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Abstract. We posit a standard model of an asymmetric double auction with interde-

pendent values in which each trader observes a private signal about a hidden state before

submitting a bid or ask price for a unit demand or supply. The state and signals are

one-dimensional, traders’ signals are independent conditional on the state, and their distri-

butions have the strict monotone likelihood ratio property. The model encompasses auctions

by allowing sellers to be non-strategic. We study a version in which there are n replicates

of each type of trader, with each replicate observing a signal drawn independently from

the same conditional distribution as the original trader of that type, and all traders of the

same type using the same strategy. The limit economy with a countable set of traders has

a unique Walrasian equilibrium, whose clearing price reveals the state. If this equilibrium

is totally monotone in that each buyer’s (resp. seller’s) probability of trading decreases

(resp. increases) with the state, then the limit auction has a monotone equilibrium yielding

the Walrasian price as the clearing price. We present four asymptotic results as n grows

large: (1) a sequence of monotone strategies comprises epsilon-equilibria iff limit points

are monotone equilibria of the limit auction; (2) for a sequence of monotone strategy pro-

files converging to a monotone equilibrium, the Strong Law of Large Numbers for prices

holds, in that the sequence of price functions converges a.s. to the price function of the

limit equilibrium; (3) if the effect of the state on traders’ valuations is symmetric (around

the equilibrium) then large but finite auctions have monotone equilibria whose outcomes

approximate the Walrasian equilibrium outcome when bidders are restricted to sufficiently

fine bid-grids; and (4) the same conclusion holds true without the symmetry assumption

when we discretize the state space as well. Total monotonicity seems to be crucial: an

example has a Walrasian equilibrium that is not the outcome of a Nash equilibrium of an

auction.

1. Introduction

Since the initial articles by Wilson [25] and Milgrom [16], the literature on large auctions

has sought to establish foundations for rational expectations equilibria and information rev-

elation in markets resulting from strategic behavior in auctions with large numbers of partic-

ipants. Substantial positive results were obtained in the case of private values or symmetric

players with interdependent values (building on the seminal contribution of Milgrom and
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Weber [17]) by, among others, Rustichini, Satterthwaite, and Williams [23], Wilson [26], Pe-

sendorfer and Swinkels [18] and [19], Cripps and Swinkels [2], Fudenberg, Mobius, Szeidl [4],

and Siga and Mihm [24].1 The asymmetric case with interdependent values presented a

technical obstacle: as shown by Reny and Zamir [22] and Reny and Perry [21], best-replies

to monotone strategies need not be monotone due to a failure of the single-crossing prop-

erty; and therefore one cannot establish the existence of monotone equilibria using standard

fixed-point methods. This imposed a hurdle to obtaining asymptotic results that rely on

limits of sequences of equilibria in monotone strategies. Reny and Perry [21] circumvented

this problem by first taking the limit of the equilibria of a sequence of double auctions with

symmetric buyers and symmetric sellers and increasingly finer discrete sets of bids, and then

taking the limit as the set of bidders approaches the continuum, relying on the fact that

failure of single crossing property becomes an increasingly less severe problem as the number

of players grows large.2 This is a remarkable achievement, but the assumption of symmetry

among buyers and sellers is strong, and the question of whether large auctions provide foun-

dations for rational expectations equilibria under more general conditions remained open. In

this paper, we make some progress in addressing this question by allowing for heterogeneity

among both buyers and sellers.

We consider an auction Γ with finite sets I0 and I1 of buyers and sellers, with unit demand

and supply, respectively, and all trades are at the market clearing price selected by a fixed

rule. The sellers are either all strategic as in a double auction or passive as in an auction. The

set of states of the world is an interval Ω and each player i receives a signal xi from an interval

according to a probability distribution Pi(· |ω) conditional on each state ω ∈ Ω. These

conditionals are independent across players and each satisfies the strict monotone likelihood

ratio property (MLRP), i.e. higher signals indicate higher states. Player i’s valuation of a unit

is a function vi that depends only on the state ω and his signal xi, and it is weakly increasing

in ω and strictly increasing in xi. By allowing for asymmetric players, this generalizes the

model in Reny and Perry [21].

For each positive integer n, define the game Γn that is an n-fold replica of Γ, i.e., there are

n agents of each type i. We consider two limit objects as n increases to infinity, both with

a countable set of agents. One is a competitive economy E∞ where the demand function

is defined using the limit-of-means criterion; and the other is a Bayesian game Γ∞. The

competitive economy has a unique rational expectations Walrasian equilibrium (REE); and

1In a common-values setting with finitely many signals and states, [24] indicate how one would extend
their analysis to allow for asymmetric distributions; their remarks do not apply to the case of interdependent
values.

2See also Kazumori [11], who allows for multiple units of demand or supply.
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under this equilibrium the clearing price φ∗(ω) is fully revealing, i.e. the price is a strictly

monotone function of the state ω. In general, the payoffs in the game Γ∞ are not well-defined

for arbitrary strategies, but if all players of the same type i employ the same monotone

strategy then, given a profile of such strategies and given a bid for an individual player,

each player’s payoff is well-defined, which is all that is required to check if a strategy profile

constitutes a Nash equilibrium. As an example in Section 8 shows, Γ∞ may not have a

Nash equilibrium. The reason is that while the REE price function is monotone, the cut-off

signals for who gets to trade in each state need not be monotone. When the REE satisfies

this stronger property, called total monotonicity, then Γ∞ has a unique monotone Nash

equilibrium σ∗, and the clearing prices coincide with φ∗. Existence of a Nash equilibrium

in these limit auctions is robust, since a sufficient condition for total monotonicity is that

traders’ valuations satisfy an average-crossing property in the sense of Krishna [13].

The limit economy and the limit game invoke countable sets of players, rather than a

continuum as in most prior work. This enables meaningful interpretation of convergence of

the games Γn to Γ∞ because Γn can be viewed as a game with the same player set as Γ∞,

but where the players in Γ∞ who are not in Γn are dummy players.3

Linking the games Γn and Γ∞ enables our main results. First, we get an upper semi-

continuity property. The limit of (not necessarily strictly) monotone strategy profiles of

Γn, under pointwise convergence, is a Nash equilibrium of Γ∞ iff the sequence comprises

epsilon-equilibria. Moreover, if the limit equilibrium induces the REE price function, we get

a Strong Law of Large numbers (SSLN, henceforth) result for this convergence, namely for

a.e. ω, the market clearing price of Γn, conditional on ω, represented as a random variable

defined on the space of all signals in Γ∞ to clearing prices, converges pointwise to the REE

(in contrast with the usual statement of convergence in measure as in a weak law of large

numbers). If the convergence of ε-equilibria is uniform and at a rate o(n−
1
2 ), we also obtain

a Central Limit Theorem (CLT) for prices.

Restricting traders to finite grid of bids, we obtain, under total monotonicity, two results

establishing existence of an equilibrium for Γn for sufficiently fine bid-grids. First, if the

effect of the state on each agent’s valuation is symmetric along the REE manifold, then for

each sufficiently fine grid of bids, Γn has an equilibrium with this bid space. Second, we can

dispense with this symmetry assumption by also discretizing the state space, provided that

the grid on the signals of the players is somewhat finer than the grid on the state space.

3Our approach follows the tradition of replica economies of Debreu and Scarf [3] rather than Aumann’s [1]
formulation with a continuum of agents. Such a formulation appears to be better suited for the analysis of
limits of finite-player Bayesian games, in light of the well-known difficulties associated with models involving
a continuum of random variables.
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Prices under these bid-grid equilibria converge to the REE as the grid sizes converge to zero,

but unfortunately, for these equilibria, the rate of convergence falls outside the range for

which the CLT holds.

To obtain the first result on the existence of bid-grid equilibria, we proceed as follows.

When the bid grid is fine, the difference equations induced by the first-order conditions

in Γ∞ are perturbations of the first-order conditions when players can bid without this

restriction. The fact that the limit equilibrium is unique allows us to apply degree theory

to establish that these difference equations have a solution. For large n, the corresponding

difference equations for Γn are a small perturbation of the ones for the limit, giving us a

solution for these games. Finally, the fact that a solution of these equations induces an

equilibrium follows from an argument that appeals to a single-crossing property.

For the second existence result, when the state and signal spaces are discretized as well,

we first use a fixed-point map for the limit economy to identify a potential limit equilibrium.

Then, for each n, using again a simple fixed-point argument, we obtain an equilibrium of a

game where players are restricted to a subset of monotone strategies that are in a prescribed

neighborhood of the identified limit. For large n, we then show that this restriction has no

bite, giving us a kosher equilibrium of this finite approximation of Γn.

What prevents us from applying the logic of the approach used for our first result on

bid-grid equilibria to directly solve the differential equations for Γn and thus obtain an

equilibrium without restricting the strategy space? After all, the first-order conditions for

Γn are, intuitively speaking, “small” perturbations of those for Γ∞. The main problem

is that the first-order conditions for Γ∞ are functional equations in the inverse bidding

strategies, while their counterparts for Γn are implicit differential equations involving the

inverse bidding functions and their derivatives. Given that it is difficult to derive an explicit

differential equation expressing the derivative of the signals (that is the derivative of the

inverse bidding function) as a function of the bid—even in a neighborhood of the limit

equilibrium, which is the logical place to search for an equilibrium—the technical tool to

leverage the robustness idea is the implicit function theorem for functional spaces. But

posed this way, we encounter what is well-known in the literature of differential equations as

the loss-of-derivatives problem. The equations defining the first-order-conditions for Γn send

functions that are r-times differentiable to those that are (r − 1)-times differentiable. The

solution to this problem, provided by the Nash-Moser Theorem (see Hamilton [8]), which is

a version of the inverse function theorem for Fréchet spaces, is to work in the (Fréchet) space

of smooth functions. Alas, in our case, even in this space, we cannot invoke the implicit

function theorem: the (Gâteaux) derivative of the equations for Γn do not represent a small
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perturbation of the corresponding derivative for Γ∞ unless we have a tame (i.e. a controlled)

rate at which the norms of the derivatives of the functional variables in the equation system

grow. Restricting the domain of the search to functions with such bounds—which is in effect

a compact set—renders the implicit function theorem inapplicable.4

The assumption of total monotonicity seems key to establishing a link between strategic

equilibria and competitive equilibria. However, there is an open set of economies on which

this property is false, which seems to be a negative result for the project of providing strategic

foundations for the formation of competitive prices. However, these results can also be viewed

as negative for the theory of auctions, since some economies where equilibria fail to exist seem

to be otherwise well-behaved (cf. Section 8). Perhaps, one could argue that the assumption

of finitely many types, along with the focus on type-symmetric strategies, injects an element

of atomicity into the game (even at the limit) and thus the strategic effects do not truly

disappear in the limit. However, without the finiteness assumption, the stochastic model on

which we build our theory of large auctions does not seem to be well-founded.

2. Model

We start with an auction or a double auction Γ and then we consider a sequence of auctions

obtained by replicating the agents in Γ. The game Γ is as follows. The set of buyers is I0 and

the set of sellers is I1. Buyers have unitary demand and each seller has a unit to sell. The

buyers are all strategic agents. In the case of an auction, the sellers are non-strategic; and in

the case of a double auction they are strategic. We let I be the set of strategic agents, called

the players in Γ: thus I equals I0 for an auction and it is I0 ∪ I1 in a double auction. Using

| · | to denote cardinality of a set, let m1 = |I1| be the number of sellers, with 1 6 m1 < |I|.
Let m0 = |I| −m1, µ1 = m1|I|−1, and µ0 = 1− µ1.

The set of unobserved states of the world is Ω ≡ [0, 1]. For each player i, let Xi ≡ [0, 1]

be his space of signals with typical element xi; let X ≡
∏

i∈I Xi, with typical element x, and

let ∂X denote the boundary of X. Let P be the probability distribution over Ω × X. For

each i ∈ I and ω ∈ Ω, let Pi( · |ω) be the probability distribution over Xi conditional on ω,

and let P ( · |ω) be the conditional distribution over X. Denote by P0 the marginal on Ω.

For each player i, the valuation of a unit is given by a function vi : Ω×Xi → R+. We make

the following assumptions on P and vi.

Assumption 2.1. The prior P satisfies the following conditions.

4There is a secondary problem that we have to confront: since in an asymmetric game, the strategies of
the players typically do not have the same support, equilibria tend to be only piecewise-differentiable; but
this issue has a fix, via piecewise-smooth maps.
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(1) P has a continuously differentiable and strictly positive density p.

(2) The conditional distributions Pi( · |ω) over the xi’s given ω are independent, i.e.,

p(x |ω) is the product of the densities pi(xi |ω), i ∈ I, of Pi(xi |ω).

(3) pi(xi |ω) satisfies strict MLRP for each i.

Given the above assumption, we can view P ( · |ω) as the conditional CDF and thus write

P (x |ω) for P (
∏

i[0, x] |ω), and Pi(xi |ω) for Pi([0, xi] |ω).

Assumption 2.2. For each i, the valuation vi satisfies the following conditions:

(1) it is non-negative and twice-continuously differentiable;

(2) ∂vi(ω,xi)
∂ω

> 0 and ∂vi(ω,xi)
∂xi

> 0.

Loosely speaking, the next assumption, which is in two parts, is a non degeneracy as-

sumption. The first part—which requires that there be some state of the world where for

each player type, the probability of trade in that state is strictly between 0 and 1 in the

limit economy—is assumed for simplicity in exposition; the second part, which stipulates

that the probability of trade is nonconstant for at least one player type, is more substantive

and will be shown to guarantee the existence of a non-trivial competitive equilibrium in the

limit economy.

Assumption 2.3. The prior and the valuations jointly satisfy the following conditions.

(1) There exists x ∈ X \ ∂X and ω ∈ Ω such that:

(a)
∑

i Pi(xi |ω) = m0;

(b) vi(ω, xi) = vj(ω, xj) for all i, j.

(2) There do not exist ω, x and J1 ⊆ I such that |J1| = m1, and vi(ω, 0) > vj(ω, 1) for

all i ∈ J1, j /∈ J1.

