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Abstract

We use decision theory to confront uncertainty that is su¢ ciently broad to incorporate

�models as approximations.�We presume the existence of a featured collection of what we

call �structured models�that have explicit substantive motivations. The decision maker

confronts uncertainty through the lens of these models, but also views these models as

simpli�cations, and hence, as misspeci�ed. We extend the max-min analysis under model

ambiguity to incorporate the uncertainty induced by acknowledging that the models used

in decision-making are simpli�ed approximations. Formally, we provide an axiomatic

rationale for a decision criterion that incorporates model misspeci�cation concerns.
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Come l�araba fenice:

che vi sia, ciascun lo dice;

dove sia, nessun lo sa.1

1 Introduction

The consequences of a decision may depend on exogenous contingencies and uncertain out-

comes that are outside the control of a decision maker. This uncertainty takes on many forms.

Economic applications typically feature risk, where the decision maker knows probabilities but

not necessarily outcomes. Statisticians and econometricians have long wrestled with how to

confront ambiguity over models or unknown parameters within a model. Each model is itself

a simpli�cation or an approximation designed to guide or enhance our understanding of some

underlying phenomenon of interest. Thus, the model, by its very nature, is misspeci�ed, but in

typically uncertain ways. How should a decision maker acknowledge model misspeci�cation in

a way that guides the use of purposefully simpli�ed models sensibly? This concern has certainly

been on the radar screen of statisticians and control theorists, but it has been largely absent in

formal approaches to decision theory.2 Indeed, the statisticians Box and Cox have both stated

the challenge succinctly in complementary ways:

Since all models are wrong, the scientist must be alert to what is importantly wrong.

It is inappropriate to be concerned about mice when there are tigers abroad. Box

(1976).

... it does not seem helpful just to say that all models are wrong. The very word

�model� implies simpli�cation and idealization. The idea that complex physical,

biological or sociological systems can be exactly described by a few formulae is

patently absurd. The construction of idealized representations that capture impor-

tant stable aspects of such systems is, however, a vital part of general scienti�c

analysis and statistical models, especially substantive ones ... Cox (1995).

While there are formulations of decision and control problems that intend to confront model

misspeci�cation, the aim of this paper is: (i) to develop an axiomatic approach that will

provide a rigorous guide for applications and (ii) to enrich formal decision theory when applied

to environments with uncertainty through the guise of models.

In this paper, we explore formally decision making with multiple models, each of which is

allowed to be misspeci�ed. We follow Hansen and Sargent (2020) by referring to these multiple

1�Like the Arabian phoenix: that it exists, everyone says; where it is, nobody knows.�A passage from a
libretto of Pietro Metastasio.

2In Hansen (2014) and Hansen and Marinacci (2016) three kinds of uncertainty are distinguished based on
the knowledge of the decision maker, the most challenging being model misspeci�cation viewed as uncertainty
induced by the approximate nature of the models under consideration.
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models as �structured models.�These structured models are ones that are explicitly motivated

or featured, such as ones with substantive motivation or scienti�c underpinnings, consistent

with the use of the term �models�by Box and Cox. They may be based on scienti�c knowledge

relying on empirical evidence and theoretical arguments or on revealing parameterizations of

probability models with parameters that are interpretable to the decision maker. In posing

decision problems formally, it is often assumed, following Wald (1950), that the correct model

belongs to the set of models that decision makers posit. The presumption that a decision

maker identi�es, among their hypotheses, the correct model is often questionable �recalling

the initial quotation, the correct model is often a decision maker phoenix. We embrace, rather

than push aside, the �models are approximations� perspective of many applied researchers,

as articulated by Box, Cox and others. To explore misspeci�cation formally, we introduce a

potentially rich collection of probability distributions that depict possible representations of

the data without formal substantive motivation. We refer to these as �unstructured models.�

We use such alternative models as a way to capture how models could be misspeci�ed.3

This distinction between structured and unstructured is central to the analysis in this paper

and is used to distinguish aversion to ambiguity over models and aversion to potential model

misspeci�cation. At a decision-theoretic level, a proper analysis of misspeci�cation concerns has

remained elusive so far. Indeed, many studies dealing with economic agents confronting model

misspeci�cation still assume that they are conventional expected utility decision makers who

do not address formally potential model misspeci�cation concerns in their preference ordering.4

We extend the analysis of Hansen and Sargent (2020) by providing an axiomatic underpinning

for a corresponding decision theory along with a representation of the implied preferences that

can guide applications. In so doing, we show an important connection with the analysis of

subjective and objective rationality of Gilboa et al. (2010).

Criterion This paper proposes a �rst decision-theoretic analysis of decision making under

model misspeci�cation. We consider a classic setup in the spirit of Wald (1950), but relative

to his seminal work we explicitly remove the assumption that the correct model belongs to

the set of posited models and we allow for nonneutrality toward this feature. More formally,

we assume that decision makers posit a set Q of structured (probabilistic) models q on states,

motivated by their information, but they are afraid that none of them is correct and so face

model misspeci�cation. For this reason, decision makers contemplate what we call unstructured

models in ranking acts f , according to a conservative decision criterion5

V (f) = min
p2�

�Z
u (f) dp+min

q2Q
c (p; q)

�
(1)

3Such a distinction is also present in earlier work by Hansen and Sargent (2007) and Hansen and Miao (2018)
but without speci�c reference to the terms �structured�and �unstructured.�

4See, e.g., Esponda and Pouzo (2016) and Fudenberg et al. (2017).
5Throughout the paper � denotes the set of all probabilities (Section 2.1).
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To interpret this problem, let

cQ (p) = min
q2Q

c (p; q)

where we presume that cQ(q) = 0 when q 2 Q. In this construction, cQ (p) is a (Hausdor¤)

distance between a model p and the posited compact set Q of structured models. This distance

is nonzero if and only if p is unstructured, that is, p =2 Q. More generally, p�s that are closer to
the set of structured models Q have a less adverse impact on the preferences, as is evident by

rewriting (1) as:

V (f) = min
p2�

�Z
u (f) dp+ cQ (p)

�
This representation is a special case of the variational representation axiomatized by Maccheroni

et al. (2006). The unstructured models are statistical artifacts that allow the decision maker to

assess formally the potential consequences of misspeci�cation as captured by the construction

of cQ. In this paper we provide a formal interpretation of cQ as an index of misspeci�cation

fear: the lower the index, the higher the fear.6

A protective belt When c takes the entropic form �R(pjjq), with � > 0, criterion (1) takes
the form

min
p2�

�Z
u (f) dp+ �min

q2Q
R(pjjq)

�
(2)

proposed by Hansen and Sargent (2020). It is the most tractable version of criterion (1), which

for a singleton Q further reduces to a standard multiplier criterion a la Hansen and Sargent

(2001, 2008). By exchanging orders of minimization, we preserve this tractability and provide

a revealing link to this earlier research,

min
q2Q

�
min
p2�

�Z
u (f) dp+ �R(pjjq)

��
(3)

The inner minimization problem gives rise to the minimization problem featured by Hansen and

Sargent (2001, 2008) to confront the potential misspeci�cation of a given probability model q.7

Unstructured models lack the substantive motivation of structured models, yet in (1) they act

as a protective belt against model misspeci�cation. The importance of their role is proportional

(as quanti�ed by �) to their proximity to the set Q, a measure of their plausibility in view of the

decision maker information. The outer minimization over structured models is the counterpart

to the Wald (1950) and the more general Gilboa and Schmeidler (1989) max-min criterion.

Our analysis provides a decision-theoretic underpinning for incorporating misspeci�cation

concerns in a distinct way from ambiguity aversion. Observe that misspeci�cation fear is absent

6To ease terminology, we often refer to �misspeci�cation�rather than �model misspeci�cation.�
7The Hansen and Sargent (2001, 2008) formulation of preferences builds on extensive literature in control

theory starting with Jacobson (1973)�s deterministic robustness criterion and a stochastic extension given by
Petersen et al. (2000), among several others.
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when the index minq2Q c (p; q) equals the indicator function �Q of the set of structured models

Q, that is,

min
q2Q

c (p; q) =

(
0 if p 2 Q
+1 else

In this case, which corresponds to � = +1 in (2), criterion (1) takes a max-min form:

V (f) = min
q2Q

Z
u (f) dq

This max-min criterion thus characterizes decision makers who confront model misspeci�cation

but are not concerned by it, so are misspeci�cation neutral (see Section 4.1). The criterion in

(1) may thus be viewed as representing decision makers who use a more prudential variational

criterion (1) than if they were to max-minimize over the set of structured models which they

posited. In particular, the farther away an unstructured model is from the set Q (so the less

plausible it is), the less it is weighted in the minimization.

Axiomatics We use the entropic case (2) to outline our axiomatic approach. Start with

a singleton Q = fqg. Decision makers, being afraid that the reference model q might not
be correct, contemplate also unstructured models p 2 � and rank acts f according to the

multiplier criterion

V�;q (f) = min
p2�

�Z
u (f) dp+ �R(pjjq)

�
(4)

Here the positive scalar � is interpreted as an index of misspeci�cation fear. When decision

makers posit a nonsingleton set Q of structured models, but are concerned that none of them

is correct, the multiplier criterion (4) then gives only an incomplete dominance relation:

f %� g () V�;q (f) � V�;q (g) 8q 2 Q (5)

With (5), decision makers can safely regard f better than g. This type of ranking has, however,

little traction because of the incomplete nature of %�. Nonetheless, the burden of choice will
have decision makers to select between alternatives, be they rankable by %� or not. A cautious
way to complete the binary relation %� is given by the preference % represented by (2), or

equivalently by (3). This criterion thus emerges in our analysis as a cautious completion of a

multiplier dominance relation %�. Suitably extended to a general preference pair (%�;%), this
approach permits to axiomatize criterion (1) as the representation of the behavioral preference

% and the unanimity criterion

f %� g () min
p2�

�Z
u (f) dp+ c (p; q)

�
� min

p2�

�Z
u (g) dp+ c (p; q)

�
8q 2 Q

as the representation of the incomplete dominance relation %�.
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2 Preliminaries

2.1 Mathematics

Basic notions We consider a non-trivial event �-algebra � in a state space S and denote

by B0 (�) the space of �-measurable simple functions ' : S ! R, endowed with the supnorm
k k1. The dual of B0 (�) can be identi�ed with the space ba (�) of all bounded �nitely additive
measures on (S;�).

We denote by � the set of probabilities in ba (�) and endow � and any of its subsets

with the weak* topology. In particular, �� denotes the subset of � formed by the countably

additive probability measures. Given a subset Q in�, we denote by�� (Q) the collection of all

probabilities p which are absolutely continuous with respect toQ, that is, if A 2 � and q (A) = 0
for all q 2 Q, then p (A) = 0. Moreover, �� (q) denotes the set of elements of �� which are

absolutely continuous with respect to a single q 2 ��, i.e., �� (q) = fp 2 �� : p� qg. Unless
otherwise speci�ed, all the subsets of � are to be intended non-empty.

The (convex analysis) indicator function �C : � ! [0;1] of a convex subset C of � is

de�ned by

�C (p) =

(
0 if p 2 C
+1 else

Throughout we adopt the convention 0 � �1 = 0.

The e¤ective domain of f : C ! (�1;1], denoted by dom f , is the set fp 2 C : f (p) <1g
where f takes on a �nite value. The function f is:

(i) grounded if the in�mum of its image is 0, i.e., infp2C f (p) = 0;

(ii) strictly convex if, given any distinct p; q 2 C, we have f (�p+ (1� �) q) < �f (p) +

(1� �) f (q) for all � 2 (0; 1) such that �p+ (1� �) q 2 dom f .

Divergences and statistical distances Given a subset Q of ��, a function c : � � Q !
[0;1] is a statistical distance for Q if

(i) the sections cq : �! [0;1] are grounded, lower semicontinuous and convex for all q 2 Q;

(ii) c (p; q) = 0 if and only if p = q.

By a �statistical distance�we do not restrict ourselves to a metric.8 A statistical distance

for Q is variational if:

(iii) the function cQ : � ! [0;1] given by cQ (�) = minq2Q c (�; q) is well de�ned, grounded,
lower semicontinuous and convex.

8In particular, given p; q 2 Q, c (p; q) is not necessarily equal to c (q; p).

5



Next we report an important property of variational statistical distances for Q.

Lemma 1 If c is a variational statistical distance for Q, then c�1Q (0) = Q, that is, cQ (p) = 0

if and only if p 2 Q.

In particular, cQ (p) is an Hausdor¤ statistical distance between p and Q. In light of this

lemma, we say that a function c : � � Q ! [0;1] is a variational pseudo-statistical distance
for Q if it satis�es (i), (iii) and c�1Q (0) = Q. It is a weakening of the notion of variational

statistical distance that will come in handy later on.

The next lemma provides a simple condition for a function c : � � Q ! [0;1] to be a
variational statistical distance for Q.

Lemma 2 Let Q be a compact and convex subset of ��. A lower semicontinuous and convex

function c : ��Q! [0;1] is a variational statistical distance for Q if and only if it satis�es

the distance property:

c (p; q) = 0 () p = q (6)

A (variational) statistical distance for Q is a (variational) divergence for Q if, for each q 2 Q,

(iv) c (p; q) <1 only if p� q.

The divergences that we consider thus assign an in�nite penalty when p is not absolutely

continuous with respect to q.

So far we considered statistical distances for a given set Q. When the set Q may vary, we

need a �universal�notion that ensures consistency across such sets. To this end, we say that a

statistical distance

c : ���� ! [0;1]

de�ned on the entire Cartesian product � � �� is a (universal) variational divergence if its

restriction to each compact and convex subset Q of �� is a variational divergence for Q.

To present a well-known class of variational divergences, given a continuous strictly convex

function � : [0;1) ! [0;1), with � (1) = 0 and limt!1 � (t) =t = +1, de�ne a �-divergence
D� : ���� ! [0;1] by

D� (pjjq) =

8<:
R
�

�
dp

dq

�
dq if p 2 �� (q)

+1 otherwise

under the conventions 0=0 = 0 and ln 0 = �1.9 The most important example of �-divergence is
the relative entropy given by � (t) = t ln t� t+1 and denoted by R (pjjq).10 Another important

9The function dp=dq is any version of the Radon-Nikodym derivative of p with respect to q.
10Given the conventions 0=0 = 0 � �1 = 0, it holds � (0) = 0 ln 0� 0 + 1 = 0 � �1+ 1 = 1.
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example is the Gini relative index given by the quadratic function � (t) = (t� 1)2 =2 and
denoted by �2 (pjjq).
A �-divergence D� : ���� ! [0;1] is lower semicontinuous and convex.11 Next we show

that it is a variational divergence.

Lemma 3 Let Q be a compact and convex subset of ��. A restricted �-divergence D� : � �
Q! [0;1] is a variational divergence for Q.

Given a coe¢ cient � 2 (0;1], the function �D� : � � �� ! [0;1] is also a variational
divergence. In particular, when � =1 we have

(1)D� (pjjq) = �fqg (p) =

(
0 if p = q

1 else

because of the convention 0 � 1 = 0.

2.2 Decision theory

Setup We consider a generalized Anscombe and Aumann (1963) setup where a decision maker

chooses among uncertain alternatives described by (simple) acts f : S ! X, which are �-

measurable simple (i.e., �nite-valued) functions from a state space S to a consequence space X.

This latter set is assumed to be a non-empty convex subset of a vector space (for instance, X

is the set of all simple lotteries de�ned on a prize space). The triple

(S;�; X) (7)

forms an (Anscombe-Aumann) decision framework.

Let us denote by F the set of all acts. Given any consequence x 2 X, we denote by x 2 F
also the constant act that takes value x. Thus, with a standard abuse of notation, we identify

X with the subset of constant acts in F . Given a function u : X ! R, we denote by Imu its
image. Observe that u � f 2 B0 (�) when f 2 F .
A preference % is a binary relation on F that satis�es the so-called basic conditions (cf.

