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Abstract
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tool using a standard equilibrium model of workers matching with jobs according to
comparative advantage. Our classifications identify important dimensions of worker
and job heterogeneity that standard classifications based on occupations and sectors
miss. The equilibrium model based on our classifications more accurately predicts
wage changes in response to the 2016 Olympics than a model based on occupations
and sectors. Additionally, for a large simulated shock to demand for workers, we
show that reduced form estimates of the effects of labor market shock exposure on
workers’ earnings are nearly 4 times larger when workers and jobs are classified using
our classifications as opposed to occupations and sectors.
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1 Introduction

Many questions in economics lead researchers to classify heterogeneous workers and jobs

into discrete groups. For example, to estimate the effect of a labor supply or demand shock

on workers, researchers identify groups of similar workers who they assume to have had the

same exposure to the shock and compare outcomes between differentially exposed groups of

workers.1 Similarly, to characterize two-sided (worker–job) multidimensional heterogeneity,

researchers identify groups of workers with similar skills and study how they match with

groups of jobs requiring similar tasks.2 Studies of labor market power compute the concen-

tration of individual firms within groups of similar jobs that compete with each other for

labor.3 The standard approach to characterizing heterogeneity is to group workers and/or

jobs based on observable variables such as age, education, occupation, industry, or geogra-

phy. This approach has limitations: (i) relevant dimensions of worker and job heterogeneity

may be unobserved or measured with error, and (ii) it requires researchers to decide which

dimensions of heterogeneity are important.4 This paper proposes a new model-consistent and

data-driven approach to characterizing worker and job heterogeneity. In an empirical appli-

cation it demonstrates that using traditional worker and job classifications in Bartik-style

regressions leads us to significantly understate the effect of exposure to shocks on workers’

earnings.

We employ a revealed preference approach that relies on workers’ and jobs’ choices, rather

than observable variables or expert judgments, to classify workers and jobs. Our key insight is

that linked employer-employee data contain a previously underutilized source of information:

millions of worker–job matches, each of which reflects workers’ and jobs’ perceptions of the

workers’ skills and the jobs’ tasks. Intuitively, if two workers are employed by the same

job, they probably have similar skills, and if two jobs employ the same worker those jobs

probably require workers to perform similar tasks.

We formalize this intuition and apply it to large-scale data using a Roy (1951) model

in which workers supply labor to jobs according to comparative advantage. Workers belong

1For example, Autor et al. (2013) group workers by commuting zone, and Card (1990) groups workers
by race and predicted earnings quartile.

2Autor et al. (2003); Acemoglu and Autor (2011); Autor (2013); Tan (2018); Lindenlaub (2017); Kantenga
(2018)

3Azar et al. (2018); Benmelech et al. (2018); Rinz (2018); Azar et al. (2019); Schubert et al. (2020);
Arnold (2020); Lipsius (2018); Jarosch et al. (2019)

4A related approach uses direct measures of skills and tasks from sources such as the Occupational Infor-
mation Network (O*NET) or Dictionary of Occupational Titles (DOT). For a discussion of the limitations of
this approach, see Frank et al. (2019) who note that “according to O*NET, the skill ‘installation’ is equally
important to both computer programmers and to plumbers, but, undoubtedly, workers in these occupations
are performing very dissimilar tasks.”
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to a discrete set of latent worker types defined by having the same “skills” and jobs belong

to a discrete set of latent markets defined by requiring employees to perform the same

“tasks.”5 Workers match with jobs according to comparative advantage, which is determined

by complementarities between skills and tasks at the worker type–market level. Workers

who have similar vectors of match probabilities over markets are therefore revealed to have

similar skills and belong to the same worker type, and jobs that have similar vectors of match

probabilities over worker types are revealed to have similar tasks and belong to the same

market.

In an ideal data set we would observe each worker choosing jobs an infinite number of

times, allowing us to observe the exact worker–job match probability distribution. Since

this is infeasible, we use a tool from the community detection branch of network theory

called the bipartite stochastic block model (BiSBM). The BiSBM uses realized job matches

of each worker’s peers — coworkers, former coworkers, coworkers’ former coworkers, former

coworkers’ coworkers, and so on — as proxies for that worker’s match probability distribution

over jobs, and uses these match probabilities to classify workers and jobs into worker types

and markets. Our model microfounds the BiSBM, giving the worker types and markets it

identifies a rigorous theoretical underpinning and clear interpretability.

Once we have assigned workers to worker types and jobs to markets, we estimate the

parameters of the labor supply Roy model and embed it in a general equilibrium model with

workers, firms, households and exogenous product demand shocks, which propagate through

the model to generate labor demand shocks. The key parameter of the model is a matrix

defining the productivity of each worker type when employed in each market. We estimate

the productivity matrix using a maximum likelihood procedure that formalizes the intuition

that worker type–market matches that (i) occur more frequently and (ii) pay higher wages

are revealed to be more productive.

We estimate our model and conduct empirical analyses using Brazilian adminstrative

records from the Annual Social Information Survey (RAIS) that is managed by the Brazilian

labor ministry. The RAIS data contain detailed information about every formal sector

employment contract, including worker demographic information, occupation, sector, and

earnings. Critically, these data represent a network of worker–job matches in which workers

are connected to every job they have ever held, allowing us to identify job histories of

workers, their coworkers, their coworkers’ coworkers, and so on. We restrict our analysis to

the Rio de Janeiro metropolitan area both for computational reasons and because restricting

to a single metropolitan area enables us to focus on skills and tasks dimensions of worker

5“Skills” and “tasks” should be interpreted broadly as any worker and job characteristics that determine
which workers match with which jobs.
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and job heterogeneity rather than geographic heterogeneity. While many others have used

linked employer-employee data (LEED), we are the first to fully utilize the rich information

embedded in the network of worker–job matches.6

Our novel approach to characterizing fine-grained worker and job heterogeneity revealed

by LEED allows us to reevaluate the effects of labor market shocks on workers and consider

how sensitive results are to the way workers and jobs are classified. We do this using

both structural and reduced form methods. In the structural approach, we use our general

equilibrium model to simulate the effect of the 2016 Rio de Janeiro Olympics on workers’

earnings. We show that a model based on worker types and markets more accurately predicts

actual Olympics-induced changes in workers’ earnings than a series of benchmarks in which

we use the same model but define worker and job heterogeneity using more traditional

approaches based on occupation and sector.

Next, we apply our classifications to reduced form Bartik-style regressions and find that

our method significantly increases estimates of the effects of workers’ exposure to labor

market shocks on their earnings. We estimate the effect of the 2016 Olympics on workers

and show that both coefficient estimates and R2 values are significantly larger when workers

and jobs are classified using our worker types and markets as opposed to occupations and

sectors. We then perform a series of simulations in which we feed shocks through our model to

generate data in which we know the true data generating process and estimate the effects of

the shocks on workers in the simulated data using our network-based classifications and using

conventional classifications. Across these simulations, the estimated effects of the shocks on

workers’ earnings are on average 3.7 times larger using our classifications as opposed to

conventional classifications. Finally, we perform a detailed case study of a simulated shock

to understand why our classifications outperform traditional ones. We show that our worker

types more precisely identify groups of workers who experienced similar exposure to labor

market shocks than do occupations and our markets more precisely identify groups of jobs

that hire similar workers than do sectors.

In a series of descriptive analyses, we provide supporting evidence that helps explain why

conventional methods may understate the effects of shocks on workers. We show that our

worker types and markets capture meaningful information about the worker and job char-

acteristics relevant for labor market outcomes that conventional classifications miss. First,

we demonstrate that our worker types aggregate workers across distinct occupations who

are revealed to have similar skills, while simultaneously disaggregating workers in the same

occupation with different skills. For example, we find that coaches and physical education

6Nimczik (2018) and Jarosch et al. (2019) use a related method to classify firms using a unipartite
network of firms linked by worker transitions, however they do not classify individual workers or jobs.
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teachers belong to the same worker type, while physical education and math teachers do

not. Second, we show that our worker types do a better job of maximizing within-group

skill homogeneity and between-group skill heterogeneity than do 4-digit occupations. Third,

we show that worker types’ labor supply is more concentrated within markets than within

sectors, indicating that markets outperform sectors in terms of identifying groups of jobs

that are similar from the perspective of workers.

Literature: We contribute to the large literature measuring the effects of labor market

shocks on workers using either reduced form methods (Autor et al., 2013; Card, 1990; Autor

et al., 2014; Yagan, 2017; Bound and Holzer, 2000; Blanchard and Katz, 1992; Bartik, 1991),

or a structural approach (Burstein et al., 2019; Caliendo et al., 2019; Galle et al., 2017; Kim

and Vogel, 2021). Relative to both of these literatures, our contribution is a new approach

to classifying workers and jobs based on latent heterogeneity.

Conditional on assigning workers to latent worker types and jobs to latent markets,

our model of labor supply is similar to Grigsby (2019) and Bonhomme et al. (2019). Our

method for clustering workers and jobs builds upon the bipartite stochastic block model from

the community detection branch of the network theory literature (Larremore et al., 2014;

Peixoto, 2019). A major contribution of our paper is creating a theoretical link between

a labor supply model and the BiSBM, thereby providing microfoundations for using tools

from network theory to solve problems in economics and giving these tools clear economic

interpretability.

Like Sorkin (2018), Nimczik (2018), and Jarosch et al. (2019), we use tools from network

theory to extract previously unobserved information from LEED. We use the panel of worker–

job matches to identify worker and job similarities ; by contrast, Sorkin exploits the direction

of worker flows between firms to identify differences between firms. Nimczik (2018), and

Jarosch et al. (2019) are also interested in using network data to identify similarities, however

they cluster together only firms, abstracting from worker heterogeneity and within-firm job

heterogeneity, while we cluster workers and jobs simultaneously. Schmutte (2014) uses a

different tool from network theory to cluster workers and firms using survey data, however

our microfoundations and detailed data allow us to identify more fine-grained heterogeneity

and provide model-based interpretability of our classifications.

Our approach to modeling multidimensional worker–job heterogeneity is related to the

literature on worker–job matching in a skills-tasks framework (Autor et al., 2003; Acemoglu

and Autor, 2011; Autor, 2013; Lindenlaub, 2017; Tan, 2018; Kantenga, 2018). Relative to this

literature, we provide a theoretically principled and data-driven way of identifying groups

of workers with similar skills and groups of jobs with similar tasks. Mansfield (2019) also

studies two-sided matching and integrates skill–task dimensions with geographic dimensions.
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Our contribution is to improve identification of clusters of workers and jobs who are similar

in terms of high-dimensional latent skills and tasks, respectively.

Roadmap: The paper proceeds as follows. Section 2 lays out our economic model.

Section 3 builds upon the model to derive a maximum likelihood procedure for clustering

workers into worker types and jobs into markets. Section 4 derives a maximum likelihood

estimator for labor supply parameters, including a matrix of worker type–market match pro-

ductivities. Section 5 discusses our data and sample restrictions. Section 6 presents summary

statistics from our worker and job classification method. Section 7 shows that a version of

our equilibrium model based on our network-based worker and job classifications is better at

predicting the effects of a real world shock than one based on standard classifications. Sec-

tion 8 applies our classifications to Bartik-style regressions and shows that standard methods

may be understating the effects of shocks on workers. Section 9 concludes.

2 Model

In this section we develop a model that is suited to analyzing data containing high resolution

information on worker–job matches. We describe our data in detail in Section 5.

2.1 Model set up

We propose a model with three primary components: heterogeneous workers who supply

labor, heterogeneous sectors each composed of competitive firms producing a sector-specific

good, and a representative household which consumes firms’ output. Workers supply their

skills to jobs, which are bundles of tasks. Jobs’ tasks are combined by the firms’ production

functions to produce output. The most important part of the model is the labor market,

which has the following components:

• Each worker is endowed with a worker type, and all workers of the same type have the

same skills.

• A job is a bundle of tasks within a firm. As we discuss in Section 5, we define a job in

our data as an occupation–establishment pair.

• Each job belongs to a market, and all jobs in the same market are composed of the

same bundle of tasks.

• There are I worker types, indexed by ι, and Γ markets, indexed by γ.
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• The key parameter of the model is an I × Γ productivity matrix, Ψ, where the (ι, γ)

cell, ψιγ denotes the number of efficiency units of labor a type ι worker can supply to

a job in market γ.7

Time is discrete, with time periods indexed by t ∈ {1, . . . , T}, and workers make idiosyn-

cratic moves between jobs over time. Neither workers, households, nor firms make dynamic

decisions, meaning that the model may be considered one period at a time. We do not

consider capital as an input to production. We use the model to (i) microfound our network-

based method for assigning workers to worker types and jobs to markets, (ii) identify model

parameters, and (iii) quantify the effects of labor market shocks on workers.

2.2 Household

A representative household consumes output from each sector as inputs to a constant elas-

ticity of substitution (CES) utility function. Utility is given by

U =

(
S∑
s=1

a
1
η
s y

η−1
η

s

) η
η−1

(1)

where C is a numeraire aggregate consumption good, ys is the household’s consumption

of sector s’s output, η is the elasticity of substitution between sectors’ output, and as is

a demand shifter for the sector s good. In our counterfactual analyses we generate labor

demand shocks by changing the vector of sector demand shifters ~a. It follows that the

demand curve for sector s’s output is given by

yDs =
as∑

s′

(
ps
p′s

)η
(as′ps′)

Y (2)

where Y is total income.

The household consumes its entire income each period, meaning that Y =
∑

s psy
D
s .

Because all workers belong to the household and the household owns all firms, total income

is the sum of all labor income and profits in the economy: Y = W̄ + Π.

7We can think of ψιγ as ψιγ = f(Xι, Yγ), where Xι is an arbitrarily high dimensional vector of skills
for type ι workers, Yγ is an arbitrarily high dimensional vector of tasks for jobs in market γ, and f() is a
function mapping skills and tasks into productivity. This framework is consistent with Acemoglu and Autor
(2011)’s skill and task-based model, and is equivalent to Lindenlaub (2017) and Tan (2018). A key difference
is that Lindenlaub and Tan observe X and Y directly and assume a functional form for f(), whereas we
assume that X, Y , and f() exist but are latent. We do not identify X, Y , and f() directly because in our
framework ψιγ is a sufficient statistic for all of them.
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2.3 Firms

There are S sectors indexed by s. Each sector s consists of a continuum of firms in a

competitive sector-level product market. Each firm, indexed by f , has a Cobb-Douglas

production function which aggregates tasks from different labor markets, indexed by γ. The

quantity of the sector s good produced by firm f , ysf , is therefore given by

ysf =
∏
γ

`
βγs
γf (3)

where `γf is the number of efficiency units of labor firm f employs in jobs in market γ, and

βγs is the elasticity of sector s output with respect to labor employed in market γ in sector

s.

