Conditional on r∞ ∈ R∞− (a
τ [rt]+1
∗ , rτ [rt]+1), type θ’s continuation payoff is no less than

Vθ(a
s
∗, r

s) ≥ u1(θ, a1, a2)− (T − n)
(
A(δ) +B(δ) + C(δ)

)
after reaching rs ∈ Rσ(n) according to the induction hypothesis. Moreover, since his payoff lost is at most
A(δ) +B(δ) before reaching rs (according to Lemmas C.2 and C.8), we have:

Vθ(a
τ [rt]+1
∗ , rτ [rt]+1) ≥ u1(θ, a1, a2)− (T + 1− n)

(
A(δ) +B(δ) + C(δ)

)
.

which obtains (C.30). (C.23) is implied by (C.30) since player 1’s loss is bounded above by A(δ) +B(δ) from
r0 to every rt ∈ Rσ(0).

The first statement of Theorem 2 is implied by Lemmas C.8, C.9 and C.10.

C.7 Proof of Statement 2 Theorem 2

Let κ ∈ (0, 1). Given δ > δ and σ ∈ NE(δ, µ), let us examine r1 such that (a1
∗, r

1) ∈ Hσ.29 If µ∗(r1) ∈ Bκ,
then for every r̂1 with (a1

∗, r̂
1) ∈ Hσ, we have µ∗(r̂1) ∈ Bκ. The conclusion is then implied by statement 1 of

Theorem 2. If µ∗(r1) /∈ Bκ, then we still have:

µ(a1)D(φa1 , a1) +
∑
θ∈Θ

q∗(r1)(θ)D(θ, a1) ≥ 0. (C.31)

This is because otherwise, there exists θ ∈ suppµ∗(r1) such that Vθ(a1
∗, r

1) = u1(θ, a1, a2) according to
Lemma C.3, contradicting type θ’s incentive to play a1 in period 0.

In what follows, I consider two cases separately.

1. If Θn
⋂

suppµ∗(r1) = {∅}, then Lemma C.6 implies that r1 /∈ R̂σg . According to Lemma C.4, there

exists θ ∈ (Θp ∪ Θn)
⋂

suppµ∗(r1) such that r1 ∈ Rθ. According to Lemma C.1, for every θg ∈ Θg,
type θg will play a1 at every (at∗, r

t) % (a1
∗, r

1) with (at∗, r
t) ∈ Hσ(θg).

According to the definition of v∗θ , for every θ ∈ Θ, type θ can secure payoff v∗θ at r1. Since µ∗(r1) /∈
Bκ, µ∗(r̂1) /∈ Bκ for every r̂1 with (a1

∗, r̂
1) ∈ Hσ. The argument in the previous paragraph applies

symmetrically, which implies that type θ’s discounted average payoff at h0 is at least

(1− δ)u1(θ, a1, a2) + δv∗θ .

2. If Θn
⋂

suppµ∗(r1) 6= {∅}, then according to Lemma C.10, type θ can guarantee payoff at least the
RHS of (C.23), which leads to the same conclusion.

29I consider random histories in period 1 as other pure strategy commitment types will be separated from type a1 in period 1. If there
are commitment types playing mixed strategies, then one needs to examine random histories in period T such that after T periods, the
probability of the mixed strategy commitment type becomes negligible compared to that of commitment type a1.
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D Proof of Theorem 3 & Extensions

I show Theorem 3 and present an extension by allowing for mixed strategy commitment types. I will inherit the
notation from Appendix B. In particular, recall the definitions of Ω,Hσ,Hσ(ω), q(ht) and R̂σg .

D.1 Proof of Theorem 3

Step 1: Let
X(ht) ≡ µ(a1)D(φa1 , a1) +

∑
θ∈Θg∪Θp

q(ht)(θ)D(θ, a1). (D.1)

and
Y (ht) ≡ µ(Ω)D(θ, a1) +

∑
θ∈Θg∪Θp

q(ht)(θ)D(θ, a1). (D.2)

According to (4.7), X(h0) < 0 and Y (h0) < 0. Moreover, at every ht ∈ Hσ with Y (ht) < 0, player 2 has
a strict incentive to play a2. According to Lemma C.3, there exists θp ∈ Θp with ht ∈ H(θp) such that type
θp’s continuation value at ht is u1(θp, a1, a2), which further implies that playing a1 in every period is one of
his best replies. According to Lemma C.1 and using the implication that Y (h0) < 0, every θn ∈ Θn plays a1

with probability 1 at every ht ∈ H(θn).

Step 2: Let us examine the equilibrium behaviors of the types in Θp ∪ Θg. I claim that for every h1 =
(a1, r

1) ∈ Hσ, we have: ∑
θ∈Θg∪Θp

q(h1)(θ)D(θ, a1) < 0. (D.3)

Suppose towards a contradiction that
∑

θ∈Θg∪Θp
q(h1)(θ)D(θ, a1) ≥ 0, then X(h1) ≥ µ(a1)D(φa1 , a1).

According to Proposition C.1, there exists K ∈ R+ independent of δ such that type θ’s continuation payoff is
at least u1(θ, a1, a2)− (1− δ)K at every h1

∗ ∈ Hσ. When δ is large enough, this contradicts the conclusion in
the previous step that there exists θp ∈ Θp such that type θp’s continuation value at h0 is u1(θp, a1, a2), as he
can profitably deviate by playing a1 in period 0.

Step 3: According to (D.3), we have µ∗(r1) /∈ B0. Step 1 also implies that µ∗(r1)(Θn) = 0. According to
Lemma C.6, we have r1 /∈ R̂σg . According to Lemma C.1, type θg plays a1 at every ht ∈ H(θg) with t ≥ 1 for
every θg ∈ Θg.

Next, I show that r0 /∈ R̂σg . Suppose towards a contradiction that r0 ∈ R̂σg , then there exists hT =

(aT∗ , r
T ) ∈ Hσ such that µ(hT )(Θp ∪Θn) = 0. If T ≥ 2, it contradicts our previous conclusion that r1 /∈ R̂σg .

If T = 1, then it contradicts (D.3). Therefore, we have r0 /∈ R̂σg . This implies that type θg plays a1 at every
ht ∈ H(θg) with t ≥ 0 for every θg ∈ Θg.

Step 4: In the last step, I pin down the strategies of type θp by showing that X(ht) = 0 for every ht =
(at∗, r

t) ∈ Hσ with t ≥ 1. First, I show that X(h1) = 0. The argument at other histories follows similarly.
Suppose first that X(h1) > 0, then according to Lemma C.7, type θp’s continuation payoff at (at+1

∗ , rt+1)
is u1(θp, a1, a2) by playing a1 in every period, while his continuation payoff at (at∗, a1, r

t+1) is u1(θp, a1, a2),
leading to a contradiction. Suppose next that X(h1) < 0, similar to the previous argument, there exists type
θp ∈ Θp with h1 ∈ H(θp) such that his incentive constraint is violated. Similarly, one can show thatX(ht) = 0
for every t ≥ 1, ht = (at∗, r

t) ∈ Hσ. This establishes the uniqueness of player 1’s equilibrium behavior.
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D.2 Generalizations to Mixed Strategy Commitment Types

Next, I generalize Theorem 3 by accommodating mixed strategy commitment types. For every θ ∈ Θ, let
λ(θ) be the prior likelihood ratio between strategic type θ and the lowest strategic type θ ≡ min Θ and let
λ ≡ {λ(θ)}θ∈Θ be the likelihood ratio vector between strategic types. I use this likelihood ratio vector to
characterize the sufficient conditions for behavioral uniqueness as the result under multiple commitment type
requires that the total probability of commitment types being small enough. The upper bound of this probability
depends on the distribution of strategic types. Recall that

Ωg ≡ {α1 ∈ Ω|D(α1, φα1) > 0}.

