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Abstract

This paper studies estimation of parameters of the form φ(θ0), where φ is a

known directionally differentiable function, and θ0 is an estimable feature of the

observed distribution of the data. Such parameters are abundant in economet-

ric models and typically take the form of maxima or minima of some estimable

objects. Examples include bounds on the average treatment effects in non-

experimental settings, identified sets for the coefficients in regression models

with interval-valued data, bounds on the distribution of wages accounting for

selection into employment, and many others. I show that the efficient (Lo-

cally Asymptotically Minimax) estimators for such parameters take the form

φ(θ̂n + v̂1,n) + v̂2,n, where θ̂n is the efficient estimator for θ0, and v̂1,n, v̂2,n are

suitable adjustment terms. I demonstrate that the optimal adjustment terms

depend on the chosen loss function and develop a general procedure to compute

them from the data. A simulation study shows that the proposed estimator can

have lower finite-sample bias and variance than the existing alternatives. As an

application, I construct efficient estimators for the bounds on the distribution

of valuations and the optimal reserve price in English auctions with indepen-

dent private values. Empirically calibrated simulations show that the resulting

estimates are substantially sharper than the previously available ones.

∗I am deeply grateful to my advisors Rosa Matzkin and Andres Santos, for their constant support
and guidance. I would also like to thank Denis Chetverikov for his support and suggestions that
helped to improve this paper.
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1 Introduction

Many econometric models concern parameters of the form φ(θ0), where φ is a known

function that is directionally but not necessarily fully differentiable, and θ0 is an un-

known but estimable object. Such φ(θ0) may represent, for instance, the bounds on

a parameter of interest in a partially-identified model, or a parameter defined as the

value function of an optimization problem that may have multiple solutions. Exam-

ples include bounds on treatment effects obtained by taking minima or maxima of

the estimated conditional moments (e.g., Manski and Pepper, 2000, 2009; Shaikh and

Vytlacil, 2011), identified sets for the coefficients in regression models with interval-

valued data (Manski and Tamer, 2002; Beresteanu and Molinari, 2008; Bontemps,

Magnac, and Maurin, 2012), bounds on the distribution of wages accounting for se-

lection into employment (e.g., Blundell, Gosling, Ichimura, and Meghir, 2007), and

bounds on the distribution of valuations and optimal reserve prices derived from the

observed distribution of bids in English auctions (Haile and Tamer, 2003; Aradillas-

López, Gandhi, and Quint, 2013; Chesher and Rosen, 2017), among others.1

The lack of full differentiability of the function φ complicates estimation of such

parameters. Assuming that an efficient estimator θ̂n for θ0 is available, a natural

approach is to estimate φ(θ0) with φ(θ̂n). However, the properties of such “plug-

in” estimator critically depend on the value of θ0. If the full differentiability of

the function φ fails at θ0, then the “plug-in” estimator will be asymptotically biased

(Hirano and Porter, 2012) and inefficient (Song, 2014; Fang, 2018). Moreover, in such

cases, one faces a bias-variance trade-off: Since unbiased estimators may not exist,

attempting to reduce the bias “too much” may dramatically increase the variance of

the resulting estimator (Doss and Sethuraman, 1989). The existing bias-reduction

approaches do not take the bias-variance trade-off into account, while the analysis of

efficient estimators has been limited to special cases, imposing strong restrictions on

the function φ, or the class of competing estimators.

In this paper, I develop efficient estimators for such parameters in a general set-

ting. Specifically, I assume that the parameter θ0 is “well-behaved,” in the sense that

1Other examples include bounds on structural parameters in market entry and discrete choice
models (Ciliberto and Tamer, 2009; Beresteanu, Molchanov, and Molinari, 2011; Pakes, Porter, Ho,
and Ishii, 2007, 2015), shape restrictions via projections (Fang, 2018), and the breakdown frontiers
in the recent literature on sensitivity analysis (Kline and Santos, 2013; Masten and Poirier, 2020).
A more detailed discussion is provided in Section 2.2.
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a regular efficient estimator θ̂n is available, and that the function φ is everywhere

directionally differentiable. To accommodate applications such as English auctions

or regressions with interval-valued data, I allow both θ0 and φ(θ0) to take values in

finite or infinite-dimensional spaces. I show that an efficient estimator for φ(θ0) can

be constructed as

φ

(
θ̂n +

v̂1,n√
n

)
+
v̂2,n√
n
, (1)

where v̂1,n, v̂2,n are adjustment terms, computed from the data.

The proposed estimator has two key features. First, it automatically adapts to

the presence or failure of full differentiability. That is, if the data suggest that the

function φ is likely to be fully differentiable at θ0, both adjustment terms will be equal

to zero by construction. In this case, the proposed estimator reduces to φ(θ̂n), which

is known to be efficient under full differentiability (e.g. van der Vaart, 1988). On

the other hand, if the data reveal that the full differentiability is likely to fail at θ0,

the adjustment terms will differ from zero and improve on the “plug-in” estimator.

Second, the optimal adjustment terms depend on the loss function chosen to evaluate

and compare different estimators. Under full differentiability, the “plug-in” estimator

φ(θ̂n) is known to be efficient for any symmetric “bowl-shaped” loss function, so that

the choice of a particular functional form is irrelevant (e.g. van der Vaart, 1988). In

contrast, when differentiability fails, the adjustment terms can depend on the loss

function, suggesting that the latter should be tailored to specific applications. In

particular, choosing the squared loss function allows to select the adjustment terms

to balance the bias-variance trade-off.

In order to accommodate a variety of econometric models and parameters in a

tractable way, as a notion of efficiency I employ Local Asymptotic Minimaxity.2 To

elaborate, suppose that the data X1, . . . , Xn are an i.i.d. sample with a common

distribution P ∈ P, where P denotes the model (i.e., the set of all plausible distri-

butions, consistent with the maintained assumptions). Let θ0 denote some root-n

estimable feature of the distribution P , and φ̂n denote a generic estimator for the

target parameter φ(θ0). Letting l denote a non-negative loss function, the quality

of different estimators can be evaluated by their risk, EP{l(
√
n(φ̂n − φ(θ0)))}, where

2It is worth-noting that, due to the potential lack of full differentiability, regular or unbiased
estimators may not exist (van der Vaart, 1991; Hirano and Porter, 2012), and therefore traditional
optimality criteria, searching for the “best regular” or “best minimum-variance unbiased” estimators,
are inapplicable. Local Asymptotic Minimaxity is applicable more broadly, see Section 3.
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the expectation is calculated with respect to the data distributed according to P .3

For every fixed n, it is understood that the lower the risk, the better the estimator.

The idea of Local Asymptotic Minimaxity is to compare estimators in terms of the

asymptotic risk in a locally-worst-case scenario, that is,

lim inf
n→∞

sup
P̃∈Vn(P )

EP̃
{
l
(√

n(φ̂n − φ(θ(P̃ )))
)}

, (2)

where Vn(P ) ⊂ P denote certain “local neighborhoods” of P that shrink as n ap-

proaches infinity and only contain distributions that are hard to distinguish from

P empirically. Any estimator sequence {φ̂n} that minimizes the above expression

is called Locally Asymptotically Minimax (or LAM). A more precise formulation

requires substantial background and is discussed in Section 3.

To obtain the LAM estimator, I proceed in two steps. First, I show that the LAM

risk, given by (2), of any estimator satisfying mild regularity conditions is bounded

from below by

inf
v1,v2

sup
s∈S(Z)

E
{
l
(
φ′0(Z + v1 + s)− φ′0(s) + v2

)}
, (3)

where a random vector (or process) Z denotes the distributional limit of the efficient

estimator sequence θ̂n, the set S(Z) denotes its support, and the function φ′0 denotes

the directional derivative of φ at θ0. This risk lower bound holds for all symmetric

“bowl-shaped” loss functions, and parallels the familiar notion of the variance lower

bound, establishing a sharp limit on the quality of estimation of the parameter φ(θ0)

under directional differentiability. Second, I show that, with the appropriate choice

of the adjustment terms, the estimator in (1) attains the risk lower bound in (3)

and, therefore, this estimator is Locally Asymptotically Minimax. The optimal ad-

justment terms v̂1,n, v̂2,n solve an optimization problem, corresponding to a suitable

sample analog of (3). The problem takes a min-max form with a non-convex-concave

objective function and, in general, can be computationally demanding. I discuss com-

putational heuristics that help speed up the optimization and in some cases provide

an approximate closed-form solution.

3For example, for a real-valued parameters, the quadratic loss l(x) = x2 corresponds to the

mean-squared error, EP {(
√
n(φ̂n−φ0))2} = VarP {

√
n(φ̂n−φ0)}+{EP (

√
n(φ̂n−φ0))}2. Note that

both the distribution of the estimator φ̂n and the value of the target parameter φ(θ0) depend on
the distribution P of the data.
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The finite-sample performance of the proposed estimator is investigated in a sim-

ulation study. I consider a simple setting, similar to Manski and Pepper (2000),

in which the identified set for some real-valued parameter of interest is given by

[maxj6d1(θ1,j), mink6d2(θ2,k)], where (θ1, θ2) = (EP (X1),EP (X2)) ∈ Rd1 × Rd2 for

observable random vectors (X1, X2). Letting (X̄1,n, X̄2,n) denote the corresponding

sample means, one can estimate the bounds by [maxj6d1(X̄1,j,n),mink6d2(X̄2,k,n)].

However, the resulting estimates are generally biased towards each other, and, in

practice, may be significantly tighter than the population bounds, potentially leading

to erroneous conclusions. Therefore, it is customary to use bias-correction methods

in practice (Kreider and Pepper, 2007; Chernozhukov, Lee, and Rosen, 2013). By

extensive simulations, I compare the performance of the proposed efficient estimator

with the simple “plug-in” estimator and the existing bias-correction methods near

the values of (θ1, θ2) where the finite-sample bias is most problematic. These are the

values (θ1, θ2) where the maximum/minimum are attained by multiple coordinates of

θ1 and θ2 respectively,4 so that the maximum/minimum functions are not fully differ-

entiable. With the squared loss function, I find that the proposed efficient estimator

mildly reduces the bias but avoids substantial fluctuations in variance, compared to

the alternatives.

As an application, I revisit the model of English auctions from Haile and Tamer

(2003). In a setting with independent private values, the main primitive object of

interest for the empirical analysis is the marginal distribution of valuations. The

knowledge of this distribution allows one to forecast expected revenue and bidders

surplus and study the effects of a change in the auction design. Under natural as-

sumptions on bidders behavior, Haile and Tamer (2003) derived informative bounds

on the distribution of valuations that take the form of point-wise minima and maxima

of smooth transformations of the observed distribution of bids. I apply the method-

ology developed in this paper to construct efficient estimators for the bounds on the

distribution of valuations and the implied bounds on the optimal reserve price. Em-

pirically calibrated simulations show that the resulting estimates are substantially

sharper than the previously available ones.

4Suppose that θ2,1 is the minimal component of θ2 and it is well-separated from the rest, relative
to the sampling uncertainty. Then, mink6d2(X̄2,k,n) = X̄2,1,n with probability close to one so that
the plug-in estimator is approximately unbiased. On the other hand, if the minimal components of
θ2 are close to each other, the “plug-in” estimator is more likely to pick up the estimation errors in
the components of X̄2,n. Similar intuition holds for the maximum function and the lower bound.
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This paper contributes to the literature on asymptotically efficient estimation

in Econometrics and Statistics (e.g., Chamberlain, 1987, 1992; Newey, 1990, 1994;

Brown and Newey, 1998; Ai and Chen, 2003, 2012; Ackerberg, Chen, Hahn, and Liao,

2014; Kaido and Santos, 2014; Ibragimov and Hasḿinskii, 1981; Bickel, Klaassen,

Ritov, and Wellner, 1993; van der Vaart and Wellner, 1996; van der Vaart, 1988,

2000, and others). It is well-known that if θ̂n is asymptotically efficient for θ0, and

φ is fully differentiable (in the sense of Hadamard), the “plug-in” estimator φ(θ̂n) is

asymptotically efficient for φ(θ0) (e.g., van der Vaart, 1988). In this paper, I extend

the analysis and characterize asymptotically efficient estimators for φ(θ0) assuming

only directional differentiability of φ, which allows to handle a new and important

class of parameters.

The most closely-related papers, also studying efficient estimation under direc-

tional differentiability, are Song (2014) and Fang (2018). Both papers employ ver-

sions of the LAM criterion introduced above and find that the plug-in estimator can

be improved by introducing an additive adjustment term, i.e., using an estimator

φ(θ̂n + v̂1,n/
√
n), where θ̂n is the efficient estimator for θ0. Song (2014) focuses on

Euclidean parameters θ0 ∈ Rd and real-valued φ(θ0) for a restricted class of functions

φ. Fang (2018) allows both θ0 and φ(θ0) to take values in general normed spaces

but restricts the class of competing estimators to all plug-in estimators of the form

φ(θ̃n) where θ̃n is an arbitrary regular estimator for θ0. This restriction excludes some

important estimators, such as Stein-type shrinkage estimators, from consideration.

In this paper, I do not impose restrictive assumptions on the function φ or the class

of competing estimators and find that, in general, two adjustment terms v̂1,n and v̂2,n

(as in Equation 1) are necessary to attain the risk lower bound. In a special case

when the directional derivative φ′0 is translation equivariant,5 it is possible to find an

efficient estimator with v̂2,n = 0, which, for symmetric loss functions, will coincide

with the one proposed by Fang (2018). In such case, the added value of this paper is

in showing that the estimator is optimal among all estimators, not only plug-in esti-

mators with regular θ̃n. In other cases, the estimator in Fang (2018) is not optimal

and can be improved by adding the appropriately chosen second adjustment term.

Another closely-related paper is Fang and Santos (2019). My work is complemen-

tary to theirs: I focus on efficient estimation, whereas they focus on valid inference

5 That is, φ′0(x+ c · 1̄) = φ′0(x) + c for any c ∈ R, where 1̄ denotes a vector of ones of a suitable
dimension.
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in settings with directionally differentiable functions.

The rest of the paper is organized as follows. Section 2 provides the general

setup and motivating examples and discusses the appropriate notion of directional

differentiability. Section 3 elaborates on the optimality criterion, provides some back-

ground, and formulates the basic assumptions. Sections 4 and 5 establish the general

risk lower bound under directional differentiability and construct efficient estimators.

Section 6 presents a simulation study. Section 7 contains an empirical application.

Section 8 discusses extensions, and Section 9 concludes.

2 Directionally Differentiable Parameters

2.1 General Setup

The main parameter of interest in this paper is φ(θ0), where θ0 is an unknown but

estimable feature of the distribution of the data, and φ is a known directionally

differentiable function. In order to accommodate applications such as incomplete

auction models or regression models with interval-valued data, I allow both θ0 and

φ(θ0) to take values in possibly infinite dimensional spaces. Specifically, I assume

that θ0 ∈ B and φ : B → D where (B, ||·||B) and (D, ||·||D) are Banach spaces. This

includes B = Rdθ and D = Rdφ with the standard Euclidean norm as a special case.

Throughout the paper, I assume that the data Xn
1 ≡ (X1, . . . , Xn) are an i.i.d.

sample drawn from a distribution P ∈ P of a random vector X ∈ X.6 Here, P denotes

the model, i.e. the set of probability distributions (on a measurable space (X,B))

that are plausible under the maintained assumptions. The set P may be explicitly

indexed by finite- or infinite-dimensional parameters. The unknown parameter θ0

takes value θ(P ) when the distribution of the data is P ∈ P.

Generic estimators for θ0 and φ(θ0) are denoted by θ̂n : Xn
1 → B and φ̂n : Xn

1 → D
respectively. The distributional convergence is understood in the Hoffman-Jørgensen

sense (van der Vaart and Wellner, 1996), which does not require θ̂n and φ̂n to be

measurable for each n. This fact is hidden from the notation throughout the text but

highlighted in the Appendix when necessary. The distributional convergence denoted

by
√
n(θ̂n − θ0)  Pn G and

√
n(φ̂n − φ0)  Pn W is understood to be in B and in

6The i.i.d. setup is not essential: the asymptotic analysis relies on the notion of Local Asymp-
totic Normality which extends to non-i.i.d. settings via the limits of experiments framework. See
Ibragimov and Hasḿinskii 1981; Le Cam 1986; van der Vaart 2000; Fang 2018.
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D respectively, with respect to the joint law
∏n

i=1 Pn of Xn
1 . The individual laws Pn

may change with n.

The transpose of any vector a is denoted by aT . The indicator functions are

denoted by 1(S), which is equal to one if the statement S holds and to zero otherwise.

For any pair of probability measures P and Q defined on the same measurable space,

the ratio dP/dQ denotes the Radon-Nikodym derivative of the absolutely continuous

part of P with respect to Q. For any sequences of constants an and bn and random

variables An and Bn, the symbol An = oPn(an) means that An/an converges in

probability to zero under Pn, and Bn = OPn(bn) means that Bn/bn is bounded in

probability under Pn.

2.2 Motivating Examples

Next, I present several motivating examples, some of which I revisit throughout

the paper to fix ideas. These examples cover both finite and infinite-dimensional

parameters and include models of treatment effects (Example 1), discrete choice

(Example 2), English auctions (Example 3), regression models with interval-valued

data (Example 4), and shape restrictions via projection (Example 5). To focus on

the main ideas, the examples are simplified.

The first example, due to Manski and Pepper (2000, 2009), concerns estimation

of bounds on average treatment effects.

Example 1 (Bounds on Average Treatment Effects). Consider the standard potential

outcomes framework. Let D ∈ {0, 1} denote the treatment indicator, Y (d) ∈ [y, y]

denote the potential outcome under treatment d ∈ {0, 1}, Y = DY (1) + (1−D)Y (0)

denote the observed outcome, and X ∈ {x1, . . . , xM} denote an observed discrete

covariate. The basic parameter of interest is E(Y (d)|X = xm), i.e., the expected

potential outcome under treatment d for a subpopulation with X = xm. This param-

eter can only be point-identified under the assumption that the potential outcomes

(Y (0), Y (1)) are statistically independent from D conditional on X, which may be

hard to support in non-experimental settings. To provide a viable alternative, Manski

and Pepper (2000) propose a number of weaker assumptions that deliver informative

bounds on the parameter of interest, including the following Monotone Instrumental

Variables assumption. Suppose there is an order x1 4 · · · 4 xM such that xj 4 xj+1
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implies

E(Y (d)|X = xj) 6 E(Y (d)|X = xj+1)

for d ∈ {0, 1} and all j = 1, . . . ,M − 1. For example, letting Y denote wage, D

indicate attending college, and X contain some measure of ability, it is reasonable to

assume that the individuals with higher ability (X = xj+1) are, on average, better

off than their less talented peers (X = xj) both in and out of college. Under this

assumption, Manski and Pepper (2000) show that

max
j6m

θjd(y) 6 E(Y (d)|X = xm) 6 min
j>m

θjd(y),

where, for y ∈ {y, y}, d ∈ {0, 1}, and j = 1, . . . ,M ,

θjd(y) = E(Y |X = xj, D = d)P (D = d|X = xj) + y · P (D 6= d|X = xj).

The above bounds on the expected potential outcomes can be used to obtain bounds

on the average treatment effects, or strengthened under further monotonicity restric-

tions. Using similar ideas, Blundell, Gosling, Ichimura, and Meghir (2007) study

changes in the distribution of wages accounting for selection into labor force, and

Kreider, Pepper, Gundersen, and Jolliffe (2012) study the effects on food stamps on

child health outcomes accounting for endogenous or misreported participation. See

Ho and Rosen (2015) for a detailed review of recent applications. In this example,

θ = (θ1, θ2) ∈ Rm × RM−m+1 where θ1 = (θjd(y))mj=1 and θ2 = (θjd(y))Mj=m, and the

function φ : RM+1 → R2 is given by

φ(θ) =

 maxj6m(θ1,j)

mink6M−m+1(θ2,k)

 .

