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Abstract

A principal speci�es time paths of knowledge transfer, e¤ort provision, and task al-

location for a cash-constrained apprentice, who is free to walk away at any time. In the

optimal contract the apprentice pays for training by working for low or no wages and by

working ine¢ ciently hard. The apprentice can work on both knowledge-complementary

and knowledge-independent tasks. We study how the nature of the production technol-

ogy in�uences the length of the optimal contract and its mix of e¤ort types, and discuss

the e¤ect of regulatory limits on how hard the apprentice can work and how long the

apprenticeship can last.
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1 Introduction

Both in medieval times and today, employees at the beginning of their careers (e.g. ap-

prentice bakers, prep cooks, law �rm associates, medical residents, post-docs) go through

a stage where they acquire knowledge and training from their employers but do enough

work that the employer gains a surplus. This raises the questions of whether the em-

ployers will specify longer training periods than strictly needed for the desired knowledge

transfer, and more e¤ort than would be socially optimal.

In this paper, we study the design of optimal (pro�t-maximizing) careers by a prin-

cipal with commitment power, who can specify time paths of knowledge transfer, e¤ort

provision, and task allocation subject to the no-servitude condition that the agent is free

to leave at any time. We assume that the agent is cash constrained, and so cannot simply

purchase knowledge from the principal. Instead, the agent will undergo a form of ap-

prenticeship, where they work hard for relatively low cash payments to compensate the

principal for training them. Following Becker (1964), we are interested in environments

in which the knowledge that the agent wishes to acquire takes the form of general human

capital: much of what bakers, doctors, and lawyers learn in their early years is fully ap-

plicable in other �rms. An important feature of our model is that the principal�s ability to

extract payment for transferring general human capital is constrained by the apprentice�s

ability to leave the �rm once trained without paying the principal back.1

In our model, the agent�s e¤ort can be split between two tasks: A �skilled task�

whose productivity rises with the agent�s knowledge, such as writing legal briefs, and an

�unskilled task�whose productivity is independent of the agent�s knowledge level �this

could either be menial work such as making co¤ee or photocopies, or fairly sophisticated

work that does not however use the knowledge that the agent is working to receive. We

�nd that the optimal contract for the principal is ine¢ cient both due to slow training (it

would be socially e¢ cient to transfer all the knowledge at once) and because the agent

will work ine¢ ciently hard to compensate the principal for this training.

The degree of e¤ort distortion at any given time is determined by the speed at which

the principal wishes to transfer knowledge, with greater e¤ort corresponding to faster

transfer. Because the time spent on early transfers delays the later ones, the principal

becomes in less of a rush as the contract unfolds and so the transfer slows and e¤ort
1A related literature studies borrowing by cash constrained agents who are free to walk away with the

�rm�s capital �e.g. Thomas and Worrall (1994), Albuquerque and Hopenhayn (2004).
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becomes less distorted. The overall length of the apprenticeship is in turn governed by

the degree of e¤ort distortion and allocation of e¤ort across tasks. If only unskilled e¤ort

is distorted above the e¢ cient level the apprenticeship lasts 1
r
years, where r is the annual

interest rate, regardless of the degree of e¤ort distortion. If skilled e¤ort is distorted the

apprenticeship lasts less than 1
r
years, with a greater distortion in skilled e¤ort leading to

a shorter apprenticeship. Because the optimal contract speci�es ine¢ ciently high e¤ort

together with ine¢ ciently lengthy training, government regulation may in principal be

desirable.

To isolate the principal�s strategic (rent-extraction) motive for distorting e¤ort and

transferring knowledge ine¢ ciently slowly, in our baseline model we abstract away from

bounds on the rate of learning. As we shall see, the strategic motive on its own leads

to potentially very low training rates. Thus in many cases of interest it may be this

strategic motive, rather than a constraint on the agent�s learning rate, that accounts for

lengthy apprenticeships. Additionally, this strategic motive appears to be consistent with

the motivating examples provided in the following section, where many novices spend a

considerable share of their time on menial tasks, as predicted by our model, rather than

on learning new skills.

We do however extend the model to allow for a �xed upper bound on the speed of

knowledge transfer. We also extend the model to include, variously: training costs, certi-

�cation requirements, availability of cash to the agent, and regulations. These extensions

expand the applicability of the model and suggest that our main �ndings are robust. Fur-

ther, we believe that our main insights will extend to models where the agent needs to

exert skilled e¤ort to be e¤ectively trained, but optimal training with such �learning-by-

doing�poses additional control-theoretic complications that we do not tackle here.

Ours is the �rst model to consider a dynamic e¤ort-for-knowledge exchange, and to

derive the resulting time-path of excessive e¤ort. More generally, we contribute to the

study of moral hazard with an endogenously evolving participation constraint.

There is an extensive literature focusing on worker training with general human cap-

ital, but this literature abstracts away from e¤ort choice and a fortiori from the time

path of e¤ort. In addition, Katz and Ziderman (1990), Acemoglu (1997), Acemoglu and

Pischke (1998), Malcomson et al. (2003) all assume that knowledge transfer is a one-time

instantaneous event. These papers focus on how market frictions may allow training to

occur in equilibrium even despite the di¢ culties in appropriating the gains from providing
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general knowledge. Garicano and Rayo (2017) also suppresses e¤ort choice but, as we do,

allows for gradual knowledge transfer and shows that even absent market frictions, the

principal can pro�t by arti�cially stretching the knowledge transfer over time.2

There is also an extensive literature on the e¤ect of uncertainty about the worker�s

ability, which can lead to either more or less e¤ort than in the �rst best, as in Landers et al.

(1996), Holmström (1999), Dewatripont et al. (1999), Barlevy and Neal (2017), Bonatti

and Hörner (2017), and Cisternas (2017). All of this work abstracts from knowledge

transfers.

The remainder of the paper is organized as follows. Section 2 presents motivating

examples, Section 3 sets up the model, Sections 4 and 5 derive the solution, Section 6

presents comparative statics, and Section 7 contains extensions. All proofs are in the

Appendix.

2 Motivating examples

Work-for-training arrangements are common in a wide range of industries. Frequently,

in these arrangements the apprentice experiences long hours and heavy workloads, and

initially spends a large share of her time on menial work, in many cases unrelated to the

skills she wishes to acquire from the expert. Moreover, the apprentice is often paid low

(sometimes even zero) wages while being trained.

To start with, consider the restaurant industry. Star chefs posses coveted knowledge

that aspiring chefs wish to acquire (e.g. Gergaud et al., 2017). Once a chef is trained, she

can opt to work on her own and keep all her earnings; as a result, master chefs can only

obtain rents from their apprentices before they are fully trained. In upscale restaurants,

apprentices endure years of grueling work while advancing through well-de�ned career

stages. For example, over seven-plus years, young cooks at Le Gavroche restaurant in

London, under the tutelage of world-renowned chef Michel Roux Jr., gradually progress

from doing, as Roux himself warns, �the jobs no one wants�(under the Apprentice po-

sition) to �workhorse �prep work (the Commis position) and eventually, if successful, to

supervising activities until becoming a Head Chef, either at Le Gavroche or elsewhere.3

2Hörner and Skrzypacz (2016) study gradual information revelation by a privately informed agent
about her competence; their model has neither e¤ort nor human capital.

3As noted by Verena Lugert, a former employee of the famed Gordon Ramsey: �[Aspiring chefs] pay
into a blood-sweat-and-tears account and hope for a return in form of titles: Demi Chef, Chef de Partie,
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Memorable examples of menial work can be found in the documentary Jiro Dreams of

Sushi, where Jiro, arguably the world�s top sushi chef, takes roughly ten years to train his

apprentices. A large share of their time is devoted to such monotonous tasks as cleaning

and preparing seafood �including massaging octopus meat for 40 to 50 minutes per batch

� and toasting seaweed by hand. Apprentices spend months on some of these tasks;

arguably far beyond the point where they have been mastered. Thus, rather than merely

training his novices, the master appears to be strategically extracting rents from them in

exchange for his knowledge.

Apprenticeships date back to at least the European trade guilds starting in the 12th

century, where they served as the main source of training for artisans and merchants

(Jovinelly and Netelkos, 2007). At the same time, they gave rise to opportunities for

exploitation: �Master craftsmen and tradesmen took in young learners and gave them

menial tasks that make �ling and photocopying look plush� (Spradlin, 2009). Adam

Smith considered industrial-revolution apprenticeships, which usually lasted seven years,

to be excessively long and poorly paid. He viewed this arrangement as a response to the

agent�s liquidity constraints: �During the continuance of the apprenticeship, the whole

labour of the apprentice belongs to his master. In the mean time he must, in many cases,

be maintained by his parents or relations, and in almost all cases must be cloathed by

them�... �They who cannot give money [to the master], give time, or become bound for

more than the usual number of years; a consideration which... is always disadvantageous

to the apprentice�(Smith , 1872, p. 93).

During the industrial revolution, long hours were commonplace and even a cause for

public concern. Lane (1996) notes that a 14-hour workday was typical, with frequent

cases of even longer hours: �Shoemakers also theoretically worked a 14-hour day, but

[apprentice] George Herbert�s memories recorded that he often worked �for three weeks

together from three or four in the morning till ten at night��. Just as with current-day

apprenticeships, 17th and 18th century apprenticeships commonly began with a period

of menial work: Ayres (2014) notes, �In acquiring a craft skill a youth was put through

an almost military discipline. After one or two years engaged in menial tasks: fetching

and carrying, sweeping the workshop �oor or lighting the stove, an apprentice woodcarver

[etc.] Everything is worth it: Dedication. Burn scars. Ego-Devastation. And checking in to a parallel
universe [where] �Only lazy [people] need sleep!�[and] working eight hours is called �brie�y coming in for
half a day.��See www.micheleroux.co.uk/working.html and Lugert (2017).
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might be granted the privilege of learning to sharpen tools�(p. 350).4

In modern times, a number of high-end professions, including medicine, scienti�c re-

search, and professional services (e.g. law, accounting, banking, architecture), exhibit

some of the same features. In the medical profession, residencies constitute a form of

mandatory apprenticeship. As noted by Park (2017), residencies are �structured to serve

the dual, often dueling, aims of training the profession�s next generation and minding the

hospital�s labor needs�, with hospitals constantly struggling to �stay on the right side of

the boundary between training and taking advantage of residents.�5 In the U.S., residents

typically endure a grueling 80-hour work week; in contrast, less than a quarter of fully

trained doctors work for more than 60 hours a week (e.g. Landrigan et al., 2004, Ameri-

can Medical Association, 2015). A signi�cant portion of a resident�s shift is usually spent

on menial tasks, known in the medical profession as �scut�work, such as inserting IV

lines, wheeling patients around, and performing lengthy administrative work, which are

all valuable to the hospital but provide limited learning opportunities for the apprentices

(Jauhar, 2015).6

In science careers, postdoctoral positions are widely used and, increasingly, a cause

of public concern (e.g. Stephan and Ma, 2005, Stephan, 2013). Postdocs, especially in

the life sciences, spend years working long hours (with an average 53-hour week) at low

wages (around $16/hour in 2012) in the hope of gaining skills and access to a tenure-track

job.7 Thanks to an abundance of young aspiring scientists, many postdoc employers are

able to train their postdocs very slowly, all the while using them as a form of cheap

labor: �many postdoctoral scholars �especially those not funded by training grants or

fellowships �are but poorly paid research assistants who receive little mentoring and have

few opportunities to develop an independent research agenda.�(Stephan, 2013, p. 245.)