Let Ht1 be the set of action paths with length t and let Ht1 ≡ {(a1, ...a1), (a1, ...a1)}, which is a subset of

Ht1. For every strategy profile σ ≡
(

(σθ)θ∈Θ, σ2

)
and state θ, let Pσ1,t(θ) be the probability measure over Ht1

induced by (σθ, σ2) and letHσ(θ) be the set of histories that occur with positive probability under (σθ, σ2). For
every γ ≥ 0 and two equilibria σ and σ′, strategic type θ’s on-path behaviors in these equilibria are γ-close if
for every t ≥ 1,

DB

(
Pσ1,t(θ),Pσ

′
1,t(θ)

)
≤ γ,

where DB(p, q) denotes the Bhattacharyya distance between distributions p and q.30 If γ = 0, then type θ’s
on-path behavior in these two equilibria are the same. Intuitively, the above distance measures the difference
between the ex ante distributions over player 1’s action paths. The generalization of Theorem 3 that allows for
mixed strategy commitment types is stated below.

Theorem 3’. Suppose a1 ∈ Ω and D(φa1 , a1) > 0, then for every λ ∈ [0,+∞)|Θ| satisfying:∑
θ∈Θp∪Θg

λ(θ)D(θ, a1) < 0, (D.4)

there exist ε > 0 and γ : (0, ε)→ R+ satisfying limε↓0 γ(ε) = 0, such that for every µ with {µ(θ)/µ(θ)}θ∈Θ =
λ and µ(Ω) < ε, there exist δ ∈ (0, 1) and θ∗p ∈ Θp such that for every δ > δ and σ, σ′ ∈ NE(δ, µ):

– For every θ � θ∗p and ht ∈ Hσ(θ), type θ plays a1 at ht.

– For every θ ≺ θ∗p and ht ∈ Hσ(θ), type θ plays a1 at ht.

– Type θ∗p’s on-path behavior is γ(ε)-close between σ and σ′.

– Pσ1,t(θ∗p)(Ht1) > 1− γ(ε) for every t ≥ 1.

If all the actions in Ωg are pure, then type θ∗p’s on-path behavior is the same across all equilibria under generic
parameter values, according to which he behaves consistently over time with probability 1.

To comment on the conditions in Theorem 3’, first of all, (D.4) is implied by (4.3) given thatD(φa1 , a1) > 0.
Second, when Ωg contains elements other than a1, obtaining sharp predictions on player 1’s on-path behavior
requires the total probability of commitment types to be small enough. This is because the presence of multiple
good commitment types gives the strategic types many good reputations to choose from. In particular, if a good
commitment type other than a1 occurs with sufficiently high probability, then the bad strategic types can imitate

30One can replace the Bhattacharyya distance with the Rényi divergence or Kullback-Leibler divergence in the following way:
strategic type θ’s on-path behavior is γ-close between σ and σ′ if there exists a probability measure P onH such that for every t ≥ 1,

max
{
D
(
P1,t

∣∣∣∣∣∣Pσ1,t(θ)), D(P1,t

∣∣∣∣∣∣Pσ1,t(θ′))} ≤ γ,
where D(·||·) is either the Rényi divergence of order greater than 1 or the Kullback-Leibler divergence.
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this type with high probability which weakens the punishment for behaving inconsistently. An example of this
is provided in Appendix G.5.

Next, I provide a sufficient condition on ε, namely the upper bound on the total probability of commitment
types. Let

Y (ht) ≡ µ(ht)(a1)D(φa1 , a1) +
∑
α1∈Ωg

µ(ht)(α1)D(φα1 , α1) +
∑

θ∈Θp∪Θg

µ(ht)(θ)D(θ, a1), (D.5)

which is an upper bound on player 2’s incentive to play a2 at ht. I require ε to be small enough such that

εD(θ, a1) + (1− ε)
∑

θ∈Θp∪Θg

λ(θ)∑
θ̃∈Θ λ(θ̃)

D(θ, a1) < 0. (D.6)

Such ε exists since
∑

θ∈Θp∪Θg
λ(θ)D(θ, a1) < 0. Inequality (D.6) implies that Y (h0) < 0, which is also

equivalent to (4.3) when Ωg = {∅}.
Third, when there are mixed strategy commitment types, the probabilities with which type θ∗p mixes may

not be the same across all equilibria for two reasons.

1. Suppose player 2 has no incentive to play a2 against any mixed commitment type, then given that all
strategic types either plays a1 in every period or plays a1 in every period, player 2’s incentive to play
a2 is increasing over time as long as a1 has been observed in every period of the past. As a result, there
will be T (δ) periods in which player 2 has a strict incentive to play a2, followed by at most one period
in which she is indifferent between a2 and a2, followed by periods in which she has a strict incentive to
play a2, with T (δ) and the probabilities with which she mix between a2 and a2 in period T (δ) pinned
down by type θ∗p’s indifference condition in period 0. Under degenerate parameter values in which there
exists an integer T such that type θ∗p is just indifferent between playing a1 in every period and playing a1

in every period when a2 will be played in the first T periods, his mixing probability between playing a1

in every period and playing a1 in every period is not unique. Nevertheless, when the ex ante probability
of Ω is smaller than ε, his probability of mixing cannot vary by more than γ(ε) even in this degenerate
case, with γ(·) diminishes as ε ↓ 0.

2. When there are good mixed strategy commitment types, the probability with which type θ∗p behaves in-
consistently and builds a reputation for being a good mixed strategy commitment type cannot be uniquely
pinned down by his equilibrium payoff. Nevertheless, the differences between these probabilities across
different equilibria will vanish as the total probability of commitment types vanishes. Intuitively, this
is because if type θ∗p imitates the mixed commitment type with sufficiently high probability relative to
the probability of that good commitment type, then player 2 will have a strict incentive to play a2. This
implies that as the probability of commitment type vanishes, the upper bound on the probability with
which type θ∗p builds a mixed reputation also vanishes.

D.3 Proof of Theorem 3’

Unique Equilibrium Behavior for Strategic Types in Θn and Θg: This part of the proof is similar to the
proof of Theorem 3, by replacingX(ht) with Y (ht). First, I show that every type θn ∈ Θn will play a1 at every
ht ∈ Hσ(θn) in every equilibrium σ. This is similar to Step 1 in the proof of Theorem 3. Since Y (h0) < 0 and
at every ht ∈ Hσ with Y (ht) < 0, player 2 has a strict incentive to play a2. Applying Lemma C.3, there exists
θp ∈ Θp with ht ∈ Hσ(θp) such that type θp’s continuation value at ht is u1(θp, a1, a2). Therefore, playing a1

in every period is his best reply. Type θn’s on-path behavior is pinned down by Lemma C.1.
Next, I establish (D.3). Suppose towards a contradiction that

∑
θ∈Θg∪Θp

q(h1)(θ)D(θ, a1) ≥ 0, then
Y (h1) ≥ µ(a1)D(φa1 , a1). According to Theorem 2, there exists K ∈ R+ independent of δ such that type θ’s
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continuation payoff is at least u1(θ, a1, a2)− (1− δ)K at every h1
∗ ∈ Hσ. When δ is large enough, this contra-

dicts the conclusion in the previous step that there exists θp ∈ Θp such that type θp’s continuation value at h0 is
u1(θp, a1, a2), as he can profitably deviate by playing a1 in period 0. According to (D.3), we have µ∗(r1) /∈ B0.
Following the same procedure, one can show that r1 /∈ R̂σg and r0 /∈ R̂σg for every r1 satisfying (a1

∗, r
1) ∈ Hσ.

This implies that for every equilibrium σ and every θg ∈ Θg, type θg plays a1 at every ht ∈ Hσ(θg).