The game Γ is played as follows. A tuple (ω, x) of the state of the world (ω) and a profile

of signals (x) is drawn according to P . Each player i is informed of his coordinate xi and

then submits a number bi ∈ R+ simultaneously with the others. If i is a buyer, bi is his bid,

while if he is a seller, it represents his ask. The bi’s are then ordered b(1) > · · · > b(|I|), where

b(k) is the k-th highest number. Each buyer with a bid that is b(m1) or higher gets to buy

an object; in a double auction, each seller with an ask below b(m1) gets to sell an object. In

the event of a tie, i.e. b(m1) = b(m1+1), allocations are made randomly among those tied. The

price at which trade occurs is αb(m1) + (1− α)b(m1+1), where 0 6 α 6 1. Bidder i’s ex post

payoff if he wins an object at a profile x ∈ X of signals is vi(ω, xi)− b, where b is the price

paid; and a seller i’s ex post payoff is b− vi(ω, xi).
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A pure strategy for a player i ∈ I is a measurable map σi : Xi → R+. It is said to be

monotone if σi(xi) > σi(yi) whenever xi > yi, and it is strictly monotone if the inequality is

strict. By an equilibrium we mean a Nash equilibrium of the corresponding Bayesian game,

and by a monotone equilibrium we mean an equilibrium in monotone strategies.5 Formally,

given a strategy profile σ, for each i and xi, bidder i’s expected payoff from bid bi for him

can be written as

πi(bi, σ;xi) =

∫
Ω

τi(b, ω, σ)[vi(ω, xi)− %i(bi, ω, σ)]dP (ω |xi)

where τi(b, ω, σ) is the probability that i trades in ω if he bids b and others play according to

σ, with %i(·) being the expected clearing price for this event. The payoff for a seller is defined

analogously. Now, σ is an equilibrium if for every i and for a.e. xi under the marginal of P

on Xi,

πi(σi(xi), σ;xi) > πi(bi, σ;xi)

for each bi ∈ R+.

For each n = 1, 2, . . ., we define an auction Γn as an n-fold replica of Γ. Specifically, the

set of players is In, which has n|I| players, where each player-type i ∈ I has n players of that

type, indexed by (i, 1), . . . , (i, n); and there are µ1|In| objects for sale.6 The set of states

of nature remains Ω but the signal space is Xn, the n-fold product of X. The distribution

P n over Ω × Xn is generated by the distribution P0 on Ω, as in Γ, and the conditionally

independent distributions P(i,m)(x(i,m) |ω), for (i,m) ∈ In, where for each i, the distributions

are the same for all 1 6 m 6 n and equal the distribution Pi(xi |ω) of the game Γ. The

rules of the game Γn are as in Γ.

3. The Limit Economy

At the limit we can define both a competitive economy, E∞, as we do in this section, and

an auction, Γ∞, as in the next section. E∞ has a denumerable set of agents, I∞ ≡ limn↑∞ I
n.

Let X∞ = X ×X × · · · , where X =
∏

i∈I Xi is the space of signals in the game Γ. An agent

will be denoted by a pair (i, n), i ∈ I and n = 1, . . ., where i is his agent-type and n is

the index of the agent in the infinite set of agents of type i. Each seller has one unit to

sell and each buyer wants one unit. The valuation of agent (i, n) is given by the function

vi(ω, xi). Let O be the Borel σ-algebra on Ω; and let X∞ be the product σ-algebra on

X∞, using the Borel σ-algebra on each factor. Let P ∗ be the probability distribution over

5In this paper, we focus on monotone pure strategies, but we remark at appropriate points in the other
sections on the implications of considering (mixed) behavioral strategies.

6We keep the fraction µ1 independent of n for simplicity in notation. We could allow for a ratio µ1(n)
that depends on n, so long as there is a well-defined limit that is strictly between 0 and 1.
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(Ω × X∞,O ⊗ X∞) for which P0 is the marginal on Ω and for each ω, conditional on ω,

the distribution over X∞ is a product distribution with the distribution over Xi,n being the

same for all agents of type i and given by Pi( · |ω).

A state of the economy is given by (ω, x∞): it is a full description of the environment

(the state ω) and traders’ personal tastes (encoded in the signals xi). A price map is a

measurable function φ : Ω→ R+. Given φ, the valuation of the object for agent (i, n) with

signal xi is the measurable function E(vi(·, xi) ‖φ) : Ω→ R+, where the expectation is w.r.t.

Pi( · |xi) and is conditional on the σ-algebra generated by the price function φ. Observe that

this expectation is strictly monotone in xi, since vi is strictly increasing in xi and Pi( · |xi)
satisfies MLRP; moreover, it is continuous differentiable in xi as well. Consumer i’s demand

Di(ω, xi, φ) is 1 or 0 depending on whether E(vi(·, xi) ‖φ)(ω) is greater or smaller than φ(ω).

(Indifference occurs for at most one signal xi.) If the game Γ is a double auction, then

Di(ω, xi, φ) of a seller i is −1 or 0 depending on whether his expected value is smaller or

greater than φ(ω).

Given φ, excess demand is a function Z(ω, x∞, φ) defined for each state of the economy

(ω, x∞) by

Z(ω, x∞, φ) = lim
n→∞

1

n

∑
(i,k)∈In

Di(ω, xi,k, φ)

if Γ is a double auction, and

Z(ω, x∞, φ) = lim
n→∞

1

n

∑
i∈In

Di(ω, xi,n, φ)−m1

if Γ is an auction.

Lemma 3.1. For each price function φ, the excess demand function is well-defined for P ∗-a.e.

(ω, x∞).

Proof. Fix a price function φ and a state ω. Let xi(φ, ω) be zero (resp. one) if vi(ω, 0) >

E(vi(·, 0) ‖φ)(ω) (resp. vi(ω, 1) < E(vi(·, 1) ‖φ)(ω)); otherwise, let it be the unique xi for

which vi(ω, xi) = E(vi(·, xi) ‖φ)(ω). For a buyer (resp. seller) i, the demand Di(ω, xi, φ)

is 1 (resp. 0) iff xi > xi(φ, ω). By SLLN, Z(ω, x∞, φ) equals m0 −
∑

i∈I Pi(xi(φ, ω) |ω) for

P ∗-a.e. (ω, x∞). �

Say that a price function φ is a Rational Expectations Equilibrium (REE) if Z(ω, x∞, φ) = 0

for P ∗-a.e. (ω, x∞). Furthermore, it is fully revealing if φ is a strictly increasing function of

ω. By MLRP of the prior, for each i and xi, P (xi |ω) is strictly decreasing in ω. Therefore,

it follows from the computation of Z in the proof of the previous lemma that every REE
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is fully revealing. We will now show that E∞ has a unique REE. To do that we need a

preliminary lemma.

Let M∗ be the set of (ω, x, b, λ0, λ1) ∈ Ω×X × R+ × RI
+ × RI

+ such that:∑
i∈I Pi(xi |ω)−m0 = 0

vi(ω, xi)− b− λ0,i + λ1,i = 0 ∀i
xiλ0,i = 0 ∀i

(1− xi)λ1,i = 0 ∀i

These equations characterize equilibrium prices. To see this, let φ be a price map. Fix

ω ∈ Ω and let φ(ω) = b. For each i, let xi be the “cut-off” type determining demand (or

supply). Let λ0,i = vi(ω, xi)− b if xi = 0 and zero otherwise; similarly, let λ1,i = b− vi(ω, xi)
if xi = 1 and zero otherwise. Then it is simple to verify that b is a market clearing price iff

(ω, x, b, λ0, λ1) solves the above system.

Lemma 3.2. The natural projection from M∗ to Ω is 1-1 and onto—thus, M∗ is a con-

nected 1-manifold. Moreover, M∗ is monotonic in b, in the sense that if (ω, x, b, λ0, λ1) and

(ω′, x′, b′, λ′0, λ
′
1) belong to M∗ and ω < ω′, then b < b′.

Proof. We first show that the projection from M∗ to Ω is one-to-one. Suppose not. Then

we can take two different points (ω, xk, bk, λk0, λ
k
1), k = 1, 2, in M∗. Obviously x1 6= x2.

Assume w.l.o.g. that b2 > b1. By condition (2) of Assumption 2.3, the set J1 of types j

for whom 0 < x1
j < 1 is nonempty. Now, x2

j > x1
j for all j ∈ J1 as b2 > b1. Because∑

i∈I Pi(x
k
i |ω) = m0 for each k, there exists some i for which x2

i < x1
i . Necessarily this

i /∈ J1 and thus x1
i = 1 but x2

i < 1. Then vi(ω, x
2
i ) > b2 > b1 > vi(ω, 1), which violates

condition (2) of Assumption 2.2. Thus the projection map is one-to-one.

Next we show thatM∗ is monotone in b. Given two points (ωk, xk, bk, λk0, λ
k
1), k = 1, 2, in

M∗ with ω1 < ω2, observe that there exists some i such that 0 6 x1
i < x2

i 6 1. For this i,

then b1 6 vi(ω
1, x1

i ) < vi(ω
2, x2

i ) 6 b2 and we get the monotonicity property for b.

M∗ is nonempty by condition (1) of Assumption 2.3. Thus the lemma is proved if we show

that M∗ is a connected 1-manifold with boundary points projecting to the boundary of Ω.

Assume to begin with that the valuations vi and the prior P satisfy the following regularity

condition, which holds generically in the space of valuations and priors. The set of solutions

(ω, x) to every subcollection of equations derived from the following set of equations is a

manifold, and these manifolds are pairwise transverse.

vi(ω, xi)− vj(ω, xj) = 0∑
i∈I Pi(xi |ω)−m0 = 0

xi ∈ { 0, 1 }
ω ∈ { 0, 1 }
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Take (ω, x, b, λ0, λ1) ∈M∗. If for no i is it the case that xi = λ0,i = 0 or 1−xi = λ1,i = 0, then

the submatrix of the Jacobian at this point obtained by deleting the column corresponding

to the derivative w.r.t. ω is nonsingular, with an upper bound on the norm of its inverse

that depends only on the C1 norm of the vi’s and P . This gives us, locally, the manifold

property, and the inverse of the projection is locally C1 with a bound on its derivative that

depends only on the C1 norm of (v, P ).

Suppose now that we are at a singular point, where, say, xi = 0 and λ0,i = 0 for some

i. (The other case where for some i, xi = 1 and λ1,i = 0 is similar.) By our regularity

assumption this is the only coordinate where both x and λ are zero. Consider now the

following two systems of equations derived from our original system: in the first, we set

xi = λ1,i = 0 but retain λ0,i as a variable (along with the variables for the other types); and

in the second, we set λ0,i = λ1,i = 0 but retain xi as a variable. Ignoring the non-negativity

constraints, each system has a unique 1-manifold of solutions, parametrized by the state in an

ε-interval around ω. For each system, the continuation violates the non-negativity constraint

(for λ0,i or xi) on one half of the interval and satisfies it on the other half. Moreover, since

the projection to Ω is one-to-one, the side on which the constraint is satisfied cannot be the

same for the two systems. Thus the solution to one of the systems over (ω − ε, ω] and the

other over [ω, ω + ε) gives us the manifold structure locally, and an upper bound on the

derivatives for each of the two pieces. This proves the result in the generic case.

Now consider the general case. The inverse of the projection function in the generic case,

which is piecewise differentiable, is a Lipschitz function with a constant that depends on

the C1 norm of the valuations and the prior. Take now a sequence (vk, P k) of functions

that are generic in the above sense and converging in the C1 norm to (v, P ). For each

k, there is a manifold Mk of solutions from the previous paragraph. The inverse of the

projection is Lipschitz with a uniform bound on the constant (given the convergence of

the sequence (vk, P k)). Hence there exists a convergent subsequence for which the inverse

functions converge. The graph of the limit function is M and, of course, it projects onto

Ω. �

The proof above shows that when valuations and the prior are generic, the inverse of the

projection is piecewise-C1, with a bound on the derivatives that depends continuously on

(v, P ). The manifold M∗ is then piecewise-C1 as well.

Define a function φ∗ : Ω → R+ as follows. For each ω, there exists a unique point

(ω, x, b, λ0, λ1) in M∗; φ∗(ω) = b for this ω. Obviously φ∗ is a continuous and monotone

function. We now have the following theorem, whose proof is obvious.
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Theorem 3.3. φ∗ is a fully-revealing REE; moreover it is the unique REE.

From the equilibrium manifold, we can derive a function χ∗ : Ω → X by setting it to

be the unique x for which (ω, x, φ∗(ω), λ0, λ1) ∈ M∗ for some (λ0, λ1). For each ω, and i,

χ∗i (ω) represents the cut-off type for whether i gets to trade or not. While φ∗ is monotone

in ω, the functions χ∗i need not be. For the limit auction to have a monotone equilibrium,

we need these functions χ∗i to be monotone as well. And, for asymptotic results concerning

auctions, we require a slightly stronger property to hold, which is basically that even at a

point (ω, x, b, λ0, λ1) ∈M∗ where some xi is 0 or 1, the corresponding λ0
i (resp. λ1

i ) is locally

strictly decreasing (resp. increasing). We now state this property formally below, where >L

is the lexicographic ordering on vectors.

Definition 3.4. An REE φ∗ is totally monotone if for each pair (ωk, xk, bk, λk0, λ
k
1), k = 1, 2

of points in M∗ with ω1 < ω2, we have that for each i, (x2
i ,−λ2

0, λ
2
1) >L (x1

i ,−λ1
0, λ

1
1).

When valuations are private or if the game is symmetric, the REE of the economy is

totally monotone. But more generally, we present a sufficient condition for totally monotone

equilibria that is reminiscent of the average-crossing condition introduced by Krishna [13].

Define a function Q∗ : X → Ω as follows. Q∗(x) is 0 (resp. 1) if
∑

i Pi(xi | 0) (resp.∑
i Pi(xi | 1)) is smaller (resp. greater) than m0; otherwise it is the unique ω such that∑
i Pi(xi |ω) = m0. Q∗ is a piecewise-C2 function. Now we can define a “reduced form”

valuation v∗i : X → R for each i by: v∗i (x) = vi(Q
∗(x), x). We say that v∗ satisfies the

average-crossing property if for all i, j 6= i and x (s.t. Q∗ is differentiable),

|I|
∂v∗j (x)

∂xi
<
∑
k∈I

∂v∗k(x)

∂xi
.

We now have the following proposition.

Proposition 3.5. If v∗ satisfies the average-crossing property then the REE is totally mono-

tone.

Proof. Fix (ω, x, b, λ) ∈ M∗. Let I∗ be the set of i such that vi(ω, xi) = b. Let A be the

I∗ × (I∗ + 2) matrix obtained by the derivatives of the equations for players i ∈ I∗ with

respect to the variables xi for i ∈ I∗ along with ω and b. Let A∗ be the matrix obtained

by eliminating the column for ω and adding to each column i the column corresponding to

ω scaled by ∂Pi(xi |ω)
∂xi

(
∂
∑
j Pj(xj |ω)

∂ω

)−1

. Then we solve for A∗(ẋI∗ , ḃ) = 0 where (ẋI∗ , ḃ) is an

(|I∗| + 1)-column vector with ḃ = 1. By the average-crossing property, there is a unique

solution, which has the property that ẋI∗ � 0. Using the average-crossing property again,
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we get that for i /∈ I∗, ∂vi(ω,xi)
∂ω

η < 1 where η =
∑

i∈I∗
∂Pi(xi |ω)

∂xi
ẋi

(
∂
∑
j Pj(xj |ω)

∂ω

)−1

. Thus, over

a small interval [ω, ω + ε), the x∗i ’s are strictly increasing for i ∈ I∗, constant for i /∈ I∗, and

the λi’s for i /∈ I∗ have the required monotonicity property, which completes the proof. �

While it is simpler to state the average-crossing property as a global condition, what is

required for the results to go through is that the property holds in a neighborhood of the

manifold M∗.