The firm chooses labor inputs in order to maximize profits, taking as given the price

of output ps, a vector of wages per efficiency unit of labor wγ, and a production function,

equation (3). Therefore, the firm solves

πf = max
{`γf}Γγ=1

ps ·
∏
γ

`
βγs
γf −

∑
γ

wγ`γf . (4)

Production exhibits decreasing returns to scale because∑
γ

βγs = α < 1 ∀s

where α denotes the labor share.

We define a job, indexed by j, as a firm-market pair. Therefore, we can replace the γf

indices with j in the equations above: `γf ≡ `j. We denote the market to which job j belongs

as γ(j). It is possible for multiple workers to be employed by the same job at the same time.

For example, if “economist” is a market, then “economist at the University of Michigan”

would be a job and it would employ approximately 50 workers. Total profits in the economy

are the sum of all firms’ profits: Π =
∑S

s=1

∑
f∈s πf .

2.4 Workers

Workers, indexed by i, are endowed with a worker type, indexed by ι, and one indivisible

unit of labor. We denote worker i’s type as ι(i). There is an exogenously-determined mass

of type ι workers, mι. The worker’s type defines their skills. Type ι workers can supply ψιγ

efficiency units of labor to jobs in market γ. ψιγ is a reduced form representation of the skill

level of a type ι worker in the various tasks required by a job in market γ. Units of human
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capital are perfectly substitutable, meaning that if type 1 workers are twice as productive as

type 2 workers in a particular market γ (i.e. ψ1γ = 2ψ2γ), firms would be indifferent between

hiring one type 1 worker and two type 2 workers at a given wage per efficiency unit of labor,

wγ. Therefore, the law of one price holds for each market, and a type ι worker employed in a

job in market γ is paid ψιγwγ. Because workers’ time is indivisible, each worker may supply

labor to only one market in each period and we do not consider the hours margin.

Workers’ only decisions are their market choices. Workers are indifferent between individ-

ual jobs in the same market, meaning that individual jobs face perfectly elastic labor supply

at the wage for their market, wγ.
8 In addition to earnings, each market γ has a fixed amenity

value to workers, ξγ; Ξ =
[
ξ1 ξ2 · · · ξΓ

]
. Workers may also choose to be non-employed,

denoted by γ = 0, in which case they receive no wages but receive a non-employment benefit,

which is normalized to 0 without loss of generality. Finally, each worker i has an idiosyn-

cratic preference for market γ jobs at time t, εiγt. Therefore, worker i chooses a market by

solving

γit = arg max
γ∈{0,1,...,Γ}

ψιγwγt + ξγ + εiγt (5)

where γit denotes the market worker i chooses to supply labor to at time t. We assume that

εiγt is iid type 1 extreme value with scale parameter ν:

Assumption 2.1 (Distribution of preference shocks). Idiosyncratic preference shocks εiγt

are drawn from a type-I extreme value distribution with dispersion parameter ν and are

serially uncorrelated and independent of all other variables in the model.

This gives us a functional form for the probability that a type ι worker chooses a job in

market γ:

Pι[γit|Ψ, ~wt,Ξ, ν] =
exp

(
ψιγwγt+ξγ

ν

)
Γ∑

γ′=0

exp
(
ψιγ′wγ′t+ξγ′

ν

) . (6)

We aggregate over individual workers to specify labor supply. As noted above, mι denotes

the exogenously-determined mass of type ι workers. The number of workers employed in

8If workers do not view all jobs of the same type as identical, then individual jobs would face an upward-
sloping labor supply curve, and would thus have some degree of market power. We explore this in concurrent
work (?).
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market γ jobs is

NumWorkersγ( ~wt) =
∑
ι

mιPι[γit|Ψ, ~wt,Ξ, ν] =
∑
ι

mι

 exp
(
ψιγwγt+ξγ

ν

)
Γ∑

γ′=0

exp
(
ψιγ′wγ′t+ξγ′

ν

)
 .

The expression above does not correspond to the labor supply curve that clears the market.

In order to clear the market, the quantity of labor supplied to market γ jobs must equal

demand. To get the quantity of labor supplied to market γ jobs, rather than the number of

workers, we weight the equation above by the number of efficiency units of labor supplied

by a type ι worker to a job in market γ: ψιγ:

LSγ( ~wt) =
∑
ι

mιPι[γit|Ψ, ~wt,Ξ, ν]ψιγ =
∑
ι

mι

 exp
(
ψιγwγt+ξγ

ν

)
Γ∑

γ′=0

exp
(
ψιγ′wγ′t+ξγ′

ν

)
ψιγ (7)

2.5 Timing

We observe the economy for T periods. In each period a worker may draw a Poisson-

distributed exogenous separation shock, denoted cit = 1j(i,t) 6=j(i,t−1) where j(i, t) is the job

employing worker i at time t (Assumption 2.2). Workers who draw a separation shock

receive a new set of idiosyncratic preference shocks εiγt and search again following the same

optimization problem defined in equation (5). We assume that the labor market parameters,

{Ψ,Ξ, ν}, and the demand shifters ~a, are fixed across all T time periods (Assumption 2.3).

Assumption 2.2 (Exogenous separations). Job separations for worker i, cit, arrive at a

worker-specific Poisson rate di, and are serially uncorrelated and independent of all other

variables in the model.

Assumption 2.3 (Constant parameters). The labor supply parameters, {Ψ,Ξ, ν}, are con-

stant over the periods in which we estimate the model and perform counterfactuals. The

product demand shifters, ~a, are constant over the periods in which we estimate the model.

These restrictions make the model a reasonable approximation for relatively short periods

of time, but it would be inappropriate for studying long-run changes when labor supply

parameters may be changing.

The timing of the model is as follows. In each period t:
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1. Each employed worker draws an exogenous separation shock with probability di; work-

ers who do not receive a separation shock remain in their current job

2. Separated workers receive new preference shocks εiγt

3. Separated workers choose a market γit according to Pι[γit|~w]

4. Separated workers randomly match with a job within their chosen market γ

Assumptions 2.2 and 2.3 allow workers to move between jobs over time, generating the

network of worker–job matches that is key to identifying worker types and markets. They also

imply that worker movement between jobs is idiosyncratic, meaning that each of a worker’s

jobs represent i.i.d. draws from the same match probability distribution. We discuss this

further in Section 3.3.

2.6 Definition of equilibrium

The model solution consists of vectors of goods prices ~p := {ps}Ss=1 and wages per efficiency

unit of labor ~w := {wγ}Γ
γ=1 that satisfy all equilibrium conditions in each period. Since

our model can be solved one period at a time with no cross-time dependence and the fun-

damentals of the economy are assumed to be constant over our estimation window, the

equilibrium conditions below are the same in every period. We solve the model numerically.

Our equilibrium has the following components:

1. The labor demand functions `γf solve the firms’ problem (4)

2. Labor supply is consistent with workers’ expected utility maximization (6)

3. Goods markets clear. Specifically, demand from the representative household yDs equals

supply created by evaluating the production function at the optimal level of labor

inputs and aggregating over all firms in the sector: ys =
∑

f∈s
∏

γ `
βγs
γf (3).

4. The labor market clears for each market γ: LSγ = LDγ :=
∑

s

∑
f∈s `γf

5. Aggregate consumption is equal to income: Y =
∑

s psy
D
s = W̄ + Π.
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2.7 Discussion

The matrix

Ψ =

γ = 1 γ = 2 · · · γ = Γ


ι = 1 ψ11 ψ12 · · · ψ1Γ

ι = 2 ψ21 ψ22 · · · ψ2Γ

...
...

...
. . .

...

ι = I ψI1 ψI2 · · · ψIΓ

(8)

captures productivity heterogeneity resulting from worker skill–job task match complemen-

tarities and is the key parameter of our model. As noted above, the typical element of

Ψ, ψιγ, captures the effective units of labor a type ι worker can supply to a job in mar-

ket γ. Therefore, Ψ governs both absolute and comparative advantage. Each row of Ψ,

ψι =
[
ψι1 ψι2 · · · , ψιΓ

]
, represents a productivity vector for type ι workers and is a

reduced form representation of their skills.

Ψ embeds a flexible notion of skills. It allows us to say that a particular type of worker is

highly skilled in market γ, rather than that a type of worker is highly skilled more generally.

For example, it allows for a carpenter to be highly skilled at woodworking and an economist

to be highly skilled at causal inference without requiring us to classify either type of worker

as high-skill or low-skill in general.

Ψ nests three common assumptions about the nature of worker skills. In the standard

representative worker framework, worker types do not differ in terms of their skills, but

some markets may be more productive than others. This can be represented as ψιγ =

ψι′γ = ψγ for all ι 6= ι′. If worker types are differentiated in their skill level but there

are no complementarities between worker skills and job tasks, then workers’ skills can be

represented by a unidimensional index (worker fixed effects). This can be represented as

ψιγ = ψιγ′ = ψι for all γ 6= γ′. If workers’ skills are perfectly specific — each worker type

can perform exactly one type of job and skills cannot be transferred to other types of jobs

— then Ψ is a square diagonal matrix.

Representative worker

Ψ =


ψ1 ψ2 · · · ψΓ

ψ1 ψ2 · · · ψΓ
...

...
. . .

...
ψ1 ψ2 · · · ψΓ



Worker fixed effect

Ψ =


ψ1 ψ1 · · · ψ1

ψ2 ψ2 · · · ψ2
...

...
. . .

...
ψI ψI · · · ψI



Specific skills

Ψ =


ψ11 0 · · · 0
0 ψ22 · · · 0
...

...
. . .

...
0 0 · · · ψIΓ


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3 Classifying workers and jobs

In this section we derive our procedure for assigning workers to worker types, ι, and jobs to

markets, γ, from the model described in the previous section. The data we use to classify

workers and jobs is the set of all worker–job matches, which is the realization of a random

matrix A, known as an adjacency matrix in network theory parlance. A has typical element

Aij, which represents the number of matches between worker i and job j. Aij follows a

probability distribution derived from our model that depends upon worker i’s worker type,

ι(i), and job j’s market, γ(j). We use the distribution of A to define a maximum likelihood

estimator that assigns workers to worker types and jobs to markets. The estimator formalizes

the intuition that two workers belong to the same worker type, ι, if they have the same vectors

of match probabilities over markets, and two jobs belong to the same market, γ, if they have

the same vectors of match probabilities over worker types.

3.1 Assigning workers to worker types and jobs to markets

As stated in equation (6), when any worker i belonging to type ι searches for a job, the

probability that they choose a job in market γ is

Pι[γit|Ψ, ~wt,Ξ, ν] =
exp

(
ψιγwγt+ξγ

ν

)
Γ∑

γ′=0

exp
(
ψιγ′wγ′t+ξγ′

ν

)
This quantity corresponds to a discrete choice at a specific time, t. Our assumption that the

labor supply parameters (Ψ, Ξ, and ν) and demand shifters (~a) are unchanging during our

estimation period, combined with the fact that ~wt is determined in equilibrium by the labor

supply parameters and demand shifters, means that this choice probability does not depend

on the time period. Therefore, we drop the time subscript t in what follows. All workers

make this choice in period 1, and workers subsequently make another choice following this

distribution any time they experience an exogenous separation.

The quantity in equation (6), Pι[γit|Ψ, ~wt,Ξ, ν], refers to the probability of an individual

worker i matching with any job in market γ, not a particular job j. To obtain the probability

that worker i matches with a specific job j in market γ, we multiply the choice probability in

equation (6) by the probability that worker i matches with job j, conditional on choosing a

job in market γ. Because we have assumed that all jobs in the same type are identical from

the perspective of workers, this probability is equal to job j’s share of market γ employment.
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Let dj denote the number of workers employed by job j during our estimation period.9 Then

job j’s share of all market γ employment can be written

P[j|γ] = dj/
∑
j′∈γ

dJj′ . (9)

Therefore, when worker i of type ι searches, the probability that the search results in worker

i matched with job j is the product of the probabilities in equation (6) and equation (9):

Pij =

Pi[γ|Ψ, ~w,Ξ,ν]︷ ︸︸ ︷
exp

(
ψιγwγ+ξγ

ν

)
Γ∑

γ′=0

exp
(
ψιγ′wγ′+ξγ′

ν

) ×
P[j|γ]︷ ︸︸ ︷

1∑
j′∈γ d

J
j′

︸ ︷︷ ︸
1/ type γ

employment

× dj

︸︷︷︸
Job j

employment

. (10)

The first term represents the probability that worker i chooses market γ, while the second

represents the probability that worker i chooses job j conditional on choosing market γ. We

can rewrite this expression as the product of a term that depends only on the worker’s type

and job’s market, which we denote Pιγ, and a job-specific term dj:

Pij =

:=Pιγ︷ ︸︸ ︷
exp

(
ψιγwγ+ξγ

ν

)
Γ∑

γ′=0

exp
(
ψιγ′wγ′+ξγ′

ν

) × 1∑
j′∈γ d

J
j′

︸ ︷︷ ︸
1/ type γ

employment

× dj

︸︷︷︸
Job j

employment

(11)

= Pιγdj.

Pij = Pιγdj denotes the probability that an individual search ends with worker i matched

with job j, but Aij is the number of times worker i matches with job j across all of i’s

searches. Since the number of times worker i searches depends on the number of separation

shocks they draw from a Poisson(di) distribution, we can show that Aij also follows a Poisson

distribution:

Aij ∼ Poisson (didjPιγ) . (12)

For a complete proof, see appendix H.

9In network theory parlance, dj is the degree of job j.
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This gives us a functional form for the process generating our observed network, encoded

in Aij:

P

(
A

∣∣∣∣~ι, ~γ, ~di, ~dj,P) =
∏
i,j

(
didjPι(i)γ(j)

)Aij
Aij!

exp
(
did

J
i Pι(i)γ(j)

)
(13)

where ~ι = {ι(i)}Ni=1 is the vector assigning each worker to a worker type, ~γ = {γ(j)}Jj=1 is

the vector assigning each job to a market, ~di = {di}Ni=1, ~dj = {dj}Jj=1, and P is the matrix

with typical element Pιγ. Using this, we estimate the worker type and market assignments

for all workers and jobs, ~ι and ~γ respectively, using maximum likelihood.