This function is not fully differentiable at θ0 if the maximum or the minimum are

attained by multiple components of the corresponding subvector of θ0. �

The next example, due to Pakes, Porter, Ho, and Ishii (2007, 2015) and Pakes

(2010), concerns bounds on a real-valued parameter of interest in a partially-identified

discrete-choice model.
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Example 2 (Counterfactuals in Moment Inequality Models). Suppose an agent

chooses y ∈ RdY from a set Y = {y1, . . . , yM} to maximize her expected payoff

E(π(y, Z, γ0)|F), where Z is a vector of payoff-relevant variables, γ0 is a vector of

payoff parameters, and F is the agent’s information set. Let Y ∗ denote the opti-

mal choice, and assume that (Y ∗, Z) are observed by the econometrician. Then,

optimality of Y ∗ implies that for all y′ ∈ Y ,

E(π(y′, Z, γ0)− π(Y ∗, Z, γ0)|F) 6 0. (4)

A common payoff specification is π(y, Z, γ0) = u(y, Z) + yTγ0, where u is a known

function (e.g., Pakes, 2010). Under suitable assumptions, the optimality condition in

(4) implies that γ0 must satisfy, for any y, y′ ∈ Y ,

E
((
u(y′, Z)− u(y, Z) + (y′ − y)Tγ0

)
1(Y ∗ = y)

)
6 0

Therefore, the identified set for the vector of structural parameters γ0 ∈ Rd is a

convex polytope and it can be expressed as

Γ0 = {γ ∈ Rdγ : E(m1j(X) +m2j(X)Tγ) 6 0, j = 1, . . . , J}, (5)

where m1j,m2j are known functions, and X is directly observed by the econome-

trician. Let f(γ0) = a + bTγ0 denote a counterfactual of interest, representing, for

instance, an expected change in profit. Assuming that Γ0 is compact, the identified

set for f(γ0) is given by [L(θ0), U(θ0)] defined as

L(θ0) = min
γ∈Rdγ

{f(γ) | F (θ0, γ) 6 0},

U(θ0) = max
γ∈Rdγ

{f(γ) | F (θ0, γ) 6 0},

where θ0 ∈ R2J is a vector of moments containing E(m1j(X)) and E(m2j(X)) for

all j = 1, . . . , J and the function F (θ0, γ) defines the inequalities. In this example,

B = R2J , D = R2, and the function φ : R2J → R2 is given by φ(θ) = [L(θ), U(θ)].

This function is not fully differentiable whenever the above optimization problems

have multiple solutions. A conceptually different approach to identification in an

overlapping class of models has been developed in Galichon and Henry (2011) and
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Beresteanu, Molchanov, and Molinari (2011), who characterize sharp identified sets

for the structural parameters using tools from the theory of random sets. In particu-

lar, the so-called Artstein inequalities (Artstein, 1983) naturally fit the framework of

the present paper. A detailed discussion of this matter, and the treatment of general

moment inequality models, is provided in the Appendix. �

The next example, due to Haile and Tamer (2003), concerns bounds on the dis-

tribution of valuations in English auctions.

Example 3 (English Auctions). Consider a symmetric ascending auction with inde-

pendent private values. Each bidder draws her valuation Vi ∈ [v, v], independently

of the others, from a distribution with a cumulative distribution function (CDF) de-

noted by F . Let Bi denote the final bid of player i. For simplicity, suppose that

each auction has N bidders, and the reserve price is below v. The main parameter of

interest in the empirical analysis in this setting is the CDF of valuations F . To relate

the unobserved valuations with the observed bids, Haile and Tamer (2003) assume

that each player: (i) does not bid above her valuation and (ii) does not let the others

win at a price she is willing to pay. Assumption (i) can be used to obtain an upper

bound on the distribution of valuations

F (v) 6 min
i6N

ψi(Gi:N(v)),

where Gi:N is the CDF of the i-th smallest bid, and ψi : [0, 1] → [0, 1] is a strictly

increasing differentiable function.7 In turn, Assumption (ii) can be used to obtain

a lower bound using the distribution of the winning bid. Let D([v, v], [0, 1]) denote

the set of all cádlág functions from [v, v] to [0, 1] (i.e., functions that are continuous

from the right and have left limits evewyehrer) endowed with the supremum norm.

Focusing on the upper bound presented above, in this example, B = D([v, v], [0, 1])N ,

D = D([v, v], [0, 1]), θ0 = (ψ1(G1:N), . . . , ψN(GN :N)) ∈ B and φ : B → D, is defined

by

φ(θ)(v) = min
i6N

(θ0,i(v)).

This function is not fully differentiable if the minimum is attained by multiple θ0,i for

at least one v ∈ [v, v]. For example, if the bids are i.i.d., all ψi(Gi:N(v)) will coincide

7This function relates the marginal distribution of the order statistics of i.i.d. random variables
with the parent distribution. More details are provided in Section 7.
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for all v ∈ [v, v]. The bounds on the distribution of valuations can be translated into

the bounds on the expected revenue, bidders surplus, and optimal reserve price; see

Haile and Tamer (2003). In the same setting, Chesher and Rosen (2017) characterize

the sharp bounds on the distribution of valuations using tools from the theory of

random sets. Aradillas-López, Gandhi, and Quint (2013) provide bounds on the

expected revenue and bidders surplus in auctions with correlated private values. �

The next example, due to Beresteanu and Molinari (2008) and Bontemps, Magnac,

and Maurin (2012), deals with a regression model with interval-valued outcomes.

Example 4 (Interval Outcome Regression). Let Y ∈ R be an outcome variable,

Z ∈ RdZ be a vector of covariates, and β0 ∈ RdZ be a vector of coefficients for the

best linear prediction

Y = ZTβ0 + ε, E(εZ) = 0.

Assume that YL 6 Y 6 YU almost surely and the researcher only observes (Z, YL, YU).

One parameter of interest is γ0 = pTβ0, with known p ∈ RdZ , representing, for

example, a coordinate projection. Bontemps, Magnac, and Maurin (2012) derived

the closed-form expressions for the bounds on γ0, given by

inf
β∈B0

pTβ = E(bT0ZYL + min{bT0Z, 0}(YU − YL)),

sup
β∈B0

pTβ = E(bT0ZYL + max{bT0Z, 0}(YU − YL)),

where b0 = (E(ZZT ))−1p ∈ RdZ , and B0 is the sharp identified set for β0. Denote

θ0 = (ψ0, b0), where ψ0 : RdZ → R2 is given by

ψ0(b) =

E(bTZYL + max{bTZ, 0}(YU − YL))

E(bTZYL + min{bTZ, 0}(YU − YL))

 .

Letting l∞(T ) denote the set of all bounded real-valued functions defined on T en-

dowed with the supremum norm, it is convenient to view ψ0 ∈ l∞(B) for some

compact set B containing b0 in its interior. Then, B = l∞(B) × RdZ , D = R2 and

φ : B → D is defined by φ(θ) = ψ(b) for any (ψ, b) ∈ B. This function is not fully

differentiable if P (bT0Z = 0) > 0. More generally, one can consider any parameter

of the form ψ(β), where both β and ψ are unknown, but root-n estimable, and ψ is
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potentially only directionally differentiable. For example, forecasts in regression kink

models share a similar structure; see Hansen (2017). �

The final example concerns quantile regression models. Due to the potential mis-

specification, the quantile regression function may not be monotone, which com-

plicates interpretation (Bassett and Koenker, 1982; Angrist, Chernozhukov, and

Fernández-Val, 2006). To avoid this problem, Fang (2018) proposes projecting the

curve onto a suitable set of monotone functions.8

Example 5 (Quantiles without Crossing). Let Y ∈ R and Z ∈ Rd denote the

outcome variable and the set of covariates correspondingly, and consider the quantile

regression model

β(τ) = argmin
β∈Rd

E(ρτ (Y − ZTβ)),

where ρτ (u) = u(τ − 1{u 6 0}). Denote the quantile regression process, for a fixed

value of z, by θ(τ) = zTβ(τ). Let T = [ε, 1−ε] with ε ∈ (0, 1/2), and view θ : T → R
as an element of L2(T ), denoting the space of square-integrable functions with respect

to the Lebesgue measure. To impose monotonicity, one may project θ(τ) onto the

set Λ ⊂ L2(T ) of all monotonically increasing functions:

φ(θ) = ΠΛθ ≡ argmin
λ∈Λ

||θ0 − λ||L2(T ) .

Since Λ is a convex cone, the projection exists and is unique. In this example,

B = L2(T ), D = Λ, and φ : L2(T ) → Λ is defined by φ(θ) = ΠΛθ. The projection

map is not fully differentiable at all points that are projected on a vertex of Λ. �

2.3 Hadamard Directional Differentiability

In the above examples, there exist points θ0 at which the corresponding function φ is

not fully differentiable. However, at such points, φ remains directionally differentiable

in the following sense:

Definition 2.1. A function φ : B→ D is Hadamard directionally differentiable at θ0

if there is a continuous function φ′0 : B → D such that, for any hn → h in B, and

8This provides an alternative to the monotone rearrangement operator of Chernozhukov,
Fernández-Val, and Galichon (2010).
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any tn ↓ 0,

lim
n→∞

∣∣∣∣∣∣∣∣φ(θ0 + tnhn)− φ(θ0)

tn
− φ′0 (h)

∣∣∣∣∣∣∣∣
D

= 0. (6)

If the above holds for each h ∈ B0 ⊂ B, it is said that φ is directionally differentiable

at θ0 tangentially to B0. In this case, the domain of φ′0 is B0.

Intuitively, a function is directionally differentiable at θ0 if it can be linearly

approximated in each direction around θ0, and the approximation is suitably contin-

uous. To compare, a function φ is Hadamard fully differentiable if the derivative φ′0,

satisfying (6), is a continuous linear function. That is, full differentiability implies

directional differentiability, and the only distinction between the two notions is the

potential non-linearity of the directional derivative (Shapiro, 1990).

In this paper, in addition to Hadarmard directional differentiability of the function

φ, I require that the directional derivative be Lipchitz-continuous.

Assumption 2.1 (Restrictions on φ). The map φ : B→ D is directionally Hadamard

differentiable at θ0 tangentially to B0, as in Definition 2.1. Moreover, the directional

derivative φ′0 : B0 → D is Lipchitz-continuous. That is,

||φ′0(x)− φ′0(y)||D 6 Cφ′ ||x− y||B

for all x, y ∈ B0, for some Cφ′ <∞.

Since continuous linear functions are Lipchitz-continuous, this assumption is sat-

isfied whenever φ is fully differentiable. Otherwise, it only imposes a mild restriction:

the directional derivative is a “partially linear” function with different “slopes” in dif-

ferent regions of the domain, so the assumption merely rules out unbounded “slopes”.

Moreover, in most applications, the function φ itself is Lipschitz-continuous, in which

case Assumption 2.1 is automatically satisfied; see Shapiro (1990).

2.3.1 Examples Revisited

To fix ideas, I will focus on Examples 1 and 3 throughout the paper. The remaining

examples are discussed in the Appendix.

Example 1 (Continued). Focus on the upper bound φ(θ0) = minj6d(θ0,j) with θ0 ∈
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Rd. For each h = (h1, . . . , hd)
T , the directional derivative is equal to

φ′0(h) = min
j∈B(θ0)

(hj), (7)

where B(θ0) = {j : θ0,j = mini(θ0,i)} is the set of indices of the components of θ0

that attain the minimum. That is, the function φ is fully differentiable at θ0 if there

is a unique minimal component, and only directionally differentiable otherwise. The

directional derivative satisfies Assumption 2.1 with Cφ′ = 1. Similar arguments hold

for the lower bound, and for both bounds simultaneously. �

Example 3 (Continued). Assume that N = 2, so that θ0 ∈ D([v, v], [0, 1])2 is

given by θ0(v) = (θ1,0(v), θ2,0(v)) = (ψ1(G1:2(v)), ψ2(G2:2(v))). Recall that φ(θ)(v) =

min{θ1(v), θ2(v)}, and define the sets

S1(θ0) = {v ∈ [v, v] : θ1,0(v) < θ2,0(v)}

S2(θ0) = {v ∈ [v, v] : θ2,0(v) < θ1,0(v)}

S0(θ0) = {v ∈ [v, v] : θ1,0(v) = θ2,0(v)}.

(8)

The directional derivative φ′0 : D([v, v], [0, 1])2 → D([v, v], [0, 1]) is given by

φ′0(h)(v) = h1(v) · 1(v ∈ S1(θ0)) + h2(v) · 1(v ∈ S2(θ0))

+ min{h1(v), h2(v)} · 1(v ∈ S0(θ0)) (9)

for any h = (h1, h2) ∈ D([v, v], [0, 1])2. Therefore, whenever the set S0 is non-empty,

the function φ is only directionally differentiable. For example, if the bids are i.i.d.,

then ψi(Gi:2) = G for i = 1, 2, so that S0 = [v, v]. The directional derivative satisfies

Assumption 2.1 with C ′φ = 1. �

3 Local Asymptotic Minimaxity

This section formally defines the efficiency criterion and formulates the basic assump-

tions of the paper. Before diving into the technical details, I discuss the general idea

of the criterion.
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3.1 General Idea

Intuitively, a “good” estimator should not deviate from the estimand too much, too

often. The notion of risk provides a way to quantify this intuition. To elaborate,

recall that the data X1, . . . , Xn are an i.i.d. sample with a common distribution

P ∈ P, where P denotes the model, and the parameter θ0 takes value θ(P ) when the

underlying distribution is P ∈ P. Let φ̂n denote a generic root-n consistent estimator

for the target parameter φ(θ0). Let l denote a non-negative “bowl-shaped” loss

function, which specifies penalties, l(
√
n(φ̂n − φ(θ0))), imposed when the estimator

deviates from the estimand. Then, the risk of the estimator φ̂n under the distribution

P is defined as EP (l(
√
n(φ̂n − φ(θ0)))). For a given loss function and fixed n, it is

understood that the smaller the risk, the better the estimator.

Additionally, since the distribution P is ex ante unknown, beyond the assumption

that P ∈ P, a good estimator should perform well in some overall sense within P.

For example, one may take the Bayesian approach and construct estimators that

minimize the average risk, calculated over some prior belief about P, or the minimax

approach and construct estimators that minimize the worst-case risk within P (see,

e.g., Lehmann and Casella (2006) for the discussion of these and other approaches).

However, one often lacks prior knowledge about the relative likelihood of the plausible

distributions (especially, in semi- and non-parametric models), while tailoring the

estimator to the least favorable distribution may worsen its performance at other,

potentially more empirically relevant distributions.

To gain tractability, one may take a more local approach. As the sample size

increases, the true distribution P of the observed data can be better located within

the model P. Therefore, one may focus on the appropriate “local neighborhoods”

Vn(P ) ⊂ P around P and evaluate different estimators by their asymptotic worst-

case risk within such neighborhoods. This line of thought leads to the notion of Local

Asymptotic Minimaxity. Formally, an estimator sequence {φ̂n} is Locally Asymptot-

ically Minimax (LAM) if it minimizes the asymptotic locally-worst-case risk, that

is,

lim inf
n→∞

sup
P̃∈Vn(P )

EP̃
(
l
(√

n(φ̂n − φ(θ(P̃ )))
))

. (10)

The local neighborhoods Vn(P ) shrink to P as n approaches infinity and only contain

distributions that are hard to distinguish from P empirically. The discussion below
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makes this definition rigorous, providing the necessary background, stating the main

assumptions, and discussing the choice of the local neighborhoods and loss functions.

3.2 Background and Assumptions

I start by defining the main components of the local asymptotic framework, following

the literature on semiparametric efficiency (e.g., Bickel, Klaassen, Ritov, and Wellner,

1993). The following notation is used recurrently. For a probability measure P on

(X,B), the spaces L2(P ) and L0
2(P ) are defined as

L2(P ) =

{
h : X→ R

∣∣∣∣ ∫ h2dP <∞
}
,

L0
2(P ) =

{
h : X→ R

∣∣∣∣ ∫ h2dP <∞,
∫
hdP = 0

}
.

These spaces are endowed with the standard L2(P ) norm ||h||2,P = (
∫
h2dP )1/2 and

scalar product 〈h1,h2〉P =
∫
h1h2dP . For any subset H, of L2(P ), H̄ denotes its

closure with respect to ||·||2,P . To simplify exposition, I assume that the model P is

dominated by a positive, sigma-finite measure µ on (X,B).

3.2.1 Smooth Parametric Submodels and Tangent Sets

The idea of local asymptotic analysis is to study the behavior of the parameters and

estimators of interest along suitable submodels of P passing through P . Following

the literature, I consider smooth parametric sumbodels and scores defined as follows.

Definition 3.1 (Smooth Parametric Submodels and Scores). A smooth parametric

submodel t 7→ Pt,h is a mapping defined on [0, ε) for some ε > 0, such that (i) Pt,h

is a probability distribution for each t; (ii) P0,h = P ; and (iii) for some measurable

function h : X→ R,∫ (√
pt,h −

√
p

t
− 1

2

√
ph

)2

dµ → 0 as t ↓ 0. (11)

Such h is called the score for the submodel {Pt,h}. Here pt,h = dPt,h/dµ and p =

dP/dµ denote the densities of Pt,h and P with respect to µ.

The score h, defined above, is a quadratic-mean version of the familiar parametric
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score, defined by ∂ log pt,h(x)/∂t|t=0. Any score h automatically satisfies EP (h) = 0

and EP (h2) < ∞, so that h ∈ L0
2(P ). The collection of all scores corresponding to

the submodels {Pt,h} ⊂ P is called the tangent set.

Definition 3.2 (Tangent Set). The set of all scores corresponding to the submodels

{Pt,h} ⊂ P is called the tangent set and denoted by

T (P ) = {h ∈ L2
0(P )

∣∣ h satisfies (11) for some {Pt,h} ⊂ P}. (12)

The tangent set depends on both the distribution P and the model P and de-

scribes the informational content of the assumption P ∈ P. It is directly related to

both construction of efficient estimators (e.g., Bickel, Klaassen, Ritov, and Wellner,

1993) and existence of specification tests with non-trivial power (Chen and Santos,

2018). Assumptions on P may translate into further restrictions on the tangent set

through the requirement {Pt,h} ⊂ P. If T (P ) = L0
2(P ), the tangent set is said to be

unrestricted; otherwise, it is restricted. In the latter case, the tangent set typically

forms a linear subspace of L0
2(P ), but in some cases T (P ) can be a convex cone, e.g.,

in some moment inequality models.9

Throughout the paper, I assume that the tangent set is a linear space, as recorded

below. A partial extension of the main results to convex cones and some issues

associated with such settings are discussed in Section 8.

Assumption 3.1 (Random Sampling and Restrictions on the Model). The researcher

observes an i.i.d. sample {Xi}ni=1 of X ∈ X from P ∈ P. The model P and the

distribution P ∈ P are such that tangent set T (P ) is a linear subspace of L2
0(P ).

3.2.2 Differentiable Parameters and Regular Estimators

For a submodel {Pt,h} ⊂ P with a score h ∈ T (P ), denote Pn,h ≡ P1/
√
n,h. The

parameter θ0 = θ(P ) is assumed to be differentiable in the following sense.

Definition 3.3 (Path-Wise Differentiable Parameters). A parameter θ(P ) ∈ B is

differentiable relative to a tangent set T (P ) if there is a continuous linear functional

9The tangent set T (P ) is a cone by construction. If h ∈ L0
2(P ) corresponds to a submodel {Pt}

then ah ∈ L0
2(P ) for any a > 0 corresponds to the submodel {Pat}. Therefore, T (P ) is a collection

of rays i.e. a cone. For a detailed discussion, see van der Vaart (1988).
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θ′0 : T̄ (P )→ B, such that

√
n(θ(Pn,h)− θ(P )) → θ′0(h) in B, as n→∞.

The functional θ′0(h) is called the path-wise derivative of θ(P ).

Assumption 3.2 (Diferentiability of θ(P )). The parameter θ(P ) is differentiable

relative to the tangent set T (P ), according to Definitions 3.1, 3.2, and 3.3.

Path-wise differentiability guarantees existence of the estimators with nice asymp-

totic behavior. The path-wise derivative θ′0 is crucial in characterizing the asymp-

totic efficiency bound for θ(P ), which is discussed in more details in Section 3.2.3.10

With i.i.d. data, this assumption limits the analysis to parameters estimable at the

root-n rate. Examples include moments, distribution functions, quantile functions,

parametric components in semi-parametric models, and smooth functions of those.

Differentiable parameters are typically estimated with regular estimators.

Definition 3.4 (Regular Estimator). A sequence of estimators θ̂n : Xn
1 → B for a

parameter θ(P ) ∈ B is regular, if

√
n(θ̂n − θ(Pn,h))

Pn,h
 G (in B)

for all h ∈ T (P ), where G is a tight random element in B that does not depend on h.

Regularity is a desirable property: A small disappearing perturbation of the dis-

tribution of the data should not affect the limit distribution of the estimator. For

example, sample averages, empirical distribution and quantile functions, and smooth

functions of those are regular estimators for the corresponding population parameters.

3.2.3 Convolution Theorem and Best Regular Estimators

The efficient estimator for φ(θ0), developed in the sequel, relies on the notion of the

best regular estimator for θ0, discussed below. Consider estimating a differentiable

parameter θ0 = θ(P ). The Convolution Theorem states that the asymptotic distri-

bution of any regular estimator θ̂n can be represented as a convolution of a centered

10The concept of path-wise derivative originated in Koshevnik and Levit (1976) and Pfanzagl
(1982) for Euclidean parameters and was extended to general normed spaces in van der Vaart
(1988).

19



Gaussian random element G0 and an independent “noise term” W, that is

√
n(θ̂n − θ0)

P
 G0 + W.

