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Abstract

A history of nearly exclusively white male police forces in the U.S. has made diversify-
ing personnel one of the oldest and most often proposed police reforms, but data challenges
have precluded micro-level evaluations of its impact. Using newly collected personnel data
and millions of ultra-�ne-grained records on o�cer deployment and behavior, we conduct a
detailed quantitative case study of diversity in the Chicago Police Department. We show how
o�cers from marginalized groups are consistently assigned to di�erent working conditions
than white and male o�cers, meaning they typically encounter vastly di�erent circumstances
and civilian behaviors. As a result, coarse agency- or district-level analyses often fall short of
all-else-equal comparisons between o�cer groups, making it di�cult to disentangle o�cers’
behavior from the environments in which they work—a crucial �rst step in evaluating the
promise of diversity reforms. To assess behavioral di�erences between o�cers of varying
racial, ethnic and gender pro�les, we leverage detailed records of daily patrol assignments to
evaluate o�cers against their counterparts working in the same collections of city blocks, in
the same month and day of week, and at the same time of day. Compared with white o�-
cers facing identical conditions, we show Black and Hispanic o�cers both make substantially
fewer stops, arrests, and use force less often, especially against Black civilians. Much of the
gaps in stops and arrests are due to a decreased focus on discretionary contact, such as stops
for vaguely de�ned “suspicious behavior.” Hispanic and white o�cers exhibit highly similar
behavior toward Hispanic civilians, though Hispanic o�cers who speak Spanish appear to
make fewer arrests in general than those who do not speak Spanish. Within all racial/ethnic
groups, female o�cers are substantially less likely to use force relative to male o�cers. Taken
together, these results show the substantial impact of diversity on police treatment of minor-
ity communities, and emphasize the need to consider multiple facets of police o�cers when
crafting personnel-driven reforms.



Racial disparities in police-civilian interactions and high-pro�le incidents of excessive force
continue to fuel allegations of abusive and discriminatory policing [2, 24]. Central to these cri-
tiques are the fact that throughout the history of policing in the U.S.—from the formation of the
�rst organized security patrols on slave plantations [34, 42], to the recent concentrated implemen-
tation of aggressive tactics like “Stop, Question and Frisk” in communities of color [14]—many
police forces in the U.S. have been nearly all white and male [11]. In turn, some of the most
frequently proposed reforms aimed at reducing inequities and police brutality have centered on
hiring more nonwhite [7] and female [10] o�cers. One agency that has undergone substan-
tial diversi�cation in recent decades is the Chicago Police Department (CPD), transforming from
a virtually homogeneous force to one in which half of sworn o�cers are minorities and over
one-�fth are female. This history, combined with unprecedented data availability on the daily
geographic assignment and behavior of o�cers, allows for a thorough assessment of the practi-
cal consequences of diversity in law enforcement. In this paper, we examine the Chicago case in
depth to provide some of the most credible micro-level evidence to date on how o�cers of var-
ied racial, ethnic, and gender pro�les engage in di�ering enforcement patterns when interacting
with civilians.

A central obstacle to rigorous evaluation of personnel reforms in policing has been the lack of
su�ciently �ne-grained data on o�cer deployment and behavior. Most studies rely on inherently
limited cross-jurisdiction analyses [e.g. 23, 8, 40], comparing aggregate outcomes like arrests and
uses of force between agencies with di�ering levels of diversity. This approach often cannot
distinguish whether apparent di�erences in o�cer behavior arise due to selection (e.g. agencies
that choose to diversify may di�er on unmeasured traits) or ecological fallacies (e.g. white and
nonwhite o�cers within jurisdictions are assigned to work in di�erent circumstances—which we
demonstrate is in fact true). While strategies like agency-level pre-/post-reform comparisons have
been employed to combat these sources of bias [27, 28, 12, 16], these aggregated analyses mask
details of police-civilian encounters, precluding explorations of important sources of heterogene-
ity. In cases where researchers have been able to obtain micro-level data on o�cers, analyses are
often limited in scope, e.g. tra�c accidents [46] or 911 calls [19, 45]; rely on di�cult-to-validate
survey responses [33, 47]; or otherwise lack necessary data to make reliable inferences. Specif-
ically, many studies of o�cer race and gender that rely on administrative data examine records
of enforcement activities only, e.g. logs of pedestrian stops or arrests [3, 9, 20, 35, 44]. These
approaches omit data from shifts in which o�cers take no such actions—introducing potentially
severe selection bias [17, 18, 21]. Using available (but often limited) data, prior work has shown
suggestive evidence that female o�cers are less likely to use force [e.g. 25, 32] though conclusions
vary [20]. Findings with regard to racial diversity have been decidedly mixed: in an exhaustive
review of the empirical literature on racial diversity in policing, one prominent legal scholar con-
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cluded: “[t]he fairest summary of the evidence is probably that we simply do not know” [39,
1225].

In this paper, we draw on a host of newly collected datasets that together allow us to over-
come these longstanding limitations. Our data, which include personnel records covering roughly
30,000 Chicago police o�cers, were assembled through years of open records requests and law-
suits; they include o�cer demographics, language skills, shift assignments and career progres-
sion. We use these records to paint a detailed picture of the diversi�cation of the department
and how it has deployed o�cers from marginalized groups. We �nd substantial variation in de-
ployment patterns across o�cers of di�erent races and genders.1 For example, Black o�cers are
more often deployed in high-crime areas, and female o�cers tend to work during di�erent times
of day. These di�erential deployment patterns highlight a source of confounding present in many
agency-level analyses of personnel reforms that �ner-grained data can address.

We link these personnel �les to timestamped, geolocated records of o�cers’ decisions to stop,
arrest, and use force against civilians. After aggressively pruning these data to maximize the va-
lidity of our analyses, we are left with a panel containing 2.9 million o�cer-shifts and 1.6 million
detailed observations of enforcement events. Most importantly, we leverage �ne-grained infor-
mation on o�cers’ daily patrol assignments—the speci�c times and beats (roughly, collections
of city blocks) that they are assigned to patrol—to examine how o�cers of di�erent groups be-
have when faced with identical circumstances and civilian behaviors. Crucially, this data sheds
light not only on when o�cers take enforcement action against civilians, but also accounts for
decisions not to take action—thus avoiding a major source of selection bias.

We caution that our analysis does not directly estimate the future e�ects of hiring more di-
verse o�cers, for several reasons. Chief among these are (i) the nature of police-civilian inter-
actions is changing rapidly; (ii) racial/ethnic/gender di�erences in current o�cers’ behavior may
not map perfectly to those of future cohorts; (iii) deployment patterns will necessarily change as
more o�cers are hired from marginalized groups; and (iv) diversi�cation reforms may exert pow-
erful spillover e�ects, e.g. through agency culture. Nevertheless, what we do show—enormous
gaps in current o�cers’ enforcement patterns, in ways that are systematically associated with
their personal backgrounds—is a critical step toward evaluating the promise of diversity reforms,
particularly given the current dearth of detailed quantitative evidence on the issue. If o�cers
of di�erent demographic pro�les do not perform di�erently when faced with identical circum-
stances, then there is little hope that diversifying police agencies will yield tangible di�erences
in the treatment of marginalized civilians.2

1It is unclear whether Chicago consistently di�erentiates between sex and gender in administrative data. We
use the term “gender” throughout in keeping with o�cer personnel �les we received in response to open records
requests.

2However, as we discuss below, diversity can potentially yield intangible gains like trust in government [13, 43].
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It is important to note these behavioral gaps are not the “causal e�ect” of manipulating an o�-
cer’s race: minority and female o�cers di�er from their counterparts in many unmeasured ways.
Our focus is on estimating a far more policy-relevant quantity: the di�erence in performance that
can be expected when deploying available o�cers of one group, relative to another group. This
quantity is much more feasibly estimated because, as we explain below, it only requires adjusting
for external environmental factors, like the civilian behaviors faced by o�cers—not netting out
internal o�cer traits.