~ι, ~γ = arg max

{~ι = ι(i)}Ni=1,

{~γ = γ(j)}Jj=1

∏
i,j

(
didjPι(i)γ(j)

)Aij
Aij!

exp
(
did

J
i Pι(i)γ(j)

)
(14)

This problem actually has five sets of parameters: worker and job match frequencies ~di and
~dj, the type-specific match probabilities Pιγ, and the worker and market assignments ~ι and

~γ. The worker and job match frequencies, ~di and ~dj, are directly observable in the data

so we use their actual values. Conditional on group assignments, the number of matches

between each worker type–market pair is observable, and we use these to compute observed

match probabilities, which we use as our estimate of the true probabilities, Pιγ. The worker

and market assignments, ~ι and ~γ, are the parameters we choose in order to maximize the

likelihood.

Equation (14) assumes that we know the number of worker types and markets a priori,

however this is rarely the case in real world applications. Therefore we must choose the

number of worker types and markets, I and Γ respectively. We do so using the principle of

minimum description length (MDL), an information theoretic approach that is commonly

used in the network theory literature. MDL chooses the number of worker types and markets

to minimize the total amount of information necessary to describe the data, where the total

includes both the complexity of the model conditional on the parameters and the complexity

of the parameter space itself. MDL will penalize a model that fits the data very well but

overfits by using a large number of parameters (corresponding to a large number of worker

types and markets), and therefore requires a large amount of information to encode it. MDL

effectively adds a penalty term in our objective function, such that our algorithm finds a

parsimonious model. This method has been found to work well in a number of real world

networks (Peixoto, 2013; 2014b; Rosvall and Bergstrom, 2007). See appendix D for greater
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detail.

Equation (14) corresponds to the degree-corrected bipartite stochastic block model (BiSBM),

a workhorse model in the community detection branch of network theory (see appendix B

for details). It defines a combinatorial optimization problem. If we had infinite computing

resources, we would test all possible assignments of workers to worker types and jobs to

markets and choose the one that maximizes the likelihood in equation (14), however this

is not computationally feasible for large networks like ours. Therefore, we use a Markov

chain Monte Carlo (MCMC) approach in which we modify the assignment of each worker

to a worker type and each job to a market in a random fashion and accept or reject each

modification with a probability given as a function of the change in the likelihood. We

repeat the procedure for multiple different starting values to reduce the chances of find-

ing local maxima. We implement the procedure using a Python package called graph-tool.

(https://graph-tool.skewed.de/. See Peixoto (2014a) for details.)

3.2 Visual intuition of the BiSBM

Figure 1 panel (a) provides a simplified visual representation of how our model generates a

network of worker–job matches. We assume that there are 2 worker types, 3 markets, and

matches are drawn from a sample match probability distribution

Pιγ =

γ = 1 γ = 2 γ = 3( )
0.3 0.5 0.2 ι = 1

0.15 0.05 0.8 ι = 2

Dots on the left axis represent individual jobs j and dots on the right axis represent individual

workers i. Workers belong to one of two worker types (ι ∈ {1, 2}) and jobs belong to one

of three markets (γ ∈ {1, 2, 3}). Lines represent employment contracts between individual

workers and jobs. A line connects worker i and job j if Aij > 0, while i and j are not connected

if Aij = 0. Consistent with Pιγ, we see that type ι = 1 workers match with all 3 markets with

somewhat similar probabilities, while type ι = 2 workers overwhelmingly match with type

γ = 3 jobs. In our actual data, we observe neither worker types and markets, nor worker

type-market match probabilities. We only observe matches between individual workers and

jobs, as represented by Aij, and visualized here in panel (b) of Figure 1. Therefore, our task,

formalized in the maximum likelihood procedure defined in equation (14), is to take the data

represented by panel (b) and label it as we do in panel (a). Intuitively, two workers belong

to the same worker type if they have approximately the same vectors of match probabilities
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over all markets, and two jobs belong to the same market if they have approximately the

same vector of match probabilities over all worker types.

3.3 Discussion

Our approach rests on the insight that workers with similar propensities to match with par-

ticular jobs have similar skills, while jobs with similar propensities to hire particular workers

require similar tasks. We formalize this by making three major assumptions. First, our

model implicitly assumes that workers match with jobs according to comparative advantage,

where comparative advantage is governed by the productivity of the worker’s skills when

employed in the job’s tasks (equation 6). Second, Assumption 2.3 states that the fundamen-

tals of the economy — the labor supply parameters Ψ, Ξ, and ν, and the demand shifters ~a

— are fixed throughout our estimation window. Third, combining the assumptions of i.i.d.

T1EV preference shocks (Assumption 2.1) and exogenous separations (Assumption 2.2), we

assume that movement of workers between jobs represents idiosyncratic lateral moves. This

allows us to treat a worker’s multiple spells of employment as repeated draws from the same

distribution, however, as we discuss below, this comes at the cost of ignoring the possibil-

ity that workers are climbing the career ladder or that worker flows represent structural

shifts in the economy. These assumptions allow us to write the data generating process

of the linked employer-employee data in equation (13), which in turn implies a maximum

likelihood estimation strategy. Now, we address the ramifications of these assumptions in

turn.

The first major assumption is that workers and jobs match according to a Roy model

in which match probabilities are driven by skill-task match productivity. Since workers and

jobs are clustered according to match probabilities, to the extent that match probabilities

are determined by factors other than skills and tasks, we are clustering on the basis of these

other factors. For example, if two groups of workers have very similar skills but rarely end up

in the same jobs because they have different credentials, they would be assigned to different

worker types, reflecting heterogeneity in credentials rather than skills. Similarly, we may

identify groups of workers with similar skills but different preferences. For example, liberal

and conservative political consultants may have very similar skills, but consider entirely

disjoint sets of jobs due to their preferences. If this is true, our model would assign them

to different worker types. If there is discrimination, for example on the basis of race or

gender, this would be reflected in our productivity measure: our model would assume that

certain workers are not being hired because they have low productivity, when in reality they

are being discriminated against. Finally, while we restrict to a single metropolitan area to
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Figure 1: Network representation of the labor market

(a)

γ = 1

γ = 2

γ = 3

ι = 1

ι = 2

(b)

Dots represent individual workers/jobs; lines represent employment contracts. Network drawn according to

P

(
A

∣∣∣∣~ι,~γ, ~di, ~dj ,P) =
∏
i,j

(
didjPι(i)γ(j)

)Aij
Aij !

exp
(
did

J
i Pι(i)γ(j)

)
where

Pι[γit|~w] =

γ = 1 γ = 2 γ = 3( )
0.3 0.5 0.2 ι = 1
0.15 0.05 0.8 ι = 2
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minimize the role of geography, our “skills” and “tasks” may also reflect geographic location

and associated commuting costs. Therefore, what we call “skills” should be interpreted

more generally as worker characteristics valued by jobs in the labor market, and similarly

for “tasks.” This is an appealing feature of our method because our agnostic approach to

defining labor market relevant worker characteristics allows us to identify clusters of workers

who are viewed by the market as approximately perfect substitutes, and these clusters are

the relevant units of analysis when considering the effects of shocks on workers. Our method

would, however, be inappropriate for studying changes in how worker characteristics are

viewed by the market, for example changes in occupational licensing laws or discrimination.

A similar logic applies to jobs and tasks.

The second assumption is that the fundamentals of the economy — the assignments of

individual workers and jobs to worker types and markets, the labor supply parameters Ψ,

Ξ, and ν, and the demand shifters ~a — are fixed throughout our estimation window. This

assumption allows us to identify worker types and markets from the network of worker–job

matches. It implies that the network is drawn i.i.d. from an unchanging probability matrix

P , meaning that if two workers have the same vector of match probabilities it must be

because they have the same vector of skills, and similarly for jobs. The static fundamentals

assumption implies that we must estimate the model during a period of time in which the

labor market experiences no large shocks.10 11

Finally, we assume exogenous separation shocks in order to rationalize the fact that

while worker–job matches are somewhat persistent, we still observe job-to-job transitions

even when the fundamentals of the economy are unchanging. We could have alternatively

rationalized persistent matches by allowing for endogenous separations alongside persistent

idiosyncratic preferences εit, however exogenous separations are more tractable.12 An impli-

cation of the exogenous separations assumption is that a worker’s match probabilities are

independent of their job history, conditional on their type.13

10While we need the demand shifters ~a to be fixed during the estimation window, we may still use our
model to estimate the effect of demand shocks if we are able to estimate the parameters during a static
pre-shock period and then the shock changes the demand shifters, but not the parameters of the economy,
including the worker types, markets, and labor supply parameters.

11Endogenously determined wages also drive observed matching patterns, but this is not a problem for
our identification strategy. As long as the fundamentals of the economy are fixed, workers of the same type
will still display similar matching probabilities and will be clustered together according to our method. In
other words, even though the wage distribution shapes the matching patterns in the labor market, similar
workers will still behave similarly if fundamentals are fixed.

12See Grigsby (2019, Appendix D) for details on this alternative approach.
13This rules out job ladders in which the identity of a worker’s next job depends on the identity of their

current job. We view this as a reasonable approximation for two reasons. First, our model is intended to
analyze relatively short periods of time, over which workers skills are fixed and promotions up the career
ladder are less frequent. Second, our aim is to identify groups of workers and jobs which are similar in
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4 Estimating labor supply parameters

This section describes the procedure we use to estimate the labor supply parameters of the

model, conditional on the assignments of workers to worker types, ι(i), and jobs to markets,

γ(j), described in the previous section.

4.1 Estimating Ψ from observed matches

Identification and estimation of the labor supply parameters builds upon Bonhomme et al.

(2019) and Grigsby (2019), with the key difference being that we assign both workers to

worker types and jobs to markets prior to estimating labor supply parameters and do so in

a way that more fully exploits the information revealed by worker–job matches, allowing us

to identify a significantly greater degree of worker and job heterogeneity.14

We estimate parameters using a maximum likelihood approach. We assume that indi-

vidual workers’ earnings in period t are observed with multiplicative measurement error eit,

which has a worker type–market-specific parametric distribution fe(eit|ι(i), γit, θe) with unit

mean, summarized by parameter vector θe. Observed earnings ωit are therefore

ωit = ψι(i)γitwγiteit. (15)

Finally, we assume that the earnings measurement errors are serially independent:

Assumption 4.1 (Serial independence of earnings measurement error). The realization of

period t’s measurement error for worker i, eit is independent of the history of errors {eit′}t−1
t′=1,

the sense of being substitutable for each other. If one job lies directly above another on the career ladder,
meaning that the higher job routinely hires workers from the lower job, then these jobs hire workers with
similar skills, and therefore likely require similar tasks. If there was a large increase in employment at jobs on
the higher level of the ladder, many of these workers would presumably be hired from jobs at the lower level
of the ladder, implying that these workers can reasonably be assigned to the same type. This is effectively
a question of whether or not to merge two similar worker types, and we answer it using MDL. However,
it would be possible to extend our model to allow for job ladders by modeling the temporal relationship
between a worker’s multiple job matches.

14More precisely, Bonhomme et al. (2019) model workers matching with firms and therefore use k-means
clustering to cluster firms on the basis of the firms’ earnings distributions, while Grigsby (2019) models
workers matching with clusters of occupations identified by combining occupational education requirements
with k-means clustering on the basis of occupations’ O*NET skills scores. Additionally, neither Bonhomme
et al. (2019) nor Grigsby (2019) actually assign workers to types. Instead, they employ random effects
estimators, in which they identify the distribution of types, rather than assigning any individual worker
to a type. As a result, both papers require that flows of worker types between firm/occupation groups
form a strongly connected graph (they use the term “connecting cycle”). This is a strong data requirement
and requires them to define worker and firm/occupation groups at a relatively aggregated level, ignoring
considerable heterogeneity. By using the network structure of the data to assign workers and jobs to types
in a previous step before estimating labor supply parameters, we are able to identify an order of magnitude
more worker types and markets, and therefore to allow for much greater heterogeneity.
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market choices {γit′}t−1
t′=1, and separations {cit′}t−1

t′=1, conditional on the worker’s type, ιi, and

current market choice γit.

Our model is identified by combining assumption 4.1 with assumptions 2.1 and 2.2, which

stated that the market preference parameters εiγt and exogenous separation shocks cit are

each serially uncorrelated and independent of all other variables in the model.

Conditional on clustering workers and jobs into types, our data consist of three ele-

ments per worker per period: the worker’s market choice, γit, the worker’s earnings, ωit,

and the indicator for whether or not the worker changed jobs, cit. Observed data are

denoted by X := {γit, ωit, cit|t = 1, . . . , T ; i = 1, . . . , N}. The parameters are denoted by

Θ := {ψιγwγ, ξγ, ν, θe|ι = 1, . . . , I; γ = 1, . . . ,Γ}. Recall that P[γit|Θ] is the probability of

worker i choosing a job in market γ and comes from the Roy model (equation 6). Mean-

while, let fω(ω|ι(i), γit,Θ) denote the density of observed earnings in period t. We construct

our likelihood as follows.

In periods in which workers experience a separation, three pieces of data are generated:

a separation indicator cit, the worker’s new market choice γit, and the worker’s earnings

ωit. We assume that all workers separate and rematch in the first period for which we have

data: ci1 = 1 for all i. In periods in which the worker does not separate from their job, we

observe only cit and ωit.
15 Assumptions 2.2 and 4.2 tell us that realizations of ωit and cit

are independent, and γit is independent of ωit conditional on cit. Therefore, we write the

likelihood of observing {γit, ωit, cit} for an individual worker in period t as

l(γit, ωit, cit|X) = [fω(ωit|Θ)P(γit|Θ)]︸ ︷︷ ︸
Separation

cit [fω(ωit|ι(i), γit,Θ)]︸ ︷︷ ︸
No separation

1−cit

Our assumptions that {γit, ωit, cit} are serially uncorrelated and independent across work-

ers, conditional on the parameters of the data, allow us to write the full likelihood of the

data as the product of the individual worker-time likelihoods:

15By only including the worker’s market choice in the likelihood in periods in which a separation has
occurred, but assuming that all workers separated in period t = 1, we are ensuring that each match enters
the likelihood exactly once. This gives all matches equal weight in the likelihood, regardless of match
duration. Alternatively, we could have omitted exogenous separations from the model and assumed that
workers make a new choice every period. Under this assumption, persistent matches would indicate that
the worker has made the same choice repeatedly and we would put greater weight on persistent matches in
estimation.
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L(Θ|X) =
N∏
i=1

T∏
t=1

l(γit, ωit, cit|X)

=
N∏
i=1

T∏
t=1

[P(γit|Θ)fω(ωit|ι(i), γit,Θ)]︸ ︷︷ ︸
Separation

cit [fω(ωit|ι(i), γit,Θ)]︸ ︷︷ ︸
No separation

1−cit (16)

Finally, the log-likelihood is

`(Θ|X) =
N∑
i=1

T∑
t=1

cit logP(γit|Θ) +
N∑
i=1

T∑
t=1

log fω(ωit|ι(i), γit,Θ) (17)

In order to maximize this likelihood function, we impose a distributional assumption and

a normalization:

Assumption 4.2 (Distribution of measurement error in wages). eit has a log-normal distri-

bution: ln eit ∼ N (0, σιγ).