In professional service �rms, where young professionals seek to acquire knowledge from

the �rms�partners, long hours and heavy workloads are common as well (e.g. Coleman

4For contemporary examples of harsh apprenticeships, see UK Dept. for Business, Innovation and
Skills (2013).

5Indeed, �[l]ong hours and hard work have been features of medical training since the modern residency
program had its beginnings at the Johns Hopkins Hospital in Baltimore in the late 19th century�(Jauhar,
2015, New York Times).

6Schwartz et al. (1992) �nd that in-hospital hours of surgical residents averaged 98 per week, with
hours slightly declining over time from around 100 hours for interns (�rst-year residents), 97 for junior
residents, and 95 for chief residents. About 20 hours a week were spent on menial tasks.

7As noted by Stephan (2013): �If, instead, faculty members were to sta¤ their labs with sta¤ scientists,
they would have to pay 50�100 per-cent more than they pay to a postdoc" (p. 245).
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and Pencavel, 1993, Landers et al., 1996, Barlevy and Neal, 2017). Not unlike medieval

apprentices and cooking trainees, workers in the early stages of their careers are frequently

assigned mind-numbing grunt work (e.g. Maister, 1993). A Financial Times article notes:

�There is no simple �x for an entrenched culture of overwork at professional services �rms.

The fact that an entry-level analyst at a Wall Street bank is required to sacri�ce his or her

personal life to the job �sitting at a desk until dawn, eating order-in food and correcting

invisible errors in spreadsheets �has been built into the system�(Gapper, 2014).8

Lastly, a contemporary case of harsh apprenticeship, with conditions reminiscent of

industrial-revolution apprenticeships, is that of manicurists in the New York City area.

As documented by Maslin Nir (2015), �workers routinely work up to 12 hours a day,

six or even seven days a week [...] enduring all manner of humiliation�. Rampant wage

violations (wages below the legal minimum, tip and wage skimming, no overtime pay) have

kept wages very low, with $30-$40 per day being typical. Furthermore, at the beginning

of a typical career, aspiring manicurists �must hand over cash �usually $100 to $200, but

sometimes much more �as a training fee. Weeks or months of work in a kind of unpaid

apprenticeship follows.�As they acquire skills and pay their dues through menial work,

they eventually advance through various career stages: � �Little job�is the category of the

beginners. They launder hot hand towels and sweep toenail clippings. They do the work

others do not want to do [...] �Medium Job�workers do regular manicures [...] �Big Job�

employees are veterans, experts at sculpting false nails out of acrylic dust.�

3 Model

A principal (she) and an agent (they) interact over an in�nite horizon. Both players

have quasilinear utility in money and discount future payo¤s at rate r. Time t runs

continuously. At time t; the agent combines a stock of knowledge Xt 2
�
0; X

�
and

two sorts of e¤ort at; bt to produce output yt: E¤ort at is �skilled,� meaning that its

productivity is increasing in the agent�s knowledge Xt. E¤ort bt is �unskilled,�meaning

that its productivity is independent of Xt. Let lt := at+ bt denote total e¤ort. We assume

8While our model helps account for some aspects of these professions, it fails to account for several
others � such as �rms usually o¤ering multiple career paths, many young professionals not making
partner, and many leaving their �rms before completing their training. Barley and Neal (2017) explain
these patterns as the result of the �rm learning about the agent. Professional service �rms also tend to
pay higher wages to their novices than other careers.
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that both at and bt are non-negative and lt is bounded above by a constant, which we

normalize to 1.

Thus total output yt is given by

yt := f(Xt; at) + g(bt);

and exerting e¤ort lt imposes cost ct := c (lt) � 0 on the agent.

Assumption 1

1. f and g are twice di¤erentiable with fX > 0; fa � 0; and g0 � 0.9

2. c is twice di¤erentiable with c0 � 0:

Let v (X) := maxa;b�0 [f (X; a) + g (b)� c (a+ b)] denote �rst-best surplus given X.

Since f is strictly increasing inX; so is v. We assume throughout that limX!1 v (X) =1:

The agent starts with some exogenous stock of knowledge X 2
�
0; X

�
: The agent�s

stock of knowledge can never decrease, and the only way it can increase is by transfers from

the principal. In our baseline model, the principal is able to costlessly and instantaneously

increase the agent�s knowledge to any level up to X. (Section 7 shows that the results are

qualitatively unchanged if the principal faces a cost of training the agent or if there is a

�xed upper bound on the rate of knowledge transfer, provided this bound is not too tight.)

The agent has no other way to obtain knowledge. As a result, the principal can select any

weakly increasing function Xt with range in
�
X;X

�
: Let X1 := limt!1Xt: When X1

is reached in �nite time, we say that the agent graduates at time T = inf ft : Xt � X1g :
Otherwise, we set T =1 and say that the agent never graduates.

The agent has access to the same output technology when working for the expert and

when working on their own. The agent also has access to an alternate employment that

pays v; with 0 < v < v
�
X
�
; so that total surplus is maximized by fully training the

agent. As a result, if the agent walks away with knowledge X; they obtain instantaneous

surplus max fv; v (X)g ; and since their knowledge will be constant from then on, their

outside option at date t is 1
r
max fv; v (X)g : In addition, the agent has access to a savings

9Note the we have assumed that fX(X; a) > 0 even when a = 0. To justify this, imagine that the
�rst a0 > 0 units of skilled e¤ort are costless to the agent (for example, because they enjoy a degree of
intrinsic motivation). We can then assume, without loss, that the agent exerts at least a0 units of skilled
e¤ort, and reinterpret a as skilled e¤ort above a0:
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account that pays interest r; but has no capital up-front and has no ability to borrow so

they cannot purchase knowledge from the expert at date 0.

At time 0; the principal o¤ers the agent an employment contract, denoted S =

(T; fXt; at; bt; wtgTt=0), consisting of a graduation date T and a path that speci�es for

each t 2 [0; T ] a knowledge stock Xt, e¤ort levels (at; bt), and a money transfer wt from

principal to agent, which we call a wage. Between dates 0 and T; all output net of wages

belongs to the principal. After date T; the agent works on their own and keeps all out-

put.10 While the principal can commit to this contract, the agent can walk away at any

time; if the agent does so, the principal does not hire them back.

Given contract S; the principal�s and agent�s continuation values from date t � T

onward are

�t (S) =

TZ
t

e�r(��t) [y� � w� ] d� and (1)

Ut (S) =

TZ
t

e�r(��t) [w� � c� ] d� + e�r(T�t)
1

r
v (XT ) ;

where 1
r
v (XT ) is the �prize�received by the agent upon graduation.

The principal can select any contract she desires subject to two constraints. First,

a participation constraint for the agent requiring that, at each date t � T; the agent�s

continuation value is at least as high as their outside option:

Ut (S) �
1

r
max fv; v (Xt)g : (2)

Second, a liquidity constraint for the agent requiring that, up to any given date t � T ,

the agent�s cumulative earnings are non-negative in present value:

tZ
0

e�r�w�d� � 0: (3)

This constraint captures the assumption that the agent starts the relationship with no

10Contracts where the agent continues to work for the principal after T are weakly dominated because
once the knowledge transfer has ended, the agent demands wages at least equal to output. Contracts
where the agent works on their own during some periods prior to T are strictly dominated because this
delays the principal�s pro�t �ow.
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money and cannot borrow.

The principal�s problem is

max
T;fXt;at;bt;wtgTt=0

TZ
0

e�rt [yt � wt] dt (4)

subject to (2) and (3)

and subject to at; bt � 0; at + bt � 1; and Xt 2
�
X;X

�
non-decreasing in t. We say that

a contract is optimal if it is a solution to this maximization problem.

Note that we can model situations where the principal must pay the agent a strictly

positive subsistence wage with the same formalism: if the required wage is w, we can de�nebf := f�w, by := y�w, and bv := v�w and model the situation using (1), (2), and (3). To
allow for this interpretation of the model, we will allow by and bv to be negative. Thus the
wages wt in our model should be thought of as wages in excess of the minimum, though

we will simply call them �wages� in what follows. Note that with this interpretation of

v; we should not expect the constraint v
�
X
�
> v to be satis�ed when w is very large.

4 Preliminaries

In Section 4.1 we derive general properties that any undominated contract must satisfy,

without yet verifying that an optimal contract exists. In Section 4.2 we use these proper-

ties to formulate the principal�s problem as one of optimal control and then verify that a

maximum in (4) is indeed attained. Section 5 uses additional assumptions to show that

the optimal contract is unique and then to characterize its length and e¤ort path.

4.1 General properties of undominated contracts

Lemma 1 tells us that the principal can obtain a strictly positive pro�t by contracting

with the agent and that she need only consider contracts that transfer all knowledge in

�nite time and pay 0 wages. Let W1 :=
1R
0

e�rtwtdt be the present value of the agent�s

wages.11

11Recall that wages here can be interpreted as wages above subsistence or a legally required minimum.
Lemma 1 shows that Lemmas 1 and 2 in Garicano and Rayo (2017) generalize to the case where the
agent exerts e¤ort and has an ex-ante outside option with arbitrary value.
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Lemma 1

1. The principal can obtain a strictly positive pro�t by contracting with the agent.

2. Any contract with W1 > 0 is strictly dominated by a contract with 0 net payment,

and any contract where the agent does not acquire all of the principal�s knowledge in

�nite time is strictly dominated by a contract where they do. Moreover, it is without

loss to require that wt = 0 at all times t:

To gain intuition for the �rst part of this lemma, note that the principal can train

the agent to an intermediate level X 0 2 (X;X) such that v(X 0) > v; and induce them to

work at zero wages for some (possibly short) period of time in exchange for the remaining

knowledge at the end of the contract.

To gain intuition for the second part of this lemma, recall that the e¢ cient outcome

would be for the principal to immediately transfer all of her knowledge to the agent so that

the agent could work on their own. Because the agent is credit-constrained this does not

occur, and instead the agent works for the principal while being trained. The key to the

lemma is that any contract with W1 > 0 can be improved by a contract with an earlier

graduation date, the same e¤ort path up to graduation, 0 wages, and the same initial value

for the agent. Because the new contract replaces wages with a more valuable �nal reward,

the agent is less tempted to walk away while being trained, and so the new contract meets

all of the participation constraints. Then because the two sides have the same discount

rate, and it is e¢ cient to transfer knowledge earlier, the new 0-wage contract has higher

joint surplus, and since the agent is indi¤erent between the two contracts the new one

makes the principal strictly better o¤. In�nite-length apprenticeships are dominated

because they would require a net payment to the agent, and the principal can improve

a �nite-length apprenticeship that doesn�t transfer all knowledge by trading the rest of

it for some more work. Moreover, it is without loss to set wages to be zero at all times,

because there is no gain to the principal making a loan to the agent.