4. The Limit Auction

We now define a limit-game, Γ∞, with player set I∞. The state space Ω × X∞ and the

probability measure P ∗ are as in the previous section. A pure strategy for player (i, n) is

a measurable map from Xi to bids. We restrict ourselves to type-symmetric strategies, i.e.

players of the same player-type i play the same strategy. Payoffs will be defined for each

player and each bid of this player against a profile of his opponents and that is enough to

determine whether a profile is an equilibrium. We show that if the REE is totally monotone,

it is also the outcome of a pure monotone equilibrium. Also, under average-crossing, this is

the unique Nash equilibrium outcome in monotone pure strategies.

A type-symmetric strategy profile can be represented by σ ≡ (σi)i∈I , where σi is strategy

of all players of type i. Given a profile σ, we now define the payoffs to a type xi of player i

when he bids b. First, the profile σ induces, through σ, a distribution β∞(· |ω, σ) over the

bids by the formula:

β∞(B | ω, σ) = |I|−1
∑
i

Pi(σ
−1
i (B) |ω).

for every measurable set B of bids. Let

%∞(ω, σ) ≡ sup { b | β∞([0, b] | ω, σ) 6 µ0 },

with the convention that the supremum of the empty set is 0. If σ is monotone, then as P

satisfies MLRP, %∞( · , σ) is a weakly monotone function of ω. We could also use a “dual”

formula for the market-clearing price that uses the infimum over all bids where supply exceeds

µ1 (or indeed any convex combination of those), without changing the results.

For a player i who is a buyer (resp. seller) define τ∞i (b, ω, σ) to be 1 (resp. −1) if b is

strictly greater (resp. strictly smaller) than %∞(ω, σ); if b is strictly smaller (resp. strictly

larger) than %∞(ω, σ) for a buyer (resp. seller) let τ∞i (b, ω, σ) = 0; otherwise let it be defined

by the equation β∞({ b } |ω, σ∞)τ∞i (b, ω, σ) = µ1− β∞((b,∞) |ω, σ) if i is a a buyer, and by

the equation β∞({ b } |ω, σ)τ∞i (b, ω, σ) = β∞([0, b) |ω, σ)− µ0 i is a seller. Observe that if b

is not an atom of σi for any i then the choice of τ∞(ω, σ) for b = %∞(ω, σ) is payoff-irrelevant.
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The payoff to player i of type xi from a bid b against σ is given by:

π∞i (bi, σ;xi) =

∫
Ω

τ∞i (bi, ω, σ)[vi(ω, xi)− %∞(ω, σ)]dP (ω |xi).

Call a strategy profile σ trivial if for each i, the function τ∞i (σ∞(·), ·, σ) : Ω×Xi → [0, 1]

is constant. If a strategy profile is monotone, then it is trivial iff there exists a subset J

with |J | = m1 such that player-types in J are allocated the object with probability one.

In particular, if Γ is a double auction, nontriviality rules out the possibility that no trade

occurs—as for instance a strategy profile where sellers have a very high ask and buyers make

a very small bid and no trade takes place.

Our first result shows that when the economy E∞ has a totally monotone REE, the

corresponding game Γ∞ has a monotone and nontrivial equilibrium with the same clear-

ing prices as in the REE. To identify this Nash equilibrium, we use the manifold M∗. If

(ω, x, b, λ0, λ1) ∈ M∗, then we define the bid of type xi to be b. We could already define an

equilibrium by extending the strategy to signals xi not covered by M∗ in a monotone, but

otherwise arbitrary, way. But anticipating our asymptotic results, we extend the manifold

in a specific way by adding pieces that project to ω = 0, 1 and then using this manifold to

construct σ∗. Let M0 be the set of (0, x, b, λ0, 0) ∈ Ω×X × R+ × RI
+ × RI

+ such that:∑
i Pi(xi | 0)−m0 6 0

vi(0, xi)− b− λ0,i = 0 ∀i
xiλ0,i = 0 ∀i

M1 is defined analogously by replacing ω = 0 with ω = 1, reversing the first inequality,

setting λ0 = 0 and using λ1. As in the previous section, it is easy to show that M0 is

a 1-manifold that has two boundary points, one of which is the boundary point of M∗ at

ω = 0 and the other is a boundary point (0, 0, b, λ0, 0) where b = mini vi(0, 0). A similar

statement holds for M1. Moreover, M0 and M1 are totally monotone themselves (even

without assuming average-crossing) since the valuations used in defining these sets have a

fixed state ω.

LetM≡M0∪M∗∪M1. Assume that φ∗ is totally monotone. For each i and 0 < xi < 1,

there exists a unique point (ω∗i (xi), x−i, xi, b
∗(xi), λ0, λ1) in M. We define a strategy σ∗i for

player i by letting σ∗i (xi) be this b∗(xi). The function extends continuously to the points

xi = 0, 1 and the resulting strategy is piecewise-differentiable. Also, the function ω∗i (xi)

extends continuously as well.

Theorem 4.1. If φ∗ is totally monotone then σ∗ is a nontrivial equilibrium of Γ∞, and

%∞(·, σ∗) = φ∗(·).



14 P. BARELLI, S. GOVINDAN, AND R. WILSON

Proof. From the construction of σ∗ it is obvious that σ∗ is monotone and nontrivial, and

that %∞(·, σ∗) = φ∗(·). There remains to show that σ∗ is an equilibrium. In the profile σ∗,

we check the incentives for a buyer, leaving out the similar argument for a seller. Take a

type xi of buyer of type i. Observe first that xi’s payoff under σ∗ is non-negative; indeed it

is given by ∫ ω∗i (xi)

0

(vi(ω, xi)− %∞(ω, σ∗))dP (ω |xi),

and the integrand is non-negative as the valuation is strictly increasing in i’s signal.

As the payoff under σ∗ is non-negative, there is no benefit to bidding outside the range

[%∞(0, σ∗), %∞(1, σ∗)]. There remains to consider a deviation to a bid b in this range. Suppose

first that b is the bid of some yi ∈ Xi. If xi > yi, then the payoff difference between bidding

σ∗(xi) and σ∗(yi) is ∫ ω∗i (xi)

ω∗i (yi)

(vi(ω, xi)− %∞(ω, σ∞))dP (ω |xi)

which is non-negative as before. A similar argument shows that xi does not have an incentive

to mimic a type yi > xi. If %∗(ω) = b > σ∗i (1) then b > vi(ω, 1) > vi(ω, xi) and there is no

incentive to bid b; likewise, with the inequalities reversed we get that there is no incentive

bid below σ∗i (0). Thus σ∗ is an equilibrium. �

We now address the issue of uniqueness of equilibria.

Theorem 4.2. Suppose that v∗ satisfies the average-crossing condition and let σ be a non-

trivial monotone equilibrium. Then for each ω ∈ Ω, %∞(ω, σ) = φ∗(ω) and σi(χ
∗
i (ω)) = φ∗(ω)

for each i.

Proof. Let σ be a nontrivial and monotone equilibrium of Γ∞. We claim that for each type i,

σi restricted to σ−1
i (%∞((0, 1);σ)), and hence also the function %∞(·, σ), is strictly increasing.

Indeed, otherwise, giving the nontriviality of σ, there exists a bid b, a type i, an interval X∗i
of Xi and an interval Ω∗ of Ω such that types in X∗i bid b, which is also the clearing price

for states in Ω∗. The expectation of vi(xi, ·) conditional on Ω∗ is strictly increasing for i.

Therefore, for a.e. signal xi the conditional expectation is either strictly greater or smaller

than b. But, the probability of trading in those states is strictly between zero and one, as σ

is nontrivial. Therefore bidding up or down a little yields a higher payoff, contradicting the

assumption that σ is an equilibrium.

We now show that, for each i, the restriction of σi to σ−1
i (%∞((0, 1));σ) and hence also %∞

is continuous. Indeed, otherwise, there exists xi and b1 < b2 that are left and right limits

of σi at xi. For k = 1, 2, there exist states ω1 6 ω2 such that b1 and b2 are the left and
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right limits of %∞ at these states. vi(ω
k, xi) = bk for k = 1, 2, from the fact that σ is an

equilibrium. Clearly then ω1 < ω2. It now follows from the average-crossing property that

%∞(ω, σ) > vi(ω, xi) for any ω ∈ (ω1, ω2], implying that b2 cannot be an optimal strategy for

xi, which is the desired contradiction.

Fix a state ω ∈ (0, 1) and let b be the clearing price in ω. For each i, if b is in the support

of σi, let xi be the signal that bids b. If b is below (resp. above) the support of σi, let xi be 0

(resp. 1). Let λ be the vector of slack-variables solving the equations for M∗. We will now

show that (ω, x, b, λ) belongs to M, which completes the proof. If b is in the support of σi,

then as σ is an equilibrium and %∞ is continuous, vi(ω, xi) = b and λi = 0. If b is below the

support of σi, we have to show that λi,0 > 0. Indeed, otherwise, it follows from the average

crossing property that vi(ω, xi) < %∞(ω, σ) on the interval [ω, ω0], where %∞(ω0, σ) = σi(0),

making σi(0) suboptimal. A similar argument applies when b is above the support of σi. �

In the game Γ∞ the strategy sets can be expanded to allow for randomizations, i.e., for

behavioral strategies. When the valuations are private, it is very easy to show that there

is a unique equilibrium in behavioral strategies, which then induces the REE outcome. In

the general case, however, even assuming the average-crossing property, it is not clear if the

REE outcome is the unique Nash outcome in behavioral strategies. In fact, we do not even

know if the REE outcome is isolated in the set of Nash outcomes. The one, more general,

result is that with average-crossing, we can extend Theorem 4.2 to obtain uniqueness in

pure strategies, i.e. dispense with the monotonicity requirement for σ in the statement of

the theorem.

5. Asymptotic Analysis I

In this section, we study the asymptotic properties of ε-equilibria of the auctions Γn.

First, given a strictly monotone equilibrium σ∞ of Γ∞ that is the limit of a sequence of

monotone strategy profiles σn, for each ε > 0, there exists N such that for all n > N ,

σn is an ε-equilibrium of Γn; in particular, taking σn to be the constant sequence σ∞, we

get that σ∞ is an epsilon-equilibrium of Γn for large n. Second, every limit as εn ↓ 0 of a

sequence of εn-equilibria of Γn in monotone strategies is a strictly monotone equilibrium of

Γ∞. Third, for such a sequence of εn-equilibria, we obtain a Strong Law of Large Numbers

for the corresponding sequence of equilibrium prices, in that it converges a.s. to the clearing

price under the limit; under uniform convergence of the εn-equilibria, we even get the weak-

∗ convergence of the distribution of prices to the limit price for a.e. state; and finally,

under an assumption on the rate of convergence, we obtain a Central Limit Theorem for

the equilibrium prices. The results of the previous section concerning the equivalence of
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REE and Nash equilibria establish the appropriate connection between ε-equilibria of large

auctions and the competitive limit.

Given the symmetry among players of the same type, we can now view the game Γn for

each n as a game with player set I∞, where the players (i,m), for m > n, are dummy

players. A symmetric strategy profile σ∞ in Γ∞ induces a profile in Γn by projecting to the

first n players of each type i and then the payoff πni (b, σ∞;xi) to each i, xi and bid b against

σ∞ is the payoff he would get in Γn by projecting σ∞ to the first n factors. The payoff πni
of player-type i depends on the probability τni (b, ω, σ) of trading and the expected clearing

price function %ni (b, ω, σ), which are as defined for Γ, only now with player set In. We also

write βn(· |ω, σ) for the probability distribution over the clearing price in state ω under the

profile σ; let %n(ω, x∞, σ) denote the clearing price under σ when the state of the world is

(ω, x∞). The next lemma is crucial in establishing a continuity property of payoffs.

Lemma 5.1. Suppose σn is a monotone strategy profile converging pointwise to a nontrivial

profile σ∞. Let ω ∈ (0, 1) be a point of continuity of %∞(·, σ∞). Then:

(1) %n(ω, ·, σn)→ %∞(ω, σ∞) pointwise a.e. on X∞;

(2) for each i, and each sequence bn:

(a) %ni (bn, ω, σn)→ %∞(ω, σ∞);

(b) if lim bn = b 6= %∞(ω, σ∞), then τni (bn, ω, σn)→ τ∞(b, ω, σ∞).

Proof. Let b0 = %∞(ω, σ∞). Take ε > 0 such that the bids b0 ± ε are not atoms of the

strategy profile σ∞ (i.e., for each i a measure zero set of types xi bid b0 ± ε). We will show

that for large n, the probability that the clearing price lies outside the interval [b0− ε, b0 + ε]

is exponentially small in n. The Borel-Cantelli Lemma then proves (1).

For each i, let xi be the supremum over yi such that σ∞i (yi) is less than b0 − ε, with the

convention that the supremum of the empty set is 0. We claim that
∑

i Pi(xi |ω) < m0.

Indeed, since b0 is the clearing price at ω, clearly
∑

i P (xi |ω) 6 m0. If the strict inequality

does not hold, then, because ω is a point of continuity of %∞(·, σ∞), b0 = %∞(ω′, σ∞) for

all ω′ < ω sufficiently close to ω, even though
∑

i Pi(xi |ω′) > m0 for all such ω′, which

is possible only if xi is either 0 or 1 for all i, i.e. σ∞ is a trivial profile, contrary to our

assumption. Therefore,
∑

i Pi(xi |ω) < m0. Choose now η > 0 such that for each i, letting

xi(η) = min(xi + η, 1),
∑

i Pi(xi |ω) <
∑

i Pi(xi(η) |ω) ≡ m0 < m0; and choose N such that

σni (xi(η)) > b0 − ε for all n > N if xi 6= 1. Let δ = m0 −m0. For n > N , a price b 6 b0 − ε
is a clearing price under σn in Γn only if at least m0n agents have signals below xi + η.

Hoeffding’s inequality shows that the probability of this event is at most exp(−2nδ2I−2).
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A similar argument shows that the probability of the clearing price being above b0 + ε is

exponentially small, which completes the proof of (1).

