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ABSTRACT: Motivated by reputation management in a variety of different markets for “ex-
pertise” (such as online content providers and experts in organizations), we develop a
novel repeated-game framework in which a principal screens a strategic agent whose type
determines the rate at which he privately receives payoff relevant information. The stage
game is a bandit setting, where the principal chooses whether or not to experiment with
a risky arm which is controlled by an agent who privately knows its type. Irrespective of
type, the agent strategically chooses output from the arm to maximize the duration of ex-
perimentation. Experimentation is only potentially valuable to the principal if the arm is of
the high type. Our main insight is that reputational incentives can be exceedingly strong:
the agent makes inefficient output choices in all equilibria (subject to a mild refinement)
and that this can result in market breakdown even when the uncertainty about the agent’s
type is arbitrarily small. We show that (one-sided) transfers do not prevent this inefficiency
and we suggest alternate ways to improve the functioning of these markets.
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1. INTRODUCTION

Attention is money for much of the advertising driven Internet. Typically, consumers do not pay
for content and instead revenue is generated by their continued attention in the form of clicks. A
consequence is that content providers need to sustain continued interest as consumers can freely
withdraw their attention at any time. This creates a dilemma: since genuine content (which varies
in quality) can only be generated periodically, how do content providers balance the quality and
the frequency of the new content they provide with the aim of retaining both interest and trust?
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Specifically, how do they manage reputation in an environment where “fake” content can be gen-
erated at will? And how does this revenue model (as opposed to traditional payment by subscrip-
tion) affect market functioning?

Although it is a very different context, similar incentives are also faced by “experts” employed
in organizations. Specifically, consider a scientist working at a pharmaceutical company. The sci-
entist’s ability determines the frequency at which she receives research ideas that may ultimately
lead to new products after successful drug trials. Even a talented scientist under pressure to keep
his job could choose to recommend a drug trial for a new compound which is very unlikely to
succeed but may help create the impression that he is generating new ideas. How does the com-
pany’s decision of when to fire the scientist and their bonus structure (for successful trials) balance
their dual goals of giving a talented scientist a sufficient amount of time to succeed (and reveal
himself to be of high ability) but also prevent costly failed trials?

What is common to these (and numerous other) seemingly disparate examples is that they are
environments in which a principal wants to dynamically screen an agent whose type (good or
bad) determines the rate at which she receives information that is payoff relevant for the principal
and who acts based on this information in an effort to manage his reputation. We develop and
study a novel repeated game to analyze such environments. Our main insight is that reputational
incentives can be exceedingly strong in such environments: the need to establish reputation forces
even the good type agent to act inefficiently in every equilibrium (subject to a mild refinement).
This can, in turn, result in large surplus losses due to market breakdown even when the principal
knows that the agent is almost surely the good type.

1.1. Summary of Model and Results

Our framework is perhaps easiest to describe as a bandit model with a strategic arm. We use this
metaphor throughout the paper. In each period, the principal (online content consumer, pharma-
ceutical company) chooses between experimenting (visiting the website, extending employment)
with a costly risky arm of unknown type and a costless safe arm. The arm’s type is privately
known by the agent (content provider, scientist) who also controls its output. If the arm is the
good type, it receives private information (news stories, research ideas) of varying quality (the
accuracy of reporting, the scientific basis for efficacy of the compound) at a Poisson rate; the bad
type never receives any information. If the principal decides to experiment, the agent chooses
whether or not to publicly act (publish a story, run a drug trial) based on the received information
(if any). Acting in turn generates a public success or failure (the veracity of the story once cross
checked by other news outlets, the outcome of the drug trial), the probability of which depends on
the quality of information. In our model, acting based on high quality information always results
in a success; acting on low quality information sometimes results in a success (and sometimes in
a failure), while acting without information always generates a failure. The principal wants to
simultaneously maximize number of successes (true stories, successful drug trials) and minimize
failures, whereas the agent wants to maximize the duration of experimentation by the principal
(number of website visits, period of employment).
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Since actions are costless to the agent, there are no frictions in our environment if the agent
is publicly known to the good type. In this “first-best” benchmark (Theorem 1), the principal-
optimal Nash equilibrium strategy is for her to always experiment and, in response, the good type
agent (who is indifferent between all strategies) acts efficiently, that is, only when he receives high
quality information. To make the model interesting, we assume that acting on low quality (and,
by definition, without) information is inefficient in that it generates a negative expected payoff for
the principal. This Nash equilibrium is also the unique Pareto-efficient outcome. Conversely, if
the agent is known to be the bad type, there is a unique Nash equilibrium outcome in which the
principal never experiments. This is because experimentation is costly and the bad type can never
generate positive payoffs for the principal.

Despite the lack of frictions, there are a multiplicity of Nash equilibria even when the agent is
known to be the good type. Indeed, there is a Nash equilibrium in which there is complete market
breakdown: the agent’s strategy is to never act and, in response, the principal never experiments.
We view such inefficient Nash equilibria to be unrealistic as they do not survive even the weakest
notions of renegotiation-proofness. Thus, we impose a refinement which rules out these, and only
these, types of Nash equilibria. Specifically, our refinement requires that both players play the effi-
cient or first-best strategies at all on-path histories where the principal’s belief assigns probability
1 to the agent being the good type. In what follows, this refinement is implicit whenever we refer
to equilibrium without using the additional “Nash” qualifier. We consider the refinement mild
since it only restricts on-path equilibrium strategies at precisely one belief. In this sense, it is less
restrictive than standard refinements used in the literature such as Markov perfection.

When there is type uncertainty, the principal experiments in order to give the agent a chance
to reveal himself as the good type by generating a success. Of course, whether or not experimen-
tation is worthwhile depends on how many failures the principal must suffer along the way. To
make this tradeoff between the agent’s action strategy and the principal’s decision to experiment
explicit, we consider a second “static” benchmark. Here, the principal experiments for a single
period and stops experimenting if no success is generated; conversely, if a success is generated
then the refinement bites (since, the principal’s belief jumps to 1) and the first-best continuation
play results. Since only a success guarantees positive continuation value, the good type strictly
best responds by acting on both high and low quality information; being indifferent, we assume
he does not act in the absence of information.1 The sign of the principal’s payoff in this bench-
mark determines her tolerance for what we call a lack of quality control; that is, when the good
type agent always acts on low-quality information. When positive, these strategies constitute an
equilibrium and, hence, the principal is willing to experiment even when the good type agent
always acts on low-quality information.2 Conversely, when the payoff in this benchmark is neg-
ative, quality control is necessary for experimentation. In our applications, this corresponds to an
unwillingness to visit a website with a consistently low standard of reporting or hiring a scientist

1As we argue, this provides an upper bound for the principal’s payoff in this static benchmark.
2The bad type must also act with positive probability as otherwise acting alone will cause the principal’s belief to jump
to one and so she will continue to experiment even after a failure. However, because our refinement only bites at belief
one, this probability can be taken to be arbitrarily small so that the principal’s loss from the bad type is correspondingly
small.
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who is always willing to conduct speculative drug trials. In this case, the principal has to provide
dynamic incentives to police the agent’s actions in order to receive an overall positive value from
experimentation.

Our first result (part 1 of Theorem 3) shows that the principal can never completely prevent
the agent from choosing inefficient actions in any equilibrium. Specifically, in every equilibrium
where the principal experiments, there are on-path histories where the agent acts both on low-
quality information and in the absence of any information. Part 2 of Theorem 3 shows that the loss
of surplus from this inefficiency can be large. Specifically, we show that, whenever quality control
is necessary for experimentation, there is a unique equilibrium outcome in which the principal
never experiments. This result shows that, whenever the principal needs to discipline the agent to
make experimentation worthwhile, the agent’s need to establish reputation makes this impossible.

What makes our result stark is that breakdown can occur even with arbitrarily small amounts
of uncertainty or even if “minimal” quality control can make experimentation profitable. We dis-
cuss each of these and their implications in turn. First, observe that there are parameter values
such that quality control might be necessary even when the agent is almost surely known to be
the good type. For instance, when failures are very costly to the principal, experimentation will
not be profitable even with a high belief if the good type agent always acts on low-quality infor-
mation. However, when the principal’s belief is high, it might be natural to expect that the agent’s
reputational incentives are weaker and that he can be incentivized to act efficiently sufficiently
often to make experimentation worthwhile. An implication of our main result is that this is not
the case: the principal’s equilibrium payoff discontinuously drops from that of the first-best to
zero as there is infinitesimal uncertainty about whether the agent is the good type. Returning to
our first application, this implies that even a small amount of doubt in the veracity of a content
provider (like a news source) can have a large impact for consumers. Specifically, the incentives
that drive market breakdown in our model mirror the oft-cited criticism of the news media: the
need to constantly generate new content drives down the quality of reporting in turn engendering
public mistrust which contributes to the environment of dwindling web traffic.

When the principal’s payoff in the static benchmark is negative but small, this corresponds to
the case where the principal would not experiment if the agent acts inefficiently at every opportu-
nity but experimentation would be profitable if the agent chose to behave efficiently even a small
fraction of the time. Our result implies that the principal cannot even provide the long run incen-
tives to make efficient play occur at a small fraction of histories. In this sense, the loss of surplus
due to reputational concerns can be large relative to the first best.

Strikingly, our main insight continues to hold even if the principal is allowed to make transfers
(Theorem 4). Specifically, we show that inefficiency and market breakdown occur (under the exact
same conditions) even if we allow one-sided transfers—the principal can make a payment to the
agent after the outcome from the agent’s action is observed. This generalizes our main insight
to a broader set of applications (such as our second example) where such transfers are a natural
feature of the environment. This result suggests that performance-based bonuses cannot correct
an expert’s strong reputational incentive to speculatively act as opposed to candidly admitting
that he may not have any good information.
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How then can the functioning of such markets be improved? We argue that a natural way in
which market breakdown can be avoided is if the principal can commit to a longer duration of
experimentation: say T > 1 periods at a time. For our two highlighted applications, this would
amount to getting a subscription for online content or providing the expert with a fixed contract
length respectively and only reevaluating the decision to continue experimentation after this fixed
period expires. In the language of our model, this would amount to altering the stage game so that
after the principal decides to experiment, the agent sequentially receives information and makes
action choices T times (with the cost of experimentation appropriately adjusted so we can make
an apples-to-apples comparison). We argue that this commitment to longer experimentation can
weaken the agent’s need to immediately establish reputation which in turn can make experimen-
tation profitable in cases where it would not have been if T = 1. Thus, our model provides one
rationale for why subscriptions might be a more efficient way to pay for online content and why
longer contracts might reduce the amount of bad advice provided by experts in an attempt to
prove their worth.

Finally, we explicitly highlight the role played by our refinement by showing that our main
insights do not hold if it is dropped. Specifically, we construct Nash equilibria where the agent
chooses efficient actions on path (Theorem 5). Moreover, we argue that the discontinuity of pay-
offs at belief one disappears: as the uncertainty about the agent’s type vanishes, there are Nash
equilibria such that the payoffs to both players converge to the first-best. These equilibria (neces-
sarily) have the unrealistic feature that there are on-path histories where the market breaks down
even though incentives are perfectly aligned as the agent has revealed himself to be the good type
with probability 1.

1.2. Related Literature

Our paper is most closely related to the literature on reputation in repeated games. One key
difference between our paper and much of the remaining literature is that we consider a model
with two-long lived players (one of whom has multiple strategic types) and that we can make
robust equilibrium predictions without requiring either player to be arbitrarily patient.

Perhaps the closest work in the reputation literature is Ely and Välimäki (2003) (in particular,
the refinement we impose is taken from their work). They also consider a two player repeated
game and establish a “bad reputation” result where the reputational incentives of a long lived
agent with a privately known type causes the loss of all surplus when faced with a sequence of
short-lived principals. At a superficial level, our model differs because our game does not have
the payoff structure of a bad reputation game (in the sense of Ely, Fudenberg, and Levine (2008))
and, additionally, our market breakdown result does not require the discount factor to approach
one. More importantly, the forces that prevent the market from functioning are very different;
because the principals are short lived in their setting, they do not internalize the future value that
is gained from experimentation. Indeed, they show that their bad reputation result does not hold
if both players are long lived. In Ely, Fudenberg, and Levine (2008), breakdown can occur because
the short run temptation to separate may make it impossible to get good types to behave well. In
our paper, breakdown occurs because eventually there will be a history where short run incentives

5



DEB, MITCHELL, AND PAI

dominate, which reduces the incentives for good types to behave well all along the path to those
histories.

Bar-Isaac (2003) studies a signaling framework where a seller of privately known quality can
choose whether or not to sell a good in each period to a sequence of short-lived buyers. Like our
model, the seller’s quality determines the likelihood with which the good is publicly revealed to
be a success or failure. Perhaps the most critical distinctions are that (i) we have additional private
information that the agent receives periodically, and (ii) we aim to isolate robust properties of all
equilibria. He conversely shows that there exists a Markov perfect equilibrium that delivers his
positive result (the good-type seller never stops selling).