Since convolution increases variance, the “best possible” limit among regular estima-

tors is G0, and its variance-covariance matrix of G0 is known as the efficiency bound.

Any regular estimator that attains this limit is called the best regular estimator. The

covariance structure and the support of G0 are determined by the path-wise derivative

θ′0 and the tangent set T (P ) (see Theorems A.4 and A.5 in the Appendix).11

Next, consider estimating φ(θ0) with a fully Hadamard differentiable function φ

with derivative φ′0 at θ0. One can show that φ(θ(P )) is also a differentiable parameter,

and the distributional limit of any regular estimator φ̂n satisfies

√
n(φ̂n − φ(θ0))

P
 φ′0(G0) + W′,

where G0 is the same as in the previous display, and W′ is an independent “noise

term” (e.g., van der Vaart, 1988). In the same fashion as above, the best regular esti-

mator sequence converges in distribution to φ′0(G0), which is also a centered Gaussian

random element, since the derivative φ′0 is linear. It follows from the Delta-method

that if θ̂n is best regular for θ0, the “plug-in” estimator φ(θ̂n) is best regular for φ(θ0).

When estimating differentiable parameters, it is without loss of generality to fo-

cus on regular estimators, because best regular estimators are also asymptotically

minimum-variance unbiased (when applicable) and locally asymptotically minimax

among all estimators (e.g., van der Vaart, 2000). However, for parameters of the form

φ(θ0) where φ is only directionally differentiable, regular and asymptotically unbiased

estimators do not exist (van der Vaart, 1991; Hirano and Porter, 2012), so that it is

necessary to consider larger classes of competing estimators.

3.3 Local Asymptotic Maximum Risk

Having introduced the notions of smooth parametric submodels and tangent sets, I

am in position to define the optimality criterion rigorously. Following the literature,

11For example, to construct the best regular estimator for θ0 ∈ Rd, one has to find θ̃ such that
θ′0(h) = EP (θ̃h), project such θ̃ onto T (P ), denoting the projection by ψθ, and seek an estimator

such that
√
n(θ̂n − θ0) = n−1/2

∑n
i=1 ψθ(Xi) + oP (1).
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Figure 1: Example of a Local Neighborhood with I = {h1, . . . , h6}.

I define the LAM risk as12

sup
I⊂T (P )

lim inf
n→∞

sup
h∈I

EPn,h
{
l
(√

n(φ̂n − φ(θ(Pn,h)))
)}

, (13)

where I denotes an arbitrary finite subset I ⊂ T (P ) of the tangent set, and Pn,h

denotes a probability distribution corresponding to a smooth parametric submodel

{Pt,h} ⊂ P with a score h ∈ T (P ) with t = 1/
√
n. In the notation of Equation (10),

the local neighborhoods are Vn(P ) = {Pn,h : h ∈ I}. Figure 1 illustrates.

The restriction to finite neighborhoods is made for two reasons. First, when the

local neighborhoods are too rich, the sharp lower bound for the local asymptotic

maximum risk may be infinite (see van der Vaart, 1988). In such case, every es-

timator is “optimal”, which makes the criterion meaningless. Second, to construct

optimal estimators, one has to establish weak convergence uniformly over the local

neighborhoods, which may be impossible if the neighborhoods are too large.

3.4 Loss Functions

An essential ingredient in the LAM-analysis is the loss function. It specifies which

deviations of the estimator from the estimand should be punished relatively more than

the others, and by how much. In practice, the loss function can be used to “fine-

tune” the estimator (e.g. specify the relative importance of different dimensions of

12See e.g., van der Vaart (1988); van der Vaart and Wellner (1996); Hirano and Porter (2009);
Fang (2018).

21



the target parameter, or focus on a subvector), address sensitivity to outliers in the

data (e.g., consider the absolute loss instead of quadratic loss), or boost computation

(e.g., pick a smooth or convex function). In theory, the loss function must ensure

that the LAM risk is finite for at least one estimator, for otherwise the optimality

criterion becomes meaningless (see, e.g., Lemma 3.1 in Fang, 2018).

Following the literature, I consider a large family of symmetric “bowl-shaped”

loss functions, which are appropriate for most applications.

Assumption 3.3 (Loss Functions). The loss function l : D → R+ is sub-convex.

That is, the lower level sets {x ∈ D : l(x) 6 c} are closed, convex and symmetric.

Any sub-convex loss function must be lower semi-continuous and satisfy l(−x) =

l(x). This assumption rules out asymmetric loss functions, but allows, for example,

for different weights along different dimensions of the argument, and for discontinu-

ities. Some examples are provided below.

• For x ∈ Rd, one can consider a weighted quadratic loss, absolute loss, or maxi-

mum loss, with w1, . . . , wd > 0:

l(x) = w1x
2
1 + w2x

2
2 + . . .+ wdx

2
d,

l(x) = w1|x1|+ w2|x2|+ . . .+ wd|xd|,

l(x) = max{w1|x1|, w2|x2|, . . . , wd|xd|}.

Adjusting the weights allows to specify the relative importance of the coordi-

nates.

• For x ∈ l∞(S), one can consider the supremum loss or focus on a finite-

dimensional slice, for some s1, . . . , sd ∈ S and w1, . . . , wd > 0:

l(x) = sups∈S |x(s)|,

l(x) = w1x(s1)2 + w2x(s2)2 + · · ·+ wdx(sd)
2.

• For x ∈ L2([a, b]), one can consider a weighted L2-loss, with bounded w(t) > 0,

l(x) =

∫ b

a

w(t)x2(t)dt,
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or focus on a finite-dimensional slice in the same fashion as above.

• In any of the above examples, one can consider a zero-one loss, defined as

l(x) = 1{x /∈ A},

where A is a a closed convex set symmetric around the origin.

4 New LAM Theorem

To obtain a Locally Asymptotically Minimax estimator, I proceed in two steps. First,

I derive a lower bound for the LAM risk defined in (13). This bound establishes a

sharp limit on the quality of estimation of directionally differentiable parameters and

suggests the form of the efficient estimator. Second, I construct an efficient estimator

that attains the bound.

4.1 General Lower Bound

This section contains the first main result of the paper, which provides an extension

of the LAM Theorem13 to a class of directionally differentiable parameters. Theo-

rem 1 below presents the general result, and Corollary 1.1 specializes to Euclidean

parameters.

To state the general result, some new notation is required. Recall that the path-

wise derivative is a continuous map θ′0 : T̄ (P ) → B. By the Riesz representation

theorem, for any b∗ ∈ B∗ (the continuous dual of B), there is an element θ̃b∗ ∈ T̄ (P )

such that b∗(θ′0(h)) = 〈θ̃b∗ , h〉2,P for all h ∈ T̄ (P ). Such θ̃b∗ is called the canonical

gradient of θ′0 in direction b∗.

Theorem 1 (General Lower Bound). Let Assumptions 2.1, 3.1, 3.2, 3.3, and assume

that the infimum in the display below can be attained. Then, for any asymptotically

13Theorem 25.21 in van der Vaart (2000); Theorem 3.11.5 in van der Vaart and Wellner (1996).
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tight and asymptotically measurable estimator sequence φ̂n : Xn
1 → D,

sup
I⊂T (P )

lim inf
n→∞

sup
h∈I

EPn,h
{
l
(√

n(φ̂n − φ(θ(Pn,h)))
)}

> inf
(v1,v2)∈B×D

sup
s∈S(G0)

E
{
l (φ′0(G0 + v1 + s)− φ′0(s) + v2)

}
,

where I is an arbitrary finite subset of the tangent set T (P ), G0 denotes the distri-

butional limit of the best regular estimator sequence
√
n(θ̂n− θ0), and S(G0) ⊂ B de-

notes the support of G0. Specifically, G0 is a Gaussian random element in B such that

(b∗1, . . . , b
∗
K) ◦ G0 is a centered Gaussian random vector with Cov(b∗i (G0), b∗j(G0)) =

E(θ̃b∗i θ̃b∗j ) for all i, j = 1, . . . , K, and S(G0) is equal to the closure of θ′0(T (P )) in B.

Corollary 1.1 (Lower Bound for Euclidean Parameters). Let Assumptions 2.1, 3.1,

3.2, 3.3, and assume that the infimum in the display below can be attained. Consider

θ ∈ Rdθ and φ ∈ Rdφ. Then, for any root-n consistent estimator sequence φ̂n : Xn
1 →

Rdφ,

sup
I⊂T (P )

lim inf
n→∞

sup
h∈I

EPn,h
{
l
(√

n(φ̂n − φ(θ(Pn,h)))
)}

> inf
(v1,v2)∈Rdφ+dθ

sup
s∈R(Σθ)

E
{
l (φ′0(G0 + s+ v1)− φ′0(s) + v2)

}
,

where I is an arbitrary finite subset of the tangent set T (P ), G0 ∼ N(0,Σθ) denotes

the distributional limit of the efficient (best regular) estimator sequence
√
n(θ̂n− θ0),

and R(Σθ) denotes the range of the efficient covariance matrix Σθ.

Several comments are in order. First, note that Theorem 1 covers all reasonable

estimators for φ(θ0). Asymptotic tightness is necessary for an estimator to converge

to a tight limiting law, while asymptotic measurability is weaker than measurability

for each n.14 For Euclidean parameters, this covers all root-n consistent estima-

tors, including, for example, Hodges-type super-efficient estimators and Stein-type

shrinkage estimators (see e.g., van der Vaart, 2000; Lehmann and Casella, 2006).

14The discussion of measurability is only relevant in non-separable spaces. A typical estimator is
a map φ̂n from RndX (where Xn

1 lives) into the parameter space D. Measurability would require

φ̂−1n (D) to be Borel in RndX for each Borel subset D of D. In non-separable spaces the Borel
sigma field in D is too rich so that many useful maps fail to be measurable. Therefore, requiring
measurability for each n rules out reasonable estimators, and it is replaced with a weaker notion of
asymptotic measurability; see Chapters 1.1–1.3 in van der Vaart and Wellner (1996).
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Second, if the function φ is fully differentiable at θ0, the lower bound simplifies

as follows:

inf
v1,v2

sup
s

E {l (φ′0(G0 + v1 + s)− φ′0(s) + v2)} (a)
= inf

v1,v2
E {l (φ′0(G0) + φ′0(v1) + v2)}

= inf
v∈D

E {l (φ′0(G0) + v)}
(b)
= E {l (φ′0(G0))} ,

where (a) follows from the linearity of φ′0, and (b) follows from the Anderson’s Lemma,

since φ′0(G0) is Gaussian. The expression E {l (φ′0(G0))} is the well-known risk lower

bound for differentiable parameters (e.g., van der Vaart and Wellner, 1996). It im-

plies, in particular, that the “plug-in” estimator φ(θ̂n) is Locally Asymptotically

Minimax for any sub-convex loss function. In contrast, the lower bound in Theorem

1 suggests that with directionally differentiable functions φ, the optimal estimator

will generally depend on the chosen loss function.

Third, the min-max form of the lower bound is not surprising. The supremum

appears by construction, because the theorem deals with the locally maximum risk.

In turn, the infimum appears because the lower bound must hold for a large class of

competing estimators. Importantly, v1 ∈ B and v2 ∈ D are constants, so that the

infimum is taken over B × D, rather than over all probability distributions on this

set, which makes the lower bound useful in practice. This is made possible by the

purification result of Feinberg and Piunovskiy (2006) extending the seminal work of

Dvoretzky, Wald, and Wolfowitz (1951) on matching randomised decision rules with

nonrandomised alternatives.

Finally, the lower bound for Euclidean parameters takes a somewhat simpler form.

Specifically, note that in Theorem 1, the supremum is taken over the support of G0,

which is equal to the closure of the image of the tangent set under the path-wise

derivative mapping. If the tangent set is restricted in a complicated way, this set

may be hard to characterize. In contrast, the range of the efficient covariance matrix

Σθ is a relatively simple object. In particular, if Σθ is of full rank, R(Σθ) = Rdθ .

Remark 1. To study the (LAM) estimators attaining the lower bound, it will be

necessary to work with bounded loss functions, because an application of the Port-

manteau lemma is required to establish the distributional convergence of the candi-

date estimator uniformly over the finite neighborhoods of P . To this end, let l be a
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loss function satisfying Assumption 3.3, and lM be a sequence of bounded, Lipschitz-

continuous sub-convex loss functions, converging to l poitwise monotonically from

below. For instance, if l is continuous, one can simply take lM = min{l,M} for M

large enough (Lemma A.8 in the Appendix provides a general construction). Then,

in the notation of Theorem 1, the lower bound also holds in the following sense:

lim
M→∞

sup
I⊂T (P )

lim inf
n→∞

sup
h∈I

EPn,h
{
lM

(√
n(φ̂n − φ(θn(h)))

)}
> inf

(v1,v2)∈B×D
sup

s∈S(G0)

E {l (φ′0(G0 + s+ v1)− φ′0(s) + v2)} .

4.2 Examples Revisited

Example 1 (Continued). Suppose, for simplicity, that θ0 = EP (X) ∈ R2, and the

model P is unrestricted, and focus on the upper bound φ(θ0) = min(θ0,1, θ0,2). Then,

the sample average θ̂n = n−1
∑n

i=1 Xi is the best regular estimator, and
√
n(θ̂n−θ0) 

Z, where Z ∼ N(0,Σ) with Σ = Var(X). Assume that Σ is full rank.

First, consider the binding case when θ0,1 = θ0,2 so that φ′0(h) = min{h1, h2}. The

risk lower bound with the quadratic loss l(x) = x2 is given by

inf
(v11,v12)∈R2

v2∈R

sup
(s1,s2)∈R2

E
{

(min(Z1 + v11 + s1, Z2 + v12 + s2)−min(s1, s2) + v2)2
}

= inf
(v1,v2)∈R2

sup
(s1,s2)∈R2

E
{

(min(Z1 + v1 + s1, Z2 + v2 + s2)−min(s1, s2))2
}
.

In contrast, when θ0,1 < θ0,2, the derivative is given by φ′0(h) = h1, and the risk lower

bound simplifies to

inf
v1∈R2,v2∈R

sup
(s1,s2)∈R2

E
{

((Z1 + v11 + s1)− (s1) + v2)2
}

= inf
v∈R

E{(Z1 − v)2} = E{Z2
1}.

The case when θ0,2 < θ0,1 is symmetric. �

Example 3 (Continued). Suppose again that N = 2. Let θ̂n = (ψ1(Ĝ1:2), ψ2(Ĝ2:2))

where Ĝj:2, for j = 1, 2 are the empirical CDFs of order statistics of bids. Under

suitable assumptions, it can be shown that the model P is unrestricted. Therefore,

Ĝ1:2, Ĝ2:2 are best regular estimators for G1:2, G2:2, and, since ψ1 and ψ2 are fully

Hadamard differentiable, θ̂n is the best regular estimator for θ0. Moreover,
√
n(θ̂n−θ0)
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converges in distribution to a tight centered Gaussian element G0 in D([v, v], [0, 1])2,

which is a vector of Brownian bridges supported on S(G0) = C([v, v])2, where

C([v, v]) denotes a set of continuous functions on [v, v]. As in the preceding example,

one can verify that the second adjustment term v2 is not required. Then, for any loss

function (e.g., l(x) = supv∈[v,v] |x(v)|, or l(x) =
∑d

j=1 x(vj)
2 for v1, . . . , vd ∈ [v, v]),

the risk lower bound is given by

inf
w∈D([v,v],[0,1])2

sup
s∈C([v,v])2

E
{
l
(
φ′0(G0 + w + s)− φ′0(s)

)}
,

where the directional derivative is given in Equations (22)–(23). �

5 Constructing LAM Estimators

Theorem 1 and Remark 1 suggest that the LAM risk of any reasonable estimator for

φ(θ0) is bounded from below by

inf
(v1,v2)∈B×D

sup
s∈S(G0)

E {lM (φ′0(G0 + v1 + s)− φ′0(s) + v2)} . (14)

In this section, I show that the LAM estimator attaining the bound takes the form

φ̂n = φ

(
θ̂n +

v̂1,n√
n

)
+
v̂2,n√
n
, (15)

where the adjustment terms (v̂1,n, v̂2,n) converge in probability to some minimizers of

(14). A natural way of obtaining such (v̂1,n, v̂2,n) is by minimizing a suitable sample

analog of (14), as discussed below.

5.1 Setup and Assumptions

Denote the population criterion function by

Q(v1, v2) = sup
s∈S(G0)

E {lM (φ′0(G0 + v1 + s)− φ′0(s) + v2)} .

To construct a sample analog, one has to estimate two unknown components: the

distribution of φ′0(G0 + v1 + s) − φ′0(s) + v2 and the support S(G0). The law of G0
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can typically be approximated by bootstrap or simulation, so the main complication

here is that the directional derivative φ′0 is an unknown and potentially non-linear

function. Letting Ĝ∗n denote a bootstrap process approximating G0 and φ̂′n denote

a suitable estimator for the directional derivative φ′0, the analogy principle suggests

approximating the distribution of φ′0(G0 + v1 + s) − φ′0(s) + v2 by the finite-sample

distribution of φ̂′n(Ĝ∗n + v1 + s)− φ̂′n(s) + v2 conditional on the data. Next, since G0

is tight, its support is separable and can be approximated by a sequence of compact

sieves. It is not a substantial loss of generality to assume that G0 is non-degenerate, in

which case the support is typically known, but more generally it has to be estimated.

Let (Rn)n>1 denote a sequence of sieves approximating S(G0) and (R̂n)n>1 denote

the corresponding estimators. Then, I choose (v̂1,n, v̂2,n) to minimize:

Q̂n(v1, v2) = sup
s∈R̂n

E
{
lM

(
φ̂′n(Ĝ∗n + v1 + s)− φ̂′n(s) + v2

) ∣∣∣∣ Xn
1

}
,

where the expectation is taken with respect to the distribution of Ĝ∗n conditional on

the data. To ensure that (v̂1,n, v̂2,n) converge in probability to some minimizers of Q,

it is necessary to guarantee that Q̂n converges to Q uniformly on compact sets. The

estimators for the unknown components of Q must be chosen accordingly.

First, I assume that the law of G0 can be consistently estimated by bootstrap or

simulation. Recall that G0 denotes the distributional limit of the efficient estimator

sequence
√
n(θ̂n − θ0). Let θ̂∗n denote the bootstrapped version of θ̂n, mapping the

data Xn
1 and bootstrap weights W n

1 , independent of the data, into B. This definition

includes nonparametric, Bayesian, block, multiplier and general weighted bootstrap

as special cases. Define the set:

BL1(B) =

{
f : B→ R : sup

b∈B
|f(b)| 6 1, |f(b1)− f(b2)| 6 ||b1 − b2||B for b1, b2 ∈ B

}
.

Assumption 5.1 (Bootstrap Consistency).

(i) θ̂∗n : (Xn
1 ,W

n
1 )→ B with W n

1 independent of Xn
1 satisfies

sup
f∈BL1(B)

∣∣∣E(f(
√
n(θ̂∗n − θ̂n))|Xn

1 )− E(f(G0))
∣∣∣ = oP (1)

under Pn =
∏n

i=1 P .
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(ii)
√
n(θ̂∗n − θ̂n) is asymptotically measurable (jointly in Xn

1 ,W
n
1 ).

Condition (i) states that the limiting law of
√
n(θ̂n − θ0) can be approximated

by the law of Ĝ∗n =
√
n(θ̂∗n − θ̂n), conditional on the data.15 Condition (ii) is a mild

measurability assumption that ensures that the bootstrap process converges to G0

unconditionally.

Second, I assume that the directional derivative can be estimated uniformly well.

Assumption 5.2 (Estimating the Directional Derivative). The estimator φ̂′n : Xn
1 →

D of φ′0 satisfies, for any δ > 0,

sup
s∈Rδn

∣∣∣∣∣∣φ̂′n(s)− φ′0(s)
∣∣∣∣∣∣
D

= oP (1),

where Rδ
n = {b ∈ B : d(b, Rn) 6 δ} and (Rn)n>1 ⊂ S(G0) is an expanding sequence of

compact sets.

In view of applying the extremum estimation arguments, the distribution of

φ′0(G0+v1+s)−φ′0(s)+v2 must be approximated uniformly in (v1, v2) ∈ K and s ∈ Rn,

where K is a fixed compact set and Rn denotes an expanding sequence of compact

sets (specified in Assumption 5.3). Therefore, the estimator φ̂′n must approximate

the derivative φ′0 uniformly well. While the above assumption may seem restrictive,

natural estimators typically have a stronger property that φ̂′n(b) = φ′0(b) for all b ∈ B
with probability approaching one. In practice, such estimators can be based on the

analytical expression for φ′0 or obtained by numerical differentiation (see Fang and

Santos, 2019; Hong and Li, 2020).

Third, I impose the following assumption on the estimator of the support S(G0).