Both parts of point (2) follow if we show that given that player (i, 1) bids b, the clearing

price, as a random variable on X∞(i,1), converges to b0. The proof of this convergence follows

the logic for the corresponding convergence of %n, with the following modification from the

last paragraph. For each n > N , choose δn = m0n−I
n−1

−m0. (Of course we are assuming here

that N is large enough such that δn > 0.) The probability bounds hold when we use δn

instead of δ and n is replaced with n− 1. �

Remark 5.2. In point 2(b), we can dispense with the assumption b 6= %∞(ω, σ∞) if %∞(·, σ∞)

is strictly increasing at ω. In other words, the problem arises only when there is an interval

of states for which %∞(ω, σ∞) is a clearing price in Γ∞.

To see the importance of the assumption of nontriviality in the lemma, take a trivial

strategy profile σ∞ with a subset m0 of traders bidding b0 and the remaining traders bidding

b1 > b0. Then the market price, using our formula, is b1 while taking σn to be the constant

sequence in the game Γn, the clearing price is αb1 + (1− a)b0.

Our first result shows that equilibria of Γ∞ are ε-equilibria of Γn for large n.

Theorem 5.3. Let σn be a sequence of strategy profiles converging to a nontrivial monotone

equilibrium σ∞ of Γ∞. Then, for each ε > 0, there exists N such that for each n > N , σn is

an ε-equilibrium of Γn.

Proof. As shown in the proof of Theorem 4.2, %∞(·, σ) is strictly monotone. The result then

follows from applying the conclusions of point (2) of the previous lemma along with Remark

5.2. �

We now have the following asymptotic result going in the other direction.

Theorem 5.4. For each n, let σn be an εn-equilibrium of Γn in monotone pure strategies,

where εn → 0+. Let σ∞ be a nontrivial strategy profile that is a limit point of the sequence

under the topology of pointwise convergence. Then σ∞ is an equilibrium of Γ∞.

Proof. It is sufficient to prove that for each b, there is at most one state ω such that b =

%∞(ω, σ∞). Indeed, it follows from point (2) of Lemma 5.1 that for each sequence bn → b,

each i and xi, π
n
i (bn, σn, xi) → π∞i (b, σ∞, xi) and therefore σ∞ must be an equilibrium. To

prove this point, suppose to the contrary that there is some b and a nontrivial interval

Ω∗ ≡ [ω∗, ω∗] of states such that b = %∞(ω, σ∞) for all ω ∈ Ω∗. Since σ∞ is nontrivial, there

exists a nonempty subset I∗ of players i for whom a non-null subset X∗i = [x∗i , x
∗
i ] of types
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bid b under σ∞i with
∑

i Pi((σ
∞
i )−1[0, b) |ω) < m0 and

∑
i Pi((σ

∞
i )−1(b,∞) |ω) < m1 for all

ω in the interior of Ω∗.

For each i ∈ I∗, let τ̃∞i : Ω∗×X∗i → [0, 1] be the weak-∗ limit in L∞(Ω∗×X∗i , [0, 1]) of the

function τ̃ni (ω, xi) ≡ τni (σni (xi), ω, σ
n). τ̃∞i is weakly increasing in xi, as this property holds

along the sequence. Also, clearly for some i ∈ I∗, there exists a subset of X∗i with positive

measure such that
∫

Ω∗
τ̃∞i (ω, xi)dω 6= 0, 1 for all xi ∈ X∗i . Fix such an i. Point (2) of Lemma

5.1 now shows that for a.e. xi ∈ X∗i :

limn π
n
i (σni (xi), σ

n;xi) =
∫

Ω\Ω∗ τ
∞
i (b, ω, xi)[vi(ω, xi)− %∞(ω, σ∞)]dP (ω |xi)

+
∫

Ω∗
[vi(ω, xi)− b]τ̃∞i (ω, xi)dP (ω |xi).

Assume for the moment that τ̃∞i is weakly monotonically decreasing in ω. Suppose that i is

a buyer (the argument for a seller is symmetric). Then,∫
Ω∗

[vi(ω, xi)− b](1− τ̃∞i (ω, xi))dP (ω |xi)∫
Ω∗

(1− τ̃∞i (ω, xi))dP (ω |xi)

is strictly increasing in xi. If for some xi ∈ X∗i this is non-negative (resp. non-positive),

then it is strictly positive (resp. negative) for all higher (resp. lower) xi, which means that

by bidding up (resp. down) to some b+ δ (resp. b− δ), for some sufficiently small δ > 0, xi

can increase its payoff in Γn by more than εn for large n, which is impossible.

To finish the proof, it remains to be shown that τ̃∞i is weakly monotonically decreasing

in ω for each i ∈ I∗. Fix i ∈ I∗. For each j ∈ I∗ and n, define γn
ij
, γnij : X∗i → X∗j

by γn
ij

(xi) = sup{xj |σnj (xj) < σni (xi) } and γnij(xi) = inf{xj |σnj (xj) > σni (xi) }, with the

convention that the supremum (resp. infimum) of the empty set is 0 (resp. 1). γn
ij
6 γnij

are monotonic functions and by going to a subsequence they have limits γ∞
ij

and γ∞ij . Take

any xi that is a point of continuity of γ∞
ij

and γ∞ij . It follows from the SLLN that τ̃∞i (ω, xi)

equals the allocation xi would receive if he bids b and each j played a strategy where types

in [γ∞
ij
, γ∞ij ] bid b, while types above (resp. below) bid above (resp. below) b. Clearly this is

weakly decreasing in ω. �

The nontriviality condition can be dispensed with when α > 0 and Γ is an auction (and

not a double auction). Otherwise, there are trivial equilibria of Γn where a subset J1 of types

bid a high number and the other types bid a small number. This strategy profile cannot be

an equilibrium of Γ∞, where bids affect only the probability τ∞(·) of winning and not the

price %∞(·).

Remark 5.5. If valuations are private, we can actually obtain a convergence result for

equilibria in behavioral strategies as well: limits of equilibria of Γn are equilibria of Γ∞. In
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this case, since Γn has an equilibrium in behavioral strategies (cf. Jackson and Swinkels [14]),

and since it can be shown that the REE outcomes is the unique nontrivial equilibrium in Γ∞,

we get asymptotic efficiency for all sequences of equilibria, replicating Cripps and Swinkels [2].

We have the following Strong Law of Large Numbers for equilibrium prices, whose proof

follows from point (1) of Lemma 5.1.

Corollary 5.6. Let σn and σ∞ be as in Theorem 5.4. Then for a.e. (ω, x∞), %n(ω, x∞, σn)

converges to %∞(ω, σ∞).

The above corollary implies, in particular, the weak-∗ convergence of βn(· |ω, σn) to the

point-mass concentrated at %∞(ω, σ∞). Under stronger assumptions on the convergence of

σn, we can draw stronger conclusions about the convergence of βn to %∞, as we demon-

strate now through two theorems. The stated assumptions on convergence is a bit stronger

than what we need, in that we posit this convergence on the whole domain of the signal

space, though what we need is that it hold only in a neighborhood of the inverse image of

[φ∗(0), φ∗(1)], i.e. only for bids that matter for determining the price.

Theorem 5.7. For each n, let σn be an εn-equilibrium of Γn in monotone pure strategies,

where εn → 0+. Let σ∞ be a nontrivial and continuous strategy profile such that σn converges

uniformly to σ∞. Then the weak-∗ convergence of βn(· |ω, σn) to %∞(ω, σ∞) is uniform in ω.

Proof. By Theorem 5.4, σ∞ is an equilibrium of Γ∞. Therefore, %∞(·, σ∞) is strictly mono-

tone. As σ∞ is continuous, so is %∞(·, σ∞). For each ε > 0, the construction in the proof

of Lemma 5.1 to obtain the Hoeffding bounds on the probability of the clearing price lying

outside %∞(ω, σ∞)± ε for large n can be done independently of ω thanks to the assumption

of uniform convergence of σn to σ∞, which then proves the result. �

Finally, we obtain a Central Limit Theorem when the limit equilibrium is differentiable.

Suppose that σ∞ is a strictly monotone and a.e. differentiable strategy profile. Let B be

an interval of bids that contains the range of σ∞i for all i. The inverse bidding function

ς∞i of σ∞i extends to a function over B by letting ς∞i (b) be either zero or one depend-

ing on whether b is below or above the range of σ∞i and it is differentiable a.e. Define

G(b |ω, σ∞) =
∑

i Pi(ς
∞
i (b) |ω). For a.e. ω, G(b |ω, σ∞) is differentiable in b at %∞(ω, σ∞);

denote by g(ω, σ∞) this derivative. Also let h(ω, σ∞) =
∑

i Pi(ς
∞
i (%∞(ω, σ∞)) |ω)(1 −

Pi(ς
∞
i (%∞(ω, σ∞)) |ω)).

Theorem 5.8. Suppose that the rate of convergence of σn to σ∞ in Theorem 5.7 is in

o(n−
1
2 ). Suppose further that σ∞ is strictly monotone and differentiable a.e. Then for a.e.
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ω,
√
n[%n(ω, ·, σn)−%∞(ω, σ∞)] converges weak-∗ to the Normal distribution with mean zero

and variance h(ω, σ∞)(g(ω, σ∞))−2.

Proof. Using the Central Limit Theorem for quantiles,
√
n[%n(ω, ·, σ∞) − %∞(ω, σ∞)] con-

verges to the Normal distribution with mean zero and variance h(ω, σ∞)(g(ω, σ∞))−2. By

our assumption on the rate of convergence of σn to σ∞,
√
n[%n(ω, ·, σ∞)− %n(ω, ·, σn)] con-

verges to zero a.s. The result then follows from Slutsky’s Theorem. �

We remark that when %∞(·, σ∞) coincides with φ∗(·) and the data is generic, it is dif-

ferentiable outside of a finite set, and the convergence in the theorem above is uniform on

compact subsets of the open set where it is differentiable.

6. Asymptotic Analysis II

Theorems 4.1 and 5.3 already establish the existence of ε-equilibria of Γn for large n,

namely σ∗ itself viewed as a strategy profile in Γn. Assuming that the REE is totally mono-

tone and satisfies a second condition, to be specified shortly, we now provide another lower

semicontinuity result. If we restrict the strategy spaces to bid grids that are sufficiently fine,

then we can prove the existence of a sequence of exact equilibria of the corresponding game

with finitely many agents. These bid-grid equilibria converge to the equilibrium associated

with the REE and are thus ε-equilibria of Γn for large n.

Assume that the REE is totally monotone. Also we make the following assumption on the

equilibrium manifoldM∗. This assumption is satisfied, a.o., by the private values model and

the model where all types are symmetric. But it is implied by conditions that are slightly

weaker than those, since it invokes symmetry only around the equilibrium manifold, and it

does not invoke symmetry of distributions.

Assumption 6.1. M∗ is a C2-manifold with boundary; and for each (ω, x, b) ∈ M∗ and

i, j ∈ I, ∂vi(ω,xi)
∂ω

=
∂vj(ω,xj)

∂ω
.

The first part of the assumption is made only for convenience of exposition. Similar to

the proof of Lemma 3.2, it can be dispensed with because we can approximateM∗ with one

that is C2.

Let σ∗ be the Nash equilibrium of Γ∞ defined in Section 4, which induces the REE outcome.

Assume without loss of generality that the valuations are strictly positive so that there exists

δx > 0 such that we can extend each vi to a monotone C2 function from Ω× [−δx, 1 + δx] to

R+ such that vi(0,−δx) = vj(0,−δx) and vi(1, 1 + δx) = vi(1, 1 + δx) for all i, j. Also extend

the distributions Pi(ω |xi) to the larger interval of types still satisfying MLRP and still C2.
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Use Xi, still, to denote [−δx, 1 + δx]. Pi(xi |ω) is now used to represent the probability

Pi([0, 1] ∩ Xi] |ω), i.e., Pi(xi |ω) is zero for xi < 0 and one for xi > 1. Pi(· |ω) is then

piece-wise differentiable. Q∗(x) is defined as previously in Section 3, only now it uses the

modified definition of the Pi’s. Then vi(Q
∗(x), xi) is differentiable at a.e. x.

It is convenient to represent the manifoldM from Section 4 as triples (ω, x, b) by dropping

the slack variables so that M is the set of (ω, x, b) such that vi(ω, x) − b = 0 for all i and

ω−Q∗(x) = 0. (Extending the signals to a neighborhood of [0, 1] allows this representation.)

We can take an ε > 0 such that over the ε-neighborhood U ofM, the Jacobian of the system

defining M has full row rank; and, in fact, deleting any column corresponding to xi or b,

or even ω when ω is locally nonconstant, yields a non-singular square matrix. We can also

extend the equilibrium bidding function σ∗ to the larger set of signals [−δx, 1 + δx] using the

same formula, i.e., σ∗i (x) = b for the unique (ω, x−i, b) such that (ω, x, b) ∈M.

Take a sequence of positive numbers ζ → 0. For each ζ in the sequence, and for each n,

including for n =∞, let Γn,ζ be the game where the set of admissible bids is { 0, ζ, 2ζ, . . . , }.
We use bk(ζ) to denote kζ, and when the ζ we are using is unambiguous, we simply write

bk. Let bk0 (resp. bk1) be the highest (resp. lowest) bid in Γn,ζ that is below (resp. above)

vi(0, 0) (resp. vi(1, 1)) for all i. If necessary by dropping finitely many terms of the sequence

of ζ’s, we can assume that for each ζ, and i, bk0 > vi(0,−δx) and vi(1, 1+ δi) > bk1 . Let B(ζ)

be the bids { k0ζ, . . . , k1ζ }. There is no loss in restricting players to choosing bids in B(ζ).

Let θ∗,ζ : B(ζ) → Ω ×X be the function defined by letting θ∗,ζ(bk) be the unique vector

(ω∗(k), x∗(k)) such that (ω∗(k), x∗(k), bk) belongs to M. Let bk
∗
0 (resp. bk

∗
1 ) be the highest

(resp. lowest) bid in B(ζ) that is below (resp. above) φ∗(0) (resp. φ∗(1)). For the sequence

of ζ’s we are considering, we will assume that there exist 0 < λ0, λ
∗
0, λ1, λ

∗
1 <

1
2

such that

bk0+1(ζ)−mini vi(0, 0) = 2λ0ζ +O(ζ2), maxi vi(1, 1)− bk1−1(ζ) = 2λ1ζ +O(ζ2) and similarly

with (k∗0, k
∗
1, λ

∗
0, λ
∗
1) replacing (k0, k1, λ0, λ1), using φ∗(0) in the place of mini vi(0, 0) and

φ∗(1) for maxi vi(1, 1). Thus, we are considering a “generic” sequence of ζ’s. Fix 0 < η <

min{ 1
11
, 4

3
λ0,

4
3
λ1,

4
3
λ∗0,

2
3
(1 − 2λ∗0), 1

2
λ∗1(1 − λ∗1) }. For each k∗0 + 1 < k 6 k∗1, let θ0(k) =

(φ∗)−1(bk−1 + 2ηζ); and for k∗0 + 1 6 k < k∗1, let θ0(k) = (φ∗)−1(bk + ηζ). For each i: let θi(k)

be the unique xi for which: (1) σ∗i (xi) = max(bk−1,minj vj(0, 0)) + 3
2
ηζ if k0 < k 6 k∗1; (2)

σ∗i (xi) = bk−1 − 1
2
ηζ if k > k∗1; let θi(k) be the unique xi for which: (3) σ∗i (xi) = bk + 1

2
ηζ if

k0 ≤ k < k∗1; (4) σ∗i (xi) = bk − 3
2
ηζ if k > k∗1.