There is a comparatively smaller fraction of the reputation literature that analyzes repeated
games with two long-lived equally patient players. An early example is Cripps and Thomas
(1997), more recent papers are Atakan and Ekmekci (2012, 2013). These papers have fundamen-
tally different goals in that they aim to establish when reputation can be achieved (in the sense that
the player with the unknown type can attain the Stackelberg payoff) as players become arbitrarily
patient. We, by contrast, are interested in analyzing robust equilibrium outcomes for impatient
players. We can do so because we analyze a very specific game; the above mentioned papers
work with more general classes of games (to the best of knowledge, the game we study does not
lie in the class of any paper in this strand of the literature). Framed this way, our paper can also
be thought of as an instance of a relational contracting problem; perhaps the closest related recent
papers are Li, Matouschek, and Powell (2017) and Mitchell (2017) who analyze relational con-
tracting models without transfers, but where the problem is one of moral hazard without adverse
selection. The environment, applications and focus of these papers are quite distinct from ours.

While otherwise very different, the reputational incentives (and the fact that they can distort
behavior) in our setting are similar in spirit to those in models where experts with private types
choose actions in an attempt to demonstrate competentence (Prendergast and Stole (1996), Morris
(2001), Ottaviani and Sørensen (2006)). More recently, Backus and Little (2018) consider a single
period, extensive-form game of expert advise where they derive conditions under which an expert
can admit uncertainty. Our setting shares an essential modeling feature that good types may not
be able to provide the principal with positive utility in all periods.

Finally, our paper is related to a few papers in the literature on dynamic mechanism design
which analyze outcomes both with and without commitment. Guo (2016) studies a dynamic set-
ting without transfers where an agent is privately informed about the quality of a risky arm and
he prefers greater experimentation than the principal (both prefer the risky arm only when it is
good). While our setting differs substantially in terms of the payoff structure (and, hence the
application to which we speak), another critical difference is that the agent in our environment
strategically acts in response to additional private information she receives over time. Aghion
and Jackson (2016) consider a political economy setting where voters (principal) must incentivize
a politician (agent). Formally, they consider a setting without transfers where a principal is trying
to determine the type of a long-lived agent. While some features of our game are similar (the
agent’s payoff and the fact that she receives private information in each period), the main driving
forces in their model are different. Specifically, signaling is not a source of inefficiency in their
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setting; instead, the principal wants to the agent to take “risky” actions that are potentially dam-
aging to the latter’s reputation. Deb, Pai, and Said (2018) study a pure adverse selection dynamic
environment without transfers where a principal is trying to determine whether a strategic polit-
ical forecaster has accurate information by comparing the dynamics of his predictions leading up
to an election with the eventual winner. Once again, there are some superficial similarities in the
payoff structure but the games are otherwise quite different.

2. THE MODEL

In this section, we set up the main model on which the bulk of the paper focuses. In the latter
half of Section 4, we discuss which of the assumptions can be altered without affecting our main
results.

We study a discrete time, infinite horizon repeated game of imperfect public monitoring be-
tween a principal and an agent. We denote time by t ∈ {1, . . . , ∞} and both players have a
common discount factor δ ∈ (0, 1).

Agent’s Initial Type: The agent starts the game with a privately known type θ which can either
be good (θg) or bad (θb). The agent is the good type θg with commonly known prior probability
0 < p0 < 1. This initial type determines the rate at which the agent can generate positive payoffs
for the principal.

We begin by describing the stage game (summarized in Figure 1) after which we define strate-
gies and Nash equilibrium.

2.1. The Stage Game

At each period t, the principal and agent play the following extensive-form stage game where
the order of our description matches the timing of moves.

Principal’s Action: The principal begins the stage game by choosing whether or not to experiment
xt ∈ {0, 1}, where xt = 1 corresponds to experimenting. The cost of action xt is cxt with c > 0 so
experimenting is costly.

If the principal chooses not to experiment, the stage game ends. When she experiments, the
stage game proceeds as follows.

Agent’s Information: In each period, the agent either receives no information (it = iϕ), low-quality
information (it = il) or high-quality information (it = ih). it is drawn independently in each period
from a distribution that depends on the the agent’s type θ.

If θ = θb, the agent never receives information: that is, it = iϕ with probability 1.
If θ = θg, the agent independently draws information it ∈ {il , ih} with probability λ ∈ (0, 1)

and, hence, receives no information it = iϕ with the complementary probability 1−λ. Conditional
on receiving information, it is high, low quality with probability λh

λ , λl
λ respectively (where λh +

λl = λ).

Agent’s Action: After his information is realized, the agent decides whether or not to costlessly act
based on his information. Formally, he picks a public action at ∈ {0, 1} where at = 1(0) denotes
(not) acting.
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Public Outcomes: If the principal experiments (xt = 1) and the agent acts (at = 1), a public outcome
ot ∈ {o, o} is realized from a distribution µ given by

µ(o | it) =


1 if it = ih,
ql if it = il ,
0 if it = iϕ,

where o is realized with the complementary probability.
A success (o) can only be generated by the good type and the likelihood of a success is deter-

mined by the information quality: acting on high (low) quality information always (sometimes)
generates a success. The tension in the model arises from the fact that the good type may want to
act on low-quality information in an effort to signal his type. Since this can generate failures (o),
the bad type may act in an attempt to pool even though he never receives any information.

If either the principal does not experiment (xt = 0) or the agent does not act (at = 0), the stage
game ends with the agent generating neither a success nor failure. We denote this outcome by
ot = oϕ. Note that the extensive form implies that the agent does not receive information or get
to move if the principal chooses the safe arm; to simplify notation, we define at = 0 and it = iϕ

when xt = 0.

We use the shorthand notation ht = (xt, at, ot), ht ∈ {��h, hϕ, h, h} to describe the outcome of the
stage game. Here,

��h := (x = 0, a = ϕ, o = ϕ), hϕ := (x = 1, a = 0, o = oϕ),

h := (x = 1, a = 1, o = o), h := (x = 1, a = 1, o = o).

In words, ��h denotes the case where principal chooses not to experiment, the remaining three cor-
respond to the separate outcomes that can occur after the principal experiments. hϕ denotes the
case where the agent does not act, and h, h denote the cases where the agent acts and a success,
failure respectively are observed.

We use time superscripts to denote vectors. Thus, ht = (h1, . . . , ht) and it = (i1, . . . , it). Addi-
tionally, ht′ht (and analogously for other vectors) denotes the t′ + t length vector where the first t′

elements are given by ht′ and the t′ + 1st to t′ + tth elements are given by ht.

Stage Game Payoffs: The agent receives a unit payoff whenever the principal experiments. Formally,
his stage-game payoff u is given by

u(xt) = xt.

The principal wants to maximize (minimize) the number of successes (failures). Her payoff v is
given by

v(ht) =


1− c if ht = h,
−κ − c if ht = h,
−c if ht = hϕ,
0 if ht = ��h.

In words, gross of cost, the principal realizes a normalized payoff of 1 for every success, a loss of
κ > 0 for every failure and 0 otherwise.

8



OUR DISTRUST IS VERY EXPENSIVE

Payoff Assumptions: We assume that acting on low quality information yields a net loss for the
principal:

ql < (1− ql)κ.

This assumption creates one of the key tradeoffs in the model; absent its signaling value, the
principal wants to prevent the agent from acting on low quality information.

Additionally, we assume that the cost of experimentation

c < λh

is sufficiently low to make the model nontrivial. If this assumption is not satisfied, the principal
will never experiment even if the agent is known to be the good type.

2.2. The Repeated Game

Histories: ht−1 denotes the public history (henceforth, referred to simply as a history) at the begin-
ning of period-t. This contains all the previous actions of and outcomes observed by both players.
The good type agent’s private history additionally contains all previous information realizations
it−1 and the period-t information it when he is deciding whether or not to act; recall, the bad type
never receives any information. We use the convention that h0 = ϕ denotes the start of the game.
We use H and H g to respectively denote the set of histories and the set of the good type agent’s
private histories.3

Agent’s Strategy: We denote the agent’s strategy by ãθ . When the agent is the bad type, ãθb(h
t−1) ∈

[0, 1] specifies the probability with which the agent acts at each period t as a function of the history
ht−1 ∈ H . When the agent is the good type, ãθg(h

t−1, it) ∈ [0, 1] specifies the probability with
which he acts at each period t as a function of his private history (ht−1, it) ∈ H g. Since the agent
can only act when xt = 1, this is implicitly assumed in the notation and we do not add this as an
explicit argument of ãθ for brevity.

Principal’s Strategy: The principal’s strategy x̃(ht−1) ∈ [0, 1] specifies the probability of experiment-
ing in each period t as a function of the history.

On- and off-path Histories: Given strategies x̃ and ãθ , a history ht−1 ∈ H is said to be on-path (off-
path) if it can (cannot) be reached with positive probability for either (both) of the agent’s possible
types θ ∈ {θg, θb}. Similarly, a private history (ht−1, it) ∈ H g is said to be on-path (off-path) if it
can (cannot) be reached with positive probability when θ = θg.

Beliefs: A belief p̃ is associated with a pair of strategies x̃, ãθ (we suppress explicit dependence on
the strategies for notational convenience). p̃(ht−1) is principal’s belief that the agent is the good
type at history ht−1. If this history is on-path, p̃(ht−1) is derived from the agent’s strategy ãθ by
Bayes’ rule. In the entirety of what follows, we impose no restriction on how off-path beliefs are
formed.

3Note that H g only contains histories where the information received by the good type is compatible with the outcomes
for the stage game; recall that the successes cannot arise when the good type has no information.
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Expected Payoffs: We use Uθg(h
t−1, it−1, x̃, ãθg), Uθb(h

t−1, x̃, ãθb), V(ht−1, x̃, ãθ) to denote the expected
payoff of the good, bad type agent and principal respectively at histories ht−1 ∈ H , (ht−1, it−1) ∈
H g given strategies x̃, ãθ . Note that the principal’s payoff implicitly depends on her belief p̃(ht−1)

at this history.

Nash Equilibrium: A Nash equilibrium consists of a pair of strategies x̃, ãθ such that they are mutual
best responses. Formally, this implies that Uθg(h

0, i0, x̃, ãθg) ≥ Uθg(h
0, i0, x̃, ã′θg

), Uθb(h
0, x̃, ãθb) ≥

Uθb(h
0, x̃, ã′θb

) and V(h0, x̃, ãθ) ≥ V(h0, x̃′, ãθ) for any other strategies x̃′, ã′θ .
A Nash equilibrium is non-trivial if there is an on-path history (ht) where the principal experi-

ments with positive probability (x̃(ht) > 1).

Figure 1 below summarizes the actions and the order of play in the repeated game.

Agent
privately

learns
θ0 ∈

{
θg, θb

}

Principal
picks

xt ∈ {0, 1}

Agent
privately

learns
it ∈ {ih, il , iϕ}

Agent
publicly acts

at ∈ {0, 1}

Public
outcome

ot ∈ {o, o}
observed

Public
outcome
ot = oϕ

observed

Payoffs
Realized

Principal
picks

xt+1 ∈ {0, 1}

xt = 0

xt = 1

at =
0

at = 1

FIGURE 1. Flow chart describing the repeated game; the rectangle contains the
stage game.

Before beginning the analysis, it is worth discussing the main assumption in our model: the
monitoring structure mapping the agent’s actions based on information to outcomes. As is com-
mon in bandit models, we consider a “good news” environment where only the good type can
generate successes which are hence perfectly revealing. As we will discuss below, this assump-
tion is deliberately stark. It is intended to highlight that market breakdown can arise even though
the good type can separate perfectly at histories where he receives high-quality information and,
hence, one might expect screening to be possible.

This assumption does have implications for the applications that correspond to our model.
For our second leading application, the implication is clear; drug trials with no scientific basis
will not succeed. For our first application, the monitoring structure implies that we are taking
a specific stand on the meaning of “fake” content that is a result of acting without information.
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Content providers can claim to have inside information, and their scoops could turn out, after
public scrutiny, to be either correct or false. The key tension in our model is that the arrival of
novel, accurate stories is stochastic. A genuine content provider, behaving efficiently, might go
long stretches without a scoop. If so, they have strong incentives to publish content even though
they have very little certainty about its veracity. In other words, fake content in our model is
specifically an attempt by news sources to appear timely; it is not an attempt to confuse the public
about actual facts (so should not be confused with the disinformation “fake news” campaigns
designed to sway public opinion).

3. SOME BENCHMARKS AND THE EQUILIBRIUM REFINEMENT

We begin by considering some simple benchmarks which provide context for our main result.
Section 3.1 considers a setting where there is no incomplete information. This motivates the re-
finement that we define in Section 3.2. Finally, we consider a “static” benchmark in Section 3.3
that isolates the key tradeoffs in the model.