Gilboa et al., 2010), i.e., it is:

(i) re�exive and transitive;

(ii) monotone: if f; g 2 F and f (s) % g (s) for all s 2 S, then f % g;

(iii) continuous: if f; g; h 2 F , the sets

f� 2 [0; 1] : �f + (1� �) g % hg and f� 2 [0; 1] : h % �f + (1� �) gg
11See Chapter 1 of Liese and Vajda (1987). We refer to this book for properties of �-divergences.

7



are closed;

(iv) non-trivial : there exist f; g 2 F such that f � g.

Moreover, a preference % is unbounded if, for each x; y 2 X with x � y, there exist z; z0 2 X
such that

1

2
z +

1

2
y % x � y % 1

2
x+

1

2
z0

Bets are binary acts that play a key role in decision theory. Formally, given any two prizes

x � y, a bet on an event A is the act xAy de�ned by

xAy (s) =

(
x if s 2 A
y else

In words, a bet on event A is a binary act that yields a more preferred consequence if A obtains.

Comparative uncertainty aversion As in Ghirardato and Marinacci (2002), given two

preferences %1 and %2 on F , we say that %1 is more uncertainty averse than %2 if, for each
consequence x 2 X and act f 2 F ,

f %1 x =) f %2 x

In words, a preference is more uncertainty averse than another one if, whenever this preference

is �bold enough�to prefer an uncertain alternative over a sure one, so does the other one.

Decision criteria A complete preference % on F is variational if it is represented by a

decision criterion V : F ! R given by

V (f) = min
p2�

�Z
u (f) dp+ c (p)

�
(8)

where the a¢ ne utility function u is non-constant and the index of uncertainty aversion c :

�! [0;1] is grounded, lower semicontinuous and convex. In particular, given two unbounded
variational preferences %1 and %2 on F that share the same u, but di¤erent indexes c1 and c2,

we have that %1 is more uncertainty averse than %2 if and only if c1 � c2 (see Maccheroni et

al., 2006, Propositions 6 and 8).

When the function c has the entropic form c (p; q) = �R (pjjq) with respect to a reference
probability q 2 ��, criterion (8) takes the multiplier form

V�;q (f) = min
p2�

�Z
u (f) dp+ �R(pjjq)

�
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analyzed by Hansen and Sargent (2001, 2008).12 If, instead, the function c has the indicator

form �C , with C compact and convex, criterion (8) takes the max-min form

V (f) = min
p2C

Z
u (f) dp

axiomatized by Gilboa and Schmeidler (1989).

All these criteria are here considered in their classical interpretation, so Waldean for the

max-min criterion, in which the elements of � are interpreted as models.

3 Models and preferences

3.1 Models

The consequences of the acts among which decision makers have to choose depend on exogenous

states that are outside their control. They know that states obtain according to a probabilistic

model described by a probability measure in �, the so-called true or correct model. If decision

makers knew the true model, they would confront only risk, which is the randomness inherent

to the probabilistic nature of the model. Our decision makers, unfortunately, may not know the

true model. Yet, they are able to posit a set of structured probabilistic models Q, based on their

information (which might well include existing scienti�c theories, say economic or physical),

that form a set of alternative hypotheses regarding the true model. It is a classical assumption,

in the spirit of Wald (1950), in which Q is a set of posited hypotheses about the probabilistic

behavior of a, natural or social, phenomenon of interest.

A classical decision framework is described by a quartet:

(S;�; X;Q) (9)

in which a set Q of models is added to a standard decision framework (7). The true model

might not be in Q, that is, the decision makers information may be unable to pin it down.

Throughout the paper we assume that decision makers know this limitation of their information

and so confront model misspeci�cation.13 This is in contrast with Wald (1950) and most of the

subsequent decision-theoretic literature, which assumes that decision makers either know the

true model and so face risk or, at least, know that the true model belongs to Q and so face

model ambiguity.14

In Theorem 1, but not in Theorem 2, we assume that Q is a convex subset of ��. As

12Strzalecki (2011) provides the behavioral assumptions that characterize multiplier preferences among vari-
ational preferences.
13Aydogan et al. (2018) propose an experimental setting that reveals the relevance of model misspeci�cation

for decision making.
14The model ambiguity (or uncertainty) literature is reviewed in Marinacci (2015).

9



usual, convexity signi�cantly simpli�es the analysis. Yet, conceptually it is not an innocuous

property: a hybrid model that mixes two structured models can only be less well motivated

than either of them. Decision criterion (1), however, accounts for the lower appeal of hybrid

models when c (p; q) is also convex in q (as, for instance, when c is a �-divergence). To see

why, observe that minp2�
�R

u (f) dp+ c (p; q)
	
is, for each act f , convex in q. In turn, this

implies that hybrid models negatively a¤ect criterion (1). This negative impact of mixing thus

features an �aversion to model hybridization�attitude, behaviorally captured by axiom A.8.

Remarkably, the relative entropy criterion (2) turns out to be neutral to model hybridization.

In this important special case, the assumption of convexity of Q is actually without any loss of

generality (as Appendix B.2 clari�es).

Convexity of Q can be also justi�ed in a robust Bayesian interpretation of our analysis

that regards Q as the set of the so-called predictive distributions, which are combinations of

�primitive�models (typically extreme points of Q) weighted according to alternative priors

over them. For instance, if the primitive models describe states through i.i.d. processes, the

elements of Q describe them via exchangeable processes that combine primitive models and

priors (as in the Hewitt and Savage, 1955, version of the de Finetti Representation Theorem).

Under this interpretation, the p�s are introduced to provide a protective shield for each of the

predictive distributions constructed from the alternative priors that are considered.

3.2 Preferences

We consider a two-preference setup, as in Gilboa et al. (2010), with a mental preference %�
and a behavioral preference %.

De�nition 1 A preference % is ( subjectively) rational if it is:

a. complete;

b. risk independent: if x; y; z 2 X and � 2 (0; 1), then x � y implies �x + (1� �) z �
�y + (1� �) z.

The behavioral preference % governs the decision maker choice behavior and so it is natural
to require it to be complete because, eventually, the decision maker has to choose between

alternatives (burden of choice). It is subjectively rational because, in an �argumentative�

perspective, the decision maker cannot be convinced that it leads to incorrect choices. Risk

independence ensures that % is represented on the space of consequences X by an a¢ ne utility

function u : X ! R, for instance an expected utility functional when X is the set of simple

lotteries. So, risk is addressed in a standard way and we abstract from non-expected utility

issues.
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The mental preference %� on F represents the decision maker�s �genuine�preference over

acts, so it has the nature of a dominance relation for the decision maker. As such, it might well

not be complete because of the decision maker inability to compare some pairs of acts.

De�nition 2 A preference %� is a dominance relation (or is objectively rational) if it is:

a. c-complete: if x; y 2 X, then x %� y or y %� x;

b. completeness: when Q is a singleton, if f; g 2 F , then f %� g or g %� f ;

c. weak c-independent: if f; g 2 F , x; y 2 X and � 2 (0; 1),

�f + (1� �)x %� �g + (1� �)x =) �f + (1� �)y %� �g + (1� �)y

d. convex: if f; g; h 2 F and � 2 (0; 1),

f %� h and g %� h =) �f + (1� �) g %� h

If f %� g we say that f dominates g (strictly if f �� g). It is objectively rational because the
decision maker can convince others of its reasonableness, for instance through arguments based

on scienti�c theories (a case especially relevant for our purposes). Momentarily, axiom A.3 will

further clarify its nature. The dominance relation is, axiomatically, a variational preference

which is not required to be complete, unless Q is a singleton.15 When Q is a singleton, the

dominance relation is complete and yet, because of model misspeci�cation, satis�es only a

weak form of independence. In other words, in our approach model misspeci�cation may cause

violations of the independence axiom for the dominance relation. Later in the paper, Section

4.2 will further discuss this important feature of our analysis.

Along with the classical decision framework (9), the preferences %� and % form a two-

preference classical decision environment

(S;�; X;Q;%�;%) (10)

The next two assumptions, which we take from Gilboa et al. (2010), connect the two

preferences %� and %.

A.1 Consistency. For all f; g 2 F ,
f %� g =) f % g

15Convexity is stronger than uncertainty aversion a la Schmeidler (1989), which merely requires that f �� g
implies �f+(1� �) g %� g for all � 2 (0; 1). Yet, convexity and uncertainty aversion coincide under completeness
(see, e.g., Lemma 56 of Cerreia-Vioglio et al., 2011b).
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Consistency asserts that, whenever possible, the mental ranking informs the behavioral one.

The next condition says that the decision maker opts, by default, for a sure alternative x over

an uncertain one f , unless the dominance relation says otherwise.

A.2 Caution. For all x 2 X and all f 2 F ,

f 6%� x =) x % f

Unlike the previous assumptions, the next two are peculiar to our analysis. They both

link Q to the two preferences %� and % of the decision maker. We begin with the dominance
relation %�. Here we write f Q

= g when q (f = g) = 1 for all q 2 Q, i.e., f and g are equal

almost everywhere according to each structured model.

A.3 Objective Q-coherence. For all f; g 2 F ,

f
Q
= g =) f �� g

This axiom provides a preferential translation of the special status of structured models over

unstructured ones: if they all regard two acts to be almost surely identical, the decision maker�s

�genuine�preference %� follows suit and ranks them indi¤erent.

Previously, we noted that for some applications it may be important to allow the set of

structured models, Q, not to be convex. Nevertheless, the convex hull, coQ, of Q will play an

important role in our next axiom.16 Even when Q is not convex, we assign a special role to

the probabilities in its convex hull relative to other unstructured models. Our rationale is that

hybrid models retain an epistemic status and are more than just statistical artifacts used to

assess model misspeci�cation.17

To introduce our next axiom, recall that a rational preference % satis�es risk independence
and thus admits an a¢ ne utility function u : X ! R that can be used to represent it over

consequences as an expected utility.18 Given a model p 2 � and an act f , we de�ne an

indi¤erence class Xp
f � X of consequences xpf via the equality

u(xpf ) =

Z
u (f) dp (11)

We can interpret each xpf as a consequence that would be indi¤erent, so equivalent, to act f if

p were the correct model. By constructing these equivalent consequences for alternative acts

16The need to consider the w*-closure of the convex hull is a technical detail (with a �nite set Q we can just
consider convex hulls).
17In the robust Bayesian perspective previously discussed, the elements of coQ are the predictive distributions

determined by alternative priors over Q.
18Under the usual identi�cation of constant acts with consequences.
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and models, our next axiom relates the posited set of models Q with the behavioral preference

%.

A.4 Subjective Q-coherence. For all f 2 F and all x 2 X, we have

x �� xpf =) x � f

if and only if p 2 coQ.

In words, p 2 � is a structured or hybrid model, so belongs to coQ, if and only if decision

makers take it seriously, that is, they never choose an act f that would be strictly dominated

if p were the correct model. Such a salience of p for the decision makers�preference is the

preferential footprint of a structured or hybrid model that decision makers take seriously under

consideration because of its epistemic status � as opposed to a purely unstructured model,

which they regard as a mere statistical artifact with no epistemic content.

More can be said in the original Anscombe-Aumann setting. For a given model p 2 � and

act f , we construct the integral
R
fdp, which is a lottery that describes the prize distribution

induced by act f when states are generated by model p 2 �.19 If u : X ! R is any a¢ ne utility
function that represents % on X, then this integral obviously satis�es (11). This particular

construction adds further clarity to axiom A.4 because it identi�es one lottery in the indi¤erence

class Xp
f that depends directly on the model p. This axiom can now be written as

x ��
Z
fdp =) x � f

As an additional bene�t, this formulation makes it clear that the de�nition of xpf is independent

of the choice in (11) of the speci�c utility u that represents % on X.

4 Representation with given structured information

We now show how the assumptions on the mental and behavioral preferences permit to char-

acterize criterion (1) for a given set Q in ��, that is, for a DM�s given structured information.

To this end, throughout this section we assume that Q is a compact and convex set and we

say that a variational pseudo-statistical distance c : ��Q! [0;1] is uniquely null if, for all
(p; q) 2 � � Q, the sets c�1p (0) and c�1q (0) are at most singletons.20 For instance, statistical

distances are easily seen to be uniquely null because of the distance property (6).

We are now ready to state our �rst representation result.

19For the simple act f =
P
i 1Ai

xi, by de�nition
�R
fdp

�
(z) is the probability

P
i p (Ai)xi (z) of obtaining

prize z by choosing f under p.
20Throughout this section statistical distances c : ��Q! [0;1] are always meant �for Q.�
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Theorem 1 Let (S;�; X;Q;%�;%) be a two-preference classical decision environment, where
(S;�) is a standard Borel space. The following statements are equivalent:

(i) %� is an unbounded dominance relation and % is a rational preference that are both Q-

coherent and jointly satisfy consistency and caution;

(ii) there exist an onto a¢ ne function u : X ! R and a variational pseudo-statistical distance
c : ��Q! [0;1], with dom cQ � �� (Q), such that, for all acts f; g 2 F ,

f %� g () min
p2�

�Z
u (f) dp+ c (p; q)

�
� min

p2�

�Z
u (g) dp+ c (p; q)

�
8q 2 Q (12)

and

f % g () min
p2�

�Z
u (f) dp+min

q2Q
c (p; q)

�
� min

p2�

�Z
u (g) dp+min

q2Q
c (p; q)

�
(13)

If, in addition, c is uniquely null, then c : � � Q ! [0;1] can be chosen to be a variational
statistical distance.

This result identi�es, in particular, the main preferential assumptions underlying a repre-

sentation of the type

V (f) = min
p2�

�Z
u (f) dp+min

q2Q
c (p; q)

�
(14)

for the preference %. While this representation is of interest for a general variational pseudo-
statistical distance with respect to a set Q, it is of particular interest when c : ��Q! [0;1] is
a variational statistical distance. In this case, the partial ordering %� is more easily interpreted.
Though a technical condition of �unique nullity�is imposed to pin down statistical distances,

our representation arguably has more general applicability and captures the preferential under-

pinning of criterion (14).

The Hausdor¤ statistical distance minq2Q c (p; q) between p and Q is strictly positive if and

only if p is an unstructured model, i.e., p =2 Q. In particular, the more distant from Q is an

unstructured model, the more it is penalized as re�ected in the minimization problem that

criterion (14) features.

A misspeci�cation index A behavioral preference % represented by (14) is variational with
index minq2Q c (p; q). So, if two unbounded preferences %1 and %2 represented by (14) share
the same u but feature di¤erent statistical distances minq2Q c1 (p; q) and minq2Q c2 (p; q), then

%1 is more uncertainty averse than %2 if and only if

min
q2Q

c1 (p; q) � min
q2Q

c2 (p; q)
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In the present �classical�setting we interpret this comparative result as saying that the lower is

minq2Q c (p; q), the higher is the fear of misspeci�cation. Indeed, Q is �xed and the di¤erences

in behavior cannot be due to model ambiguity. We thus regard the function

p 7! min
q2Q

c (p; q) (15)

as an index of aversion to model misspeci�cation and we call it, for short, a misspeci�cation

index. The lower is this index, the higher is the fear of misspeci�cation.

To further interpret, set cQ (p) = minq2Q c (p; q). The index is maximal when

cQ (p) = �Q (p) =

(
0 if p 2 Q
+1 else

Later we will interpret this maximal case as representing a neutral attitude toward model

misspeci�cation (cf. De�nition 4). In this case, the decision maker does not care about un-

structured models and maximally penalizes them, so they play no role in the decision criterion.

In contrast, unstructured models are penalized less, so play a bigger role in the criterion, when

the decision maker wants to keep them on the table to express a concern about model misspec-

i�cation. Comparing two indexes, when

c1;Q � c2;Q

we interpret the lower penalization of unstructured models in c1;Q as modelling a higher concern

for model misspeci�cation.