Assumption 4.3 (Ψ normalization). The mean productivity level in each market γ is nor-

malized to a constant, k: ∑
ι

mιψιγ = k ∀γ

where mι is the mass of type ι workers.

Assumption 4.2 assumes that wages follow a log-normal distribution which is worker

type-market specific, following Bonhomme et al. (2019) and Grigsby (2019). Assumption 4.3

normalizes the ψιγ to have a mean equal to some constant k within market.

Identification of Ψ comes from two sources: earnings for all employed workers, and market

choices for all workers in period t = 1 and workers who receive exogenous separation shocks

in periods t > 1. Intuitively, (ι, γ) matches that pay more and occur more frequently are

revealed to be more productive. The relative weight of earnings and market choices is

determined by the inverse of the variances of measurement error in wages and idiosyncratic

shocks — if the earnings measurement error σιγ for a worker type–market pair has a relatively

high variance, then estimation puts more weight on choices; if the idiosyncratic preference

shocks have a relatively high variance (large ν), estimation puts more weight on earnings. The

normalization that the mean skill level in each market equals k (Assumption 4.3) converts

the distribution of relative skills into a distribution of skill levels. We choose k to maximize

the model’s ability to match the observed employment rate.16

16This normalization is mostly without loss of generality. If one were to double the number of efficiency
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The parameter governing the variance of non-pecuniary benefits, ν, is identified by work-

ers’ choices of markets, γ. Workers will choose a market that offers their worker type low

expected utility (low ψιγwγ + ξγ) when they receive a large preference shock draw for that

market. Therefore, if workers frequently choose low expected utility markets, it must be

because they frequently draw large preference shocks, indicating that the preference shock

distribution has a large dispersion parameter, ν. The market amenities parameter ξγ is a

market fixed effect and is identified by the component of the frequency with which workers

choose market γ that is common across all worker types ι. The relative value of ξγ to ξγ′

allows the model to match the fact that some high-earning markets, such as doctors, account

for a small share of total employment. This is because ξγ reflects not just the immediate

utility benefits of working in a job in market γ, but also reflects broader compensating differ-

entials. In this way, ξdoctor may be low, not because doctor jobs are unpleasant, but because

the annualized cost of becoming a doctor — including medical school — and maintaining

the requisite skills is high. We provide greater detail on identification in appendix E.

4.2 Additional parameters to be estimated or calibrated

We also have the following parameters to estimate or calibrate:

• βγs (output elasticity of labor in market γ) — We calibrate these parameters as the

share of the sector S wage bill paid to workers employed in market γ jobs.

• η (CES consumption substitution elasticity)— We calibrate this parameter to 2.17

• as (demand shifters) — We calibrate demand shifters to match actual sector output

shares, given sector-level prices, for the state of Rio de Janeiro as measured by the

Brazilian Institute of Geography and Statistics (IBGE).

4.3 Discussion

The worker type–market productivity matrix Ψ captures high-dimensional two-sided (worker

and job) heterogenity. It is high-dimensional in the sense that workers’ skills and jobs’ tasks

units of labor each worker supplied to a market, the equilibrium price of labor would halve. However,
increasing the number of efficiency units of labor in the economy will impact the fraction of the labor force
in employment versus non-employment. This is why we choose k to maximize the model’s ability to match
the observed employment rate.

17Broda and Weinstein (2006) estimate this parameter to be 4, however their estimate comes from sig-
nificantly more disaggregated product categories, so we choose a smaller value. This parameter affects our
structural results in Section 7, but does not affect the reduced form estimates in Section 8.
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may have arbitrarily high dimensions, and Ψ serves as a sufficient statistic for the quality of

the match between a worker’s skills and a job’s tasks.

This paper contributes to a growing literature which models worker–job (or worker–

firm) matching with two-sided (worker and job) heterogeneity. In order to summarize high-

dimensional skill and task heterogeneity, much of this literature estimates a matrix analogous

to our Ψ. In order to do so, researchers identify clusters of similar workers and clusters of

similar jobs using observable worker and job characteristics. For example, Lindenlaub (2017)

imputes worker skill groups using information on workers’ training and educational degrees,

and defines occupation groups using skill requirement information from O*NET. Similarly,

Tan (2018) identifies bins of worker skills and job tasks using the ASVAB and O*NET, re-

spectively.18 These approaches represent imperfect solutions for at least two reasons. First,

available measures may measure the skills and tasks valued by the labor market with con-

siderable error. As Frank et al. (2019) note, “according to O*NET, the skill ‘installation’

is equally important to both computer programmers and to plumbers, but, undoubtedly,

workers in these occupations are performing very dissimilar tasks.” Second, in many admin-

istrative data sets like the LEHD or US income tax data, variables like education, occupation,

and direct skill/task measures are not available.19 Therefore, researchers must resort to sur-

vey data, which may have more detailed worker and job characteristics, but have much

smaller sample sizes and therefore are unable to capture the level of detailed heterogeneity

that we do.20 While this paper focuses on labor market shocks, our worker classifications

can serve as a foundation for future research on worker–job matching or polarization.

Occupation may seem like a solution to this problem, however it too is an imperfect

measure of a worker’s skills. Workers frequently change occupations without significantly

changing their skill sets. In our data, 73 percent of job changes in our data involve changes

in occupations (Table 2). Moreover, many different occupations require very similar skills.

For example, suppose it is the case that retail sales and fast food occupations require similar

skills and workers frequently move back and forth between these jobs. Our method would

recognize these mobility patterns and cluster these workers as the same worker type. While

this example concerns aggregating similar occupations, our method can also be useful for

disaggregating heterogeneous workers employed in the same occupation. Sticking with the

same example, retail sales workers at a specialized luxury retailer may have different skills

18Other papers employing a similar framework include Autor et al. (2003); Acemoglu and Autor (2011);
Kantenga (2018)

19In concurrent work, we are applying our method for classifying workers in order to impute occupation
on the LEHD.

20Another recent approach to characterizing labor market heterogeneity uses compilations of job postings
or resumes, but this literature still faces the challenge of how to aggregate workers and jobs into groups, and
our method may help solve the problem.
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and perform different tasks than retail sales workers at a discount store. If our data reveal two

different clusters of employment relationships — one centered around fast food and discount

retail, and the other centered around luxury retail — then our method would recognize this

and yield worker types that improve upon classifications based upon occupations by more

precisely identifying groups of workers with similar skills. We provide evidence that we

succeed in satisfying this objective in Section 6. A similar logic applies to clustering jobs

into types.

5 Data

We use the Brazilian linked employer-employee data set RAIS, which contains detailed data

on all employment contracts in the Brazilian formal sector. Each observation in the data

set represents a unique employment contract and includes a unique worker ID variable,

an establishment ID, an occupation code, and earnings. Our sample includes all workers

between the ages of 25 and 55 employed in the formal sector in the Rio de Janeiro metro

area at least once between 2009 and 2012, We exclude public sector and military employment

because institutional barriers make flows between the Brazilian public and private sectors

rare. We also exclude the small number of jobs that do not pay workers on a monthly basis.

We create two different analysis data sets — one for classifying workers and jobs using

the network of worker–job matches, and one for estimating labor supply parameters (Ψ, Ξ,

and ν) and estimating the effects of shocks on workers. Our data for classifying workers and

jobs starts with the sample described above. We define a job as an occupation–establishment

pair and generate a unique “Job ID” for each job by concatenating the establishment ID

code and the 4-digit occupation code. For example, a job would be “economist at the

University of Michigan” and this job would at any given time employ approximately 50

workers. Although we use occupation to define jobs, we do not use occupation as an input to

our algorithm for classifying workers and jobs.21 This gives us a set of worker–job pairs that

define the bipartite labor market network22 that we use to cluster workers into worker types

and jobs into markets. We restrict to jobs employing at least 5 unique workers during our

estimation window, though the 5 workers need not be employed by the job simultaneously.

This restriction eliminates jobs that are not sufficiently connected to the rest of the network

21For example, we use occupation to assign lawyers and economists at the University of Michigan into
separate jobs, but our algorithm does not know that the jobs “Economist at Michigan” and “Economist at
the Federal Reserve” correspond to the same occupation. It would only assign these jobs to the same market
if they are revealed to be similar by the network of workerjob matches.

22A bipartite network is a network whose nodes can be divided into two disjoint and independent sets U
and V such that every edge connects a node in U to a node in V . In our case U is the set of workers and V
is the set of jobs.
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of worker–job matches to infer their match probabilities and assign them to markets.

Once we have assigned workers to worker types and jobs to markets, we create a balanced

panel of workers with one observation per worker per year. Our earnings variable is the real

hourly log wage in December, defined as total December earnings divided by hours worked.

We deflate earnings using the CPI. We exclude workers who were not employed for the

entire month of December because we do not have accurate hours worked information for

such workers. If a worker is employed in more than one job in December, we keep the job

with greater hours. If the worker worked the same number of hours in both jobs, we pick the

job with the greatest earnings. If tied on both, we choose randomly. We also merge on each

worker’s worker type and each job’s job type. Workers who are not matched with a job are

defined as matching with the outside option, denoted γ = 0, which includes non-employment

and employment in the informal sector.

The RAIS data cover only the formal sector of the Brazilian economy. Therefore, we can-

not distinguish between non-employment and informal employment and our outside option,

denoted γ = 0, includes both non-employment and informal sector employment. In 2019,

32.1% of employment in the Rio de Janeiro metropolitan area was in the informal sector.23

However, transitions between the formal and informal sectors are relatively rare: during our

sample period, in a given year, fewer than 2% of formal sector workers moved to the informal

sector, and approximately 10% of informal sector workers moved to the formal sector.24

We calibrate demand shocks using annual data on real output per sector for the state

of Rio de Janeiro from the Brazilian Institute of Geography and Statistics (IBGE). These

data are available for 15 sectors, the most disaggregated sector definitions for which annual

state-level data are available. The 15 sectors are listed in Table 1.

5.1 Summary statistics

Our data contain 4,578,210 unique workers, 289,836 unique jobs, and 7,940,483 unique

worker–job matches. The average worker matches with 1.73 jobs and the average job matches

with 27.4 workers. 42% of workers match with more than one job during our sample. Fig-

ure 2 presents histograms of the number of matches for workers and jobs, respectively. In

network theory parlance, these are known as degree distributions.

Table 2 presents the fraction of job changes that also involve a change in occupation,

sector, market, firm, or establishment. The column “All Job Changes” computes the prob-

ability that a worker changes occupation, industry, sector, market, firm, or establishment

23IBGE INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATSTICA. Indicadores de subutilizao da
fora de trabalho e de informalidade no mercado de trabalho brasileiro. Rio de Janeiro: IBGE, 2019.

24See Engbom et al. (2021, Figure 21).
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Figure 2: Distributions of Number of Matches Per Worker and Job

(a) Workers

(b) Jobs

Notes: Figure presents histograms of the number of matches for workers and jobs, respectively. In network
theory parlance, these are known as degree distributions. Vertical axes presented in log scale. Horizontal
axis of bottom panel also presented in log scale. Number of matches per worker and job computed from the
network of worker–job matches described in Section 5.
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Table 1: IBGE Sectors

Sector name

1 Agriculture, livestock, forestry, fisheries and aquaculture
2 Extractive industries
3 Manufacturing industries
4 Electricity and gas, water, sewage, waste mgmt and decontamination
5 Construction
6 Retail, Wholesale and Vehicle Repair
7 Transport, storage and mail
8 Accommodation and food
9 Information and communication
10 Financial, insurance and related services
11 Real estate activities
12 Professional, scientific and technical, admin and complementary svcs
13 Public admin, defense, educ and health and soc security
14 Private health and education
15 Arts, culture, sports and recreation and other svcs

conditional on changing jobs. The column “Firm Change Only” presents the same quantities

restricting to the set of job changes that also involve a change in firm. The column “No Firm

Change” restricts to job changes that do not involve a change in firm. Recall that we define

a job as a 4-digit occupation–establishment pair. Table 2 shows that 65% of job changes

also involve a change in establishment and 54% change firm. This tells us that job changes

are not dominated by workers “climbing the job ladder” by changing occupations within a

firm.

Table 2 also shows that job changes are frequently associated with occupation, indus-

try, and sector changes. 41% of job changes involve a change in 1-digit occupation (most

aggregated) and 73% involve a change in 6-digit occupation (most disaggregated). Since

occupation, industry, and sector changes are so frequent, it is unlikely that any of these vari-

ables precisely measure workers’ skills, since workers’ skills are unlikely to evolve so quickly.

Similarly, the fact that job transitions frequently (59% of the time) involve moving to a job in

a different market (γ) as the old job demonstrates the value of allowing workers to costlessly

change the market to which they supply labor, a feature that our model incorporates.

6 Descriptive results

Our network-based classification algorithm identifies 290 worker types (ι) and 427 markets

(γ). Figure 3 presents histograms of the number of workers per worker type and jobs per
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Table 2: Occupation/Sector/Market Transition Frequencies

Variable All Job Changes Firm Change Only No Firm Change

1-digit Occupation 0.410 0.345 0.484
2-digit Occupation 0.496 0.422 0.580
4-digit Occupation 0.676 0.563 0.807
6-digit Occupation 0.725 0.648 0.814
5-digit Industry 0.418 0.708 0.083
Sector (IBGE) 0.262 0.456 0.039
Market (γ) 0.591 0.727 0.434
Firm 0.536 1.000 0.000
Establishment 0.645 0.996 0.240

Notes: This table presents the fraction of job changes that also involve a change in occupation, sector,
market, firm, or establishment. The column “All Job Changes” computes the probability that a worker
changes occupation, industry, sector, market, firm, or establishment conditional on changing jobs. The
column “Firm Change Only” presents the same quantities restricting to the set of job changes that also
involve a change in firm. The column “No Firm Change” restricts to job changes that do not involve a
change in firm. Since the fraction of job changes that involve a firm change is 0.536, values in the column
“All Job Changes” equal 0.536 × “Firm Change Only” + (1-0.536) × “No Firm Change.” 5-digit sectors
refer to narrow industry codes, while there are 15 IBGE sectors, defined in Table 1, taken from the
Brazilian Institute of Geography and Statistics (IBGE). Values computed using the worker earnings panel
described in Section 5 using RAIS data from 2009–2012.

market. The average worker belongs to a worker type with 40,978 workers and the median

worker belongs to a worker type with 20,413 workers. The average job belongs to a market

with 1,273 jobs and the median job belongs to a market with 1,188 jobs.