3.1. The First-Best Complete Information Benchmark

The purpose of this section is to show that the key friction in the model is the principal’s need
to screen the good from the bad type. To do so, we consider a benchmark in which the agent’s
type is publicly known; formally, this corresponds to the case where the prior belief p0 ∈ {0, 1}.
The theorem below characterizes the “first-best” Nash equilibrium under complete information.
As we often do in the paper, formal statements are presented in words without notation to make
them easier to read. Where we feel it is helpful to the reader, we additionally describe the strategies
using the notation in footnotes (and these mathematical statements also appear in the appendices).

THEOREM 1. If the agent is known to be the bad type, there is a unique Nash equilibrium in which the
principal never experiments.4

Conversely, suppose the agent is known to be the good type. Then, there is a unique Pareto-optimal Nash
equilibrium outcome in which the principal always experiments and the agent only acts on high quality
information.5

This result is obvious so the following discussion serves as the proof. The principal never ex-
periments when the agent is known to be the bad type since experimentation is costly and this
type cannot generate any successes which are the only outcomes that yield a positive payoff to the
principal. Conversely, if the agent is known to be the good type, there are no frictions. As long as
the agent acts only on high-quality information, it is always profitable for the principal to experi-
ment. Since actions are costless, the agent is indifferent between all strategies and so, in particular,
always choosing the principal optimal action is a best response. In what follows, whenever we
describe the behavior of either player as efficient, we are referring to the strategies described in

4Formally, the principal’s unique Nash equilibrium strategy when p0 = 0 is x̃(ht−1) = 0 for all ht−1 ∈ H . The agent’s
strategies can be picked arbitrarily.
5Formally, the Pareto-optimal Nash equilibrium strategies when p0 = 1 are x̃(ht−1) = 1, ãθb

(ht−1) = 0 for all ht−1 ∈H

and ãθg (h
t−1, it−1it) = 1(0) for all (ht−1, it−1it) ∈H g where it = ( 6=)ih.
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Theorem 1 above. We use

Π :=
λh − c
1− δ

> 0

to denote the first-best payoff that the principal obtains from the good type which clearly is an
upper bound for the payoff that the principal can achieve in any Nash equilibrium for p0 ∈ [0, 1].

3.2. The Equilibrium Refinement

Despite the lack of frictions when the agent is known to be the good type, there exist other, inef-
ficient Nash equilibria where the principal does not always experiment because the agent decides
to act inefficiently at certain histories. Indeed, complete market breakdown is also an equilibrium:
the principal never experiments and, in response, the agent never acts. We view such Nash equi-
libria as “implausible” as there is nothing that prevents both players from moving to the Pareto-
superior equilibrium described in Theorem 1. Similar unrealistic Nash equilibria also arise in the
model Ely and Välimäki (2003) and we borrow the following refinement from them to eliminate
these, and only these, Nash equilibria.

Equilibrium Refinement: An equilibrium (with no additional qualifier) is a Nash equilibrium in
which, at on-path histories where the principal believes that the agent is the good type with
probability one, both players choose efficient strategies (formally described in Theorem 1) in the
continuation game.6

While Ely and Välimäki (2003) refer to this refinement as renegotiation-proofness, we choose
not to do so as we feel this terminology overstates the strength of the refinement. This is because
it only restricts equilibrium behavior at a single belief whereas renegotiation-proofness refine-
ments typically apply at all histories. To the best of our knowledge, there is no single, accepted
renegotiation-proofness refinement in repeated games with uncertainty but the above refinement
(imposed after the agent’s type uncertainty is resolved) is implied by many renegotiation-proofness
refinements in the literature for complete information games. For instance, the consistency re-
quirements in Farrell and Maskin (1989), Abreu and Stacchetti (1993) and, most recently, the sus-
tainability requirement (without renegotiation frictions) of Safronov and Strulovici (2017) would
yield the efficient outcome when the agent’s type is initially known to be good.7

Finally, note that the above refinement is, in a sense, weaker than standard refinements such as
Markov perfection. This is, once again, because the refinement only has bite at one belief whereas
Markov perfection restricts equilibrium strategies at all beliefs. That said, note that the strategies
required by our refinement are not implied by Markov perfection as the latter does not prevent
both players from behaving inefficiently when the belief is one. Note that, with our refinement in
place, inefficiency is not a consequence of the players choosing inefficient strategies under com-
plete information; instead, inefficiency arises exclusively from the information frictions.

6Formally, at all on-path histories ht−1 ∈ H such that p̃(ht−1) = 1, we have x̃(ht−1) = 1, ãθb
(ht−1) = 0 and, for all

(it−1, ht−1) ∈H g, ãθg (h
t−1, it−1it) = 1(0) when it = ( 6=)ih.

7All three are defined for complete information repeated games with normal form stage games but can be applied to
our extensive-form stage game as well.
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3.3. The “Static” Benchmark and the Need for Quality Control

The goal of this section is to highlight the tradeoff between the agent’s short term need to estab-
lish reputation and the principal’s value from experimentation. To do so, we examine a “static”
benchmark where experimentation only occurs once, but the full dynamic benefits of that single
experiment are calculated. When the payoff in this benchmark is negative, then experimentation
is only potentially worthwhile if the principal can use the dynamics of the relationship to dampen
the agent’s reputational incentives. Specifically, consider the following strategies.

Principal: Experiments in the first period. If no success is generated, she stops experimenting at
all subsequent histories. If a success is generated, she always experiments at all future histories.

Good type agent: Acts if and only if he receives information of either high or low quality in the
first period. If no success is generated, he never acts whereas if a success is generated, he only acts
on high quality information at all future private histories.

Bad type agent: Acts with positive probability in the first period and then stops acting.

Formally, these “static” strategies are given by

x̃(h0) = 1 and x̃(h1ht−1) =

{
1 if h1 = h,
0 if h1 6= h,

for all h1ht−1 ∈H , t ≥ 1,

ãθg(h
0, i1) =

{
1 if i1 ∈ {ih, il},
0 if i1 = iϕ,

ãθg(h1ht−1, itit+1) =

{
1 if h1 = h and it+1 = ih,
0 otherwise,

for all (h1ht−1, it) ∈H g, t ≥ 1.

ãθb(h
0) > 0 and ãθb(h

t) = 0, for all ht ∈H , t ≥ 1.

(1)

To summarize, these strategies correspond to the principal experimenting for a single period in
the hope that the agent produces a success in which case she receives the first-best continuation
payoff. If no success is generated, the principal stops experimenting and the game effectively ends.
Faced with this strategy, it is a strict best response for the good type to act both on high and low
quality information because only successes generate positive continuation payoffs. The bad type
is indifferent between acting or not (as is the good type when he does not receive information),
so acting with positive probability is, in particular, a best response. We term these strategies as
static (despite the game continuing after a success) because both players’ incentives in this game
are identical to a static game in which they receive positive (first-best) payoffs only after a success.

An upper bound for the principal’s payoff from these strategies is given by

Π(p0) := p0(λh + λlql)(1 + δΠ)− p0λl(1− ql)κ − c.

This is the expected payoff that the principal receives from the actions of the good type; it is
an upper bound because it does not account for the losses from failures generated by the bad
type. The first term corresponds to the payoff after a success (the principal gets a payoff of 1 in
period one and the first-best continuation payoff Π) and the second term is the loss from a failure.
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It is straightforward to observe that a necessary and sufficient condition for these strategies to
constitute an equilibrium is that this bound is positive.

THEOREM 2. There exists an equilibrium in static strategies (given by (1)) iff Π(p0) > 0.

When Π(p0) > 0, there is always a low enough positive probability ε > 0 of action by the bad
type (ãθb(h

0) = ε) such that the principal’s payoff from experimentation is positive. Note that,
as long as the bad type sometimes, but not always, acts (ãθb(h

0) ∈ (0, 1)), the principal’s belief
following both non-success outcomes is interior (since p̃(h), p̃(hϕ) < 1) and thus the continuation
play as prescribed by (1) is allowed by the refinement since it has no bite at these histories.

Conversely, when Π(p0) ≤ 0, it is a strict best response for the principal to not experiment in
period one. This is because her payoff is strictly lower than this upper bound since the bad type
acts with positive probability. Note that there cannot be an equilibrium where the bad type does
not act (ãθb(h

0) = 0). Suppose to the contrary that there was such an equilibrium. In this case,
only the good type acts and so, irrespective of outcome, the principal’s posterior belief must go
to one after an action (p̃(h1) = 1 for h1 ∈ {h, h}). Our refinement implies that this will result in
positive continuation value for the agent and so acting (ãθb(h

0) = 1) will be a strict best response
for the bad type which is a contradiction.

When Π(p0) ≤ 0, we say quality control is necessary for experimentation to generate a positive
expected payoff. In this case, the principal must use the dynamics of her relationship with the
agent in order to provide the good type with the necessary incentives to act sufficiently infre-
quently on low-quality information. Note that the monitoring structure we have chosen in our
model is intentionally stark. By assuming successes are perfectly revealing, it should be easier for
the good type to establish reputation compared to a setting where acting on no information could
also generate a success with positive probability. In other words, one might think that screening
would be relatively easier for the principal compared to the case where bad types too could some-
times produce successes. Our main insight is that inefficiency and market breakdown arise despite
this stark good news monitoring structure.

4. MAIN RESULTS

In this section we present the main results of the paper and show that our key insights are
robust to allowing for one-sided transfers and a few other alterations of the model.

4.1. Equilibrium Properties: Inefficiency and Market Breakdown

We now present the main result of the paper in two parts. We first show that it is impossible
for the principal to provide incentives that uniformly prevent inefficient actions on path and then
argue that this inefficiency can have extreme payoff consequences.

THEOREM 3. Suppose p0 ∈ (0, 1). Then:
14
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(1) In every nontrivial equilibrium, the good type agent acts on low-quality information and the bad
type agent acts with positive probability (on no information) on path.8

(2) If quality control is necessary (Π(p0) ≤ 0), the unique equilibrium outcome is that the principal
never experiments.

Taken together, these results have stark economic implications. The first statement of Theo-
rem 3 implies that a principal who is willing to experiment will necessarily face inefficient actions.
Phrased in terms of our first application, this implies that a consumer of online content must re-
sign herself to the reality that, in addition to tolerating fake content from bad providers, even
genuine providers will willingly publish low-quality content that has not been fully vetted. The
inevitability of fake content follows from a simple argument that we have already articulated in
the context of the static benchmark. At any history where the good type acts, the bad type must
also act; if he did not, acting alone will take the principal’s posterior belief to one which guaran-
tees the highest possible continuation value due to our refinement and hence, not acting cannot be
a best response. The reason low quality content from the good type always arises on path, which
is the critical feature of the equilibrium and the potential cause for breakdown, is more subtle and
we postpone the intuition for this until later in the section.

The second statement of Theorem 3 argues that the payoff implications of the above mentioned
inefficiency can be large. Specifically, the agent’s reputational incentives prevent any quality con-
trol whenever it is necessary for experimentation and hence, the principal can never internalize
the long run benefits of experimentation. This result highlights perhaps the most significant eco-
nomic difference between our results and those of Ely and Välimäki (2003) in whose setting market
breakdown occurs precisely because, and only when, the principal is not long-lived and thus she
does not account for the future value of experimentation.

A consequence of this result is that there are two separate discontinuities that arise in the equi-
librium payoff set. First observe that there are parameter values such that Π(1) ≤ 0; for instance,
this can arise when experimentation is costly (high c), failures yield large losses (high κ) or when
low-quality information is very unlikely to generate successes (low ql). In this case, Π(p0) ≤ 0 for
all p0 ∈ (0, 1) and so the principal will never experiment. Thus, both players’ payoffs discontinu-
ously fall from the first-best when p0 = 1 to zero when p0 < 1.

Similarly, if we fix the prior p0 but instead alter the parameter values so that the payoff upper
bound from the static benchmark Π(p0) ↓ 0, the agent’s payoff set once again discontinuously
shrinks to zero. As long as Π(p0) > 0, there always exists at least one nontrivial equilibrium
(described in Section 3.3) where the principal experiments in period one and the good type can
attain the first best continuation payoff with probability λh + λlql .

Returning to our application, the implication of these results is that small additional frictions
can have large impacts on the functioning of online content markets. For instance, American
politicians have taken to decrying unfavorable coverage as “fake news” and now pounce on mi-
nor reporting mistakes as evidence of orchestrated bias. In our model, we can think of these as

8Formally, in every nontrivial equilibrium, there exist on-path histories ht ∈H and (ht′ , it′ il) ∈H g such that ãθb
(ht) >

0 and ãθg (h
t′ , it′ il) = 1.
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lowering the belief in the content provider p0 or increasing the perceived disutility from failures–
changes that can switch the sign of Π—which can in turn result in a large drop of web traffic.