Consistency of Equilibrium Behavior and Generic Uniqueness of Equilibrium Payoff when θ ∈ Θp: Let

Ωgm ≡
{
α1 ∈ Ω

∣∣∣α1 is non-trivially mixed
}
, (D.7)

be the set of good mixed commitment actions. I start from showing that when Ωgm = {∅}, type θp will behave
consistently over time for every θp ∈ Θp in every equilibrium. For every t ≥ 1, let

Z(ht) ≡ µ(ht)(a1)D(φa1 , a1) +
∑
α1∈Ω̂b

q(ht)(α1)D(φα1 , α1) +
∑

θ∈Θp∪Θg

q(ht)(θ)D(θ, a1) (D.8)

where
Ω̂b ≡

{
α1 ∈ Ω\{a1}

∣∣∣D(α1, φα1) < 0
}
. (D.9)

Intuitively,Z(ht) provides a lower bound on player 2’s incentives to play a2. If Ωgm = {∅}, then µ(ht)(Ωg\{a1}) =
0 for every ht = (at∗, r

t) ∈ Hσ with t ≥ 1. Therefore, player 2 has a strict incentive to play a2 if Z(ht) < 0.
Moreover, according to the conclusion in the previous step that type θg ∈ Θg plays a1 for sure at every
ht = (at∗, r

t), we know that for every ht � ht−1, we have Z(ht) ≥ Z(ht−1).

Subcase 1: No Mixed Commitment Types Consider the case where there exists no α1 ∈ Ω̂b such that
α1 /∈ A1, i.e. there are no mixed strategy commitment types that affect player 2’s best reply. By definition,
Z(ht) = X(ht) for every t ≥ 1. As shown in Theorem 3, we know that Z(ht) = 0 for every ht = (at∗, r

t) ∈
Hσ and t ≥ 1. Let Ωg ≡ {a1

1, ..., a
n−1
1 , an1} with a1

1 ≺ a2
1 ≺ ... ≺ an−1

1 ≺ an1 ≡ a1. When n ≥ 2, there exists
q : Θp → ∆(Ωg ∪ {a1}) such that:

• Monotonicity: For every θp � θ′p and ai1 ∈ Ωg ∪ {a1}. First, if q(θp)(ai1) > 0, then q(θ′p)(a
j
1) = 0 for

every aj1 � ai1. Second, if q(θ′p)(a
i
1) > 0, then q(θp)(a

j
1) = 0 for every aj1 ≺ ai1.

• Indifference: For every ai1 ∈ Ωg\{a1}, we have:

µ(ai1)D(φai1
, ai1) +

∑
θp∈Θp

µ(θp)q(θp)(a
i
1)D(θp, a

i
1) = 0. (D.10)

These two conditions uniquely pin down function q(·), and therefore, the behavior of every type in Θp. In
player 1’s unique equilibrium behavior, every strategic type always replicates his action in period 0.

Subcase 2: Presence of Mixed Commitment Types Consider the case where there are mixed strategy com-
mitment types. Recall the definition of consistent action path. Since all strategic types in Θg are playing a1

in every period, so type θ’s continuation value at every on-path inconsistent history must be u1(θ, a1, a2) for
every θ ∈ Θ. I show that in every equilibrium, type θp’s behavior must be consistent for every θp ∈ Θp. Let

W (ht) ≡ µ(ht)(a1)D(φa1 , a1) +
∑

θ∈Θp∪Θg

q(ht)(θ)D(θ, a1). (D.11)
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For every consistent history ht where a1 is the consistent action, we know that W (ht) ≤ Z(ht) since∑
α1∈Ω̂b

q(ht)(α1)D(φα1 , α1) ≤ 0.

From the proof of Theorem 3, we have W (ht) ≥ 0. A similar argument can show that:

1. If there exists α1 ∈ Ω̂b such that α1(a1) > 0, then W (ht) > 0.

2. If there exists no such α1, then W (ht) = 0.

The consistency of type θp’s behavior at the 2nd class of consistent histories directly follows from the argument
in Theorem 3. In what follows, I focus on the 1st class of consistent histories.

For every consistent history ht with W (ht) > 0 and µ(ht)(Θp) 6= 0, let θp be the lowest type in the
support of µ(ht). According to Lemma C.3, his expected payoff at any subsequent inconsistent history is
u1(θp, a1, a2), i.e. playing a1 all the time is his best reply. According to Lemma C.1, if there exists θp ∈ Θp

playing inconsistently at ht, then type θp must be playing inconsistently at ht with probability 1.
Suppose type θp plays inconsistently with positive probability at ht with Z(ht) ≤ 0, then his continuation

value at ht is u1(θp, a1, a2). He strictly prefers to deviate and play a1 forever at ht−1 ≺ ht unless there exists
ĥT � ht−1 such that Z(ĥT ) ≥ 0 and type θp strictly prefers to play consistently from ht−1 to ĥT . This implies
that every θp plays consistently with probability 1 from ht−1 to ĥT , i.e. for every ht � ht−1 in which type
θp plays inconsistently with positive probability and hT � ht, we have Z(hT ) > Z(ĥT ) ≥ 0. This implies
that at ht, type θp’s continuation payoff by playing consistently until Z ≥ 0 is strictly higher than behaving
inconsistently, leading to a contradiction.

Suppose type θp plays inconsistently with positive probability at ht with Z(ht) > 0, then according
to Lemma C.7, his continuation value by playing consistently is at least u1(θp, a1, a2), which is no less
than u1(θp, a1, a2), while his continuation value by playing inconsistently is at most (1 − δ)u1(θp, a1, a2) +
δu1(θp, a1, a2), which is strictly less when δ is large enough, leading to a contradiction.

Consider generic µ such that there exist θ∗p ∈ Θp and q ∈ (0, 1) such that:

µ(a1)D(φa1 , a1) + qµ(θ∗p)D(θ∗p, a1) +
∑
θ�θ∗p

µ(θ)D(θ, a1) = 0; (D.12)

as well as generic δ ∈ (0, 1) such that for every a1 ∈ Ωg ∪ {a1}, there exists no integer T ∈ N such that

(1− δT )u1(θ∗p, a1, a2) + δTu1(θ∗p, a1, a2) = u1(θ∗p, a1, a2). (D.13)

Hence, when µ(Ω) is small enough such that:∑
θ�θ∗p

µ(θ)D(θ, a1) +
∑
α1∈Ω̂b

µ(Ω)D(φα1 , α1) > 0 (D.14)

and
(1− q)µ(θ∗p)D(θ∗p, a1) + µ(Ω) max

α1∈Ω
D(φα1 , α1) < 0, (D.15)

one can uniquely pin down the probability with which type θ∗p plays a1 all the time. To see this, there exists a
unique integer T such that:

(1− δT )u1(θ∗p, a1, a2) + δTu1(θ∗p, a1, a2) > u1(θ∗p, a1, a2) > (1− δT+1)u1(θ∗p, a1, a2) + δT+1u1(θ∗p, a1, a2).
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The probability with which type θ∗p plays a1 in every period, denoted by q∗(a1) ∈ (0, 1), is pinned down via:

q∗(a1)µ(θ∗p)D(θ∗p, a1)+
∑
θ�θ∗p

µ(θ)D(θ, a1)+
∑
α1∈Ω

µ(α1) α1(a1)T︸ ︷︷ ︸
prob that type α1 plays a1 for T consecutive periods

D(φα1 , α1) = 0.

(D.16)
Similarly, the probability with which type θ∗p plays a1 ∈ Ωg in every period, denoted by q∗(a1), is pinned down
via:

q∗(a1)µ(θ∗p)D(θ∗p, a1) +
∑
α1∈Ω

µ(α1)α1(a1)T (a1)D(φα1 , α1) = 0.

where T (a1) is the unique integer satisfying:

(1− δT (a1))u1(θ∗p, a1, a2) + δT (a1)u1(θ∗p, a1, a2) > u1(θ∗p, a1, a2)

> (1− δT (a1)+1)u1(θ∗p, a1, a2) + δT (a1)+1u1(θ∗p, a1, a2).

The argument above also pins down every type’s equilibrium payoff: type θ - θ∗p receives payoff u1(θ, a1, a2).
Every strategic type above θ∗p’s equilibrium payoff is pinned down by the occupation measure with which a2 is
played conditional on player 1 always plays a1, which itself is pinned down by type θ∗p’s indifference condition.