Speci�cations and computability Two speci�cations of our representation are noteworthy.

First, when c is the entropic statistical distance �R(pjjq), with � 2 (0;1], we have the following
important special case of our representation

V (f) = min
p2�

�Z
u (f) dp+ �min

q2Q
R(pjjq)

�
(16)

which gives tractability to our decision criterion under model misspeci�cation. Speci�cally, for

� 2 (0;1),21

min
p2�

�Z
u (f) dp+ �min

q2Q
R(pjjq)

�
= min

q2Q
�� log

Z
e�

u(f)
� dq (17)

This result is well known when Q is a singleton, that is, when (16) is a standard multiplier

criterion.22

21When � =1, we have minp2�
�R
u (f) dp+ �minq2QR(pjjq)

	
= minq2Q

R
u (f) dq.

22See Appendix B.2 for the simple proof of (17).
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A second noteworthy special case of our representation is the Gini criterion

V (f) = min
p2�

�Z
u (f) dp+ �min

q2Q
�2(pjjq)

�
Remarkably, we have

min
p2�

�Z
u (f) dp+ �min

q2Q
�2(pjjq)

�
= min

q2Q

�Z
u (f) dq � 1

2�
Varq (u (f))

�
for all acts f for which the mean-variance (in utils) criteria on the r.h.s. are monotone. So,

the Gini criterion is a monotone version of the max-min mean-variance criterion.

As to computability, in the important case when criterion (1) features a �-divergence, like

the speci�cations just discussed, we need only to know the set Q to compute it, no integral

with respect to unstructured models is needed. This is proved in the next result which is a

consequence of a duality formula of Ben-Tal and Teboulle (2007).23

Proposition 1 Given Q � �� and � > 0, for each act f 2 F it holds

V (f) = min
p2�

�Z
u (f) dp+ �min

q2Q
D�(pjjq)

�
= �min

q2Q
sup
�2R

�
� �

Z
��
�
� � u (f)

�

�
dq

�
The r.h.s. formula computes criterion (1) for �-divergences by using only integrals with

respect to structured models. This formula substantially simpli�es computations and thus

con�rms the analytical tractability of the previous speci�cations.

4.1 Interpretation of the decision criterion

In the Introduction we outlined a �protective belt�interpretation of decision criterion (14), i.e.,

V (f) = min
p2�

�Z
u (f) dp+min

q2Q
c (p; q)

�
To elaborate, we begin by observing that the misspeci�cation index (15) has the following

bounds

0 � min
q2Q

c (p; q) � �Q (p) 8p 2 � (18)

So, fear of misspeci�cation is absent when the misspeci�cation index is �Q �e.g., when � = +1
in (16) �in which case criterion (14) takes a Wald (1950) max-min form

V (f) = min
q2Q

Z
u (f) dq (19)

23Here �� denotes the convex Fenchel conjugate of �. As usual, � is extended to R by setting � (t) = +1 if
t < 0, in particular �� is increasing.
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This max-min criterion characterizes a decision maker who confronts model misspeci�cation,

but is not concerned by it, and exhibits only aversion to model ambiguity. In other words, this

Waldean decision maker is a natural candidate to be (model) misspeci�cation neutral. The next

limit result further corroborates this insight by showing that, when the fear of misspeci�cation

vanishes, the decision maker becomes Waldean.24

Proposition 2 For each act f 2 F , we have

lim
�"1

min
p2�

�Z
u (f) dp+ �min

q2Q
R (pjjq)

�
= min

q2Q

Z
u (f) dq

These observations, via bounds and limits, call for a proper decision-theoretic analysis of

misspeci�cation neutrality. To this end, note that structured models may be incorrect, yet

useful as Box (1976) famously remarked. This motivates the next notion. Recall that act xAy,

with x � y, represents a bet on event A.

De�nition 3 A preference % is bet-consistent if, given any x � y,

q (A) � q (B) 8q 2 Q =) xAy % xBy

for all events A;B 2 �.

Under bet-consistency, a decision maker may fear model misspeci�cation yet regards struc-

tured models as good enough to choose to bet on events that they unanimously rank as more

likely. Preferences that are bet-consistent can be classi�ed as exhibiting a mild form of fear

of model misspeci�cation. The following result shows that an important class of preferences,

which includes the ones represented by criterion (16), are bet-consistent.

Proposition 3 If � 2 (0;1) and c = �D�, then a preference % represented by (14) is bet-

consistent.

Next we substantially strengthen bet-consistency by considering all acts, not just bets.

De�nition 4 A preference % is (model) misspeci�cation neutral ifZ
u (f) dq �

Z
u (g) dq 8q 2 Q =) f % g

for all acts f; g 2 F .
24To ease matters, we state the result in terms of criterion (16). A general version can be easily established

via an increasing sequence of misspeci�cation indexes.
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In this case, a decision maker trusts models enough so to follow them when they unanimously

rank pairs of acts. Fear of misspeci�cation thus plays no role in the decision maker preference,

so it is decision-theoretically irrelevant. For this reason, the decision maker attitude toward

model misspeci�cation can be classi�ed as neutral. The next result shows that this may happen

if and only if the decision maker adopts the max-min criterion (19).

Proposition 4 A preference % represented by criterion (14) is misspeci�cation neutral if and
only if it is represented by the max-min criterion (19).

This result provides the sought-after decision-theoretic argument for the interpretation of the

max-min criterion as the special case of decision criterion (14) that corresponds to aversion to

model ambiguity, with no fear of misspeci�cation.25 As remarked in the Introduction, it suggests

that a decision maker using criterion (14) may be viewed as a decision maker who, under

model ambiguity, would max-minimize over the set of structured models which she posited but

that, for fear of misspeci�cation, ends up using the more prudential variational criterion (14).

Unstructured models lack the informational status of structured models, yet in the criterion

(14) they act as a �protective belt�against model misspeci�cation.

Under this interpretation of the criterion (14), the special multiplier case of a singleton

Q = fqg corresponds to a decision maker who, with no fear of misspeci�cation, would adopt
the expected utility criterion

R
u (f) dq to confront the risk inherent to q. In other words, a

singletonQ in (14) corresponds to an expected utility decision maker who fears misspeci�cation.

Summing up, in our analysis decision makers adopt the max-min criterion (19) if they either

confront only model ambiguity (an information trait) or are averse to model ambiguity (a taste

trait) with no fear of model misspeci�cation.

4.2 Interpretation of the dominance relation

As just argued, the singleton Q = fqg special case

min
p2�

�Z
u (f) dp+ c (p; q)

�
(20)

of decision criterion (14) is an expected utility criterion under fear of misspeci�cation (of the

unique posited q). Via the relation

f %� g () min
p2�

�Z
u (f) dp+ c (p; q)

�
� min

p2�

�Z
u (g) dp+ c (p; q)

�
8q 2 Q (21)

the representation theorem thus clari�es the interpretation of %� as a dominance relation under
model misspeci�cation by showing that it amounts to uniform dominance across all structured
25This result actually holds without any convexity assumption on Q. The same applies to Propositions 1, 3

and 5 of this section.
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models with respect to criterion (20).

It is easy to see that strict dominance amounts to (21), with strict inequality for some q 2 Q.
This observation raises a question: is there a notion of dominance that corresponds to strict

inequality for all q 2 Q? To address this question, we introduce a strong dominance relation

by writing f ��� g if, for all acts h; l 2 F ,

(1� �) f + �h �� (1� �) g + �l

for all small enough � 2 [0; 1].26 By taking h = f and l = g, we have the basic implication

f ��� g =) f �� g

Strong dominance is a strengthening of strict dominance in which the decision maker can

convince others �beyond reasonable doubt.�The next characterization corroborates this inter-

pretation and, at the same time, answers the previous question in the positive.27

Proposition 5 Let c : ��Q! [0;1] be a statistical distance, u : X ! R an onto and a¢ ne
function and %� an unbounded dominance relation represented by (21). For all acts f; g 2 F ,
we have f ��� g if and only if there exists " > 0 such that

min
p2�

�Z
u (f) dp+ c (p; q)

�
� min

p2�

�Z
u (g) dp+ c (p; q)

�
+ " 8q 2 Q (22)

This characterization shows that �� and ��� agree on consequences and, more importantly,
that

f ��� g =) min
p2�

�Z
u (f) dp+ c (p; q)

�
> min

p2�

�Z
u (g) dp+ c (p; q)

�
8q 2 Q

At the same time, (22) implies

f ��� g =) f � g (23)

We can diagram the relationships among the di¤erent dominance notions as follows:

��� =) �� 6=) �
+ +
� =) %

An instance when

f �� g =) f � g (24)

26Strong dominance has been introduced by Cerreia-Vioglio et al. (2020).
27Up to an " that ensures a needed uniformity of the strict inequality across structured models. The result

continues to hold even when c fails to satisfy the distance property c (p; q) = 0 if and only if p = q.

19



may fail is the max-min criterion (19).

We close by discussing misspeci�cation neutrality, which in view of Proposition 4 is charac-

terized by the misspeci�cation index minq2Q c (p; q) = �Q (p).

Lemma 4 Let c be a variational statistical distance c : ��Q! [0;1]. We haveminq2Q c (p; q) =
�Q (p) if and only if, for each q 2 Q, c (p; q) =1 for all p =2 Q.

In words, misspeci�cation neutrality is characterized by a statistical distance that maximally

penalizes unstructured models, which end up playing no role. From a statistical distance angle,

this con�rms that misspeci�cation neutrality is the attitude of a decision maker who confronts

model misspeci�cation, but does not care about it (and so has no use for unstructured models).

This angle becomes relevant here because it shows that, under misspeci�cation neutrality,

the representation (21) of the dominance relation becomes

f %� g () min
q02Q

�Z
u (f) dq0 + c (q0; q)

�
� min

q02Q

�Z
u (g) dq0 + c (q0; q)

�
8q 2 Q

Unstructured models play no role here. Next we show that also statistical distances play no

role, so representation (21) further reduces to

f %� g ()
Z
u (f) dq �

Z
u (g) dq 8q 2 Q

when the dominance relation satis�es the independence axiom. This means, inter alia, that fear

of model misspeci�cation may cause violations of the independence axiom for such a relation,

thus providing a new rationale for violations of this classic axiom.

All this is shown by the next result, which is the version for our setting of the main result

of Gilboa et al. (2010).

Proposition 6 Let (S;�; X;Q;%�;%) be a two-preference classical decision environment. The
following statements are equivalent:

(i) %� is an unbounded dominance relation that satis�es independence and % is a rational

preference that are both Q-coherent and jointly satisfy consistency and caution;

(ii) there exist an onto a¢ ne function u : X ! R and a variational statistical distance

c : ��Q! [0;1], with c (p; q) = �fqg (p) for all (p; q) 2 ��Q, such that (12) and (13)
hold, i.e.,

f %� g ()
Z
u (f) dq �

Z
u (g) dq 8q 2 Q

and

f % g () min
q2Q

Z
u (f) dq � min

q2Q

Z
u (g) dq
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Under independence, the dominance relation %� thus takes a misspeci�cation neutral form,
and the behavioral preference % is represented by the max-min criterion.

5 Representation with varying structured information

So far, we carried out our analysis for a given set Q of structured models. Indeed, a two-

preference classical decision environment (10) should be more properly written as�
S;�; X;Q;%�Q;%Q

�
with the dependence of preferences on Q highlighted. Decision environments, however, may

share common state and consequence spaces, but di¤er on the posited sets of structured models

because of di¤erent information that decision makers may have. It then becomes important to

ensure that decision makers use decision criteria that, across such environments, are consistent.

To address this issue, in this section we consider a family��
S;�; X;Q;%�Q;%Q

�	
Q2Q

of classical decision environments that di¤er in the set Q of posited models and we introduce

axioms on the family
�
%�Q
	
Q2Q that connect these environments. We assume that Q is a

collection of compact subsets of �� that contains all singletons and is such that all doubletons

are included in some of its elements.28 These assumptions are satis�ed, for example, by the

collection of �nite sets of �� as well as by the collection K of its compact and convex sets.

A.5 Monotonicity (in model ambiguity). If Q0 � Q then, for all f; g 2 F ,

f %�Q g =) f %�Q0 g

According to this axiom, if the �structured�information underlying a set Q is good enough for

the decision maker to establish that an act dominates another one, a better information which

decreases model ambiguity can only con�rm such judgement. Its reversal would be, indeed, at

odds with the objective rationality spirit of the dominance relation.

Next we consider a separability assumption.

A.6 Q-separability. For all f; g 2 F ,

f %�q g 8q 2 Q =) f %�Q g
28That is, for each q; q0 2 �� there exists some Q 2 Q such that fq; q0g � Q. It is a much weaker assumption

than requiring doubletons to belong to Q.
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In words, an act dominates another one when it does, separately, through the lenses of each

structured model. In this axiom the incompleteness of %�Q arises as that of a Paretian order over
the, complete but possibly misspeci�cation averse, preferences %�q determined by the elements
of Q.

We close with a continuity axiom. To state it, we need a last piece of notation: we denote

by xf;q the consequence indi¤erent to act f for preference %�q.29

A.7 Lower semicontinuity. For all x 2 X and all f 2 F , the set
�
q 2 �� : x %�q xf;q

	
is closed.

The next class of two-preference families PQ =
��
%�Q;%Q

�	
Q2Q builds on the properties

that we have introduced.

De�nition 5 A two-preference family PQ is (misspeci�cation) robust if:

(i)
�
%�Q
	
Q2Q is monotone, separable, and lower semicontinuous;

(ii) for each Q 2 Q, %�Q is an unbounded dominance relation, %Q is a rational preference,

both are Q-coherent and jointly satisfy caution and consistency.

We can now state our �rst representation result.

Theorem 2 Let PQ be a two-preference family. The following statements are equivalent:

(i) PQ is robust;

(ii) there exist an onto a¢ ne u : X ! R and a lower semicontinuous divergence c : ���� !
[0;1] such that, for each Q 2 Q,

f %�Q g () min
p2�

�Z
u (f) dp+ c (p; q)

�
� min

p2�

�Z
u (g) dp+ c (p; q)

�
8q 2 Q

and

f %Q g () min
p2�

�Z
u (f) dp+min

q2Q
c (p; q)

�
� min

p2�

�Z
u (g) dp+min

q2Q
c (p; q)

�
for all acts f; g 2 F .

Moreover, u is cardinally unique and, given u, c is unique.

29In symbols, f ��q xf;q. In particular, xf;q should not be confused with x
q
f as in (11).
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A robust PQ is thus characterized by a utility and divergence pair (u; c) that, consistently

across decision environments, represents each %�Q via the unanimity rule (12) and each %Q via

the decision criterion

VQ (f) = min
p2�

�Z
u (f) dp+min

q2Q
c (p; q)

�
An unstructured model p may play a role in this criterion when c (p; q) <1 for some structured

model q, that is, when it has a �nite distance from a structured model.

In this representation theorem we do not make any convexity assumption on the sets of

structured models. Next we sharpen this result by assuming that they are compact and convex

subsets of ��. We introduce a new axiom based on this added structure on sets of models.

Under the hypotheses of Theorem 2, all dominance relations %�Q agree on X and so we can just

write %�, dropping the subscript Q.

A.8 Model hybridization aversion. Given any q; q0 2 ��,

�xf;q + (1� �)xf;q0 %� xf;�q+(1��)q0

for all � 2 (0; 1) and all f 2 F .

According to this axiom, the decision maker dislikes, ceteris paribus, facing a hybrid struc-

tured model �q + (1� �) q0 that, by mixing two structured models q and q0, could only have a

less substantive motivation (cf. Section 3.1).

The next result extends Theorem 1 to families of decision environments. It also sharpens

Theorem 2 by dealing with sets of structured models that are also convex; in particular, here

we get a variational divergence.