We end the section with the main intuition underlying Theorem 3. We first observe that there
is a positive belief below which the principal does not experiment in any Nash equilibrium. Since
experimentation is costly, there is a belief below which experimentation is not worth it even if
uncertainty about the agent’s type could somehow surely resolve itself with one period of experi-
mentation (and be followed by the first-best continuation equilibrium).

Now suppose, to the contrary, that there is a nontrivial equilibrium despite quality control be-
ing necessary. Then, after each time the principal experiments, her posterior belief following one
of the two non-success outcomes—failure or inaction—must not only fall (because beliefs follow
a martingale) but must fall at a sufficiently fast rate (because successes must arrive frequently
enough to make experimentation profitable). It is then possible to show that every nontrivial
equilibrium must eventually have a “last” on-path history at which the principal’s belief p is less
than p0 and at which the agent must generate a success or otherwise the principal stops experi-
menting. But note that the agent’s incentives at such a last history are identical to his incentives in
the static benchmark. Here, it will be a strict best response for the good type to act on low quality
information and, since Π(p0) ≤ 0 implies Π(p) ≤ 0 for all p ≤ p0, it cannot be a best response for
the principal to experiment. Thus, such a last history cannot exist contradicting the existence of a
nontrivial equilibrium.

Very loosely speaking, the intuition underlying our result is similar to the reason that there is
a unique equilibrium outcome in a finitely repeated Prisoner’s dilemma. The difference is that
the backward induction “unraveling” in our model occurs in the space of beliefs (importantly,
without having to appeal to Markov perfection) as opposed to calendar time.

4.2. Allowing Transfers

For some applications, it is more appropriate to consider a setting where the principal can make
transfers to the agent. For instance, in addition to a fixed wage, firms can choose to pay contingent
bonuses to experts they employ. We introduce transfers by altering the stage game to allow the
principal to make payments to the agent after the public outcome is observed. We assume that
the principal can only make transfers in periods where she experiments. This assumption is not
required for our result (Theorem 4); instead, we impose it because we feel it is realistic for our
applications—it would be highly unusual for a firm to be making bonus payments to an expert
not in their employ—and it shortens the proof. Formally, we denote the transfer in period t by
τt ≥ 0. These transfers are observed by both players and so become part of the public history. For
easy reference, Figure 2 below describes how this alters the stage game. The formal description of
histories and strategies can be found in the appendix.

We do not alter our equilibrium refinement: at any on-path history where the principal’s belief
is one, she experiments and the agent only acts on high quality information. Importantly, the
refinement applied to this version of the game does not additionally restrict transfers in any way
and so the principal can transfer an arbitrary share of her first-best profits to the agent after he
reveals himself to be the good type.
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FIGURE 2. Flow chart describing the repeated game with transfers (the rectangle
contains the stage game)

THEOREM 4. Suppose p0 ∈ (0, 1). Then:

(1) In every nontrivial equilibrium of the game with transfers, the good type agent acts on low-quality
information and the bad type agent acts (on no information) on path.

(2) If quality control is necessary (Π(p0) ≤ 0), the unique equilibrium outcome of the game with
transfers is that the principal never experiments.

Transfers do not help the principal avoid inefficient actions or the resulting market breakdown
arising from the agent’s reputational incentives. In a nutshell, inefficiency is the result of the
agent’s desire to generate successes and one-sided transfers from the principal can only further
reward successes instead of punishing failures. To see this, first note that, once again, every non-
trivial equilibrium must have a last on-path history at which the principal experiments for similar
reasons to the case without transfers. Transfers do not help prevent the agent from acting on low-
quality information at this last history: any payment after a success only exacerbates the problem
and the principal can never credibly promise payments after a failure since she stops experiment-
ing and thus her continuation payoff is 0 which in turn implies that she has no reason to honor
the promise. Thus, Π(p0) remains an upper bound for the principal’s payoff at such last period
histories since one-sided transfers can only lower her continuation utility.

We end this subsection by observing that inefficiency can trivially be eliminated by allowing
two-sided transfers. This essentially allows the agent to buy the experimentation technology from
the principal. As is the case in many contracting problems, this complete removes any frictions
because only the good type will be willing to pay a sufficiently high amount.

4.3. Other Modeling Assumptions

Here, we briefly discuss a few other assumptions that can be relaxed. First, we can allow for
the principal and agent to have different discount factors. As should be clear from the preceding
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analysis, the agent’s discount factor plays no role. The statement of Theorem 3 remains as is and
the only difference is that the key payoffs Π and Π from the two benchmarks need to be computed
using the principal’s discount factor.

A few other assumptions can be relaxed. Our main result is unaffected if we allow the agent to
discard or destroy information. In our applications, this amounts to an agent deliberately lowering
the likelihood of generating a success, for instance, by discarding well reported content or good
research ideas and acting anyway. Formally, we model this by allowing the good-type agent to
pick, in response to information it, both an action at and a quality qt of the action. qt determines
the likelihood of a success and is bounded above by the information quality

qt ≤


1 if it = ih,
ql if it = il ,
0 if it = iϕ.

It is apparent that this generality plays no role as the agent does not have an incentive to increase
the likelihood of a failure in equilibrium. This is because failures lead to losses for the principal
and do not help in screening (since the bad type can always surely generate failures).

Finally, the timing of moves in our extensive form stage game (Figure 1) implies that the agent
only receives information when the principal experiments. This assumption clearly does not mat-
ter because, information being perishable, implies that past information is payoff irrelevant and
the agent cannot act on any information unless the principal experiments.

5. IMPROVING MARKET FUNCTIONING WITH PARTIAL COMMITMENT

As we showed in the previous section, transfers do not improve market functioning when qual-
ity control is necessary. In this section, we argue instead that commitment from the principal to a
longer duration of experimentation can ease the agent’s immediate need to develop reputation.

Specifically, we model this as partial commitment: whenever the principal decides to experi-
ment, she commits to experimenting for T > 1 periods. Formally, the principal’s strategy

x̂(h1 . . . ht) ∈
{

[0, 1] if ht−T+2 = · · · = ht = ��h,
{1} otherwise,

specifies the probability of experimentation at public histories h1 . . . ht ∈ H . This probability
must be one if she has experimented in any of the past T− 1 periods. Here we use the convention
that ht′ = ��h if t′ ≤ 0. A different way of interpreting this particular form of partial commitment
is that when a principal decides to experiment, she sinks the T period discounted cost of exper-
imentation 1−δT

1−δ c up front. Note that our refinement applies verbatim since the only restriction
on the principal’s strategy is to force her to experiment at histories where she might otherwise
not. In addition to being relevant for our applications (which we discuss further at the end of this
section), this is one of the reasons we chose to focus on this particular type of partial commitment.

Partial commitment allows the principal to realize benefits from experimentation even when
quality control is necessary. By allowing her to sink the cost of experimentation up front, the
principal’s decision to experiment is based on her total profit over T periods. To see this consider
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the following strategies. The principal commits to experimenting for the first T periods

x̂(ht−1) = 1 for all t ≤ T, ht−1 ∈H .

If a failure or no success arrives over these T periods, the principal stops experimenting. If the
agent generates at least one success (and no failures) over the first T periods, the principal experi-
ments forever. Formally, for t ≥ T + 1 and h1 . . . ht−1 ∈H ,

x̂(h1 . . . ht−1) =

{
1 if ht′ 6= h for all 1 ≤ t′ ≤ T and ht′′ = h for some 1 ≤ t′′ ≤ T,
0 otherwise.

In response, the good type agent only acts on high-quality information for the first t ≤ T − 1
periods

ãθg(h
t−1, it−1it) =

{
1 if it = ih,
0 otherwise,

for all (ht−1, it−1it) ∈H g

and, additionally, on low-quality information at period T if no success has arrived,

ãθg(h
T−1, i1 . . . iT) =


1 if iT = ih,
1 if iT = il and it′ 6= ih for all 1 ≤ t′ ≤ T − 1,
0 otherwise,

for all (hT−1, iT−1iT) ∈ H g. If a success arrives in the first T periods, he acts efficiently thereafter.
Formally, for t ≥ T + 1 and (h1 . . . ht−1, it−1it) ∈H g,

ãθg(h1 . . . ht−1, it−1it) =

{
1 if it = ih, ht′ 6= h for all 1 ≤ t′ ≤ T and ht′′ = h for some 1 ≤ t′′ ≤ T,
0 otherwise.

Finally, the bad type only acts with positive probability ε ∈ (0, 1) in period T so

ãθb(h
T−1) = ε for all hT−1 ∈H and ãθb(h

t−1) = 0 for all t 6= T, ht−1 ∈H .

We now argue that there are parameter values such that the above strategies constitute an equi-
librium even when quality control is necessary. First note that experimentation can be profitable.

For instance, if p0λh > c, then the principal’s payoff taking T → ∞ converges to p0λh−c
1−δ > 0 so

experimentation is also profitable for some finite T irrespective of the value of Π(p0) (the optimal
such T is finite).

Clearly, the bad type is best responding since he is indifferent between all strategies.9 Finally,
the good type’s strategy is a best response if he does not have an incentive to act on low-quality
information at any period prior to T. A sufficient condition for this is λh ≥ ql since the likelihood of
getting high quality information (and thereby a sure success) in the next period makes the option
value of waiting more attractive than the lottery of generating a success today with probability ql .

To summarize, partial commitment to T periods of experimentation implies that the good type
does not need to always act on low-quality information and this in turn can generate a positive
average profit for the principal. Indeed, when Π(p0) is negative but small, there are parameter
values such that the principal receives a positive expected payoff from experimentation in every

9Note that the bad type has no incentive to act prior to T (even though the good type acts with positive probability)
because failures between periods 1 and T − 1 are off path and are punished by the principal.
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period (not just a positive total payoff) gross of the sunk cost. This latter observation is important
for our applications because otherwise the principal could choose to “ignore” the agent’s action
in period T. This corresponds to a reader refusing to read any content or a firm refusing to run a
drug trial at period T because the expected payoff (even gross of sunk cost c) is negative due to
the cost of failure κ.

We specifically chose to highlight this form of partial commitment because it has a natural
counterpart in our leading applications. In the case of online content, this is akin to a subscription
based payment model. Our analysis suggests that, having been paid a subscription fee, a content
provider can be more judicious about his choice of content as he does not need to incentivize each
additional click. The same is true for experts in organizations as (even short term) job security
allows them to admit that they might not always have actionable information which in turn pre-
vents unnecessary losses to the firm. Interestingly, the above equilibrium strategies in this section
mirror employments contracts that are commonly used in academia which consist a single fixed
period of employment followed by either dismissal or tenure.

6. DISCUSSION

6.1. Storable Information

In the above analysis, we have assumed that information is perishable; if an agent does not act
on information in a given period, he cannot use it in the future. This assumption is suitable for
time sensitive information such as breaking news or research in competitive industries but might
not be appropriate for other applications. A natural version of the game is one in which the agent
can choose to act on any information he has received till date but not acted on in the past. In other
words, the agent can store information and, at any point, can act on any piece of information
he has previously stored. After the agent acts on a piece of information, it is then spent. Our
refinement can be applied verbatim noting that efficient actions for the good type means that he
acts only on (potentially previously stored) high quality information.

The ability to store information can improve market functioning. The easiest way to see this is
to consider the following two period example. Here, the principal experiments for two periods
at which point, she stops experimenting from period three onwards unless the agent generates a
success in period two. The good type, in response, does not act in period one but acts on both
high and low quality information in period two. The bad type only acts in period two with small
probability.

The fact that the agent is required to not act in period one, gives him one additional period
to receive high-quality information before acting eventually in period two. At that point, it is
thus relatively more likely that the agent has at least one piece of (potentially stored) high-quality
information (in which case she will act on it) as opposed to only low-quality information. It is
easy to find parameter values (for instance, when the cost of experimentation is small relative to
the loss from failure) where Π(p0) ≤ 0 but the principal is willing to pay for an additional period
of experimentation to reduce the relative likelihood of a failure.
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6.2. Nash Equilibrium

While we feel that our refinement is both natural and weak, it is worth pointing out that the
main insights of Theorem 3 do not hold in the full class of Nash equilibria. Recall that, when
our refinement is not imposed, there are Nash equilibria in which principal stops experimenting
despite it being public knowledge that the agent is the good type. This (seemingly unrealistic)
behavior can destroy the benefits from establishing reputation which, as we have argued, is the
key driver that leads to both inefficient actions and market breakdown.

THEOREM 5. Suppose p0 ∈ (0, 1). Then:

(1) There exist nontrivial Nash equilibria in which the good-type agent only acts on high-quality infor-
mation and the bad-type agent never acts.10

(2) As p0 → 1, there is a sequence of Nash equilibria such that the payoffs of the principal and the agent
converge to the Pareto optimal.