γ-closeness of on-path behavior: Last, I claim that even when Ωgm 6= {∅}, (1) All strategic types besides
type θ∗p will either play a1 in every period or a1 in every period, (2) strategic type θ∗p will either play a1 in
every period or a1 in every period with probability at least 1 − γ(ε); (3) his on-path behavior across different
equilibria are γ(ε)-close, with limε↓0 γ(ε) = 0.

Consider the expressions of Y (ht) in (D.5) and Z(ht) in (D.8) which provide upper and lower bounds,
respectively, on player 2’s incentive to play a2 at ht. When µ(Ω) < ε, previous arguments imply the existence
of γ(ε) with limε↓0 γ(ε) = 0, such that for every equilibrium,

Y (ht), Z(ht) ∈ [−γ(ε), γ(ε)]

for every ht ∈ Hσ such that a1 has always been played. When ε is sufficiently small, this implies the existence
of θ∗p ∈ Θp such that type θ∗p mixes between playing a1 in every period and playing a1 in every period.
This together with Lemma C.1 pin down every other strategic type’s equilibrium behavior aside from type θ∗p.
Moreover, it also implies that the ex ante probability with which type θ∗p plays a1 in every period or plays a1 in
every period cannot differ by 2γ(ε)/µ(θ∗p) across different equilibria. Furthermore, when µ(Ω) is small enough,
player 2 will have a strict incentive to play a2 in period 0 as well as in period t if a1 has been played in every
period of the past. This and type θ∗p’s indifference condition pins down every type’s equilibrium payoff.

To show that the probability of type θ∗p behaving inconsistently vanishes with µ(Ω), notice that first, there
exists s∗ ∈ R+ such that for every s > s∗, θp ∈ Θp and α1 ∈ Ω,

sD(θp, a1) +D(φα1 , α1) < 0. (D.17)

Therefore, the probability with which every type θp ∈ Θp playing time inconsistently must be below

s∗ε
{

min
θp∈Θp

(1− ε) λ(θp)∑
θ∈Θ λ(θ)

}−1
. (D.18)

Expression (D.18) provides an upper bound for γ(ε), which vanishes as ε ↓ 0. When µ(Ω) is sufficiently small,
Lemma C.1 implies the existence of a cutoff type θ∗p such that all types strictly above θ∗p always plays a1 and
all types strictly below θ∗p always plays a1, and type θ∗p plays consistently with probability at least 1 − γ(ε),
concluding the proof.
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E Proof of Propositions 4.1 and 4.3

The proof consists of three parts. In Part I, I show the sufficiency part of Proposition 4.1. In Part II, I show the
necessity part of Proposition 4.1 and establish the upper bound in Proposition 4.3 for types below the cutoff
type. In Part III, I establish the upper bound in Proposition 4.3 for types above the cutoff type.

E.1 Part I

In this part, I show the if direction of Proposition 4.1. If π satisfies (4.9), then the following strategy profile is
an equilibrium when δ is large enough.

1. Types in Θg ∪Θp plays a1 in every period on the equilibrium path.

2. Types in Θn plays a1 in every period on the equilibrium path.

3. Player 2’s action in period 0 depends on the probability of the states in Θn.31

4. Starting from period 1, player 2 plays a2 if and only if a1 has been played in every previous period and
plays a1 vice versa.

One can verify that for every θ ∈ Θ, type θ’s equilibrium payoff when δ → 1 is no less than u1(θ, a1, a2).

E.2 Part II

In this part, I show the only if direction of Proposition 4.1. The conclusion in this step also establishes Propo-
sition 4.3 for types no greater than θ∗p(π). The result is stated as Lemma E.1:

Lemma E.1. For every π satisfying (4.9) and every θ - θ∗p(π), type θ’s payoff is u(θ, a1, a2) in every
equilibrium.

PROOF OF LEMMA E.2: Let Θ ≡ {θ1, ..., θm} with θ1 ≺ θ2 ≺ ... ≺ θm. I introduce a new element θ0 and let
θ0 ≺ θ1. Let Θ ≡ Θ∪ {θ0}. For a given belief π ∈ ∆(Θ), if π satisfies (4.9), then let θ∗p(π) ≡ θ0; if π satisfies
(4.10), then θ∗p(π) % θ1 and is pinned down via (4.15). Let π(ht) ∈ ∆(Θ) be player 2’s belief at ht and let
π(ht, a1) ∈ ∆(Θ) be her posterior after observing a1 at ht.

I directly apply the conclusion of Lemma C.1 in Appendix C which is also valid in the benchmark repeated
game without commitment types. It is done by induction on

∣∣∣supp(π)
∣∣∣, namely the number of types in the

support of player 2’s prior belief. The case in which
∣∣∣supp(π)

∣∣∣ = 1 is trivial. Suppose towards a contradiction

that the conclusion holds for all π satisfying
∣∣∣supp(π)

∣∣∣ ≤ k − 1 but fails for some π with
∣∣∣supp(π)

∣∣∣ = k. Let

type θ - θ∗p(π) be a type that obtains payoff strictly greater than u1(θ, a1, a2). Then there exists ht ∈ Hσ(θ)
and a1, a

′
1 ∈ A1 such that:

1. Type θ plays a1 with positive probability at ht.

2. For every hs with ht % hs % h0, we have θ∗p(π(hs)) = θ∗p(π).

3.
θ∗p

(
π(ht, a1)

)
≺ θ∗p(π) - θ∗p

(
π(ht, a′1)

)
, (E.1)

where (E.1) comes from the martingale property of beliefs.
In what follows, I consider two cases separately, depending on whether type θ plays a′1 with positive prob-

ability at ht or not.
31Player 2’s action choice in period 0 is irrelevant for the proof as it has negligible payoff consequences for player 1 as δ → 1.
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1. If type θ plays a′1 with probability 0 at ht, then
∣∣∣Θ(ht, a′1)

∣∣∣ ≤ k − 1 and according to the induction

hypothesis, for every θ̃ that is in the support of π(ht, a′1) but is no greater than θ∗p(π(ht, a′1)), type θ̃ will
receive continuation payoff u1(θ̃, a1, a2) after playing a′1 at ht. This implies that his continuation payoff
is no more than u1(θ̃, a1, a2) at ht. Therefore, playing a1 in every period is type θ∗p(π(ht, a′1))’s best

reply at ht. Since θ - θ∗p(π) - θ∗p

(
π(ht, a′1)

)
, Lemma C.1 implies that playing a1 in every period is

also type θ’s best reply at ht, from which his payoff should be no more than u1(θ, a1, a2). This leads to
a contradiction.

2. The above argument suggests that for every ht ∈ Hσ(θ), there exists some a′1(ht) ∈ A1 such that:

(a) θ∗p(π) - θ∗p

(
π(ht, a′1(ht))

)
.

(b) Type θ plays a′1(ht) with positive probability at ht.

By construction, the strategy of playing a′1(ht) at every ht is type θ’s best reply, from which his stage-
game payoff in every period is no more than u1(θ, a1, a2). This contradicts the hypothesis that type θ’s
equilibrium payoff is strictly greater than u1(θ, a1, a2).

E.3 Part III

In this part, I establish Proposition 4.3 for types strictly greater than θ∗p(π). Without loss of generality, I
normalize u1(θ, a1, a2) to 0 for every θ ∈ Θ. Let xθ(a1) ≡ −u1(θ, a1, a2) and yθ(a1) ≡ u1(θ, a1, a2).
Assumptions 1 and 2 imply that:

1. xθ(a1) ≥ 0, with “=” holds only when a1 = a1.

2. yθ(a1) > 0 for every θ ∈ Θ and a1 ∈ A1.

3. xθ(a1) and −yθ(a1) are both strictly increasing in a1.

4. For every θ < θ̃, xθ(a1)− x
θ̃
(a1) and y

θ̃
(a1)− yθ(a1) are both strictly increasing in a1.