Our results highlight the need for much greater collection of policing data nationwide, par-
ticularly with regard to deployment times and locations, if analysts are to rigorously evaluate
o�cer behavior while holding environmental factors �xed. Our �ndings suggest deploying more
women and o�cers of color, relative to white males, would reduce the amount of physical force
and enforcement activity endured by civilians, especially Black civilians. At a high level, we �nd:

(1) Minority o�cers are assigned to very di�erent districts, and even within districts, receive
vastly di�erent geographic and temporal patrol assignments. Without accounting for these dif-
ferences in working conditions, our work shows there is no way to meaningfully characterize
the di�erences in behavior between white/minority and male/female o�cers. These limitations
to traditional research designs suggest a need for greater transparency by police departments to
enable careful evaluation of o�cer behavior.

(2) Compared to white o�cers working in the same places and times, Black o�cers make sig-
ni�cantly fewer stops and arrests, and they use force less often. These di�erences are substantial,
equivalent to 31%, 22%, and 35% of typical white-o�cer activity, respectively. Examining a wide
range of o�cer activity, we show this is mostly driven by a decrease in discretionary activity (e.g.
38% of the reduction in stops are due to a reduced focus on vaguely de�ned “suspicious behav-
ior”), rather than lower enforcement of severe criminal behavior (decreased violent-crime arrests
account for only 12% of the overall Black-white gap in arrest volume). Moreover, higher levels
of enforcement by white o�cers fall primarily on marginalized groups: approximately 80% of
the gap in o�cer stops, arrests, and uses of force is due to di�ering treatment of Black civilians.
Hispanic o�cers display similar reductions in enforcement activity, relative to white o�cers, but
to a lesser extent than their Black counterparts. In addition, we �nd suggestive evidence that His-
panic o�cers who speak Spanish make fewer arrests than their non-Spanish-speaking counter-
parts, underscoring an additional and previously under-explored, but potentially consequential,
o�cer attribute.

(3) Relative to male o�cers facing identical circumstances, female o�cers make somewhat
fewer arrests (di�erences equivalent to 7% of typical male arrest rates) and use force dramatically
less (31%); moreover, over 80% of this gap is due to a reduced focus on Black civilians. This holds
true even when comparing within racial/ethnic groups: across the board, Black, Hispanic, and
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white policewomen use force less often than their co-racial/co-ethnic male counterparts, with
reductions that are concentrated nearly entirely among interactions with nonwhite civilians.

Overall, our results suggest that deploying o�cers of various races and genders yields sub-
stantial di�erences in police treatment of civilians. However, our �ndings also suggest the need to
consider multiple facets of police o�cers when crafting personnel-driven reforms. Like the civil-
ians they police, o�cers are complex, not easily reducible to single demographic traits. Scholars
and reformers must take stock of the whole o�cer when considering the impact of diversity
initiatives on police-civilian interactions.

All data and interactive replication materials are publicly available at [LINK]. We encourage
readers to probe and extend our analyses.

1 The Case of the Chicago Police Department

Our analysis focuses exclusively on records from a single city, a feature that a�ords us unusually
detailed data at the expense of geographic scope. Chicago represents a valuable opportunity to
evaluate the e�ects of deploying diverse o�cers. It is a large and racially diverse metropolis, with
more than half the city’s population identifying as nonwhite. The police force has also diversi�ed
in recent decades, with roughly 22% of o�cers identifying as Black, 23% Hispanic, and 3% Asian.3

The agency’s o�cers are currently 22% female, a stark change from its 99% male composition in
1970. The city is also heavily racially segregated,4 has a history of racial tensions between resi-
dents and police, and has come under scrutiny in recent years for applying a range of controversial
aggressive policing tactics such as “Stop and Frisk” on a wide scale. The agency received national
attention for the 2014 killing of seventeen-year-old Laquan McDonald, an attempted cover-up,
and ensuing social unrest. [6]. The department was condemned for its “code of silence,” [30] and
then-superintendent Garry McCarthy received widespread criticism for “encouraging the kind of
aggressive cop culture under which McDonald’s shooting took place," [26].

In some ways, this history makes Chicago unique, and to the extent these events contributed
to disparities in the behavior of di�erent o�cer groups, it may be di�cult to extrapolate to other
settings in which racial tensions are less pronounced. But in other ways, it is the very existence
of these problems that makes Chicago such an important test case for proposed reforms: among
the major departments, it is arguably the one in which reform has historically been most sorely
needed. A single case study cannot hope to be the �nal word in an important, ongoing debate.
But Chicago o�ers an invaluable opportunity to examine the role of diversity in policing using

3These �gures describe the racial distribution of the CPD in 2016 according to our personnel records; see Figure 1
for additional details.

4See http://www.censusscope.org/us/print_rank_dissimilarity_white_black.html
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unusually �ne-grained data, in a setting where concerns over racial inequity were pronounced,
while o�ering a template for future scholars to conduct similar analyses elsewhere.

1.1 Data on Agency Personnel

To understand the history of how the CPD diversi�ed over time, we rely on both published ac-
counts of department history and newly acquired quantitative data. Over a period of three years,
we submitted open records requests to the CPD and the city’s Department of Human Resources
seeking data on o�cer demographics and behavior. The resulting records include the name, race,
gender, birth year, salary, language skill, unit assignments and appointment date of each o�cer
[5, 36]. These newly acquired records allow us to reconstruct the history of CPD diversi�cation
over a much longer period than previously possible. While the CPD intermittently publishes
annual reports with aggregate demographics, these data cover only 1995–2010 and 2016–2017.5

Using our newly acquired records, we extend the time-series backward to 1970, allowing for a
comprehensive descriptive portrait of the evolution of the demographic correspondence between
CPD personnel and city residents.6

Figure 1 shows how the CPD, which currently employs about 12,000 sworn o�cers, slowly
diversi�ed over time. As [27] recounts, before a series of lawsuits, the CPD was slightly less than
than 20% Black, in a city that was one-third Black in 1970. In the early 1970s, the Afro-American
Patrolmen’s League (AAPL) �led a discrimination suit against the CPD “on hiring, promotion,
assignment, and discipline” [31], with the DOJ soon joining them [27]. In 1974, hiring quotas were
imposed, and Black hiring shares increased from 10% to 40% by 1975—though CPD composition
changed more slowly due to low turnover [27]. These reforms also altered the gender composition
of the department within racial groups and across ranks; women made up a larger proportion of
Black recruits, initially causing white women to trail Black women in new hiring and promotions
[1, 92].

While the CPD has made strides in moving its demographic pro�le toward parity with the
city’s, there exists substantial divergence in working conditions. Figure 2 displays the average
characteristics of the districts—the 22 geographic regions delineated by the CPD—to which o�cer
groups are assigned. While the �gure shows only minimal gendered variation in district assign-
ments, the di�erences associated with o�cer race/ethnicity are stark. Black o�cers are assigned
to districts with roughly 50% higher rates of violent crime, and perhaps most strikingly, Black
o�cers are assigned to districts with large co-racial resident populations—on average nearly 75%
co-racial, far higher than the average 25–30% co-racial/co-ethnic districts where white and His-

5The CPD Annual Reports from 1966 to 1969 included counts of “police women” and “police matrons,” but re-
porting on these statistics was discontinued after 1969.