6.1 Occupation count tables

Our method simultaneously clusters together workers in different occupations who are re-

vealed by the network structure of the labor market to have similar skills, and disaggregates

workers employed in the same occupation who are revealed to have different skills. As a

concrete example, consider the occupation identified by the code 3331-10 in the Brazilian

occupation classification system. This occupation is called25 “course instructor” and is de-

scribed as

Summary description

The professionals in this occupational family must be able to create and plan

courses, develop programs for companies and clients, define teaching materials,

25Occupation names and descriptions are translated from Portuguese using Google Translate and some
translations are imprecise, although manual inspection of a subset by our Portuguese-speaking coauthor
confirms that most translations are satisfactory.
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Figure 3: Worker Type (ι) and Market (γ) Size Distributions

(a) Number of Workers Per Worker Type (ι)

(b) Number of Jobs Per Market (γ)

Notes: Figure presents histograms of the number of workers per worker type ι and jobs per market (γ).
The units of analysis are worker types in the upper panel and markets in the lower panel. Computed using
assignments of workers to worker types and jobs to markets as described in Section 3.
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teach classes, evaluate students and suggest structural changes in courses.

Despite this being the most disaggregated level of the occupation classification system (6-

digit), there may be considerable heterogeneity within this occupation. This occupation

may include, for example, both math tutors and personal fitness trainers — two sets of

workers with very different skills. At the same time, it is not obvious what distinguishes a

course instructor from a personal trainer (occupation code 2241-20) or an elementary school

teacher (occupation code 2312-10). However, if we can identify a cluster of course instructors

who at other times in their career work as personal trainers and another cluster who have

also worked as elementary school teachers, then we can simultaneously disaggregate course

instructors with distinct skills, and aggregate them by combining them with other workers

in different occupations who have similar skills. We pursue these examples in Tables 3 and

4.

Table 3 presents the 10 occupations in which workers belonging to worker type ι = 17

are most frequently employed. To interpret this table, recall that we have assigned each

individual worker to a worker type, ι. Each worker may be employed by one or more jobs in

our sample, and each job is assigned an occupation code by the Brazilian statistical agency.

A worker who has multiple jobs during the sample may have a different occupation associated

with each job. This table tabulates how frequently a type ι = 17 worker is employed in each

occupation. Most of these occupations are related to physical fitness, education, or both.

The most frequently occurring occupation is course instructor. It is not obvious based on

the occupation description alone what skills course instructors possess, however because the

network structure of the data informs us that these workers have similar skills to personal

trainers, physical education teachers, and sports coaches, it is likely that these workers have

skills more closely related to physical education than math.

Now consider Table 4. Course instructor is the second most frequently-occurring oc-

cupation among type ι = 52 workers, however the other frequently-occurring occupations

are teachers of more traditional academic subjects. If we had relied upon occupation codes

alone, we would have assumed that all course instructors have the same skills, whereas our

clustering approach tells us that there are at least two different types of course instructors:

physical education and academic education.

In addition to disaggregating workers in the same occupation with different skills, these

tables display our in aggregating workers in different occupations with similar skills. For

most of the occupations in these tables, it makes intuitive sense that they should be clus-

tered together. For example, it is not surprising that physical education teachers, sports

coaches, and personal trainers would have similar skills. Relying on occupation codes —

even the highly-aggregated two-digit occupation codes — would not have grouped these
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Table 3: Top Ten Occupations for Worker Type ι = 17

Occ-6 Occupation Name Share

333110 Course Instructor .15
224120 Personal trainer .11
231315 Physical Education Teacher in Primary School .08
224125 Coach (except for soccer) .06
234410 Physical Education Teacher in Higher Education .05
224105 Fitness monitor .05
333115 Teacher (with High School degree) .05
234520 Education Teacher (with College degree) .03
371410 Recreational Activities Coordinator .03
377105 Professional Athlete (various modalities) .02

Notes: Table reports the 6-digit occupations in which workers assigned to worker type ι = 17 are most
frequently observed, showing only the 10 most frequent. Values computed using the worker earnings panel
described in Section 5 using RAIS data from 2009–2012. Occupation classification codes defined according
to the Brazilian occupation classification system, CBO 2002: Classificacao Brasileira de Ocupacoes and
translated from Portuguese to English using Google Translate.

workers together. More generally, we view the fact that our worker types imperfectly align

with occupation codes as suggestive evidence of our success in identifying groups of workers

with similar skills. Workers with similar skills are likely to be employed in similar occu-

pations, so it would be concerning if our worker types did not overlap with occupations.

However, the fact that they only partially overlap with occupations suggests that they cap-

ture important dimensions of worker heterogeneity that occupations miss. We develop this

argument further in the rest of the paper.

6.2 Worker type skill correlations

While Section 6.1 provided a qualitative example of our method’s success in identifying

clusters of workers with similar skills, we now provide quantitative evidence of our success in

this regard. An ideal worker skills classification scheme will maximize the variance in skills

across different worker classifications and minimize the variance of skills within a worker

classification. While we do not directly observe individual-level skills and therefore cannot

measure within-classification skills variance, we do have a measure of across-classification

skills variation. Each element of Ψ represents the productivity of a type ι worker employed

in market γ. Therefore, ψιγ is a summary measure of a type ι worker’s skill at jobs in market

γ, and a full row vector of Ψ, ψι·, summarizes a type ι worker’s skills in all markets. This

yields a natural metric for skill similarity across worker types: two worker types, ι and ι′,

32



Table 4: Top Ten Occupations for Worker Type ι = 52

Occ-6 Occupation Name Share

331205 Elementary School Teacher .07
333110 Course Instructor .07
231210 Elementary School Teacher (1st to 4th grade) .06
231205 Young and Adult Teacher teaching elementary school content .06
232115 High School Teacher .05
234616 English Teacher .04
333115 Teacher of Free Courses .03
231305 Elementary School Science and Math Teacher .03
331105 Kindergarten Teacher .02
231310 Art Teacher in Elementary School .02

Notes: Table reports the 6-digit occupations in which workers assigned to worker type ι = 52 are most
frequently observed, showing only the 10 most frequent. Values computed using the worker earnings panel
described in Section 5 using RAIS data from 2009–2012. Occupation classification codes defined according
to the Brazilian occupation classification system, CBO 2002: Classificacao Brasileira de Ocupacoes and
translated from Portuguese to English using Google Translate.

have similar skills if their associated productivity vectors ψι· and ψι′· are highly correlated.

If we have done a good job of clustering workers with similar skills into the same type,

then the correlations of skills across different worker types will be low. To understand this,

consider an extreme example in which workers were clustered randomly. In this case, all

clusters would have exactly the same skills — because the skills of each cluster would just be

the average skills of the entire population — and all pairs of productivity vectors would be

perfectly correlated. That is, corr(ψι·, ψι′·) ≈ 1 for all ι, ι′. Alternatively, we might have two

clusters of worker types — for example those intensive in manual skills and those intensive

in cognitive skills — such that worker types in the same cluster have highly-correlated skills

and those in different clusters have negatively correlated skills. At the other extreme, if skills

were perfectly specific (meaning that Ψ was close to a diagonal matrix), skill correlations

would be close to zero.

We summarize the correlations between different worker types’ productivity vectors in

Figure 4. We do this in two ways. In the left column we present correlation coefficients

between all pairs of the I = 290 worker types in a lower triangular 290 × 290 matrix (the

upper triangular portion is redundant and therefore omitted). Dark red points represent

large positive correlations, dark blue points represent large negative correlations, and lighter

colors represent smaller correlations. Worker types are sorted by mean earnings, from small-

est to largest. In the right column, we present histograms of the correlation coefficients in
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the left column, along with the standard deviation of the correlation coefficients. The first

row presents correlations in which workers are classified by worker type and jobs by market.

We provide context for these figures by repeating this exercise using versions of Ψ̂ in which

workers and jobs are classified using the standard labels in the data: occupation and sector.

To do this, we estimate a different version of Ψ using the same maximum likelihood estima-

tion described in Section 4, except we classify workers and jobs by occupation and sector,

rather than worker type and market. Row 2 of Figure 4 shows workers classified by 4-digit

occupation and jobs by sector. Row 3 shows workers classified by four-digit occupation and

jobs by market (γ). We choose 4-digit occupations as our primary “status quo” benchmark

to compare our method to because occupations are a frequently-used measure of granular

worker heterogeneity and because the number of 4-digit occupations in our data (306) is

similar to the number of worker types (290), allowing for comparisons at a similar level of

granularity.

Figure 4 shows that correlations between different worker types’ productivity vectors are

smaller in magnitude when we use our model’s (ι, γ) classifications rather than classifications

based on labels available in the data, occupation and sector. This is because the network-

based clusters of workers are more successful at segregating workers with distinct skills than

are standard occupations. Connecting this to the example in the previous section, if high

school and middle school math teachers have similar skills but are classified as distinct

worker types, we would observe large correlations (dark red) between their productivity

vectors. By contrast, our worker types disentangle teachers into physical education teachers

— including coaches and personal trainers — and teachers in traditional academic subjects.

Physical education and academic teachers have less correlated skills than do elementary and

middle school teachers. Because we have done a better job of segregating workers with

disparate skills, and aggregating workers with similar skills, we observe fewer clusters of

highly-correlated worker types.

6.3 Worker types’ labor market concentration

If our model is correct that worker–job matching is largely determined by skill–task match

productivity, and we have done a good job of clustering together workers with similar skills

and jobs with similar tasks, then each worker type will be concentrated within specific

markets. While there will be considerable variation across worker types — worker types

with more specific skills will be more concentrated in a small set of markets than those with

more general skills — if we compare two job classification schemes, the one that does a better

job of identifying workers with similar skills and jobs requiring similar tasks will yield higher
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Figure 4: Skill Correlation Across Worker Types and Occupations

(a) (ι, γ) correlogram (b) (ι, γ) histogram

(c) (Occ4, Sector) correlogram (d) (Occ4, Sector) histogram

(e) (Occ4, γ) correlogram (f) (Occ4, γ) histogram

Notes: Figure presents pairwise skills vector correlations (left column) and histograms of these skill
correlations (right column) for all pairs of worker types ι (row 1) and 4-digit occupations (rows 2 and 3). In
the left column, dark red squares indicate large positive correlations, while dark blue squares represent
large negative correlations. “Skills” defined as row vectors of the matrix Ψ, ψι·, where Ψ is estimated as
described in Section 4.1 using the 2009-2012 RAIS worker earnings panel described in Section 5. Workers
classified by worker types ι in row 1 and by 4-digit occupation in rows 2 and 3. Jobs classified by market γ
in rows 1 and 3, and by sector in row 2. Figures in the left column are sorted by worker type mean
earnings (smallest to largest). 35



worker concentrations in markets.

We compute each worker type’s employment concentration across sectors and markets

using the Herfindahl-Hirschman index (HHI):

HHISectorι =
∑
s

π2
ιs and HHIMarket

ι =
∑
γ

π2
ιγ

where s indexes sectors, γ indexes markets, and πιs and πιγ are the share of type ι workers

employed in sector s and market γ, respectively. An HHI close to 0 indicates that type ι

employment is spread approximately evenly across sectors/markets, while an HHI close to

1 indicates that type ι employment is very concentrated in a single sector/market. Suppose

we classified jobs randomly. Then worker types would not have a comparative advantage in

specific markets and therefore would not be concentrated in specific markets. In this case,

the HHI for each worker type would converge to 1/NumJobClassifications, indicating

a uniform distribution of employment across job classifications. At the other extreme, if

each worker type had perfectly specific skills and supplied all of its labor to exactly 1 job

classification, the HHI would be 1. While we would not expect perfectly specific skills, larger

HHIs are evidence that we have done a better job of classifying similar jobs, whereas smaller

HHIs imply that we are closer to simply classifying jobs randomly.

Figure 5a presents HHISectorι and HHIMarket
ι for each worker type, sorted from least

concentrated to most concentrated. Most worker types’ labor supply is more concentrated

among markets than among sectors, which according to the argument above, indicates that

markets identify groups of jobs that have more homogenous tasks than do sectors. One

might be concerned that this isn’t a fair comparison because we have 427 markets and only

15 sectors, however having a smaller number of groups mechanically leads to larger HHIs, so

this bias runs against the result we find. Nevertheless, in Figure 5b we repeat the analysis

replacing our 15 sectors with 643 5-digit industries. The qualitative story is the same, but

the market HHIs are even larger relative to the industry HHIs than before.

7 General equilibrium effects of Rio de Janeiro Olympics

We test our model’s ability to predict the effects of shocks in the context of the infrastructure

investment and other preparations for the 2016 Rio de Janeiro Olympics. The Olympics were

announced in late 2009 and construction of new venues and infrastructure were in full effect

by 2014. Therefore, we define 2009 as our pre-shock period and 2014 as our “shock” period.

We calibrate demand shifters ~a2009 and ~a2014 to fit sector-level product output in those years,

feed these demand shifters through our model and solve for the equilibrium to compute
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Figure 5: Concentration of Worker Types’ (ι) Employment Within Markets/Sectors

(a) Markets (γ) and sectors

(b) Markets (γ) and 5-digit industries

Notes: Figure presents concentration, defined as a Herfindahl-Hirschman Index (HHI), of worker types’
employment within individual markets (orange lines) and sectors (blue line). The figure is weighted by the
number of workers in each worker type. Workers are sorted from lowest to highest HHI along the
horizontal axis. HHIs computed from the 2009-2012 RAIS worker earnings panel described in Section 5.
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model-implied earnings for each worker type for each year, ŷ2009
ι and ŷ2014

ι , and then take

the difference ∆ŷ = ŷ2014
ι − ŷ2009

ι . We also compute the actual mean earnings changes for

each worker type, ∆y = y2014
ι − y2009

ι . Finally, we regress actual changes in mean earnings

on model-predicted changes in mean earnings for each worker type.