Proposition 7 Let PK be a two-preference family. The following statements are equivalent:

(i) PK is robust and model hybridization averse;

(ii) there exist an onto a¢ ne u : X ! R and a lower semicontinuous and convex variational
divergence c : ���� ! [0;1] such that, for each Q 2 K,

f %�Q g () min
p2�

�Z
u (f) dp+ c (p; q)

�
� min

p2�

�Z
u (g) dp+ c (p; q)

�
8q 2 Q

and

f %Q g () min
p2�

�Z
u (f) dp+min

q2Q
c (p; q)

�
� min

p2�

�Z
u (g) dp+min

q2Q
c (p; q)

�
for all acts f; g 2 F .

Moreover, u is cardinally unique and, given u, c is unique.
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This theorem ensures that the decision maker uses consistently criterion (1) across decision

environments. In particular, the same statistical distance function is used (e.g., the relative

entropy). Moreover, axioms A.5-A.8 further clarify the nature of structured models and their

connection with the dominance relation.

Besides its broader scope, this theorem improves Theorem 1 on two counts. First, it features

a statistical distance without the need of a unique nullity condition. Second, it contains a sharp

uniqueness part. The cost of these improvements is a less parsimonious setting in which the

set Q is permitted to vary across the collection K of compact and convex subsets of ��.

6 Admissibility

A two-preference classical decision problem is a septet�
F; S;�; X;Q;%�Q;%Q

�
(25)

where F � F is a non-empty choice set formed by the acts among which a decision maker has

actually to choose, and the preferences %�Q and %Q are represented as in Theorem 2-(ii).

Given a set Q in Q, the decision maker chooses the best act in F according to %Q. In

particular, the value function v : Q ! (�1;1] is given by

v (Q) = sup
f2F

min
p2�

�Z
u (f) dp+min

q2Q
c (p; q)

�
(26)

Yet, it is the dominance relation %�Q that permits to introduce admissibility.

De�nition 6 An act f 2 F is (weakly) admissible if there is no act g 2 F that (strongly)

strictly dominates f .

To relate this notion to the usual notion of admissibility,30 observe that g ��Q f amounts to

min
p2�

�Z
u (g) dp+ c (p; q)

�
� min

p2�

�Z
u (f) dp+ c (p; q)

�
8q 2 Q

with strict inequality for some q 2 Q. We are thus purposefully de�ning admissibility in terms
of the structured models Q, not the larger class of models�, with a model-by-model adjustment

for misspeci�cation that makes our notion di¤erent from the usual one.

The next result relates optimality and admissibility.

30See, e.g., Ferguson (1967) p. 54. Weak admissibility is, mutatis mutandis, related via formula (22) to the
notion of extended admissibility studied in Blackwell and Girschick (1954), Heath and Sudderth (1978) and,
more recently, in Duanmu and Roy (2017). This connection was pointed out to us by Jesse Shapiro. A statistical
risk version of Proposition 5 provides a preferential foundation for extended admissibility.
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Proposition 8 Consider a decision problem (25).

(i) Optimal acts are weakly admissible. They are admissible provided (24) holds.

(ii) Unique optimal acts are admissible.

Optimal acts (if exist) might not be admissible because the max-min nature of decision

criterion (14) may lead to violations of (24). Yet, the last result ensures that they belong to

the collection of weakly admissible acts

F �Q =
�
f 2 F : @g 2 F; g ���Q f

	
Next we build on this property to establish a comparative statics exercise across decision

problems (25) that di¤er on the posited set Q of structured models.

Proposition 9 We have
Q � Q0 =) v (Q) � v (Q0)

and

v (Q) = max
f2F �Q

min
p2�

�Z
u (f) dp+min

q2Q
c (p; q)

�
provided the sup in (26) is achieved.

Smaller sets of structured models are, thus, more valuable. Indeed, in decision problems

that feature a larger set of structured models �so, a more discordant information �the decision

maker exhibits, ceteris paribus, a higher uncertainty aversion due to a larger model ambiguity:

Q � Q0 =) min
q2Q

c (p; q) � min
q2Q0

c (p; q) (27)

In turn, this easily implies v (Q) � v (Q0), as the proof shows.

In the comparison (27), the divergence c is invariant as we change the set of structured

models. For this reason, in Proposition 9 a larger set of structured models implies a higher

uncertainty aversion due to model ambiguity and aversion to it (as is the case for max-min util-

ity).31 This invariance, however, is not an innocuous assumption as it rules out the possibility

that the divergence becomes larger when an enlarged set of structured models reduces misspec-

i�cation concerns.32 For instance, the entropic divergence may feature a higher � when Q gets

larger, something that may reverse the inequality (27) by making more valuable larger sets of

structured models. Nevertheless, with an invariant c any probability measure outside the set of

structured models will necessarily be closer to a larger set of such models, as captured by the

divergence. In this sense, increasing the set of structured models may diminish misspeci�cation

concerns even under the maintained invariance.
31See Ghirardato and Marinacci (2002).
32We thank Tim Christensen for having alerted us on this issue.
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7 A �nal twist

In our analysis a notion of set divergence naturally arises. Speci�cally, say that a function

C : ��Q ! [0;1] is a statistical set distance if

C (p;Q) = 0() p 2 Q

If we consider a lower semicontinuous and convex function c : � � �� ! [0;1] such that
c (p; q) = 0 if and only if p = q, by Lemma 2 we can de�ne a statistical set distance C :

� � K ! [0;1] by setting C (p;Q) = minq2Q c (p; q). In particular, C (p; fqg) = c (p; q). This

is the Hausdor¤-type statistical set distance that characterizes our decision criterion (1).

Yet, for a generic statistical set distance C, not necessarily pinned down by an underlying

statistical distance c, our criterion generalizes to

VQ (f) = min
p2�

�Z
u (f) dp+ C (p;Q)

�
This variational criterion still represents a preference %Q that is more uncertainty averse than

the corresponding max-min one. It may also easily accommodate reversals of the inequality

(27), along the lines previously discussed. Though the analysis of this general criterion is

beyond the scope of this paper and is left for future research, this brief discussion should help

to put our exercise in a better perspective.

8 Conclusion

Quantitative researchers use models to enhance their understanding of economic phenomena

and to make policy assessments. In essence, each model tells its own quantitative story. We

refer to such models as �structured models.�Typically, there are more than just one such type of

model, with each giving rise to a di¤erent quantitative story. Statistical and economic decision

theories have addressed how best to confront the ambiguity among structured models. Such

structured models are, by their very nature, misspeci�ed. Nevertheless, the decision maker seeks

to use such models in sensible ways. This problem is well recognized by applied researchers,

but it is typically not part of formal decision theory. In this paper, we extend decision theory to

confront model misspeci�cation concerns. In so doing, we recover a variational representation

of preferences that includes penalization based on discrepancy measures between �unstructured

alternatives�and the set of structured probability models.
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A Proofs and related analysis

In the appendix, we provide the proofs of our main results. We relegate to the Online Appendix

the proofs of most of our ancillary results (e.g., Propositions 1, 2, 6, 8 and 9) including those

which are more routine and deal with statistical distances and divergences (Lemmas 1�3). Ap-

pendix A.1 contains the proofs of our representation results (Theorems 1 and 2 and Proposition

7). Appendix A.2 contains the proofs of the remaining analysis.

A.1 Representation results

The proof of Theorem 1 is based on three key steps. We �rst provide two results regarding

variational preferences which will help isolate the set of structured models Q in the main repre-

sentation (their proof is con�ned to the Online Appendix). Second, we provide a representation

for an unbounded and objectively Q-coherent dominance relation %� (Appendix A.1.1). Third,
we prove Theorem 1 (Appendix A.1.2). The proof of Theorem 2 and Proposition 7 instead is

presented as one result (Appendix A.1.3). In what follows, given a function c : ��Q! [0;1],
where Q is a compact and convex subset of ��, we say that c is variational (for the set Q) if cq
is grounded, lower semicontinuous, and convex and cQ is well de�ned, grounded, lower semicon-

tinuous, and convex. The next two lemmas, proved in Appendix B.3, are key in characterizing

subjective and objective Q-coherence.

Lemma 5 Let % be a variational preference represented by V : F ! R de�ned by

V (f) = min
p2�

�Z
u (f) dp+ c (p)

�
8f 2 F

and let �p 2 �. If % is unbounded, then the following conditions are equivalent:

(i) c (�p) = 0;

(ii) x�pf % f for all f 2 F ;

(iii) for each f 2 F and for each x 2 X

x � x�pf =) x � f

Lemma 6 Let % be a variational preference represented by V : F ! R de�ned by

V (f) = min
p2�

�Z
u (f) dp+ c (p)

�
8f 2 F

If % is unbounded, then the following conditions are equivalent:
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(i) For each f; g 2 F
f

Q
= g =) f � g

(ii) dom c � �� (Q).

A.1.1 A Bewley-type representation

The next result is a multi-utility (variational) representation for unbounded dominance rela-

tions.

Lemma 7 Let %� be a binary relation on F , where (S;�) is a standard Borel space. The
following statements are equivalent:

(i) %� is an unbounded dominance relation which satis�es objective Q-coherence;

(ii) there exist an onto a¢ ne function u : X ! R and a variational c : ��Q! [0;1] such
that dom c (�; q) � �� (Q) for all q 2 Q and

f %� g () min
p2�

�Z
u (f) dp+ c (p; q)

�
� min

p2�

�Z
u (g) dp+ c (p; q)

�
8q 2 Q (28)

To prove this result, we need to introduce one mathematical object. Let �� be a binary
relation on B0 (�). We say that �� is convex niveloidal if and only if �� is a preorder that
satis�es the following �ve properties:

1. For each ';  2 B0 (�) and for each k 2 R

' ��  =) '+ k ��  + k

2. If ';  2 B0 (�) and fkngn2N � R are such that kn " k and ' � kn ��  for all n 2 N,
then '� k ��  ;

3. For each ';  2 B0 (�)
' �  =) ' ��  

4. For each k; h 2 R and for each ' 2 B0 (�)

k > h =) '+ k �� '+ h

5. For each ';  ; � 2 B0 (�) and for each � 2 (0; 1)

' �� � and  �� � =) �'+ (1� �) �� �
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Lemma 8 If %� is an unbounded dominance relation, then there exists an onto a¢ ne function
u : X ! R such that

x %� y () u (x) � u (y) (29)

Proof Since %� is a non-trivial preorder on F that satis�es c-completeness, continuity and

weak c-independence, it is immediate to conclude that %� restricted to X satis�es weak order,

continuity and risk independence.33 By Herstein and Milnor (1953), it follows that there exists

an a¢ ne function u : X ! R that satis�es (29). Since %� is a non-trivial c-complete preorder
on F that satis�es monotonicity, we have that %� is non-trivial on X. By Lemma 59 of Cerreia-
Vioglio et al. (2011b) and since %� is non-trivial on X and satis�es unboundedness, we can

conclude that u is onto. �
Since u is a¢ ne and onto, note that fu (f) : f 2 Fg = B0 (�). In light of this observation,

we can de�ne a binary relation �� on B0 (�) by

' ��  () f %� g where u (f) = ' and u (g) =  (30)

Lemma 9 If %� is an unbounded dominance relation, then ��, de�ned as in (30), is a well
de�ned convex niveloidal binary relation. Moreover, if %� is objectively Q-coherent, then ' Q

=  

implies ' ��  .

We con�ne the routine proof to the Online Appendix. The next three results (Lemmas 10

and 11 as well as Proposition 10) will help us representing ��. This paired with Lemma 8 and
Proposition 11 will yield the proof of Lemma 7.

Lemma 10 Let �� be a convex niveloidal binary relation. If  2 B0 (�), then U ( ) =

f' 2 B0 (�) : ' ��  g is a non-empty convex set such that:

1.  2 U ( );

2. if ' 2 B0 (�) and fkngn2N � R are such that kn " k and ' � kn 2 U ( ) for all n 2 N,
then '� k 2 U ( );

3. if k > 0, then  � k 62 U ( );

4. if '1 � '2 and '2 2 U ( ), then '1 2 U ( );
33To prove that %� satis�es risk independence, it su¢ ces to deploy the same technique of Lemma 28 of

Maccheroni et al. (2006) and observe that %� is a complete preorder on X. This yields that

x �� y =) 1

2
x+

1

2
z �� 1

2
y +

1

2
z 8z 2 X

By Theorem 2 of Herstein and Milnor (1953) and since %� satis�es continuity, we can conclude that %� satis�es
risk independence.
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5. if k � 0 and '2 2 U ( ), then '2 + k 2 U ( ).

Proof Since �� is re�exive, we have that  2 U ( ), proving that U ( ) is non-empty and

point 1. Consider '1; '2 2 U ( ) and � 2 (0; 1). By de�nition, we have that '1 ��  and
'2 ��  . Since �� satis�es convexity, we have that �'1 + (1� �)'2 ��  , proving convexity
of U ( ). Consider ' 2 B0 (�) and fkngn2N � R such that kn " k and ' � kn 2 U ( ) for all

n 2 N. It follows that ' � kn ��  for all n 2 N, then ' � k ��  , that is, ' � k 2 U ( ),

proving point 2. If k > 0, then 0 > �k and  =  +0 ��  �k, that is,  �k 62 U ( ), proving
point 3. Consider '1 � '2 such that '2 2 U ( ), then '1 �� '2 and '2 ��  , yielding that
'1 ��  and, in particular, '1 2 U ( ), proving point 4. Finally, to prove point 5, it is enough
to set '1 = '2 + k in point 4. �
Before stating the next result, we de�ne few properties that will turn out to be useful later

on. A functional I : B0 (�)! R is:

1. a niveloid if I (')� I ( ) � sups2S (' (s)�  (s)) for all ';  2 B0 (�);

2. normalized if I (k) = k for all k 2 R;34

3. monotone if for each ';  2 B0 (�)

' �  =) I (') � I ( )

4. �� consistent if for each ';  2 B0 (�)

' ��  =) I (') � I ( )

5. concave if for each ';  2 B0 (�) and � 2 (0; 1)

I (�'+ (1� �) ) � �I (') + (1� �) I ( )

6. translation invariant if for each ' 2 B0 (�) and k 2 R

I ('+ k) = I (') + k

Lemma 11 Let �� be a convex niveloidal binary relation. If  2 B0 (�), then the functional

I : B0 (�)! R, de�ned by

I (') = max fk 2 R : '� k 2 U ( )g 8' 2 B0 (�)
34With the usual abuse of notation, we denote by k both the real number and the constant function taking

value k.
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is a concave niveloid which is �� consistent and such that I ( ) = 0. Moreover, we have that:

1. The functional �I = I � I (0) is a normalized concave niveloid which is �� consistent.

2. If �� satis�es
 

Q
=  0 =)  ��  0

then

 
Q
=  0 =) I = I 0 and �I = �I 0

We con�ne the routine proof of the previous lemma to the Online Appendix.

Proposition 10 Let �� be a binary relation on B0 (�). The following statements are equiva-
lent:

(i) �� is convex niveloidal;

(ii) there exists a family of concave niveloids fI�g�2A on B0 (�) such that

' ��  () I� (') � I� ( ) 8� 2 A (31)

(iii) there exists a family of normalized concave niveloids
�
�I�
	
�2A on B0 (�) such that

' ��  () �I� (') � �I� ( ) 8� 2 A (32)

Proof (iii) implies (i). It is trivial.