The next lemma states two additional simplifying properties that we can impose when

looking for the optimal contract: If the participation constraints do not hold with equality

the principal can do better by increasing Xt until they do, and the principal prefers to

allocate total e¤ort lt = at + bt between the two tasks to maximize output.

Let y(X; l) := maxa2[0;l] f (X; a)+g (l � a) denote the maximum possible output given

knowledge and e¤ort levels (X; l):
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Lemma 2 Any contract is weakly dominated by a contract that at all times sets the agent�s

participation constraint to hold with equality and allocates total e¤ort lt = at + bt across

tasks so as to maximize output, so that yt(Xt; at; bt) = y(Xt; lt).12

For intuition, note that since output is strictly increasing inXt; and knowledge transfer

is costless, the principal wishes to raise Xt to the point where the agent�s participation

constraint holds with equality. In addition, since the allocation of total e¤ort across tasks

does not a¤ect the agent�s utility, it is optimal for the expert to choose an allocation

that maximizes output. Notice also that any contract with v > v(Xt) for some t can be

improved by increasing Xt to v�1(v) over the time interval where v > v(Xt); as a result,

we may assume without loss that v (X) � v and write the agent�s ex-ante outside option

more compactly as 1
r
v (X).

The principal�s problem therefore simpli�es to selecting a �nite graduation date T and

time paths of knowledge and total e¤ort before this date. Her problem is

max
T;fXt;ltgTt=0

TZ
0

e�rt y(Xt; lt)dt (5)

subject to

Ut = e�r(T�t)
1

r
v
�
X
�

| {z }
discounted �graduation prize�

�
TZ
t

e�r(��t)c (l� ) d�| {z }
�e¤ort tax�

=
1

r
v (Xt)

and subject to 0 � lt � 1; Xt 2
�
X;X

�
, and Xt non-decreasing in t. We denote the

solution to this problem by (T �; fX�
t ; l

�
t gT

�
t=0):

Proposition 1 Every optimal contract (T �; fX�
t ; l

�
t gT

�
t=0) is sequentially optimal: If at any

given time t < T � the agent�s stock of knowledge is X�
t ; then the truncated contract�

T �; fX�
s ; l

�
sgT

�
s=t

�
maximizes pro�ts from time t onward.

This result shows that even though the principal has commitment power, she does not

make commitments that she would later prefer to undo. For this reason it is su¢ cient

for the principal to be able to commit to spot contracts.13 This is because the agent�s
12The contract is strictly dominated if it fails to satisfy any of these two properties over a positive-

measure fraction of time.
13In a discrete time model it would be su¢ cient for the principal to commit at the beginning of each

period to transfer knowledge at the end of it, conditional on the agent exerting the agreed e¤ort.

12



dynamic participation constraint is always binding, so any feasible change the principal

would want to make at some time t could not make the agent worse o¤ from then on. Thus

any potential improvement to the contract could be implemented ex-ante. Proposition

1 implies that the current stock of knowledge determines the path of future e¤ort and

the speed at which knowledge is transferred. We use this observation later to provide

intuition for the optimal e¤ort and knowledge paths. Note that at this point we have not

yet proven that an optimal contract exists; we will do so in the next section.

4.2 Optimal control

It is convenient to state the principal�s problem as an optimal control problem in which the

principal�s control variables are the agent�s e¤ort levels fltgTt=0 and the choice of terminal
time T; the state variable is the agent�s continuation value, measured as a �ow payo¤,

ut := rUt = v (Xt) ;

with
�
ut = r [ut + c (lt)], and the agent�s knowledge stock Xt is given by � (ut) := v�1 (ut) ;

so that the agent�s participation constraint is met with equality. We assume that lt has

bounded variation.

Recall that the principal is able to instantaneously increase X to any level no greater

than X: Total surplus would be maximized if the principal instantaneously transferred all

her knowledge to the agent, that is if X0 = X, but in that case the principal would get

no bene�t from the knowledge transfer. As we will see, in some cases the principal does

want to make an instantaneous knowledge gift to the agent, but this will only occur at

the initial time.14 The principal does this by choosing a u0 2 [v (X) ; v
�
X
�
]:

Note that the state equation
�
ut = r [ut + c (lt)] says that the value of the knowledge

gained at time t equals the total opportunity cost of working for the principal, which

includes both the labor cost c and the loss from postponing the outside option.

14An example would be a summer crash course at the beginning of a consulting career.
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The optimal control problem is:

max
u0;T;fltgTt=0

TZ
0

e�rt y (� (ut) ; lt) dt (6)

subject to

u0 2 [v(X); v
�
X
�
]; uT = v

�
X
�
;
�
ut = r [ut + c (lt)] ;

0 � lt � 1:

Let �t denote the co-state variable, form the Hamiltonian H = e�rt y (� (ut) ; lt) �
�t

�
ut; and adjoin the e¤ort constraints with multipliers �t; 
t to form the Lagrangian L =

H + �t [1� lt] + 
tlt:

Lemma 3 A solution to problem (6) exists. Moreover, the following system is necessary

for optimality:

�
ut = rut + rc (lt) ;

�
�t = @L=@ut (7)

@L=@lt = 0 (8)

�t; 
t � 0; �t [1� lt] = 
tlt = 0 (9)

HT = 0; �0 � 0; �0 [u0 � v (X)] = 0: (10)

Expression (7) contains the state and co-state evolution equations; (8) contains the

�rst-order condition for lt; (9) contains the complementary slackness conditions for the

Lagrange multipliers �t; 
t; and (10) contains the transversal condition for the terminal

time T; where �0 is the multiplier for the constraint u0 � v (X) :15 In later sections

we impose additional structure on the production functions f; g that guarantee that the

solution to the necessary conditions is unique and hence su¢ cient.

We solve the optimal control problem by starting from an arbitrary terminal time T ,

where the agent has all knowledge so that the state is uT = v
�
X
�
, and then running time

in reverse. At each time, the state determines the optimal e¤ort level, and the state and

e¤ort level combined determine the time derivative of the state. As time moves backward,

the state v (Xt) continues to fall until either: (1) the state reaches the agent�s ex-ante

outside �ow payo¤ v (X) ; in which case v (X0) = v (X) and there is no initial knowledge

15We omit the constraint u0 � v
�
X
�
here because it cannot bind.
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gift, or (2) the principal would rather give the agent an initial knowledge gift and start

employing them at the current time instead of having a longer apprenticeship with an

initially less trained apprentice.

5 Solution

We begin by imposing further assumptions on the output and cost functions in addi-

tion to those contained in Assumption 1. As we will see, these assumptions guarantee

that the optimal contract is unique and that agent exerts positive e¤ort throughout the

apprenticeship.

Assumption 2

1. fXa > 0 and faa � 0; g0 > 0 and g00 � 0; either faa < 0 or g00 < 0, and

limX!1 f(X; 1) =1.

2. c00 > 0; c0 (0) = 0; and c0 (1) > @
@l
y(X; 1):

Let lFB(X) := argmaxl fy(X; l)� c(l)g be the �rst-best level of total e¤ort, which
is unique from Assumption 2, and let aFB(X) := argmaxa

�
f(X; a) + g(lFB(X)� a)

	
be the corresponding �rst-best level of skilled e¤ort, which is also unique. Finally, let

a (X; l) := argmaxa2[0;l] ff(X; a) + g(l � a)g denote the output-maximizing skilled e¤ort
given knowledge and total e¤ort levels (X; l) :16

Now de�ne the knowledge premium given knowledge X and skilled e¤ort a as

�(X; a) :=
fX (X; a)

fX (X; aFB (X))
:

Because fX
�
X; aFB (X)

�
= v0(X) from the envelope theorem, this premium measures the

marginal impact of knowledge on the agent�s productivity inside the relationship relative

to its impact on the agent�s outside option. As we shall see, the knowledge premium

plays a central role in determining both the optimal e¤ort levels and the optimal contract

length. Notice in particular that for any given a, an increase in X that raises the agent�s

outside option v (X) by one unit, raises current output by �(X; a) units.

16Note that: (1) limX!1 v (X) =1 as per our maintained assumption; (2) the e¢ cient level of total
e¤ort lFB (X) is strictly positive and less than 1; and (3) @

@ly(X; l) = maxffa(X; a); g0 (l � a)g; so in
particular @y

@l exists.
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Before we characterize the optimal contract, it is useful to describe some properties of

the set of payo¤ vectors that can be implemented by some choice of contract. The agent�s

overall payo¤ U = 1
r
v (X0) ; where X0 is the initial knowledge level inclusive of any gift,

must be at least their ex-ante outside option 1
r
v (X) ; so U 2 [1

r
v (X) ; 1

r
v
�
X
�
]: Let �� (U)

denote the maximum feasible pro�t for the principal when the agent�s initial payo¤ is U 2
[1
r
v (X) ; 1

r
v
�
X
�
] and the agent�s participation constraint holds with equality at all times

(so no further knowledge gifts). Call the set fU; �� (U) such that U 2 [1
r
v (X) ; 1

r
v
�
X
�
]g

the feasible payo¤ frontier.

Lemma 4 Along the feasible-payo¤ frontier the principal�s (shadow) marginal cost of

rasing U is

�d�
� (U)

dU
= 1� r

Z T �

0

�(X�
t ; a

�
t )dt; (11)

where T �; X�
t ; and a

�
t are chosen to maximize pro�ts given U:

To understand (11), �x U and pick a feasible contract that delivers pro�t �� (U) and

denote its length by T . Next, slightly lengthen this apprenticeship by keeping the agent

until T + dT; while specifying the same e¤ort as before up to T and �rst-best e¤ort over

the interval dT; so that the agent gives up an additional yFB
�
X
�
dT units of output. Set

dT = erT=yFB
�
X
�
so that, measured in period 0 units, the agent�s loss is e�rTyFB

�
X
�
dT

= 1 (that is dU = �1). This modi�cation gains the principal 1 in present value (captured
by the �rst term on the right-hand side of (11)), but since the agent is now more tempted

to walk away, the principal must reduce the agent�s knowledge, and hence the agent�s

productivity, between times 0 and T: This e¤ect is captured by the second term on the

right-hand side of (11). Speci�cally, because at time T the agent incurs a loss of 1 unit

measured in present value, at each time t before the end of the apprenticeship, to keep

the agent from walking away, the principal must lower the agent�s outside option by 1

unit, which lowers the agent�s productivity by r�t units, both measured in present value.

Hence, the overall change in pro�t from the standpoint of time 0 is 1� r
R T
0
�tdt.