6See SI Section A.2 for details on the coding on race/ethnicity.
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Figure 1: Composition of CPD o�cers and city residents over time. Red, blue, and black ◦
respectively depict the proportion of Black, Hispanic, and white active CPD o�cers in December
of each year, according to our personnel records. Dark and light gray regions respectively indicate
the proportion of female and male o�cers, using the same data. Data from CPD annual reports on
the demographics of sworn and exempt/command o�cers are available only for 1995–2010, 2016
and 2017 (not shown); these are shown with ×. When available, these reports closely track our
personnel data and increase con�dence in our historical reconstructions. Lines indicating city
of Chicago decennial Census proportions for each racial/ethnic group, tabulated by the National
Historical Geographic Information System, are shown with ■ for reference.
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Figure 2: Characteristics of assigned districts. Average features of assigned geographic units
are plotted for various o�cer groups, based on 1,089,707 monthly assignments from 2006–2016.
Con�dence intervals cluster on district-month.
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panic o�cers serve. (SI Appendix B.1 contains a detailed discussion how districts are de�ned and
analysis of additional district characteristics. SI Figure 2 presents average district characteris-
tics disaggregated by year. SI Figure B.2 shows that the demographic pro�le of assigned o�cers
somewhat tracks that of district residents, but o�cers tend to be disproportionately white.)

In supplemental analyses (SI Figures B.4–B.5) we also show considerable variation in assigned
shift times. For example, 45% of standard shifts served by female o�cers are on third watch (4
p.m. to midnight), compared to 55% for male o�cers. Similarly, 43% of standard shifts served
by Black o�cers are third watch, compared to 55% of white-o�cer shifts and 60% for Hispanic
o�cers. Moreover, Figures B.6–B.7 demonstrate that marginalized groups are tasked with pa-
trolling di�erent sets of beats, compared to white or male o�cers serving in the same district.
(All p-values < 0.001.)

These patterns underscore a central di�culty in testing whether o�cers with di�erent de-
mographic pro�les perform their duties di�erently. Namely, white o�cers work in di�erent en-
vironments from Black o�cers, on average (especially with regard to local racial composition),
and men and women work during di�erent hours of the day. This means any inferred di�erences
in o�cer behavior that rely on data aggregated to large geographic units and time periods—such
as district-months or agency-years, the analytic strategy in much prior work—may simply re-
�ect di�ering patrol environments, rather than di�erences in policing approaches. Fine-grained
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assignment data overcomes this central obstacle to inference.

2 Data on O�cer Behavior

Our data also contain detailed data on o�cers’ stops, arrests and uses of force against civilians.
We merge these with records of o�cers’ daily patrol assignments7 and U.S. Census data. Together
these data provide an unprecedentedly detailed view of the day-to-day behavior of o�cers in a
major U.S. law enforcement agency over an extended period. Table 1 contains aggregate infor-
mation on stops, arrests, and uses of force from Jan. 2012 to Dec. 2015 (the period covered by
our behavioral analysis) by o�cer group. Due to the small sample sizes associated with groups
including Asian Americans and Native Americans, our analysis is limited to Black, Hispanic, and
white o�cers (together accounting for roughly 97% of o�cers for whom shift data is available).

Figure 3 illustrates the dataset’s various attributes by highlighting a small slice of its temporal
and geographic coverage. The �gure maps activity during a four-month window in the CPD’s
Wentworth District (District 2), a highly segregated 7.5 square mile territory on Chicago’s South
Side that is 96% Black and consistently ranks among the city’s most violent districts in per-capita
crime rates. The district is comprised of 15 patrol areas8 which are shaded according to their racial
composition. Points distinguish between geolocated stops, arrests, and uses of force during this
period. The �gure also o�ers a detailed portrait of four anonymized CPD o�cers working in
District 2 in this time. For example, “O�cer A” is female, Hispanic, speaks both English and
Spanish, and was born in 1965; “O�cer D” is a white male born in 1981 who does not speak
Spanish. The �gure shows the speci�c beats to which o�cers were assigned over time and each
o�cer’s behavior while working in these beats.

7We are grateful to Lucy Parsons Labs for publicly releasing data on civilian stops and Rachel Ryley for generously
sharing data on beat assignments.

8Based on the CPD 2008 Annual Report.
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Table 1: Summary of data on o�cer behavior (counts), 2012-2015. Summary statistics are
reported after pruning o�cers, shifts, and event records aggressively to ensure common circum-
stances in our behavioral analysis, as described in the main text.

Black Hispanic White Female Male
o�cers o�cers o�cers o�cers o�cers

Stops 253,609 356,541 729,078 264,552 1,074,676
Arrests 47,406 65,587 132,285 43,630 201,648

Uses of force 1,355 2,081 4,514 1,125 6,825
Shifts 830,062 689,239 1,413,977 740,240 2,193,038

O�cers 1,835 1,674 3,440 1,786 5,163

3 Research Design: Assessing the Impact of Deployment

These granular data permit precise comparisons between o�cers facing identical working con-
ditions. We assemble a panel dataset in which each row represents an o�cer-shift—an assigned
eight-hour patrol period—and contains detailed information on the o�cer’s actions and their con-
text.9 In each of these 2.9 million patrol assignments, we compute the o�cer’s pro�le of stops,
arrests, and uses of force. O�cers of di�erent demographic pro�les are then compared to peers
working in the same unique combination of month, day of week, shift time, and beat (roughly a
small collection of city blocks, averaging 0.82 square miles citywide)—a narrow slice of time and
space that we abbreviate “MDSBs.”

By making these precise comparisons, we ensure observed di�erences in o�cer behavior are
not due to disparities in external conditions. That is, we can safely assume all o�cers in an
MDSB face the same set of average enforcement opportunities, civilian activity, neighborhood
attributes such as infrastructure and architecture, and time-varying conditions such as weather
and lighting. Put di�erently, this strategy ensures that the rates of various enforcement activities
being compared across o�cers have the same denominators [15, 29]. We term this the “common
circumstances” assumption. (For a detailed discussion of potential threats to this assumption, see
SI Appendix C.3). To further enhance the credibility of the common-circumstances assumption,
we additionally subset to individuals for whom personnel data could be merged. Only those of
rank “police o�cer” are retained, eliminating sergeants and other higher-ranked o�cers that
may not patrol as regularly. Non-standard shifts are dropped (retaining only �rst through third
watches), as are absences, shifts with assigned special duties (e.g. protest detail, station security,
training), and unusual double- or triple-duty days in which a single o�cer serves multiple shifts.

9In analyzing o�cer behavior, we take patrol assignments—the level at which commanding o�cers typically
exercise control—as the basic unit of analysis. In SI Section C.4, we examine the possibility that di�erences in clock-
in/out times may be one mechanism behind observed di�erences in behavior between o�cer groups. While some
statistically signi�cant di�erences can be observed (roughly 0.1% disparities in patrol time), these gaps are two orders
of magnitude smaller than the di�erences observed in stops, arrests, and uses of force that make up our main results.
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Events occurring while the o�cer was o� duty are also eliminated. SI Appendix A.1 describes
these datasets and our preprocessing procedures in detail.

For ease of interpretation, we present di�erences estimated using ordinary least squares with
MDSB �xed e�ects, though our results are robust to several other estimators, including the ad-
dition of �exible controls for experience (see SI Appendix C.2 for a discussion of estimation and
SI Figures C.1-C.3 for these additional results). All statistical inferences are based on o�cer-level
block bootstrap con�dence intervals that are robust to unobserved o�cer-speci�c peculiarities.
Our behavioral analysis organizes patrol assignments into over 650,000 groups de�ned by MDSBs.
Of these, roughly 300,000 allow for comparisons between o�cers of di�ering racial/ethnic groups
(and thus contribute to our analyses); 230,000 contain both female and male o�cers; and 50,000
contain Hispanic o�cers of di�ering language abilities. For details, see SI Appendix C.5.