(i) implies (ii). Let A = B0 (�). We next show that

'1 �� '2 () I ('1) � I ('2) 8 2 B0 (�)

where I is de�ned as in Lemma 11 for all  2 B0 (�). By Lemma 11, we have that I is ��

consistent for all  2 B0 (�). This implies that

'1 �� '2 =) I ('1) � I ('2) 8 2 B0 (�)

Vice versa, consider '1; '2 2 B0 (�). Assume that I ('1) � I ('2) for all  2 B0 (�). Let

 = '2. By Lemma 11, we have that I'2 ('1) � I'2 ('2) = 0, yielding that '1 � '1�I'2 ('1) 2
U ('2). By point 4 of Lemma 10, this implies that '1 2 U ('2), that is, '1 �� '2.
(ii) implies (iii). Given a family of concave niveloids fI�g�2A, de�ne �I� = I�� I� (0) for all

� 2 A. It is immediate to verify that �I� is a normalized concave niveloid for all � 2 A. It is

also immediate to observe that

I� ('1) � I� ('2) 8� 2 A () �I� ('1) � �I� ('2) 8� 2 A
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proving the implication. �

Remark 1 Given a convex niveloidal binary relation �� on B0 (�), we call canonical (resp.,
canonical normalized) the representation fI g 2B0(�) (resp.,

�
�I 
	
 2B0(�)

) obtained from Lemma

11 and the proof of Proposition 10. By the previous proof, clearly, fI g 2B0(�) and
�
�I 
	
 2B0(�)

satisfy (31) and (32) respectively.

The next result clari�es what the relation is between any representation of �� and the
canonical ones. This will be useful in establishing an extra property of

�
�I 
	
 2B0(�)

in Corollary

1.

Lemma 12 Let �� be a convex niveloidal binary relation. If B is an index set and fJ�g�2B is
a family of normalized concave niveloids such that

' ��  () J� (') � J� ( ) 8� 2 B

then for each  2 B0 (�)

I (') = inf
�2B

(J� (')� J� ( )) 8' 2 B0 (�) (33)

and
�I (') = inf

�2B
(J� (')� J� ( )) + sup

�2B
J� ( ) 8' 2 B0 (�) (34)

Proof Fix ' 2 B0 (�) and  2 B0 (�). By de�nition, we have that

I (') = max fk 2 R : '� k 2 U ( )g

Since fJ�g�2B represents �� and each J� is translation invariant, note that for each k 2 R

'� k 2 U ( ) () '� k ��  () J� ('� k) � J� ( ) 8� 2 B
() J� (')� k � J� ( ) 8� 2 B () J� (')� J� ( ) � k 8� 2 B
() inf

�2B
(J� (')� J� ( )) � k

Since ' � I (') 2 U ( ), this implies that I (') = inf�2B (J� (')� J� ( )). Since ' and

 were arbitrarily chosen, (33) follows. Since �I = I � I (0), we only need to compute

�I (0). Since each J� is normalized, we have that �I (0) = � inf�2B (J� (0)� J� ( )) =

� inf�2B (�J� ( )) = sup�2B J� ( ), proving (34). �

Corollary 1 If �� is a convex niveloidal binary relation, then �I0 � �I for all  2 B0 (�).
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Proof By Lemma 12 and Remark 1 and since each �I 0 is a normalized concave niveloid, we
have that

�I0 (') = inf
 02B0(�)

�
�I 0 (')� �I 0 (0)

�
+ sup

 02B0(�)
�I 0 (0) = inf

 02B0(�)
�I 0 (') � �I (') 8' 2 B0 (�)

for all  2 B0 (�), proving the statement. �
The next result will be instrumental in providing a niveloidal multi-representation of %�

when jQj � 2. In order to discuss it, we need a piece of terminology. We denote by V the

quotient space B0 (�) =M where M is the vector subspace
n
' 2 B0 (�) : '

Q
= 0

o
. Recall that

the elements of V are equivalence classes [ ] with  2 B0 (�) where  0;  00 2 [ ] if and only if
 

Q
=  0

Q
=  00. Recall that Q is convex.

Proposition 11 If (S;�) is a standard Borel space and jQj � 2, then there exists a bijection
f : V ! Q.

The routine proof of the previous result is relegated to the Online Appendix. We next prove

our representation result for incomplete variational preferences.

Proof of Lemma 7 (ii) implies (i). It is trivial.

(i) implies (ii). Since %� is a dominance relation, if jQj = 1, that is Q = f�qg, then %� is
complete. By Maccheroni et al. (2006) and since %� is unbounded, it follows that there exists
an onto and a¢ ne u : X ! R and a grounded, lower semicontinuous and convex c�q : �! [0;1]
such that V : F ! R de�ned by

V (f) = min
p2�

�Z
u (f) dp+ c�q (p)

�
8f 2 F

represents %�. If we de�ne c : � � Q ! [0;1] by c (p; q) = c�q (p) for all (p; q) 2 � � Q, then

we have that c is variational. By Lemma 6 and since %� is objectively Q-coherent, it follows
that dom c (�; q) � �� (Q) for all q 2 Q, proving the implication. Assume jQj > 1. By Lemma
8, there exists an onto a¢ ne function u : X ! R which represents %� on X. By Lemma 9, this
implies that we can consider the convex niveloidal binary relation �� de�ned as in (30). By
de�nition of �� and Proposition 10 (and Remark 1), we have that

f %� g () u (f) �� u (g) () �I (u (f)) � �I (u (g)) 8 2 B0 (�)

where each �I is a normalized concave niveloid. As before, consider V = B0 (�) =M where M

is the vector subspace
n
' 2 B0 (�) : '

Q
= 0

o
. For each equivalence class [ ], select exactly one

 0 2 B0 (�) such that  0 2 [ ]. In particular, let  0 = 0 when [ ] = [0]. We denote this subset
of B0 (�) by ~V . Clearly, we have that

�I (u (f)) � �I (u (g)) 8 2 B0 (�) =) �I (u (f)) � �I (u (g)) 8 2 ~V
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Vice versa, assume that �I (u (f)) � �I (u (g)) for all  2 ~V . Consider  ̂ 2 B0 (�). It follows

that there exists [ ] in V such that  ̂ 2 [ ]. Similarly, consider  0 2 ~V such that  0 2 [ ]. It
follows that  ̂

Q
=  0. By Lemmas 9 and 11 and since %� is objectively Q-coherent, then �I ̂ = �I 0,

yielding that �I ̂ (u (f)) � �I ̂ (u (g)). Since  ̂ was arbitrarily chosen �I (u (f)) � �I (u (g)) for all

 2 B0 (�). By construction, observe that there exists a bijection ~f : ~V ! V . By Proposition

11, we have that there exists a bijection f : V ! Q. De�ne �f = f � ~f . By Corollary 1, if we
de�ne Îq = �I �f�1(q) for all q 2 Q, then we have that Î �f(0) � Îq for all q 2 Q and

f %� g () �I (u (f)) � �I (u (g)) 8 2 B0 (�) () �I (u (f)) � �I (u (g)) 8 2 ~V
() Îq (u (f)) � Îq (u (g)) 8q 2 Q

Since each Îq is a normalized concave niveloid, we have that for each q 2 Q there exists a

function cq : �! [0;1] which is grounded, lower semicontinuous, convex and such that

Îq (') = min
p2�

�Z
'dp+ cq (p)

�
8' 2 B0 (�)

De�ne c : � � Q ! [0;1] by c (p; q) = cq (p) for all (p; q) 2 � � Q. Clearly, the q-sections of

c are grounded, lower semicontinuous and convex and (28) holds. By Lemma 6 and (28) and

since %� is objectively Q-coherent, it follows that dom c (�; q) � �� (Q) for all q 2 Q. Finally,
recall that

c (p; q) = sup
'2B0(�)

�
Îq (')�

Z
'dp

�
8p 2 �;8q 2 Q

Since Î �f(0) � Îq for all q 2 Q, we have that for each q 2 Q

c
�
p; �f (0)

�
= sup

'2B0(�)

�
Î �f(0) (')�

Z
'dp

�
� sup

'2B0(�)

�
Îq (')�

Z
'dp

�
= c (p; q) 8p 2 �

Since c
�
�; �f (0)

�
is grounded, lower semicontinuous and convex and �f (0) 2 Q, this implies that

cQ (�) = minq2Q c (�; q) = c
�
�; �f (0)

�
is well de�ned and shares the same properties, proving that

c is variational. �

A.1.2 Proof of Theorem 1

(i) implies (ii). We proceed by steps. Before starting, we make one observation. By Lemma

7 and since %� is an unbounded dominance relation which is objectively Q-coherent there

exist an onto a¢ ne function u : X ! R and a variational c : � � Q ! [0;1] such that
dom c (�; q) � �� (Q) for all q 2 Q (in particular, dom cQ (�) � [q2Q dom c (�; q) � �� (Q))
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and

f %� g () min
p2�

�Z
u (f) dp+ c (p; q)

�
� min

p2�

�Z
u (g) dp+ c (p; q)

�
8q 2 Q

We are left to show that cQ : �! [0;1] is such that

f % g () min
p2�

�Z
u (f) dp+ cQ (p)

�
� min

p2�

�Z
u (g) dp+ cQ (p)

�
(35)

and c�1Q (0) = Q. To prove this we consider c as in the proof of (i) implies (ii) of Lemma 7. This

covers both cases jQj = 1 and jQj > 1. In particular, for each q 2 Q de�ne Îq : B0 (�)! R by

Îq (') = min
p2�

�Z
'dp+ c (p; q)

�
8' 2 B0 (�)

and recall that there exists q̂(= �f (0) 2 Q when jQj > 1) such that c (�; q̂) � c (�; q), thus Îq̂ � Îq,

for all q 2 Q.
Step 1. % agrees with %� on X. In particular, u : X ! R represents %� and %.
Proof of the Step Note that %� and % restricted to X are continuous weak orders that satisfy

risk independence. Moreover, by the observation above, %� is represented by u. By Herstein
and Milnor (1953) and since % is non-trivial, it follows that there exists a non-constant and

a¢ ne function v : X ! R that represents % on X. Since (%�;%) jointly satisfy consistency, it
follows that for each x; y 2 X

u (x) � u (y) =) v (x) � v (y)

By Corollary B.3 of Ghirardato et al. (2004), u and v are equal up to an a¢ ne and positive

transformation, hence the statement. We can set v = u. �
Step 2. There exists a normalized, monotone and continuous functional I : B0 (�) ! R such
that

f % g () I (u (f)) � I (u (g))

Proof of the Step By Cerreia-Vioglio et al. (2011a) and since % is a rational preference relation,
the statement follows. �
Step 3. I (') � infq2Q Îq (') for all ' 2 B0 (�).
Proof of the Step Consider ' 2 B0 (�). Since each Îq is normalized and monotone and u is

onto, we have that Îq (') 2 [infs2S ' (s) ; sups2S ' (s)] � Imu for all q 2 Q. Since ' 2 B0 (�), it
follows that there exists f 2 F such that ' = u (f) and x 2 X such that u (x) = infq2Q Îq (').

For each " > 0 there exists x" 2 X such that u (x") = u (x) + ". Since infq2Q Îq (') = u (x), it

follows that for each " > 0 there exists q 2 Q such that Îq (u (f)) = Îq (') < u (x") = Îq (u (x")),
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yielding that f 6%� x". Since (%�;%) jointly satisfy caution, we have that x" % f for all " > 0.

By Step 2, this implies that

u (x) + " = u (x") = I (u (x")) � I (u (f)) = I (') 8" > 0

that is, infq2Q Îq (') = u (x) � I ('), proving the step. �
Step 4. I (') � infq2Q Îq (') for all ' 2 B0 (�).
Proof of the Step Consider ' 2 B0 (�). We use the same objects and notation of Step 3. Note
that for each q0 2 Q

Îq0 (u (f)) = Îq0 (') � inf
q2Q

Îq (') = u (x) = Îq0 (u (x))

that is, f %� x. Since (%�;%) jointly satisfy consistency, we have that f % x. By Step 2, this

implies that

I (') = I (u (f)) � I (u (x)) = u (x) = inf
q2Q

Îq (')

proving the step. �
Step 5. I (') = minp2�

�R
'dp+ cQ (p)

	
for all ' 2 B0 (�).

Proof of the Step By Steps 3 and 4 and since Îq̂ � Îq for all q 2 Q, we have that

I (') = min
q2Q

Îq (') = Îq̂ (') 8' 2 B0 (�)

Since c (�; q̂) = cQ (�), it follows that for each ' 2 B0 (�)

I (') = Îq̂ (') = min
p2�

�Z
'dp+ c (p; q̂)

�
= min

p2�

�Z
'dp+ cQ (p)

�
proving the step. �
Step 6. c�1Q (0) = Q.

Proof of the Step By Steps 2 and 5, we have that V : F ! R de�ned by

V (f) = min
p2�

�Z
u (f) dp+ cQ (p)

�
represents %. By Lemma 5 and since % is subjectively Q-coherent and cQ is well de�ned,

grounded, lower semicontinuous and convex, we can conclude that c�1Q (0) = Q. �
Thus, (35) follows from Steps 2 and 5 while, by Step 6, c�1Q (0) = Q. This completes the

proof.

(ii) implies (i). It is routine.
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Next, assume that c is uniquely null. De�ne the correspondence � : Q� Q by

� (q) = fp 2 � : c (p; q) = 0g = argmin cq

Since cQ � cq for all q 2 Q and c�1Q (0) = Q, we have that � is well de�ned. Since cq is grounded,

it follows that � (q) 6= ; for all q 2 Q. Since c is uniquely null and cq is grounded, we have that
c�1q (0) is a singleton, that is,

c (p; q) = c (p0; q) = 0 =) p = p0

This implies that � (q) is a singleton, therefore � is a function. Since c�1Q (0) = Q, observe that

[q2Q� (q) = [q2Q argmin cq = argmin cQ = Q

that is, � is surjective. Since c is uniquely null, we have that c�1p (0) is at most a singleton, that

is,

c (p; q) = c (p; q0) = 0 =) q = q0

yielding that � is injective. To sum up, � is a bijection. De�ne ~c : � � Q ! [0;1] by
~c (p; q) = c (p;��1 (q)) for all (p; q) 2 ��Q. Note that ~c (�; q) is grounded, lower semicontinuous,
convex and dom ~c (�; q) � �� (Q) for all q 2 Q and dom ~cQ (�) � �� (Q). Next, we show that

~cQ = cQ. Since cQ is well de�ned, for each p 2 � there exists qp 2 Q such that

~c (p;� (qp)) = c (p; qp) = min
q2Q

c (p; q) � c (p; q0) = ~c (p;� (q0)) 8q0 2 Q

Since � is a bijection, we have that ~c (p;� (qp)) � ~c (p; q) for all q 2 Q. Since p was arbitrarily
chosen, it follows that

cQ (p) = min
q2Q

c (p; q) = ~c (p;� (qp)) = min
q2Q

~c (p; q) = ~cQ (p) 8p 2 �

To sum up, ~cQ = cQ and ~c�1Q (0) = c�1Q (0) = Q. In turn, since cQ is grounded, lower semicon-

tinuous and convex, this implies that ~cQ is grounded, lower semicontinuous and convex. Since

� is a bijection, we can conclude that (12) holds with ~c in place of c and (13) holds with ~cQ in

place of cQ.

We are left to show that ~c (p; q) = 0 if and only if p = q. Since c�1q (0) is a singleton for all

q 2 Q and � is a bijection, if ~c (p; q) = 0, then c (p;��1 (q)) = 0, yielding that p = � (��1 (q)) =
q. On the other hand, ~c (q; q) = c (q;��1 (q)) = 0. We can conclude that ~c (p; q) = 0 if and only

if p = q, proving that ~c is a statistical distance for Q. �
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A.1.3 Proof of Theorem 2 and Proposition 7

Proof of Theorem 2We only prove (i) implies (ii), the converse being routine.35 We proceed
by steps.