Assumption 5.3 (Estimating the Support). There is an expanding sequence of com-

pact sets (Rn)n>1 ⊂ B such that for any ε > 0 and s ∈ S(G0), there is sn ∈ Rn for

n large enough such that ||sn − s|| 6 ε. The sets Rn are either known or can be

estimated with R̂n satisfying dH(R̂n, Rn) = oP (1) as n→∞.

15The Bounded Lipchitz distance between two Borel probability measures P and Q is defined as
dBL(P,Q) = supf∈BL1

∣∣∫ fdP − ∫ fdQ∣∣. It metrizes weak convergence in the sense that a sequence
of probability measures Pn converges weakly to a probability measure P if and only if dBL(Pn, P ) =
o(1) (van der Vaart and Wellner, 1996). Condition (i) can be seen as the sample analog of this
requirement, conditional on the data.

29



Recall that S(G0) is equal to the closure of θ′0(T (P )) in B. Since both θ′0 and

T (P ) are unknown and the latter may be restricted in a non-trivial way, estimating

S(G0) is, in general, a complicated task. However, as I show below, Assumption 5.3

can be verified in a number of different ways, depending on the application, and does

not necessarily require estimating the tangent set T (P ) and the path-wise derivative

θ′0 directly. See Sections 5.2.1 and 5.2.2 for further discussion and examples.

Finally, note that the minimization problems with both Q and Q̂n may have

multiple solutions. It is therefore necessary to formulate conditions under which a

minimizer of Q̂n converges in probability to a minimizer of Q.16 Lemma A.9 in the

Appendix shows that the key requirement for such “point-wise” consistency of the

set of minimizers is that Q̂n converges to Q in probability uniformly over compact

sets.

5.2 LAM Estimators

This section contains the second main result of the paper, which develops the LAM

estimator. The result is presented in the general form first and then adapted to a

number of special cases.

Theorem 2 (LAM Estimator). Let Assumptions 2.1, 3.1 – 3.3 and 5.1 – 5.3 hold

and the infimum in the risk lower bound be attained within a compact set K ⊂ B×D.

Let v̂n = (v̂1,n, v̂2,n) solve

inf
(v1,v2)∈K

sup
s∈R̂n

E
{
lM

(
φ̂′n(Ĝ∗n + v1 + s)− φ̂′n(s) + v2

) ∣∣∣∣ Xn
1

}
, (16)

where θ̂n denotes the efficient (best regular) estimator for θ0, Ĝ∗n =
√
n(θ̂∗n − θ̂n)

denotes the bootstrap process, and the expectation is taken conditional on the data.

Then, the estimator

φ̂n = φ

(
θ̂n +

v̂1,n√
n

)
+
v̂2,n√
n

16More precisely, it suffices to show that d(v̂n,V0) = oP (1), where v̂n = (v̂1,n, v̂2,n) and V0 denotes
the set of minimizers of Q.
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is Locally Asymptotically Minimax, that is,

lim
M→∞

sup
I⊂T (P )

lim inf
n→∞

sup
h∈I

EPn,h
{
lM

(√
n(φ̂n − φ(θ(Pn,h)))

)}
6 inf

(v1,v2)∈K
sup

s∈S(G0)

E {l (φ′0(G0 + s+ v1)− φ′0(s) + v2)} .

Two comments are in order. First, Theorem 2 suggests that the efficient estima-

tor takes a simple form of a “plug-in” estimator with two additive adjustment terms.

The role and the numerical values of the optimal adjustment terms depend on the

chosen loss function. In particular, for real-valued parameters φ(θ0), choosing the

squared loss function allows to select the adjustment terms that balance the bias-

variance trade-off. Second, calculating the optimal adjustment terms amounts to

solving the optimization problem in (16). This min-max problem may be computa-

tionally hard, because the objective function is not convex-concave, and evaluating it

at each (v1, v2, s) requires bootstrap approximation. However, in some common appli-

cations, simple computational heuristics can speed up the optimization, as discussed

in Section 5.4.

5.2.1 Euclidean Parameters

Consider θ0 ∈ Rdθ and φ(θ) ∈ Rdφ . Let Σθ denote the variance lower bound for θ

and R(Σθ) denote its range. According to Corollary 1.1 and Remark 1, the risk lower

bound is given by

inf
(v1,v2)∈Rdθ+dφ

sup
s∈R(Σθ)

E
{
lM(φ′0(G0 + v1 + s)− φ′0(s) + v2)

}
. (17)

Let Σ̂n denote a
√
n-consistent estimator of Σθ, and σj and σ̂j denote the j-th columns

of Σθ and Σ̂n correspondingly. Define, with λn = o(
√
n),

Rn =

{
t =

dθ∑
j=1

αjσj ∈ Rdθ

∣∣∣∣ ||α|| 6 λn

}
,

R̂n =

{
t =

dθ∑
j=1

αjσ̂j ∈ Rdθ

∣∣∣∣ ||α|| 6 λn

}
.

(18)

Then, R̂n and Rn satisfy Assumption 5.3, and the following Corollary holds.
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Corollary 2.1 (LAM Estimation of Euclidean Parameters). Consider θ0 ∈ Rdθ ,

φ : Rdθ → Rdφ. Let Assumptions 2.1, 3.1 - 3.3, 5.1 (i), and 5.2 hold with B = Rdθ

and D = Rdφ; define R̂n as in Equation (18). Assume that the infimum in (17) is

attained within some compact set K ⊂ Rdθ+dφ and let (v̂1,n, v̂2,n) solve

inf
(v1,v2)∈K

sup
s∈R̂n

E
{
lM(φ̂′n(G∗n + v1 + s)− φ̂′n(s) + v2)

∣∣∣∣Xn
1

}
(19)

If Σθ is full-rank, the supremum in (19) can be taken over Rdθ . Then, the estimator

sequence

φ̂n ≡ φ

(
θ̂n +

v̂1,n√
n

)
+
v̂2,n√
n

is Locally Asymptotically Minimax. That is,

lim
M→∞

sup
If⊂T (P )

lim inf
n→∞

sup
h∈If

EPn,h
{
lM

(√
n(φ̂n − φ(θn(h)))

)}
6 inf

(v1,v2)∈Rdθ+dφ
sup

s∈R(Σθ)

E {l (φ′0(Z + s+ v1)− φ′0(s) + v2)}

5.2.2 Infinite-Dimensional Parameters

Next, consider estimating the support S(G0) according to Assumption 5.3 in the

settings when θ ∈ B is infinite-dimensional. I will discuss two different approaches.

The first approach is “brute-force” and uses the fact that S(G0) equals the closure

of θ′0(T (P )) in B. Let g1, g2, . . . denote a complete sequence in L2(P ), in a sense that

for any f ∈ L2(P ) and any ε > 0, there exist an m ∈ N, and α1, . . . , αm ∈ R
such that ||f −

∑m
j=1 αjgj||2,P < ε. For example, the space of continuous functions

supported on compact sets is dense in L2(P ), and the space of polynomials is dense

within that space, by the Stone-Weierstrass theorem. Therefore, g1, g2, . . . can be

chosen as properly truncated polynomials. The idea is to use the gj-s to construct

a sequence of compact sieves in the closure of θ′0(T (P )). To illustrate, suppose that

T (P ) = L0
2(P ). Let hj = gj − EP (gj) denote the projection of gj onto L0

2(P ), and

ĥj = gj − n−1
∑n

i=1 gj(Xi) be its sample analog. Let θ̂′n : L0
2(P ) → B be a suitable

estimator for the path-wise derivative map, and define, for ln ∈ N and λn ∈ R+, the
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sets

R̂n =

{
ln∑
j=1

αj θ̂
′
n(ĥj)

∣∣∣∣ ||α|| 6 λn

}
,

Rn =

{
ln∑
j=1

αjθ
′
0(hj)

∣∣∣∣ ||α|| 6 λn

}
.

(20)

The following Lemma provides primitive conditions under which R̂n and Rn defined

above satisfy Assumption 5.3.

Lemma 1 (Estimating the Support via Projections). Assume that:

1.
∣∣∣∣∣∣θ̂′n(1)− θ′0(1)

∣∣∣∣∣∣
B

= oP (1) and λn ·max
j6ln

∣∣∣∣∣∣θ̂′n(gj)− θ′0(gj)
∣∣∣∣∣∣
B

= oP (1)

2. λn ·
√

ln
n
·maxj6ln ||gj||2,P = o(1)

Then R̂n and Rn defined in (20) satisfy Assumption 5.3.

Assumption 1 is a point-wise and uniform consistency requirement on θ̂n, which

can be verified via a suitable maximal inequality or with the sample splitting tech-

nique. Assumption 2 is a rate condition, which relates the number and “size” of

elements in the construction of Rn with n. Similar primitive conditions can be for-

mulated in settings where the tangent set T (P ) is restricted.

The second approach is similar in spirit to the Euclidean case, and is based on

characterizing the support of a Gaussian process G0 via its covariance kernel. The

main idea is illustrated below in the example where G0 is a Gaussian process with

S(G0) = Cb([0, 1]) endowed with the sup-norm. The technical details are deferred to

Remark 2. Let K : [0, 1]× [0, 1]→ R defined by K(s, t) = E(G0(t)G0(s)) denote the

covariance kernel of G0, and K̂n denote a suitable estimator. Denote:

Rn =

{
f(s) =

ln∑
j=1

αjK(tj, s)

∣∣∣∣ 0 6 t1 < · · · < tln 6 1; ||α|| 6 λn

}
,

R̂n =

{
f(s) =

ln∑
j=1

αjK̂(tj, s)

∣∣∣∣ 0 6 t1 < · · · < tln 6 1; ||α|| 6 λn

}
.

(21)

The following Lemma sprovides a primitive condition under which R̂n and Rn satisfy

Assumption 5.3.
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Lemma 2 (Estimating the Support via Covariance Kernel). Let Rn and R̂n be defined

in (21) with ln ∈ N, and λn ∈ R+. Suppose that K̂n : [0, 1]× [0, 1]→ R satisfies

λn max
j6ln
||K̂n(tj, ·)−K(tj, ·)||∞ = oP (1).

Then, Rn and R̂n satisfy Assumption 5.3.

Remark 2 (Support of a Gaussian Measure and Cameron-Martin Space). The ex-

position below follows Bogachev (1998). Since G0 is tight, it concentrates on the

separable subspace of B, which I denote B0, and induces a centered Radon Gaussian

measure γ on (B0,B(B0)) (see Theorem 7.1.7. in Bogachev, 2007). The support of G0

is equal to the closure of H(γ) in B0, where H(γ) denotes the Cameron-Martin space

of γ, constructed as follows (Theorem 3.6.1. in Bogachev, 1998). Each element of the

continuous dual B∗0 is a Normal random variable defined on (B0,B(B0), γ). This al-

lows to view B∗0 as a subset of L2(γ). Let B∗γ denote the L2(γ)-closure of B∗0. For each

h ∈ B0, let Lh : B∗γ → R denote the evaluation map Lh(b
∗) = b∗(h). The Cameron-

Martin space of γ is defined as H(γ) = {h ∈ B0 : Lh is continuous w.r.t ||·||2,γ}.
Next, for each b∗ ∈ B∗γ, let K(b∗, ·) : B∗γ → R be defined by

K(b∗, c∗) =

∫
B

b∗(x)c∗(x)dγ(x) = E(b∗(G0)c∗(G0)).

By Theorem 3.2.3 in Bogachev (1998), for each b∗ ∈ B∗γ, there is hb∗ ∈ H(γ) such

that K(b∗, c∗) = c∗(hb∗) for all c∗ ∈ B∗γ. In this sense, every element of B∗γ can be

associated with a unique element of H(γ). Therefore, the set H(γ) can be mapped

out by choosing different b∗ and finding the associated h∗b .

For example, let B0 = Cb([0, 1]) be a set of continuous bounded functions on [0, 1],

and G0 denote a Gaussian process with covariance kernel K(s, t) ≡ E(G0(s)G0(t)).

Recall that the continuous dual B∗0 is the set of all finite Borel measures on [0, 1]

so that b∗(x) =
∫
x(t)dµb∗(t). With the help of Fubini’s theorem, one can verify

that hb∗(s) =
∫
K(s, t)dµb∗(t). Further, the set of finitely-supported Borel measures

{
∑J

j=1 αjδtj : αj ∈ R, tj ∈ [0, 1], J ∈ N}, where δt denotes the Dirac measure with

mass at t, is weak-star dense in B∗0 meaning that any such hb∗(s) can be approximated

by a sequence of the form
∑

j αjK(s, tj) point-wise in s, and therefore uniformly since

s ∈ [0, 1]. This motivates the definition of Rn in (21).
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5.3 Examples Revisited

Example 1. Focus on the upper bound φ(θ0) = minj6d(θ0,j) with θ0 ∈ Rd. Here,

estimating the directional derivative (see Equation 7) amounts to selecting θj that are

sufficiently close to each other, which is essentially an inequality selection problem.

One way to proceed is to test a set of hypotheses H0 : θ0,j 6 θ0,i for all i, j (following

e.g. Romano, Shaikh, and Wolf (2014)), collect all j-s for which the null is not

rejected into the set B̂n, and set

φ̂′n(h) = min
j∈B̂n

(hj)

Then, if the test size approaches zero as n approaches infinity, φ̂′n(h) = φ′0(h) for all h ∈
Rd, with probability approaching one, so that the resulting estimator satisfies As-

sumption 5.2. �

Example 3. Suppose again that N = 2, and let θ̂n = (ψ1(Ĝ1:2), ψ2(Ĝ2:2)) where

Ĝj:2, for j = 1, 2 are the empirical CDFs of order statistics of bids. The form of the

directional derivative in Equation (23) suggests a natural sample counterpart. For a

positive sequence κn ↓ 0, define the sets

Ŝ1,n = {v ∈ [v, v] : ψ1(Ĝ1:2(v)) < ψ2(Ĝ2:2(v))− κn},

Ŝ2,n = {v ∈ [v, v] : ψ2(Ĝ2:2(v)) < ψ1(Ĝ1:2(v))− κn},

Ŝ0,n = {v ∈ [v, v] : |ψ1(Ĝ1:2(v))− ψ2(Ĝ2:2(v))| 6 κn},

(22)

and set, for any h ∈ D([v, v], [0, 1])2,

φ̂′n(h)(v) = h1(v)1(v ∈ Ŝ1,n) + h2(v)1(v ∈ Ŝ2,n) + min(h1(v), h2(v))1(v ∈ Ŝ0,n). (23)

Then, if κn
√
n→∞, one can show that the resulting estimator satisfies Assumption

5.2 even with Rδ
n replaced by D([v, v], [0, 1])2. �
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5.4 Computation

In some special cases, computation of the adjustment terms can be substantially sim-

plified by splitting the optimization problem into several independent sub-problems

or using approximate closed-form solutions. More generally, I discuss computational

heuristics that can be applied to speed-up the optimization.

The main factor that slows down the relevant optimization problem in (19) is that

the objective function is costly to evaluate. The approach discussed below aims to

reduce the number of evaluations. I focus on the finite-dimensional parameters for

simplicity, but similar ideas can be applied in infinite-dimensional settings as well,

after selecting suitable sieves. The lower bound from Corollary 1.1 can be equivalently

written as

inf
(v1,v2)∈Rdθ+dφ

sup
s∈B

sup
λ>0

E {l (φ′0(Z + λs+ v1)− λφ′0(s) + v2)} , (24)

where B denotes the unit ball in Rdθ . For a fixed v1, v2 and s, consider a function

g(λ) = E {l (φ′0(Z + λs+ v1)− λφ′0(s) + v2)}

that traces the value of the objective function along the ray passing through s. A

useful property that appears to hold in practice but turns out to be hard to prove

theoretically is that g(λ) is maximized at zero or infinity. Therefore, for each (v1, v2),

the supremum can be calculated by selecting a set of directions (i.e., values of s) on

the unit ball and evaluating the function g(λ) at zero and some large value of the

argument in each direction. Since the directional derivative is typically a partially

linear function with a small number of different slopes, this approach allows to reduce

the number of evaluations of the objective function dramatically.

In special cases, such as φ′0(h) = maxj6d(hj) with the squared loss function,

following the above line of thought allows to formulate an approximate closed-form

solution. In such cases, v2 = 0 without loss of generality (for any loss function).

Imposing an additional assumption that v1 = (v, . . . , v)T ∈ Rd and elaborating on

the arguments above suggests the folowing solution

v∗ =
1

2
max

I⊂{1,...,d}

(
E((maxj∈I Zi)

2)− E(Z2
i∗)

E(maxj∈I Zj)

)
, (25)
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where i∗ = argmaxi6d E(Z2
i ) and the maximum over empty set is set to be equal to

zero, which guarantees v∗ > 0. Similarly, with φ′0(θ) = minj6d(θj) and the squared

loss, the solution is given by

v∗ =
1

2
min

I⊂{1,...,d}

(
E((minj∈I Zi)

2)− E(Z2
i∗)

E(minj∈I Zj)

)
. (26)

Extensive simulations suggest that these closed-form adjustment terms actually at-

tain the global minimum in (24), although the corresponding formal result is hard to

establish. Recalling that Z ∼ N(0,Σ) with Σ consistently estimated by Σ̂n suggests

the following procedure: (i) draw Z∗1 , . . . , Z
∗
B ∼ N(0, Σ̂n) for some large B and (ii)

replace expectations with sample averages in the expressions above.

The above formulas can be applied in other settings as well. Consider Example

1 with θ = (θ1, θ2) ∈ Rd1 × Rd2 that do not have any common components and

φ′0 : Rd1+d2 → R2 given by φ′0(h) = (minj6d1(h1,j),maxk6d2(h2,k))
T . Then, with the

quadratic loss function l : R2 → R+ defined as l(x1, x2) = x2
1 + x2

2, the optimization

problem can be separated into two independent subproblems:

inf
(v1,v2)∈Rd1+d2+2

sup
s∈Rd1+d2

E {l (φ′0(Z + s+ v1)− φ′0(s) + v2)}

= inf
(v11,v12)∈Rd1+1

sup
s1∈Rd1

E
{

(min(Z1 + s1 + v11)−min(s1) + v12)2}
+ inf

(v21,v22)∈Rd2+1
sup
s2∈Rd1

E
{

(max(Z2 + s2 + v21)−max(s2) + v22)2} .
Then, v∗12 = v∗22 = 0 and the approximate solutions (v∗11, v

∗
21) to each of the problems

are given by equations (26) and (25) correspondingly. Similar arguments can be

applied in the setting of Example 3 if the loss function l : D([v, v])→ R+ is given by

l(x) =
∑d

i=1 x(vi)
2 for some fixed v1, . . . , vd ∈ [v, v].

6 Simulation Study

I illustrate the finite-sample performance of the proposed LAM estimator by compar-

ing it with the simple “plug-in” estimator and the existing bias correction approaches.

For simplicity, I focus on the upper bound from Example 1: φ(θ) = minj6d(θj) with
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θ ∈ Rd. The results for the lower bound and for both bounds together are similar.

I start by discussing the existing bias-correction approaches. The first approach,

considered in Kreider and Pepper (2007), is to use bootstrap bias correction (Tib-

shirani and Efron, 1993; Horowitz, 2001). It is implemented as follows: (i) Draw B

bootstrap samples {X∗1 , . . . , X∗n}, and calculate X̄∗b = 1
n

∑n
i=1X

∗
i ; (ii) Estimate the

bias by b̂∗n = 1
B

∑B
b=1 φ(X̄∗b )− φ(θ̂n), and compute the adjusted estimator

φ̂Bootstrap
n ≡ φ(θ̂n)− b̂∗n = 2φ(θ̂n)− 1

B

B∑
b=1

φ(X̄∗b ).

Kreider and Pepper (2007) found that this method performs well in practice, even

though it is not theoretically supported.17 Studying the asymptotic properties of

such estimator is beyond the scope of this paper.

The second approach is due to Chernozhukov, Lee, and Rosen (2013). The au-

thors propose a half-median unbiased estimator which lies above the true value with

probability at least one half asymptotically.18 The estimator takes the form

φ̂CLR
n ≡ φ(θ̂n + ĉn),

where ĉn is the adjustment term calculated in two steps. The first step performs

inequality selection, picking the components of θ0 that are sufficiently close to each

other, and the second step focuses on the selected components to choose the ap-

propriate adjustment term. Although the form of φ̂CLRn is very similar to the LAM

estimator proposed in this paper, the two approaches are very different. The adjust-

ment term ĉn is chosen to reduce the bias of the “plug-in” estimator, and may lead

to large LAM risk, while the adjustment terms proposed in this paper minimize the

risk and do not target the bias directly.