∆y = β0 + β1∆ŷ + ε (18)

If our model is able to perfectly predict the actual effects of the Rio Olympics shock, the

slope would be 1 and the intercept 0. As shown in the first column of Table 5 the slope

of the best fit line is 0.982 and the intercept is -0.003, very close to our goals of 1 and 0,

respectively.26

Table 5: Predicted Effect of Olympics on Wages: Network-Based vs. Standard Classifications

Worker classification ι Occ4 Occ4 k-means k-means
Job classification γ sector γ Sector γ

Intercept -0.003 -0.001 -0.002 -0.0 -0.002
(0.009) (0.009) (0.009) (0.011) (0.01)

Model implied ∆ log earnings 0.982 0.148 0.428 0.234 0.566
(0.551) (0.434) (0.185) (0.575) (0.262)

MSE 0.021 0.025 0.025 0.023 0.023
Observations 290 306 306 214 214

Notes: Table presents results from estimating equation (18) for various worker and job classifications.
Workers classified by worker type (ι) in column 1, 4-digit occupation in columns 2 and 3, and by k-means
clusters of 6-digit occupations in columns 4 and 5. K-means clustering done on the basis of occupation
specific skills defined by the U.S. O*NET, which is applied to Brazilian occupations using a crosswalk
creaged by Aguinaldo Maciente (Maciente, 2013). Jobs are classified by market (γ) in columns 1, 3, and 5,
and by IBGE sector in columns 2 and 4. Standard errors reported in parentheses. Independent and
dependent variables defined at the worker classification level as described in Section 7. Dependent variables
based on data from the 2009-2012 RAIS worker earnings panel described in Section 5. Independent
computed by solving the model described in Section 2 using parameters estimated in Section 4.1 and
calibrated in Section 4.2. Regressions are weighted by the number of workers per classification.

We further assess our model’s predictive ability by comparing it to a series of standard

approaches, which use our model but classify worker and job heterogeneity using commonly-

26The standard errors in this regression are large, but this is not surprising. There is significant variation
that we are unable to predict because a number of important margins of adjustment are outside of our model.
However, the fact that we estimate a slope close to 1 and an intercept close to 0 is consistent with these other
factors being approximately orthogonal to our classifications. These other factors may include job amenities
and non-monetary compensation, migration into or out of the Rio de Janeiro metro area, worker retraining,
and changes in the tasks required by each job. Moreover, our model excludes linkages between sectors in
the product market, which could affect demand for different types of labor, although our model could be
expanded to include product market linkages by adding sector-level intermediate goods as inputs to firms’
production functions (equation 3).
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used observable variables. Our first two standard approaches classify workers using 4-digit

occupation codes instead of our network-based worker types. After dropping occupations

with fewer than 5,000 employees for computational reasons,27 we are left with 306 4-digit oc-

cupations, yielding a level of disaggregation similar to the 290 worker types. The second two

benchmarks characterize worker heterogeneity using k-means clusters of 6-digit occupations

based on 225 O*NET skills, where the number of clusters is chosen to match the number

of worker types ι, however we have to drop some of the resulting clusters because they are

very small and are not observed in both the pre-shock and post-shock periods.28 We classify

job heterogeneity using sector in the first and third benchmark and using our network-based

markets in the second and fourth. We present the results of these standard approaches in

columns 2–5 of Table 5.

While our network-based classifications yield an approximately unbiased prediction of

the actual shock-induced changes in earnings, the standard classifications do not. The co-

efficients on model-implied earnings changes are far below 1 in all four of the standard

classifications. Moreover, the mean squared error (MSE) of our network-based classifica-

tions is below all four standard classifications. We interpret this as evidence in favor of our

network-based classifications since they do a better job of predicting actual changes in the

data than reasonable standard classifications.

8 Reduced form estimation of labor market shocks

A standard way of estimating the effects of labor demand shocks on workers is through the

use of a Bartik instrument. A typical Bartik instrument measures the exposure of different

groups of workers to labor demand shocks within groups of jobs. It can be written as

Bartikg =
∑
s

πgsShocks (19)

where g defines a group of workers, s defines a group of jobs, πgs is the fraction of group g

workers employed in group s jobs before the shock, and Shocks is the size of the shock to

group s jobs. For example, in Autor et al.’s “China shock,” g represents commuting zones,

s indexes sectors, πgs is commuting zone g’s share of sector s employment, and Shocks

27This is necessary because we can only use occupations that are observed both pre-shock and post-shock.
28O*NET is defined for the U.S., but we use a crosswalk from the U.S. O*NET to the Brazilian occupation

classification system created by Aguinaldo Maciente (Maciente, 2013). The clustering method yields a highly
skewed cluster size distribution and we must drop some of the smallest clusters because they are not observed
in both the pre-shock and post-shock periods. Therefore the actual number of clusters is somewhat smaller
than the number of ι’s.
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is the growth in Chinese imports in sector s. Shocks is a proxy for the size of the labor

demand shock in sector s jobs created by Chinese import growth, while πgs governs which

workers are affected by the shock. Both Shocks and πgs depend upon the researcher’s choice

of classifications, g and s, and therefore estimated effects of shocks are sensitive to these

choices. In this section we study how the researcher’s choice of worker and job classifications

affect results.

We compare Bartik instruments based on our network-based worker types and markets to

Bartik instruments based on occupations and sectors. First, we show that estimated effects

of shocks on workers are significantly larger, as are R2 values, when using our network-based

classifications. Second, we provide a case study of a simulated shock in which we demonstrate

that the reason why our worker types and markets yield larger coefficient estimates and R2

values is that they more precisely identify which jobs experienced a change in demand for

labor, and which workers were exposed to those jobs.

8.1 Analysis of the 2016 Rio de Janeiro Olympics

We begin by once again considering the labor demand shock created by the preparations for

the Rio de Janeiro Olympics. As in Section 7, we define 2009 as the pre-shock period and

2014 as the post-shock period. We regress 2009 to 2014 changes in worker group g earnings

on the Bartik instrument defined in equation (19).

∆Earningsg = β0 + β1Bartikg + εg (20)

We have four specifications using all four combinations of our two worker classifications

g ∈ {worker type, occupation} and our two job classifications s ∈ {market, sector}. We

normalize all of the Bartik instruments to have mean 0 and standard deviation 1 so that

coefficients are directly comparable and can be interpreted as the effects of a 1 standard

deviation change in the Bartik instrument on log earnings.29 We measure πgs as the fraction

of group g workers who are employed in group s jobs. Shocks is alternatively defined as the

change in sector-level product output or changes in the market-level labor input, `γ.

The results, presented in Table 6, show that estimated effects of the shock are highly

sensitive to worker and job classifications. In column 1 we present our network-based clas-

sifications: workers are classified by worker type and jobs by market. In this specification,

the effect of the shock on workers’ earnings is positive and statistically significant, and the

R2 is large. The coefficient implies that a 1 standard deviation increase in exposure to the

29Nonemployment is treated as 0 log earnings, so these regressions capture both movements in and out
of employment and changes in earnings conditional on employment.
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Olympics shock leads to an approximately 15.5% increase in earnings. Columns 2–4 present

specifications using standard classifications. These specifications consistently find smaller

(and in some cases negative) effects of the shock on workers, and have less explanatory

power for variation in worker earnings, as shown by the smaller R2 values. These results are

consistent with occupation and sector doing a worse job of characterizing worker skill and

job task heterogeneity than worker types and markets, and this misclassification leading to

attenuated estimates and worse model fit.

While our results indicate that classifying worker and job heterogeneity with error yields

attenuated estimates of effects in this case, it is not necessarily the case that classification

errors of this sort yield estimates that are biased towards zero in general. Since we do not

have classical measurement error, the intuition of measurement error leading to attenuation

bias does not apply. In fact, there is no theoretical prediction about the direction of the bias

due to misclasssification of workers and jobs in our context (Mahajan, 2006; Hu, 2008). We

confirm this through a series of simulations in which we generate a data set according to the

data generating process implied by our model, randomly misclassify varying percentages of

workers and jobs, and then estimate the Bartik regression, equation (20). We find no clear

relationship between the amount of misclassification and the slope coefficient β̂. However, we

do find that the R2 values decline approximately monotonically with the fraction of workers

and jobs misclassified. Therefore, we interpret the larger R2 values from estimating equation

(20) using our network-based classifications as evidence that the network-based classifications

classify worker and job heterogeneity with less error than the standard classifications. By

contrast, the larger coefficient estimate when we use our network-based classifications is an

empirical finding about the implications of misclassification in this context. See Appendix

G for details on these simulations.

Although the focus of this paper is classification of workers rather than identification

of shocks, it is possible that the Olympics shock we study in this section may have been

confounded by labor supply or other shocks. For example, workers may have anticipated

the shock and migrated to Rio de Janeiro from other parts of Brazil. Therefore, in the next

subsection we replicate the analysis in this subsection using simulated data in which we

control the data generating process.

8.2 Reduced form analysis using simulated data

In this subsection, we demonstrate how estimated effects of shocks are sensitive to worker and

job classifications in a setting where we can control the underlying data generating process.

We replicate the analysis in the preceding section using simulated data. The simulated data
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Table 6: Effects of exposure to Rio Olympics shock

Exposure: Market (γ) Sector Market (γ) Sector
Worker classification: Worker type (ι) Worker type (ι) Occ4 Occ4

Intercept -0.169 -0.169 -0.156 -0.156
(0.009) (0.012) (0.019) (0.020)

iota exposure (market) 0.156
(0.009)

iota exposure (sector) -0.031
(0.012)

occ4 exposure (market) 0.111
(0.019)

occ4 exposure (sector) -0.059
(0.020)

Observations 290 290 306 306
R2 0.531 0.021 0.096 0.027

Note:

Notes: Table presents the effect of the 2016 Rio de Janeiro Olympics shock on workers earnings from
estimating equation (20). Independent variables normalized to have mean 0 and standard deviation 1.
Workers classified by worker type (ι) in columns 1 and 2, and by 4-digit occupation in columns 3 and 4.
Standard errors reported in parentheses. Jobs classified by market in columns 1 and 3, and by sector in
columns 2 and 4. Estimated using data from the 2009-2012 RAIS worker earnings panel described in
Section 5 aggregated to the worker classification level.
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have the same structure as the actual worker earnings panel described in Section 5 that we

used to estimate the labor supply parameters and for the empirical exercises in Sections 7

and 8.1, and are drawn from the data generating process defined by our model. Since we

control the data generating process, we can be certain that we are observing an exogenous

labor demand shock that is unconfounded by, for example, concurrent labor supply changes.

We generate the simulated data as follows. First, we calibrate demand shifters ~aPre to

match the levels of product demand in each sector in 2009. We then solve the model using

the 2009 demand shifters to generate a pre-shock wage vector ~wPre that clears all markets

γ. We draw worker types and four-digit occupations from the empirical joint distribution of

worker types and four-digit occupations. To generate job matches for each worker recall that,

conditional on searching, workers choose a market to supply labor to according to equation

(5):

γit = arg max
γ∈{0,1,...,Γ}

ψιγwγt + ξγ + εiγt.

This implies that a type ι worker chooses market γ with probability given by equation (6):

Pι[γ| =
exp

(
ψ̂ιγwγt+ξ̂γ

ν̂

)
Γ∑

γ′=0

exp
(
ψ̂ιγ′wγ′t+ξ̂γ′

ν̂

) ,

where we use estimated parameter values Ψ̂, Ξ̂, and ν̂, estimated as described in Section 4.

All workers make this choice in period t = 1, and in subsequent periods workers search again

if they draw a separation shock as described in Assumption 2.2. In our full model, workers

match with individual jobs after choosing markets, however the identity of the worker’s

individual job j does not affect earnings or employment; it is only useful for classifying

workers and jobs according to the BiSBM. Therefore, we do not specify the identity of each

worker’s specific job when generating our simulated data set.

Next, we draw sectors for each worker–job match according to the empirical joint distri-

bution of sectors and markets. Finally, we draw earnings according to equation (15):

ωit = ψι(i)γitwγiteit.

where eit is log-normal measurement error. We repeat this exercise using the same labor

supply parameters Ψ̂, Ξ̂, and ν̂ along with a new vector of demand shifters, ~aPost, calibrated

to match the levels of product demand in each sector in 2014. We stack the two data sets

to create a panel data set with both the pre-shock and post-shock periods.

We repeat the four Bartik-style regressions from the previous section using our simulated
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Table 7: Effects of exposure to simulated Rio Olympics shock

Exposure: Market (γ) Sector Market (γ) Sector
Worker classification: Worker type (ι) Worker type (ι) Occ4 Occ4

Intercept -0.139∗∗∗ -0.139∗∗∗ -0.147∗∗∗ -0.147∗∗∗

(0.003) (0.003) (0.004) (0.004)
iota exposure (market) 0.018

(0.003)
iota exposure (sector) 0.014

(0.003)
occ4 exposure (market) 0.007

(0.004)
occ4 exposure (sector) 0.007

(0.004)

Observations 290 290 306 306
R2 0.090 0.053 0.009 0.011

Note:

Notes: Table presents the effect of the simulated 2016 Rio de Janeiro Olympics shock on workers earnings
from estimating equation (20). Independent variables normalized to have mean 0 and standard deviation 1.
Workers classified by worker type (ι) in columns 1 and 2, and by 4-digit occupation in columns 3 and 4.
Standard errors reported in parentheses. Jobs classified by market in columns 1 and 3, and by sector in
columns 2 and 4. Estimated using data generated using our model as the data generating process, as
described in Section 8.2, and aggregated to the worker classification level.

data. The results, presented in Table 7, are qualitatively similar to the results using actual

data in the previous section (Table 6), with the exception that the negative coefficients when

jobs are classified by sector are now small positive coefficients. We continue to find larger

coefficients and R2 values when we define shock exposure according to markets as opposed

to sectors, and when we classify workers according to worker type as opposed to 4-digit

occupation. These results reiterate our point that misclassifying worker and jobs causes us

to significantly understate the effects of shocks on workers in this context. In the next section

we demonstrate that this is a more general finding.

8.3 Simulating many shocks

In the previous sections we found that the estimated effects of shocks are larger when using

our network-based worker and job classifications than when using standard classifications.