I start with defining ‘pessimistic belief path’ for a given equilibrium σ ∈ NE(δ, π). For every a∞1 ≡ (a1,0, a1,1..., a1,t...),
we say a∞1 ∈ Aσ(θ∗) if and only if for every t ∈ N, there exists rt ∈ Rt such that

(a1,0, ..., a1,t−1, r
t) ∈ Hσ and

∑
θ%θ∗

πt(θ)D(θ, a1) < 0,

where πt is player 2’s posterior belief after observing (a1,0, ..., a1,t−1). For every θ ∈ Θ, if (a∞1 , r
∞) ∈ Hσ(θ)

for some a∞1 ∈ Aσ(θ), then V σ
θ (δ) = 0 and playing a1 in every period is type θ’s best reply.

For every θ � θ∗p(π) and every action path a∞1 = (a1,0, a1,1, ...) that type θ plays with strictly positive
probability under σ ∈ NE(δ, π), we have:

V σ
θ (δ) =

∑
a1,a2

Pa∞1 (a1, a2)u1(θ, a1, a2)

and
0 = V σ

θ∗p(π)(δ) ≥
∑
a1,a2

Pa∞1 (a1, a2)u1

(
θ∗p(π), a1, a2

)
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where Pa∞1 (a1, a2) is the occupation measure of (a1, a2) induced by a∞1 and player 2’s equilibrium strategy
σ2. This implies that V σ

θ (δ) cannot exceed the value of the following linear program:

max
{β(a1),γ(a1)}a1∈A1

{ ∑
a1∈A1

β(a1)yθ(a1)− γ(a1)xθ(a1)
}
, (E.2)

subject to ∑
a1∈A1

γ(a1) + β(a1) = 1,

γ(a1), β(a1) ≥ 0 for every a1 ∈ A1,

and ∑
a1∈A1

β(a1)yθ∗p(π)(a1)− γ(a1)xθ∗p(π)(a1) ≤ 0. (E.3)

Since the objective function and the constraints are both linear, it is without loss of generality to focus on
solutions where there exist a∗1, a

∗∗
1 ∈ A1 such that

β(a1) > 0 iff a1 = a∗1, γ(a1) > 0 iff a1 = a∗∗1 .

According to (E.3), we have:

β(a∗1)yθ∗p(π)(a
∗
1) ≤

(
1− β(a∗1)

)
xθ∗p(π)(a

∗∗
1 ). (E.4)

Plugging (E.4) into (E.2), the value of that expression cannot exceed:

max
a∗1,a

∗∗
1 ∈A1

{yθ(a∗1)xθ∗p(π)(a
∗∗
1 )− xθ(a∗∗1 )yθ∗p(π)(a

∗
1)

xθ∗p(π)(a
∗∗
1 ) + yθ∗p(π)(a

∗
1)

}
. (E.5)

Expression (E.5) is maximized when a∗1 = a∗∗1 = a1, which gives the following upper bound for V σ
θ (δ):

V σ
θ (δ) ≤ r(π)u1(θ, a1, a2) +

(
1− r(π)

)
u1(θ, a1, a2), (E.6)

with r(π) ∈ (0, 1) is pinned down via:

r(π)u1

(
θ∗p(π), a1, a2

)
+
(
1− r(π)

)
u1

(
θ∗p(π), a1, a2

)
= u1

(
θ∗p(π), a1, a2

)
. (E.7)

The upper bound in the right-hand-side of (E.6) can be asymptotically achieved when δ → 1, as there exists an
equilibrium such that:

– Type θ plays a1 in every period if θ ≺ θ∗p(π), plays a1 in every period if θ � θ∗p(π).

– Type θ∗p(π) randomizes between playing a1 in every period and playing a1 in every period with proba-
bilities q(π) and 1− q(π), respectively.

F Proof of Proposition 4.2

For every σ ∈ NE(δ, π), I define the set of high histories recursively. LetH0 ≡ {h0} and

a1(h0) ≡ max
{ ⋃
θ∈Θ

supp
(
σθ(h

0)
)}
.

Let
H1 ≡ {h1| there exists h0 ∈ H0 such that h1 � h0 and a1(h0) ∈ h1}.
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For every t ∈ N and ht ∈ Ht, let Θ(ht) ⊂ Θ be the set of types that occur with positive probability at ht. Let

a1(ht) ≡ max
{ ⋃
θ∈Θ(ht)

supp
(
σθ(h

t)
)}

(F.1)

and
Ht+1 ≡ {ht+1| there exists ht ∈ Ht such that ht+1 � ht and a1(ht) ∈ ht+1}. (F.2)

LetH ≡
⋃∞
t=0H

t. For every θ ∈ Θ, letH(θ) be a subset ofH such that ht ∈ H(θ) if and only if:

1. For every hs % ht with hs ∈ H, we have θ ∈ Θ(hs).

2. If ht−1 ≺ ht, then for every θ̃ ∈ Θ(ht−1), there exists hs ∈ H with hs � ht−1 such that θ̃ /∈ Θ(hs).

LetH(Θ) ≡
⋃
θ∈ΘH(θ), which has the following properties:

1. H(Θ) ⊂ H.

2. For every ht, hs ∈ H(Θ), neither ht � hs nor ht ≺ hs.

In what follows, I show the following Lemma:

Lemma F.1. For every ht ∈ H, if θ = max Θ(ht), then type θ’s continuation payoff at ht is no more than
max{u1(θ, a1, a2), u1(θ, a1, a2)}.

Lemma F.1 implies the conclusion in Proposition 4.2 as h0 ∈ H and θ = max Θ(h0). A useful conclusion
to show Lemma F.1 is the following observation:

Lemma F.2. For every ht ∈ H, if θ, θ̃ ∈ Θ(ht) with θ̃ ≺ θ, then the difference between type θ’s continuation
payoff and type θ̃’s continuation payoff at ht is no more than u1(θ, a1, a2)− u1(θ̃, a1, a2).

PROOF OF LEMMA F.2: Since u1 has SID in θ and (a1, a2), so for every θ � θ̃,

(a1, a2) ∈ arg max
(a1,a2)

{
u1(θ, a1, a2)− u1(θ̃, a1, a2)

}
(F.3)

which yields the upper bound on the difference between type θ and type θ̃’s continuation payoffs.
For every ht ∈ H(θ̃), at the subgame starting from ht, type θ̃’s stage game payoff is no more than

u1(θ̃, a1, a2) in every period and his continuation payoff at ht cannot exceed u1(θ̃, a1, a2). This is because
a1 is type θ’s Stackelberg action, so whenever player 1 plays an action a1 ≺ a1, a2 is player 2’s strict best reply.
Lemma F.2 then implies that for every θ ∈ Θ(ht) with θ � θ̃, type θ’s continuation payoff at ht cannot exceed
u1(θ, a1, a2).

In what follows, I show Lemma F.1 by induction on |Θ(ht)|. When |Θ(ht)| = 1, i.e. there is only one type
(call it type θ) that can reach ht according to σ, then Lemma F.2 implies that type θ’s payoff cannot exceed
u1(θ, a1, a2).

Suppose the conclusion in Lemma F.1 holds for every |Θ(ht)| ≤ n, consider the case when |Θ(ht)| = n+1.
Let θ ≡ max Θ(ht). Next, I define HB(ht), which is a subset of H. For every hs % ht with hs ∈ H,
hs ∈ HB(ht) if and only if:

– θ ∈ Θ(hs) but θ /∈ Θ(hs+1) for every hs+1 � hs and hs+1 ∈ H.

In another word, type θ has a strict incentive not to play a1(hs) at hs. A useful property is:

– For every h∞ ∈ H with h∞ � ht, either there exists hs ∈ HB(ht) such that hs ≺ h∞, or there exists
hs ∈ H(θ) such that hs ≺ h∞.
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which means that play will eventually reach either a history in HB(ht) or H(θ) if type θ keeps playing a1(hτ )
before that for every t ≤ τ ≤ s.

In what follows, I examine type θ’s continuation value at each kind of history.

1. For every hs ∈ HB(ht), at hs+1 with hs+1 � hs and hs+1 ∈ H, by definition,

|Θ(hs+1)| ≤ n.