This result is easy to show; for brevity, we do not include proofs as the discussion below makes
the formal argument self-evident. Both parts follow from essentially the same intuition. Define T̂
as largest time period t that satisfies

p0

p0 +
(1−p0)

(1−λh)
t−1

≥ c
λh

. (2)

The term on the left is the posterior belief in period t when the agent has not acted in any prior
period and the agent’s strategy is to act efficiently. The term on the right is the minimal belief that
would make the principal willing to experiment if the stage game were only played for one period
and the agent was acting efficiently.

With T̂ thus defined, consider the following strategies. The principal experiments for the first T̂
periods and the agent acts efficiently. At all subsequent periods, the principal never experiments
and the agent never acts.11

It is easy to see that these strategies constitute a Nash equilibrium whenever T̂ ≥ 1. Because the
outcomes in the first T̂ periods have no effect on continuation play from period T̂ + 1 onwards,
both types of the agent are indifferent between all strategies (irrespective of information received)
and so acting efficiently is, in particular, a best response. The principal on the other hand has an
incentive to experiment for the first T̂ periods because her belief is never below the right side of (2)
which in turn implies that her expected payoff from experimenting in each stage game before T̂
is nonnegative (as the agent is acting efficiently). Because the agent switches to never acting after
T̂, it is no longer optimal to experiment even if the principal’s belief has jumped to one (which

10Formally, there exist nontrivial Nash equilibria such at all on path histories ht ∈ H , (ht, itit+1) ∈ H g where x̃(ht) >
0, we have aθg (h

t, itit+1) = 1(0) if it+1 = ( 6=)ih and aθb
(ht) = 0.

11Formally, x̃, ã are defined as follows. For all 0 ≤ t ≤ T̂ − 1, ht ∈H , (ht, it+1) ∈H g, strategies are

x̃(ht) = 1, ãθg (h
t, itit+1) =

{
1 if it+1 = ih,
0 otherwise, and ãθb

(ht) = 0.

When t ≥ T̂, strategies are

x̃(ht) = ãθg (h
t, it+1) = ãθb

(ht) = 0 for all ht ∈H , (ht, it+1) ∈H g.
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happens if the agent acts at or before T̂). Note that it is precisely this particular feature of the
equilibrium strategies that is ruled out by our refinement.

The first part of Theorem 5 states that such a nontrivial equilibrium exists. This is true whenever
p0λh > c as this implies that T̂ ≥ 1. For the second part of the theorem, note that T̂ → ∞ as p0 → 1
and therefore the principal’s payoff from the constructed equilibrium 1−δT̂

1−δ (p0λh − c) converges to
the first best Π.

6.3. Full Commitment

In Section 5, we showed that partial commitment (that does not conflict with our refinement)
to T periods of experimentation at a time can lead to a Pareto improvements over the outcome
of Theorem 3. However, Theorem 5 shows that inefficient actions can be eliminated without any
commitment as long as the players are not forced into efficient continuation play once the agent
is revealed to be the good type. An implication is that, as uncertainty disappear, there are Nash
equilibria in which the principal’s payoff approaches the first best. In light of this, it is natu-
ral to ask whether having full commitment can lead to even greater profits? There are recent
instances of dynamic mechanism design problems (for instance, Guo (2016) and Deb, Pai, and
Said (2018)) where the principal does not require commitment to maximize profits. More gener-
ally, Ben-Porath, Dekel, and Lipman (2018) have shown that, for a large class of static mechanism
design problems with “evidence,” the commitment optimal can be achieved even without com-
mitment. They have ongoing work which shows that these insights also extend to certain dynamic
environments.

We now allow the principal to announce her strategy x̃ in advance and commit to it. In re-
sponse, the agent’s strategy ãθ is the best response to x̃ that maximizes the principal’s payoff (an
assumption that is always made in mechanism design).

THEOREM 6. Full commitment to x̃ allows the principal to attain a strictly higher payoff than the principal-
optimal Nash equilibrium.

In the appendix, we state the result more formally by providing sufficient conditions under
which commitment makes the principal strictly better off. Full commitment allows the principal
to experiment at histories where her belief is so low that she would not do so in any Nash equi-
librium. This in turn gives the principal one additional instrument: it allows her to provide the
agent continuation value at all histories irrespective of her belief. Theorem 6 shows that this is a
more profitable way of screening the agent as opposed to foregoing surplus despite knowing that
the agent is the good type.

We end this section by noting that commitment to a strategy x̃ is not the same as commitment to
a direct revelation mechanism. This is because our model is a setting with both adverse selection
and strategic actions. A direct mechanism should solicit the agent’s type at the beginning of the
game and should provide (possibly mixed) action recommendations after the agent reports his
period-t information. These are both features that are absent from the principal’s strategy x̃ in the
repeated game. A full characterization of the optimal mechanism is hard and we have only been
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able to derive it in special cases. This difficulty is to be expected. In order to solve for the opti-
mal mechanism, we have to first derive the most profitable way to implement a given incentive
compatible action strategy for the agent and then optimize over all such possible action strategies.
Even the first of these two steps is hard as mechanism design problems without transfers can be
complex even in static pure adverse selection environments without strategic actions.

7. CONCLUDING REMARKS

With the aim of studying markets for expertise (broadly defined), we develop and analyze a
novel repeated game. A principal screens an agent with a privately known type who periodically
receives private information (the arrival rate of which depends on his type) and strategically de-
cides whether or not to act on it. Actions generate public outcomes which depend on the quality
of the information received (if any). A key feature of our model is that, while the good-type agent
can provide the principal with a positive average payoff, he cannot generate positive payoffs for
the principal in every period. We show that reputational incentives can be exceedingly strong
in this environment: a consequence is inefficiency in every equilibrium (subject to a mild refine-
ment) that can lead to market breakdown leaving potentially large surplus gains on the table. We
argue that this breakdown can occur discontinuously as we change model parameters and thus
small changes in the environment can have large effects on market functioning. We show that this
central insight is robust to several generalizations of the model; the most significant of which is
allowing transfers from the principal to the agent. We suggest partial commitment as a way to
improve market functioning. Our results speak, in particular, to the effect of advertising based
revenue (as opposed to traditional subscription based payment) on the quality of online content
and to the improvement of contract design, with the aim of inducing better decision making by
career concerned experts, in organizations.

We end by discussing some limitations of our analysis and the natural avenues for future re-
search they suggest. The key assumptions driving our main insights are (i) that both information
acquisition and actions are costless for the agent and (ii) the monitoring structure that determines
how information quality affects the distribution of outcomes via actions. We address each in turn.
While costless actions are a natural assumption for the applications we have focused on (there is
no physical cost of publishing a story on a website, drug trials are paid for by the pharmaceutical
company), there are other environments where this assumption is less than ideal. Costly actions
significantly complicate the analysis because the agent can then signal by bearing the cost of act-
ing. Similarly, if information acquisition is costly, the efficacy with which the principal can screen
is determined by her ability to provide the agent appropriate incentives to acquire information.

There are two separate aspects of the monitoring structure that are worth discussing. First, in
our model, bad types can only generate failures and thus good types can perfectly out themselves
by producing a success. As we have argued, this assumption makes our results more stark because
one might expect that this facilitates screening by allowing the good type to perfectly separate.
That said, a natural alternative to this assumption is to allow bad types to also generate successes
with positive probability by acting on no information. Conceptually, as long as we could ensure
that the good type always acts on high-quality information, our main results should continue to
hold. At a high level, this is because, the good type is more likely to generate successes and beliefs
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will then drift down when successes do not arrive leading to the problematic last histories. The
technical issue of moving away from a pure good news setting is that the principal’s belief would
never goes to one on path and thus our refinement would have no bite whatsoever. As we have
argued, unrealistic equilibria can exist absent a refinement. A stronger alternative refinement to
ours would be to impose some version of renegotiation-proofness at all histories. This would
introduce technical difficulties and, moreover, to the best of our knowledge, there is no natural
renegotiation-proofness refinement that we can borrow from the literature.

Finally, there are applications where our assumption of imperfect public monitoring may be
inappropriate. Instead, in such environments, the principal could privately observe the outcome
which is an imperfect signal (à la Compte (1998)) of the agent’s information. Here, the principal
can communicate with the agent by sending him cheap talk messages. An example of such a
setting is a firm hiring a consultant to provide advice whose outcome is privately observed by
the firm which then provides feedback. These and numerous other variants of our model are not
mere extensions as they involve different technical challenges and speak to different real-world
problems. We hope to address at least some of these questions in future work.
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APPENDIX A. PROOFS OF THEOREM 3 AND THEOREM 4

We will prove Theorem 4 for the game with transfers and then argue that it implies Theorem 3.
Before we proceed with the proofs, we want to formally define histories and strategies for the
game with transfers which we chose to omit from Section 4.2.

Transfers: After the public outcome is realized in period t, the principal makes a one-sided transfer
τt ∈ R+ to the agent.

Histories: A (public) history (h1 . . . ht−1, τ1 . . . τt−1) at the beginning of period t ≥ 2 satisfies h1 . . . ht−1 ∈
H and τt′ ≥ (=)0 when ht′ 6= (=)��h for all 1 ≤ t′ ≤ t. In addition to the previous actions and
outcomes, it also contains the previous transfers (that are zero whenever the principal does not
experiment). (h0, τ0) denotes the beginning of the game. We denote the set of histories using T .

As before, the good type agent’s period-t private history (ht−1, τt−1, it) additionally contains
the current and previous information realizations it. We use T g to denote the set of the good type
of agent’s private histories.

We use T̃ t where t ≥ 1 to denote the set of on-path histories at the beginning of period t + 1.
Here, the notation reflects the fact that this set depends on the equilibrium strategies (x̃, τ̃, ãθ).

Agent’s Strategy: The bad type’s strategy ãθb(h
t−1, τt−1) ∈ [0, 1] specifies the probability of acting at

each period t public history (ht−1, τt−1) ∈ T . Similarly, ãθg(h
t−1, τt−1, it) ∈ [0, 1] for each private

history (ht−1, τt−1, it) ∈ T g.

Principal’s Strategy: The principal’s strategy consists of two functions: an experimentation deci-
sion x̃(ht−1, τt−1) ∈ [0, 1] and a transfer strategy τ̃(ht−1ht, τt−1) ∈ ∆(R+) which specifies the
distribution over transfers for each (ht−1, τt−1) ∈ T , ht ∈ {h, h, hϕ}. Note that, by definition,
τ̃(ht−1ht, τt−1) is the Dirac measure at 0 when ht = ��h.

Beliefs: Finally, the principal’s beliefs p̃(ht−1, τt−1), p̃(ht−1ht, τt−1) at the moment she makes her
experimentation and transfer decision respectively also depend on the past history of transfers.
Once again, these beliefs are derived by Bayes’ rule on path and are not restricted off path.

Expected Payoffs: Expected payoffs now additionally also have as an argument the history of trans-
fers and are denoted by Uθg(h

t−1, τt−1, it), Uθb(h
t−1, τt−1), V(ht−1, τt−1) to denote the expected

payoff of the good, bad type agent and principal respectively. We sometimes also refer to the
agent’s expected payoff Uθg(h

t, τt−1, it), Uθb(h
t, τt−1) after the outcome but before the principal’s

transfer in period-t is realized. Note that, for brevity, we are suppressing dependence on strate-
gies.

We now define “last histories.” The necessity of such histories arising on-path will be crucial
for our arguments.

Last History: A last history is an on-path history at which the principal experiments such that,
if no success is generated, the principal stops experimenting (almost surely) at all future histo-
ries. Formally, a last history is an on-path (ht, τt) ∈ T̃ t such that x̃(ht, τt) > 0, p̃(ht, τt) < 1 and
Uθb(h

tht+1, τt, x̃, ãθb) = 0 for all on-path ht+1 ∈ {h, hϕ}. Note that this also implies Uθg(h
tht+1, τt, it+1) =

0 for ht+1 ∈ {h, hϕ}.
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Note that we define a last history in terms of the agent’s payoff (as opposed to the principal’s
experimentation decision) so that we can avoid qualifiers about the principal’s actions on continu-
ation on-path histories that are reached with probability 0 (after the principal’s transfer is realized
via her mixed strategy). Also observe that Uθb(h

tht+1, τtτt+1) = 0 implies that τt+1 = 0 since it
cannot be a best response for the principal to make a positive transfer to the agent in period t + 1
when her continuation value is 0.

We now argue that every nontrivial Nash equilibrium must have such a last history.

LEMMA 1. Suppose p0 ∈ (0, 1). Every nontrivial Nash equilibrium (x̃, τ̃, ãθ) of the game with transfers
must have a last history.