Figure 1 depicts the feasible payo¤ frontier for the case where the total knowledge

available for sale (X � X) is large. When X0 = X (that is, all knowledge is gifted) the

principal earns zero pro�ts and T = 0. As U falls, since there is more knowledge left to

sell the contract grows longer and the marginal cost �d��(U)
dU

falls, eventually becoming

negative. Intuitively, a lower U means that the principal can retain the agent longer; but it

also means that the agent has a lower average productivity throughout the apprenticeship.
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0

T *

slope = − 1

Figure 1: Feasible payo¤ frontier
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In the decreasing portion of the frontier the �rst e¤ect dominates (and so a lower U helps

the principal), whereas in the increasing portion the second e¤ect dominates.

Since knowledge can always be gifted, the Pareto frontier is the portion of the feasible-

payo¤ frontier to the right of its peak. Notice also that the feasible payo¤ frontier when

the agent has initial knowledge X 0 > X is simply a truncated version of this one where

the agent�s value must be at least 1
r
v (X 0) :

Recall from Proposition 1 that every optimal contract is sequentially optimal. Thus,

as time goes by and the agent gains more knowledge, the continuation payo¤s Ut and

�t = �� (Ut) move downward along the Pareto frontier until the agent is fully trained.

Moreover, since (11) holds for all U; the (shadow) marginal cost of training the agent at

each time t along the way is

� d�� (U)

dU

����
U=Ut

= 1� r

Z T �

t

��d� : (12)

This marginal cost grows over time and is equal to 1 at the terminal time. That is, at the

instant where the agent �rst acquires all knowledge, utility becomes transferable across

players because the liquidity constraint stops binding.

It is also useful to express �d��(U)
dU

directly in terms of the agent�s promised value U .

To do so, let t (U) denote the time at which the agent�s continuation utility is U , and let

l (U) := lt(U) denote the e¤ort level at this time. Upon changing the variable of integration

in (12), we obtain17

�d�
� (U)

dU
= 1� r

1
r
v(X)Z
U

�t(Z)
rZ + c (l (Z))

dZ:

By di¤erentiating this expression with respect to U , we obtain the second derivative of

the payo¤ frontier:
d2�� (U)

dU2
= �

�t(U)

U + 1
r
c (l (U))

< 0: (13)

We now characterize the (unique) optimal contract in two theorems. Theorem 1

characterizes the e¤ort and knowledge paths:

17To see why, notice that the state equation in (7) implies that t0 (U) = 1=
�
U = 1= [rU + c (l (U))] :

Moreover, �d��(U)
dU = 1 � r

R T
0
�tdt = 1 � r

R v(X)=r
U �t(Z)t

0 (Z) dZ:
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Theorem 1

1. The optimal e¤ort path is e¢ cient at the terminal time T �, and exceeds the e¢ cient

level at all earlier times, that is l�T � = lFB
�
X
�
and l�t > lFB (X�

t ) for t < T �:

2. Moreover the optimal knowledge and total e¤ort paths uniquely satisfy, for all t � T �;

1

r

d

dt
v (X�

t ) = v (X�
t ) + c (l�t ) (14)

and

c0 (l�t )
@
@l
y (X�

t ; l
�
t )| {z }

E¤ort distortion

= min

8>>>><>>>>:
1

1� r
R T �
t

��d�| {z }
Target distortion

;
c0 (1)

@
@l
y (X�

t ; 1)| {z }
Maximum feasible distortion

9>>>>=>>>>; ; (15)

where v (X�
T �) = v

�
X
�
and �� = �(X�

� ; a
�
� ) is the knowledge premium at � :

Equation (14) is the state equation. It tells us that the present value of the knowl-

edge acquired at date t must equal the agent�s total opportunity cost of working for

the expert. Equation (15) characterizes the ratio c0=(@y=@l); which equals 1 in the

�rst best. Absent an upper bound on the agent�s total e¤ort, the principal would set

c0= (@y=@l) =
�
1� r

R T �
t

��d�
��1

; when this is not feasible she sets it as high as possible.

Notice also that the target distortion strictly decreases over time.

To gain intuition for this result, consider an optimal contract with terminal time T �:

Suppose the agent already has knowledge Xt and consider how much e¤ort lt to ask of the

agent over the next unit of time. The marginal bene�t of higher e¤ort is the gain in current

output @y=@l, and since the principal pays for this e¤ort with training, the marginal cost

of higher e¤ort is �d��(Ut)
dUt

� c0. Hence, at the terminal time where �d��(Ut)
dUt

= 1; the

principal internalizes the full e¤ort cost, and therefore sets e¤ort equal to the �rst best.

At all times before then, training the agent is cheap (as it raises the agent�s productivity

throughout the remainder of the apprenticeship). As a result, the principal only partly

internalizes the e¤ort cost, and therefore optimally distorts e¤ort above the �rst best.

Finally, from (12) we can see that provided the e¤ort upper bound is slack, c0= (@y=@l) =

�1=d�
�(Ut)
dUt

=
�
1� r

R T �
t

��d�
��1

.

Theorem 2 characterizes the (unique) optimal initial knowledge level and contract

length:
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Theorem 2 The optimal initial knowledge level X�
0 and contract length T

� are unique.

Moreover, for all X, there is a threshold 0 < � <1 such that

(a) if X �X > �, then there is a positive knowledge gift (X�
0 > X) and r

Z T �

0

�tdt = 1

(b) if X �X � �; then there is no knowledge gift (X�
0 = X ) and r

Z T �

0

�tdt � 1;

where �t = �(X�
t ; a

�
t ):

To understand this result, recall that when selecting the initial gift, the principal faces

a trade-o¤ between starting the apprenticeship with a more productive agent and being

able to hold on to the agent for longer. Consider �rst the case where the total knowledge

available for sale (X �X) is su¢ ciently large that the peak of the feasible-payo¤ frontier
occurs at a knowledge level strictly higher than X. In this case, the principal simply

gifts enough knowledge to reach the peak at time 0, and gradually sells the remaining

knowledge starting from there. Since �d��(U)
dU

= 0 at the peak, equation (12) tells us that

T � is just large enough that a 1 unit increase in revenue from keeping the agent slightly

longer at the end of the apprenticeship, while exerting �rst-best e¤ort, is exactly o¤set by

the lost revenue r
R T �
0

�tdt due the need to lower the agent�s knowledge between 0 and T
�.

When instead X �X shrinks to the point where the feasible-payo¤ frontier always has a

negative slope, then the ex-ante participation constraint U � 1
r
v (X) binds, and here the

contract begins with no gift and has a shorter length than before.

Recall from Theorem 1 that the unconstrained e¤ort level is given by c0(lt)
@
@l
y(Xt;lt)

=

�1=d�
�(Ut)
dUt

: Then, when there is a knowledge gift we have �d��(U0)
dU0

= 0; and so the time

0 target e¤ort distortion is in�nitely large. Thus, if it were feasible, the principal would

prefer to ask the agent to initially work in�nitely hard for an in�nitely small length of

time to pay for the initial knowledge transfer, but as this is not possible the principal

instead transfers the initial knowledge for free. Notice �nally that the contract becomes

longer as r falls. This result, obtained by Garicano and Rayo (2017) for the special case

with zero e¤ort, follows from the fact that when players become more patient knowledge

becomes more valuable, so the agent is willing to work longer to acquire it.

The following corollary describes a general link between the type of e¤ort distortions

and the contract length:
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Corollary 1 When the agent�s ex-ante participation constraint is slack and the contract

always speci�es an e¢ cient level of skilled e¤ort, then T � = 1
r
; otherwise T � < 1

r
:

This result is immediate: e¢ cient skilled e¤ort at time t means that �t = 1: The

optimal length therefore satis�es r
R T �
0

dt = rT � = 1: Conversely, since total e¤ort is

never ine¢ ciently low and e¤ort is always allocated e¢ ciently, �t is never less than 1, so if

it is ever greater than 1 we have
R 1

r

0
�tdt >

1
r
so T � < 1

r
: In Section 6 we provide examples

that illustrate each of these cases.

Pareto-e¢ cient contracts. Recall that the principal�s optimal contract is sequentially

optimal (Proposition 1). Hence in this contract, as time goes by, the players�continua-

tion payo¤s trace the Pareto frontier. Consequently, any Pareto-e¢ cient payo¤s (�; U)

are uniquely implemented by an initial knowledge gift to raise the agent�s knowledge to

v�1(rU); followed by the principal�s optimal contract when the agent starts with that

knowledge level. That is, every Pareto-e¢ cient contract is simply a truncated version of

the principal�s optimal contract, where the agent begins the contract farther along and

therefore endures a shorter apprenticeship. Notice also that along the Pareto frontier, as

U grows and � falls the e¤ort distortion decreases, so total surplus grows monotonically,

and reaches the �rst-best level when � falls all the way to 0.

6 Comparative Statics

Here we study how the relative productivity of the two tasks and the curvature of the

cost function impact the agreement. We begin by considering the two special cases where

the agent devotes all their e¤ort to one of the tasks. We then turn to the intermediate

case where the agent works on both tasks.

A. Unskilled e¤ort only. Suppose fa(X; 0) < g0(1) so at each time the agent exerts

e¤ort only on the unskilled task. Suppose further that X is large enough that the agent�s

ex-ante participation constraint is slack. Since at all times a�t = aFB (Xt) = 0; the

knowledge premia ��t are all 1; and the optimal contract length is T
� = 1

r
from Corollary

1 (for example, when the annual interest rate is 5%; T � is 20 years). Theorem 1 then

implies that at all times before the terminal time, unskilled e¤ort exceeds the �rst best,
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and satis�es
c0 (b�t )

g0 (b�t )
= min

�
T �

t
;
c0 (1)

g0 (1)

�
:

Thus e¤ort weakly falls over time, strictly so whenever e¤ort is below its upper bound 1.

Figure 2.A depicts an optimal contract. The optimal e¤ort distortion balances a loss

in instantaneous surplus against a higher rate of knowledge transfer. Early on, when the

principal is in most of a rush to transfer knowledge (i.e. the shadow cost of training the

agent is low), e¤ort equals its upper bound. Note that if the maximum feasible e¤ort were

reduced to bFB the agent would endure an apprenticeship that is equally long (Corollary 1)

but less costly per unit of time, which means the agent could be granted more knowledge

throughout (as the agent is less tempted to walk away). Thus overworking the agent helps

the principal, but hurts the agent and lowers social surplus.18

Figure 2.B illustrates how the contract changes with the curvature of the cost function

c. In this �gure as � varies, �, � and the maximum feasible e¤ort vary so that bFB; c
�
bFB

�
and the maximum feasible e¤ort cost are held constant.19 As c becomes more linear (�

falls) e¤ort above �rst best becomes less wasteful and therefore closer to a money transfer.

As a result, the principal is willing to impose a higher e¤ort cost on the agent. From (13)

the second derivative of the Pareto frontier is d2��=dU2 = �1= [U + c (l (U)) =r] : As a

result, as c becomes more linear the Pareto-frontier becomes more linear as well. This

raises the principal�s payo¤, but since a higher e¤ort cost makes the apprenticeship less

attractive to the agent, the knowledge path must fall to keep the agent�s outside option

low enough that they do not walk away.