Let θ̃ ≡ max Θ(hs+1). By induction hypothesis, type θ̃’s continuation payoff at hs+1 is at most
u1(θ̃, a1, a2). This applies to every such hs+1.

Type θ̃’s continuation value at hs also cannot exceed u1(θ̃, a1, a2) since he is playing a1(hs) with positive
probability at hs, and his stage game payoff from doing so is at most u1(θ̃, a1, a2). Furthermore, his
continuation value afterwards cannot exceed u1(θ̃, a1, a2).

Lemma F.2 then implies that type θ’s continuation value at hs is at most u1(θ, a1, a2).

2. For every hs ∈ H(θ), always playing a1(hτ ) for all hτ % hs and hτ ∈ H is a best reply for type θ.
His stage game payoff from this strategy cannot exceed u1(θ, a1, a2), which implies that his continuation
value at hs also cannot exceed u1(θ, a1, a2).

Starting from ht consider the strategy in which player 1 plays a1(hτ ) at every hτ � ht and hτ ∈ H until play
reaches hs ∈ HB(ht) or hs ∈ H(θ). By construction, this is type θ’s best reply. Under this strategy, type
θ’s stage game payoff cannot exceed u1(θ, a1, a2) before reaches hs. Moreover, his continuation payoff after
reaching hs is also bounded above by u1(θ, a1, a2), which proves Lemma F.1 when |Θ(ht)| = n+ 1.

G Counterexamples

I present several counterexamples to complement the analysis in the main text. For future reference, I abuse
notation and use θ to denote the Dirac measure on θ and ai to denote the Dirac measure on ai for i ∈ {1, 2}.

G.1 Counterexample when Supermodularity is Violated

Example 1: To begin with, I construct low-payoff equilibria in games where the supermodularity condition
on u1 is violated but all other assumptions are satisfied.32 Let the stage game payoff be:

θ1 O I
F 1, 0 −1,−1

A 2, 0 0, 1

θ0 O I
F 5/2, 0 1/2, 1/2

A 3, 0 1, 3/2

This payoff matrix models the situation studied by Harrington (1986), in which an incumbent firm has persistent
private information about the cost of operating in an industry and his cost is positively correlated with those of
the potential entrants’.

To see how this game’s payoff fails the supermodularity condition, let us rank the states and players’ actions
according to θ1 � θ0, F � A and O � I . Player 1’s cost of fighting is 1 in state θ1 and is 1/2 in state θ0.
Intuitively, when the incumbent’s and the entrant’s costs are positively correlated, the incumbent’s loss from
fighting (by lowering prices) is higher when his cost is higher, and the entrant’s profit from entry decreases with
the operating cost and increases with the incumbent’s price.

When Ω = {F,A} and µ(F ) ≤ 2µ(θ0), I construct low payoff equilibria in each of the following three
cases, depending on the signs of:

X ≡ µ(θ0)

2
+
(µ(F )φF (θ0)

2
− µ(F )φF (θ1)

)
− µ(θ1) (G.1)

32The case in which u2 has decreasing differences between a2 and θ is similar once we reverse the order on the states.
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and

Y ≡ µ(F )φF (θ0)

2
− µ(F )φF (θ1). (G.2)

1. If X ≤ 0, then type θ0 plays F in every period, type θ1 mixes between playing F in every period and
playing A in every period, with the probability of playing F equals to 1 +X/µ(θ1). Player 2 plays I for
sure in period 0. Starting from period 1, she plays I for sure if A has been observed before and plays
1
2δO+(1− 1

2δ )I otherwise. Despite the probability of type θ1 is large relative to that of type θ0, type θ1’s
equilibrium payoff is 0 and type θ0’s equilibrium payoff is 3/2, both are lower than their commitment
payoffs from playing F .

2. If X > 0 and Y ≤ 0, then type θ1 always plays A, type θ0 mixes between playing F in every period
and playing A in every period, with the probability of playing F being −Y/µ(θ0). Player 2 plays I for
sure in period 0. Starting from period 1, she plays I for sure if A has been observed before and plays
1
4δO + (1− 1

4δ )I otherwise. Type θ1’s equilibrium payoff is 0 and type θ0’s equilibrium payoff is 1.

3. If X > 0 and Y > 0, then both types play A in every period. Player 2 plays I no matter what. Type θ1’s
equilibrium payoff is 0 and type θ0’s equilibrium payoff is 1.

Example 2: Next, I construct low-payoff equilibria in the entry deterrence game when the supermodularity
condition on u2 is violated. I focus on the case in which u2 has strictly decreasing differences between a2 and
a1.33 Consider the following 2× 2× 2 game with stage-game payoffs given by:

θ = θ1 h l

H 1,−1 −1, 0

L 2, 1 0, 0

θ = θ0 h l

H 1− η,−2 −1− η, 0
L 2,−1 0, 0

with η ∈ (0, 1). The states and players’ actions are ranked according to H � L, h � l and θ1 � θ0. Let
Ω = {H,L}. Theorem 2 trivially applies as the commitment outcome (H, l) gives every type his lowest
feasible payoff. In what follows, I show the failure of Theorem 3, i.e. player 1 has multiple equilibrium
behaviors. First, there exists an equilibrium in which (L, h) is played in every period or (L, l) is played in
every period, depending on the prior belief. Second, consider the following equilibrium:

– In period 0, both strategic types play L.

– From period 1 to T (δ) ∈ N, type θ0 plays L and type θ1 plays H . Player 2 plays h in period t (≥ 2)
if and only if t ≥ T (δ) + 1 and player 1’s past play coincides with type θ1’s equilibrium strategy. The
integer T (δ) is chosen such that:

(1− δT (δ))(−1) + 2δT (δ) > 0 > (1− δT (δ))(−1− η) + 2δT (δ).

Such T (δ) exists when δ is close enough to 1.

G.2 Failure of Reputation Effects When Monotonicity is Violated

I show that the monotonicity condition is indispensable for my reputation result in Theorems 2 and 3. For this
purpose, I consider two counterexamples in which Assumption 1 is violated in different ways.

33The case in which u2 has decreasing differences between a2 and θ is similar to the previous example. One only needs to reverse
the order between the states.
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Example 1: Consider the following 2× 2× 2 game:

θ = θ1 h l

H 3/2, 2 0, 0

L 1, 1 0, 0

θ = θ0 h l

H −1,−1/2 1, 0

L 0,−1 5/2, 1/4

One can verify that this game satisfies the supermodularity assumption once we rank the states and actions
according to θ1 � θ0, H � L and h � l.34 However, the monotonicity condition fails as player 1’s ordinal
preferences over a1 and a2 depend on the state.

Suppose Ω = {H,L}. The total probability of commitment types is small enough such that 4µ(H) < µ(θ0)
and 5

4µ(L) < µ(θ1). The correlations between the commitment action and the state are irrelevant for this
example. Consider the following equilibrium in which player 2 plays a ‘tit-for-tat’ like strategy. Type θ1 plays
L in every period on the equilibrium path and type θ0 plays H in every period on the equilibrium path. Starting
from period 1, player 2 plays h in period t ≥ 1 if L was played in period t − 1 and vice versa. Both types’
equilibrium payoffs are close to 1, which are strictly lower than their pure Stackelberg commitment payoffs,
which are 3/2 and 5/2 respectively.

To verify that this is an equilibrium when δ is high enough, notice that first, player 2’s incentive constraints
are always satisfied. As for player 1,

1. If θ = θ1, deviating for one period gives him a stage game payoff at most 3/2 and in the next period his
payoff is at most 0. Therefore, he has no incentive to deviate as long as δ > 1/2.

2. If θ = θ0, deviating for one period gives him a stage game payoff at most 5/2 and in the future, he will
keep receiving payoff at most 0 until he plays H for one period. He has no incentive to deviate if and
only if for every t ∈ N,

(1− δ)5

2
− (δt − δt+1) ≤ 1− δt+1. (G.3)

which is equivalent to:
5

2
≤ 1 + δ + ...+ δt−1 + 2δt.