Let Θζ be the closure of the set of all functions θ : B(ζ) → Ω × X such that for each

k, writing θ(k) as short for θ(bk), with θ(k) = (θ0(k), θ−0(k)): (0) θ(k0) = θ∗(k0); (1a)

θ0(k) ∈ (θ0(k), θ0(k)) if k∗0 + 2 6 k 6 k∗1 − 1; (1b) θ0(k) ∈ [0, θ0(k)) if k = k∗0 + 1 and

θ0(k) ∈ (θ0(k), 1] if k = k∗1; (1c) θ0(k) is zero (resp. one) if k 6 k∗0 (resp. k > k∗1 + 1);
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(2) θi(k) ∈ (θi(k), θi(k)) for all i and k0 < k 6 k1; (3) θ0(k) = Q∗(θ−0(k)). If necessary by

dropping finitely many ζ’s from the sequence, we now have that (θ(k), bk) ∈ U for each θ in

the closure of Θζ .

For k∗0 + 1 6 k 6 k∗1, let Ωk be the interval of ω’s specified in sub (1) above. Θζ is a

compact |I|(|B(ζ)| − 1)-dimensional manifold with boundary points consisting of θ where

either: θ0(k) belongs to ∂Ωk \ Ωk for some k∗0 + 1 6 k 6 k∗1; or for some i, θi(k) is in

{ θi(k), θi(k) }.
For each θ ∈ Θζ , the i-th coordinate of θ helps define a monotone strategy σi for i with

values in B(ζ) by letting θi(k) be the cut-off type for switching from bk−1 to bk. Fix θ ∈ Θζ

and let σ be the strategy profile induced by θ. We define a function π̄n,ζ,ki : Θζ ×Xi → R for

each n (including n =∞), ζ and bk ∈ B(ζ) \ { bk0 } as follows. For each i, k0 + 1 6 k 6 k1,

xi, and n 6=∞, define

π̄n,ζ,ki (θ, xi) =
1∫

Ω
[τni (bk, ω, σ)− τni (bk−1, ω, σ)] p(ω |xi)dω

[
πni (bk, σ;xi)− πni (bk−1, σ;xi)

]
which is the payoff difference between bidding bk and bk−1 for type xi conditional on the

event that if i is a buyer (resp. seller) bid bk (resp. bk−1) clinches trade while bk−1 (resp. bk)

does not. For n = ∞, we can use the same formula if with positive probability, either bk−1

or bk is a clearing price under σ. Otherwise, either bk is below the clearing price at state

ω = 0 and we let this difference be vi(0, x
k
i )− bk; or bk−1 is above the clearing price at state

ω = 1 and we let this formula be vi(1, x
k
i )− bk−1.

The following lemma, whose proof can be found in the Appendix, gives a continuity

property for the conditional expectations π̄n,ζ,ki (θ, xi).

Lemma 6.2. For each k, π̄n,ζ,ki (θ, yi) converges to π̄∞,ζ,ki (θ, yi) uniformly in (θ, yi) ∈ Θζ×Xi;

and the same is true of its derivative w.r.t. yi.

We now compute a good approximation for π̄∞,ζ,ki when either bk or bk−1 is a clearing

price. Let tk = θ0(k + 1)− θ0(k), tk−1 = θ0(k)− θ0(k − 1), αk equals τ∞i (bk, θ0(k + 1), σ) if i

is a buyer and 1− |τ∞i (bk, θ0(k + 1), σ)| if i is a seller; αk−1 equals 1− τ∞i (bk−1, θ0(k− 1), σ)

for a buyer i and |τ∞i (bk−1, θ0(k − 1), σ)| for a seller i. Either tk or tk−1 will be positive

by assumption (and then in O(ζ)). Also αk is zero if θ0(k + 1) < 1 and αk−1 is zero

if θ0(k − 1) > 0, so that one of these two variables will be zero for small ζ. We can

approximate τ∞(bk, ω, σ) on [θ0(k), θ0(k + 1)] by a linear function that is 1 at θ0(k) and αk

at θ0(k + 1), and τ∞(bk−1, ω, σ) on [θ0(k − 1), θ0(k)] by a linear function that is 1− αk−1 at

θ0(k − 1) and 0 at θ0(k). Also, using vi(θ0(k) + s, xi) = vi(θ0(k), xi) + ∂vi(θ0(k),xi)
∂ω

s + O(s2)
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and p(θ0(k) + s |xi) = p(θ0(k) |xi) + ∂p(θ0(k) |xi)
∂ω

s+O(s2), we can then write

(1) π̄∞,ζ,ki (θ, xi) = [vi(w
−(k), xi)− bk−1]t̄k−1 + [vi(w

+(k), xi)− bk]t̄k +O(ζ2)

where

w−(k) = θ0(k)− tk−1(1 + 2αk−1)

3 + 3αk−1

if ∂vi(θ0(k),xi)
∂ω

> 0 and w−(k) = θ0(k) otherwise;

t̄k−1 =
tk−1(1 + αk−1)

tk(1 + αk) + tk−1(1 + αk−1)
;

w+(k) = θ0(k) +
tk(1 + 2αk)

3 + 3αk

if ∂vi(θ0(k),xi)
∂ω

> 0 and w+(k) = θ0(k) otherwise; and

t̄k =
tk(1 + αk)

tk(1 + αk) + tk−1(1 + αk−1)
.

Since the integrals above using ω can also be performed by a change of variable using b, we

have:

t̄k−1 =
t̂k−1(1 + αk−1)

t̂k(1 + αk) + t̂k−1(1 + αk−1)
+O(ζ),

where t̂k−1 = φ∗(θ0(k))− φ∗(θ0(k − 1)) and t̂k = φ∗(θ0(k + 1))− φ∗(θ0(k)), and similarly for

t̄k.

Finally, by the assumption on the range of the functions θ, we have that |χ∗i (θ0(k)) −
θi(k)| ∈ O(ζ) for all i, k, where χ∗i is the cutoff type defined in Section 3. Therefore, if tk is

nonzero, vi(w
+(k), θi(k)) − vj(w+(k), θj(k)) = vi(θ0(k), θi(k)) − vj(θ0(k), θj(k)) + O(ζ2) for

all i, j by Assumption 6.1. A similar statement holds for tk−1 as well, with the conclusion

that π̄∞,ζ,ki (θ, θi(k))− π̄∞,ζ,kj (θ, θj(k)) = vi(θ0(k), θi(k))− vj(θ0(k), θj(k)) +O(ζ2).

Lemma 6.3. For all sufficiently small ζ, there exists N(ζ) with the following property.

For n > N(ζ) if there is θ in Θζ such that π̄n,ζ,ki (θ, θi(b
k)) = 0 for each k and i, then the

corresponding strategy profile σ is an equilibrium of Γn,ζ .

Proof. The result follows if we establish a single-crossing property for the payoffs, i.e. if we

show the existence of δ > 0 such that
∂π̄n,ζ,ki (θ,xi)

∂xi
> δ for all θ ∈ Θ∗, i ∈ I, xi ∈ Xi and k,

if n is large. In light of Lemma 6.2, it is sufficient to get this bound when n = ∞. Using

the approximation of π̄∞,ζ,ki above, the derivative of π̄∞,ζ,ki is strictly positive with a lower

bound that is independent of ζ or θ, and the conclusion follows. �
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Theorem 6.4. For each sufficiently small ζ > 0, there exists N(ζ) such that for each

n > N(ζ), the game Γn,ζ has an equilibrium σn,ζ .

Proof. Fix ζ. For each n, define a map Υn,ζ : Θζ → RI×(B(ζ)\{ bk0 }) by:

Υn,ζ
i,k (θ) = π̄n,ζ,ki (θ, θi(k)).

for each i ∈ I and bk ∈ B(ζ) \ { bk0 }. We will now show that for all small ζ, Υ∞,ζ has no

zeros on the boundary of Θζ and that the degree of zero over Θζ is one. The result then

follows. Indeed, by Lemma 6.2, Υn,ζ has a zero θn,ζ ∈ Θζ for large n; and Lemma 6.3 shows

that θn,ζ induces an equilibrium of Γn,ζ .

To prove that the degree of zero over Θζ under the map Υ∞,ζ is one, we proceed as follows.

Define Υ∗,ζ : Θζ → RI×(B(ζ)\{ bk0 }) by:

Υ∗,ζi,k (θ) =


vi(θ0(k), θi(k))− bk if k < k∗1
vi(θ0(k), θi(k))− φ∗(1) if k = k∗1
vi(θ0(k), θi(k))− bk−1 o.w.

Obviously Υ∗,ζ has a unique zero. Moreover this map is a homeomorphism onto its image

and hence has degree one (for an appropriate orientation of Θζ). To obtain our result, we

show that for each λ ∈ [0, 1), λΥ∗,ζ + (1− λ)Υ∞,ζ has no zero on the boundary of Θζ . Take

θ in the boundary of Θζ . Let ϑ∗ and ϑ∞ be its image under Υ∗,ζ and Υ∞,ζ respectively; we

will show that λϑ∞ + (1− λ)ϑ∗ 6= 0 for all λ ∈ [0, 1).

Since θ ∈ ∂Θζ , there exists some k such that one of the following holds: (1) k∗0 +1 6 k 6 k∗1

and θ0(k) ∈ ∂Ωk \ Ωk; (2) θi(k) ∈ { θi(k), θi(k) } for some i.

Start with possibility (1). Suppose θ0(k) = θ0(k) for some k∗0 + 1 < k 6 k∗1. For each

b in the range of φ∗, let (ω(b), x(b)) be such that φ∗(ω(b)) = b and (ω(b), x(b), b) ∈ M.

With ck = φ∗(θ0(k)), there must exist i with θi(k) 6 xi(c
k). For this i, we have ϑ∗i,k 6

ck − min(bk, φ∗(1)) 6 −(2λ∗1 − 2η)ζ < 0. To prove that θ cannot be a zero along the

homotopy, it is now sufficient to show that ϑ∞i,k is also negative with ζ ∈ O(ϑ∞i,k). Suppose

k < k∗1. Then:

vi(w
+(k), θi(k))−bk 6

∫ φ∗(θ0(k+1))

φ∗(θ0(k))
vi(ω(b), xi(b))τ(bk, ω(b), σ)[dφ

∗

db
]
−1
db∫ φ∗(θ0(k+1))

φ∗(θ0(k))
τ(bk, ω(b), σ)[dφ

∗

db
]
−1
db

−bk 6 −1− 5η

3
ζ+O(ζ2)

while vi(w
−(k), θi(k))− bk−1 6 2ηζ +O(ζ2). Also

t̄k

t̄k−1
=

t̂k

t̂k−1
+O(ζ2) > 1 +O(ζ2),
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where t̂k was as defined following our approximation for π̄∞,ζ,ki . Therefore, ϑ∞i,k 6 −
1−11η

6
ζ +

O(ζ2), giving us the result in this case. If k = k∗1, then

vi(w
+(k), θi(k))−bk 6

∫ φ∗(1)

φ∗(θ0(k))
vi(ω(b), xi(b))τ(bk, ω(b), σ)[dφ

∗

db
]
−1
db∫ φ∗(1)

φ∗(θ0(k))
τ(bk, ω(b), σ)[dφ

∗

db
]
−1
db

−bk 6 (−1+λ∗1+η)ζ+O(ζ2).

As before, we have the bound vi(w
−(k), θi(k))− bk−1 6 2ηζ +O(ζ2). Also

t̄k

t̄k−1
> 2λ∗1 − 2η +O(ζ2).

Hence, ϑ∞i,k 6
2η(2−η)−2λ∗1(1−λ∗1)

1+2λ∗1−2η
+O(ζ2), and this inequality, by our assumption on η, completes

the proof that rules out the left endpoint. The case where θ0(k) is the right endpoint of the

interval is similar, and in some ways easier too, so we omit it.

We turn now to possibility (2). Suppose θi(k) = θi(k) for some k. If k < k∗0, we have

ϑ∗i,k = ϑ∞i,k = max(bk−1, vi(0, θi(k)))− bk 6 −(2λ0 − 3
2
η)ζ < 0. Thus, all along the homotopy

the value is negative. For k = k∗0, ϑ∗i,k = bk
∗
0−1 + 3

2
ηζ − bk

∗
0 < 0; if bk is not a clearing

price under θ with positive probability, then ϑ∞i,k = ϑ∗i,k and we are done. Otherwise, ϑ∞i,k 6

bk
∗
0−1 + 3

2
ηζ + 2

3
[λ∗0 + η]ζ − bk∗0 + O(ζ2), which is again negative and in O(ζ), wrapping up

the case k = k∗0. Now consider the case k∗0 < k 6 k∗1. Then, χ∗i (θ0(k))− θi(k) is positive and

in O(ζ). Therefore, there exists j 6= i such that θj(k) > χ∗j(θ0(k)). For the same reason,

φ∗(θ0(k)) − vi(θ0(k), θi(k)) is positive and in O(ζ). As vj(θ0(k), θj(k)) > φ∗(θ0(k)), we now

have ϑ∗,ζi − ϑ∗,ζj = vi(θ0(k), θi(k)) − vj(θ0(k), θj(k)), which is negative. As we saw in our

approximation for π̄n,ζ,ki , ϑ∞,ζi − ϑ∞,ζj = vi(θ0(k), θi(k)) − vj(θ0(k), θj(k)) + O(ζ2), which is

again negative and in O(ζ). Therefore, we can rule out this case as well. Finally, suppose

that k > k∗1. Then ϑ∗i,k = −1
2
ηζ; ϑ∞i,k is also −1

2
ηζ if k > k∗1 +1 or bk

∗
1 is not a market-clearing

price in Γ∞ under the strategy induced by θ; otherwise it is bounded from above by −1
2
ηζ.

Either way, under the linear homotopy the value is negative and in O(ζ), which concludes

the proof that θi(k) 6= θi(k). The argument for the case where θi(k) = θi(k) for some i can

be handled similarly. �

One could give explicit bounds for N(ζ) in the above theorem using the following logic.