Next, consider the implementation of the LAM estimator. Let Z ∼ N(0,Σ),

denote the weak limit of the efficient estimator sequence
√
n(θ̂n−θ0). To approximate

the law of Z in accord with Assumption 5.1, one may pick a consistent estimator Σ̂n

for Σ and chose Z∗n to be a random vector distributed as N(0, Σ̂n), conditional on

the data. To construct a suitable estimator for the directional derivative, one may

17The standard arguments for consistency of the procedure rely on the differentiability of the
function φ, which, in the present setting, may fail. See Tibshirani and Efron (1993).

18This criterion is considered beacuse the results of Hirano and Porter (2012) suggests that median-
unbiased estimators do not exist.
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follow the procedure described in Section 5.3 and obtain φ̂′n(h) = minj∈B̂n(hj). Then,

calculate the adjustment term v̂1,n by minimizing

inf
v1∈Rd

sup
c∈Rd

E
(

(φ̂′n(Z∗n + v1 + c)− φ̂′n(c))2

∣∣∣∣Xn
1

)
and set

φ̂LAM ≡ φ

(
θ̂n +

v̂1,n√
n

)
.

In this special case the second adjustment term is not required and the optimization

problem is simplified. Moreover, the squared loss function allows to choose v̂1,n to

balance the bias-variance trade-off, and compute approximate closed-form solutions

as discussed in Section 5.4.

The simulation setup is as follows. The data X1, . . . , Xn are i.i.d. from N(θ0,Σ)

in R3, so that θ0 = EP (X). I consider an ordinary covariance matrix Σ with different

variances and non-zero correlations, and set θ(∆) = (0,∆/
√
n, 2∆/

√
n)T so that ∆

plays the role of the local parameter. That is, ∆ equal to zero corresponds to the point

θ0 = (0, 0, 0)T , where the full differentiability of φ fails, and varying ∆ allows to “walk

across” the local neighborhood of this point.19 For each value of the local parameter ∆

on a grid chosen to scale, I perform M = 5000 simulations, with B = 2000 bootstrap

draws and sample size n = 300. For every draw, indexed by m, I generate a random

sample Xm
1 , . . . , X

m
n from N(θ0,Σ), and calculate φ̂Plug-in

m = φ(X̄m), and φ̂Bootstrap
m ,

φ̂CLR
m and φ̂LAM

m according to the formulas above. Then, I compute the average bias,
1
M

∑M
m=1(φ̂m − φ(θ(∆))), and risk, 1

M

∑M
m=1(φ̂m − φ(θ(∆)))2, for each of the four

estimators and plot the results as a function of ∆.

The results presented in Figure 2 require several comments. First, Panel (a)

suggests that the LAM estimator does not reduce the bias as much as the other

methods. This is not surprising, since the LAM estimator was constructed targeting

the mean-squared error (i.e., variance plus bias squared), rather than the bias directly.

Larger reduction in bias can be achieved by using a different loss function, such as

l(x) = |x|α for 0 < α < 2. Second, Panel (b) suggests that the LAM estimator

has the lowest worst-case risk, which is consistent with the asymptotic results of

Theorems 1 and 2. Note that while the risk of the plug-in estimator is maximized

19There are many other curves that pass through θ0 = (0, 0, 0), and this particular choice is made
only for illustrative purposes. The last coordinate of θ0 is multiplied by two only for aesthetic
reasons, to ensure that the graphs are symmetric and properly scaled.
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Figure 2: Finite-Sample Bias, Risk, and Relative Risk.

(a)

(b)

(c)

Notes: The horizontal axis corresponds to the local parameter ∆. Panels (a) and (b)
are in absolute terms. Panel (c) shows the efficiency gains (or losses) of the estimators
relative to the “Plug-in” estimator.

40



at zero (i.e., at the point of non-differentiability) the maximum risks of the bias-

corrected estimators are attained away from zero. Moreover, the LAM estimator

outperforms the bias-correction methods in terms of risk everywhere except for a

small neighborhood of zero. Finally, Panel (c) shows relative risks in percentage

terms, suggesting that the bias-corrected estimators may have a substantially larger

risk than the Plug-in, depending on the value of ∆, while the LAM estimator does

not. Since ∆ is unknown and cannot be consistently estimated, the LAM estimator

can be interpreted as cautious.

Extensive additional simulations suggest that the amount of bias and risk reduc-

tion of the LAM estimator (relative to Plug-in) increase in the dimension of θ, and

decrease in the correlation between the components of θ̂n.

7 English Auctions with IPV

In this section, I revisit the model of English auctions with independent private values

from Haile and Tamer (2003). I apply the developed theory to construct efficient

estimators for the bounds on the distribution of valuations and the implied bounds

optimal reserve price, and compare the results with Haile and Tamer (2003). Using

empirically calibrated simulations, I find that the LAM estimator, on average, yields

substantially sharper bounds.

7.1 Model and Identification

Consider a symmetric English auction. Suppose that there are N bidders, and each

bidder j draws his valuation Vj ∈ [v, v], independently of the others, from a distribu-

tion with a cumulative distribution function denoted by F . Let Bj denote the final

bid of player j and Bj:N denote the j-th lowest final bid in a given auction. Assume

that the reserve price is below v, and let ∆ > 0 denote the minimal bid increment.

7.1.1 CDF of Valuations

The main primitive parameter of interest in this setting is the marginal distribution

of valuations F . The knowledge of this distribution allows to forecast the expected

revenue and bidders surplus and study the effects of a counterfactual change in the

auction design, such as setting a different reserve price. To relate this distribution
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with the observed distribution of bids, one has to make assumptions on the bidding

behavior. Haile and Tamer (2003) assume that each player: (i) does not bid above

his valuation and (ii) does not let the others win at a price he is willing to pay.

Assumption (i) states that Bj 6 Vj for each j 6 N , implying that the order statistics

satisfy Bj:N 6 Vj:N for each j 6 N , and

Fj:N(v) 6 Gj:N(v),

where Fj:N and Gj:N denote the distributions of the j-th order statistics of valuations

and bids correspondingly. Assumption (ii) implies that VN−1:N 6 BN :N + ∆, and,

therefore,

FN−1:N(v) > GN :N(v −∆).

It is well-known that the distribution of any order statistic of a collection of i.i.d.

random variables uniquely determines the parent distribution: for each j 6 N , there

is a strictly increasing and differentiable function ψj : [0, 1]→ [0, 1] such that F (v) =

ψj(Fj:N(v))20. Applying ψj to both sides of the two previous displays for every j 6 N

and intersecting the results, Haile and Tamer (2003) obtain the following point-wise

bounds:

ψN−1(GN :N(v −∆)) 6 F (v) 6 min
j6N

ψj(Gj:N(v)). (27)

While these bounds are not sharp (Chesher and Rosen, 2017), they can be sufficiently

informative.

7.1.2 Optimal Reserve Price

One of the main policy variables for the seller is the reserve price. Haile and Tamer

(2003) show that, under suitable assumptions on the distribution of valuations and

bidding strategies in counterfactual auctions, informative bounds on the optimal re-

serve price can be obtained directly from the bounds on the distribution of valuations

derived above. Specifically, assume that F is strictly increasing and continuously

differentiable, and such that the function π(p;F ) defined below is strictly pseudo-

concave. Then, in any feasible auction mechanism that is revenue equivalent to the

second-price sealed-bid auction in the sense of Myerson (1981), the optimal reserve

20Specifically, ψj(t) is defined implicitly through t = n!/((n− j)!(i− j)!)
∫ ψi

0
sj−1(1− s)n−jds; see

e.g. Arnold, Balakrishnan, and Nagaraja (2008).
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(a) Bounds on the true profit function (b) Implied bounds on the maximizer

Figure 3: Identification of the Optimal Reserve Price.

price maximizes

π(p;F ) = (p− v0)(1− F (p)),

where v0 denotes the value of the unsold good to the seller. Denoting the bounds on

the CDF by FL(v) 6 F (v) 6 FU(v), it follows that π(p;FU) 6 π(p;F ) 6 π(p;FL)

for all p. As illustrated in Figure 3, this implies the following bounds [pL, pU ] on the

optimal reserve price:

pL = inf
{
p ∈ [v, v] : π(p;FL) > maxp′∈[v,v] π(p′;FU)

}
,

pU = sup
{
p ∈ [v, v] : π(p;FL) > maxp′∈[v,v] π(p′;FU)

}
.

Note that, even if the bounds on the CDF of valuations and expected profit are

relatively tight, the implied bounds on the optimal reserve price may still be fairly

wide.

7.2 Estimation

It is assumed that the researcher observes an i.i.d. sample of auction data which

includes bids {Bi}ni=1 where Bi = (B1,i, . . . , BN,i). Such data can be used to estimate
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the empirical CDFs of order statistics of bids.21 Consider estimating the upper bound

on the distribution of valuations from Equation (27). For a fixed v ∈ [v, v], the upper

bound takes the form φ(θ(v)) = minj6d(θd(v)), where θ(v) is a vector of smooth

transformations of the CDFs of bids evaluated at v. Haile and Tamer (2003) propose

to approximate the minimum by a sequence of smooth functions, chosen to reduce

the finite-sample bias. Specifically, they consider the function

φ̃(θ; ρ) =
d∑
j=1

θj
exp(ρ · θj)∑d
k=1 exp(ρ · θk)

,

where ρ is the smoothness parameter. This function satisfies φ̃(θ; ρ) > minj6d(θj) for

any ρ ∈ R, and limρ→−∞ µ(θ; ρ) = minj6d(θj). Letting θ̂n denote an estimator for θ0

and ρn → −∞ denote an appropriate sequence of smoothing parameters,22 they set

φ̂HTn ≡ φ̃(θ̂n; ρn) =
J∑
j=1

θ̂j
exp(ρn · θ̂j,n)∑J
k=1 exp(ρn · θ̂k,n)

.

Such estimator has the same asymptotic properties as φ̂Plug-in
n = minj6d(θ̂j,n), with

the advantage of providing bias-correction in finite-samples.23

While the above estimator is computationally simple and provides sufficient bias-

correction, it may be inefficient: Attempting to reduce the bias by choosing ρn close

to zero may disproportionally increase the variance of the resulting estimator. Ad-

ditionally, this estimator does not account for the fact that θ(v) is estimated with

different precision at different points of the support (unless one somehow selects a

different smoothing parameter for each v ∈ [v, v]). In turn, with a suitable choice of

the loss function, the LAM estimator can optimally balance the bias-variance trade-

off and automatically adapt to the precision of the estimates of θ(v). It can also be

implemented in computationally simple way and computed within several seconds,

21The analysis can be performed conditional on auction characteristics and the number of partici-
pants. To apply the results of this paper, the auction characteristics must be discrete (or discretized)
to ensure that the conditional CDF-s of the bids can be regularly estimated (see Section 3.2.2). Note
that, since the IPV assumption is imposed conditional on the auction characteristics, focusing on
discrete characteristics may be restrictive.

22To ensure a suitable amount of bias-correction, the sequence should not diverge too fast. On
the other hand, it cannot diverge too slow, or the bias will become infinite. Haile and Tamer (2003)
derive the asymptotic properties of their estimator with ρn diverging faster than log

√
n.

23From the asymptotic efficiency perspective, the two estimators are equivalent.
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as discussed below.

The construction of LAM estimator in this setting has been discussed in Example

3 throughout the paper. The parameter of interest is a pair of CDF-type functions,

φ(θ0) ∈ D([v, v], [0, 1])2, representing the bounds on F in Equation (27). To focus

on the bias-variance trade-off in estimation and simplify the computation of the

adjustment terms, I consider the squared loss function that focuses on a finite grid

of points v1, . . . , vK ∈ [v, v]. Specifically, the loss function l : D([v, v], [0, 1])2 → R+

is given by l(x1, x2) =
∑K

k=1(x1(vk)
2 + x2(vk)

2). Then, as discussed in Section 5.4,

the optimization problem can be split into several simple subproblems that have

approximate closed-form solutions.

7.3 Results

I compare the performance of the two estimation methods on simulated data. To

mimic the empirical results of Haile and Tamer (2003), the true distribution or valu-

ations is taken to be Log-Normal with parameters µ = 4 and σ = 0.5, the minimal bid

increment is ∆ = 5, and jump bids (substantially exceeding the bid increment) are

allowed. The bidding process is designed to satisfy Assumptions (i) and (ii) above,

and may substantially differ from the standard button auction model. Only the final

bid of each participant is recorded.

Figure 4 presents the results. First, since the lower bound equals to ψN−1(GN :N(v−
∆)), no smoothing or adjustment is required and the two estimation methods yield

the same results. The estimated lower bound is fairly tight throughout the support

since the minimal bid increment is relatively small and jump bidding is not too com-

mon. Second, the LAM estimates for the upper bound are, on average, substantially

tighter than the HT estimates. In particular, the 95th quantile for the LAM esti-

mate (red dotted line) is consistently below the average HT estimate (black dashed

line) across simulations. At the same time, there is some downward bias in the LAM

estimates around the lower part of the support. This issue, caused by the fact that

the highest bids in that region are very rarely observed, disappears with smaller N

and/or sufficiently large n.

Table 1 presents the implied bounds on the optimal reserve prices for different

parameters of the Log-Normal distribution. While the bounds estimated with both

methods are fairly wide, the LAM estimates are, on average, substantially tighter.
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Figure 4: Estimated Bounds on the CDF of Valuations

Note: The number of bidders is N = 6, the sample size is n = 200. The dashed
lines represent the average estimates for the bounds across simulations. The lower
bound is the same for both estimation methods. The dotted lines represent the 5-th
and 95-th quantiles across simulations.

Table 1: Estimated Bounds on the Optimal Reserve Price

Parameters µ = 4, σ = 0.5 µ = 3, σ = 1 µ = 5, σ = 0.25

True p∗ 42.1 27.2 112.6

F (p∗) 0.3 0.62 0.13

Mean LAM bounds [34.0, 59.6] [14.8, 75.5] [97.3, 139.3]

Mean HT bounds [27.5, 68.9] [8.3, 84.6] [91.3, 141.4]

LAM / HT width 61.5% 79.5% 83.3%

Note: Valuations are drawn from the Log-Normal distribution with parameters µ
and σ. The number of bidders is N = 6, sample size is n = 200.

46



8 Extension to Convex Cones

In the settings where the tangent set T (P ) is a convex cone, the lower bound in

Theorem 1 holds with S(G0) replaced by θ′0(T (P )). Such settings typically arise in the

presence of moment inequality restrictions that are binding at P . Common examples

include point- or over-identifying moment inequality models, or regression models

with binding sign constraints. However, such settings are theoretically problematic:

when T (P ) is a convex cone, the optimal estimators proposed by Convolution and

Minimax Theorems may often be inadmissible, even for differentiable parameters.24

To illustrate, I consider a simple example, similar to Imbens and Manski (2004).

Suppose that the parameter of interest θ0 ∈ R is partially identified, and the

bounds are given by θL,0 = θL(P ) and θU,0 = θU(P ), which are “smooth” function-

als (i.e., differentiable in the sense of Definition 3.3) of the distribution P of the

observable random vector X. The model is given by:25

P = {P : θL(P ) 6 θU(P )}

What is an efficient estimator for the identified set [θL,0, θU,0]? In this exam-

ple, stimating the identified set amounts to estimating a two-dimensional vector of

bounds. First, consider a situation when θL(P ) < θU(P ). In this case, the tangent

set is unrestricted, i.e., T (P ) = L0
2(P ), and the classical efficiency theory suggests

that the “plug-in” estimator, defined by θ̂L,n ≡ θL(P̂n) and θ̂U,n ≡ θU(P̂n), where P̂n

denotes the empirical distribution, is optimal. Intuitively, the bounds can be esti-

mated separately because they are not informative about each other. On the other

hand, suppose that θL(P ) = θU(P ). In this case, the estimators θ̂L,n and θ̂U,n target

the same parameter, so the intuition suggests that they may be combined to produce

a more efficient estimator. For example, assuming that the asymptotic variances of

θ̂L,n and θ̂U,n are the same, the optimal GMM would suggest using (θ̂L,n + θ̂U,n)/2

to estimate both θL and θU . However, due to the tangent set being a cone, the ex-

isting semiparametric efficiency theory suggests otherwise. More precisely, denoting

the path-wise derivatives by θ′0,L(h) = EP (ψLh) and θ′0,U(h) = EP (ψUh) for some

24More specifically, if T (P ) is a cone but lin T (P ) = L0
2(P ), the optimal estimator suggested by

the Convolution and Minimax Theorems will be the same as the estimator when T (P ) = L0
2(P ),

e.g. van der Vaart (1988).
25The model may be required to satisfy some other restrictions omitted here for simplicity.
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ψL, ψU ∈ L0
2(P ), the tangent set is given by

T (P ) = {h ∈ L0
2(P ) : EP ((ψL(X)− ψU(X))h(X)) 6 0}

Then, since lin T (P ) = L0
2(P ), both the Convolution Theorem (Theorem A.5) and

LAM Theorem (Theorem 1, applied with φ(θL, θU) = (θL, θU)) suggest that the “plug-

in” estimator [θ̂L,n, θ̂U,n] is still optimal, which contradicts the above intuition.26

The above example shows that the existing semiparametric efficiency theory can-

not properly capture binding inequality constraints. Although dealing with such in-

consistency is beyond the scope of this paper, it is an interesting question for further

research.

9 Conclusion

In many econometric models, certain parameters of interest are represented via di-

rectionally differentiable functionals. The potential lack of full differentiability has

raised concerns in regard to choosing “good” estimators for such parameters. This

paper proposed a solution by extending the classical Local Asymptotic Minimax The-

orem to a class of directionally differentiable parameters. First, I derived the general

risk lower bound that covers all reasonable estimators and holds for a variety of loss

functions. In contrast to the fully differentiable settings, the optimal estimator de-

pends on the chosen loss function, suggesting that it must be tailored to specific

applications. Second, I showed that the optimal estimator takes a relatively simple

form of the “plug-in” estimator with additive adjustment terms and provided a gen-

eral procedure to compute them from the data. It typically does not reduce the bias

as much as some of the existing methods, but helps to avoid large fluctuations in

risk around the points where the full differentiability fails. The empirical relevance of

the proposed method was demonstrated in the application to English auctions with

independent private values.

26The Convolution Theorem continues to hold under the assumption that T (P ) is a convex cone
if formulated with lin T (P ) instead of T (P ).
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A Appendix: Proofs from the Main Text

A.1 Known Results for Reference

Below, I state several known results in the exact form they are used in the proofs for

easier reference.

Theorem A.1 (Riesz Representation). Let M denote a linear subspace of a Hilbert

space (H, 〈·, ·〉) and L : M → R denote a continuous linear functional. Then there is

an element l̃ ∈ M̄ such that L(h) = 〈l̃, h〉 for all h ∈ M̄ .

Proof. L can be extended to a continuous linear functional on M̄ by the Hahn Banach

Theorem (Theorem 6.2 in Conway, 1985). The result follows from applying the usual

Riesz Representation Theorem (Proposition 3.4 in Conway, 1985). �

Theorem A.2 (General Le Cam’s Third Lemma. Theorem 3.10.7. in van der

Vaart and Wellner (1996)). Let Pn and Qn be sequences of probability measures on

measurable spaces (Ωn,An) and let Xn : Ωn → D be maps with values in a metric

space. Assume that Qn is contiguous with respect to Pn, and(
Xn,

dQn

dPn

)
Pn (X, V ).

Then L(B) = E(1B(X) · V ) defines a probability measure and Xn  L along Qn. If

X is tight or separable then so is L.

Theorem A.3 (Le Cam’s Third Lemma. Example 3.10.8 in van der Vaart and

Wellner (1996)). If

(
Xn, log

dQn

dPn

)
Pn N


 µ

−1
2
σ2

 ,
Σ τ

τT σ2


 ,

then

Xn
Qn N(µ+ τ,Σ).
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The following results refer to Definitions 3.3 and 3.4.

Theorem A.4 (Convolution Theorem for Euclidean Parameters. Theorem 25.20 in

van der Vaart (2000)). Assume that θ(P ) ∈ Rdθ is differentiable relative to a tangent

set T (P ) with the path-wise derivative θ′0 : T̄ (P ) → Rd. Then, for any regular

estimator sequence θ̂n,
√
n(θ̂n − θ0)

Pn,0
 Z +W,

where Z is a centered Gaussian random vector in Rdθ , and W is a tight random

vector in Rdθ independent from Z. The covariance matrix of Z is given by Σ =

E(θ̃θ̃T ), where θ̃ = (θ̃1, . . . , θ̃dθ)
T is the efficient influence function for θ(P ). That

is, θ̃j ∈ T (P ), for j = 1, . . . , dθ, are such that θ′0(h) = EP (θ̃h) for all h ∈ T (P ).

Moreover, the distribution of Z concentrates on the range of Σ.

To state the Convolution Theorem for infinite-dimensional parameters, some new

notation is required. For each b∗ ∈ B∗ (the continuous dual of B), b∗◦θ′0 is a continuous

linear map from T̄ (P ) into R. By the Riesz Representation Theorem (Theorem A.1),

there is an element θ̃b∗ ∈ T̄ (P ) such that b∗ ◦ θ′0(h) = EP (θ̃b∗h) for any h ∈ T̄ (P ).