B. Skilled e¤ort only. Suppose fa(X; 1) > g0(0); so at each time the agent exerts e¤ort

only on the skilled task. Theorem 1 implies that at all times before the terminal time,

skilled e¤ort exceeds the �rst best, and satis�es

c0 (a�t )

fa (X�
t ; a

�
t )
= min

(
1

1� r
R T �
t

���d�
;

c0 (1)

fa (X�
t ; 1)

)
:

Through the lifetime of the contract the e¤ort distortion falls because fXa > 0; X�
t grows,

18Notice that in Figure 2 we set f (X; a) = X; and therefore fXa = 0; which fails Assumption 2. The
outcome would be unchanged if we instead set f (X; a) = (1+"a) for " 2

�
0; 1=X

�
: This satis�es fXa > 0

and, given that g0 (b) = 1, it guarantees that equilibrium skilled e¤ort remains zero.
19We keep bFB and c(bFB) constant so that the agent�s steady-state payo¤ and the rate of knowledge

transfer at the end of the apprenticeship are unchanged; we keep the maximum feasible e¤ort cost constant
so that the maximum rate of knowledge transfer does not change.
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Figure 2: Unskilled e¤ort only.
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and r
R T �
t

���d� falls. However since the e¢ cient e¤ort is increasing over time, the optimal

e¤ort level is either weakly decreasing or non-monotone depending on the details of f and

c.20

Corollary 1 implies that the optimal apprenticeship length is always strictly less than 1
r
:

This is because the complementarity between e¤ort and knowledge means that increasing

e¤ort past the �rst-best level also increases the principal�s incentive to train the agent. In

contrast to the case with only unskilled e¤ort, where the principal extracts rents from the

agent by combining overwork with a lengthy apprenticeship in which training is initially

very low, here overwork and slow training are con�icting sources of rents. Thus the

optimal apprenticeship length is a compromise between raising the marginal productivity

of apprentice�s e¤ort and keeping the apprentice longer.

Figure 3 depicts an optimal contract when there is only skilled e¤ort. As in the

unskilled case, as time passes and the principal is in less of a rush to train the agent,

the e¤ort distortion falls. In the example in the �gure, because of a relatively strong

complementarity between knowledge and e¤ort, the contract is substantially shorter than

in the unskilled case. Note that if the maximum feasible e¤ort were reduced to aFB
�
X
�

the agent would endure an apprenticeship that is less costly per unit of time, but since the

marginal value of knowledge falls, the principal would also make the apprenticeship longer.

Thus overwork in the skilled task allows the principal to extract rents from the agent but

has the positive countervailing e¤ect of shortening the apprenticeship. Consequently, a ban

on overwork (that is, a cap of at � aFB(X)) can either help or hurt the agent depending

on the details of the technology.

C. Both e¤orts. Here we specialize to the case where unskilled e¤ort has constant

returns, namely g(b) = qb for some constant q > 0: Constant returns imply that whenever

the principal speci�es positive e¤ort on both tasks, the marginal productivity of each task

is q = fa(X
�
t ; a

�
t ), which for any given X

�
t pins down a

�
t :

As time goes by and the skilled task becomes more productive, the optimal contract

in general goes through three regimes: First, over an initial (possible empty) time interval

(0; t1) skilled e¤ort is e¢ cient (possibly zero) and unskilled e¤ort is ine¢ ciently high.

Since �t = 1 this regime is qualitatively similar to the special case where only unskilled

e¤ort is used. Second, over an intermediate (possible empty) time interval (t1; t2) both

e¤orts are ine¢ ciently high. Third, over a �nal (possible empty) time interval (t2; T �)

20We can show by example that each case can occur.
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at = aFB(X)
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Figure 3: skilled e¤ort only. 1
r
= 20 years.

skilled e¤ort is ine¢ ciently high and unskilled e¤ort is �rst best and equal to zero. This

regime is qualitatively the same as the special case where only skilled e¤ort is used.21

Note that the model�s predictions about the time path of e¤ort �t the way e¤ort evolves

in the examples of Section 2: Novices ranging from young cooks to manicurists go through

well-de�ned career stages, initially carrying out the least desirable tasks (sweeping �oors,

cleaning vegetables, �nding typos in spreadsheets) and then gradually progressing into

more sophisticated activities.22

To characterize the optimal contract length, we de�ne the threshold bq = fa(X;ba) for
21That the optimal contract in general goes through these regimes follows from the fact that total e¤ort

is no lower than �rst best, X�
t is increasing over time, fXa > 0, and e¤ort is allocated e¢ ciently between

the two tasks.
22Under our general maintained assumptions, unskilled e¤ort weakly falls over time (strictly so when-

ever it is positive and lower than the e¤ort upper bound). This follows from the fact that, over time,
the total e¤ort distortion falls and the agent�s knowledge grows, each of which (weakly) lowers unskilled
e¤ort.

25



ba = argmaxa f(X; a) � c (a) : When q � bq the unskilled task is su¢ ciently productive
that only regime 1 occurs. In this case, as in the case where only unskilled e¤ort is

used, the unconstrained apprenticeship length is 1
r
:When instead q < bq the unskilled task

is su¢ ciently unproductive that regime 3 is always non-empty. In this case, as in the

case when only skilled e¤ort is used, the unconstrained apprenticeship length is strictly

less than 1
r
: Notice that regimes 1 and 2 are especially damaging to the agent because the

overwork in the unskilled task does not have the positive countervailing e¤ect of shortening

the apprenticeship.

7 Extensions

7.1 Training costs

Here we extend the model to include a training cost. Speci�cally, we suppose the principal

incurs cost k � 0 per unit of value 1
r
v (X) acquired by the agent, and so the principal�s

�ow payo¤ is now

y (X; l) � k
d

dt

�
v(X)

r

�
| {z }

instantaneous training cost

:

This simple functional form allows us to again provide a closed-form solution and obtain

clean comparative statics. We assume that k < 1 so that it is e¢ cient to transfer all

knowledge, that is, the surplus net of the training cost, v(X) � k [v (X)� v (X)], is

maximized at X. To guarantee positive pro�ts for the expert we assume that the agent�s

�xed outside option v is no greater than v (X) :

As we now explain, the solution to this problem is qualitatively similar to that of the

base model; the main di¤erence is that the training cost causes the principal to slow down

training and overwork the agent over a longer period of time. The formal analysis of this

claim is derived in Appendix A3; here we summarize the main points.

The �rst thing to note is that the optimal contract continues to satisfy the conclusions

of Lemmas 1 and 2, so that no wages are paid, the agent is fully trained in �nite time,

the participation constraint holds with equality at all times except perhaps for an initial

gift of knowledge, and total e¤ort is allocated e¢ ciently across the two tasks. Moreover,

except for why the agent is fully trained, the intuition for these results is the same as in

the original model. To see why the agent is fully trained suppose the agent currently has
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knowledge X < X and the principal o¤ers to train the agent over an additional unit of

time while asking for �rst-best e¤ort lFB (X). The agent�s participation constraint holds

with equality if d
dt

�
1
r
v (X)

�
= v (X) + c

�
lFB (X)

�
= y

�
X; lFB (X)

�
: Therefore, net of

the training cost, this arrangement delivers pro�t

y
�
X; lFB (X)

�
� k

d

dt

�
1

r
v (X)

�
= (1� k) y

�
X; lFB (X)

�
> 0;

which is strictly positive because k < 1. This shows that the principal can pocket all of

the surplus generated by the additional training by keeping the agent indi¤erent while

being trained, and keeping e¤ort at �rst best so that no surplus is wasted.

While the training cost does not alter the general form of the contract, it does change

the apprenticeship length, which now satis�es

r

Z T �

0

[�t � k] dt = 1:

This formula is almost the same condition as in the original model, except that [�t � k]

takes the place of �t: To understand why this is so, start with an apprenticeship with

length T and as we did in the original model suppose the principal has the agent work a

bit longer at the end of the apprenticeship, so that the principal gains 1 in present value.

This change lowers the agent�s continuation value throughout the apprenticeship, and so

the principal needs to lower the agent�s knowledge at each t so they do not walk away.

As a result, the principal su¤ers output loss r
R T
0
�tdt as before, but also postpones some

of the training cost and therefore her overall training costs change by23Z T

0

e�rtk
d

dt

�
1

r
v0 (Xt) dX

�
| {z }

change in value 1
r
v(Xt)

dt = �r
Z T

0

kdt:

The optimal length sets the output loss net of cost savings, r
R T
0
[�t � k] dt; equal to 1.

Because of the principal�s desire to backload the training cost, the apprenticeship lasts

longer than in the original model. To illustrate, when the agent exerts unskilled e¤ort only,

and so �t � 1, the optimal unconstrained length is 1
r(1�k) >

1
r
. This length is increasing in

23This equality follows from the fact that, to keep the agent from walking away, the principal must set
ert d

dXt

�
1
rv (Xt)

�
= �1:
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k because the larger the cost, the more the principal wants to postpone paying it; and is

decreasing in r; as in the original model, because as players become less patient knowledge

becomes less valuable, and so the agent is not willing to work as long to acquire it.

As before, the agent is asked to exert ine¢ ciently much e¤ort except at the terminal

time. The target e¤ort distortion is now

c0 (lt)
@
@l
y
�
X; lt

� = 1

1� r
R T �
t
[�� � k] d�

where [�� � k] takes the place of �� because a greater distortion raises the rate of knowl-

edge transfer and so has the disadvantage of frontloading the training costs that remain to

be paid. To illustrate, when the agent exerts unskilled e¤ort only and the apprenticeship

length is unconstrained, the target distortion is

c0 (lt)
@
@l
y
�
X; lt

� = T �

t
:

This distortion depends only on the fraction of time that remains in the apprenticeship.

As a result, as k grows and the apprenticeship becomes longer, the e¤ort path is very

similar to that in the original model, but is spread out over a longer period of time.

7.2 Training certi�cates (and indentured servitude)

So far we have assumed that the agent is unable to commit to keep working for the

principal after being trained. If instead the agent had full commitment power, the optimal

contract would immediately fully train the agent, specify the corresponding �rst-best level

of e¤ort, and require that the agent works for the principal for a time interval just long

enough to extract the full value of all knowledge from the agent. The many complaints

about slow training and excess e¤ort that we discussed in Section 2 suggest that in practice

the agent commonly does not have this sort of commitment ability. Nevertheless, in some

situations the agent�s outside opportunity is lower than v(X) unless they are provided

with a certi�cate of completion, occupational license, or letter of recommendation from

the principal. Here the agent�s desire to be certi�ed in e¤ect makes human capital at least

partially �rm-speci�c.