With a more detailed calculation than the one we give in the Appendix, we can see that

πn,ζi −π
∞,ζ
i is in O(n−

1
2 ζ−1). As we saw in the proof of the above theorem, the value of Υ∞,ζ

on the boundary of Θζ is in O(ζ). Therefore, if n > Lζ−4 for an appropriate constant L,

then the linear homotopy between Υn,ζ and Υ∞,ζ has no zero on the boundary of Θζ giving

us an equilibrium for Γn,ζ . Unfortunately the distance between such an equilibrium and the
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limit σ∗ would then be in O(n−
1
4 ), implying that the we cannot invoke the Central Limit

Theorem from Section 5 for this sequence. Of course, this is merely a heuristic argument

that the CLT does not hold for such a sequence, but we conjecture that if the games Γn do

not have an equilibrium for large n, then the grid equilibria will not yield a CLT result.

7. Asymptotic Analysis III

When the effect of the state on the valuations of the agents is not identical around the

REE manifold, we can still obtain an existence result if we discretize the state space Ω×X
as well as the space of bids.

Assume that α, the averaging of the m0-th and (m0 + 1)-st bids in Γ, is strictly between

0 and 1. Let Z = (ζ0, ζ1, . . . , ζI , ζ) ∈ RI+2
++ be a vector of strictly positive numbers. Let

B(Z) = { 0, ζ, 2ζ, . . . } be the grid of admissible bids as in the previous section. Let Ω(Z)

be the set of states in Ω that are of the form kζ0, for 0 < k 6 b 1
ζ0
c, along with the state

ω = 1 (in case it is not an integer multiple of ζ0). Likewise for each i, let Xi(Z) be the set of

signals that are multiples kζi for k > 0 along with xi = 1. Consider a finite approximation

PZ
i (· |ω) for each ω ∈ Ω(Z) on X(Z) that assigns mass Pi([(k − 1)ζi, kζi] |ω) to kζi and let

PZ
0 be the distribution on Ω(Z) that assigns mass P0([(k − 1)ζ0, kζ0]) to kζ0. We make the

following assumptions on the vector Z.

Assumption 7.1. ζi 6 ζ2
0 for each i. Moreover, for each (ω, x) ∈ Ω(Z)×X(Z):

(1) vi(ω, xi) ∈ B(Z) for each i;

(2) vi(ω, xi) 6= vj(ω, xj) 6= φ∗(ω) for all i, j;

(3)
∑

i

∑
yi6xi

PZ
i (yi |ω) 6= m0.

The first (unnumbered) assumption requires the bid grid on X to be finer than that

on Ω. Point (1) is an obvious assumption: players should be allowed to bid any possible

realization of their valuation. The other two assumptions are genericity assumptions and

hold for “almost every” choice Z.

A behavioral strategy for player-type i is a function σZi : Xi(Z)→ ∆(B(Z)). Payoffs are

now defined in the obvious way and we have a finite game Γn,Z for each n. Let ΣZ be the set

of behavioral strategies. We say that a behavioral strategy σZi of player i is monotone if for

xi < yi, the distribution σZi (yi) first-order stochastically dominates the distribution σZi (xi);

furthermore, we say that it is strictly monotone if, in addition, every bid in the support of

yi’s strategy lies strictly above every bid in the support of xi’s strategy. We will show that

Γn,Z has an equilibrium in strictly monotone behavioral strategies.
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For each ω ∈ Ω(Z), there exists a unique i(ω) and xi(ω) ∈ Xi(ω)(Z) such that, letting

b(ω) = vi(ω)(ω, xi(ω)), we have b(ω) > φ∗(ω) and∑
j

∑
yj :vj(ω,yj)<b(ω)

PZ
j (yj |ω) < m0 <

∑
j

∑
yj :vj(ω,yj)<b(ω)

PZ
j (yj |ω) + PZ

i(ω)(xi(ω) |ω).

Since ζi 6 ζ2
0 , |xi(ω) − χ∗i(ω)(ω)| ∈ O(ζ2

0 ). This implies in particular that b(ω) − φ∗(ω) ∈
O(ζ2

0 ) and thus if ω′ − ω = ζ0, then 0 < b(ω′)− vi(ω)(ω, xi(ω)) ∈ O(ζ).

We will say that two states ω0 < ω1 are adjacent if ω1−ω0 = ζ0; for convenience in notation,

we will also include 0 and 2 as states and let the “clearing price” b(ω) at ω = 0 (resp. ω = 2)

be strictly smaller (resp. bigger) than vi(ζ0, ·) (resp. vi(1, ·)), for all i. The usefulness of

this convention is that ζ0 (resp. 1) has a state below (resp. above) it that is adjacent to

it; and for each i and xi other than the xi(ω)’s, there exists a unique pair of adjacent states

ω0(xi) < ω1(xi) such that b(ω0(xi)) < vi(ω0(xi), xi) and vi(ω1(xi), xi) < b(ω1(xi)).

Let Σ̃Z be the set of behavioral strategies σZ such that each i ∈ I and xi ∈ X(Z): (1)

σZi (xi) = b(ω) if xi = xi(ω) and (2) σZi (xi) ∈ ∆({ vi(ω0(xi), xi), vi(ω1(xi), xi)}) if xi 6= xi(ω).

For each σ ∈ Σ̃Z , b ∈ B(Z) and ω ∈ Ω(Z), let

q0(b;ω, σ) = |I|−1
∑
j

PZ
j (σ−1

j ([0, b]) |ω)

and

q1(b, ω, σ) = |I|−1
∑
j

PZ
j (σ−1

j ([b,∞))) |ω);

also define q0(b, 0, σ) = 2 and q1(b, 2, σ) = −2.

Define a correspondence ϕ : Σ̃Z → Σ̃Z as follows. For each σ ∈ Σ̃Z , ϕi(σ) is the set of

σ̃i ∈ Σ̃Z
i such that: σ̃i(xi) = σi(xi) if xi is xi(ω) for some ω; otherwise, σ̃i(xi) assigns positive

probability to vi(ω0(xi), xi) (resp. vi(ω1(xi), xi)) only if q0(vi(ω0(xi), xi);ω0(xi), σ) − µ0 6

q1(vi(ω1(xi), xi);ω1(xi), σ)) − µ1 (resp. if the inequality is reversed). ϕ is a well-behaved

correspondence and, by Kakutani’s Fixed-Point Theorem, it has a fixed point σ∗,Z . It is

easy to check that σ∗,Zi is a monotone strategy profile; moreover, for each i and each pair of

adjacent states ω0 < ω1, there is at most one signal, call it x∗i (ω0, ω1), that mixes between

vi(ω0, xi) and vi(ω1, xi); every other signal choose a pure action under σ∗,Zi .

Even though we forced xi(ω) to play b(ω), it is in fact the case that under a fixed point

σ∗,Z , q0(b(ω0);ω0, σ
∗,Z)−µ0 is strictly smaller than q1(vi(ω1, xi(ω0));ω1, σ

∗,Z)−µ1 for adjacent

states ω0 < ω1. Indeed, otherwise, for all xi > xi(ω0) with vi(ω1, xi) < b(ω1), σ∗,Zi (xi) =
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vi(ω1, xi). As the mass of such xi’s is in O(ζ0), q1(vi(ω1, xi(ω0));ω1, σ
∗,Z) − µ1 is in O(ζ0),

while q0(b(ω0);ω0, σ
∗,Z)− µ0 is in O(ζ2

0 ), and we have a contradiction.

Let σ∗,Z be a fixed point of ϕ. For each i, let X∗i (Z) be the collection of x∗i (ω0, ω1), for

adjacent states ω0 < ω1. We now make an additional genericity assumption on Z that makes

this fixed point regular.7

Assumption 7.2. For each i, σ∗,Zi (xi) is not a pure action if xi ∈ X∗i (Z), and ϕ(σ∗,Z)(xi)

is a singleton if xi /∈ X∗i (Z).

Thanks Assumption 7.2, there exists some ε > 0 such that for all σ within ε of σ∗,Z (in

the `∞-norm), ϕi(σ)(xi) is locally equal to σi(xi) for each i and xi /∈ X∗i (Z). We are now

ready to state the Theorem of this section.

Theorem 7.3. For large n, the game Γn,Z has an equilibrium σn,Z that is strictly monotone.

Moreover, the sequence σn,Z converges to σ∗,Z .

The way we prove the theorem is to show that Γn,Z has an equilibrium σn,Z when we

restrict the players to a certain subset of strategies and then show for large n both that this

restriction is irrelevant and that the equilibrium is close to σ∗,Z . Before getting to the proof

of the theorem, we need a few definitions and preliminary lemmas.

Let Σ∗,Zi be the set of behavioral strategies σi that are within ε (obtained above as a bound

from regularity) of σ∗,Z and with the following properties. First, suppose that xi /∈ X∗i (Z).

If i is a buyer (resp. seller), the support of σi is: (σ∗,Zi (yi), σ
∗,Z
i (xi)] (resp. [σ∗,Zi (xi), σ

∗,Z
i (yi)))

where σ∗,Zi (yi) is the highest (resp. lowest) bid in the support of σ∗,Zi that is strictly below

(resp. strictly above) σ∗,Zi (xi), with the understanding that the lower end point (resp. the

upper end point) is zero (resp. ∞) if there is no such yi. Now suppose that xi = x∗i (ω0, ω1)

for some pair ω0 < ω1. If i is a buyer, then the support of σi is (σ∗,Zi (yi), vi(ω1, xi)], where

yi, as before, is the highest type below xi. If he is a seller, the said intervals are left-closed,

right-open.

Let σn,Z be a sequence of strategies in Σ∗,Z . Let σ∞,Z be a limit point of the sequence.

For simplicity in notation, think of the sequence itself as converging to σ∞,Z , as what follows

now applies to any convergent subsequence. Let F n
i be the set of all possible empirical

frequencies of bids of type (i, 1)’s opponents that can be observed in the play of σn,Z : that

is, the frequency of bids in n draws for types j 6= i and (n − 1) draws for type i, followed

by the randomization prescribed by σn,Z . For each b(ω0) 6 b0 < b1 6 b(ω1) and each i, xi

7This assumption rules out the case of two types indifferent between b(ω0) and b(ω1) with the lower type
bidding b(ω0) and the higher bidding b(ω1). Even with this assumption, it is not clear if the fixed point is
unique.
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and ω, let En
i (b0, b1, xi, ω) the subset of F n

i consisting of frequencies where there is a payoff

difference between bidding b0 and b1 in state ω. Let Rn
i (b0, b1, xi, ω) be the probability of this

set and let R̄n
i (b0, b1, xi) be the expectation of this probability w.r.t. to PZ

i (· |xi). Assuming

that R̄n
i (b0, b1, xi) > 0 for all n, we are interested in the limiting payoff difference between

bidding b1 and b0:

π̄∞i (b0, b1, xi) ≡ lim
n

πni (b1, σ
n;xi)− πni (b0, σ

n;xi)

R̄n
i (b0, b1, xi)

.

Strictly speaking, the above limit may not exist, so we may have to pass to a subsequence,

which as before does not alter the logic of the proof of the theorem of this section. Here are

the preliminary lemmas needed, whose proofs can be found in the appendix.

Lemma 7.4. Let b(ω0) < b0 < b1 6 b(ω1) be admissible bids for (i, xi) with b1 being the

smallest bid in the support of σ∞,Zi (xi) that is greater than b0. Then, letting ω be such that

vi(ω, xi) = b1, we have for any yi:

π̄∞i (b0, b1, yi)− lim
n

πni (b1, σ
n;xi)− πni (b0, σ

n;xi)

R̄n
i (b0, b1, yi)

= vi(ω, yi)− vi(ω, xi).

Lemma 7.5. Let b(ω0) 6 b0 < b1 6 b(ω1), i, and xi 6 yi be such that b0 is in the support of

σ∞,Zi (xi) and b1 is the smallest bid in the support of σ∞,Zi (yi) that is greater than b0. Then,

letting ω be such that vi(ω, xi) = b1,

π̄∞i (b0, b1, yi) > (1− α)ζ if i is a buyer and

π̄∞i (b1, b0, xi) > αζ if i is a seller.

Lemma 7.6. Let b(ω0) 6 b0 < b1 6 b(ω1), i and xi be such that b0 is the highest bid in the

support of σ∞,Zi (xi) that is smaller than b1. Then

π̄∞i (b0, b1, xi) 6 −ζ.

Lemma 7.7. Suppose xi ∈ X∗i (Z) and b0 < b1 are in the support of σ∞,Z(xi), and

ω(b0, σ
n,Z) = ω0 while ω(b1, σ

n,Z) = ω1. If q0(b0, σ
∞,Z) < q1(b1, σ

∞,Z), then π̄∞i (b0, b1, xi) < 0;

and if q0(b0, ω0σ
∞,Z) > q1(b1, ω1, σ

∞,Z) then π̄∞i (b0, b1, xi) > 0.

With the preliminaries out of the way, we are now ready to prove Theorem 7.3.

Proof of Theorem 7.3. Γn,Z has an equilibrium σn,Z when players are restricted to the

strategy space Σ∗,Z . Take a convergent subsequence σn,Z with, say, σ∞,Z as its limit point,

and such that the support of σn,Z is constant along the subsequence. We will show both

that σ∞,Z = σ∗,Z and that along the subsequence σn,Z is an equilibrium of Γn,Z for large n,
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which proves the theorem. All our arguments for a generic i assume that i is a buyer. The

arguments for a seller are similar and therefore omitted.

Suppose σ∞,Zi (xi) 6= σ∗,Zi (xi) for some i and xi. If xi /∈ X∗i (Z), then there exists b0 < b1 ≡
σ∗,Zi (xi) that has positive probability under σ∞,Zi (xi). By Lemma 7.5 we get that b1 is a

better reply than b0 against σn,Z for large n, which is impossible. Thus σ∞,Zi (xi) = σ∗,Zi (xi).

Now take i and xi ∈ X∗i (Z). The argument we just used also shows that σ∞,Zi (xi) puts all

its weight on the two bids vi(ω0, xi) and vi(ω1, xi). To complete the proof of this part, then,

we have to show that the probabilities under σ∞,Zi (xi) equal those under σ∗,Zi (xi). Suppose

b0 ≡ vi(ω0, xi) has higher probability under σ∞,Zi (xi) than under σ∗,Zi (xi). Then letting

b1 ≡ vi(ω1, xi) and using Lemma 7.7, b1 is a better reply than b0 against σn,Z for large n,

which is impossible. Likewise b1 cannot have a higher probability under σ∞,Zi (xi) than under

σ∗,Zi (xi). Thus we have shown that σ∞,Z(xi) = σ∗,Z(xi).