Step 1. %�Q agrees with %�Q0 on X for all Q;Q0 2 Q. In particular, there exists an a¢ ne and
onto function u : X ! R representing %�Q for all Q 2 Q.
Proof of the Step Let Q;Q0 2 Q be such that Q � Q0. Note that %�Q and %�Q0, restricted to
X, satisfy weak order, continuity and risk independence. By Herstein and Milnor (1953) and

since %�Q and %�Q0 are non-trivial, there exist two non-constant a¢ ne functions uQ; uQ0 : X ! R
which represent %�Q and %�Q0, respectively. Since

�
%�Q
	
Q2Q is monotone in model ambiguity,

we have that

uQ (x) � uQ (y) =) uQ0 (x) � uQ0 (y)

By Corollary B.3 of Ghirardato et al. (2004), uQ and uQ0 are equal up to an a¢ ne and positive

transformation. Next, �x �q 2 ��. Set u = u�q. Given any other q 2 ��, consider �Q 2 Q such

that �Q � f�q; qg. By the previous part, it follows that u �Q, uq and u�q are equal up to an a¢ ne
and positive transformation. Given that q was arbitrarily chosen, we can set u = uq for all

q 2 Q. Similarly, given a generic Q 2 Q, select q 2 Q. Since Q � fqg, it follows that we can
set u = uQ. Since each %�Q is unbounded for all Q 2 Q, we have that u is onto. �
Step 2. For each q 2 �� there exists a normalized, monotone, translation invariant and concave

functional Iq : B0 (�)! R such that

f %�q g () Iq (u (f)) � Iq (u (g)) (36)

Moreover, there exists a unique grounded, lower semicontinuous and convex function cq : �!
[0;1] such that

Iq (') = min
p2�

�Z
'dp+ cq (p)

�
8' 2 B0 (�) (37)

Proof of the Step Fix q 2 ��. Since %�q is an unbounded dominance relation which is complete,
we have that %�q is a variational preference. By the proof of Theorem 3 and Proposition 6 of

Maccheroni et al. (2006) and Step 1, there exists an onto and a¢ ne function uq : X ! R,
which can be set to be equal to u, and, given u, a unique grounded, lower semicontinuous and

convex function cq : �! [0;1] such that (37) and (36) hold. �
De�ne c : ���� ! [0;1] by c (p; q) = cq (p) for all (p; q) 2 ����.

Step 3. For each Q 2 Q we have that f %�Q g if and only if f %�q g for all q 2 Q. In particular,
35The only exception is the proof that the representation implies subjectiveQ-coherence. This is a consequence

of Theorem 2.4.18 in Zalinescu (2002) paired with Lemma 32 of Maccheroni et al. (2006).
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we have that

f %�Q g () min
p2�

�Z
u (f) dp+ c (p; q)

�
� min

p2�

�Z
u (g) dp+ c (p; q)

�
8q 2 Q (38)

Proof of the Step Fix Q 2 Q. Since
�
%�Q
	
Q2Q is monotone in model ambiguity, we have that

f %�Q g =) f %�q g 8q 2 Q

Since
�
%�Q
	
Q2Q is Q-separable, we can conclude that f %

�
Q g if and only if f %�q g for all q 2 Q.

By Step 2 and the de�nition of c, (38) follows. �
Step 4. %�Q agrees with %Q on X for all Q 2 Q. Moreover, %Q is represented by the function

u of Step 1.

Proof of the Step Fix Q 2 Q. Note that %�Q and %Q, restricted to X, satisfy weak order,

continuity and risk independence. By Herstein and Milnor (1953) and since %Q is non-trivial,

there exists a non-constant a¢ ne function vQ which represents%Q. By Step 1, %�Q is represented
by u. Since

�
%�Q;%Q

�
jointly satisfy consistency, it follows that for each x; y 2 X

u (x) � u (y) =) vQ (x) � vQ (y)

By Corollary B.3 of Ghirardato et al. (2004), vQ and u are equal up to an a¢ ne and positive

transformation. So we can set vQ = u, proving the statement. �
Step 5. For each Q 2 Q we have that

f %Q g () inf
p2�

�Z
u (f) dp+ inf

q2Q
c (p; q)

�
� inf

p2�

�Z
u (g) dp+ inf

q2Q
c (p; q)

�
(39)

Proof of the Step Fix Q 2 Q. By Cerreia-Vioglio et al. (2011a) and since %Q is a rational pref-

erence relation, there exists a normalized, monotone and continuous functional IQ : B0 (�)! R
such that

f %Q g () IQ (u (f)) � IQ (u (g)) (40)

By the same arguments in Steps 3 and 4 of Theorem 1, we have that IQ = infq2Q Iq, yielding

that

IQ (') = inf
q2Q

min
p2�

�Z
'dp+ c (p; q)

�
= inf

q2Q
inf
p2�

�Z
'dp+ c (p; q)

�
= inf

p2�
inf
q2Q

�Z
'dp+ c (p; q)

�
= inf

p2�

�Z
'dp+ inf

q2Q
c (p; q)

�
8' 2 B0 (�)

By (40), this implies that (39) holds. �
Step 6. c (p; q) = 0 if and only if p = q.
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Proof of the Step By Steps 2 and 5, we have that %�q coincides with %q on F for all q 2 ��. By

Lemma 5 and since %q is subjectively fqg-coherent, we have that argmin c (�; q) = argmin cq =
fqg. �
Step 7. dom c (�; q) � �� (q) � �� (Q) for all q 2 Q and for all Q 2 Q.
Proof of the Step By the previous part of the proof, we have that %�q coincides with %q on F
for all q 2 ��. By Lemma 6 and since %�q is objectively fqg-coherent, we can conclude that
dom c (�; q) � �� (q) � �� (Q) for all q 2 Q and for all Q 2 Q. �
Step 8. c is jointly lower semicontinuous.

Proof of the Step De�ne the map J : B0 (�) � �� ! R by J ('; q) = Iq (') for all q 2 Q.

Observe that, for each (p; q) 2 ����,

c (p; q) = cq (p) = sup
'2B0(�)

�
Iq (')�

Z
'dp

�
= sup

'2B0(�)

�
J ('; q)�

Z
'dp

�
(41)

We begin by observing that J is lower semicontinuous in the second argument. Note that for

each ' 2 B0 (�) and for each q 2 ��

J ('; q) = Iq (') = u (xf;q) where f 2 F is s.t. ' = u (f)

Fix ' 2 B0 (�) and t 2 R. By the axiom of lower semicontinuity, the set

fq 2 �� : J ('; q) � tg = fq 2 �� : u (x) � u (xf;q)g =
�
q 2 �� : x %�q xf;q

	
is closed where x 2 X and f 2 F are such that u (x) = t as well as u (f) = '. Since ' and t were

arbitrarily chosen, this yields that J is lower semicontinuous in the second argument. Since

J is lower semicontinuous in the second argument, the map (p; q) 7! J ('; q) �
R
'dp, de�ned

over ����, is jointly lower semicontinuous for all ' 2 B0 (�). By (41) and the de�nition of
c, we conclude that c is jointly lower semicontinuous. �
Step 1 proves that u is a¢ ne and onto. Steps 2, 6, 7 and 8 prove that c is a jointly lower

semicontinuous divergence. Steps 1, 3, 5 and 8 yield the representation of %�Q and %Q for all

Q 2 Q. As for uniqueness, assume that the function ~c : ���� ! [0;1] is a divergence which
is jointly lower semicontinuous and that represents %�Q and %Q for all Q 2 Q. By Proposition
6 of Maccheroni et al. (2006) and since Imu = R and %�q is a variational preference for all
q 2 ��, it follows that ~c (�; q) = c (�; q) for all q 2 ��, yielding that c = ~c. �
Proof of Proposition 7 We only prove (i) implies (ii), the converse being routine. We keep
the notation of the previous proof. Compared to Theorem 2, we only need to prove that c is

jointly convex. By Lemma 2, this will yield that c is variational. Fix ' 2 B0 (�), q; q0 2 ��
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and � 2 (0; 1). By model hybridization aversion and since u is a¢ ne, we have that

J ('; �q + (1� �) q0) = u
�
xf;�q+(1��)q0

�
� u (�xf;q + (1� �)xf;q0)

= �u (xf;q) + (1� �)u (xf;q0) = �J ('; q) + (1� �) J ('; q0)

where f 2 F is such that u (f) = '. Since ', q, q0 and � were arbitrarily chosen, this yields

that J is convex in the second argument. Since J is convex in the second argument, the map

(p; q) 7! J ('; q) �
R
'dp, de�ned over � � ��, is jointly convex for all ' 2 B0 (�). By (41)

and the de�nition of c, we conclude that c is convex, proving the implication. �

A.2 Other proofs

Proof of Proposition 3 Note that c (�; q) = �D� (�jjq) is Shur convex (with respect to q) for
all q 2 Q. Consider A;B 2 �. Assume that q (A) � q (B) for all q 2 Q. Let q 2 Q. Consider
x; y 2 X such that x � y. It follows thatZ

v (u (xAy)) dq �
Z
v (u (xBy)) dq

for each v : R! R increasing and concave. By Theorem 2 of Cerreia-Vioglio et al. (2012) and

since q was arbitrarily chosen, it follows that

min
p2�

�Z
u (xAy) dp+ �D� (pjjq)

�
� min

p2�

�Z
u (xBy) dp+ �D� (pjjq)

�
8q 2 Q

yielding that xAy %� xBy and, in particular, xAy % xBy. �
Proof of Proposition 4 We prove the �only if�, the converse being obvious. De�ne &�
by f &� g if and only if

R
u (f) dq �

R
u (g) dq for all q 2 Q. By hypothesis, the pair (&�;%)

satis�es consistency. Let f 6&� x. Then, there exists q 2 Q such that u(xqf ) =
R
u (f) dq < u (x).

Hence, x � xqf . Since c
�1
Q (0) = Q, by Lemma 5 we have that x � f . So, the pair (&�;%)

satis�es default to certainty. By Theorem 4 of Gilboa et al. (2010), this pair admits the

representation

f &� g ()
Z
u (f) dq �

Z
u (g) dq 8q 2 Q

and

f % g () min
q2Q

Z
u (f) dq � min

q2Q

Z
u (g) dq

Note that, in the notation of Gilboa et al. (2010), we have C = Q because C is unique up to

closure and convexity and Q is closed and convex. �
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Proof of Proposition 5 For each q 2 Q de�ne Iq : B0 (�)! R by

Iq (') = min
p2�

�Z
'dp+ c (p; q)

�
8' 2 B0 (�)

Recall that f ��� g if and only if for each h; l 2 F there exists " > 0 such that

(1� �) f + �h �� (1� �) g + �l 8� 2 [0; "] (42)

Moreover, given h 2 F , de�ne kh = infs2S u (h (s)) and kh = sups2S u (h (s)).
�Only if.�Assume that f ��� g. Let "̂ > 0. Consider u (x) = kf � "̂ and u (y) = kg + "̂. By

de�nition, there exists " > 0 such that (1� �) f + �x �� (1� �) g + �y for all � 2 [0; "]. Note
that for each q 2 Q and for each � 2 [0; 1]

Iq (u ((1� �) f + �x)) = Iq ((1� �)u (f) + �u (x)) = Iq (u (f)� �u (f) + �u (x))

� Iq (u (f)� �kf + � (kf � "̂)) = Iq (u (f))� �"̂

and

Iq (u ((1� �) g + �y)) = Iq ((1� �)u (g) + �u (y)) = Iq (u (g)� �u (g) + �u (y))

� Iq (u (g)� �kg + � (kg + "̂)) = Iq (u (g)) + �"̂

It follows that for each q 2 Q and for each � 2 [0; "]

Iq (u (f))� Iq (u (g))� 2�"̂ � Iq (u ((1� �) f + �x))� Iq (u ((1� �) g + �y)) � 0

If we set � = " > 0, then Iq (u (f)) � Iq (u (g)) + 2""̂ for all q 2 Q, proving the statement.
�If.�Let f; g 2 F . Assume there exists " > 0 such that Iq (u (f)) � Iq (u (g)) + " for all

q 2 Q. Consider h; l 2 F . Note that for each q 2 Q and for each � 2 [0; 1]

Iq (u ((1� �) f + �h)) = Iq ((1� �)u (f) + �u (h)) = Iq (u (f)� �u (f) + �u (h))

= Iq (u (f) + � (u (h)� u (f)))

� Iq
�
u (f) + �

�
kh � kf

��
= Iq (u (f)) + �

�
kh � kf

�
and

Iq (u ((1� �) g + �l)) = Iq ((1� �)u (g) + �u (l)) = Iq (u (g)� �u (g) + �u (l))

= Iq (u (g) + � (u (l)� u (g)))

� Iq
�
u (g) + �

�
kl � kg

��
= Iq (u (g)) + �

�
kl � kg

�
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It follows that for each q 2 Q and for each � 2 [0; 1]

Iq (u ((1� �) f + �h))� Iq (u ((1� �) g + �l)) � Iq (u (f)) + �
�
kh � kf

�
� Iq (u (g))� �

�
kl � kg

�
� "+ �"̂

where "̂ = kh � kf � kl + kg. We have two cases:

1. "̂ � 0. In this case, Iq (u ((1� �) f + �h))� Iq (u ((1� �) g + �l)) > 0 for all � 2 [0; 1] and
all q 2 Q, proving (42).

2. "̂ < 0. In this case, Iq (u ((1� �) f + �h))�Iq (u ((1� �) g + �l)) > 0 for all � 2 [0;�"=2"̂]
and all q 2 Q, proving (42).

This completes the proof of the result. �
Proof of Lemma 4 �If.�Given q 2 Q, if c (p; q) = 1 for all p =2 Q, then cQ (p) = 1 for all

p =2 Q. Since cQ (p) = 0 for all p 2 Q, we conclude that cQ (p) = �Q (p) for all p 2 �. �Only
if.�Conversely, for each q 2 Q we have that c (p; q) � cQ (p) = �Q (p) =1 for all p =2 Q. �
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B Online Appendix

B.1 Statistical distances and divergences

We begin by proving Lemma 1. We then move to Lemma 2.

Proof of Lemma 1 Let c be a variational statistical distance for Q. If q 2 Q, then 0 �
cQ (q) � c (q; q) = 0 and so q 2 c�1Q (0), proving that Q � c�1Q (0). As to the converse inclusion,

let p 2 c�1Q (0), so that minq2Q c (p; q) = cQ (p) = 0. It follows that there exists qp 2 Q such

that c (p; qp) = minq2Q c (p; q) = 0. Since c is a statistical distance for Q, p = qp and so p 2 Q.
We conclude that c�1Q (0) = Q. �
In order to prove Lemma 2, we substantially need to prove that the function cQ : � !

[0;1], de�ned by cQ (p) = minq2Q c(p; q), is well de�ned, grounded, lower semicontinuous and
convex. This fact follows from the following version of a well known result (see, e.g., Fiacco

and Kyparisis, 1986).

Lemma 13 Let Q be a compact and convex subset of ��. If c : � � Q ! [0;1] is a lower
semicontinuous and convex function such that there exist �p 2 � and �q 2 Q such that c (�p; �q) = 0,
then cQ : �! [0;1] de�ned by

cQ (p) = min
q2Q

c (p; q) 8p 2 �

is well de�ned, grounded, lower semicontinuous and convex.

Proof Since c is lower semicontinuous and Q is non-empty and compact, cQ is well de�ned.

Moreover, we have that 0 � c (�p; �q) � cQ (�p) � 0, proving that cQ is grounded. Even though

c (p; q) might be1 for some (p; q) 2 ��Q, by the same proof of the Maximum Theorem (see,
e.g., Lemma 17.30 in Aliprantis and Border, 2006), it follows that cQ is lower semicontinuous.