In the extreme case where the agent�s outside option without a certi�cate is v regardless

of their level of training, the principal can implement the full-commitment solution with
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immediate training and �rst-best e¤ort at all times. More generally, if the certi�cate adds

a �xed amount� to the agent�s outside option, then when the agent has knowledgeX their

value is 1
r
v(X)with a certi�cate and 1

r
maxfv(X)��; vg without it. In this case, as we

show in the online appendix the optimal contract has two phases.24 Phase 1 resembles the

solution for � = 0: Here knowledge grows over time, the agent�s participation constraint

binds at each instant, and the agent works ine¢ ciently hard until the last instant of the

phase, which occurs when the agent is fully trained (that is when Xt = X). Phase 2

corresponds to the solution for large �: Here the fully-trained agent exerts �rst-best

e¤ort and earns zero wages over a time interval just long enough to extract the full value

�=r of the certi�cate from the agent.

Thus when � is small, the solution is very similar to the solution in our main model;

the main di¤erence is that the �graduation prize�for phase 1 is v( �X)�� instead of v( �X);
and the di¤erential version of the participation constraint is now

�
ut = r [ut + c (lt)��]

instead of
�
ut = r [ut + c (lt)] ; where ut = v(Xt): As � grows, the agent is trained more

quickly (phase 1 shrinks) but is kept longer after being trained (phase 2 grows). Hence, a

more valuable certi�cate (e.g. a more demanding occupational licence) raises both total

surplus and pro�ts, but is potentially damaging to the agent.

Indentured servitude agreements may play a role similar to certi�cates. For instance,

if the principal can threaten to impose a penalty D on an agent who walks away from

the relationship, then the parties can enter a servitude agreement whereby, after being

trained, the agent promises to continue working for the principal until giving up value

D. This case is identical to the above case of a certi�cate with � = rD: Indentured

apprenticeships date back to medieval times, where apprentices were commonly bound to

their masters for a number of years (e.g. Thrupp, 1989). Arguably, these arrangements

are echoed in some modern apprenticeships where servitude contracts have been replaced

with (more benign) certi�cation requirements.25

24Online Appendix available at http://economics.mit.edu/faculty/drewf.
25Indentured servitude has also been widely used, both historically and in modern times, to �nance

the migration of credit-constrained workers (e.g. Galenson, 1984, and Guido and Guriev, 2006). In
modern times, illegal workers and their employers enter agreements where the worker spends time in a
sweatshop, under coercion, until the agreed debt has been repaid. Our model suggests that such debt
may in principle include not only the cost of smuggling the worker, but also the value of any knowledge
acquired in the sweatshop.
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7.3 Cash payments

In the baseline model the agent starts out with no cash and cannot borrow from a third

party. If the agent instead begins the relationship with a cash balance M that is known

to the principal, then the optimal contract is as follows (where we have assumed that

v (X) � v without loss):26

1. If M is lower than the value of the optimal level of the knowledge gift [v (X�
0 ) �

v (X)]=r in the baseline model, then the principal charges the agent M upfront

for the right to enter the apprenticeship, and otherwise leaves the apprenticeship

una¤ected.

2. If M is higher than [v (X�
0 )� v (X)] =r; but lower than

�
v
�
X
�
� v (X)

�
=r, then

the principal charges the agent M and, in return, o¤ers the agent a Pareto-e¢ cient

apprenticeship in which the agent earns payo¤ U = v (X) =r + M . Recall that

this apprenticeship is the truncated version of the original apprenticeship where the

agent is given a larger initial knowledge injection, and therefore starts out farther

along the training path.

3. If M is higher than
�
v
�
X
�
� v (X)

�
=r, then the principal sells the agent all knowl-

edge upfront, at a price equal to its full value.

Thus we see that a higher cash level (weakly) shortens the apprenticeship, allows the

agent to avoid the worst of the e¤ort distortions (and the worst of the menial work), and

raises total surplus. However, the principal�s monopoly power means that, net of the cash

payment, the agent does not bene�t, and may even lose, from having access to this cash.

The proof for this result is as follows. Suppose �rst that M is lower than [v
�
X
�
�

v (X)]=r: Because the principal has commitment power, it is without loss to ask the agent

to surrenderM at the beginning of the relationship. The optimal contract then maximizes

pro�ts (above and beyondM) subject to the agent�s ex-ante participation constraint U �
v (X) + M: Since raising M is equivalent to raising X, the result follows from Theorem

2. Finally, if M is greater than
�
v
�
X
�
� v (X)

�
=r, then the principal can obtain pro�ts

equal to the �rst-best surplus by selling all knowledge up front.

26Garicano and Rayo (2017) derive a special instance of this result for the case where there is no e¤ort
choice.
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As noted in Section 2, Adam Smith observed that during the industrial revolution,

masters asked their novices for up-front cash payments for the right to enter an unpaid

apprenticeships, and novices who could not make this payment served longer apprentice-

ships, as our model predicts. Similarly, in medieval apprenticeships, �Lack of payment

could be made an excuse for prolonging the term of service [...] Unfortunately for the mas-

ters, the supply of labor able to pay for apprenticeship fell short of demand.�(Thrupp,

1989, 215). And as an example in modern times, aspiring New York manicurists are

asked to pay to enter a type of unpaid apprenticeship, and sometimes also to acquire

additional skills (�$100 for eyebrow waxing, $100 to learn how to apply gel and cure it

with ultraviolet light �), with discounts possible after a long enough service (Maslin Nir,

2015).

7.4 Regulating apprenticeships

Recall that any Pareto-e¢ cient payo¤s (�; U) are uniquely implemented by an initial

knowledge gift to raise the agent�s knowledge to v�1(rU); followed by the principal�s opti-

mal contract when the agent starts with that knowledge level, and that along the Pareto

frontier total surplus grows in U: Thus welfare would be increased if the regulator could

mandate an increase in U; by for example raising the agent�s exogenous outside option.

More realistically, the regulator might consider a cap on the length of the apprenticeship,

a cap on e¤ort, or a combination of the two.

A cap on apprenticeship length accelerates knowledge transfer, but also leads the

principal to further distort e¤ort, and even distort e¤ort at the terminal date, in order to

sell her knowledge more quickly.27 For this reason, unless the cap is tight enough that the

principal chooses to give away most of her knowledge, its impact on surplus is ambiguous.

(Notice that because there is a limit on instantaneous e¤ort, a very tight cap leads to

almost the �rst-best outcome.) However, if the principal faces a cost when training the

agent, a su¢ ciently tight cap may simply drive the principal away from the market.

A cap on instantaneous e¤ort reduces the e¤ort distortions at a given knowledge level

of the agent, but may lead the principal to lengthen the apprenticeship, so here again

the impact on total surplus is ambiguous. This lengthening of the apprenticeship occurs

whenever the e¤ort cap leads to a reduction in skilled e¤ort, and therefore a reduction

in the knowledge premia �: It also occurs whenever the agent�s initial knowledge is high

27This can be seen from the �rst-order condition for lt in the proof of Lemma A1, part 2.
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enough that the agent�s ex-ante participation constraint binds, even when the e¤ort cap

does not a¤ect skilled e¤ort, as in this case there is no initial knowledge gift and so the

e¤ort cap simply slows down the rate at which knowledge is transferred.

One way to achieve a Pareto e¢ cient allocation is to combine a cap on apprenticeship

length with a time-varying cap on e¤ort that mimics the Pareto-e¢ cient e¤ort path given

the desired contract length, but this is unrealistic. It does however seem plausible that

regulations could combine a time-invariant e¤ort cap with a limit on the training period.

This intervention will still not lead to Pareto-e¢ cient contracts; but depending on the

welfare weights used, can more often lead to higher total surplus. The reason is that

a cap on contract length limits the principal�s ability to extend the apprenticeship in

response to the e¤ort cap and, at the same time, the cap on e¤ort limits the principal�s

ability to overwork the agent in response to the cap on contract length.

7.5 Bounded training speed

Our analysis allows the principal to transfer knowledge to the agent arbitrarily quickly,

and when the agent�s initial knowledge is su¢ ciently low compared to the principal�s stock,

the principal takes advantage of this �exibility to instantly train the agent to the top of

the Pareto frontier (as seen in Figure 1). After that, the principal transfers knowledge at

a bounded rate.28 As illustrated in our numerical examples this rate can be very slow,

leading to apprenticeships between 10 and 20 years long when r = 5%:

If we now suppose there is a bound on the speed of knowledge transfer, then provided

this bound is not too tight, the solution will be exactly as described earlier except that the

principal will initially transfer knowledge to the agent as quickly as possible, while asking

the agent to work as hard as possible, until the state reaches the level that maximizes

the principal�s payo¤ on the Pareto frontier. And after that, the optimal contract will be

identical to the baseline model.

Thus we see that the principal�s strategic motive for slowing down the knowledge

transfer, rather than a constraint on training speed, may be what determines the transfer

rate throughout most of the apprenticeship. This �nding appears to be consistent with

Adam Smith�s view that industrial-revolution apprenticeships (typically seven years long)

were excessively lengthy and a way to take advantage of cheap labor. It also seems

28Upon normalizing the units of knowledge so that v(X) = X; the rate of knowledge transfer is given

by the state equation
�
Xt = r [Xt + c (lt)] ; and so this rate is bounded above by r

�
X + c (1)

�
.
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consistent with the examples in Section 2, where apprenticeships can be quite long (e.g.

10 years in Jiro�s case) and trainees spend a considerable fraction of this time on menial

tasks, rather than on learning new skills.

8 Conclusion

To conclude, we brie�y review our main �ndings. We have considered the optimal contract

for a principal with commitment power to �sell�knowledge to a cash-constrained agent,

or apprentice, who is free to walk away at any time. In these contracts, the agent works

for the principal for low or no wages. Moreover, the principal requires the agent to work

ine¢ ciently hard. When the production function leads the principal to require excess

e¤ort in the skilled task, the period of apprenticeship decreases, while if the principal

only ever requires excess e¤ort in the unskilled task, the length of the apprenticeship is

una¤ected by the degree to which the agent is overworked. In some (but not all) cases,

regulations that cap the agent�s maximum e¤ort can raise surplus; e¤ort caps combined

with limits on the duration of apprenticeship can do even better.

These results follow from our assumption that the agent is unable to commit to keep

working for the principal after being trained. If the agent has full commitment power,

the optimal contract will immediately fully train the agent, and specify the corresponding

�rst-best level of e¤ort. The many complaints about slow training and excess e¤ort that

we discussed in the introduction suggest that in practice the agent commonly does not

have this sort of commitment ability.

Finally, we should point out that we have abstracted away from the idea that the

agent learns by doing, so that the rate of knowledge transfer depends on the amount of

skilled e¤ort, and also abstracted away from the possibility that the agent, principal, or

both, are learning about the agent�s ability over time. We have also assumed that there

is only a single potential agent. If the principal can only train one (or a small number) of

agents at a time, then training a given agent has an opportunity cost, and in some cases

this might lead to �incomplete training,�that is the principal might switch to training a

new agent before the current one acquires all of the principal�s knowledge. All of these

are important aspects of some apprenticeship relationships, and we plan to explore them

in future work.29

29In ongoing work we also extend our analysis to the case where the agent�s utility of consumption is
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9 Appendix A1: Proof of Lemmas 1-3, and Proposi-

tion 1

Proof of Lemma 1. The conclusion of the lemma will follow from a series of claims.