We now show that σn,Z is an equilibrium of Γn,Z for large n. Fix i and xi. Any bid above

b(ω1) or less than b(ω0) is clearly suboptimal against the limit and hence also against σn,Z

for large n. There remains to only show that a bid between b(ω0) and b(ω1) that is not

admissible is suboptimal for xi. Suppose first that xi /∈ X∗i (Z). Let b = σ∗,Zi (xi). Suppose

vi(ω0, xi) = b. For any b0 < b, there is some yi for whom it is an admissible bid. Applying

Lemma 7.4 with b1 = σ∗,Zi (yi), we get that b1 is a better reply than b0 against σn,Z for xi if n

is large. Now apply Lemma 7.5 with σ∗,Zi (yi) as b0 and b as b1 to obtain that b is better than

σ∗,Zi (yi) and hence than b0. For any b1 > b0, apply Lemma 7.6 to get that b1 is not optimal.

Thus, no bid that is inadmissible for i does better if xi /∈ X∗i (Z) and vi(ω0, xi) = σ∗,Zi (xi).

The case where xi /∈ X∗i (Z) and vi(ω1, xi) = σ∗,Zi (xi) is similar and thus omitted.

Finally, suppose that xi ∈ X∗i (Z). If b0 < vi(ω0, xi) or b1 > vi(ω1, xi) the arguments of the

previous paragraph apply. Observe that any b between vi(ω0, xi) and vi(ω1, xi) is admissible

for xi, which completes the proof.

8. Total Monotonicity

We relied on the total monotonicity property of the REE in the previous sections to obtain

existence results for large auctions. Proposition 3.5 established that average crossing is a

sufficient condition for total monotonicity and thus total monotonicity is a robust property.

Unfortunately, it is not a generic property. And we now show by means of an example that

when total monotonicity fails, the corresponding large auction may not have an equilibrium

and that this feature is robust.
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Let Γ be a single-unit auction with two bidder-types, with valuations given by v1(ω, x1) =

a+ x1 and v2(ω, x2) = x2 + ω and conditional CDFs given by P1(x1 |ω) = min{max{βx1 −
ω, 0}, 1} and P2(x2 |ω) = x2, for β > 2. While the functional forms for the CDFs do not

satisfy the assumptions we have made on priors in the paper, we can approximate the prior

with a function that does and our conclusions hold for such a perturbation. For a.e. (ω, x)

we must have βx1 − ω ∈ (0, 1) and hence Q∗(x) = βx1 + x2 − 1 for 1− βx1 < x2 < 2− βx1.

It follows that v∗1(x) = a + x1 and v∗2(x) = 2x2 + βx1 − 1, so the average crossing property

fails. Total monotonicity also fails, as χ2(ω) = 1
1+β

[1 + βa− (β − 1)ω].

We claim that Γ∞ does not admit a nontrivial equilibrium, even allowing for players to

play behavioral strategies. Indeed, let σ be an equilibrium of Γ∞. Because player 1 has

private values and x2 is independent of ω, best replies are monotone, and hence so must

σi be. Let xi = inf{xi |σi(xi) has positive probability of trading }. We claim that σi is

strictly monotone and continuous for xi > xi. This is immediate for player 1 because of

private values—indeed, we must have σ1(x1) = a + x1. For player 2, as %∞(ω, σ) is strictly

increasing in ω, σ2 cannot have flat portions. Moreover, the support of σ2(x2) must be a

singleton: if not, for b and b′ in the support of σ2(x2), there would exist ω and ω′ such that
b′−b
ω′−ω = 1

β
, but we also need %∞(ω, σ) − ω = %∞(ω′, σ) − ω′, that is, b′−b

ω′−ω = 1. Letting now

xi(b) = σ−1
i (b), by the definition of an equilibrium we must have a + x1(b) = x2(b) + ω = b

and β(b − a) − ω + x2(b) = 1, which readily yields the same conclusion as in the previous

paragraph; in particular, x2(b) must be decreasing in b, contradicting the monotonicity of

σ2.

Observe that the preceding analysis holds for all other high-bid auction formats: with I∞

as the player set, the optimality condition for each player type is the same for other pricing

rules, so no known auction format will have a non-trivial equilibrium. In particular, not even

the information advantage of the open ascending English auction will be enough to restore

existence of a non-trivial solution.8

The upper semicontinuity result for Nash equilibria in Section 5 applies to equilibria in

behavioral strategies for this game, i.e. the limit of a sequence σn of ε-equilibria of Γn, as

n → ∞ and ε → 0 is an equilibrium of Γ∞. Therefore, we can now conclude that when

n is large, Γn does not have an ε-equilibrium in behavioral strategies. In particular, if we

restrict players to a bid-grid, then while an equilibrium for Γn does exist for any n (including

n = ∞), such equilibria are not approximate equilibria of the game where the players are

unconstrained.

8Indeed, when average-crossing fails, it follows from Krishna [13] that Γ∞ has no efficient equilibrium.
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The example also allows us to explore further the non-existence of equilibria for finite

auctions. Assume that α = 0, so that Γ is a second-price auction. Then we do have trivial

equilibria of Γn for all n including n =∞, where a player type bids a very high number and

the other bids a very low number, regardless of their signals—triviality here refers to the

fact all agents of player-type 2 get an object with probability one, and no agent of type 1

gets an object. If player type 2 is relatively strong (a is small), then we have another family

of trivial equilibria of Γn, which are reasonable in that all agents of type 1 bid their value,

σ1(x1) = a + x1. In fact, assume that the marginal on Ω is uniform. The expected value of

the first-order statistic of x1 given ω is ω
β

+ n
β(n+1)

, so we have an equilibrium σ of Γ1 with

σ1(x1) = a+ x1 and σ2(x2) ≥ a+ 2
β

for x2 ≥ a+ 2−β
2β

and σ2(x2) ≤ a otherwise. However, if

a > 2−β
2β

, then the profile above is not an equilibrium of Γ2, as player (2, 1) with x2 ∈ [0, 1
2β

]

will want to beat player (2, 2) with signals below his x2, so will not bid less than a. Building

on this, for a < 2−β
2β

, the profile σ described above is a trivial equilibrium of Γn with player 2

always winning iff n
n+1

< β−1−2βa
2

. We do not know, however, whether other equilibria could

exist for Γn, or even for Γ∞.

9. Directions for Future Research

In the Introduction, we discussed the technical difficulties we encountered in trying to

obtain an equilibrium in a large auction by solving the differential equations arising from

first-order-conditions. Even an assumption of smoothness did not suffice to overcome these

problems. But perhaps something stronger, like analyticity with very strong bounds on the

derivatives, might help? Or maybe, even under those assumptions, there are counterexam-

ples. Settling this question one way or another seems a hard but worthy endeavor.

On a somewhat more modest scale, what can be said about the existence of equilibria

with bid-grids? We were unable to use the degree-theoretic approach of Section 6 to obtain

a positive result without Assumption 6.1. Does the result extend to the more general case?

Or, are there counterexamples to existence when player types are sufficiently asymmetric?

This issue seems to be a version of the problem that we already encounter in finite auctions.

As Reny and Zamir [22] have shown, for a second-price auction, even assuming affiliation,

existence of nontrivial equilibria is not guaranteed when players are asymmetric.

Turning to the result of Section 7, could we allow for a continuous bid and type spaces,

while retaining the finite grids for the state space? Or perhaps even just allowing for con-

tinuous bids? These questions get at the role that discreteness plays in existence results.

The picture that emerges, in our view, and in light of our own attempts, is that a trifecta
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of factors—asymmetric types, interdependent valuations (through the state variable) and a

continuum of states and signals—present major hurdles to establishing existence theorems

for auctions.

As we saw in the last section, when the REE of the limit economy is not totally monotone,

the associated limit auction, and hence also each corresponding large auction, may not have

an equilibrium. Even worse, these large auctions may not even admit an ε-equilibrium for

small ε > 0. Thus, auction theory cannot provide an explanation for price-formation in

such economies.9 However, do there exist other mechanisms that can implement the REE

outcome? It is simple to construct an incentive compatible and individually rational direct

mechanism for the limit model that would yield the same allocation and prices as the REE:

have agents report their signals and compute the state from the frequency of signals; given

the state, use the REE clearing price to determine the allocation from the reports. Ex-

post incentive compatibility is trivial because individual reports do not affect the clearing

price. Observe that this is also an ε-IC and IR mechanism for a large but finite model.10

Potentially, therefore, one could construct a implementable (in the sense of being close

enough to real-world mechanisms) indirect mechanism that would outperform auctions in

providing foundations for price-formation in REE.

Could we describe the set of equilibria of Γ∞? In the presence of total monotonicity,

we have identified one equilibrium; and with the average-crossing property, it is the unique

monotone equilibrium. But, are there other equilibria in Γ∞ that are limits of ε-equilibria of

Γn? If so, how reasonable are those in relation to the REE? More intriguing is the question

of whether Γ∞ has a Nash equilibrium when total monotonicity fails. As it is a discontinuous

game, the answer is not clear—the techniques developed by the literature on discontinuous

games (cf. Reny [20] and followers) do not seem to be applicable here. However, if the answer

is yes, then it would point to a basic inconsistency between the two theories, strategic and

competitive.

More results in a positive direction seem possible. This paper assumes that agents want

or are endowed with one unit of a single homogenous good and that they are risk-neutral. It

seems somewhat straightforward to relax the risk-neutrality assumption. A more challenging

problem is to obtain results for cases with multiple commodities and multi-unit demands,

and removing the restriction that each agent operate on only one side of the market—which

9Paul Milgrom has suggested to us (private communication) that, quite possibly, a dynamic auction could
refute this conclusion.

10In an Arrow-Debreu framework with private information, Gul and Postlewaite [5] proposed a somewhat
similar, albeit stochastic due to rationining, direct mechanism and showed that it is IC, IR, and ex post
ε-efficient.
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would amount to moving from a partial to a general equilibrium setting. While the tools

developed here should generalize to higher dimensions, what is not completely evident is the

nature of the assumptions concerning substitutability/complementarity that would deliver a

counterpart to our findings.

10. Conclusion

Before summarizing our results, we recall that the study of market mechanisms via game

theory over the past half-century originated as a program to elucidate the role of dispersed

information and limited observability on incentives. In 1945 Hayek [9, p. 526] observed

that “The mere fact that there is one price for any commodity [reflects] all the information

. . . dispersed among all the people involved in the process. . . . We must look at the price

system as such a mechanism for communicating information if we want to understand its real

function.” Then in 1973 Hurwicz [10] modeled markets as mechanisms for eliciting offers from

traders to obtain allocations that reflect information dispersed among them, and proposed

that outcomes result from Nash equilibria. This posed the question, studied by the authors

cited in Section 1, of when prices produced by familiar mechanisms, such as (double) auctions,

summarize all information among traders, formalized as rational expectations equilibria with

fully revealing market-clearing prices. This paper contributes to that literature.

The model in Section 2 generalizes previous work by allowing any finite set of types of

traders, but still requires replication of traders of each type. Our main result is existence

of ε-equilibria for sufficiently numerous replicates, that then converge to the unique rational

expectations equilibrium, for which the clearing price is a sufficient statistic for all the signals

observed by traders.

We provide two technical innovations. One is a limit economy with a countable set of

traders, and the corresponding limit auction. The other is proof that the ε-equilibrium

correspondence is continuous at the rational expectations equilibrium. The degree theory

we use to establish lower-semi-continuity suggests applications to other mechanisms with

large-but-finite sets of participants. In particular, a notable goal is to use an extension

to multiple commodities and multi-unit demands with multidimensional state and signal

spaces (as in Gul and Stacchetti [6, 7] or Kelso and Crawford [12]) to apply degree theory

to establish lower-semi-continuity at Walrasian equilibria of general models with countable

sets of agents so that properties of limits of Nash equilibria of large-but-finite economies can

be obtained, including the role of rational expectations and the extent to which dispersed

information is reflected in prices.
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Appendix A. Asymptotic Probabilities

This appendix first lays out a few key computations concerning asymptotic probabilities,

both in the case where the Central Limit Theorem applies as well as in the case of large

deviations. The asymptotics in Section 6 derive from getting n draws from an (I-fold) sum

of trinomial or binomial variables. These results are then used to complete the proofs that

were omitted in the text. The asymptotics in Section 7 follow from direct relative-entropy

calculations for random variables with finite support.

A.1. Trinomial Probabilities. For each player i, a pair of signals 0 6 x1
i 6 x2

i 6 1

generates a trinomial distribution with outcomes 0, 1, and 2, with their respective probabil-

ities being Pi(x
1
i |ω), Pi([x

1
i , x

2
i ] |ω), and 1 − Pi(x2

i |ω). For each n, and a triple of integers

ki = (ki,0, ki,1, ki,2) that sum to n, let Pi(ω, x
1, x2, ki, n) be the probability that in n trials,

exactly ki,0 draws are below x1
i , and exactly ki,2 draws are above x2

i . Letting κi = n−1ki, we

have:

Pi(ω, x
1
i , x

2
i , ki, n) =

(
n!

ki,0!ki,1!ki,2!

)
exp(−nD(ω, x1

i , x
2
i , κi)) exp(−nH(κi)),

where H(·) is the entropy of the trinomial distribution κi = (κi,0, κi,1, κi,2) and D(·) is its

relative entropy w.r.t. to the given trinomial.

A.2. Relative-Entropy Minimization. Let 0 6 x1
i 6 x2

i 6 1 for each i be such that:

(a) letting J0 (resp. J1) be the set of types i for whom x1
i = 1 (resp. x2

i = 0), we have

|J0| 6 m0 − 1 and |J1| 6 m1 − 1; (b) x1 < x2 for all i /∈ J0 ∪ J1. Let K be the set of

κ ∈ [0, 1]3I such that: for each i,
∑2

l=0 κi,l = 1, with κi,l = 0 if l is not in the support of the

trinomial given by (x1
i , x

2
i );
∑

i κi,0 < m0; and
∑

i κi,2 < m1. Let K̄ be its closure. For each

κ, let D(ω, x1, x2, κ) =
∑

iDi(ω, x
1
i , x

2
i , κi) and consider the minimization problem:

min
κ∈K̄

D(ω, x1, x2, κ).

Let D∗(ω, x1, x2) be the optimal value and κ∗(ω, x1, x2) the minimizer. The norm of the

gradient d∗(ω, x1, x2) at the optimal solution is non-negative and finite. Denote by Ω(x1, x2)

the set of ω such that
∑

i Pi(x |ω) = m0 for some x ∈ [x1, x2]. Ω(x1, x2) is then an interval.

If Ω(x1, x2) is a singleton, then it is either the state ω = 0 or ω = 1. If Ω(x1, x2) is

an interval, then for each ω ∈ Ω(x1, x2), in the optimal solution κ∗(ω, x1, x2), the i-th

coordinates, for each i, are the trinomial probabilities of the distribution derived from (x1
i , x

2
i )

and the optimal relative entropy is zero. Outside this interval of states, the relative entropy

D∗(·, x1, x2) is strictly increasing in the distance from Ω(x1, x2) and convex. If Ω(x1, x2)

is empty then D∗(·, x1, x2) is minimized at either ω = 0 or ω = 1 depending on whether
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i Pi(x

1
i | 1) < m0 or

∑
i(1 − Pi(x2 | 0)) > m1 and then D∗(·, x1, x2) is C2 and accordingly

either strictly increasing or decreasing.