Importantly, our assignment records allow tracking of o�cer-shifts whether or not they en-
gaged in any enforcement activity. Here, our analysis di�ers from most prior studies of o�cer
race and gender using police administrative data [e.g. 3, 9, 20, 35, 44], which only rely on in-
stances in which o�cers recorded an activity (e.g. a stop or arrest; see discussion in [21]). (See
also [19], [45], and [46] for other strategies to combat the resulting selection bias.) Without these
patrol assignment records, inaction is invisible to the analyst, and o�cers who do not record
any enforcement activity simply vanish from the data. In addition, as we show below, o�cers of
di�erent races and ethnicities are assigned to work in systematically di�erent conditions. Patrol
assignment data allows us to make apples-to-apples comparisons by adjusting for this fact.10

We caution that our approach is only partially informative about mechanisms. While we ob-
serve that white and nonwhite o�cers behave di�erently under common circumstances, largely
driven by di�erential focus on low-level crimes, we cannot discern the psychological pathways
or other channels through which these di�erences arise. But these results nonetheless help eval-
uate the promise of proposed personnel reforms: they show what behavior can be expected when
deploying o�cers of a given demographic pro�le are deployed, on average, holding environmental
factors �xed. If we cannot discern disparities in behavior across these o�cer groups, diversity
reforms are unlikely to meaningfully alter the volume and character of policing. While investiga-
tion of mechanisms are an important direction for future work, given the urgent need for evidence
on police reform e�cacy, careful estimation of overall e�ects is our paramount concern.

10Our data indicate that two o�cers were often involved in stopping or arresting a civilian. Throughout, such
instances enter as separate rows in our o�cer-shift data, since each o�cer contributed to enforcement. In the stop
data, one is listed as “�rst” o�cer, potentially indicating a leading role, while in the arrest data no such labeling
exists. We therefore conduct a robustness check using the stop data in SI Appendix C.8 that reanalyzes stops after
restricting to �rst o�cer only. With minor exceptions, this yields nearly identical results.
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4 Results

We now turn to whether deploying o�cers of di�erent demographic pro�les a�ects the volume
and nature of police-civilian interactions. Table 2 displays the average di�erences in the number
of stops, arrests and uses of force associated with Black and Hispanic o�cers (relative to white
o�cers) and female o�cers (relative to male) working in the same MDSBs. We also note that
roughly 77% of Hispanic residents in the Chicago metropolitan area speak Spanish at home as of
2015 [22]. However, our personnel data show less than half of Hispanic CPD o�cers can speak
Spanish. Because of the potential for this language barrier to impede improved police-civilian
interactions within this ethnic group, we therefore also compare Hispanic o�cers who can and
cannot speak Spanish.

Turning �rst to Black o�cers, we see that when faced with the same working conditions, this
group makes 1.52 fewer stops per 10 shifts, makes 1.94 fewer arrests per 100 shifts, and uses force
1.02 fewer times per 1,000 shifts, on average, than white counterparts—that is, compared to white
o�cers assigned to patrol the same beat, in the same month, on the same day of the week, and
at the same shift time (all padj < 0.001 after Benjamini-Hochberg multiple-testing correction for
comparisons reported in Table 2). These gaps are large, representing reductions of 29%, 21%, and
32% relative to typical stop, arrest, and use-of-force volume for white o�cers (see SI Table C.1 for
average behavior by o�cer race).

Importantly, Table 2 also shows these disparities are not uniform across situations. Rather,
they are driven by a reduced focus on engaging Black civilians (1.26 fewer stops per 10 shifts and
1.46 fewer arrests per 100 shifts, 39% and 25% of typical white o�cer behavior) and a broad class
of enforcement activities that can be thought of as relatively discretionary, including stops of
civilians for “suspicious behavior” (-0.57 per 10 shifts, 31% less) or arrests for drug-related crimes
(-0.31 per 100 shifts, 27% less). However, when it comes to enforcing violent crime, Black o�cer
behavior looks similar to that of white o�cers, with Black o�cers making only 0.22 fewer arrests
per 100 shifts for violent crimes than whites (only 11% less). In other words, when it comes to
policing the most serious o�enses, Black o�cers are roughly comparable to white o�cers. Black
o�cers also deploy force against Black civilians 0.85 fewer times per 1,000 shifts (38% less) than
their white counterparts. (All adjusted p-values < 0.001.) In fact, reduced use of force against this
civilian group accounts for 83% of the overall force disparity between white and Black o�cers. (SI
Section C.7 and SI Figures C.1–C.3 show that results are virtually identical using a wide range of
alternative estimators.) This pattern of results is remarkably in line with the hopes of proponents
of racial diversi�cation, who seek to reduce abusive policing and mass incarceration, especially
in Black communities.

We also �nd substantial di�erences in the behavior of female o�cers relative to male o�cers.
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Relative to male o�cers working on the same places and times, female o�cers make 0.61 fewer
total arrests per 100 shifts (-7% relative to typical male behavior) and 0.54 fewer arrests of Black
civilians per 100 shifts (-9%, both padj. < 0.001). In fact, 89% of this disparity in arrest rate is due to
reduced arrests of Black civilians. We also �nd that female o�cers use force 0.87 less times overall
(-28%) and 0.71 fewer times per 1,000 shifts against Black civilians (-31%, both padj. < 0.001), with
the latter accounting for 82% of overall force reduction. (Appendix C.6 and SI Table C.4 shows that
these gender di�erences are not speci�c to any racial/ethnic group: within each group, female
o�cers use signi�cantly less force than their male counterparts.)

Results di�er in important ways for Hispanic o�cers. Like their Black colleagues, Hispanic
o�cers facing the same working conditions conduct fewer stops, arrests and uses of force than
white o�cers. However, these di�erences are far more modest. Strikingly, gaps are primarily
driven by less engagement with Black civilians, while Hispanic o�cers exhibit nearly the same
volume of enforcement activity against co-ethnic civilians as white o�cers, on average. Our
estimates indicate that Hispanic o�cers can be expected to make 0.28 fewer stops per 10 shifts
(6% reduction relative to typical white o�cer behavior, padj. < 0.001); 0.44 fewer arrests per 100
shifts (padj. = 0.012, 5% reduction); and 0.37 fewer uses of force per 1,000 shifts (padj. = 0.017,
12% reduction) per shift. As the table shows, part of this heterogeneity is driven by Spanish-
speaking Hispanic o�cers, who make 0.74 fewer arrests per 100 shifts on average than Hispanic
o�cers who do not speak the native language of many co-ethnic communities (6% less, padj. =
0.021; however, SI Appendix C.2 shows that unlike all other results, this result is not robust to
the inclusion of �exible controls for o�cer experience). When it comes to stops and uses of
force, di�erences in the behavior of Spanish and non-Spanish-speaking Hispanic o�cers appear
negligible. However, we caution that null results may in part be due to the relatively small sizes of
these language groups, which dramatically reduce overlap between Spanish- and non-Spanish-
speaking Hispanic o�cers in MDSBs. An improved understanding of language and other cultural
factors remains an important direction for future work.

5 Discussion and Conclusion

Fatal encounters between white police o�cers and unarmed racial minorities continue to prompt
widespread calls for law enforcement reforms. Personnel reforms are prominent among these
proposals, but evidence on their e�cacy has been limited by a severe scarcity of data. Using
unusually rich data on police activity in Chicago, we provide detailed micro-level evidence that
sheds light on the promise of diversity initiatives for reshaping police-civilian interactions.

Our results also underscore several previously unknown nuances and avenues for further ex-
ploration. Faced with the identical working conditions, Black o�cers are less likely to stop, arrest,
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and use force against civilians, especially Black civilians, relative to white o�cers. These dispari-
ties are driven by a reduced focus on the enforcement of discretionary stops and arrests for petty
crimes, including drug o�enses, which have long been thought to fuel mass incarceration [2]. In
contrast to these drastic di�erences in the policing of petty crime, Black o�cers’ enforcement of
violent crime is only slightly lower than that of white o�cers.