Claim 1 The principal obtains a strictly positive pro�t by contracting with the agent.

Proof. Fix X 0 2 (X;X); a0, and b0 s.t. y(X 0; a0; b0) > v (which is feasible because

v(X) > v) and then pick T 0 > 0 s.t. e�rT
0
v(X) � (1 � e�rT

0
)c(a0 + b0) > v(X 0): Now

consider the contract where the principal pays 0 wages, brings the agent�s knowledge up

to X 0 at time 0, and asks them to maintain e¤orts (a0; b0) until time T 0, at which point

the principal brings the agent�s knowledge up to X: This contract satis�es the agent�s

participation constraint (2) and the liquidity constraint (3), and gives the principal a

positive payo¤.

This proves part 1 of the lemma.

Claim 2 Any contract where W1 > 0 is strictly dominated by some �nite-duration con-

tract where W1 = 0:

Proof. If contract S with potentially in�nite graduation date T prescribes W1 > 0 and

is not strictly dominated, by the previous claim it must have �0(S) > 0, so U0 (S) <
1
r
v (X1). Now let T 0 2 (0; T ) satisfy

�
e�rT

0 � e�rT
� 1
r
v (X1) +

Z T

T 0
e�rtc (at + bt) dt = W1;

and consider a new contract S 0 where the agent earns zero wages, graduates at date T 0

with knowledge X1; and for t < T 0;

X 0
t; a

0
t; b

0
t = Xt; at; bt:

By construction,

U0 (S
0) = e�rT

0 1

r
v (X1)�

Z T 0

0

e�rtc (at + bt) dt

= e�rT
1

r
v (X1) +W1 �

Z T

0

e�rtc (at + bt) dt = U0 (S) :

strictly concave. Preliminary results are available upon request.
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In addition, for t < T 0;

Ut (S
0)� Ut (S) =

�
e�r(T

0�t) � e�r(T�t)
� 1
r
v (X1)

+

Z T

T 0
e�r(��t)c (a� + b� ) d� �

Z T

t

e�r(��t)w�d�

= ert
�
W1 �

Z T

t

e�r�w�d�

�
� 0:

As a result, since the original contract satis�ed (2), the new contract satis�es (2) as well.

And since the new contract prescribes zero wages, it satis�es (3).

Finally, we have

�0 (S
0) + U0 (S

0)� [�0 (S) + U0 (S)]

�
Z T

T 0
e�rt [v (X1)� v (Xt)] dt > 0;

where the strict inequality follows from the facts that v is strictly increasing and that

Xt < X1 for all t 2 (T 0; T ) : Since U0 (S 0) = U0 (S) ; it follows that �0 (S 0) > �0 (S) ; and

so S 0 strictly dominates S:

This proves the �rst clause in part 2 of the lemma.

Claim 3 Any in�nite-duration contract is strictly dominated by some �nite-duration con-

tract with W1 = 0:

Proof. In any in�nite-duration contract, constraint (2) at time 0 requiresW1 � 1
r
max fv; v (X)g

> 0; so the contract is strictly dominated by the previous claim.

Claim 4 Any �nite-duration contract with W1 = 0 and XT < X is strictly dominated

by some �nite-duration contract with W1 = 0 and XT = X.

Proof. If a �nite-duration contract with W1 = 0 has XT < X; then there is a time

interval � and e¤ort levels a0; b0 such that y(X 0; a0; b0) > v and e�r�v(X)�(1�e�r�)c(a0+
b0) > v(XT ); and so the principal could obtain strictly higher pro�ts by extending the

agent�s contract to T 0 = T +� paying no additional wages, setting Xt = XT and (at; bt) =

(a0; b0) for t 2 [T; T 0); and setting XT 0 = X:

Claims 3 and 4 prove the second clause in part 2 of the lemma.
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Claim 5 Any contract is weakly dominated by some �nite-duration contract with XT = X

and zero wages.

Proof. From Claims 3 and 4, we can restrict to �nite-duration contracts such that

XT = X and W1 = 0. Let S be one such contract, and consider an alternative contract

S 0 that is identical to S except for the fact that all wages are zero.

The two contracts deliver identical pro�ts. In addition, for all t;

e�rt [Ut (S)� Ut (S
0)] =

Z T

t

e�r�w�d�

= W1 �Wt � 0;

where the inequality follows from the fact that Wt � 0 (from (3)) and W1 = 0. As a

result, Ut (S 0) � Ut (S) and therefore S 0 satis�es (2) and (3) as well.

This proves the third clause in part 2 of the lemma and so completes its proof.

Proof of Lemma 2. We will show each clause of the lemma in turn.

Claim 6 Any contract is weakly dominated by a contract that sets the agent�s participa-

tion constraints to hold with equality.

Proof. In a contract with zero wages, Ut = e�r(T�t) 1
r
v
�
X
�
�
R T
t
e�r(��t)c (a� + b� ) d� ;

which is strictly increasing (because v(X) > 0) and continuous. Thus if Ut > 1
r
v(Xt)

for some times t; the contract with the same e¤ort path and terminal date, and X
0
t =

maxfXt; v
�1 (rUt)g at all times will satisfy the participation constraints and give the

principal a weakly higher payo¤ at each date. Moreover, if the times where Ut > 1
r
v(Xt)

had positive measure, the new contract would give the principal a strictly higher payo¤

overall.

Claim 7 Any contract is weakly dominated by a contract where at each t total e¤ort at+bt
is allocated across tasks to maximize output.

Proof. Given any contract where at some times yt(Xt; at; bt) 6= �y(Xt; (at + bt)), consider

the alternative contract where the time paths of knowledge and total e¤ort are the same

but e¤ort is allocated to maximize output at each time. Since the agent�s knowledge

stock and e¤ort cost are the same, the participation constraints are still satis�ed, and
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the principal does at least as well, and strictly better if the times where yt(Xt; at; bt) 6=
�y(Xt; (at + bt)) had positive measure.

This completes the proof of Lemma 2.

Proof of Proposition 1. Suppose an optimal contract exists (otherwise the proposition

is vacuously true). Now suppose S� is optimal and contrary to the proposition suppose

there is a date 0 < z < T � and a contract S��; with X��
z � X�

z , such that S
�� delivers

strictly higher pro�ts than S� from z onward, while satisfying the participation constraints

(2) from z onward. From Lemma 2, S� satis�es all participation constraints with equality,

and therefore there is a new contract bS that is identical to S� for all 0 � t < z; and identical

to S�� for all z � t � T �; that leaves the agent weakly better o¤ than S�; and so satis�es

all participation constraints and delivers strictly higher pro�ts than S� �a contradiction.

�

Proof of Lemma 3. The agent won�t work longer than Tmax := 1
r
log

�
v(X)
v(X)

�
even

if asked to exert 0 e¤ort for all t: For any �xed T 2 [0; Tmax] a solution to (6) exists
from Kumar (1969), and an optimal T exists because the principal�s optimized pro�ts are

continuous in T:

To show the necessity of the system (7)-(10), let time run in reverse from T to 0, let

uT denote the �xed initial state, and change the signs of
�
u and of the co-state evolution

equation (which is now
�
�t = @L=@ut). Any T 2 [0; Tmax] can be implemented by some

choice of controls, and the inequality constraints on at and bt are linearly independent,

so the necessity of conditions (7)-(10) follows from Chachuat (2007) Theorems 3.18 and

3.33, Remark 3.19 (which notes that reachability is su¢ cient for the regularity constraint

on the terminal conditions), and Remark 3.23 (on extending to inequality constraints on

the terminal condition T ). To obtain the transversality condition for �0 in condition (10),

assign to constraint u0 � v (X) a multiplier � with associated complementary-slackness

condition � � 0 and � [u0 � v (X)] = 0: Chachuat�s Theorems 3.18 implies that �0 = �

and so �0 � 0 and �0 [u0 � v (X)] = 0. �
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10 Appendix A2: Proof of Lemma 4 and Theorems

1 and 2

We begin by deriving some general properties of every solution to problem (6). Recall the

system of necessary conditions in Lemma 3:

�
ut = rut + rc (lt) ;

�
�t = @L=@ut

@L=@lt = 0
�t; 
t � 0; �t [1� lt] = 
tlt = 0

9>>=>>; for 0 � t � T;

HT = 0; �0 � 0; �0 [u0 � v (X)] = 0;

where H = e�rt y (� (ut) ; lt) � �t
�
ut and L = H + �t [1� lt] + 
tlt: Let �t := � (� (ut) ; at)

= fX(X;at)
fX(X;aFB(X))

���
X=�(ut)

� 0 and recall from Lemma 2 that, for all t; at = a (Xt; lt) :=

argmaxa2[0;lt] f (Xt; a) + g (lt � a) :

Lemma A1

1. The co-state evolution equation can be written as

�t = e�rt
�
erT�T �

Z T

t

��d�

�
: (16)

2. In every solution �T = e�rT 1
r
; lT = lFB

�
X
�
; and �T = 0:

Proof. Part 1. Using the facts that v0 (� (u)) = fX
�
� (u) ; aFB (� (u))

�
(from the en-

velope theorem) and �0 (ut) =
1

v0(�(u)) (from the implicit function theorem) we obtain
d
du
f (� (u) ; a) = fX (� (u) ; a)

1
v0(�(u)) =

fX(X;a)
fX(X;aFB(X))

���
X=�(u)

: Thus the co-state evolution

equation is
�
�t = �r�t + e�rt d

du
f (� (ut) ; at) = �r�t + e�rt�t, which is equivalent to (16).