The above inequality is satisfied for every integer t ≥ 1 when δ > 0.9. This is because when t ≥ 2, the
right hand side is at least 1 + 0.9 + 0.92, which is greater than 5/2. When t = 1, the right hand side
equals to 2.8, which is greater than 5/2.

To see that player 1’s equilibrium behavior is not unique, consider another equilibrium where type θ1 plays
H in every period, type θ0 plays L in every period. For every t ∈ N, player 2 plays h in period t if H is played
in period t−1, and plays l in period t if L is played in period t−1. This implies that the conclusion in Theorem
3 will fail in absence of the monotonicity assumption.

Example 2: The conclusions in Theorems 2 and 3 will also fail when player 1’s ordinal preference over each
player’s actions does not depend on the state, but the directions of monotonicity violate Assumption 1. For
example, consider the repeated version of the following stage-game:

θ = θ1 h l

H 2, 2 0, 0

L 1, 1 −1/2, 0

θ = θ0 h l

H 1/4,−1/2 1/8, 0

L 0,−1 −1/16, 1/4

34In fact, the game’s payoffs even satisfy a stronger notion of complementarity, that is, both u1 and u2 are strictly supermodular
functions of the triple (θ, a1, a2). The definition of supermodular function can be found in Topkis (1998).
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Both players’ payoffs are strict supermodular functions of (θ, a1, a2). Player 1’s ordinal preferences over a1

and a2 are state independent but his payoff is strictly increasing in both a1 and a2, which is different from what
Assumption 1 suggests. Rank the states and actions according to θ1 � θ0, H � L and h � l.

Suppose Ω = {H,L}, 4µ(H) < µ(θ0) and 5
4µ(L) < µ(θ1). The following strategy profile is an equi-

librium. Type θ1 plays L in every period and type θ0 plays H in every period. Starting from period 1, player
2 plays h in period t ≥ 1 if L was played in period t − 1 and vice versa. Type θ1 and type θ0’s equilibrium
payoffs are close to 1 and 1/8, respectively as δ → 1. Their pure Stackelberg commitment payoffs are 2 and
1/4, respectively, which are strictly higher. Verifying players’ incentive constraints follows the same steps as
in the previous example, which is omitted.

Moreover, contrary to what Theorem 3 has suggested, player 1’s equilibrium behavior is not unique even
when player 2’s prior belief is pessimistic, i.e.

2µ(θ1) + µ(H)
(

2φH(θ1)− 1

2
φH(θ0)

)
− 1

2
µ(θ0) < 0. (G.4)

This is because aside from the equilibrium constructed above, there also exists an equilibrium in which type θ1

plays H in every period, type θ0 mixes between playing H in every period and playing L in every period. The
mixture probabilities are chosen such that player 2 becomes indifferent between h and l starting from period 1
conditional on H having been played. In equilibrium, player 2 plays h in period t ≥ 1 as long as player 1 has
always played H before, and switches to l permanently otherwise.

G.3 Failure of Reputation Effects When |A2| ≥ 3

I present an example in which the reputation results in Theorems 2 and 3 fail when the stage game has MSM
payoffs but player 2 has three or more actions. This motivates the additional conditions on the payoff structure
in Online Appendix D. Consider the following 2× 2× 3 game with payoffs:

θ = θ1 l m r

H 0, 0 5/2, 2 6, 3

L ε, 0 5/2 + ε,−1 6 + ε,−2

θ = θ0 l m r

H 0, 0 2,−1 3,−2

L 2ε, 0 2 + 2ε,−2 3 + 2ε,−3

where ε > 0 is small enough. Let the rankings on actions and states be H � L, r � m � l and θ1 � θ0. One
can check that the stage game payoffs are MSM.

Suppose Ω = {H,L} with µ(θ0) = 2η, µ(H) = η and φH(θ1) = 1, with η ∈ (0, 1/3). Type θ1’s
commitment payoff from playing H is 6. However, consider the following equilibrium:

– Type θ0 plays H in every period. Type θ1 plays L from period 0 to T (δ) and plays H afterwards, with
1− δT (δ) ∈ (1/2− ε, 1/2 + ε). Such T (δ) ∈ N exists when δ > 1− 2ε.

– Player 2 plays m starting from period 1 if player 1 has always played H in the past. She plays r from
period 1 to T (δ) and plays r afterwards if player 1’s past actions are consistent with type θ1’s equilibrium
strategy. She plays l at every off-path history.

Type θ1’s equilibrium payoff is approximately 3 + ε/2 as δ → 1, which is strictly less than his commitment
payoff. To see that player 1 has multiple equilibrium behaviors under a pessimistic prior belief, i.e. η ∈
[1/4, 1/3), there exists another equilibrium in which all the strategic types of player 1 plays H at every on-path
history. Player 2 plays m if all past actions were H and plays l otherwise.

G.4 Inconsistent Equilibrium Play in Private Value Reputation Games

I construct an equilibrium in the private value product choice game (Mailath and Samuelson 2001,2006) such
that despite there exists a commitment type that exerts high effort in every period, the strategic long-run player
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abandons his reputation early on in the relationship and the frequency with which L is played does not vanish as
δ → 1. The construction can be generalized to other private value reputation games such as the entry deterrence
game (Kreps and Wilson 1982, Milgrom and Roberts 1982), capital taxation game (Phelan 2006), etc. Players’
stage-game payoffs are given by:

− C S

H 1, 3 −1, 2

L 2, 0 0, 1

Suppose H ∈ Ω and µ(H) is small enough. Consider the following strategy profile, which is an equilibrium
when δ > 1/2:

– The strategic type plays L for sure in period 0. He plays 1
2H + 1

2L starting from period 1.

– Player 2 plays S for sure in period 0. If H is observed in period 0, then she plays C for sure as long as
H has always been played. She plays S for sure in all subsequent periods if L has been played before.

If L is observed in period 0, C is played for sure in period 1. Starting from period 2, player 2 plays C
for sure in period t if H was played in period t− 1, and (1− 1

2δ )C + 1
2δS in period t if L was played in

period t− 1.

Intuitively, starting from period 1, every time player 1 shirks, he will be punished in the next period as player 2
will play C with smaller probability. The probabilities with which he mixes between H and L are calibrated to
provide player 2 the incentive to mix between C and S. It is straightforward to verify that

1. The strategic long-run player’s equilibrium payoff is δ, which is arbitrarily close to his pure Stackelberg
commitment payoff 1 as δ → 1.

2. The strategic long-run player’s equilibrium play is very different from that of the commitment type’s.
In particular, (i) imitating the commitment type is a strictly dominated strategy, which yields payoff
δ − (1− δ); (ii) the occupation measure of L equals to 1/2 as δ → 1.

G.5 Low Probability of Commitment Type for Behavioral Uniqueness

The following example illustrates why µ(Ω) being small is not redundant to obtain sharp predictions on player
1’s on-path behavior (Theorems 3 and 3’). Consider the following 2× 3× 2 stage game:

θ = θ1 C S

H 1, 2 −2, 0

M 2, 1 −1, 0

L 3,−1 0, 0

θ = θ0 C S

H 1/2,−1 −5/2, 0

M 3/2,−2 −3/2, 0

L 3,−3 0, 0

Let Ω ≡ {H,M,L} with µ(H) = µ(θ1) = 1/98, µ(θ0) = 3/49, µ(M) = 6/49 and µ(L) = 39/49. Let
φH = φM be the Dirac measure on θ1 and let φL be the Dirac measure on θ0. One can check that M ∈ Ωg and
µ satisfies (4.3). However, for every δ > 5/6, one can construct the following class of equilibria indexed by
T ∈ {1, 2, ...}:

– Equilibrium σT : Type θ0 plays M in every period. Type θ1 plays M from period 0 to period T , and
plays H starting from period T + 1. Player 2 plays S in period 0. From period 1 to T + 1, she plays
C with probability 1 if player 1 has played H in every period or player 1 has played M in every period.
From period T + 2 and onwards, she plays C with probability 1 if player 1 has played H in every period,
and plays a mixed action 3δ−1

3δ C + 1
3δS if player 1 has played M in every period. At all other histories,

player 2 plays S with probability 1.
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One can verify players’ incentive constraints. In particular in period T + 1 conditional on player 1 has always
played M in the past, type θ1 is indifferent between playing H and M while type θ0 strictly prefers to play M .
This class of equilibria can be constructed for an open set of beliefs.35 As we can see, player 1’s equilibrium
behaviors are drastically different once we vary the index T , ranging from playing M all the time to playing H
almost all the time. Moreover, the good strategic type, namely type θ1, have an incentive to play actions other
than H for a long period of time, contrary to what Theorems 3 and 3’ suggest.