But this pattern, which at �rst glance closely comports with the hopes of racial diversi�cation
advocates, is complicated by several additional results. For one, while Hispanic o�cers display
lower levels of enforcement activity than whites overall, their behavior toward Hispanic civilians
is broadly comparable to that of white o�cers. However, we �nd some evidence that after ac-
counting for language ability, Spanish-speaking Hispanic o�cers make fewer arrests than their
non-Spanish-speaking counterparts. We also �nd substantial di�erences in the behavior of fe-
male o�cers—both relative to male o�cers generally and within racial and ethnic groups—with
the most substantial di�erences pertaining to use of force. The vast majority of these gendered
reductions are driven by a reduced focus by female o�cers on arresting and using force against
Black civilians. These results have important implications for the potential of personnel reforms.

This study has several limitations. First, we analyze data from a single city, allowing for an un-
usually detailed analysis at some cost in generalizability. Unfortunately, the patchwork of roughly
18,000 police agencies in the U.S., with its varying composition, rules and practices—combined
with nonstandard data collection and sharing practices [15]—makes such precise evaluations
virtually impossible in most jurisdictions. As additional similar data become available, patrol-
assignment analyses o�er a useful template for other scholars to follow when testing whether
these patterns hold in other places and times. A second limitation is that administrative data
alone can only partially identify the mechanisms connecting o�cer race and/or gender to behav-
ior. While we demonstrate that much of these gaps in enforcement patterns arise from a reduction
in discretionary policing and use of force, e.g. for drug o�enses, our data are unable to speak to
the psychological or other processes behind these observed disparities.

The e�ects we demonstrate strongly suggest that diversi�cation holds promise for reshaping
police-civilian encounters. But retrospective estimates from one place and time can only o�er
a rough sense of the potential bene�ts of diversity initiatives nationwide. The extrapolation of
our results, even to future Chicago hiring, hinges on factors such as whether CPD hires from
a comparable pool of potential employees. The nature of policing continues to evolve rapidly,
and a complete understanding of the e�cacy of proposed reforms requires continued, in-depth
research. As o�cers from marginalized communities join police forces in increasing numbers,
their presence will necessarily lead to shifts in personnel deployment and department norms. As
agencies diversify, institutional culture may also begin to shift and exert its own e�ects on o�cer
behavior—an important long-run implication that is beyond the scope of our study. In addition,
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while our analysis tests for tangible e�ects of diversi�cation, we emphasize that a large literature
on descriptive representation [4, 41, 13] suggests diversifying police agencies may yield intangible
bene�ts, namely, increased trust in government among historically underrepresented groups [43].
If racial diversity a�ects levels of public trust, the cost-bene�t calculus when considering this class
of reforms would be further complicated.

The e�ects of racial diversi�cation are likely neither simple nor monolithic. Like the civilians
they serve, o�cers are multidimensional. Crafting e�ective personnel reforms requires thinking
beyond the coarse demographic categories typically used in diversity initiatives, and considera-
tion of how multiple o�cer attributes relate police to the civilians they serve.
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A Detailed Description of Data

A.1 CPD Data

The administrative data from the CPD used in this study span multiple datasets collected in col-
laboration with the Invisible Institute, Sam Stecklow, and Emma Herman over the course of three
years (2016-2019). We obtained these records from the Chicago Police Department or Chicago De-
partment of Human Resources via Freedom of Information Act (FOIA) or through court ordered
releases stemming from requests made by Invisible Institute and Jaime Kalven. CPD provided the
following data: rosters of all available current and past o�cers up to 2018, unit history data for
individual o�cers from the 1930s to 2016, Tactical Response Reports from 2004 to 2018 (i.e. use of
force reports), and arrest data with arresting o�cers and arrestee demographic information from
2001 to 2017. The Chicago Department of Human Resources provided data on o�cers’ language
skills up to 2019 and o�cers’ home address in 2004, 2005 and in early 2019. We supplement our
core data with data on “Stop, Question and Frisk” (SQF) activity between 2012-2015, which was
shared by the Lucy Parson’s Lab. Finally, the Automated Daily Attendance and Assignment sheet
data for each police district between 2012 and 2015 was obtained via a FOIA request to the CPD
and shared by Rachel Ryley.

These data and others have been used to construct rich pro�les of Chicago Police O�cers.
While no �le contains a unique identi�er (star numbers change over time, names are common,
etc.), we constructed unique o�cer pro�les through a successive merge process described here.
Each �le contains some identifying information such as of demographic data (birth year, race,
gender) or other characteristics (name, start/badge number, appointed date, resignation date, cur-
rent unit). We used these identifying characteristics to �rst de-duplicate o�cers within a �le and
to then merge to pre-existing o�cer data with inter-�le unique identi�ers. The merging process
itself is an iterative-pairwise matching method, where the o�cers in each dataset are repeatedly
merged on identifying characteristics and any successful 1-to-1 match in a round removes the
matched o�cers from the next round of merging.

The resulting data contains records on 33,000 police o�cers appointed between March of 1936
to February of 2018. The number of years and o�cers varies across analyses in our paper due to
missing data (for example, assignment data only exists for the years 2012–2015).

A.2 Coding Race and Ethnicity

We determine race/ethnicity of CPD o�cers based on demographic data obtained from the CPD
through FOIA. The CPD usually classi�es race/ethnicity in at most 7 mutually exclusive groups:
white/Caucasian, white Hispanic, Black/African American, Black Hispanic, Asian/Paci�c Islander,
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Native American/Native Alaskan, and unknown/missing. However, there are inconsistencies in
how races and ethnicities are coded across �les. For example, some �les do not include “Black
Hispanic” as a racial category, (very few o�cers are ever classi�ed as Black Hispanic), and some
�les contain outdated racial categories which we update to the best of our ability. For consistency,
we classify “Hispanic” and “White Hispanic” as “Hispanic”; “Black” and “Black Hispanic” (rare
cases) as “Black.” “White” in our analysis refers to non-Hispanic white. If an o�cer has multiple
races associated with them across di�erent datasets, we aggregate by most common non-missing
races.

For Census and American Community Survey data, we construct corresponding race cate-
gories as follows: any Hispanic individual is coded Hispanic; white and Black are comprised of
individuals who are coded as not Hispanic and white (Black) alone.

A.3 U.S. Census Merge

District and beat demographic data was constructed using the 2010 US Census data and the CPD’s
pre-2012 beat map. The centroid of each census tract was identi�ed, then the demographic in-
formation of all the centroids inside a beat were aggregated to determine the beat’s population
and demographic composition. District demographics were determined by aggregating across all
beats within that district. Post-2012 district and beat demographics were constructed based on
the pre-2012 beat data discussed previously and using a crosswalk that maps pre-2012 beats to
current (2018) beats and their respective districts.

A.4 Preprocessing of Patrol Assignments

We restrict analysis to patrol assignments in which Black, Hispanic, or white o�cers serve.
Asian/Paci�c Islander and Native American/Alaskan Native o�cers are not examined due to
small sample sizes. Within this subset, we further drop non-standard assignments (notably in-
cluding “protest detail,” “station supervisor,” and “station security” assignments, as well as spe-
cial assignments for training, compensatory time, and excused sick leave). Patrol assignments in
which o�cers are indicated as non-present are also dropped. These steps are intended to ensure
that o�cers nominally patrolling a beat are in fact actively circulating in the assigned geographic
area, improving the plausibility of the common-circumstances assumption. For the same reason,
we drop double shifts (patrol assignment slots in which the assigned o�cer served for more than
one shift on the same day) to address the possibility that o�cers behave di�erently due to fatigue
in these circumstances. We also eliminate o�cers assigned to non-standard watches (i.e., other
than �rst through third watches). Finally, we drop o�cers at ranks other than “police o�cer.”
This step eliminates police sergeants, who serve in 8% of beat assignments but make very few
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stops and arrests, as well as legal o�cers, helicopter pilots, explosives technicians, and canine
handlers.