Such θ̃b∗ is called the canonical gradient of θ in the direction b∗.

Theorem A.5 (Convolution Theorem. Theorem 3.11.2. in van der Vaart and Well-

ner (1996)). Assume that θ(P ) ∈ B is differentiable relative to a tangent set T (P ) with

the path-wise derivative θ′0 : T̄ (P )→ B. Then, for any regular estimator sequence θ̂n,

√
n(θ̂n − θ0)

Pn,0
 G0 + W,

where G0 is a tight centered Gaussian random element in B and W is a tight random

element in B independent from G0. The distribution of G0 is such that (b∗1, . . . , b
∗
K) ◦

G0 is a centered Gaussian random vector with Cov(b∗i (G0), b∗j(G0)) = E(θ̃b∗i θ̃b∗j ) for

any b∗1 . . . b
∗
K ∈ B∗. Moreover, the distribution of G0 concentrates on the closure of

θ′0(T (P )).

Theorem A.6 (Continuous Mapping Theorem. Theorem 1.3.6. in van der Vaart

and Wellner (1996)). Let a map between two metric spaces g : B→ D be continuous

at every point of a set B0 ⊂ B. If Xn  X and X takes its values in B0, then

g(Xn) g(X) .
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Theorem A.7 (Prohorov’s Theorem. Theorem 1.3.9. in van der Vaart and Wellner

(1996)). If the sequence Xn is asymptotically tight and asymptotically measurable,

then for any subsequence Xn′ there is a further sibsequence Xn′′ that converges weakly

to a tight Borel law.

The following result, due to Feinberg and Piunovskiy (2006) plays a crucial role in

the proof of Theorem 1 below. To state the result, some new concepts are required.

A separable metric space S endowed with its Borel sigma field S is known as a Borel

space. Let (X,X ) be a Borel space of states. Let (A,A) be a Borel space of actions,

and P(A) denote the set of all probability distributions on it. Let A(x) ∈ A denote

the set of feasible actions for each state x ∈ X. A randomized decision rule π is

a mapping that for each state x ∈ X returns a probability distribution on (A,A),

supported on A(x). That is, π : X → P(A) satisfies π(A(x);x) = 1 where π(S;x)

denotes the probability that π(x) assigns to a set S ∈ A. A non-randomized decision

rule is defined by a measurable map ϕ : X → A so that π({ϕ(x)};x) = 1. Next,

for j = 1, . . . , J , let ρj : X × A → R̄ denote loss functions, which are assumed to

be measurable with respect to the product sigma-field X × A (no other restriction

is placed on ρj). Let µ1 . . . µK denote probability measures on (X,X ). The risk,

associated with a decision rule π, given a loss function ρj and a distribution of states

µk is defined as

R(π; ρj, µk) =

∫
X

∫
A

ρj(x, a)dπ(a;x)dµk(x)

for j = 1, . . . , J and k = 1, . . . , K.

Theorem A.8 (Purification Theorem. Theorem 1 in Feinberg and Piunovskiy

(2006)). Let (X,X ) denote a Borel space of states, and µ1, . . . , µK denote proba-

bility distributions on it. Let (A,A) denote a Borel space of actions. If µ1, . . . , µK

are non-atomic, then for any randomized decision rule π : X → P(A) there is an

equivalent nonrandomized decision rule ϕ : X → A. That is,∫
X

∫
A

ρj(x, a)dπ(a;x)dµk(x) =

∫
X

ρj(x, ϕ(x))dµk(x)

for j = 1, . . . , J and k = 1, . . . , K.

Let (X, ρ) denote a metric space and B ⊂ X be an arbitrary subset of X. For

each x ∈ X define ρ(x,B) = inf{ρ(x, y)|y ∈ B}, which may be infinite.
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Lemma A.1 (Suprema of Lower Semi-Continuous Functions In Polish Spaces).

Let (X, ρ) be a separable metric space, B ⊂ X be an arbitrary non-empty subset and

f : X → R be a lower semi-continuous function. Then B is separable and

sup
B
f(x) = sup

B◦
f(x),

where B◦ denotes a countable dense subset of B.

Proof. First, I show that B is separable. Let E = {e1, e2, . . . } denote a countable

dense subset of X. Fix ε > 0. Define E ′ = {ej ∈ E|ρ(ej, B) 6 ε/3} = {e′1, e′2, . . . }
which is non-empty since E is dense in X. For every such e′j ∈ E ′ there is xj ∈ B
with ρ(e′j, xj) 6 ρ(e′j, B) + ε/3 6 2ε/3. Let B◦ denote a set of all xj ∈ B obtained

this way. Since E is dense in X, for any x ∈ B there is ek ∈ E with ρ(ek, x) 6 ε/3.

Since ρ(ek, B) 6 ρ(ek, x) by definition, it must be that ek = e′j for some e′j ∈ E ′

and ρ(e′j, x) 6 ε/3. For such e′j there is xj ∈ B◦ with ρ(e′j, xj) 6 2ε/3. By triangle

inequality, ρ(x, xj) 6 ρ(x, e′j) + ρ(e′j, xj) 6 ε so that B◦ is a countable dense subset

of B.

For the second part of the statement, it is clear that supB◦ f(x) 6 supB f(x). For

the reversed inequality, it suffices to show supB f(x) 6 supB◦ f(x)+ε for an arbitrary

ε > 0. Pick x′ ∈ B such that supB f(x) 6 f(x′)+ε. Since B◦ is dense in B, there is a

sequence (xn)n>1 ∈ B◦ such that ρ(xn, x
′)→ 0. It follows from lower semi-continuity

of f that lim infn→∞ f(xn) > f(x′). Therefore, supB f(x) 6 lim infn→∞ f(xn) + ε 6

supB◦ f(x) + ε, and the proof is complete.

�

Lemma A.2 (Uniform Convergence of Lipchitz Functions). Let (X, ρ) denote a com-

pact metric space and fn : X → R be a uniformly Lipchitz sequence of functions, that

is, for some constant C independent of n,

|fn(x)− fn(x′)| 6 C · ρ(x, x′).

If fn(x) converges point-wise ti some f : X → R, then f is Lipchitz with the same

constant and supx∈X |fn(x)− f(x)| → 0.

Proof. First, I show that f satisfies:

|f(x)− f(x′)| 6 Cρ(x, x′)
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for any x, x′ ∈ K. Fix δ > 0. Choose n1 and n2 such that |fn(x)− f(x)| < δ for all

n > n1 and |fn(x′)− f(x′)| < δ for all n > n2. Then, for any n > max{n1, n2},

|f(x)− f(x′)| 6 |f(x)− fn(x)|+ |fn(x)− fn(x′)|+ |fn(x′)− f(x′)| 6 Cρ(x, x′) + 2δ.

Since δ was arbitrary, the desired conclusion follows.

Next, fix some ε > 0. Since K is compact, there are x1, . . . , xJ such that K ⊂⋃J
j=1 B(xj, ε). Let π : K → {x1, . . . , xJ} be defined by π(x) = argminj6j{ρ(x, xj)},

so that ρ(x, πx) 6 ε for any x ∈ X. Then

supx∈K |fn(x)− f(x)| 6 supx∈K |fn(x)− fn(πx)| (I)

+ supx∈K |fn(πx)− f(πx)| (II)

+ supx∈K |f(πx)− f(x)|. (III)

Note that (I) 6 Cε and (III) 6 Cε by construction, and (II) = maxj6J |fn(xj) −
f(xj)| = o(1). Letting n→∞ followed by ε→ 0 concludes the proof. �

A.2 Proofs from the Main Text and Auxiliary Lemmas

For any probability measures Q and S let dQ/dS denote the density of the part of Q

that is absolutely continuous with respect to S. It is understood that log 0 = −∞, so

the extended logarithm x 7→ log x is a continuous bijection of [0,+∞) into [−∞,∞)

with a continuous inverse. In particular, the log-likelihood ratio converges weakly on

[−∞,+∞) if an only if the likelihood ratio converges weakly on [0,+∞). R̄ denotes

the extended real line.

Lemma A.3 (Shifted Likelihood Ratio). Assume that for each n > 1 (Pn,h : h ∈ H)

is a set of probability measures indexed by the elements of (a subset of a) Hilbert space

H such that

log
dPn,h
dPn,0

= ∆n,h −
1

2
||h||2 , (A.1)

where, for any h1, . . . , hm ∈ H, (∆n,h1 , . . . ,∆n,hm)
Pn,0
 (∆h1 , . . . ,∆hm) and the latter

is a centered Gaussian vector with Cov(∆hi ,∆hj) = 〈hi, hj〉 for i, j = 1, . . . ,m. Then,

the following holds.
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1. For any h, h′ ∈ H,

log
dPn,h′+h
dPn,h′

Pn,h′
 ∆h −

1

2
||h||2 .

2. In particular, let h1, . . . , hm be linearly independent and denote h(a) =
∑m

j=1 ajhj

for some a = (a1, . . . , am) ∈ Rm. Let Σ be a m × m matrix with elements

Σij = 〈hi, hj〉. Then, for any h′ ∈ H and any a ∈ Rm:

log
dPn,h′+h(a)

dPn,h′

Pn,h′
 aT∆− 1

2
aTΣa

where ∆ = (∆h1 , . . . ,∆hm).

Proof. Fix h, h′ ∈ H. Let µn be a positive sigma-finite measure that dominates

Pn,0 + Pn,h′ + Pn,h+h′ and write pn,h̃ = dPn,h̃/dµn for h̃ ∈ {0, h′, h′ + h}. Pairwise

likelihood ratios (i.e., pn,h/pn,0, etc.) are left unspecified when the denominator is

zero. By assumption,log
pn,h′+h
pn,0

log
pn,h′

pn,0

 Pn,0
 

∆h′+h − 1
2
||h′ + h||2

∆h′ − 1
2
||h′||2

 .
Note that the limit concentrates on R×R. Applying the Continuous Mapping Theo-

rem (Theorem A.6) with the map f : R̄× R̄→ R×R defined as f(x, y) = (x− y, y)T

and set to an arbitrary value when y = −∞,log
pn,h′+h
pn,h′

log
pn,h′

pn,0

 Pn,0
 

∆h′+h −∆h′ − 1
2
||h||2 − 〈h,h′〉

∆h′ − 1
2
||h′||2

 ≡ [Z1

Z2

]
,

where [
Z1

Z2

]
∼ N


−1

2
||h||2 − 〈h, h′〉

−1
2
||h′||2

 ,
 ||h||2 〈h, h′〉

〈h, h′〉 ||h′||2


 .

60



Then, by Le Cam’s Third Lemma (Theorem A.3),

log
pn,h′+h
pn,h′

Pn,h′
 N

(
−1

2
||h||2 , ||h||2

)
,

which is the distribution of ∆h − 1
2
||h||2.

The second claim follows directly from the above and the facts that ||h(a)||2 =

aTΣa and E((∆h(a)− aT∆)2) = 0 so that ∆h(a) = aT∆ almost surely and therefore in

law.

�

Lemma A.4 (Auxiliary Representation Lemma). Let X, Y, Z denote random ele-

ments defined on a probability space (Ω,F , P ), such that (X, Y ) is independent of Z.

Let g be a measurable real-valued function such that g(X) > 0 P -almost surely, and

E(g(X)) = 1. Then, there exist X̃ and Ỹ such that for any measurable function f

and set C,

E(1(f(X, Y, Z) ∈ C)g(X)) = E(1(f(X̃, Ỹ , Z) ∈ C))

Proof. Define X̃, Ỹ to be be random variables with a probability distribution

LX̃,Ỹ (A) = E(1A(X̃, Ỹ )) = E(1A(X, Y )g(X)).

The assumed properties of g ensure that LX̃,Ỹ is indeed a probability distribution,

and since (X, Y ) is independent of Z, (X̃, Ỹ ) is independent of Z as well. Next,

define the function fz(x, y) = f(x, y, z) for every fixed z. Then,

E(1(f(X, Y, Z) ∈ C)g(X))
(a)
=

∫
E(1(f(X, Y, z) ∈ C)g(X))dPZ(z)

=

∫
E(1((X, Y ) ∈ f−1

z (C))g(X))dPZ(z)

(b)
=

∫
E(1((X̃, Ỹ ) ∈ f−1

z (C)))dPZ(z)

=

∫
E(1(f(X̃, Ỹ , z) ∈ C))dPZ(z)

(c)
= E(1(f(X̃, Ỹ , Z) ∈ C))

where (a) follows from the independence of (X, Y ) and Z, (b) holds by definition of
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(X̃, Ỹ ) , and (c) follows from the independence of (X̃, Ỹ ) and Z. �

Lemma A.5 (Asymptotic Representation). Let φ′0 : B → D denote an arbitrary

map, r, b1, . . . , bm ∈ B be arbitrary elements, Σ be a symmetric m × m matrix of

full rank, a ∈ Rm be a vector and (V,∆) be a tight random element in D × Rm with

∆ ∼ N(0,Σ) marginally Gaussian. Consider a measure on D given by

La(C) = E

(
1C

(
V − φ′0

(
r +

m∑
j=1

ajbj

)
+ φ′0(r)

)
exp

{
aT∆− 1

2
aTΣa

})

Suppose that all of the elements introduced above are such that La defines a probability

measure on D for all a ∈ Rm. Define Sλ = λ−1Im and Σλ = (Σ + S−1
λ )−1 for any

λ > 0. Then,∫
LadN(µ, Sλ)(a) = L

(
Vµ,λ,m − φ′0(Zλ,m +Wµ,λ,m + r) + φ′0(r)

)
as laws in D, where Zλ,m =

m∑
j=1

pjbj for p ∼ N(0,Σλ) is a Gaussian random element

in B independent from a tight random element (Vµ,λ,m,Wµ,λ,m) in D× B.

Proof. Integrate both sides of the first display in the statement of the lemma over

a ∼ N(µ, Sλ). By Fubini’s Theorem, the integrand of the right-hand side equals:

E

(
1C

(
V − φ′0

(
r +

∑m
j=1 ajbj

)
+ φ′0(r)

) det(Sλ)−1/2

(2π)m/2

× exp

{
aT∆− 1

2
aTΣa− 1

2
(a− µ)TS−1

λ (a− µ)

})
Observe that for Σλ = (Σ + S−1

λ )−1 and t = a− µ− Σλ(∆− Σµ):

exp

{
aT∆− 1

2
aTΣa− 1

2
(a− µ)TS−1

λ (a− µ)

}
· det(Sλ)−1/2

(2π)m/2

=
det(Σλ)−1/2

(2π)m/2
exp

{
−1

2
tTΣ−1

λ t

}
· cµ,λ,m(∆)

where

cµ,λ,m(∆) =

(
det(Σλ)

det(Sλ)

)1/2

· exp

{
∆Tµ− 1

2
µTΣµ+

1

2
(∆− Σµ)TΣλ(∆− Σµ)

}
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Denote ω = µ + Σλ(∆ − Σµ). Performing the change of variables described above,

one obtains that
∫
La(C)dN(µ, Sλ)(a) equals

∫
E

(
1C

(
V − φ′0

(
r +

m∑
j=1

tjbj +
m∑
j=1

ωjbj

)
+ φ′0(r)

)
· cµ,λ,m(∆)

)
dN(0,Σλ)(t).

(A.2)

Denote Zλ,m =
∑m

j=1 tjbj. The law of Zλ,m in B is

LZλ,m(B) =

∫
1B

(
m∑
j=1

tjbj

)
dN(0,Σλ)(t).

Note that cµ,λ,m(∆) > 0 almost surely and E(cµ,λ,m(∆)) = 1 by construction. Let

(Vµ,λ,m,Wµ,λ,m) be a tight random element in D× B, with the law

L(Vµ,λ,m,Wµ,λ,m)(A) = E (1A(Vµ,λ,m,Wµ,λ,m)) ≡ E

(
1A

{(
V,

m∑
j=1

ωjbj

)}
· cµ,λ,m(∆)

)
.

Apply Lemma A.4 with X = (X1, X2) = (
∑m

j=1 ωjbj,∆), Y = V , X̃ = Wµ,λ,m,

Ỹ = Vµ,λ,m, and Z = Zλ,m, and the maps

f(x, y, z) = y − φ′0(r + z + x1) + φ′0(r)

g(x) = cµ,λ,m(x2)

It follows that Equation (A.2) represents the law of

Qµ,λ,m ≡ Vµ,λ,m − φ′0(Zλ,m +Wµ,λ,m + r) + φ′0(r)

and the proof is complete.

�

Lemma A.6 (Asymptotic Tightness and Asymptotic Measurability of a Shifted

Sequence). Let Xn : Ωn → D be a sequence of maps into a Banach space (D, ||·||D).

Assume that Xn is asymptotically tight and asymptotically measurable. Let (cn)n≥1 ∈
D denote a sequence of constants such that ||cn − c||D → 0 for some c ∈ D. Then

Xn + cn is asymptotically tight and asymptotically measurable.
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Proof. Since Xn is asymptotically tight, for every ε > 0 there is a compact set Kε

such that lim infn→∞ P∗(Xn ∈ Kδ
ε ) > 1 − ε for every δ > 0, where Kδ

ε is the set of

points within distance δ from Kε. Clearly, Xn + c is asymptotically tight since it

satisfies the inequality above with K̃ε = Kε + c in place of Kε. Next, fix ε > 0 and

δ > 0. There is n0 such that for all n > n0, d(cn, c) < δ/2. Then, for any compact

K, Xn + c ∈ Kδ/2 implies that Xn + cn ∈ Kδ for all n > n0. Therefore:

lim inf
n→∞

P∗(Xn + cn ∈ K̃δ
ε ) > lim inf

n→∞
P∗(Xn + c ∈ K̃δ/2

ε ) > 1− ε

so that Xn + cn is tight.

Next, since Xn and cn are marginally asymptotically measurable and asymptoti-

cally tight, they are jointly asymptotically measurable (Lemma 1.4.4. in van der Vaart

and Wellner, 1996). Therefore, for any f ∈ Cb(D× D) it holds that E∗(f(Xn, cn))−
E∗(f(Xn, cn)) → 0 as n → ∞. In particular, this holds for f(Xn, cn) = g(Xn + cn)

for any g ∈ Cb(D), which implies the asymptotic measurability of Xn + cn. �

Lemma A.7 (Lipchitzness of the Asymptotic Risk). Let lM be a loss function satis-

fying Remark 1, and φ be a directionally differentiable function satisfying Assumption

2.1. Let (D, ||·||D) and (B, ||·||B) denote Banach spaces and Z denote a tight random

element in B. Then a function f : D× B× B→ R defined as

f(v, w, r) = E (lM(v − φ′0(Z + w + r) + φ′0(r)))

is jointly Lipchitz, i.e. |f(v, w, r) − f(ṽ, w̃, r̃)| 6 CM,φ · (||v − ṽ||D + ||w − w̃||B +

||r − r̃||B) for all (v, w, r), and (ṽ, w̃, r̃), for some CM,φ <∞.

Proof. Let ∆f = f(v, w, r) − f(ṽ, w̃, r̃) and CM,φ = max(CM , 2CMCφ). By Jensen’s

inequality, the assumed Lipchitzness of lM and φ′0, and triangle inequality:

|∆f | 6 E (|lM(v − φ′0(Z + w + r) + φ′0(r))− lM(ṽ − φ′0(Z + w̃ + r̃) + φ′0(r̃))|)

6 CM (||v − ṽ||D + ||φ′0(r)− φ′0(r̃)||D + E (||φ′0(Z + w + r)− φ′0(Z + w̃ + r̃)||D))

6 CM ·
(
||v − ṽ||D + Cφ ||r − r̃||B + Cφ(||w − w̃||B + ||r − r̃||B)

)
6 CM,φ · (||v − ṽ||D + ||w − w̃||B + ||r − r̃||B) .
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�

Lemma A.8 (Approximating Sub-Convex Loss Functions). Any subconvex loss func-

tion l (see Assumption 3.3) can be approximated by a sequence of bounded Lipschitz

functions lM pointwise monotonically from below.

Proof. First, note that the sequence of bounded step functions {lr} defined as

lr(x) =
1

2r

22r∑
i=1

1

{
x : l(x) >

i

2r

}
=

22r∑
i=1

i

2r
· 1
{
x :

i

2r
< l(x) 6

i+ 1

2r

}

converges to l pointwise monotonically from below. Next, introduce the sets Ai ={
x : i

2r
< l(x) 6 i+1

2r

}
and Bi = ∪j6iAj and let FM,i = {x ∈ Ai : d(x,Bi) > 1/M}.