If p1; p2 2 �, then de�ne q1; q2 2 Q to be such that

c (p1; q1) = min
q2Q

c (p1; q) = cQ (p1) and c (p2; q2) = min
q2Q

c (p2; q) = cQ (p2)

Consider � 2 (0; 1). De�ne p� = �p1 + (1� �) p2 and q� = �q1 + (1� �) q2 2 Q. Since c is

jointly convex, it follows that

cQ (p�) = min
q2Q

c (p�; q) � c (p�; q�) � �c (p1; q1) + (1� �) c (p2; q2)

= �cQ (p1) + (1� �) cQ (p2)

proving convexity. �
Proof of Lemma 2 We �rst prove the �If� part. Since c (q; q) = 0 for all q 2 Q and c is

lower semicontinuous and convex, we have that cq = c (�; q) is grounded, lower semicontinuous
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and convex for all q 2 Q. By assumption c (p; q) = 0 if and only if p = q, it follows that c is

a statistical distance for Q. By Lemma 13 and since Q is compact and convex and c is jointly

lower semicontinuous and convex and such that c (q; q) = 0 for all q 2 Q, then cQ : �! [0;1] is
well de�ned, grounded, lower semicontinuous and convex, proving c is a variational statistical

distance for Q. As for the �Only if� part, it is trivial since a statistical distance for Q, by

de�nition, satis�es (6). �
We next prove a more complete version of Lemma 3.36 A piece of notation: we write p � Q

if there exists a control measure q 2 Q such that p � q.37

Lemma 14 Let Q be a compact and convex subset of ��. A restricted �-divergence D� :

��Q! [0;1] is a variational divergence for Q. Moreover,

(i) if q 2 Q, then D� (�jjq) : �! [0;1] is strictly convex;

(ii) if p 2 �� and p � Q, then D� (pjj�) : Q! [0;1] is strictly convex.

Proof It is well known that on � � �� the function D� is jointly lower semicontinuous and

convex and satis�es the property

D� (pjjq) = 0 () p = q

The same properties are preserved by D� restricted to � � Q. By Lemma 2, it follows that

D� : ��Q! [0;1] is a variational statistical distance for Q. Finally, by de�nition, we have
that D� (pjjq) =1 whenever p 62 �� (q), yielding that it is a variational divergence for Q. We

next prove points (i) and (ii).

(i). Consider q 2 Q. Let p0; p00 2 � and � 2 (0; 1) be such that p0 6= p00 and D�(�p
0 +

(1� �) p00jjq) < 1. If either D� (p
0jjq) or D� (p

00jjq) are not �nite, we trivially conclude that
D�(�p

0 + (1� �) p00jjq) <1 = �D� (p
0jjq) + (1� �)D� (p

00jjq). Let us then assume that both
D� (p

0jjq) and D� (p
00jjq) are �nite. By de�nition of D� and since �� (q) is convex, this implies

that p0; p00 2 �� (q) as well as �p0 + (1� �) p00 2 �� (q). Since p0 and p00 are distinct, we have

that dp0=dq and dp00=dq take di¤erent values on a set of strictly positive q-measure: call it ~S.

Since � is strictly convex, it follows that

�

�
�
dp0

dq
(s) + (1� �)

dp00

dq
(s)

�
< ��

�
dp0

dq
(s)

�
+ (1� �)�

�
dp00

dq
(s)

�
8s 2 ~S

36Though a routine result, for the sake of completeness, we provide a proof since we did not �nd one allowing
for S being in�nite (see Topsoe, 2001, p. 178 for the �nite case).
37A probability q 2 Q is a control measure of Q if q0 � q for all q0 2 Q. When Q is a compact and convex

subset of ��, Q has a control measure (see, e.g., Maccheroni and Marinacci, 2001). Such a measure might
not be unique, yet any two control measures of Q are equivalent. So, the notion p � Q is well de�ned and
independent of the chosen control measure.
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By de�nition of D�, this implies that

D� (�p
0 + (1� �) p00jjq) =

Z
S

�

�
d [�p0 + (1� �) p00]

dq
(s)

�
dq

=

Z
S

�

�
�
dp0

dq
(s) + (1� �)

dp00

dq
(s)

�
dq

=

Z
~S

�

�
�
dp0

dq
(s) + (1� �)

dp00

dq
(s)

�
dq

+

Z
Sn ~S

�

�
�
dp0

dq
(s) + (1� �)

dp00

dq
(s)

�
dq

< �

Z
S

�

�
dp0

dq
(s)

�
dq + (1� �)

Z
S

�

�
dp00

dq
(s)

�
dq

= �D� (p
0jjq) + (1� �)D� (p

00jjq)

We conclude that D� (�jjq) : �! [0;1] is strictly convex.
(ii). Before starting, we make three observations.

a. Since Q is a non-empty, compact and convex subset of ��, note that there exists �q 2 Q
such that q � �q for all q 2 Q. Since p � Q, we have that p � �q. This implies also that q � p

for all q 2 Q.
b. If q � p, then (dp=dq)�1 is well de�ned almost everywhere (with respect to either p or q)

and can be chosen (after de�ning arbitrarily the function over a set of zero measure) to be the

Radon-Nikodym derivative dq=dp.

c. Since � is strictly convex, if we de�ne �? : (0;1) ! [0;1) by �? (x) = x� (1=x) for all

x > 0, then also �? is strictly convex. By point b, if p 2 �� and q 2 Q are such that p � q and

we de�ne _p = dp=dq, then p (f _p = 0g) = 0 = q (f _p = 0g) and

D� (pjjq) =
Z
S

�

�
dp

dq

�
dq =

Z
f _p=0g

�

�
dp

dq

�
dq +

Z
f _p>0g

�

�
dp

dq

�
dq

=

Z
f _p>0g

�

0B@ 1�
dp
dq

��1
1CA dq =

Z
f _p>0g

�?
�
dq

dp

�
dp

dq
dq

=

Z
f _p>0g

�?
�
dq

dp

�
dp

We can now prove the statement. Let q0; q00 2 Q and � 2 (0; 1) be such that q0 6= q00

and D� (pjj�q0 + (1� �) q00) < 1. If either D� (pjjq0) or D� (pjjq00) are not �nite, we trivially
conclude that D� (pjj�q0 + (1� �) q00) < 1 = �D� (pjjq0) + (1� �)D� (pjjq00). Let us then
assume that both D� (pjjq0) and D� (pjjq00) are �nite. By de�nition of D�, we can conclude that

p � q0 and p � q00. By point a, this yields that q0 � p � q00 and p � �q0 + (1� �) q00. Since
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q0 and q00 are distinct, we have that dq0=dp and dq00=dp take di¤erent values on a set of strictly

positive p-measure. By point c, we have that

p

��
dp

d [�q0 + (1� �) q00]
= 0

��
= p

��
dp

dq0
= 0

��
= p

��
dp

dq00
= 0

��
= 0

Thus, by point c and since dq0=dp and dq00=dp take di¤erent values on a set of strictly positive

p-measure and �? is strictly convex, there exists a p-measure 1 set ~S such that

D� (pjj�q0 + (1� �) q00) =

Z
~S

�?
�
d [�q0 + (1� �) q00]

dp

�
dp

< �

Z
~S

�?
�
dq0

dp

�
dp+ (1� �)

Z
~S

�?
�
dq00

dp

�
dp

= �D� (pjjq0) + (1� �)D� (pjjq00)

proving point (ii).

B.2 Non-convex set of structured models

Let us consider two decision makers who adopt criterion (16), the �rst one posits a, possibly

non-convex, set of structured models Q and the second one posits its closed convex hull coQ.

So, the second decision maker considers also all the mixtures of structured models posited by

the �rst decision maker. Next we show that their preferences over acts actually agree. It is

thus without loss of generality to assume that the set of posited structured models is convex,

as it was assumed in mostly of the main text. Before doing so we prove formula (17). Observe

that given a compact subset Q � ��, be that convex or not, we have

min
p2�

�Z
u (f) dp+ �min

q2Q
R (pjjq)

�
= min

p2�
min
q2Q

�Z
u (f) dp+ �R (pjjq)

�
= min

q2Q
min
p2�

�Z
u (f) dp+ �R (pjjq)

�
= min

q2Q
��1�

�Z
�� (u (f)) dq

�
where �� (t) = �e�

1
�
t for all t 2 R where � > 0.

Proposition 12 If Q � �� is compact, then for each f 2 F

min
p2�

�Z
u (f) dp+ �min

q2Q
R (pjjq)

�
= min

p2�

�Z
u (f) dp+ � min

q2coQ
R (pjjq)

�
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Proof First observe that coQ � ��. Indeed, since Q is a compact subset of ��, the set

function � : � ! [0; 1], de�ned by � (E) = minq2Q q (E) for all E 2 � is an exact capacity
which is continuous at S. This implies that Q � core � � ��, yielding that coQ � core � � ��.

Given what we have shown before we can conclude that

min
p2�

�Z
u (f) dp+ �min

q2Q
R (pjjq)

�
= min

q2Q
��1�

�Z
�� (u (f)) dq

�
= ��1�

�
min
q2Q

�Z
�� (u (f)) dq

��
= ��1�

�
min
q2coQ

�Z
�� (u (f)) dq

��
= min

q2coQ
��1�

�Z
�� (u (f)) dq

�
= min

p2�

�Z
u (f) dp+ � min

q2coQ
R (pjjq)

�
proving the statement. �

B.3 Main theorems: ancillary results

We begin by proving the two ancillary variational lemmas.

Proof of Lemma 5 We actually prove that (i)=)(ii)()(iii), with equivalence when % is

unbounded.

(i) implies (ii). Let f 2 F . It is enough to observe that c (�p) = 0 implies

V
�
x�pf
�
= u

�
x�pf
�
=

Z
u (f) d�p+ c (�p) � min

p2�

�Z
u (f) dp+ c (p)

�
= V (f)

yielding that x�pf % f .

(ii) implies (iii). Assume that x�pf % f for all f 2 F . Since % is complete and transitive, it
follows that if x � x�pf , then x � f .

(iii) implies (ii). By contradiction, suppose that there exists f 2 F such that f � x�pf . Let

xf 2 X be such that xf � f . This implies that xf � x�pf and so xf � f , a contradiction.

(ii) implies (i). Let % be unbounded. Assume that x�pf % f for all f 2 F , i.e., V (f) �R
u (f) d�p for all f 2 F . So, �p corresponds to a SEU preference that is less ambiguity averse

than %. By Lemma 32 of Maccheroni et al. (2006), we can conclude that c (�p) = 0. �
Proof of Lemma 6 We begin by observing that in proving the two implications, Q being

either compact or convex plays no role.

(i) implies (ii). Let p 2 �n�� (Q). It follows that there exists A 2 � such that q (A) = 0
for all q 2 Q as well as p (A) > 0. De�ne I : B0 (�)! R by I (') = minp2�

�R
'dp+ c (p)

	
for
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all ' 2 B0 (�). Since u is unbounded, for each � 2 R there exists x� 2 X such that u (x�) = �.

Similarly, there exists y 2 X such that u (y) = 0. For each � 2 R de�ne f� = x�Ay. By

construction, we have that f�
Q
= y for all � 2 R. This implies that I (�1A) = V (f�) = V (y) =

I (0) = 0 for all � 2 R. By Maccheroni et al. (2006) and since u is unbounded, we have that

c (p) = sup
'2B0(�)

�
I (')�

Z
'dp

�
� sup

�2R
fI (�1A)� �p (A)g =1

Since p was arbitrarily chosen, it follows that dom c � �� (Q).

(ii) implies (i). Assume that dom c � �� (Q). If f
Q
= g, then u (f)

Q
= u (g). This implies

that u (f)
p
= u (g) for all p 2 �� (Q) and, in particular,

V (f) = min
p2�

�Z
u (f) dp+ c (p)

�
= min

p2��(Q)

�Z
u (f) dp+ c (p)

�
= min

p2��(Q)

�Z
u (g) dp+ c (p)

�
= min

p2�

�Z
u (g) dp+ c (p)

�
= V (g)

proving that f � g. �
Proof of Lemma 9We begin by showing that �� is well de�ned and does not depend on the
representing elements of  and '. Assume that f1; f2; g1; g2 2 F are such that u (fi) = ' and

u (gi) =  for all i 2 f1; 2g. It follows that u (f1 (s)) = u (f2 (s)) and u (g1 (s)) = u (g2 (s)) for

all s 2 S. By Lemma 8, this implies that f1 (s) �� f2 (s) and g1 (s) �� g2 (s) for all s 2 S. Since
%� is a preorder that satis�es monotonicity, this implies that f1 �� f2 and g1 �� g2. Since %�
is a preorder, if f1 %� g1, then

f2 %� f1 %� g1 %� g2 =) f2 %� g2

that is, f1 %� g1 implies f2 %� g2. Similarly, we can prove that f2 %� g2 implies f1 %� g1.
In other words, f1 %� g1 if and only if f2 %� g2, proving that �� is well de�ned and does not
depend on the representing elements of  and '. It is immediate to prove that �� is a preorder.
We next prove properties 1�5.

1. Consider ';  2 B0 (�) and k 2 R. Assume that ' ��  . Let f; g 2 F and x; y 2 X be

such that u (f) = 2', u (g) = 2 , u (x) = 0 and u (y) = 2k. Since u is a¢ ne, it follows

that

u

�
1

2
f +

1

2
x

�
=
1

2
u (f) +

1

2
u (x) = ' ��  

=
1

2
u (g) +

1

2
u (x) = u

�
1

2
g +

1

2
x

�
proving that 1

2
f + 1

2
x %� 1

2
g+ 1

2
x. Since %� satis�es weak c-independence and u is a¢ ne,
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we have that 1
2
f + 1

2
y %� 1

2
g + 1

2
y, yielding that

'+ k =
1

2
u (f) +

1

2
u (y) = u

�
1

2
f +

1

2
y

�
�� u

�
1

2
g +

1

2
y

�
=
1

2
u (g) +

1

2
u (y) =  + k

2. Consider ';  2 B0 (�) and fkngn2N � R such that kn " k and '� kn ��  for all n 2 N.
We have two cases:

(a) k > 0. Consider f; g; h 2 F such that

u (f) = ', u (g) = '� k and u (h) =  

Since k > 0 and kn " k, there exists �n 2 N such that kn > 0 for all n � �n. De�ne

�n = 1 � kn=k for all n 2 N. It follows that �n 2 [0; 1] for all n � �n. Since u is

a¢ ne, for each n � �n

u (�nf + (1� �n) g) = �nu (f) + (1� �n)u (g) = '� kn ��  = u (h)

yielding that �nf + (1� �n) g %� h for all n � �n. Since %� satis�es continuity and
�n ! 0, we have that g %� h, that is,

'� k = u (g) �� u (h) =  

(b) k � 0. Since fkngn2N is convergent, fkngn2N is bounded. Thus, there exists h > 0

such that kn + h > 0 for all n 2 N. Moreover, kn + h " k + h > 0. By point 1, we

also have that '� (kn + h) = ('� kn)� h ��  � h for all n 2 N. By subpoint a,
we can conclude that ('� k) � h = ' � (k + h) ��  � h. By point 1, we obtain

that '� k ��  .

3. Consider ';  2 B0 (�) such that ' �  . Let f; g 2 F be such that u (f) = ' and

u (g) =  . It follows that u (f (s)) � u (g (s)) for all s 2 S. By Lemma 8, this implies

that f (s) %� g (s) for all s 2 S. Since %� satis�es monotonicity, this implies that f %� g,
yielding that ' = u (f) �� u (g) =  .

4. Consider k; h 2 R and ' 2 B0 (�). We �rst assume that k > h and k = 0. By point

3, we have that ' = ' + k �� ' + h. By contradiction, assume that ' 6�� ' + h. It

follows that ' �� '+h, yielding that I = fw 2 R : ' �� '+ wg is a non-empty set which
contains 0 and h. We next prove that I is an unbounded interval, that is, I = R. First,
consider w1; w2 2 I. Without loss of generality, assume that w1 � w2. By point 3 and
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since w1; w2 2 I, we have that for each � 2 (0; 1)

' �� '+ w1 �� '+ (�w1 + (1� �)w2) �� '+ w2 �� '

proving that ' �� ' + (�w1 + (1� �)w2), that is, �w1 + (1� �)w2 2 I. Next, we

observe that I \ (�1; 0) 6= ; 6= I \ (0;1). Since h 2 I and h < 0, we have that

I \ (�1; 0) 6= ;. Since I is an interval and 0; h 2 I, we have that h=2 2 I. By point 1

and since ' �� '+ h=2, we have that '� h=2 �� ('+ h=2)� h=2 = ', proving that 0 <

�h=2 2 I \ (0;1). By de�nition of I, note that if w 2 In f0g, then '+w �� '. By point
1 and since w=2 2 I and �� is a preorder, we have that ('+ w) +w=2 �� '+w=2 �� ',
that is, 3

2
w; 1

2
w 2 I. Since I is an interval, we have that either

�
3
2
w; 1

2
w
�
� I if w < 0

or
�
1
2
w; 3

2
w
�
� I if w > 0. This will help us in proving that I is unbounded from below

and above. By contradiction, assume that I is bounded from below and de�ne m = inf I.