A.5 Preprocessing of Police Behavior Data

Events are merged to the remaining patrol assignments based on o�cer ID and date. This step
discards a large number of events, including those involving o�cers of higher ranks and incidents
occurring on rest days. For stops, arrests, and uses of force, we drop all events that occur out-
side of the reported patrol start/stop times, eliminating o�-duty activity. Non-standard shifts are
dropped (retaining only �rst–third watches), as are absences, shifts with assigned special duties
(e.g. protest detail, station security, training), and double- or triple-duty days in which a single
o�cer serves multiple shifts.

Stops for “dispersal” and “gang and narcotics-related loitering” are coded as loitering stops;
those that are “gang / narcotics related” are coded as drug stops; “investigatory stops” and stops
of “suspicious persons” are coded as suspicious behavior; and stops under the “Repeat O�ender
Geographic Urban Enforcement Strategy (ROGUES)” program are combined with the “other”
category. For stops, if a single o�cer is reported as both primary and secondary stopping o�cer,
only one event is retained.

Arrests for municipal code violations and outstanding warrants are categorized as “other.”

B Descriptive Analysis of Assignment Patterns

B.1 District Characteristics

The CPD currently subdivides Chicago into 22 policing districts which correspond to CPD units,
in which the majority of police o�cers work. A typical district covers roughly ten square miles.
There were 25 districts (numbered 1 - 25) until 2012, at which time 3 smaller districts (ranking
18th, 21st, and 25th in land area1) were eliminated and merged with other districts. Districts
23 and 21 and District 13 were eliminated and absorbed into neighboring districts in March and
December of 2012, respectively. While District 23 was mostly absorbed by District 19 and most of
District 13 was absorbed by District 12, signi�cant parts of District 21 were absorbed by Districts
1, 2, and 9.

Figure B.1 illustrates the types of districts to which o�cers of each demographic group are
assigned. This analysis takes each unique combination of racial/ethnic and gender, identi�es all
o�cers in that group, and then compute their assigned districts’ average characteristics. Four

1See Chicago Police Department 2008 Annual Report, page 37, https://home.chicagopolice.org/wp-
content/uploads/2014/12/2008-Annual-Report.pdf
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Figure B.1: Average characteristics of assigned geographic districts for various o�cer groups, by
year, based on 1,089,707 monthly assignments to geographic units from 2006–2016. Con�dence
intervals cluster on district-month.
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dimensions are examined: violent crime rates, property crime rates, police o�cer density, and
proportion of co-racial residents. (These results are analogous to those presented in Figure 2, but
break out each year separately rather than pooling.) Results are highly comparable, indicating
that reported patterns are not an artifact of pooling across years.

We now turn to two district-level analyses. Figure B.2 plots the relationship between a po-
lice district’s resident demographic pro�le (e.g. the proportion of residents that are Black) and
o�cer demographic pro�le (the proportion of o�cers assigned to that district that are Black).
White-dominated districts have virtually no minority o�cers assigned, and districts with size-
able minority populations tend to have more o�cers of the corresponding race. However, o�cers
are disproportionately white compared to district residents: a number of districts dominated by
Black residents nonetheless have sizeable contingents of white o�cers. For example, Wentworth
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Figure B.2: Racial and ethnic composition of o�cers’ assigned districts. In each panel,
each point represents a police district. The horizontal axis indicates the proportion of civilians of
a given racial/ethnic group residing in 2010 Census data, and the vertical axis depicts the share
of o�cers assigned to that district in January 2010 from the same racial/ethnic group.
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(CPD District 2, depicted in Figure 3) is 98% Black, but 24% of o�cers assigned there are white.
The disparity is even starker in Austin (CPD District 15), where a 96% Black resident population is
policed by a unit that is 55% white. (See SI Section A.3 for details on the computation of resident
demographics.)

Figure B.3 displays signi�cant over-time changes in the racial composition of o�cers assigned
to a district. In this �gure, the vertical slice at 2010 corresponds to the results plotted in Figure B.2.
The proportion of Black o�cers assigned to some districts (e.g. districts 3, 5, 6, 7) while holding
steady in others. Temporal discontinuities are due to changes in district boundaries or elimination
of police districts.
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Figure B.3: Racial composition of police districts. Each panel depicts a geographic police
district. Points represent the racial composition of district residents. Lines represent monthly
proportions of o�cers assigned to a district that belong to each racial group. Districts 21, 23, and
13 were eliminated during the observation period.
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B.2 O�cer Demographics and Patrol Assignments

Among o�cers assigned to a particular police district, considerable variation exists in the exact
patrol assignments that o�cers receive. We examine each unit individually, tabulating o�cer
race and shift time assignments (�rst, second and third watch, respectively corresponding to the
nominal duty periods of midnight to 8 a.m., 8 a.m. to 4 p.m., and 4 p.m. to midnight). Figures B.4–
B.5 depict the frequency of each shift period, respectively showing that the pattern of assignments
di�ers dramatically by o�cer race and gender. For example, white o�cers in Wentworth (District
2) almost exclusively serve from 4 p.m. to midnight, whereas Black o�cers are more likely to be
assigned to mid-day shifts.

Figures B.6–B.7 examine the pattern of patrol beat assignments by race/ethnicity and gender,
respectively. They show that, for example, relative to white o�cers, Black o�cers are far more
frequently deployed to assigned beat 202—which roughly corresponds to a patrol area in the
district’s southwest corner (depicted in Figure 3) that has extremely high police activity and a high
concentration of Black residents. These results undermine analyses in a wide array of previous
studies that aggregate at high levels of geography (for example, controlling for district or unit
assignment) and which assume that o�cers face homogeneous conditions within these crude
groupings.
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C O�cer Behavior

C.1 Unadjusted Average Behavior by Various O�cer Groups

Table C.1: Average events per shift, by o�cer racial/ethnic group. Mean number of stops,
arrests, and uses of force without adjustment for time or location. Typical behavior is reported
for Black, Hispanic, and white o�cers individually, as well as the average pooling three o�-
cer races. Records associated with Native American/Alaskan and Asian/Paci�c Islander o�cers
are excluded due to small sample sizes. O�cer behavior toward Native American/Alaskan and
Asian/Paci�c Islander civilians is not included for the purposes of computing total and reason-
speci�c events. Values are scaled for ease of interpretation.

Mean Mean Mean Mean
Behavior (Pooled) (Black o�.) (Hisp. o�.) (White o�.)

Stops per 10 shifts:
Civilian race: Black 3.03 2.61 3.09 3.25
Civilian race: Hispanic 0.92 0.21 1.43 1.10
Civilian race: White 0.57 0.21 0.61 0.75
Reason: Drug 0.48 0.18 0.63 0.58
Reason: Loitering 0.06 0.03 0.09 0.07
Reason: Other 1.31 1.16 1.35 1.39
Reason: Suspicious 1.54 0.89 1.73 1.84
Reason: Tra�c 1.18 0.81 1.39 1.30
Total: 4.58 3.06 5.19 5.17

Arrests per 100 shifts:
Civilian race: Black 5.64 4.95 5.93 5.91
Civilian race: Hispanic 1.76 0.40 2.52 2.19
Civilian race: White 0.89 0.32 0.98 1.17
Reason: Tra�c 0.70 0.35 0.78 0.87
Reason: Drug 0.94 0.36 1.24 1.13
Reason: Other 3.10 2.04 3.46 3.54
Reason: Property 1.52 1.15 1.66 1.68
Reason: Violent 2.11 1.82 2.38 2.16
Total: 8.37 5.71 9.52 9.36

Force per 1,000 shifts:
Civilian race: Black 1.99 1.45 2.10 2.26
Civilian race: Hispanic 0.41 0.09 0.58 0.50
Civilian race: White 0.26 0.07 0.28 0.36
Total: 2.71 1.63 3.02 3.19
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Table C.2: Average events per shift, by o�cer gender. Mean number of stops, arrests, and
uses of force without adjustment for time or location. Typical behavior is reported for female and
male o�cers separately, as well as the pooled average. Records associated with Native Ameri-
can/Alaskan and Asian/Paci�c Islander o�cers are excluded for consistency with racial/ethnic
analyses. O�cer behavior toward Native American/Alaskan and Asian/Paci�c Islander civilians
is not included for the purposes of computing total and reason-speci�c events. Values are scaled
for ease of interpretation.