PROOF. We first define,

p = inf
{

p̃
(

ĥt′ , τ̂t′
) ∣∣∣∣ (ĥt′ , τ̂t′) ∈ T̃ t′ , t′ ≥ 0

}
< 1,

to denote the infimum of the beliefs at on-path histories. We will now assume to the converse
that there is no last history. With this assumption in place, the following steps yield the requisite
contradiction.

Step 1: Experimentation at low beliefs. For all ε > 0, there exists an on-path history (ht′ , τt′) ∈ T̃ t′

such that the principal experiments x̃(ht′ , τt′) > 0 and the belief is close to the infimum p̃(ht′ , τt′) <

1, p̃(ht′ , τt′)− p < ε.

By definition, there exists a history (ĥt, τ̂t) ∈ T̃ t such that the belief satisfies p̃(ĥt, τ̂t) < 1 and
p̃(ĥt, τ̂t)− p < ε. It remains to be shown that there is a history at which the principal experiments.
We consider the case where x̃(ĥt, τ̂t) = 0 as otherwise (ht′ , τt′) = (ĥt, τ̂t) would be the required
history.

If Uθb(ĥ
t, τ̂t) > 0, then this implies that there is an on-path continuation history (ĥtĥs, τ̂tτ̂s) ∈ T ,

ĥs = (��h, . . . , ��h), τ̂s = (0, . . . , 0), s ≥ 1 where the principal eventually experiments x̃(ĥtĥs, τ̂tτ̂s) > 0;
this is because the principal is not allowed to make transfers unless she experiments first. But since
the belief does not change without experimentation, this implies that p̃(ĥtĥs, τ̂tτ̂s) = p̃(ĥt, τ̂t) and
thus (ht′ , τt′) = (ĥtĥs, τ̂tτ̂s) is the requisite history.

So suppose instead that Uθb(ĥ
t, τ̂t, x̃, ãθb) = 0. Let 0 ≤ s < t be the last period in the history

(ĥt, τ̂t) at which the principal experiments. Formally, x̃(ĥs, τ̂s) > 0 and (ĥt, τ̂t) = (ĥshs+1ĥt−s−1, τ̂sτ̂t−s)

where ĥt−s−1 = (��h, . . . , ��h) when s < t− 1 and τ̂t−s = (0, . . . , 0). Such a history (ĥs, τ̂s) must exist
because the equilibrium is nontrivial. If principal’s realized choice was not to experiment at pe-
riod s+ 1, then we have hs+1 = ��h which in turn implies p̃(ĥs, τ̂s) = p̃(ĥt, τ̂t) and (ht′ , τt′) = (ĥs, τ̂s)

is the requisite history.
So finally suppose that the realized action of the principal was to experiment at s + 1. Then

we must have ĥs+1 ∈ {h, hϕ} (note that if ĥs+1 = h, this would imply p̃(ĥt, τ̂t) = 1 which is a
contradiction). If Uθb(ĥ

sĥs+1, τ̂s) > 0, this would imply the existence of a first continuation his-
tory (ĥsĥs+1h̆s′ , τ̂sτ̆s′+1) ∈ T̃ s+s′+1 such that x̃(ĥsĥs+1h̆s′ , τ̂sτ̆s′+1) > 0 and p̃(ĥsĥs+1h̆s′ , τ̂sτ̆s′+1) =

p̃(ĥsĥs+1, τ̂s) = p̃(ĥt, τ̂t) and so (ht′ , τt′) = (ĥsĥs+1h̆s′ , τ̂sτ̆s′+1) would be the requisite history.
26



OUR DISTRUST IS VERY EXPENSIVE

Therefore the only remaining case to analyze is when Uθb(ĥ
sĥs+1, τ̂s) = 0. Since we have as-

sumed that there is no last history, it must be the case that the principal experiments after the
other non-success outcome or that Uθb(ĥ

sh̆s+1, τ̂s) > 0 for h̆s+1 ∈ {h, ĥϕ}, h̆s+1 6= ĥs+1. But then it
cannot be a best response for type θb to reach history (ĥsĥs+1, τ̂s) since he can always reach history
(ĥsh̆s+1, τ̂s) costlessly with probability 1. This implies that p̃(ĥsĥs+1, τ̂s) = 1 (since this history
is on path) which once again yields the contradiction p̃(ĥt, τ̂t) = 1. Thus ĥs+1 ∈ {h, hϕ} is not
possible and the proof of this step is complete.

Step 2: Upper bound for the principal’s payoff. Fix an ε > 0 and a history (ht, τt) ∈ T̃ t such that the
principal experiments x̃(ht, τt) > 0 and the belief satisfies p̃(ht, τt) < 1, p̃(ht, τt)− p < ε. For any
integer s ≥ 1,

ε

1− p
s− c + δs Π ≥ V(ht, τt) (3)

is an upper bound for the principal’s payoff at history (ht, τt).

For the remainder of this step, we assume that the principal’s realized action choice is to exper-
iment at (ht, τt). Since x̃(ht, τt) > 0, experimenting at (ht, τt) must be a (weak) best response and
so it suffices to compute an upper bound for the principal’s payoff assuming she experiments for
sure at (ht, τt).

We use q to denote the probability that at least one success arrives in the periods between t + 1
and t + s. Now consider the principal’s beliefs at on-path histories (hths, τtτs) ∈ T̃ t+s. Since the
beliefs follow a martingale, they must average to the belief p̃(ht, τt). This immediately yields an
upper bound for q since

q + (1− q)p ≤ p̃(ht, τt) =⇒ q ≤
p̃(ht, τt)− p

1− p
≤ ε

1− p
.

Since the belief jumps to 1 after a success, the maximal probability of observing a success (subject
to Bayes’ consistency) can be obtained by assuming that the belief is the lowest possible (p) when
a success does not arrive (which happens with probability 1− q).

We can write the principal’s payoff V(ht, τt) by summing three separate terms: (i) the expected
payoff from the outcomes in the s periods following t, (ii) the expected cost of experimentation
and transfers in the s periods and (iii) the expected continuation value at t + s + 1.

To derive the upper bound for the principal’s payoff from (3), we label each of the terms of
ε

1− p
s︸ ︷︷ ︸

(i)

− c︸︷︷︸
(ii)

+ δs Π︸︷︷︸
(iii)

,

so that they individually correspond to a bound for each component (i)-(iii) of the payoffs.

(i) qs is an upper bound for the expected payoff that the principal can receive from outcomes
in the s periods following history (ht, τt). This corresponds to getting a success in each pe-
riod of the s periods (with no loss from discounting) whenever at least one success arrives
(which occurs with probability q ≤ ε/(1− p)) and no losses from failures.
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(ii) Since the principal experiments for sure at (ht, τt) her expected cost of experimentation
must be greater than c. Additionally, her cost from transfers must be at weakly greater
than 0.

(iii) The principal’s expected continuation value must be less than Π since this is the first-best
payoff corresponding to the case where the agent is known to be the good type for sure.

Step 3: Final contradiction. By simultaneously taking s large and εs small, we can find a history
(ht, τt) ∈ T̃ t where the principal experiments x̃(ht, τt) > 0 but the maximal payoff she can get
(given by the bound (3)) is negative.

Since this cannot be true in any Nash equilibrium, this contradicts the assumption that there is
no last history and completes the proof of the lemma. �

PROOF OF THEOREM 4, PART (1). Suppose (x̃, τ̃, ãθ) is a nontrivial equilibrium. Then Lemma 1
shows that there must be a last history. At this history, it is a strict best response ãθg(h

t, τt, itil) = 1
for type θg to act on low-quality information since our refinement implies that

qlUθg(h
th, τt) + (1− ql)Uθg(h

th, τt) ≥ δ

1− δ
> 0 = Uθg(h

thϕ, τt).

This additionally implies that failure at this history (hth, τt) must be on path. A final conse-
quence is that we must have ãθb(h

t, τt) > 0 as otherwise p̃(hth, τt) = 1 which, due to the re-
finement, would contradict the fact that (ht, τt) is a last history. This proves the first part of the
theorem. �

We now prove the second part of Theorem 4.

PROOF OF THEOREM 4, PART (2). Suppose (x̃, τ̃, ãθ) is a nontrivial equilibrium. Then Lemma 1
implies that there must be a last history. Since the principal’s expected payoff at any on-path
history must be nonnegative, this implies that her beliefs at all last histories must be strictly greater
than p0 (since Π(p0) ≤ 0). We will show this is not possible via the following sequence of steps.

We first define π̃(T |ht, τt) which denotes the probability of reaching the set of histories T ⊂ T

starting at history (ht, τt) ∈ T via equilibrium strategies (x̃, τ̃, ãθ).

Step 1: Partitioning the histories. We can partition the set of on-path period-t + 1 histories T̃ t into
three mutually disjoint sets:

(1) The set L̃ t ⊂ T̃ t of all histories that follow from a last history: this consists of all histories
(hsht−s, τsτt−s) ∈ T̃ t such that (hs, τs) is a last history for some 1 ≤ s ≤ t.

(2) The set S̃ t ⊂ T̃ t of all histories that follow from a success being generated in a non-last
history: this consists of all histories (ht, τt) ∈ T̃ t such that hs = h for some 1 ≤ s ≤ t,
hs′ 6= h for all 1 ≤ s′ < s and (hs−1, τs−1) /∈ L̃ s−1 is not a last history.

(3) All other remaining histories R̃t = T̃ t\
(
S̃ t ∪ L̃ t). Note that for all (ht, τt) ∈ R̃t, we must

have hs 6= h for all 1 ≤ s ≤ t.
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Step 2: The lowest belief amongst histories in the set R̃t is less than p0. Formally, for all t, R̃t is nonempty
and there is a history (ht, τt) ∈ R̃t such that p̃(ht, τt) ≤ p0.

Since beliefs follow a martingale, the expected value of the beliefs at the beginning of period
t + 1 must equal the prior at the beginning of the game or

p0 = E[ p̃(ht, τt)].

Note that the expectation above and those that follow in the proof of this step are taken with
respect to the distribution π̃(·|h0, τ0) over period t + 1 histories induced by the equilibrium strate-
gies. We can rewrite this expression as

p0 =π̃(S̃ t|h0, τ0)E[ p̃(ht, τt) | (ht, τt) ∈ S̃ t] + π̃(L̃ t|h0, τ0)E[ p̃(ht, τt) | (ht, τt) ∈ L̃ t]

+ π̃(R̃t|h0, τ0)E[ p̃(ht, τt) | (ht, τt) ∈ R̃t].

Since p̃(ht, τt) = 1 for all (ht, τt) ∈ S t, the above equation becomes

p0 =π̃(S̃ t|h0, τ0) + π̃(L̃ t|h0, τ0)E[ p̃(ht, τt) | (ht, τt) ∈ L̃ t]

+ π̃(R̃t|h0, τ0)E[ p̃(ht, τt) | (ht, τt) ∈ R̃t].
(4)

Now recall that the beliefs at all last histories must be strictly greater than p0. This implies
that E[ p̃(ht, τt) | (ht, τt) ∈ L̃ t] > p0 whenever π̃(L̃ t|h0, τ0) > 0 since these are the histories
that follow last histories and beliefs follow a martingale. Of course, this in turn implies that
π̃(R̃t|h0, τ0) > 0 and that E[ p̃(ht, τt) | (ht, τt) ∈ R̃t] ≤ p0, which shows that R̃t is nonempty
and that there must be a history (ht, τt) ∈ R̃t such that p̃(ht, τt) ≤ p0.

Step 3: The principal experiments following a history in R̃t where the belief is low. Formally, for all t and
ε > 0, there is a history (ht, τt) ∈ R̃t such that

p̃(ht, τt) ≤ inf
(ĥt,τ̂t)∈R̃t

p̃(ĥt, τ̂t) + ε, p̃(ht, τt) ≤ p0 and x̃(htht′ , τtτt′) > 0,

for some (htht′ , τtτt′) ∈ T̃ t+t′ , t′ ≥ 0.

First suppose inf(ĥt,τ̂t)∈R̃t p̃(ĥt, τ̂t) = p0. Then, for all histories (ĥs, τ̂s) ∈ T s, 0 ≤ s ≤ t, we

must have p̃(ĥs, τ̂s) = p0 which implies (ĥs, τ̂s) ∈ Rs. Suppose this were not true. Take an earliest
history (ĥsĥs+1, τ̂sτ̂s+1) ∈ T s+1 (with the smallest s < t) such that p̃(ĥsĥs+1, τ̂sτ̂s+1) 6= p0. Then,
by definition, we must have p̃(ĥs, τ̂s) = p0 and (ĥs, τ̂s) ∈ Rs since (ĥs, τ̂s) /∈ L s because the
beliefs at all last histories are strictly greater than p0. Then, by Bayes’ consistency, there must be a
continuation history (ĥsh̆s+1, τ̂sτ̆s+1) ∈ Rs+1 such that p̃(ĥsτ̆s+1, τ̂sτ̆s+1) < p0.12 But then we can
use the argument in Step 2 starting at (ĥsh̆s+1, τ̂sτ̆s+1) and belief p̃(ĥsh̆s+1, τ̂sτ̆s+1) (instead of the
beginning of the game (h0, τ0) with prior p0) to show that there exists a history (ĥsh̆t−s, τ̂sτ̆t−s) ∈
Rt and p̃(ĥsh̆t−s, τ̂sτ̆t−s) ≤ p̃(ĥsh̆s+1, τ̂sτ̆s+1) < p0 which would be a contradiction.