A.3. Expected Probability of Winning in a Tie at a Bid. Take pairs 0 6 x1
i 6 x2

i 6 1

for each i as in the previous subsection. Suppose types in [x1
i , x

2
i ] bid b, types above (resp.

below) x2
i (resp. x1

i ) bid above b (resp. below b) in the game Γn. A tie at bid b in state

ω occurs if the total number of players with signals above x2 is strictly less than m1n and

those with signals less than x1 is strictly less than m0n. Thus, it occurs when the empirical

frequency of the trinomial draws falls in K. The probability Gn(ω, x1, x2) of a tie (at bid b)

in state ω is computed as:

Gn(ω, x1, x2) ≡
∑
κ∈Kn

∏
i

Pi(ω, x
1, x2, κi)

where Kn is the subset of K consisting of κ such that nκ is a vector of integers. As we

only have to move at most n−1 in each coordinate in K to be in Kn, and K is convex, the

usual inequalities from the method of types employed in proving Sanov’s Theorem give the

following bounds:

1

(n+ 1)3|I| exp(−
√

3|I|d∗(ω, x1, x2) +O(n−2)) 6
Gn(ω, x1, x2)

exp(−nD∗(ω, x1, x2))
6 1,

where d∗(ω, x1, x2) is the norm of the gradient of D(ω, x1, x2) at the entropy minimizer.

Moreover, suppose (x1,n, x2,n) → (x1, x2). If ω is in the interior of Ω(x1, x2), then by the

Uniform Law of Large Numbers, limnG
n(ω, x1,nx2,n) = 1. If ω falls outside this interval, then

we get limn n
−1 ln(Gn(ω, x1,n, x2,n)) = −D∗(ω, x1, x2) by Sanov’s Theorem. For a boundary

point ω of the set Ω(x1, x2), the limit probability falls somewhere in [0, 1].

When there is a tie, the probability of winning is determined by the number of agents

involved in the tie and is thus a random variable defined as follows. Let τ̄∞ : K̄ → [0, 1] be

given by:

τ̄∞(κ) =
m1 − κ̄2

κ̄1

where κ̄l =
∑

i κi,l for l = 1, 2. Then, the expected probability of winning a tie in state ω is:

τ̄n(ω, x1, x2) =
∑
κ∈Kn

∏
i

Pi(ω, x
1, x2, κi)τ̄

∞(κ).

Also, let

τ̂n(ω, x1, x2) =
∑
κ∈Kn

∏
i

Pi(ω, x
1, x2, κi)(1− τ̄∞(κ)).
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As τ̄∞(κ) is at least (nI)−1 and, of course, no more than 1
2
, we have the following bounds

for this probability:

1

n|I|
Gn(ω, x1, x2) 6 τ̄n(ω, x1, x2) 6

1

2
Gn(ω, x1, x2),

and similarly,

1

2
Gn(ω, x1, x2) 6 τ̂n(ω, x1, x2) 6

n|I| − 1

n|I|
Gn(ω, x1, x2),

Suppose (x1,n, x2,n) → (x1, x2). If ω is in the interior of Ω(x1, x2), then by the Uniform

Law of Large Numbers we have limn τ̄
n(ω, x1,n, x2,n) = τ̄∞(κ∗(ω, x1, x2)).

Finally, let K̃n be the subset of K̄ consisting of κ such that nκ is a vector of integers,∑
i κi,0 = m0, and

∑
i κi,2 = m1. Using K̃n in the place of Kn we compute G̃n(ω, x1, x2), the

probability of the event that the number of players with signals less than x1 is equal to m0n

and that the number of players with signals above x2 is equal to m1n. As above, G̃n is driven

by the minimum relative entropy D̃∗(ω, x1, x2). Observe that D̃∗(ω, x1, x2) < D∗(ω, x1, x2),

and hence that G̃n(ω,x1,x2)
Gn(ω,x1,x2)

→ 0 exponentially in n and uniformly in (ω, x1, x2).

For the first-order difference equations for a player i, we need to compute the probability

Gn
i (ω, x1, x2) of a tie at a bid b if he were to submit it, as well as the corresponding expected

probabilities τ̂ni (ω, x1, x2) and τ̂ni (ω, x1, x2). The probabilities are obtainable by a small

modification of the above computations. Fix i. We get n trinomial trials for j 6= i and n−1 for

i. Let Kn
i be the set of κ ∈ K such that: (a) for j 6= i, nκj is a vector of integers; (b) (n−1)κi

is a vector of integers;
∑

j 6=i nκj,0 +(n−1)κi,0 6 m0n−1,
∑

j 6=i nκj,2 +(n−1)κi,2 6 m1n−1,∑
j 6=i nκj,1 + (n − 1)κi,1 > 1. Replace Kn with Kn

i to get the probability Gn
i (ω, x1, x2) of

a tie involving i at bid b and also τ̄∞i , with the denominator being κ̄1 + n−1 (to include i).

One way to leverage the previous computations is to to take n− 1 trials for all j (including

i) and then have an extra trial for players (j, 1), j 6= i. Thus, we get the bound below for

Gn
i (ω, x1, x2):

1

n3|I| exp(−
√

3|I|d∗(ω, x1, x2) +O(n−2)) 6
Gn
i (ω, x1, x2)

exp(−(n− 1)D∗(ω, x1, x2))
6 1,

and τ̄ni (ω, x2, x1) is derived as before, using now Gn
i (ω, x1, , x2) instead of Gn(ω, x1, x2). We

can similarly compute the probability G̃n
i (ω, x1, x2) that i is the only player with a signal in

[x1, x2].
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A.4. Proof of Lemma 6.2. As Θζ ×Xi is compact and π̄n,ζi,k is continuous in (θ, yi) for all

n (including n = ∞), the result is proved if we show that for a sequence (θn, yni ) → (θ, yi),

we have π̄n,ζ,ki (θn, yni )→ π̄∞,ζi (θ, yi, k) and similarly for the derivatives.

Let (x0,n, x1,n, x2,n) = (θn−0(k − 1), θn−0(k), θn−0(k + 1)) for each n and let (x0, x1, x2) be its

limit. Let yni → yi.

For each n, and for the case of a buyer, we decompose π̄n,ζ,ki (θn, yni ) as

λ0,n

∫
Ω

(vi(ω, y
n
i )− bk−1)q0,n(ω)dω + λ1,n

∫
Ω

(vi(ω, y
n
i )− bk)q1,n(ω)dω − (1− λ0,n − λ1,n)αζ

(for a seller we have −(1− α)ζ in the place of αζ),

q0,n(ω) =
τ̂ni (ω, x0,n, x1,n)p(ω | yni )∫

Ω
τ̂ni (ω′, x0,n, x1,n))p(ω′ | yni )dω′

;

q1,n is defined similarly using (x1,n, x2,n) and also replacing τ̂ni with τ̄ni ; and

λ`,n =

∫
Ω
q`,n(ω)dω∫

Ω
[q0,n(ω) + q1,n(ω) + G̃n

i (ω, x0,n, x1,n)]dω
, ` = 0, 1.

Suppose Ω(x1, x2) has a nonempty interior. Then, q1,n converges pointwise to the density

q1 given by: q1(ω) = τ̄∞(κ∗(ω, x1, x2))p(ω | yi) if ω belongs to the interior of Ω(x1, x2) and

is zero if it does not belong to Ω(x1, x2). Hence, the expectation under q1,n corresponds to

the payoff from a tie at bid bk for types in [x1, x2]. If Ω(x1, x2) has an empty interior, then

D∗(ω, x1, x2) is the lowest at either ω = 0 or ω = 1. Assume the former. Then, for each

ω < ω′,

lim
n→∞

q1,n(ω′)

q1,n(ω)
= lim

n→∞
exp[−n(D∗(ω′, x1,n, x2,n)−D∗(ω, x1,n, x2,n))] = 0.

and we have that the limit of the probability measures Q1,n is point mass at ω = 0. Hence

the expectation converges to vi(0, yi) − b, which is what we impute under π̄∞,ζi . A similar

computation holds for q0,n. To finish the proof, we need to get the convergences of λ`,n.

Observe first that because G̃n
i (ω, x0, x1) is dominated by Gn

i (ω, x0, x1), λ0,n + λ1,n → 1. If

both Ω(x0, x1) and Ω(x1, x2) have nonempty interiors, then the limit of λ0,n exists and is in

(0, 1) as q0,n and q1,n converge pointwise; if Ω(x0, x1) has an empty interior but D∗(ω, x0, x1)

is lowest at ω = 0, then

lim
n
λ0,n = lim

n
exp(−n(D∗(0, x0,n, x1,n)−D∗(0, x1,n, x2,n)) = 0.

All other cases are handled similarly and we get the appropriate convergence.

The logic for the functions involving the derivatives is similar and, therefore, omitted.
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A.5. Relative-Entropy Calculations for Section 7. We recall the set up from Section 7.

For each i and n, F n
i is set of empirical frequencies in ∆(B(Z)) of (i, 1)’s opponents that are

observable from the play of σn,Z . Given b(ω0) 6 b0 < b1 6 b(ω1), let En
i (b0, b1, xi, ω) be the

set of frequencies in F n
i where there is a payoff difference between bidding b0 and b1 for xi. Let

Rn
i (b0, b1, xi, ω) be the probability of this event and let πni (b0, b1, xi, ω) be the expectation

of the difference in payoffs conditional on En
i (b0, b1, xi, ω). Let R̄n

i be the expectation of

Rn
i (b0, b1, xi, ·) w.r.t. PZ

i (· |xi) and let π̄ni (b0, b1, xi) be the corresponding expectation of the

payoff difference. Observe that

π̄∞i (b0, b1, xi) = lim
n
π̄ni (b0, b1, xi) = lim

n

∑
ω∈Ω(Z)

πni (b0, b1, xi, ω)
Rn
i (b0, b1, xi, ω)

R̄n
i (b0, b1, xi)

.

Asymptotically, then, the payoff differences are driven by the relative likelihoods of the events

En
i (b0, b1, xi, ω), which in turn are determined by the associated relative entropy estimates.

The relative entropy of an empirical frequency β̂ni relative to the true distribution βn is∑
b∈B(Z) β̂

n
i (b)[ln(β̂ni (b))−ln(βni (b))]. If we let dni (b0, b1, xi, ω) be the minimal entropy between

points in En
i (b0, b1, xi, ω) and the distribution βni (· |ω) of bids in state ω induced by σn,Z ,

then

n−|B(Z)| exp(−ndni (b0, b1, xi, ω)) 6 Rn
i (b0, b1, xi, ω) 6 n|B(Z)| exp(−ndni (b0, b1, xi, ω)).

Let β̂ni (b0, bi, xi, ω) ∈ En
i (b0, b1, xi, ω) be a frequency that achieves the minimal entropy, and

let β̂∞i (b0, bi, xi, ω) be defined as follows. First for ω 6 ω0, (a)
∑

b<b0
β̂∞i (b0, bi, xi, ω)(b) = µ0

(resp.
∑

b6b0
β̂∞i (b0, bi, xi, ω)(b) = µ0) if vi(ω, xi) 6= b0 (resp. vi(ω, b0) = b0); (b) the ratio of

the probabilities of b < b′ is the same as in σ∞,Z if b′ < b0 (resp. b′ 6 b0) b < b0 (resp. b > b0).

For ω > ω1, we get a similar set of conditions except that the defining equation in (a) sets∑
b>b0

β̂∞i (b0, bi, xi, ω)(b) = µ0 (resp.
∑

b>b1
β̂∞i (b0, bi, xi, ω)(b) = µ1) if vi(ω, xi) 6= b1 (resp.

vi(ω, xi) = b1). By construction, β̂ni (b0, b1, xi, ω) converges to β̂∞i (b0, b1, xi, ω). Also the

entropy dni (b0, b1, xi, ω) converges to the relative entropy d∞i (b0, b1, xi, ω) of β∞i (b0, b1, xi, ω)

w.r.t. the distribution β∞ induced by σ∞,Z . d∞i (b0, b1, xi, ·) is strictly monotonically de-

creasing (resp. increasing) over the interval [ζ0, ω0] (resp. [ω1, 1]). Thus, asymptotically, xi’s

choice between b0 and b1 is determined by which of the two states, ω0 and ω1, has the lower

entropy. This computation gives us all the lemmas for Section 7 as we now show.

A.6. Proofs for Section 7. For Lemma 7.4, d∞i (b0, b1, xi, ω0) is strictly smaller or strictly

larger than d∞i (b0, b1, xi, ω1) depending on whether ω is ω0 or not. Either way, the payoff

difference between b0 and b1 for xi is determined in state ω. And, relative entropy under
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d∞i (b0, b1, ·, ω0) continues to be minimized in ω if we replace xi with yi. Thus, we are basically

in a private values model in state ω. The difference of differences, i.e., the difference between

yi and xi of their payoff differences between b0 and b1 depends on En
i (b0, b1, yi, ω) and equals

their value differences in this state which gives us the result.

For Lemma 7.5, suppose first that there exists one state ω such that vi(ω, xi) = b0 and

vi(ω, yi) = b1. Then d∞i (b0, b1, yi, ·) is the smallest in state ω and hence π̄∞i (b0, b1, yi) = b1−b0

if ω = ω0 and we can say that π̄∞i (b0, b1, yi) is at least (1 − α)ζ if ω = ω1. Now suppose

that vi(ω0, xi) = b0 while vi(ω1, yi) = b1. Then, as in the previous case, π̄∞i (b0, b1, yi, ω0) =

vi(ω0, yi)− b0 > ζ and π̄∞i (b0, b1, yi, ω1) > (1−α)ζ and regardless of which of the two states,

ω0 and ω1 has a lower limit entropy, the payoff difference is at least ζ.

For the Lemma 7.6, if b1 > vi(ω1, xi) then, regardless of whether ω0 or ω1 has a lower

entropy, π̄∞i (b0, b1, xi) 6 −ζ. If b1 6 vi(ω1, xi) and b0 = vi(ω0, xi), then ω0 has a lower

entropy, implying that π̄∞i (b0, b1, xi) 6 −ζ, again. The logic for the proof of Lemma 7.7 is

the same as that for the second case of Lemma 7.6: q0(b0, σ
∞,Z) < q1(b1, σ

∞Z) implies that

ω0 has a lower entropy so that b1 is inferior by at least ζ; when the inequality is reversed, b1

is a better reply by at least ζ.
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