Mean Mean Mean
Behavior (Pooled) (Female o�.) (Male o�.)

Stops per 10 shifts:
Civilian race: Black 3.03 2.39 3.25
Civilian race: Hispanic 0.92 0.65 1.02
Civilian race: White 0.57 0.49 0.59
Reason: Drug 0.48 0.27 0.55
Reason: Loitering 0.06 0.04 0.07
Reason: Other 1.31 1.23 1.34
Reason: Suspicious 1.54 1.06 1.71
Reason: Tra�c 1.18 0.99 1.25
Total: 4.58 3.59 4.92

Arrests per 100 shifts:
Civilian race: Black 5.64 4.03 6.18
Civilian race: Hispanic 1.76 1.11 1.98
Civilian race: White 0.89 0.69 0.95
Reason: Tra�c 0.70 0.45 0.79
Reason: Drug 0.94 0.47 1.09
Reason: Other 3.10 2.09 3.44
Reason: Property 1.52 1.21 1.63
Reason: Violent 2.11 1.68 2.26
Total: 8.37 5.90 9.20

Force per 1,000 shifts:
Civilian race: Black 1.99 1.10 2.29
Civilian race: Hispanic 0.41 0.20 0.48
Civilian race: White 0.26 0.20 0.28
Total: 2.71 1.52 3.11
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Table C.3: Average events per shift forHispanic o�cers, by language ability. Mean number
of stops, arrests, and uses of force without adjustment for time or location. Typical behavior is
reported for Spanish-speaking and non-Spanish-speaking Hispanic o�cers separately. O�cer
behavior toward Native American/Alaskan and Asian/Paci�c Islander civilians is not included
for the purposes of computing total and reason-speci�c events. Values are scaled for ease of
interpretation.

Mean Mean
Behavior (Spanish Hisp. o�.) (Non-Spanish Hisp. o�.)

Stops per 10 shifts:
Civilian race: Black 2.15 4.03
Civilian race: Hispanic 1.50 1.37
Civilian race: White 0.65 0.59
Reason: Drug 0.53 0.72
Reason: Loitering 0.06 0.11
Reason: Other 1.25 1.47
Reason: Suspicious 1.47 2.01
Reason: Tra�c 1.05 1.74
Total: 4.36 6.05

Arrests per 100 shifts:
Civilian race: Black 3.99 7.84
Civilian race: Hispanic 2.26 2.81
Civilian race: White 0.98 0.99
Reason: Tra�c 0.46 1.10
Reason: Drug 0.72 1.76
Reason: Other 2.54 4.38
Reason: Property 1.55 1.80
Reason: Violent 2.06 2.69
Total: 7.33 11.73

Force per 1,000 shifts:
Civilian race: Black 1.35 2.80
Civilian race: Hispanic 0.52 0.66
Civilian race: White 0.30 0.28
Total: 2.21 3.79
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C.2 Estimand

At a high level, the goal of our analysis is to evaluate the policy e�ect of a personnel reform that
increases the representation of minorities in the CPD by assigning them to positions that would
otherwise be �lled by white individuals. The analysis is conducted at the level of the patrol
assignment slot. Commanding o�cers are assumed to have a �xed set of patrol assignments that
must be �lled, where each slot is associated with a beat (geographic patrol area) and shift time
(temporal window). Multiple slots may be available for a particular beat and shift time, but each
slot can be �lled by only one o�cer.

We organize beat assignments into groups, indexed by i, based on unique combinations of
month (Mi), day of week (Di), shift time (�rst/second/third watch, Si), and beat (Bi), or unique
MDSBs. Patrol assignment slots within a MDSB are indexed by j. For each slot, the realized
pattern of o�cer behavior is denoted Yi,j(Ri,j), where Ri,j is the demographic pro�le (race/ethnicity
and/or gender) of the o�cer assigned to a particular slot. Our notation implicitly makes the stable
unit treatment value assumption [SUTVA, 38], which requires that (1) there do not exist �ner
gradations of o�cer identity (i.e., within the broad racial/ethnic and gender categories used) that
would result in di�ering potential o�cer behavior, and (2) that potential outcomes do not very
depending on the racial/ethnic and gender identities of o�cers assigned to other slots.2

The slot-level policy e�ect is the di�erence in potential outcomes [37] Yi,j(r) − Yi,j(r ′), the
change in behavior that would have realized if an o�cer of demographic pro�le r had been as-
signed to the patrol assignment slot, rather than another o�cer of pro�le r ′. These slot-level
counterfactual di�erences are fundamentally unobservable. Instead, we target the average policy
e�ect within the subset of F MDSBs for which policy e�ects can be feasibly estimated (i.e., for
which variation in o�cer demographic pro�les exists). This quantity is

� =
1
FAi

F
∑
i=1

Ai
∑
j=1
Yi,j(r) − Yi,j(r ′),

where Ai is the number of patrol assignment slots available within MDSB i and Ai is the average
slot count across MDSBs. This can be rewritten as the weighted average of MDSB-speci�c e�ects,

2We explore the validity of this second assumption to the extent possible in SI Appendix C.8, in which stops made
by two o�cers are reanalyzed. In this section, we re-compute our estimates of di�erential stopping behavior after
excluding the second reporting o�cer from our analysis; the resulting estimates are highly similar.
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�i , with weights given by Ai .

� =
F
∑
i=1

Ai

∑F
i′=1 Ai′ (

1
Ai

Ai
∑
j=1
Yi,j(r) − Yi,j(r ′))

=
F
∑
i=1

Ai

∑F
i′=1 Ai′

�i .

As we discuss in Section 3, a key identifying assumption is that

Yi,j(r), Yi,j(r ′) ⟂⟂ Ri |Mi = m,Di = d, Si = s, Bi = b.

Informally, this requires that minority o�cers are not selectively assigned to slots within MDSBs,
at least in ways that matter for potential o�cer behavior. (Hypothetically speaking, this inde-
pendence condition could be achieved even without adjusting for MDSB if white and nonwhite
o�cers were randomly assigned locations and times to patrol.)

Our primary results estimate this quantity with an ordinary least squares (OLS) regression of
the form Yi,j = �i +∑r �r1(Ri,j = r) + "i, j, where �i represents a �xed e�ect for MDSB i. Unbiased-
ness of this estimator requires the additional assumption that MDSB-speci�c policy e�ects are
homogeneous, or that �i = � for all i. It is well known that when this assumption is violated, OLS
recovers the weighted average of �is with weights corresponding to the variance of o�cer de-
mographic pro�les within strata. To allow for the possibility of non-homogeneous policy e�ects
and other departures from our modeling assumptions, we therefore apply a number of alterna-
tive estimators, which are described in detail in SI Section C.7. As we show in SI Figures C.1–C.3,
these alternative results are virtually identical to our primary results.

C.3 Potential Threats to Validity

For full transparency, we highlight a number of possible threats to the validity of our analysis
given our analytic goal. Confounding factors in this scenario include all variables that correlate
with o�cer race and/or gender (depending on the analysis) in ways that violate the common-
circumstances assumption. An example would be if Black and white o�cers were assigned to the
same beat and shift, but Black o�cers were ordered to stay in their patrol cars the entire time
while white o�cers were allowed to freely roam the beat, meaning Black and white o�cers faced
systematically di�erent working conditions for reasons beyond their control. Another example
would be if there are unobserved di�erences within a MDSB (e.g., a beat is more dangerous on
one particular Tuesday evening in a month, perhaps due to a scheduled protest) and o�cers of
one group are preferentially assigned to patrol according to those di�erences. We assess that
confounding of this type is extremely rare, because MDSB are de�ned in such a �ne-grained way
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that comparisons are made within groups of roughly four beat-shifts (e.g., all Tuesday evenings
in January 2012 for beat 251).