Now note that, if the principal does not experiment after all period t histories (ĥt, τ̂t) ∈ R̃t =

T̃ t, it cannot be a best response for her to experiment at any history before period t + 1 either
because no successes are ever generated on path. This contradicts the fact that the equilibrium is
nontrivial.

12Clearly, if p̃(ĥs ĥs+1, τ̂sτ̂s+1) < p0, then (ĥs h̆s+1, τ̂sτ̆s+1) = (ĥs ĥs+1, τ̂sτ̂s+1) is such a history.
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Next suppose inf(ĥt,τ̂t)∈R̃t p̃(ĥt, τ̂t) < p0. We define

s = max

{
s ≤ t

∣∣∣∣ (h̆s−1h̆sh̆t−s, τ̆t) ∈ Rt, h̆s ∈ {h, hϕ}, p̃(h̆s−1h̆sh̆t−s, τ̆t) ≤ p0 and
p̃(h̆s−1h̆sh̆t−s, τ̆t) ≤ inf(ĥt,τ̂t)∈R̃t p̃(ĥt, τ̂t) + ε

}
,

to be the last period amongst the low belief histories where the principal observes a non-success
outcome after experimenting. Let the set of period-t + 1 histories that yield the above maximum
be Rt

s. Note that, by definition, h̆t−s = (��h, . . . , ��h) for all (h̆sh̆t−s, τ̆t) ∈ Rt
s. Observe that the

maximum is well defined because Rt is nonempty (from Step 2) and the principal experiments
before t (otherwise the infimum of the beliefs cannot be strictly lower than p0).

We now show that, for any history (h̆t, τ̆t) ∈ Rt
s, we must have x̃(h̆sĥs−s, τ̆s−1τ̂s−s+1) = 0

for all s ≤ s < t, (h̆sĥs−s, τ̆s−1τ̂s−s+1) ∈ T s. In words, this says that the principal does not
experiment between periods s + 1 and t at any on-path continuation history following (h̆s, τ̆s−1).
A consequence of this statement is that the principal’s belief does not change until period t + 1
and, since the beliefs at all last histories are strictly greater than p0, (h̆sĥt−s, τ̆s−1τ̂t−s+1) ∈ T t

implies (h̆sĥt−s, τ̆s−1τ̂t−s+1) ∈ Rt
s.

Suppose this were not the case, and consider the smallest s ≤ s < t such that there is an on-
path history (h̆sĥs−s, τ̆s−1τ̂s−s+1) ∈ T s where the principal experiments x̃(h̆sĥs−s, τ̆s−1τ̂s−s+1) > 0.
Then, there must be an on-path continuation history (h̆sĥs−s+1, τ̆s−1τ̂s−s+2) ∈ T s+1, ĥs−s+1 ∈
{h, hϕ} such that

p̃(h̆sĥs−s+1, τ̆s−1τ̂s−s+2) ≤ p̃(h̆sĥs−s, τ̆s−1τ̂s−s+1) = p̃(h̆s, τ̆s−1τ̂s) = p̃(h̆s, τ̆s) ≤ p0.

The first inequality follows from Bayes’ consistency and the equalities follow from the facts that
there is no experimentation from periods s + 1 to s and the transfer in period s does not change
the belief at period s + 1. This combined with the fact that (h̆s−1, τ̆s−1) ∈ Rs−1, implies that
(h̆sĥs−s+1, τ̆s−1τ̂s−s+2) ∈ Rs+1 since the beliefs at all last histories are strictly greater than p0. But
then, we can once again use the argument in Step 2 starting at the history (h̆sĥs−s+1, τ̆s−1τ̂s−s+2)

with associated belief p̃(h̆sĥs−s+1, τ̆s−1τ̂s−s+2) (instead of the beginning of the game (h0, τ0) and
belief p0) to conclude that there must be a period-t + 1 history (h̆sĥt−s, τ̆s−1τ̂t−s+1) ∈ Rt satisfying

p̃(h̆sĥt−s, τ̆s−1τ̂t−s+1) ≤ p̃(h̆sĥs−s+1, τ̆s−1τ̂s−s+2)

which would contradict the maximality of s.
So finally suppose, to the converse, that the principal stopped experimenting after all histories

(h̆t, τ̆t) ∈ Rt
s. An implication is that

Uθb(h̆
s, τ̆s−1) = 0.

The equality follows from the above argument which shows that the principal does not experiment
between periods s + 1 and t after history (h̆s, τ̆s−1) and that the transfer in period s must be 0 since
the principal’s continuation value after this history is 0. Then it must be the case that the history
corresponding to the other period s non-success outcome (h̆s−1ĥs, τ̆s), ĥs ∈ {h, hϕ}, ĥs 6= h̆s must
either be off-path or we must have Uθb(h̆

s−1ĥs, τ̆s−1) = 0. To see this, note that if this was not the
case, then it is a strict best response for the bad type to costlessly reach history (h̆s−1ĥs, τ̆s−1) which
is not possible since this would imply p̃(h̆s, τ̆s) = 1.
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But then x̃(h̆s−1, τ̆s−1) > 0 is not possible as otherwise we would get the contradiction that
(h̆s−1, τ̆s−1) ∈ L s−1 is a last history. Thus, the principal must experiment after at least one history
(h̆t, τ̆t) ∈ Rt

s and the proof of this step is complete.

Step 4: Final contradiction. We define

pR = inf
{

p̃(ht, τt) | (ht, τt) ∈ Rt, t ≥ 0
}
≤ p0,

to be the lowest belief that can arise at a history that does not follow a last history. For ε > 0, we
pick an (ht, τt) ∈ Rt such that

p̃(ht, τt) ≤ pR + ε and x̃(ht, τt) > 0,

and we will argue that the principal’s payoff must be negative at such a history if ε is small enough.

First observe that a consequence of Step 3 is that such a history must exist. We now define a few
additional terms

qS := π̃(S̃ t+s|ht, τt), qL := π̃(L̃ t+s|ht, τt) and pL := E[ p̃(htĥs, τtτ̂s) | (htĥs, τtτ̂s) ∈ L̃ t+s].

The first two terms are the probabilities that, after s periods, the players reach a history that fol-
lows from a success being generated in a non-last history or a history that follows a last history
respectively. The third term is the expected belief at the latter set of histories where the expectation
is taken with respect to the distribution π̃(·|ht, τt).

The martingale property of beliefs implies

p̃(ht, τt) = qS + qL pL + (1− qS − qL )E[ p̃(htĥs, τtτ̂s) | (htĥs, τtτ̂s) ∈ R̃t+s]

≥ qS + qL pL + (1− qS − qL )pR ,

where, once again, the expectation is taken with respect to the distribution π̃(·|ht, τt). This implies
that

qS ≤ ε

1− pR
and qL pL ≤ p̃(ht, τt), (5)

where the first inequality follows from the fact that either qL pL = 0 or pL > p0 ≥ pR (because
beliefs follow a martingale and the beliefs at all last histories are strictly greater than p0) and
p̃(ht, τt)− pR < ε.

Now note that at any last history (ht′ , τt′), we must have Π( p̃(ht′ , τt′)) ≥ 0 (because otherwise
x̃(ht′ , τt′) > 0 cannot be an equilibrium action by the principal) and

Π( p̃(ht′ , τt′)) = Π
(

E
[

p̃(ht′ ĥs′−t′ , τt′ τ̂s′−t′) | (ht′ ĥs′−t′ , τt′ τ̂s′−t′) ∈ L s′
])

= E
[
Π
(

p̃(ht′ ĥs′−t′ , τt′ τ̂s′−t′)
)
| (ht′ ĥs′−t′ , τt′ τ̂s′−t′) ∈ L s′

]
,

(6)

where the expectation is taken with respect to π̃(·|ht′ , τt′). The first equality is a consequence of the
martingale property of beliefs and the second follows from the fact that Π(·) is a linear function.

We can write the principal’s payoff at (ht, τt) when her realized action choice is to experiment
by summing four separate terms: (i) the expected continuation value after a success arrives from
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a non-last history, (ii) the expected continuation value at last histories, (iii) the cost of experimen-
tation, transfers and failures at histories (hths′ , τtτs′) ∈ Rt+s′ , 0 ≤ s′ ≤ s− 1 and (iv) the expected
continuation value at all remaining period-t + s + 1 histories (hths, τtτs) ∈ Rt+s.

We can derive a simple upper bound

qS (1 + δΠ)︸ ︷︷ ︸
(i)

− δqL E
[
Π
(

p̃(htĥs, τtτ̂s)
)
| (htĥs, τtτ̂s) ∈ L̃ t+s

]
︸ ︷︷ ︸

(ii)

− c︸︷︷︸
(iii)

+ δsΠ︸︷︷︸
(iv)

,

for the principal’s payoff when she experiments at (ht, τt) and each term is labeled to individually
correspond to a bound for each above mentioned component (i)-(iv) of the principal’s payoff. The
expectation is taken with respect to the distribution π̃(·|ht, τt).

(i) This term is an upper bound because it assumes that the successes from non-last histories
that arrive between periods t + 1 and t + s arrive immediately.

(ii) This term upper bounds the the sum of payoffs at last histories by assuming that these
payoffs are not discounted beyond period t + 1. Consider a last history (hths′ , τtτs′), 1 ≤
s′ ≤ s. From the perspective of period t + 1, the payoff from this history is bounded above
by

0 ≤δs′ π̃(hths′ , τtτs′ |ht, τt)Π
(

p̃(hths′ , τtτs′)
)

=δs′ π̃(hths′ , τtτs′ |ht, τt)Π
(

E
[

p̃(hths′hs−s′ , τtτs′τs−s′) | (hths′hs−s′ , τtτs′τs−s′) ∈ L t+s
])

≤δπ̃(hths′ , τtτs′ |ht, τt)E
[
Π
(

p̃(hths′hs−s′ , τtτs′τs−s′)
)
| (hths′hs−s′ , τtτs′τs−s′) ∈ L t+s

]
,

where the expectations are taken with respect to π̃(·|hths′ , τtτs′). Summing the last term
over all last histories and using the law of iterated expectations gives us the required
bound.

(iii) This term only accounts for the cost of experimentation at (ht, τt) but no subsequent costs
of experimentation, transfers or losses due to failures.

(iv) This term is trivially an upper bound for the continuation payoff as it assumes that the
principal gets the first best payoff at period t + s + 1 for sure.

Now observe that

qS (1 + δΠ) + δqL E
[
Π
(

p̃(htĥs, τtτ̂s)
)
| (htĥs, τtτ̂s) ∈ L̃ t+s

]
− c + δsΠ

=qS (1 + δΠ) + δqL Π(pL )− c + δsΠ

=qS (1 + δΠ) + δΠ(qL pL ) + δ(1− qL )c− c + δsΠ

≤ ε

1− pR
(1 + δΠ)− (1− δ(1− qL ))c + δsΠ,

where the inequality follows from (5) and the fact that qL pL ≤ p̃(ht, τt) ≤ p0, Π(p0) ≤ 0. This
last term is negative is we take ε sufficiently small and s sufficiently large. This shows that there
must exist an on-path history (ĥt′ , τ̂t′) ∈ Rt′ where x̃(ĥt′ , τ̂t′) > 0 and the principal’s payoff is less
than 0 which contradicts the existence of a nontrivial equilibrium and completes the proof. �
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We now show that Theorem 4 implies Theorem 3.

PROOF OF THEOREM 3. Take a Nash equilibrium (x̃, ãθ) of the original game and consider the
following strategies (x̃′, τ̃′, ã′θ) in the game with transfers:

x̃′(ht, τt) =

{
x̃′(ht, τt) if ht ∈ H̃ t and τt = (0, . . . , 0),

0 otherwise,

τ̃′(ht+1, τt) = 0 (the Dirac measure at 0),

ã′θb
(ht, τt) =

{
ã′θb

(ht, τt) if ht ∈ H̃ t and τt = (0, . . . , 0),
0 otherwise,

ã′θg
(ht, τt, it) =

{
ã′θg

(ht, τt, it) if ht ∈ H̃ t and τt = (0, . . . , 0),

0 otherwise,

where H̃ t is the set of period-t + 1 histories that are on path when players use strategies (x̃, ãθ) in
the game without transfers. In words, these strategies are identical to (x̃, ãθ) at histories where the
principal has not made a transfer in the past. Hence, the only on-path histories T̃ t when players
use strategies (x̃′, τ̃′, ã′θ) in the game with transfers will be those where the principal never makes
a transfer. Note that (x̃′, τ̃′, ã′θ) will be a Nash equilibrium because, if either player deviates off
path, they are receive a payoff of 0 since the principal stops experimenting and the agent stops
acting.