For a fixed r, consider a sequence of functions, {lM,r}, defined as

lM,r(x) =
22r∑
i=1

(
i− 1

2r
+

d(x,Bi)

d(x,Bi) + d(x, FM,i)

)
· 1(x ∈ Ai)

Every such function is bounded by 2r and the part d(x,Bi)/(d(x,Bi) + d(x, FM,i))

smoothes out the jumps in lr, such that the resulting function is Lipschitz continuous

with Lipschitz constant equal to M/2r. Indeed, let y ∈ Aj, x ∈ Ai with j > i

lM,r(y)− lM,r(x) =
j − i

2r
+

1

2r

(
d(y,Bj)

d(y,Bj) + d(y, FM,j)
− d(x,Bi)

d(x,Bi) + d(x, FM,i)

)
First, let i = j. Then

|lM,r(y)− lM,r(x)| = 1

2r

∣∣∣∣ d(y,Bi)d(x, FM,i)− d(x,Bi)d(y, FM,i)

(d(y,Bi) + d(y, FM,i))(d(x,Bi) + d(x, FM,i))

∣∣∣∣
=

1

2r

∣∣∣∣d(y,Bi)(d(x, FM,i)− d(y, FM,i)) + d(y, FM,i)(d(y,Bi)− d(x,Bi))

(d(y,Bi) + d(y, FM,i))(d(x,Bi) + d(x, FM,i))

∣∣∣∣
(a)

6
1

2r
· (d(y,Bi) + d(y, FM,i)) · d(x, y)

(d(y,Bi) + d(y, FM,i))(d(x,Bi) + d(x, FM,i))

(b)

6
M

2r
· d(x, y) (A.3)

Where (a) follows from the reverse triangle inequality, i.e. |d(y,Bi) − d(x,Bi)| 6
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d(x, y) and similar for FM,i, and (b) follows from the fact that d(x,Bi) +d(x, FM,i) >

1/M by construction. The same upper bound can be obtained in a straightforward

way when j > i+ 1 by considering four different cases when y ∈ FM,j or y ∈ Aj\FM,j

and x ∈ FM,i or x ∈ Ai\FM,i. �

Proof of Theorem 1. While the theorem is stated assuming that the tangent

set T (P ) is a linear space, the proof below covers a more general case, allowing T (P )

to be a convex cone. To accommodate convex cones, T (P ) is replaced with lin T (P )

in the Definition 3.3, so that the path-wise derivative θ′0(h) is defined on lin T (P ).

The lower bound holds as stated in the Theorem, with S(Z) replaced by θ′0(T (P )).

The proof consists of three main steps. The first step is to establish the weak

limits (along subsequences) of an estimator
√
n(φ̂n − φ(θ0))  La,h along Pn,h+h(a)

where h ∈ T (P ) and h(a) =
∑m

j=1 ajhj with a1, . . . , am ∈ R and linearly independent

h1, . . . , hm ∈ T (P ). This is made possible by the asymptotic normality of the log-

likelihood ratios (Lemma A.3), the assumed differentiability of θ(P ), and Le Cam’s

Third Lemma.

The second step is to show that a suitable average of the limiting laws La,h, over

a, for a fixed h, can be represented as the law of V −φ′0 (Zm +W + θ′0(h))+φ′0(θ′0(h)),

where Zm is a sequence of Gaussian random elements, which does not depend on h,

and (V,W ), independent of Zm, represent some “noise terms” with unknown distri-

butions, which may depend on h. This representation allows to bound the LAM risk

of a particular sequence φ̂n from below by suph∈T (P ) E(l(V − φ′0 (Zm +W + θ′0(h)) +

φ′0(θ′0(h)))). Different estimators φ̂n correspond to different distributions of (V,W ),

so, to obtain a lower bound that would hold for all estimators, I take the infimum

over all possible distributions of (V,W ).

The final step is to show that the infimum is attained by constants (i.e., degenerate

distributions). This is made possible by the general purification result of Feinberg and

Piunovskiy (2006) on matching randomized decision rules with the non-randomized

ones. Combining the result with the assumed symmetry of the loss function, letting

m approach infinity, and taking care of technical details yields the final form of the

lower bound.

I start with some preliminary notation. Let h̄ = (h1, . . . , hm) denote the first

m elements of a linearly independent sequence in T (P ), and h denote an arbitrary

element of T (P ). Let Σ = E(h̄h̄T ) be a m × m scalar-product matrix. Denote
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h(a) =
∑m

j=1 ajhj for an arbitrary a = (a1, . . . , am) ∈ Rm. Since T (P ) is a convex

cone, for any a ∈ Rm
+ , it holds that h+ h(a) ∈ T (P ). On the other hand, for a /∈ Rm

+

it could be that h+ h(a) /∈ T (P ).

Consider a sequence of random elements {Zm} ∈ B where Zm =
∑m

j=1 ajθ
′
0(hj),

where a ∼ N(0,Σ−1). It follows from the proof of Theorem 3.11.2 in van der Vaart

and Wellner (1996) that this sequence is uniformly tight. Next, let b∗1, . . . , b
∗
K ∈ B∗

denote arbitrary elements of the continuous dual of B. Each b∗k ◦ θ′0 is a bounded

linear map from lin T (P ) into R. By the Riesz Representation Theorem, there is an

element θ̃k ∈ lin T (P ) such that: b∗k ◦ θ′0(h) = EP (θ̃kh) for any h ∈ lin T (P ). Let

θ̃ = (θ̃1, . . . , θ̃K)T and B denote a K×m matrix with Bi,j = EP (θ̃ihj) for i = 1, . . . , K

and j = 1, . . . ,m. Then θ̃m = BΣ−1h̄ is the orthogonal projection of θ̃ onto the

closed linear span of (h1, . . . , hm). By construction, θ̃m → θ̃ in L2(P ) as m → ∞,

implying that E(θ̃m(θ̃m)T ) = BΣBT → EP (θ̃θ̃T ) in Frobenius norm. It follows that

(b∗1, . . . , b
∗
K)◦Zm  N(0,E(θ̃θ̃T )) as m→∞. Since {Zm} is asymptotically tight, and

the weak limits along every its subsequence are the same, it follows that Zm  Z in

B where Z is a tight Gaussian process such that (b∗1, . . . , b
∗
K)◦Z is a centered Normal

random vector with covariance EP (θ̃θ̃T ).

Step 1: Subsequence Argument

Define ∆n,h and ∆ as in Lemma A.3. Pick an arbitrary h ∈ T (P ), recall that

Definition 3.1 implies that, for Pn,0 =
∏n

i=1 P and Pn,h =
∏n

i=1 P1/
√
n,h,

log
dPn,h
dPn,0

= ∆n,h −
1

2
||h||2 ,

where ∆n,h  Pn,0 ∆h with ∆h ∼ N(0, ||h||2).

Let φ̂n denote an arbitrary estimator sequence such that
√
n(φ̂n−φ(θ0)) is asymp-

totically tight and asymptotically measurable under Pn,0. By the Prohorov’s Theo-

rem (Theorem A.7) and the General Le Cam’s Third Lemma (Theorem A.2), for any

subsequence, there is a further subsequence, still denoted by {n} for simplicity, such

that
√
n(φ̂n − φ(θ0)) converges weakly to a tight limit under Pn,h. Lemma 1.3.8. in

van der Vaart and Wellner (1996) then implies that the subsequence
√
n(φ̂n− φ(θ0))

is asymptotically tight and asymptotically measurable under Pn,h.

Denoting θn(h) = θ(Pn,h), by the differentiability of θ(P ), one may write θn(h) =
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θ0+θ′0(h)/
√
n+o(1/

√
n). Then, by the directional differentiability of φ,

√
n(φ(θn(h))−

φ(θ0))→ φ′0(θ′0(h)) as n→∞. Therefore, the seqence

√
n(φ̂n − φ(θn(h)) =

√
n(φ̂n − φ(θ0))−

√
n(φ(θn(h))− φ(θ0))

is asymptotically tight and asymptotically measurable under Pn,h by Lemma A.6. By

Lemma A.3 and Prohorov’s theorem (Theorem A.7), there is a further subsequence

such that, for a random element V ∈ D with a tight Borel law,√n
(
φ̂n − φ(θn(h))

)
log

dPn,h+h(a)
dPn,h

 Pn,h
 

 V

a′∆− 1
2
aTΣa


in D× R, for any h ∈ T (P ) and any a ∈ Rm such that h+ h(a) ∈ T (P ). The law of

V depends on h, although obviated from the notation for now. Note that:

√
n(φ̂n − φ(θn(h+ h(a)))) =

√
n(φ̂n − φ(θn(h)))

−
√
n(φ(θn(h+ h(a)))− φ(θ0))

+
√
n(φ(θn(h))− φ(θ0)).

By the assumed differentiability of θ(P ) and directional differentiability of φ,

√
n(φ(θn(h+ h(a)))− φ(θ0)) → φ′0

(
θ′0(h) +

m∑
j=1

ajθ
′
0(hj)

)
√
n(φ(θn(h))− φ(θ0)) → φ′0

(
θ′0(h)

)
in D, as n→∞. By Slutsky’s Lemma, for a ∈ Rm such that h+ h(a) ∈ T (P ),

√n
(
φ̂n − φ(θn(h+ h(a)))

)
log

dPn,h+h(a)
dPn,h

 Pn,h
 

V − φ
′
0

(
θ′0(h) +

m∑
j=1

ajθ
′
0(hj)

)
+ φ′0

(
θ′0(h)

)
a′∆− 1

2
aTΣa


in D × R. The General Le Cam’s Third Lemma (Theorem A.3) implies that, for
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h+ h(a) ∈ T (P ),

√
n
(
φ̂n − φ(θn(h+ h(a))

)
Pn,h+h(a)
 La,h

in D, where for any Borel C ∈ D, La,h(C) is given by

E

(
1C

(
V − φ′0

(
θ′0(h) +

m∑
j=1

ajθ
′
0(hj)

)
+ φ′0

(
θ′0(h)

))
exp

{
a′∆− 1

2
aTΣa

})
,

which defines a tight probability measure on D. Note, however, that La,h defines a

tight probability measure for any h ∈ T (P ) and any a ∈ Rm. Indeed, by direct

computation, La,h(D) = E
(
exp{a′∆− 1

2
aTΣa}

)
= 1 and the tightness of La,h follows

immediately from the tightness of V − φ′0(θ′0(h) +
∑m

j=1 ajθ
′
0(hj)) + φ′0(θ′0(h)).

Step 2: Main Argument

Let R denote the local asymptotic maximum risk (i.e. the left-hand side) in the

statement of the theorem. Direct the finite subsets of the tangent set by inclusion.

There exists a subnet {nI : I ⊂ T (P ), I is finite} such that

R = lim
I

sup
h∈I

E∗PnI ,h
{
l
(√

n(φ̂nI − φ(θnI (h)))
)}

. (A.4)

By the preceding argument,27 for any h ∈ T (P ) and a ∈ Rm such that h+h(a) ∈ T (P )

there is a further subsequence, still denoted by {n} for simplicity, along which

√
n(φ̂n − φ(θn(h+ h(a))))

Pn,h+h(a)
 La,h

in D. Let lM denote a loss function satisfying Remark 1. Then, for any h ∈ T (P )

and any a ∈ Rm such that h+ h(a) ∈ T (P ),

R > lim inf
n→∞

E∗Pn,h+h(a)
{
lM

(√
n(φ̂n − φ(θn(h+ h(a))))

)}
>
∫
lMdLa,h,

where the first inequality is due to fixing a single h+ h(a) ∈ T (P ), and switching to

lM 6 l, and the second inequality follows from the Portmanteau Theorem (Theorem

27The argument was presented for subsequences, but it holds without modifications for subnets
as well. I will use the term subsequence in the sequel.
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1.3.4 in van der Vaart and Wellner, 1996).

Denote Sλ = λ−1Im and Σλ = (Σ + S−1
λ )−1 for some λ > 0. Lemma A.5 shows

that:∫
La,hdN(µ, Sλ)(a) = L

(
Vµ,λ,m − φ′0(Zλ,m +Wµ,λ,m + θ′0(h)) + φ′0(θ′0(h))

)
as laws in D, where Zλ,m =

∑m
j=1 pjθ

′
0(hj), with p ∼ N(0,Σλ), is a Gaussian element

in B, and (Vµ,λ,m,Wµ,λ,m) a tight random element in D× B, independent of Zλ,m. In

what follows the subscripts will be obviated to simplify the notation.

Integrating both sides of the inequalityR >
∫
lMdLa,h with respect to dN(µ, Sλ)(a)

over a ∈ Rm such that h+ h(a) ∈ T (P ) yields

R >
∫ (∫

lMdLa,h

)
1{h+ h(a) ∈ T (P )}dN(µ, Sλ)(a)

> E {lM (V − φ′0 (Z +W + θ′0(h)) + φ′0 (θ′0(h)))}

−BM

∫
1{h+ h(a) /∈ T (P )}dN(µ, Sλ)(a). (A.5)

Since L2(P ) is separable, there is a countable dense subset of T (P ), denoted T0.

Since the inequalities in the above display hold for any h ∈ T (P ), the LAM risk R is

bounded from below by

sup
h∈T0

∫
EZ {lM (v − φ′0 (Z + w + θ′0(h)) + φ′0 (θ′0(h)))} dF (v, w;h)

−BM sup
h∈T0

∫
1{h+ h(a) /∈ T (P )}dN(µ, Sλ)(a). (A.6)

Consider the second summand. Note that, for any h ∈ T (P ), {h + h(a) /∈ T (P )}
implies {h(a) /∈ T (P )} which further implies {a /∈ Rm

+} because T (P ) is a convex

cone. Therefore:

sup
h∈T0

∫
1{h+ h(a) /∈ T (P )}dN(µ, Sλ)(a) 6

∫
1{h(a) /∈ T (P )}dN(µ, Sλ)(a)

6
∫

1{a /∈ Rm
+}dN(µ, Sλ)(a).
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Let µ = δ · (1, . . . , 1)T ∈ Rm
+ , apply the above inequality and pass to the limit in A.6

as δ ↑ ∞. Then,

R > sup
h∈T0

E {lM (V − φ′0 (Z +W + θ′0(h)) + φ′0(θ′0(h)))}

= sup
h∈T0

∫
EZ {lM (v − φ′0 (Z + w + θ′0(h)) + φ′0 (θ′0(h)))} dQh(v, w),

(A.7)

where the equality follows from the independence of Z and (V,W ) and Qh(v, w)

denotes the joint distribution of the latter, explicitly indexed by h.

Step 3: Purification Argument

The lower bound in Equation (A.7) can be tightened by taking an infimum over all

probability measures Qh(v, w), on D × B, but the result would not be practically

useful. To this end, following the idea from Song (2014) and Fang (2018), I employ a

purification technique, in this case by Feinberg and Piunovskiy (2006), as described

in Theorem A.8.

Since the space D× B may not be separable, to apply the aforementioned result,

I use a compactification step. Enumerate the elements of T0 = {h1, h2, . . . }, and

denote rj = θ′0(hj) for j > 1. Recall that, for each hj ∈ T (P ), the distribution

Qhj(v, w) is tight, that is, for each ε > 0 there is a compact set Aj ⊂ D × B such

that Qhj(Aj) > 1− ε. Fix some ε > 0, and J ∈ N, and let A = ∪Jj=1Aj ⊂ D× B be

a compact set such that Qhj(A) > 1− ε for all j = 1, . . . , J . Define the distributions

Q̃j supported on A as

Q̃j(B) ≡
Qhj(B ∩ A)

Qhj(A)

for j = 1, . . . , J , for any Borel B. Then, for any non-negative measurable function

f : D× B→ R, ∫
f(v, w)dQhj(v, w) > (1− ε)

∫
A

f(v, w)dQ̃j(v, w). (A.8)

In the notation of Theorem A.8, let X = [0, J ] denote the state space, and the set

A, constructed above, denote the action space, both endowed with the corresponding

Borel sigma-fields. Consider the uniform distributions µk = U [k − 1, k] for k =
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1, . . . , J on X, and a randomized decision rule π : X → P(A) defined as

π(v, w;x) = Q̃j(v, w) if x ∈ [j − 1, j] , for j = 1, . . . , J

for (v, w) ∈ D× B. Finally, define the loss functions, for j = 1, . . . , J ,

ρj(v, w, x) = EZ (lM (v − φ′0 (Z + w + rj) + φ′0(rj))) .

With this notation,∫
A

EZ (lM (v − φ′0(Z + w + rj) + φ′0(rj))) dQ̃j(v, w)

=

∫
X

∫
A

ρj((v, w), x)dπ((v, w);x)dµj(x) (A.9)

and, by Theorem A.8, there exists a measurable map (v, w) : X → A such that∫
X

∫
A

ρj((v, w), x)dπ((v, w);x)dµk(x) =

∫
X

ρj((v(x), w(x)), x)dµk(x) (A.10)

for all j = 1, . . . , J and k = 1, . . . , J . In particular, the equality holds for all j = k =

1, . . . , J . Therefore:

max
j6J

∫
EZ (lM (v − φ′0(Z + w + rj) + φ′0(rj))) dQhj(v, w)

(a)

> (1− ε) max
j6J

∫
A

EZ (lM (v − φ′0(Z + w + rj) + φ′0(rj))) dQ̃j(v, w)

(b)
= (1− ε) max

j6J

j∫
j−1

EZ (lM (v(x)− φ′0(Z + w(x) + rj) + φ′0(rj))) dx

(c)

> (1− ε) inf
(v,w)∈D×B

max
j6J

j∫
j−1

EZ (lM (v − φ′0(Z + w + rj) + φ′0(rj))) dx

(d)
= (1− ε) inf

(v,w)∈D×B
max
j6J

EZ
(
lM (v − φ′0(Z + w + rj) + φ′0(rj))

)
(A.11)

where (a) follows from Equation (A.8), (b) from Equations (A.9)–(A.10) and the

definitions of ρj and µj, (c) is due to the fact that (v(x), w(x)) belongs to the range
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of (v, w) as x varies, and the range is included in D × B, and (d) is due to the fact

that the integrand does not depend on x. Recall that Z = Zλ,m and assume that the

infimum in the display below can be attained, so that it can be equivalently taken

over sufficiently large compact set. Letting ε → 0 and J → ∞ in (A.11) (with the

help of Dini’s Theorem) and recalling (A.7) yields, the lower bound:

R > inf
(v,w)∈D×B

sup
h∈T0

EZ
(
lM(v − φ′0(Zλ,m + w + θ′0(h)) + φ′0(θ′0(h))

)
.

Since the expectation on the preceding display is continuous in h, the set T0 can be

replaced with T (P ), by Lemma A.1. Writing the supremum over s ∈ θ′0(T (P )),

R > inf
(v,w)∈D×B

sup
s∈θ′0(T (P ))

EZ
(
lM (v − φ′0 (Zλ,m + w + s) + φ′0 (s))

)
. (A.12)

Back To The Main Argument

Recall that Zλ,m =
∑m

j=1 ajθ
′
0(hj) with a ∼ N(0,Σλ) where Σλ = (Σ + λI)−1. As

λ → 0 and then m → ∞, Zλ,m  Z as random elements in B, where Z is a tight

centered Gaussian process for which (b∗1, . . . , b
∗
K) ◦ Z is a centered Normal random

vector with covariance EP (θ̃θ̃T ).28 Pick a subsequence, indexed by l, along which

Zl ≡ Zλ(l),m(l)  Z.

Weak convergence of Zl to Z can be characterized by the point-wise convergence

of linear operators Ll(g) ≡ E(g(Zl))→ E(g(Z)) ≡ Ll(g) for all non-negative bounded

Lipchitz functions g (Theorem 1.3.4 in van der Vaart and Wellner, 1996). However,

this point-wise convergence is automatically uniform over certain subsets of this class.

In particular, let G denote the set of all non-negative functions bounded by C1 with

Lipschitz constant C2, that is,

G(C1, C2) =

{
g : B→ R+ : sup

z
|g(z)| 6 C1,

|g(z1)− g(z2)| 6 C2 ||z1 − z2||B for all z1, z2 ∈ B} .

28Since the limit law is fully characterized by the marginals, the joint weak convergence of
marginals and asymptotic tightness suffices to deduce weak convergence in B. See the discussion
preceding the Subsequence Argument.
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Then, by Theorem 1.12.1 in van der Vaart and Wellner (1996),

sup
g∈G(C1,C2)

|E(g(Zl))− E(g(Z))| → 0 as l→∞.