However, because we are not seeking to identify the e�ect of race per se, other correlates
of o�cer race which do not violate the common-circumstances assumption do not obstruct our
ability to evaluate this counterfactual. Examples of these innocuous correlates include: (1) Black
and white o�cers possessing di�erent levels of education which in turn lead to di�erential en-
forcement; or (2) male and female o�cers choosing to focus on di�erent corners of their beats
once assigned in ways that in�uence policing outcomes. In the latter case, o�cers still were as-
signed to face common circumstances (our key identifying assumption) but chose to turn a blind
eye to certain subsets of civilian behavior. These facets represent di�erent mechanisms through
which the policy intervention of interest a�ects police-civilian interactions, but would not bias
estimates relating to o�cer deployment.
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C.4 Shift Duration

We consider the possibility that stops, arrests, and uses of force are driven by di�erent amounts
of time spent patrolling. Even among o�cers assigned to a particular shift time (a nominal eight-
hour patrol period), minor variation exists in the precise start and end of the o�cer’s duty time.
Of the o�cer-shifts analyzed, 85.5% are 9 hours in duration, with 8.5- and 8-hour shifts making
up an additional 7.8% and 5.1%, respectively (percentages are based on rounding shift duration
to the nearest 6 minutes). In �xed-e�ect regression analyses that compare o�cers within unique
MDSB combinations, we estimate that shifts of Black o�cers are 0.0094 hours shorter (roughly
0.1% shorter) than their white counterparts assigned to the same MDSB, and Hispanic o�cer shift
durations are statistically indistinguishable from those of white o�cers. Because these di�erences
are two orders of magnitude smaller than reported di�erences in behavior, patrol time disparities
are unlikely to be a mechanism driving observed racial gaps in stops, arrests, and force.

19



C.5 Variation in Explanatory Variable

In analyzing how policing behavior varies with o�cer demographic characteristics, we compare
the recorded decisions of di�erent o�cers facing the same set of circumstances. To do so, we
examine 653,527 unique combinations of month, day of week, shift number, and beat (MDSBs).
Of these, 572,067 MDSBs have more than one assigned o�cer, a requirement to make any within-
MDSB comparison. Single-o�cer MDSBs can arise if, for example, a beat requires only one o�cer
to patrol and o�cer schedules are stable (e.g., if one individual consistently serves all �rst watchs
on Mondays for the month). To make cross-group comparisons, we further require that di�erent
o�cer groups have served in the same MDSB.

There are 294,963 MDSBs that contain overlap between multiple assigned o�cer racial/ethnic
groups (e.g., one Black o�cer and one white o�cer); 229,143 MDSBs contain overlap between
both female and male o�cers; and 49,721 MDSBs contain overlap between Spanish-speaking and
non-Spanish-speaking Hispanic o�cers. Due to the smaller number of Hispanic o�cers and the
resulting low overlap rates, power for detecting di�erences between Spanish- and non-Spanish-
speaking Hispanic o�cer behavior is relatively low.

20



C.6 Gender Heterogeneity

Here, we demonstrate that di�erences in behavior between male and female o�cers remain even
when comparing within members of a single racial/ethnic group. Female o�cers consistently use
less force overall, and less force toward Black civilians in particular, than their co-racial/co-ethnic
male counterparts (all padj. ≤ 0.023). In addition, we �nd that Black female o�cers make slightly
fewer drug stops than Black male o�cers, though this gap is di�cult to interpret given the larger
number of stops for miscellaneous other reasons (both padj. < 0.001).
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C.7 Alternative Estimators

Our primary analysis of o�cer behavior uses OLS regression with MDSB �xed e�ects, of the
form Yi,j = �i + ∑r �r1(Ri,j = r) + "i,j , where �i represents a �xed e�ect for MDSB i. As we
discuss in SI Section C.2, this estimator will deviate from the desired average policy e�ect (i.e.,
the average e�ect of replacing white o�cers assigned to a particular patrol assignment slot with a
minority o�cer on resulting stop, arrest, and use-of-force volume) if MDSB-speci�c policy e�ects
are highly variable in a way that is associated with the proportion of minority/female o�cers that
are assigned to MDSBs (in this case, it is well known that OLS recovers the weighted average of
MDSB-speci�c policy e�ects, where weights are determined by variance of o�cer race within
the MDSB).

To gauge robustness of our results to the violation of this assumption, we present alternative
estimates in SI Figures C.1–C.3 below. The �rst alternative estimator takes the within-MDSB
di�erence in behavior between average patrol assignments between given o�cer demographic
pro�les, then aggregates these according to the number of patrol assignment slots in each MDSB.
Following the notation de�ned in SI Section C.2, this estimator can be written as

F
∑
i=1

Ai

∑F
i′=1 Ai′

Ai
∑
j=1(

∑Ai
j=1 Yi,j 1(Di,j = d)
∑Ai

j=1 1(Di,j = d)
−
∑Ai

j=1 Yi,j 1(Di,j = d ′)
∑Ai

j=1 1(Di,j = d ′) )
.

To assess the extent to which results are driven by large MDSBs, we further compute the
unweighted average of MDSB-speci�c estimated e�ects:

1
F

F
∑
i=1

Ai
∑
j=1(

∑Ai
j=1 Yi,j 1(Di,j = d)
∑Ai

j=1 1(Di,j = d)
−
∑Ai

j=1 Yi,j 1(Di,j = d ′)
∑Ai

j=1 1(Di,j = d ′) )
.

Finally, we consider the possibility that observed demographic di�erences in o�cer behavior
are driven by di�erences in experience between o�cer groups. If this were the case, it would
undermine the applicability of our results to the e�ect of a hiring reform that brought in additional
minority rookie o�cers. To examine whether these di�erences impact our results, we extend the
regression speci�cation by adding additional linear and quadratic terms for each o�cer’s length
of service. Speci�cally, we estimate Yi,j = �i +∑r �r1(Ri,j = r) + 1Si,j + 2S2i,j + "i,j , where Si,j is the
length of service of o�cer j as of the month corresponding to MDSB i occurred. This robustness
test generally does not alter our substantive conclusions; the sole exception is that di�erences
in the number of arrests made by Spanish-speaking and non-Spanish-speaking Hispanic o�cers
vanish when adjusting for length of service.
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C.8 Robustness Checks: Multiple Stopping O�cers

Data on stops of civilians indicate that the vast majority of enforcement is jointly conducted by
two o�cers, but one is listed as the primary o�cer in police records. (Arrest records also often
contain more than one o�cer, but contain have no indication of the lead o�cer.) In our main
analysis, we treat a stop by two o�cers as two incidents in the data, as both o�cers contribute
to the decision to engage a civilian. To gauge the extent to which this decision drives our re-
sults, we present an alternative analysis of stops in which we use only data on �rst reporting
o�cers, respectively. Results are substantively unchanged. Note that the reduction in female-
o�cer drug stops (versus male o�cers) loses signi�cance, and a handful of other comparisons
appear to become marginally signi�cant. However, general patterns remain substantively iden-
tical, with smaller coe�cients re�ecting the fact that roughly half of all stop events have been
discarded. Given the lack of information on arresting o�cer roles, we do not conduct a similar
robustness test for the arrest analysis. Our only option would be to drop an o�cer from each
arrest at random, which would in expectation merely produce identical patterns with attenuated
coe�cients.
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