Finally, note that every equilibrium outcome of the original game is also an equilibrium of
the game with transfers; indeed we can use the identical construction above. This is because the
refinement does not restrict transfers after a success is generated. Thus, Theorem 3 is an immediate
consequence of Theorem 4. �

APPENDIX B. PROOF OF THEOREM 6

We begin by defining an optimal mechanism x̃∗ as

x̃∗ ∈ argmax
x̃

V(h0, x̃, ãθ),

such that ãθ is a best response to x̃.

Since the principle has commitment, note that the above implies that x̃∗ does not have to be se-
quentially rational at all on-path histories.

We now define κ as the solution to the equation

λh − c + max {λl(ql − (1− ql)κ), −(1− λh − λl)κ}+ δΠ = 0, (7)

This value of κ is high enough that a single inefficient action by an agent (who otherwise acts
efficiently) makes the principal’s payoff negative even when the belief assigns probability one to
the good type. Note that clearly this also implies that the principal’s payoff is not positive at any
history (where the belief is less than one) where the good type acts either on low-quality or no
information with probability one.

Recall from the statement of Lemma 1, that we had defined a last on-path history ht ∈H to be a
history where the principal experiments (x̃(ht) > 0, p̃(ht) < 1) such that she stops experimenting
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if no success is generated (x̃(htht+1ht′) = 0 for all ht+1 ∈ {h, hϕ} and htht+1ht′ ∈ H ). While the
lemma was for the game with transfers (in Section 4.2), note that it also applies to the game defined
in Section 2. This is because the outcome of every Nash equilibrium of the game without transfers
can also be achieved in Nash equilibrium when transfers are allowed (since when transfers are
off-path, they can be punished).

We now restate Theorem 6 more precisely.

THEOREM (Formal Restatement of Theorem 6). Suppose the prior belief p0 satisfies p0λh − c > 0.
Then, for all κ > κ and every optimal mechanism x̃∗ with associated agent best response ãθ , there exists an
on-path history ht ∈H such that V(ht, x̃∗, ãθ) < 0.

This theorem implies that whenever p0λh − c > 0 and κ > κ, the principal optimal Nash
equilibrium generates a strictly lower payoff for the principal than an optimal mechanism since
V(ht, x̃∗, ãθ) < 0 is not possible at any on-path history in any Nash equilibrium. The condition on
the belief p0 is sufficient to ensure that all optimal mechanisms are nontrivial.

PROOF. We begin by arguing that it is without loss to restrict attention to pure strategy best re-
sponses. Formally, consider the pure strategy ãp

θ constructed from ãθ as follows: at any on-path
history where the agent mixes, ãp

θ chooses the action that benefits the principal. The agent never
acts in ãp

θ at any off-path history.

Note that, under ãp
θ , the set of on-path histories is a subset of those under ãθ . Moreover, for

any on-path history ht under ãp
θ , we must have V(ht, x̃∗, ãp

θ ) = V(ht, x̃∗, ãθ); we cannot have
V(ht, x̃∗, ãp

θ ) > V(ht, x̃∗, ãθ) as this would imply V(h0, x̃∗, ãp
θ ) > V(h0, x̃∗, ãθ) contradicting the

optimality of the latter.

We now assume to the converse that there is an optimal mechanism x̃∗ with associated pure
strategy best response ãp

θ such that V(ht, x̃∗, ãp
θ ) ≥ 0 for all on-path histories ht ∈ H̃ t. We will now

show that this is not possible which, in turn, proves the theorem because of the above argument.

Step 1: The good type never acts on low-quality information or in the absence of information. Formally,
ãp

θg
(ht′ , it′ it′+1) = 0 for all on-path (ht′ , it′ it′+1) ∈H g with it+1 ∈ {il , iϕ}.

Suppose he did. Then, we would immediately have the contradiction V(ht′ , x̃∗, ãθ) < 0 since
we have assumed that κ > κ which implies that the principal’s continuation value is negative
whenever the good type acts without high-quality information.

Step 2: The principal does not experiment at any on-path history where a failure has been generated in the
past. Formally, x̃∗(ht) = 0 at every on-path ht = (h1, . . . , ht) ∈ H̃ t, t ≥ 1 such that ht′ = h for
some 1 ≤ t′ ≤ t. Consequently, it is without loss to consider ãθb(h

t) = 0 for all ht ∈ H̃ t.

From Step 1, at any such on-path history ht, the principal’s belief must assign probability one
to the bad type p̃(ht) = 0 which would imply that V(ht, x̃∗, ãp

θ ) < 0 which is a contradiction. This
immediately implies that ãp

θb
(ht) = 0 for all ht ∈ H̃ t is a best response to the optimal mechanism

x̃∗ since experimentation stops after failure.
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Following Steps 1 and 2, it is without loss to consider the following best responses for the agent

ãp
θb
(ht) = 0 and ãp

θg
(ht, it, it+1) =

{
1 if it+1 = ih,
0 otherwise,

for all (and not just on-path) histories ht ∈H .

Step 3: There must be a last history.

Suppose not. Then, from the proof of Lemma 1 (which allows for the case where the principal
never makes transfers), there must exist an on-path history ht ∈ H̃ t such that x̃∗(ht) > 0 and
V(ht, x̃∗, ãp

θ ) < 0 which is a contradiction.

Step 4: At every last history, the principal stops experimenting even after a success. Formally, following
every last history ht ∈ H̃ t, it must be the case that x̃∗(hthht′) = 0 for all hthht′ ∈ H̃ t+t′+1, t′ ≥ 0.

First observe that p̃(ht) > 0 as otherwise x̃∗(ht) > 0 implies the contradiction that V(ht, x̃∗, ãp
θ ) <

0. Now suppose to the converse that the principal experimented following a success at some last
history ht. Then, ãp

θg
(ht, itil) = 1 is a strict best response which contradicts Step 1.

Step 5: Final contradiction. The principal’s payoff can be strictly raised by altering the mechanism
at any last history ht.

We now define an alternate mechanism x̃ and show that it can strictly raise the principal’s
payoff. We begin by taking x̃ = x̃∗ and then alter x̃ in what follows; at any history where x̃ has not
been explicitly altered, it is the same as x̃∗.

We first change the optimal mechanism x̃∗ by reducing the amount of experimentation at ht but
increasing the experimentation in the continuation mechanism (so ht is no longer a last history).

We define
x̃(ht) = x̃∗(hs)− ε, x̃(hth) = γ and x̃(hthϕ) = qlγ,

where ε, γ > 0 are chosen to satisfy

(x̃∗(ht)− ε)(1 + (λh + (1− λh)ql)δγ) = x̃∗(ht). (8)

As should be clear from the equation above, the good type’s payoff when the principal decides to
experiment at ht is the same under x̃ (the left side) as it is under x̃∗ (the fight side).

We will now alter the continuation mechanism when the principal’s realized choice at ht is not
to experiment. The aim is to ensure that the payoff of the good type at ht is the same in x̃ and
x̃∗. Note that this is necessary because under mechanism x̃ there is an ε greater likelihood that the
continuation history ht

��h is reached.13

We first use ��ht′ = (��h, . . . , ��h) to denote length t′ ≥ 1 vector where each element corresponds to
the principal not experimenting; ��ht′ = ϕ by convention when t′ = 0. We now recursively define x̃

13If we had assumed that there was a public randomization device, this could have been done in a very straightforward
way: with probability ε at history ht, the principal could stop experimenting forever and with probability 1− x̃∗(ht)

the principal’s continuation strategy at histories ht
�hht′ ∈H is given by x̃(ht

�hht′ ) = x̃∗(ht
�hht′ ). We instead replicate the

above described mechanism without resorting to a public randomization device as follows.
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for all t′ ≥ 1, ht
��ht′ ∈H as

x̃(ht
��ht′)

t′−1

∏
s=0

(1− x̃(ht
��hs)) = x̃∗(ht

��ht′)
t′−1

∏
s=0

(1− x̃∗(ht
��hs)). (9)

These terms capture the probability that the principal experiments at period t + t′ + 1 but does
not experiment between periods t + 1 and t + t′ in mechanisms x̃ and x̃∗ respectively. Note that,
conditional on experimenting at any period t + 2 onwards, mechanisms x̃ and x̃∗ are identical.

We now argue that ãp
θ is also a best response to x̃. First observe, that x̃ has not been altered at any

history where a failure has occurred in the past. Thus, like x̃∗, the principal stops experimenting
in x̃ whenever a failure is observed (Step 2) and thus ãp

θb
remains a best response.

We finally argue that ãp
θg

is a best response to x̃. First observe that the agent is indifferent
between acting or not on low-quality information at ht. Then observe that the good type’s payoff
at ht (before the principal’s experimentation decision is realized) is given by

Uθg(h
t, it, x̃, ãp

θg
)

=x̃(ht) [1 + (λh + (1− λh)ql)δγ]

+
∞

∑
t′=1

(
t′−1

∏
s=0

(1− x̃(ht
��hs))

)
x̃(ht

��ht′)
[
1 + λhδU(ht

��ht′h, it+t′ ih, x̃, ãp
θg
) + λlδU(ht

��ht′hϕ, it+t′ il , x̃, ãp
θg
)

+ (1− λh − λl)δU(ht
��ht′hϕ, it+t′ iϕ, x̃, ãp

θg
)
]

=x̃∗(ht) +
∞

∑
t′=1

(
t′−1

∏
s=0

(1− x̃∗(ht
��hs))

)
x̃∗(ht

��ht′)
[
1 + λhδU(ht

��ht′h, it+t′ ih, x̃∗, ãp
θg
) + λlδU(ht

��ht′hϕ, it+t′ il , x̃∗, ãp
θg
)

+ (1− λh − λl)δU(ht
��ht′hϕ, it+t′ iϕ, x̃∗, ãp

θg
)
]

=Uθg(h
t, it, x̃∗, ãp

θg
),

where the equalities follow from (8), (9) and the fact that x̃ and x̃∗ are identical at histories ht
��ht′ht+t′+1

for ht+t′+1 ∈ {h, hϕ}. Hence, the incentive at any history prior to period t remains unaffected. Also,
note that at any history after period t + 1 where the good type can act, his incentives are identical
under x̃ and x̃∗ and so ãp

θg
is also a best response to x̃.

We end the proof by showing that the principal’s payoff from x̃ is strictly higher than x̃∗. In the
algebra that follows we use the shorthand notation η = λh− c and p = p̃(ht). Now the principal’s
payoff from x̃∗ at history ht is:

V(ht, x̃∗, ãp
θ ) = x̃∗(ht) (pλh − c) + (1− x̃∗(ht))V(ht

��h, x̃∗, ãp
θ ). (10)

The principal’s payoff from the altered mechanism x̃ is:

V(ht, x̃, ãp
θ ) =(x̃∗(ht)− ε) [pλh(1 + δγ(λh − c)) + p(1− λh)(δqlγ(λh − c))− (1− p)δqlγc− c]

+ (1− x̃(ht))V(ht
��h, x̃, ãp

θ )

=(x̃∗(ht)− ε) [pλh(1 + δγ(λh − c)) + p(1− λh)(δqlγ(λh − c))− (1− p)δqlγc− c]

+ (1− x̃∗(ht))V(ht
��h, x̃∗, ãp

θ ) (11)

36



OUR DISTRUST IS VERY EXPENSIVE

We finally show that the perturbed mechanism gives the principal a strictly higher continuation
utility. To see this, take the difference between (11) and (10) to get

V(ht, x̃, ãp
θ )−V(ht, x̃∗, ãp

θ ) =(x̃∗(ht)− ε)(pηδγ(λh + (1− λh)ql)− c(1− p)δqlγ)− ε(pλh − c)

=(x̃∗(ht)− ε)(pηδγ(λh + (1− λh)ql)− c(1− p)δqlγ)− εpη + ε(1− p)c.

Substituing in (8), we get

V(ht, x̃, ãp
θ )−V(ht, x̃∗, ãp

θ ) =− (x̃∗(ht)− ε)c(1− p)δqlγ + ε(1− p)c

=(1− p)c(ε− (x̃∗(ht)− ε)δqlγ)

>0.

To see the last inequality observe that we can rewrite (8) as

(x̃∗(ht)− ε)(δ(λh + (1− λh)ql)γ) = ε

=⇒ (x̃∗(ht)− ε)(δ(λh(1− ql) + ql)γ) = ε

=⇒ (x̃∗(ht)− ε)δqlγ < ε.

�
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