Since I \ (�1; 0) 6= ;, we have that m < 0. Consider fwngn2N � I \ (�1; 0) such that

wn # m. Since
�
3
2
wn;

1
2
wn
�
� I for all n 2 N, it follows that m � 3

2
wn for all n 2 N.

By passing to the limit, we obtain that m � 3
2
m < 0, a contradiction. By contradiction,

assume that I is bounded from above and de�neM = sup I. Since I\(0;1) 6= ;, we have
thatM > 0. Consider fwngn2N � I \ (0;1) such that wn "M . Since

�
1
2
wn;

3
2
wn
�
� I for

all n 2 N, it follows that M � 3
2
wn for all n 2 N. By passing to the limit, we obtain that

M � 3
2
M > 0, a contradiction. To sum up, I is a non-empty unbounded interval, that is,

I = R. This implies that ' �� '+ w for all w 2 R. In particular, select w1 = k'k1 + 1
and w2 = �k'k1� 1. Since �� is a preorder, we have that '+w1 �� '+w2. Moreover,
'+ w1 � 1 > �1 � '+ w2. By point 3, this implies that '+ w1 �� 1 �� �1 �� '+ w2.
Since �� is a preorder and ' + w1 �� ' + w2, we can conclude that 1 �� �1. Note also
that there exist x; y 2 X such that u (x) = 1 and u (y) = �1. By Lemma 8, this implies
that x �� y. By de�nition of �� and since u (x) = 1 �� �1 = u (y), we also have that

y %� x, a contradiction. Thus, we proved that if k > h and k = 0, then ' + k �� ' + h.

Assume simply that k > h. This implies that 0 > h� k and ' �� '+ (h� k). By point

1, we can conclude that '+ k �� '+ (h� k) + k = '+ h.

5. Consider ';  ; � 2 B0 (�) and � 2 (0; 1). Assume that ' �� � and  �� �. Let f; g; h 2 F
be such that u (f) = ', u (g) =  and u (h) = �. By assumption and de�nition of ��,
we have that f %� h and g %� h. Since %� satis�es convexity and u is a¢ ne, this

implies that �f + (1� �) g %� h, yielding that �'+ (1� �) = �u (f) + (1� �)u (g) =

u (�f + (1� �) g) �� u (h) = �.

Points 1�5 prove the �rst part of the statement. Finally, consider ';  2 B0 (�). Note that
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there exist a partition fAigni=1 of S and f�ig
n
i=1 and f�ig

n
i=1 in R such that

' =

nX
i=1

�i1Ai and  =
nX
i=1

�i1Ai

Note that fs 2 S : ' (s) 6=  (s)g = [i2f1;:::;ng:�i 6=�iAi. Since '
Q
=  , we have that q (Ai) = 0 for

all q 2 Q and for all i 2 f1; :::; ng such that �i 6= �i. Since u is unbounded, de�ne fxigni=1 � X

to be such that u (xi) = �i for all i 2 f1; :::; ng. Since u is unbounded, de�ne fyigni=1 � X to

be such that yi = xi for all i 2 f1; :::; ng such that �i = �i and u (yi) = �i otherwise. De�ne

f; g : S ! X by f (s) = xi and g (s) = yi for all s 2 Ai and for all i 2 f1; :::; ng. It is immediate
to see that f

Q
= g as well as u (f) = ' and u (g) =  . Since %� is objectively Q-coherent, we

have that f �� g, yielding that ' ��  and proving the second part of the statement. �
Proof of Lemma 11 Consider ' 2 B0 (�). De�ne C' = fk 2 R : '� k 2 U ( )g. Note
that C' is non-empty. Indeed, if we set k = �k'k1 � k k1, then we obtain that ' � k =

' + k'k1 + k k1 � 0 + k k1 �  2 U ( ). By property 4 of Lemma 10, we can conclude

that ' � k 2 U ( ), that is, k 2 C'. Since U ( ) is convex, it follows that C' is an interval.

Since ' 2 B0 (�), note that there exists k̂ 2 R such that  � '� k̂. It follows that  �� '� k̂.
In particular, we can conclude that  �� ' �

�
k̂ + "

�
for all " > 0. This yields that C' is

bounded from above. Finally, assume that fkngn2N � C' and kn " k. By property 2 of Lemma
10, we can conclude that k 2 C'. To sum up, C' is a non-empty bounded from above interval

of R that satis�es the property

fkngn2N � C' and kn " k =) k 2 C' (43)

The �rst part yields that sup fk 2 R : '� k 2 U ( )g = supC' 2 R is well de�ned. By (43), we
also have that supC' 2 C', that is, supC' = maxC', proving that I is well de�ned. Next, we
prove that I is a concave niveloid. We �rst show that I is monotone and translation invariant.

By Proposition 2 of Cerreia-Vioglio et al. (2014), this implies that I is a niveloid. Rather than

proving monotonicity, we prove that I is �� consistent.38 Consider '1; '2 2 B0 (�) such that
'1 �� '2. By the properties of �� and de�nition of I , we have that

'1 � I ('2) �� '2 � I ('2) and '2 � I ('2) 2 U ( )

and, in particular, '2�I ('2) ��  . Since �� is a preorder, this implies that '1�I ('2) ��  ,
that is, '1 � I ('2) 2 U ( ) and I ('2) 2 C'1, proving that I ('1) � I ('2). We next prove

translation invariance. Consider ' 2 B0 (�) and k 2 R. By de�nition of I , we can conclude
that

('+ k)� (I (') + k) = '� I (') 2 U ( )
38Since if '1 � '2, then '1 �� '2, it follows that �� consistency implies monotonicity.
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This implies that I (') + k 2 C'+k and, in particular, I ('+ k) � I (') + k. Since k and '

were arbitrarily chosen, we have that

I ('+ k) � I (') + k 8' 2 B0 (�) ;8k 2 R

This yields that I ('+ k) = I (') + k for all ' 2 B0 (�) and for all k 2 R.39

We move to prove that I is concave. Consider '1; '2 2 B0 (�) and � 2 (0; 1). By de�nition
of I , we have that

'1 � I ('1) 2 U ( ) and '2 � I ('2) 2 U ( )

Since U ( ) is convex, we have that

(�'1 + (1� �)'2)� (�I ('1) + (1� �) I ('2))

= � ('1 � I ('1)) + (1� �) ('2 � I ('2)) 2 U ( )

yielding that �I ('1)+(1� �) I ('2) 2 C�'1+(1��)'2 and, in particular, I (�'1 + (1� �)'2) �
�I ('1) + (1� �) I ('2).

Finally, since  2 U ( ), note that 0 2 C and I ( ) � 0. By de�nition of I , if I ( ) > 0,
then  � I ( ) 2 U ( ), a contradiction with property 3 of Lemma 10.
1. It is routine to check that �I is a normalized concave niveloid which is �� consistent.
2. Clearly, we have that if  ��  0, then U ( ) = U ( 0), yielding that I = I 0 and, in

particular, I (0) = I 0 (0) as well as �I = �I 0. The point trivially follows. �
Proof of Proposition 11 We begin by observing that:

jca (�)j � jca+ (�)� ca+ (�)j = jca+ (�)j = j(0;1)���j = j��j

The �rst inequality holds because the map g : ca (�) ! ca+ (�) � ca+ (�), de�ned by � 7!
(�+; ��), is injective. By Theorem 1.4.5 of Srivastava (1998) and since � is non-trivial, we have

that ca+ (�) is in�nite, yielding that a bijection justifying the �rst equality exists. As to the

second equality, the map g : ca+ (�) n f0g ! (0;1) � ��, de�ned by � 7! (� (S) ; �=� (S)),

is a bijection and so jca+ (�) n f0gj = j(0;1)���j. By Theorem 1.3.1 of Srivastava (1998),

we can conclude that jca+ (�)j = jca+ (�) n f0gj = j(0;1)���j. As to the last equality, by
Theorem 1.4.5 and Exercise 1.5.1 of Srivastava (1998), being j(0;1)j = j(0; 1)j � j��j, we have
j��j � j(0;1)���j = j(0; 1)���j � j�� ���j = j��j, yielding that j(0;1)���j = j��j.
We conclude that jca (�)j � j��j, that is, there exists an injective map g : ca (�) ! ��.

Since Q is a compact and convex subset of ��, there exists �q 2 Q such that q � �q for all q 2 Q.
39Observe that if ' 2 B0 (�) and k 2 R, then �k 2 R and

I (') = I (('+ k)� k) � I ('+ k)� k

yielding that I ('+ k) � I (') + k.

55



We de�ne h : V ! ca (�) by

h ([ ]) (A) =

Z
A

 d�q 8A 2 �

Note that h is well de�ned. For, if  0 2 [ ], that is,  
Q
=  0, then  

�q
=  0, yielding thatR

A
 d�q =

R
A
 0d�q for all A 2 �. Similarly, h ([ ]) = h ([ 0]) implies that  

�q
=  0. Since

q � �q for all q 2 Q, this implies that  
Q
=  0 and [ ] = [ 0], proving h is injective. This

implies that ~f = g � h is a well de�ned injective function from V to ��. Clearly, we have that

j��j �
��� ~f (V )��� � j[0; 1]j. Since (S;�) is a standard Borel space and Q is convex and jQj � 2,

we also have that j[0; 1]j � j��j � jQj � j[0; 1]j. This implies that jV j =
��� ~f (V )��� = jQj, proving

the statement. �

B.4 Analysis of the decision criterion: missing proofs

The proof of Proposition 1 follows from the following lemma. Here, as usual, � is extended to

R by setting � (t) = +1 if t =2 [0;1). In particular, �� is non-decreasing.

Lemma 15 For each Q � �� and each � > 0,

inf
p2�

�Z
u (f) dp+ � inf

q2Q
D�(pjjq)

�
= � inf

q2Q
sup
�2R

�
� �

Z
��
�
� � u (f)

�

�
dq

�
for all u : X ! R and all f : S ! X such that u � f is bounded and measurable.

Proof By Theorem 4.2 of Ben-Tal and Teboulle (2007), for each q 2 �� it holds

inf
p2�

�Z
�dp+D�(pjjq)

�
= sup

�2R

�
� �

Z
�� (� � �) dq

�
for all � 2 L1 (q). Then, if u�f is bounded and measurable, from u�f 2 L1 (q) for all q 2 ��,

it follows that

inf
p2�

�Z
u (f) dp+ �D�(pjjq)

�
= � inf

p2�

�Z
u (f)

�
dp+D�(pjjq)

�
= � sup

�2R

�
� �

Z
��
�
� � u (f)

�

�
dq

�
for all � > 0, as desired. By taking the inf over Q on both sides of the equation, the statement

follows. �
Proof of Proposition 1 In view of the last lemma, it is enough to observe that, if f : S ! X

is simple and measurable, then u� f is simple and measurable for all u : X ! R and the in�ma
are achieved. �
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Proof of Proposition 2 First, note that minq2QR (pjjq) = 0 if and only if p 2 Q. Indeed, we
have that

min
q2Q

R (pjjq) = 0 () 9�q 2 Q s.t. R (pjj�q) = 0 () 9�q 2 Q s.t. p = �q

De�ne �n = n for all n 2 N. For each n 2 N, we have �nminq2QR (pjjq) = 0 if and only if

p 2 Q. So, for each p 2 �,

lim
n
�nmin

q2Q
R (pjjq) =

(
0 if p 2 Q
+1 if p 62 Q

Since �nminq2QR (pjjq) = 0 for each n 2 N if and only if p 2 Q, by Proposition 12 of Maccheroni
et al. (2006) we have

lim
n
min
p2�

�Z
u (f) dp+ �nmin

q2Q
R (pjjq)

�
= min

q2Q

Z
u (f) dq 8f 2 F

Finally, by (18), we have that for each f 2 F

min
q2Q

Z
u (f) dq � lim

n
min
p2�

�Z
u (f) dp+ �nmin

q2Q
R (pjjq)

�
� lim

�"1
min
p2�

�Z
u (f) dp+ �min

q2Q
R (pjjq)

�
� min

q2Q

Z
u (f) dq

yielding the statement. �
Proof of Proposition 6 (i) implies (ii). By Proposition 2 of Cerreia-Vioglio (2016) and since
%� is unbounded, there exists a compact and convex set C � � and an a¢ ne and onto map

u : X ! R such that

f %� g ()
Z
u (f) dq �

Z
u (g) dq 8q 2 C (44)

and

f % g () min
q2C

Z
u (f) dq � min

q2C

Z
u (g) dq (45)

By Lemma 5 and since % is subjectively Q-coherent and %� and % coincide on X, we can

conclude that C = Q. If we set c : ��Q! [0;1] to be c (p; q) = �fqg (p) for all (p; q) 2 ��Q,
then it is immediate to see that c is a variational statistical distance for Q. By (44) and (45)

and since C = Q, (12) and (13) follow.

(ii) implies (i). It is trivial. �
Proof of Proposition 8 (i) Let f̂ 2 F be optimal. By (23), if there is g 2 F such that

g ���Q f̂ , then g �Q f̂ , a contradiction with f̂ being optimal. We conclude that f̂ is weakly
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admissible. A similar argument proves that there is no g 2 F such that g ��Q f̂ when (24)

holds.

(ii) Suppose f̂ 2 F is the unique optimal act, that is, f̂ �Q f for all f 2 Fn
n
f̂
o
. If g 2 F is

such that g ��Q f̂ , then g 6= f̂ and g %Q f̂ . In turn, this implies g %Q f̂ �Q g, a contradiction.

We conclude that f̂ is admissible. �
Proof of Proposition 9 Since Q � Q0, it follows that minq2Q c (p; q) � minq2Q0 c (p; q) for all
p 2 �. We thus have

min
p2�

�Z
u (f) dp+min

q2Q
c (p; q)

�
� min

p2�

�Z
u (f) dp+min

q2Q0
c (p; q)

�
8f 2 F

yielding that v (Q) � v (Q0). Next, �x Q and assume that the sup in (26) is achieved. Let
�f 2 F be such that

min
p2�

�Z
u
�
�f
�
dp+min

q2Q
c (p; q)

�
= v (Q)

By contradiction, assume that �f 2 F=F �Q. By Proposition 5 and since �f 62 F �Q and �f 2 F , there
exists g 2 F such that g ���Q �f , that is, there exists " > 0 such that

min
p2�

�Z
u (g) dp+ c (p; q)

�
� min

p2�

�Z
u
�
�f
�
dp+ c (p; q)

�
+ " 8q 2 Q

Since g is �nitely valued, this implies that v (Q) <1 and

v (Q) � min
p2�

�Z
u (g) dp+min

q2Q
c (p; q)

�
= min

p2�
min
q2Q

�Z
u (g) dp+ c (p; q)

�
� inf

q2Q
min
p2�

�Z
u (g) dp+ c (p; q)

�
� inf

q2Q
min
p2�

�Z
u
�
�f
�
dp+ c (p; q)

�
+ "

� min
p2�

min
q2Q

�Z
u
�
�f
�
dp+ c (p; q)

�
+ " = min

p2�

�Z
u
�
�f
�
dp+min

q2Q
c (p; q)

�
+ "

= v (Q) + "

a contradiction. �
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