Part 2. The �rst-order condition for T is e�rT y (� (uT ) ; lT ) � �T r [uT + c (lT )] =

0 and the �rst-order condition for lT implies that �T r =
�
e�rT @

@l
y
�
X; lT

�
� �T

�
=c0 (lT ) :

Substituting this into the �rst-order condition for T yields

c0 (lT ) y
�
X; lT

�
� @

@l
y
�
X; lT

� �
v
�
X
�
+ c (lT )

�
| {z }

=: h(lT )

= � erT�T
�
v
�
X
�
+ c (lT )

�
: (17)
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Notice that h(lT ) = 0 when lT = lFB
�
X
�
. In addition, since c, c0, and y are all di¤er-

entiable in l; and @y
@l
is continuous and almost-everywhere di¤erentiable in l, the function

h(lT ) is continuous, almost-everywhere di¤erentiable, and at each point of di¤erentiability,

h0 (lT ) = c00 (lT ) y
�
X; lT

�
� @2

@l2
y
�
X; lT

� �
v
�
X
�
+ c (lT )

�
> 0;

where the inequality follows from the fact that c00 > 0 and at each point of di¤erentiability
@2
@l2
y � 0 (since faa; g00 � 0).As result, h(lT ) is strictly increasing. It follows that �T = 0;

otherwise, we would have �T > 0 and lT = 1 > lFB
�
X
�
; and so the left-hand side of

(17) would be positive and its right-hand side would be negative. Once we set �T = 0 it

follows that lT = lFB
�
X
�
and �T = e�rT 1

r
:

Lemma A2 For any given �t the �rst-order condition for lt and complementary slack-

ness conditions for �t; 
t have a unique solution, denoted el (�t) ;e� (�t) ; e
 (�t) : More-
over, this solution satis�es e
 (�t) = 0 and

c0
�el (�t)� = e�rt @

@l
y
�
� (ut) ;el (�t)�� e� (�t)

�tr
; (18)

e� (�t) = max�0; e�rt @
@l
y (� (ut) ; 1)� �trc

0 (1)

�
:

Proof. The �rst-order condition for lt is e�rt @@ly (� (ut) ; lt)��trc
0 (lt)� �t+ 
t = 0. This

has a unique solution because c00 > 0 and y is concave in lt: The optimal lt must be strictly

positive because @
@l
y (� (ut) ; 0) > c0 (0) : If c0 (1) < e�rt @

@l
y(�(ut);1)

�tr
; the solution is that lt = 1

and then �t = e�rt @
@l
y (� (ut) ; 1) � �trc

0 (1) : If c0 (1) � e�rt @
@l
y(�(ut);1)

�tr
then the constraint

lt � 1 is slack, so �t = 0 and c0
�el (�t)� = e�rt @

@l
y(�(ut);el(�t))
�tr

.

We are now ready to prove Lemma 4 and Theorems 1 and 2.

Proof of Lemma 4

The time 0 co-state �0 measures the shadow cost of u0 = U=r; hence, �d��(U)
dU

=

�r d�
�(U)
du0

= r�0: Moreover, from Lemma A1, r�0 equals 1� r
R T �
0

��tdt:

Proof of Theorem 1
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Write the co-state equation (16) as

�t = e�rt
�
1

r
�
Z T

t

��d�

�
; (19)

where we used the fact that erT�T = 1
r
. After substituting for �t into equation (18) we

obtain

c0 (lt) =
@
@l
y (Xt; lt)� ert�t

1� r
R T
t
��d�

; (20)

ert�t = max

�
0;

@

@l
y (Xt; 1)�

�
1� r

Z T

t

��d�

�
c0 (1)

�
:

Since �0 � 0 implies that 1 � r
R T
0
�tdt � 0; equation (20) implies that the op-

timal e¤ort path satis�es c0(l�t )
@
@l
y(X�

t ;l
�
t )
= min

��
1� r

R T �
t

��d�
��1

; c0(1)
@
@l
y(X�

t ;1)

�
with �� =

� (X�
� ; a (X

�
� ; l

�
� )) ; and the state equation implies that

1
r
� d
dt
v (X�

t ) = v (X�
t ) + c (l�t ) (as

claimed in part 2 of the theorem); and therefore l�T � = lFB
�
X
�
and l�t > lFB (X�

t ) for

all t < T � (as claimed in part 1 of the theorem). Finally, since c00 > 0 and @y
@l
is weakly

decreasing in l; for any given T � the values of X�
t and l

�
t are unique.�

Proof of Theorem 2

We �rst ignore both the complementary slackness condition for �0 and the constraint

u0 � v (X), and claim that for any �xed terminal time T; the remaining necessary con-

ditions in Lemma 3, together with the terminal condition uT = v
�
X
�
, have a unique

solution, which we denote uTt ; l
T
t ; �

T
t (and �

T
t ; �

T
t ). First, write t = T � s for s � 0; and

use (20) to obtain

c0 (lT�s) =

8<: min
n

@
@l
y(Xt;lT�s)

1�r
R s
0 �T��d�

; c0 (1)
o

when r
R s
0
�T��d� � 1;

c0 (1) otherwise,
(21)

where �T�� = � (� (uT�� ) ; a (XT�� ; lT�� )) : Second, note that since c00 > 0 and
@y
@l
is weakly

decreasing in l; there is a unique solution uTT�s; l
T
T�s; �

T
T�s to the system

uT = v
�
X
�
;
�
uT�s = r [uT�s + c (lT�s)] ; and (21), for s � 0: (22)
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(The resulting paths �TT�s and �
T
T�s = e� ��TT�s� are also unique). Notice that the value

of T enters this system only as a subindex for uT�s; lT�s; �T�s: Therefore, for any given

s � 0 the solution uTT�s; l
T
T�s; �

T
T�s is independent of the chosen value of T: Moreover,

since uT0 = uTT�s
��
s=T

; we have d
dT
uT0 = � d

dt
uTt
��
t=0
= �r

�
uT0 + c

�
lT0
��
. Thus, whenever uT0

is positive, it is strictly decreasing in T: Notice also that lTt � lFB (� (ut)) (since r
R T
t
��d�

� 0) and therefore aTt � aFB (� (ut)) and �Tt � 1:
We now show that there is a unique T � that satis�es the complementary slackness

condition for �T0 ; namely, �
T
0 � 0 and �T0 [u0 � v (X)] = 0, together with the constraint

uT0 � v (X) : Since �T0 = 1 � r
R T
0
�TT�sds is strictly decreasing in T , there is a unique bT

such that �
bT
0 = 1� r

R bT
0
�tdt = 0; and since �

T
0 � 0; we may restrict our search to T � bT :

There are two cases to consider: (a) ubT0 � v (X), and (b) ubT0 < v (X) : In case (a),

we must have T � = bT and therefore r
R T �
0

�tdt = 1: Otherwise T � < bT ; �T �0 > 0, and

uT
�

0 > v (X) ; violating the complementary slackness condition. In case (b), we must have

T � < bT ; �T �0 > 0; and uT
�

0 = v (X) : Therefore, T � is the unique value of T such that

uT0 = v (X) : Notice, �nally, that for any given X, system (22) implies that case (a) arises

when X is above a threshold X +�, and case (b) arises otherwise.�

11 Appendix A3: Training cost

Here we derive the optimal contract in the extended model with training costs.

Lemma A3 In the model with training costs, the conclusions in Lemmas 1 and 2 remain

valid.

Proof. With the exception of Claims 1 and 4, it is easy to see that the proofs of Lemmas

1 and 2 extend to this case. Claim 1 states that the principal obtains a strictly positive

pro�t by contracting with the agent. To see why this is still true, consider a contract in

which X0 = X and XT = X; and at any time 0 � t � T e¤ort is lt = lFB (Xt) ; wages are

zero, and the agent receives training dXt=dt such that

v0 (Xt)
dXt

dt
= r

�
v (Xt) + c

�
lFB (Xt)

��
= ry

�
Xt; l

FB (Xt)
�
:
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This contract satis�es the agent�s participation constraints with equality at all times and

delivers pro�ts

TZ
0

e�rt
�
y
�
Xt; l

FB (Xt)
�
� k

1

r
v0 (Xt)

dXt

dt

�
dt =

TZ
0

e�rt (1� k) y
�
Xt; l

FB (Xt)
�
dt > 0:

Claim 4 states that any �nite-duration contract with W1 = 0 and XT < X is strictly

dominated by some �nite-duration contract with W1 = 0 and XT = X. To see why this

is still true, notice that if a �nite-duration contract with W1 = 0 had XT < X; then the

principal could obtain strictly higher pro�ts by extending the contract to date T 0 > T;

setting XT 0 = X; and for all T < t � T 0 o¤ering the same arrangement as above.

It follows from this lemma that with the exception of the principal�s objective, the

optimal control problem is the same as in the original model. The principal�s objective is

now
TZ
0

e�rt
�
y (� (ut) ; lt)� k

1

r

�
ut

�
dt� k

1

r
[u0 � v (X)] ;

where the second term in the objective is the cost of the initial gift. The Hamiltonian is

now H = e�rt
h
y (� (ut) ; lt)� k 1

r

�
ut

i
� �t

�
ut, with

�
ut = r [ut + c (lt)]. Assign to the ex-ante

participation constraint u0 � v (X) multiplier �:

Lemma A4 In the model with training costs, except for the transversal condition (10),

the conclusion in Lemma 3 remains valid. The transversal condition is now HT = 0;

�0 = �1
r
k + �; � � 0; and � [u0 � v (X)] = 0:

Proof. De�ne ' (u0) := �k 1r [u0 � v (X)] ;  (u0) := u0 � v (X) and � (u0) := ' (u0) +

� (u0) : The only di¤erence relative to the proof of Lemma 3 is that Chachuat (2007)

Theorem 3.18 now requires that �0 = �0 (u0) = �1
r
k + �.

Lemm A5 In the model with training costs, the conclusions in Lemmas A1 and A2 in

Appendix A2 remain valid, but with co-state equation

�t = e�rt
�
erT�T �

Z T

t

[�� � k] d�

�
;

and with �T = e�rT 1
r
[1� k] :
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Proof. The co-state evolution equation is
�
�t = �r�t + e�rt [�t � k] ; the �rst-order con-

dition for T is e�rT y (� (uT ) ; lT ) �
�
�T r + e�rTk

�
[uT + c (lT )] = 0 and the �rst-order

condition for lT implies that �T r + e�rTk =
�
e�rT @

@l
y
�
X; lT

�
� �T

�
=c0 (lT ) : Therefore,

after replacing �T r with �T r+ e�rTk; the proof of this lemma is identical to the proofs of

Lemmas A1 and A2.

Propoistion A1 In the model with training costs, the conclusions in Theorems 1 and

2 remain valid, but with the target e¤ort distortion at time t now taking the more

general form
c0 (lt)

@
@l
y (Xt; lt)

=
1

1� r
R T �
t
[�� � k] d�

;

and with the optimal initial knowledge level X�
0 and contract length T

� now satisfying

either

X�
0 > X and

Z T �

0

[��t � k] dt =
1

r
(positive knowledge gift)

or

X�
0 = X and

Z T �

0

[��t � k] dt � 1

r
(zero knowledge gift):

Proof. We begin with two observations. First, Lemma A5 implies that the co-state

evolution equation is �t = e�rt
h
1
r
[1� k]�

R T
t
[�� � k] d�

i
; and therefore the e¤ort path

satis�es, for all s � 0;

c0 (lT�s) =

8<: min

�
@
@l
y(Xt;lT�s)

1�r
R s
0 [�T���k]d�

; c0 (1)

�
when r

R s
0

�
�T�� � k

�
d� � 1;

c0 (1) otherwise.

Second, whenever the ex-ante participation constraint is slack (� = 0), Lemma A4 implies

that �0 = �1
r
k; and so the co-state evolution equation implies that �0 = 1

r
[1� k] �R T

0
[�t � k] dt = �1

r
k: Consequently, the optimal unconstrained terminal date T � satis�esR T �

0
[�t � k] dt = 1

r
:

It follows from these two observations that after replacing �t with [�t � k] for all t; the

proof of the present proposition is identical to the proofs of Theorems 1 and 2.
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