To allay any concern that our finding is specific to the Rio Olympics shock, we replicate the

analysis in the previous section for a series of different shocks. For each of the 15 sectors,
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Table 8: Means across all simulated shocks

Worker Classification Job Classification Coefficient R2

Mean Std Dev Mean Std Dev

Worker type Market 0.018 0.009 0.278 0.154
Worker type Sector 0.013 0.008 0.167 0.147
Occ4 Market 0.007 0.005 0.042 0.053
Occ4 Sector 0.005 0.004 0.025 0.038

Notes: Table reports means and standard deviations of estimated regression coefficients and R2 values
from estimating the Bartik-style regression, equation (20), for each of the 30 simulated shocks described in
Section 8.3. Workers classified by worker types (ι) in rows 1 and 2, and by 4-digit occupation in rows 3 and
4. Jobs classified by market (γ) in rows 1 and 3, and by sector in rows 2 and 4.

we simulate a positive shock in which the demand shifter for the shocked sector is doubled

and the demand shifters for all other sectors are unchanged, and a negative shock in which

the demand shifter for the shocked sector is halved and the demand shifters for all other

sectors are unchanged. For each shock, we generate a new simulated data set and then use

the simulated data to estimate the Bartik-style regression in equation (20) for each of the

four combinations of worker and job classifications: g ∈ {worker type, occupation} and s ∈
{market, sector}. We present the results in Table 8. We consistently find larger coefficients

and R2 values using our network-based classifications. The average coefficient from our

network-based classification specification is 3.7 times larger than the average coefficient from

the occupation–sector specification, and the average R2 is 11 times larger. Figure 6 presents

the slope coefficients and R2 values from each individual regression in these simulations and

shows that our network-based classifications yield slope coefficients and R2 values that are

uniformly larger than those from standard classifications, not just larger on average.
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Figure 6: Exposure coefficients from all simulated shocks

(a) Slope coefficients

(b) R2 values

Notes: Figure presents estimated regression coefficients and R2 values from estimating the Bartik-style
regression, equation (20), for each of the 30 simulated shocks described in Section 8.3.
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8.4 Case study of shock to the “Accommodations and Food” sec-

tor

One of the shocks we simulated in the previous section was a 50% reduction in demand for the

output of the Accommodations and Food sector, leaving the demand for all other sectors’

output unchanged. This subsection explores that shock in greater detail to elucidate the

mechanisms behind the finding that our network-based classifications yield larger estimates

of the effects of shocks on workers. We focus on a shock to a single sector, as opposed to all

sectors simultaneously as in the Rio Olympics shock, because this allows us to understand

the precise nature of the shock.

Table 9 presents the same set of Bartik-style regressions as Tables 6 and 7 in the preceding

sections. The qualitative story is unchanged: larger coefficients and R2 values when we (i)

define job heterogeneity according to markets as opposed to sectors, and (ii) when we define

worker heterogeneity according to worker type as opposed to 4-digit occupation.

Table 9: Effects of exposure to simulated Accommodations and Food sector shock

Job Classification: Market (γ) Sector Market (γ) Sector
Worker classification: Worker type (ι) Worker type (ι) Occ4 Occ4

Intercept -0.001 -0.001 -0.002 -0.002
(0.001) (0.001) (0.002) (0.002)

Effect of Shock 0.007 0.006 0.001 -0.001
(0.001) (0.001) (0.002) (0.002)

Observations 290 290 306 306
R2 0.070 0.047 0.001 0.000

Note:

Notes: Table presents the effect of the simulated Accommodations and Food sector shock on workers
earnings from estimating equation (20). The shock is a 50% reduction in demand for the Accommodations
and Food sector’s output, holding demand for all other sectors’ output constant. Independent variables
normalized to have mean 0 and standard deviation 1. Workers classified by worker type (ι) in columns 1
and 2, and by 4-digit occupation in columns 3 and 4. Standard errors reported in parentheses. Jobs
classified by market in columns 1 and 3, and by sector in columns 2 and 4. Estimated using data generated
using our model as the data generating process, as described in Section 8.2, and aggregated to the worker
classification level.

Why does the Bartik instrument have more explanatory power for workers’ outcomes

when workers are classified by worker types and jobs are classified by markets? On the

worker side, it is because, as we argued in Sections 6.1 and 6.2, our worker types do a

better job of identifying groups of homogenous workers than do occupations. We see this

again by focusing on one of the worker types that was most affected by the shock to the
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Table 10: Occupation counts for ι =64

Occ Code Occ Description Occ share

513505 Food services assistant 0.090
521110 Retail salesperson 0.072
411005 Office clerk 0.043
514320 Janitor 0.032
513205 General cook 0.032
513215 Industrial cook 0.030
421125 Cashier 0.028
411010 Administrative assistant 0.026
763215 Couturier, serial machining 0.024
521125 Stock clerk 0.019

Accommodations and Food sector, worker type ι = 64. Table 10 tabulates the 10 occupations

we most frequently observe type ι = 64 workers employed in. These occupations tend to

be low-pay, low-education service sector occupations. The two most frequent are “food

services assistant” and “retail salesperson.” Our network-based classification method tells

us that these retail and food services workers have similar skills despite the fact that they

are employed in different occupations. If we had classified workers by occupation and jobs

by sector, we would have implicitly assumed that the food services workers were exposed to

the Accommodations and Food sector shock, while the retail salespeople were not. In reality,

all of these workers were exposed to the shock because they have similar skills; workers not

employed in the shocked sector may still be exposed to and affected by the shock if they

are close substitutes for workers in the shocked sector. As we discussed in Section 8.1 and

Appendix G, misclassifying workers such that some workers actually exposed to the shock

are assumed not to have been exposed, and vice versa, leads to biased coefficient estimates

and attenuated R2 values.

On the jobs side, classifying jobs by market rather than sector more accurately captures

the channels through which shocks propagate from jobs to workers. Bartik instruments

based on standard classifications assume that workers supply labor directly to sectors; our

classifications allow workers to supply labor directly to markets but only indirectly to sectors,

by way of markets (see Figure 7). We illustrate why our approach is prefereable by again

focusing on type ι = 64 workers. We have already established that these workers’ skills are

employable in both retail occupations and food service occupations, but who hires them?

Do they supply labor to a retail market and a food services market? Or is there actually

a market that includes jobs in both retail and food services? In Table 11 we present type

ι = 64 workers’ labor supply by sector. Type ι = 64 workers supply labor to a variety of
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sectors, including Retail, Wholesale and Vehicle Repair (28%) and Accommodations and

Food (14%). Since these workers supply labor to such a variety of sectors, no single sector

can reasonably approximate the set of jobs to which they supply labor. By contrast, type

ι = 64 workers’ labor supply is concentrated within specific network-based markets, γ.

Table 12 presents the percentage of their labor that type ι = 64 workers supply to each

market, restricting to the top 10. Type ι = 64 workers supply over 60% of their labor to a

single market, market γ = 47, and there is no other market to which they supply more than

3.5 percent of their labor. In other words, type ι = 64 workers’ labor supply is highly con-

centrated within a specific market, but not nearly as concentrated in specific sectors, despite

the fact that we have vastly more markets (427) than sectors (15). This is a specific example

of the more general finding of greater concentration of employment within markets than

sectors that we presented in Section 6.3. Worker types’ employment is more concentrated

within markets than sectors because our markets are designed to identify groups of jobs that

compete for similar workers, whereas sectors are defined by product markets. Therefore, our

markets more closely approximate the channels through which shocks propagate through

the labor market to workers. By contrast, classifying jobs by sectors introduces error by

grouping together jobs with heterogeneous changes in labor demand. Again, as we discussed

in Section 8.1 and Appendix G, misclassifying jobs such that jobs that in fact hire dissim-

ilar workers are assumed to hire similar workers, and vice versa, leads to biased coefficient

estimates and attenuated R2 values.

Figure 7

(a) Standard Classifications

S

ι

(b) Our Model

S

γ

ι
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Table 11: Type ι = 64 workers’ labor supply by sector

Sector Share (%)

Retail, Wholesale and Vehicle Repair 27.9
Accommodation and food 14.1
Manufacturing industries 11.7
Professional, scientific and technical svcs 11.1
Arts, culture, sports and recreation and other... 8.2
Private health and education 6.7
Transport, storage and mail 6.3
Construction 3.3
Utilities 2.6
Extractive industries 2.2
Financial, insurance and related services 2.2
Information and communication 2.1
Public admin, defense, educ, health and soc se... 1.4
Real estate activities 0.3
Agriculture, livestock, forestry, fisheries an... 0.1

Notes: Table presents the share of type ι = 64 workers employed in each sector according to data generated
by simulating the Accommodations and Food sector shock. The shock is a 50% reduction in demand for
the Accommodations and Food sector’s output, holding demand for all other sectors’ output constant.

Table 12: Type ι = 64 workers’ labor supply by market (γ)

Market (γ) Share (%)

47 60.2
189 3.5
116 1.7
242 1.5
418 1.3
83 1.3
36 1.2

138 1.1
125 0.9
45 0.8

Notes: Table presents the share of type ι = 64 workers employed in each market (γ) according to data
generated by simulating the Accommodations and Food sector shock. The shock is a 50% reduction in
demand for the Accommodations and Food sector’s output, holding demand for all other sectors’ output
constant. Only the 10 most frequently occurring markets are shown.
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9 Conclusion

In this paper we develop a new method for clustering workers and jobs into discrete types that

relies on workers’ and jobs’ choices, rather than observable variables or expert judgments.

Our key insight is that linked employer-employee data contain a previously underutilized

source of information: millions of worker–job matches, each of which reflects workers’ and

jobs’ perceptions of the workers’ skills and the jobs’ tasks. We do so by microfounding a

classification tool from the network theory literature with a Roy model of workers matching

with jobs according to comparative advantage. The link between economic theory and

network theory provides the worker types and markets we identify with a rigorous theoretical

underpinning and clear interpretability.

We demonstrate that our network-based worker and job classifications outperform stan-

dard worker and job classifications in a number of ways. First, we show that an equilibrium

model does a better job of predicting the effects of the Rio de Janeiro Olympics on work-

ers’ earnings when workers and jobs are classified using our network-based classifications

than when they are classified using standard classifications. Second, we show that reduced

form Bartik-style regressions yield larger and more precise estimates of the effects of shocks

on workers when workers and jobs are classified using our network-based classifications as

opposed to standard classifications.

A key feature of our classifications is that they simultaneously aggregate and disaggregate

workers across occupations. They aggregate workers in different occupations who are revealed

to have similar skills (for example, retail and food service workers), while disaggregating

workers in the same occupation revealed to have distinct skills (for example course instructors

focused on physical versus academic education). Our classifications, therefore, provide value

beyond simply choosing the right granularity in, or aggregation of, occupation codes. They

identify cohesive groups of workers and jobs that are not too granular to be useful in practical

applications.

Although we apply our network-based clustering method to understanding the effects of

labor market shocks on workers, this is only the beginning of our research agenda. We are

currently working to apply different versions of the method to three different questions. First,

we use our method to improve controls for worker skills in wage decompositions. Second,

we use our worker and job classifications to improve measures of market power, based on

the intuition that if retail and food services jobs compete for the same workers, they belong

to the same market, even if they belong to different industries and occupations. Third, we

are using closely related techniques to impute occupation and other worker characteristics

in the LEHD.
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Finally, although our current model abstracts from the role of physical space in the labor

market and our empirics therefore focus on a single metropolitan area, we are working to

expand our analysis to include geography and apply it to the entire country of Brazil. This

will allow us to study the interaction of skills/tasks and geography in determining the scope

of labor markets. For example, it will allow us to distinguish between different types of

workers, likely with different types of skills, who search for jobs more nationally or more

locally.

Our method is broadly applicable to important questions in labor economics and other

fields. In addition to the applications to Bartik-style regressions we discuss in detail, our

method may be useful any time researchers need to classify workers and/or jobs. For exam-

ple, researchers studying how heterogeneous workers match with heterogeneous jobs might

classify worker and job heterogeneity using our network-based classifications. The same is

true for researchers studing the effects of shocks on workers using structural methods. More

broadly, the method we develop may be used to classify agents using revealed preference

any time agents’ choices lead to a network structure of matches. For example, our method

could be adapted to classify products and consumers based on detailed purchasing data, or

to cluster financial institutions or countries based on networks of financial or trade flows.

This paper provides a blueprint for doing so in a theoretically principled and data-driven

way.
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Appendices

A Adding geography

If we assume the commuting costs are measured in units of our numeraire good, we can add

the cost of worker i commuting to job j to the worker’s job choice as follows:

γit = arg max
γ∈{0,1,...,Γ}

ψιγwγ + ξγ + CommutingCostij + εiγt

Although we have written the commuting cost for a worker i job j pair, we do not

observe commuting costs for individual pairs. However, in the market clearing conditions we

are integrating over individual workers and jobs of the same type, so really we would only

need an integral of commuting costs (basically, average commuting costs).

B Network theory details

B.1 A primer on networks

“A network is, in its simplest form, a collection of points joined together in pairs by lines”

(Newman, 2018). The points are referred to as “nodes”, and the lines as “edges.” In Figure

8, the dots represent nodes and the lines represent edges. Networks can represent a wide

variety of phenomena. For example, in an air travel network, airports are nodes and flight

paths are edges. Similarly, in a social network, people are nodes and edges represent social

relationships like friendship. The labor market, as viewed in LEED, can also be represented

as a network. Each node represents an individual worker or job, and each edge represents

an employment spell between a worker and a job.

In a network of worker–job connections like ours, edges connect workers to jobs. This

means that there can be no edges between two worker nodes or between two job nodes; only

between one worker node and one job node. Networks like this, in which nodes belong to one

of two categories and all edges connect nodes in different categories, are known as “bipartite”

networks. This is reflected in Figure 8 by the fact that all worker nodes are in blue on the

left, all job nodes are in green on the right, and all edges (black lines) connect a worker to

a job.

There is one more concept we need to introduce before returning our focus to estimation:

the “degree” of a node. The degree of a node is the number of edges connected to that node.

In figure 8, the first (from the top) worker node has a degree of 1 because it is connected to
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exactly one edge (black line) while the first job node has a degree of 3. We index workers

with i and jobs with j. We denote the degree of the node representing worker i di and the

degree of the job representing job j dj. In Figure 8, di=1 = 1 and dj=1 = 3. As we discuss

below, a worker who changes jobs more frequently will have a higher degree, while a job

which hires more workers at a given time and/or has higher worker turnover will have a

higher degree.

Figure 8: Simple bipartite network

In the next subsection, we show how our model generates a network of worker–job links

similar to that in Figure 8, which can be observed using linked employer-employee data.

Then, in the context of our model, we show how to back out latent worker types and markets

from this observed network.

B.2 Bipartite Network Details

A network is a collection of nodes (also called “vertices”), connected to each other by edges.

A bipartite network is a network in which there are two categories of nodes, and all edges

connect a node of one category to a node of the other category. In our application, the two

categories of nodes are workers and jobs, and all edges connect an individual worker to an
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individual job. Alternatively, we could have defined a coworker network in which all of the

nodes represent individual workers, and an edge connects pairs of workers who are coworkers.

The coworker network is not a bipartite network because any node can be connected via an

edge to any other node.