G.6 Irregular Equilibria in Games with MSM Payoffs

In this subsection, I show that the patient long-run player has multiple possible on-path behaviors when the
stage-game payoffs are monotone-supermodular and the prior belief about the state is optimistic. In particular,
I construct an equilibrium in the repeated product choice game with MSM payoffs and an optimistic prior
belief such that at some on-path histories, player 2’s belief about the state deteriorates after observing player 1
playing his highest action. One can also verify that the constructed strategy profile is also part of a sequential
equilibrium under its induced belief system.

In this example, players’ stage-game payoffs are given by:

θ = θ1 h l

H 1, 3 −1, 2

L 2, 0 0, 1

θ = θ0 h l

H 1− η, 0 −1− η, 1
L 2,−2 0, 0

with η ∈ (0, 1). Let Ω ≡ {H,L} with µ(H) = 0.06(1 − ε), µ(θ0) = 0.04(1 − ε), µ(θ1) = 0.9(1 − ε),
µ(L) = ε and φH is the Dirac measure on θ1. I assume that ε > 0 is small enough. Consider the following
strategy profile:

– In period 0, type θ1 plays H with probability 2/45 and type θ0 plays H with probability 1/4. Player 2
plays l.

– In period 1, if the history is (L, l), then use the public randomization device. With probability (1− δ)/δ,
players play (L, l) forever, with complementary probability, players play (H,h) forever. If (H,h) is
prescribed and player 1 ever deviates to L, then player 2 plays l at every subsequent history.

– In period 1, if the history is (H, l), then both strategic types play L and player 2 plays h. This is incentive
compatible due to the presence of the commitment type.

– In period 2, if the history is (H, l,H, h), then play (H,h) forever on the equilibrium path. If player 2
ever observes player 1 plays L, then she plays l in all subsequent periods.

– In period 2, if the history is (H, l, L, h), then use the public randomization device:

– With probability (1− δ)/δ, play (L, l) in every future period on the equilibrium path.

– With probability 1 − 1−δ
δ2
− 1−δ

δ , play (H,h) in every future period on the equilibrium path. If
player 2 ever observes player 1 plays L, then she plays l in all subsequent periods.

– With probability (1− δ)/δ2, type θ0 plays L for sure and type θ1 plays L with probability 1/4, and
player 2 plays h.
Following history (H, l, L, h,H, h), play (H,h) forever on the equilibrium path. If player 2 ever
observes player 1 plays L, then she plays l in all subsequent periods.
Following history (H, l, L, h, L, h), use the public randomization device again. With probability
(1− δ)/δ, play (L, l) forever. With complementary probability, play (H,h) forever on the equilib-
rium path. If player 2 ever observes player 1 plays L, then she plays l in all subsequent periods.

35Notice that under a generic prior belief, type θ1 needs to randomize between always playing H and always playing M in period
T + 1. This can be achieved since he is indifferent by construction.
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In period 0, player 2’s belief about θ deteriorates after observing H . This is true no matter whether we on-
ly count the strategic types (as strategic type θ0 plays H with strictly higher probability) or also count the
commitment type (probability of θ1 decreases from 24/25 to 10/11).

The existence of the above equilibrium also shows that the long-run player’s on-path behavior is not unique,
as there exists another equilibrium where both strategic types play H in every period and player 2 plays h if
and only if L has never been played before and plays l otherwise. One can also construct an infinite sequence
of equilibria indexed by t ∈ N such that both strategic types play H in every period aside from period t. Player
2 plays l in period t. She plays h in period s 6= t if and only if L has not been played in any periods other than
t, and plays l otherwise.

G.7 Multiple Equilibrium Behaviors when Player 1 is Impatient

I present an example in which the game’s payoff satisfies Assumptions 1, 2 and 3, player 2’s prior belief is
pessimistic but player 1 has multiple equilibrium behaviors since δ is not high enough. Consider the following
product choice game:

θ = θ1 C S

H 1, 3 −1, 2

L 2, 0 0, 1

θ = θ0 C S

H 1− η, 0 −1− η, 1
L 2,−2 0, 0

with η ∈ (0, 1), Ω ≡ {H,L}, φH be the Dirac measure on θ1 and φL is irrelevant for the gist of this example.
Player 2’s prior is given by:

µ(θ0) = 0.7, µ(θ1) + µ(H) = 0.3 with µ(H) ∈ (0, 0.1).

One can verify the condition on pessimistic prior belief and the total probability of commitment type being
small, namely (4.7), is satisfied. I construct a class of Nash equilibria when δ ∈ (1

2 ,
1+η

2 ), in which player 1’s
on-path equilibrium behaviors are different.

– Type θ0 plays L in every period.

– Type θ1 plays H in every period besides period t ∈ {1, 2, ...}, in which he plays L.

– Player 2 plays S in period 0 and period t. In period s 6= 0, t, she plays S if player 1 has played L before
in any period besides t; she plays C if player 1 has played H in every period or has only played L in
period t.

Intuitively, since player 1’s discount factor is low, strategic type θ0 has no incentive to pool with the commitment
type. Therefore, after playing H for one period, player 2’s belief becomes optimistic which leads to multiple
equilibrium behaviors.

G.8 Why λ ∈ Λ(α∗1, θ) is not sufficient when α∗1 is mixed?

I use a counterexample to show that λ ∈ Λ(α∗1, θ) is no longer sufficient to guarantee the commitment payoff
bound when α∗1 is mixed. Players’ payoffs are given by:

θ1 l m r

H 1, 3 0, 0 0, 0

L 2,−1 0, 0 0, 0

D 3,−1 1/2, 0 1/2, 0

θ2 l m r

H 0, 1/2 0, 3/2 0, 0

L 0, 1/2 0, 3/2 0, 0

D 0, 0 0, 0 0, 0

θ3 l m r

H 0, 1/2 0, 0 0, 3/2

L 0, 1/2 0, 0 0, 3/2

D 0, 0 0, 0 0, 0
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Suppose Ω = {α∗1, D} with α∗1 ≡ 1
2H + 1

2L and φα∗1 is the Dirac measure on θ1, one can apply the definitions
and obtain that vθ1(α∗1) = 3/2 and Θb

(α∗1,θ1) = {θ2, θ3}. If µ(α∗1) = 2µ(θ2) = 2µ(θ3) ≡ ρ for some ρ ∈
(0, 1/2), then λ = (1/2, 1/2) ∈ Λ(α∗1, θ1). When δ is large enough, the following strategy profile constitutes
an equilibrium in which type θ1’s payoff is 1/2 in the δ → 1 limit.

– Type θ1 plays D in every period.

– In period 0, type θ2 plays H and type θ3 plays L.

– Starting from period 1, both types play 1
2H + 1

2L.

– Player 2 plays m in period 0.

– Starting from period 1, if she observes H or D in period 0, then she plays m in every subsequent period.
If she observes L in period 0, then she plays r in every subsequent period.

In the above equilibrium, either µt(θ2)/µt(α
∗
1) or µt(θ3)/µt(α

∗
1) will increase in period 0, regardless of player

1’s action in that period. As a result, player 2’s posterior belief in period 1 is outside Λ(α∗1, θ1) for sure. This
provides him a rationale for not playing l and gives type θ1 an incentive to play D in every subsequent period,
making player 2’s belief self-fulfilling. This situation only arises when α∗1 is mixed and k(α∗1, θ) ≥ 2.
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