Let s ∈ θ′0(T (P )). Note that, by Assumptions 2.1 and 3.3, the functions g(·; v, w, s) :

B→ R, defined as

g(z; v, w, s) = lM (v − φ′0(z + w + s) + φ′0(s)) ,

are uniformly, in (z, v, w, s), bounded by BM and uniformly, in (v, w, s), Lipchitz

continuous in z with Lipschitz constant CM · Cφ′ . Indeed, for an arbitrary tuple

(v, w, s) ∈ D× B× B and arbitrary z, z′ ∈ B,

|g(z; v, w, s)− g(z′; v, w, s)| 6 CM · ||φ′0(z + w + s)− φ′0(z′ + w + s)||D

6 CM · Cφ′ · ||z − z′||B .

Therefore, the class of functions

G̃ = {g(z; v, w, s) : (v, w, s) ∈ D× B× B}

is a subset of G(BM , CM · Cφ′), so that

sup
(v,w,s)∈D×B2

∣∣∣ E(g(Zl; v, w, s))− E(g(Z; v, w, s))
∣∣∣→ 0.

Letting l approach infinity in Equation A.12, so that λ(l)→ 0 and m(l)→∞, yields:

R > inf
(v,w)∈D×B

sup
s∈θ′0(T (P ))

EZ (lM (v − φ′0(Z + w + s) + φ′0(s))) .

Note that, by construction, Z concentrates on S(Z) = lin θ′0(T (P )). If T (P ) itself is

a linear space, S(Z) = lin θ′0(T (P )) = θ′0(T (P )). In this case, since the expectation

in the above display is continuous in s, the supremum can be equivalently taken

over S(Z) by Lemma A.1. Then, the proof can be continued with S(Z) in place of

θ′0(T (P )).
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Define:

f(v, w) = sup
s∈θ′0(T (P ))

EZ(l (v − φ′0(Z + w + s) + φ′0(s)))

and

fM(v, w) = sup
s∈θ′0(T (P ))

EZ(lM (v − φ′0(Z + w + s) + φ′0(s))),

and assume that the infimum of f(v, w) can be attained. Let K denote a large

enough compact set that contains at lease one minimizer of f . I will argue that

fM(v, w) is a sequence of continuous functions converging point-wise monotonically

to a continuous function f(v, w) for all (v, w) ∈ K. First, by Assumption 3.3, for

each M , fM(v, w) 6 f(v, w) so that lim supM→∞ fM(v, w) 6 f(v, w). On the other

hand,

lim inf
M→∞

fM(v, w) = lim inf
M→∞

sup
s∈θ′0(T (P ))

EZ{lM(φ′0(Z + w + s)− φ′0(s) + v)}

> sup
s∈θ′0(T (P ))

lim inf
M→∞

EZ{lM(φ′0(Z + w + s)− φ′0(s) + v)}

(a)

> sup
s∈θ′0(T (P ))

EZ{l(φ′0(Z + w + s)− φ′0(s) + v)}

= f(v, w),

where (a) follows from Fatou’s Lemma and the assumed point-wise convergence of

lM . Therefore, fM(v, w) converges point-wise to f(v, w). Then, by Dini’s Theorem,

this convergence is also uniform over K, which completes the proof of the Theorem.

Remark 1 is proven similarly, by defining RM as R in equation (A.4) with lM

instead of l.

�

Proof of Theorem 2. Consider an estimator sequence of the form

φ̂n = φ

(
θ̂n +

v̂1,n√
n

)
+
v̂2,n√
n
, (A.13)

where θ̂n is the best regular estimator for θ0 in the sense of the Convolution Theorem

(A.5), and v̂1,n, v̂2,n are adjustment terms depending on the data. To calculate the
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LAM risk of this estimator sequence, it is necessary to study its distributional limits

under the “local perturbations” Pn,h (see Definition 3.4).

Let v1 ∈ B and v2 ∈ D denote the probability limits of v̂1,n and v̂2,n under

Pn,h correspondingly.29 Since θ̂n is best regular,
√
n(θ̂n − θ(Pn,h))  Pn,h G0, where

the limit distribution is the same for any h ∈ T (P ). Since θ(P ) is differentiable,
√
n(θ(Pn,h)− θ0) = θ′0(h) for any h ∈ T (P ). Then, by the Slutsky’s Theorem,

√
n
(
θ̂n + v̂1,n√

n
− θ0

)
=
√
n
(
θ̂n − θ(Pn,h)

)
+ v̂1,n +

√
n(θ(Pn,h)− θ0)

Pn,h
 G0 + v1 + θ′0(h)

as random elements in B. The assumed differentiability of θ(P ) allows to write

θ(Pn,h) = θ0 + θ′0(h)/
√
n + o(1/

√
n), in B. By the directional differentiability of φ

and the Delta-method for directionally differentiable functions,30

√
n
(
φ̂n − φ(θ(Pn,h))

)
=
√
n(φ(θ̂n + v̂1,n√

n
)− φ(θ0))−

√
n(φ(θ(Pn,h))− φ(θ0)) + v̂2,n

Pn,h
 φ′0(G0 + v1 + θ′0(h))− φ′0(θ′0(h)) + v2

as random elements in D. Next, let lM be a bounded Lipschitz loss function satisfying

Remark 1. By the Portmanteau Theorem,

EPn,h
{
lM

(√
n
(
φ̂n − φ(θ(Pn,h))

))}
→ E {lM (φ′0(G0 + v1 + θ′0(h))− φ′0(θ′0(h)) + v2)}

uniformly in h in any finite set I ⊂ T (P ), as n→∞. Therefore, taking a supremum

over such I ⊂ T (P ) yields

sup
I⊂T (P )

lim inf
n→∞

sup
h∈I

EPn,h
{
lM

(√
n(φ̂n − φ(θn(h)))

)}
6 sup

h∈T (P )

E {lM (φ′0(G0 + v1 + θ′0(h))− φ′0(θ′0(h)) + v2)} . (A.14)

The supremum in the second line of the above display can be equivalently taken over

s ∈ θ′0(T (P )) and further over the closure of this set in B (by Lemma A.1), which is

29The probability limits under Pn,h are the same as under Pn,0, since Pn,0 is contiguous with
respect to Pn,h (Lemma 6.4 in van der Vaart, 2000)

30If
√
n(γ̂n − γ0)  Z and f is Hadamard directionally differentiable at γ0 with directional

derivative f ′, then
√
n(f(γ̂n)− f(γ0)) f ′(Z). See Shapiro (1990).
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equal to S(G0). Therefore, provided that the adjustment temrs v̂1,n, v̂2,n converge in

probability to the minimizers of the above expression, it follows that

sup
I⊂T (P )

lim inf
n→∞

sup
h∈I

EPn,h
{
lM

(√
n(φ̂n − φ(θn(h)))

)}
6 inf

(v1,v2)∈K
sup

s∈S(G0)

E {lM (φ′0(G0 + v1 + s)− φ′0(s) + v2)} . (A.15)

Therefore, the estimator in Equation (A.13) is Locally Asymptotically Minimax.

It remains to show that v̂1,n, v̂2,n defined in the statement of the theorem converge

in probability to some minimizers of the LAM risk. In view of Lemma A.9, it suffices

to show that Assumptions 1 (identification condition) and 4 (uniform convergence)

there are satisfied. Since K is compact and the criterion function is continuous, the

identification condition is immediate, so I will show the uniform convergence. Denote:

ĝn(b, v, s) = lM(φ̂′n(b+ v1 + s)− φ̂n(s) + v2),

g(b, v, s) = lM(φ′0(b+ v1 + s)− φ′0(s) + v2).

Note that for any v ∈ K, b ∈ B, c ∈ B

|ĝn(b, v, s)− g(b, v, s)|

6 CM

(∣∣∣∣∣∣φ̂′(b+ v1 + s)− φ′0(b+ v1 + s)
∣∣∣∣∣∣+

∣∣∣∣∣∣φ̂′n(s)− φ′0(s)
∣∣∣∣∣∣) . (A.16)

Let:

Q̂1,n(v) = sup
s∈R̂n

E
(
ĝn

(
Ĝ∗n, v, s

) ∣∣∣∣Xn
1

)
,

Q̂2,n(v) = sup
s∈Rn

E
(
ĝn

(
Ĝ∗n, v, s

) ∣∣∣∣Xn
1

)
,

Q̂3,n(v) = sup
s∈Rn

E
(
g
(
Ĝ∗n, v, s

) ∣∣∣∣Xn
1

)
,

Q4,n(v) = sup
s∈Rn

E (g (G0, v, s)) ,

Q(v) = sup
s∈S(G0)

E (g(G0, v, s)) .
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First, supv∈K |Q̂1,n(v) − Q̂2,n(v)| = oP (1) follows immediately from Lemma A.10

and the fact that dH(R̂n, Rn) = oP (1) by Assumption 5.3. To show that Lemma A.10

can be applied with fn(s; v) = E(ĝn(Ĝ∗n, v, s) | Xn
1 ), note that

sup
v∈K
|fn(s1; v)− fn(s2; v)| 6 CM · Cφ̂′n · ||s1 − s2|| .

Second, supv∈K |Q̂2,n(v) − Q̂3,n(v)| = oP (1) follows from the assumed uniform

consistency of φ̂′n in Assumption 5.2. Indeed, note that Assumption 5.1 implies that

Ĝ∗n converges weakly to G0 unconditionally (see Lemma S.3.1. in the supplemental

appendix to Fang and Santos, 2019). Next, fix any ε > 0 and η > 0. Since G0 is tight,

there is a compact set S ⊂ B such that P (G0 /∈ S) 6 εη. Then, by the Portmanteau

Theorem, for any δ > 0

lim sup
n→∞

P (Ĝ∗n /∈ Sδ) 6 P (G0 /∈ S) 6 εη

Therefore, by Markov’s inequality and Fubini’s Theorem (Lemma 1.2.6. in van der

Vaart and Wellner, 1996),

lim sup
n→∞

P (P (Ĝ∗n /∈ Sδ|Xn
1 ) > η) 6 lim sup

n→∞

P (Ĝ∗n /∈ Sδ)
η

6 ε

implying that P (Ĝ∗n /∈ Sδ|Xn
1 ) = oP (1). Further, note that

E
(∣∣∣ĝn(Ĝ∗n, v, s)− g(Ĝ∗n, v, s)

∣∣∣ ∣∣∣∣Xn
1

)
6 2M · P (Ĝ∗n /∈ Sδ|Xn

1 ) + sup
b∈Sδ
|ĝn(b, v, s)− g(b, v, s)| (A.17)

and, therefore,

sup
v∈K
|Q̂2,n(v)− Q̂3,n(v)| 6 sup

v∈K
sup
s∈Rn

E
(∣∣∣ĝn(Ĝ∗n, v, s)− g(Ĝ∗n, v, s)

∣∣∣ ∣∣∣∣ Xn
1

)
+ oP (1)

6 sup
b∈Sδ

sup
v∈K

sup
s∈Rn
|ĝn(b, v, s)− g(b, v, s)|+ oP (1)

6 2CM sup
s∈Kδ

n

∣∣∣∣∣∣φ̂′n(s)− φ′0(s)
∣∣∣∣∣∣+ oP (1)
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where Kn = S + K + Rln,λn . The latter supremum converges in probability to zero

by Assumption 5.2.

Third, note that supv∈K |Q̂3,n(v)−Q̂4,n(v)| = oP (1) due to the assumed bootstrap

consistency, since G = {g(·; v, s) : v ∈ K, s ∈ B} is a family of bounded Lipschitz

functions. Indeed, uniformly in v, s:

|g(b; v, s)| 6 BM ,

|g(b1; v, s)− g(b2; v, s)| 6 CM · Cφ · ||b1 − b2|| .

Therefore, the class of functions G = {g(b; v, s) : v ∈ K, s ∈ B} is a subset of the

class of bounded Lipchitz functions with Lipchitz constant CM · Cφ and bounded by

BM . Therefore

sup
v∈K
|Q̂2,n(v)− Q̂3,n(v)| 6 sup

g∈G

∣∣∣E(g(Ĝ∗n)|Xn
1 )− E(g(G0))

∣∣∣ = oP (1).

Fourth, supv∈K |Q4,n(v)−Q(v)| = o(1), since Q4,n is a uniformly Lipchitz sequence

of functions converging point-wise on a compact set. Indeed, for all n and all v ∈ K,

Q4,n(v) is bounded by BM . Moreover, uniformly in b, s ∈ B,

|g(b, v, s)− g(b, v′, s)| 6 CM (||φ′0(b+ v1 + s)− φ′0(b+ v′1 + s)||+ ||v2 − v′2||)

6 C ||v − v′|| ,

and therefore

|Q4,n(v)−Q4,n(v′)| 6 sup
b∈B

sup
c∈B
|g(b, v, s)− g(b, v′, s)| 6 C ||v − v′|| ,

so that {Q4,n} is a uniformly Lipschitz sequence of functions. For the pointwise

convergence, first note that Q4,n(v) 6 Q(v) for each v ∈ K. To show the reversed

inequality, fix a v ∈ K an any ε > 0. Then, there is s0 ∈ S(G0) such that

sup
s∈S(G0)

E(g(G0, v, s)) 6 E(g(G0, v, s0)) + ε 6 sup
s∈Rn

E(g(G0, v, s)) + Cε

for large enough n and some constant C independent of n, where the second inequal-

ity follows from the Lipschitz-continuity of s 7→ E(g(G0, v, s)) (Lemma A.7) and As-
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sumption 5.3. By Lemma A.2, a uniformly Lipschitz sequence of functions converging

pointwise on a compact set also converges uniformly. Therefore, supv∈K |Q4,n(v) −
Q(v)| = o(1).

It follows from the preceding discussion that supv∈K |Q̂n(v)−Q(v)| = oP (1) and,

therefore, Lemma A.9 implies that ~dH(V̂n,V0) = oP (1), where V̂n,V0 ⊂ K denote the

sets of minimizers of Q̂n and Q(v) correspondingly within K.31 Then, for an arbitrary

v̂n ∈ V̂n, provided that for every subsequence v̂nk there is a further subsequence v̂nkj
that converges in probability to a constant, the constant must be some v ∈ V0. Since

(A.15) holds along subsequences v̂nkj , it must hold for the entire sequence as well.

�

Lemma A.9 (Point-wise Consistency of Set Extremum Estimators). Let (V , d) be

a metric space. Let Q̂n(v) and Q(v) denote the empirical and population criterion

functions, correspondingly. Let V0 denote the set of maximizers of the population

criterion function and v̂n denote any “almost maximizer” of Q̂n over a sieve space

Vk(n), i.e.

Q̂n(v̂n) > sup
v∈Vk(n)

Q̂n(v)−OP (ηk(n))

Assume that the following conditions hold.

1. (Identification) For each v0 ∈ V0:

Q(v0)− sup
{v∈Vk: d(v,V0)>ε}

Q(v) > δ(k) · g(ε) for all k > 1 and ε > 0

for a positive non-increasing function δ(k) and positive g(ε).

2. (Sieve Approximation) The sieve spaces Vk ⊂ Vk+1 ⊂ . . . are compact under d

and grow dense in V in a sense that there is a sequence of maps πk : V → Vk
such that for each v0 ∈ V0 it holds that d(v0, πkv0)→ 0 as k →∞.

3. (Continuity) Q(v) is upper semi-continuous on all Vk with |Q(v0)−Q(πkv0)| =
o(δ(k)) for each v0 ∈ V0.

4. (Uniform Convergence and Quality of Maximization)

(a) for each fixed k > 1: sup
v∈Vk
|Q̂n(v)−Q(v)| = oP (1) as n→∞

31Here ~dH(A,B) = supa∈A d(a,B) denotes the directed Hausdorff distance.
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(b) sup
v∈Vk(n)

∣∣∣Q̂n(v)−Q(v)
∣∣∣ ≡ ĉk,n = oP (δ(k(n)))

(c) ηk(n) = o(δ(k(n)))

Let V̂n denote the set of “almost maximizers” of Q̂n. Then, ~dH(V̂n,V0) = oP (1),

where ~dH(A,B) = supa∈A infb∈B d(a, b) denotes the directed Hausdorff distance.

Proof. Let (Ωn,An, Pn) denote a sequence of probability spaces. The maps Q̂n(v) :

Ωn → R are not required to be measurable, and, throughout the proof, the “events”

defined via Q̂n are thought of as subsets of Ωn rather than elements of An, and all

probabilities are outer probabilities.

Some familiar properties of probability hold for outer probability as well. In

particular, let A,B,C,D ⊂ Ωn. Then for A ⊂ B it holds that P ∗(A) 6 P ∗(B), and

if C ∩ D = ∅, it holds that P ∗(C ∪ D) 6 P ∗(C) + P ∗(D). See Lemmas 1.2.2 and

1.2.3 in van der Vaart and Wellner (1996) for the details.

Notice that d(v̂n,V0) > ε implies that Q̂n is almost-maximized (at v̂n) at least

ε-away from V0. Let Vεk(n) = {v ∈ Vk(n) : d(v,V0) > ε}, which, by Condition 2, is a

compact set. Therefore,

P (d(v̂n,V0) > ε) 6 P

(
sup

v∈Vε
k(n)

Q̂n(v) > sup
v∈Vk(n)

Q̂n(v)−OP (ηk(n))

)

6 P

(
sup

v∈Vε
k(n)

Q̂n(v) > Q̂n(πk(n)v0)−OP (ηk(n))

)

where the second inequality is valid for all v0 ∈ V0. Call the latter event An and

write is as:

An =

{
sup

v∈Vε
k(n)

Q(v)−Q(πk(n)v0) +OP (ηk(n))

> Q̂n(πkv0)−Q(πk(n)v0) + sup
v∈Vε

k(n)

Q(v)− sup
v∈Vε

k(n)

Q̂n(v)

}

Consider a sequence of events (Bn)n>1 defined as

Bn =

{
sup

v∈Vε
k(n)

∣∣∣Q̂n(v)−Q(v)
∣∣∣ > ŵk(n)

}
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for some sequence ŵk(n) to be chosen later. Note that Bc
n implies

{∣∣∣∣∣ sup
v∈Vε

k(n)

Q̂n(v)− sup
v∈Vε

k(n)

Q(v)

∣∣∣∣∣ 6 ŵk(n)

}
=⇒


sup

v∈Vε
k(n)

Q(v) > sup
v∈Vε

k(n)

Q̂n(v)− ŵk(n)

Q̂n(πk(n)v0) > Q(πk(n)v0)− ŵk(n)

With the above notation, write P (An) 6 P (Bn) + P (An ∩Bc
n) to obtain:

P (An) 6 P (Bn) + P

(
sup

v∈Vε
k(n)

Q(v)−Q(πk(n)v0) +OP (ηk) > −2ŵk(n)

)

6 P (Bn) + P

(
2ŵk(n) +OP (ηk(n)) + |Q(v0)−Q(πk(n)v0)| > Q(v0)− sup

v∈Vε
k(n)

Q(v)

)

Consider, specifically, ŵk(n) = ĉk,n = oP (δ(k(n))). Then P (Bn) = 0 by the definition

of ĉk,n in Condition 4, and the second probability converges to zero by the choice

of ŵk(n) and Conditions 1, 3 and 4. Since the upper bound does not depend on the

choice of v̂n ∈ V̂n, it follows that ~dH(V̂n,V0) = oP (1).

�

Lemma A.10 (Replacing The Feasible Set). Let (B, ||·||B) be a Banach space, K ∈ B
be a compact set and fn : B × B → R be a sequence of random functions satisfying,

for each x1, x2 ∈ B,

sup
v∈K
|fn(x1; v)− fn(x2; v)| 6 Cn · ||x1 − x2||B

for a possibly random positive sequence Cn = OP (1). Further, let (Ân)n>1 and

(An)n>1 denote sequences of measurable sets in B such that supx∈Ân fn(x; v) and

supx∈An fn(x; v) are attained at some points for each n. If dH(Ân, An) = oP (1),

then:

sup
v∈K

∣∣∣∣∣ sup
x∈Ân

fn(x; v)− sup
x∈An

fn(x; v)

∣∣∣∣∣ = oP (1)

Proof. Let ∆̂n denote the left-hand side of the preceding display and take any x̂n and

xn that attain the suprema of f over Ân and An correspondingly. By assumption,

for each ε > 0, ||x1 − x2||B < δn implies supv∈K |fn(x1; v) − fn(x2; v)| < ε where

δn = ε/Cn.
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Note that dH(Ân, An) < δn implies that (1) for x̂n ∈ Ân, there is x̃n ∈ An with

||x̂n − x̃n||B < δn and (2) for xn ∈ An, there is x′n ∈ Ân with ||xn − x′n||B < δn. Then,

by Lipschitz continuity of fn, for each v it holds that (1) fn(x̃n; v) > fn(x̂n; v) − ε
and therefore fn(xn; v) > fn(x̂n; v) − ε and (2) fn(x′n; v) > fn(xn; v) − ε and there-

fore fn(x̂n; v) > fn(xn; v) − ε. These inequalities combined give supv∈K |fn(x̂n; v) −
fn(xn; v)| = ∆̂n < ε. Therefore, taking contrapositive,

P (∆̂n > ε) = P (sup
v∈K
|fn(x̂n; v)− fn(xn; v)| > ε) 6 P (dH(Ân, An) > δn)→ 0

as n→∞, which completes the proof.

�
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