One way to represent a network is an adjacency matrix, typically denoted A. The typical

element of the adjacency matrix, Aij, is the number of edges connecting nodes i and j. If

there are n nodes in the network, then the adjacency matrix will have dimensions n× n. In

equation (21) below, we present an adjacency matrix for a bipartite network. Notice that

there are two large blocks of zeros. This reflects the fact that edges only connect edges of

different categories. In our case, edges only connect workers to jobs, not jobs to jobs or

workers to workers. Suppose there are nJ jobs andd nW workers, where nJ + nW = n. Jobs

are indexed by (1, . . . , nJ) and workers by (nJ + 1, . . . , n).

A =

Jobs Workers︷ ︸︸ ︷ ︷ ︸︸ ︷



0 · · · 0 A1,nJ+1 . . . A1,n

Jobs...
. . .

...
...

. . .
...

0 . . . 0 AnJ ,nJ+1 . . . AnJ ,n

AnJ+1,1 . . . AnJ+1,nJ 0 . . . 0
Workers...

. . .
...

...
. . .

...

An,1 . . . An,nJ 0 . . . 0

We can also write the adjacency matrix as

A =

(
OnJ×nJ An

J×nW

An
W×nJ OnW×nW

)

where 0n×k is an n× k matrix of zeros, An
J×nW = (An

J×nW )T and

An
J×nW ≡


A1,nJ+1 . . . A1,n

...
. . .

...

AnJ ,nJ+1 . . . AnJ ,n


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B.3 Stochastic block model details

The stochastic in stochastic block model indicates that edges in the network are drawn

stochastically from a data generating process (DGP). The block refers to the block structure

of the DGP. Specifically, the SBM assumes that each node in the network belongs to a

group g ∈ 1, . . . , G. The probability of an edge between two nodes depends solely on group

memberships of the two nodes.30 Therefore, we can write a matrix of edge probabilities that

has a block structure:

EdgeProbability =

g(i) = 1 g(i) = 1 g(i) = 2 g(i) = 2


p11 p12 p13 p14 g(i) = 1

p21 p22 p23 p24 g(i) = 1

p31 p32 p33 p34 g(i) = 2

p41 p42 p43 p44 g(i) = 2

=


pg1,g1 pg1,g1 pg1,g2 pg1,g2

pg1,g1 pg1,g1 pg1,g2 pg1,g2

pg2,g1 pg2,g1 pg2,g2 pg2,g2

pg2,g1 pg2,g1 pg2,g2 pg2,g2


In this example, there are four nodes and two groups. Nodes 1 and 2 belong to group 1,

as denoted by g(1) = g(2) = 1. Similarly, nodes 3 and 4 belong to group 2: g(3) = g(4) = 2.

Instead of the edge probability matrix above, which can get quite large as the number of

nodes grows, we can describe the matrix with two smaller objects: a vector indicating the

group assignment of each node and a G × G matrix of group-specific edge propensities,31

where G is the number of groups. We denote the vector of group assignments ~g and the

matrix of group-specific edge propensities Ω. then

~g =


1

1

2

2


30We have described that standard SBM, as opposed to the degree-corrected version. All of our analysis

uses the degree-corrected version, however we ignore that here for simplicity of exposition.
31These are not technically probabilities but they can be normalized to be probabilities.
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and

Ω =

(
pg1,g1 pg1,g2

pg2,g1 pg2,g2

)
(21)

Now we describe how to generate a network using the stochastic block model, given

parameters. Let A be the adjacency matrix of a network with n = 4 nodes and ~g and Ω

described above, with ωrs representing an element of Ω. We assume that edges are placed

between each pair of nodes, i and j, following a Poisson distribution with mean equal to

the edge probability corresponding to the nodes’ respective groups: ωgi,gj . Therefore, the

probability of drawing Aij edges between nodes i and j is

P (Aij|ωgigj , gi, gj) =
(ωgigj)

Aij

Aij!
exp

(
−ωgigj

)
.

The probability is slightly different for self-edges (edges connecting a node to itself):32

P (Aii|ωgigi , gi) =
(1

2
ωgigi)

Aii/2

(Aii/2)!
exp

(
−1

2
ωgigi

)
.

The probability of observing the entire network, represented by A, is the product of the

probabilities of each element in the adjacency matrix:

P (A|Ω, ~g) =
∏
i<j

(ωgigj)
Aij

Aij!
exp

(
−ωgigj

)
×
∏
i

(1
2
ωgigi)

Aii/2

(Aii/2)!
exp

(
−1

2
ωgigi

)
(22)

Although equation (22) presents the standard SBM, this formulation is rarely used in prac-

tice. For empirical applications, researchers typically use an extension called the degree-

corrected stochastic block model (DCSBM). The difference between the SBM and the DCSBM

is that the DCSBM allows the expected degree of each node (the number of edges connected

to that node) to vary. This more-closely matches real world data and the DCSBM has been

shown to have far superior performance in empirical applications than the SBM (Karrer and

Newman, 2011). Let ~d be vector containing the degree of each node, with typical element di

representing the degree of node i. We can write the DCSBM as

P (A|~d,Ω, ~g) =
∏
i<j

(didjωgigj)
Aij

Aij!
exp

(
−didjωgigj

)
×
∏
i

(1
2
d2
iωgigi)

Aii/2

(Aii/2)!
exp

(
−1

2
d2
iωgigi

)
.

(23)

32For more details, see section II of Karrer and Newman (2011).
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B.4 Community detection using the stochastic block model

In Section B.3 we assumed that we know all of the parameters of the model: ~d, Ω, and

~g. However, in actual applications, we typically observe the network A and the degree

distribution ~d and want to recover the group memberships of the nodes ~g. (Conditional on

knowing ~g, we can also compute the empirical edge probabilities matrix Ω̂.) Therefore, we

recover the group memberships of the nodes, ~g, by treating equation (23) as a maximum

likelihood problem and choosing the group memberships in order to maximize the probability

of the observed adjacency matrix A, given the data. We write the likelihood

L(A|~g) =
∏
i<j

(didjωgigj)
Aij

Aij!
exp

(
−didjωgigj

)
×
∏
i

(1
2
d2
iωgigi)

Aii/2

(Aii/2)!
exp

(
−1

2
d2
iωgigi

)
(24)

and our task is to choose

~̂g = arg max
~g
L(A|~g)

B.5 Bipartite stochastic block model details

The bipartite stochastic block model (BiSBM) is an extension of the SBM (Section B.3)

applied to bipartite networks (Section B.2). The edge probability matrix has the same block

structure as in the SBM, however since it is a bipartite network, there are two categories of

nodes — in our case workers and jobs — and all edges connect a node from one category (a

worker) to a node from the other (job).

Suppose there are two types of workers, indexed by ι ∈ 1, 2, and two types of jobs,

indexed by γ ∈ 1, 2. Suppose further that there are 4 individual workers and 4 individual

jobs, indexed by i = 1, . . . , 4 and j = 1, . . . , 4, respectively. There are two individual workers

and two individual jobs of each type. Denote the probability of an edge between a type ι
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worker and a job in market γ as ωιγ. Then we have the following edge probability matrix

Jobs Workers︷ ︸︸ ︷ ︷ ︸︸ ︷
j = 1 j = 2 j = 3 j = 4 i = 1 i = 2 i = 3 i = 4 }Worker/Job Index

γ = 1 γ = 1 γ = 2 γ = 2 ι = 1 ι = 1 ι = 2 ι = 2 }Worker/market



j = 1, γ = 1 0 0 0 0 ω11 ω11 ω21 ω21

Jobs
j = 2, γ = 1 0 0 0 0 ω11 ω11 ω21 ω21

j = 3, γ = 2 0 0 0 0 ω12 ω12 ω22 ω22

j = 4, γ = 2 0 0 0 0 ω12 ω12 ω22 ω22

i = 1, ι = 1 ω11 ω11 ω12 ω12 0 0 0 0
Workers

i = 2, ι = 1 ω11 ω11 ω12 ω12 0 0 0 0

i = 3, ι = 2 ω21 ω21 ω22 ω22 0 0 0 0

i = 4, ι = 2 ω21 ω21 ω22 ω22 0 0 0 0

.

The primary takeaway from this matrix is that the probability of a connection between a

pair of nodes is determined by their group memberships. If worker i belongs to type ι and

job j belongs to type γ, then the probability of worker i matching with job j is governed by

ωιγ. The two blocks of zeros in this matrix reflect the fact that the probability of an edge

between two workers or two jobs is zero in a bipartite network.

We can write the DGP for the BiSBM as we did above for the standard or degree-

corrected SBM. Here we will use the degree-corrected version, since that is what we use for

estimation The probability of Aij edges between worker i and job j is given by

P (Aij|ωgigj , gi, gj, di, dj) =
(didjωgigj)

Aij

Aij!
exp

(
−didjωgigj

)
From this, we can compute the likelihood of the full observed network, represented by the

adjacency matrix A. However, it is inmportant to note that the product below is only

over pairs of nodes that belong to opposite categories. That is, if i indexes workers and j

indexes jobs, we are only taking the product over i, j pairs, not i, i′ or j, j′ pairs. Again,

this is because in a bipartite network, edges can only connect nodes that belong to different

categories.

P (A|~d,Ω, ~g) =
∏
i<j

(didjωgigj)
Aij

Aij!
exp

(
−didjωgigj

)
. (25)
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Notice that this expression lacks the second term found in equation (23), which captures

self-edges in which an edge runs connects a node to itself. This is because self-edges are

impossible in a bipartite network, since self-edges would connect nodes belonging to the

same category (e.g. workers to workers).
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B.6 Visual representation of linked employer-employee data as a

network

Our raw data looks like what is presented in Table 13, with the exception that we generate

the “JobID” column ourselves by concatenating the establishment code (‘Estab Code’) and

occupation code (‘Occ Code’). However, we only use the two variables ‘WorkerID’ and

‘JobID’ in estimation. Therefore, in Figure 9, we show the worker and job IDs from the data

alongside a network representation of the same data. In the network representation, workers

are blue dots on the right, jobs are yellow dots on the left, and black lines represent edges

connecting workers to jobs at which they were employed. Finally, in Table 14, we present

an adjacency matrix representation of the same network.

Table 13: Sample linked-employer-employee data

WorkerID Establishment Occupation Estab Code Occ Code JobID

1 Walmart Cashier 1 1 1 1
2 Walmart Cashier 1 1 1 1
2 Kroger Cashier 2 1 2 1
3 Walmart Cashier 1 1 1 1
3 Walmart Greeter 1 2 1 2
4 Walmart Greeter 1 2 1 2
5 Walmart Cashier 1 1 1 1
5 Kroger Cashier 2 1 2 1
6 Walmart Greeter 1 2 1 2
6 CVS Manager 3 3 3 3
6 Chipotle Manager 4 3 4 3
7 Chipotle Manager 4 3 4 3
8 CVS Manager 3 3 3 3
8 Chipotle Manager 4 3 4 3
9 Chipotle Manager 4 3 4 3
9 Kroger Asst. Mgr 2 5 2 5
10 CVS Manager 3 3 3 3
10 Chipotle Manager 4 3 4 3
10 Chili’s Waiter 5 4 5 4
10 Kroger Asst. Mgr 2 5 2 5
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Figure 9: Representing the data as a network

WorkerID JobID

1 1 1
2 1 1
2 2 1
3 1 1
3 1 2
4 1 2
5 1 1
5 2 1
6 1 2
6 3 3
6 4 3
7 4 3
8 3 3
8 4 3
9 4 3
9 2 5
10 3 3
10 4 3
10 5 4
10 2 5
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Table 14: Adjacency matrix: A

Worker \Job 1 1 1 2 2 1 2 5 3 3 4 3 5 4

1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0
3 1 1 0 0 0 0 0
4 0 1 0 0 0 0 0
5 1 0 1 0 0 0 0
6 0 1 0 0 1 1 0
7 0 0 0 0 0 1 0
8 0 0 0 0 1 1 0
9 0 0 0 1 0 1 0
10 0 0 0 1 1 1 1
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C Model Solution Appendix

Firm’s problem

This section describes a slightly different version of the firm’s problem than we presented

in the body of the paper. In the body of the paper we had a set of competitive firms in each

sector, whereas in what follows here we have a single representative firm in each sector.

max
`γs

ps
∏
γ

`βγsγs −
∑
γ

wγ`γs (26)

There are S optimizations with Γ choice variables each, giving us S × Γ FOCs.

FOC:

`Dγs =
psβγs

(∏
γ′ `

D
γ′s

βγ′s
)

wγ
(27)

Combining the Γ FOCs for a given sector S:

`Dγs =
βγs
βγ′s

wγ′

wγ
`Dγ′s (28)

Plugging in 28 for `Dγs in equation 27, we have

`Dγs =

[
ps

(
βγs
wγ

)1−
∑
γ′ βγ′s∏

γ′

(
βγ′s
wγ′

)βγ′s] 1
1−
∑
γ′ βγ′s

= `Dγs (~p, ~w) (29)

which represents labor demand for firm s, using only FOCs for firm s.33

Since labor is the only factor of production, we can write firm s’s product market supply

as

ySs = ySs
(
{`Dγs(~p, ~w)}Γ

γ=1

)
=
∏
γ

`Dγs
βγs

(30)

33We could alternatively write this expression as

`Dγs =

(
βγs
wγ

)ps∏
γ′

(
βγ′s
wγ′

)βγ′s 1
1−

∑
γ′ βγ′s

I’m not sure which is preferable, but the latter could possibly help with intuition.
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Household’s problem

max
{yDs }Ss=1

(∑
s

a
1
η
s y

D
s

η−1
η

) η
η−1

︸ ︷︷ ︸
U({yDs }Ss=1)

s.t.
∑
s

psys ≤ Y

Lagrangean: (∑
s

a
1
η
s y

D
s

η−1
η

) η
η−1

︸ ︷︷ ︸
U(~yD)

− λ

(∑
s

psys − Y

)

FOC:

η

η − 1
U

1
η
η − 1

η
a

1
η
s y

D
s

− 1
η − λps = 0

Simplifying,

U
1
η a

1
η
s y

D
s

− 1
η − λps = 0

Rearranging,

yDs =
U

λη
as
pηs

(31)

Next, we plug this into the constraint satisfied with equality (
∑

s psy
D
s = Y ):

U

λη

∑
s

(
asp

1−η
s

)
= Y

⇒λη =
U

Y

∑
s′

(
a′sp
′1−η
s

)
Plugging this into 31, we have our expression for product demand:

yDs =
asY

pηs
∑

s′

(
as′p

1−η
s′

) = yDs (~p, Y ) (32)

Worker’s problem
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max
γ

wγψιγ + ξγ + εiγ, εiγ ∼ T1EV (θ)

Solving the worker’s problem gives labor supply:

`Sγ (~w) =
∑
ι

mι

 exp
(
ψιγwγ+ξγ

ν

)
Γ∑

γ′=0

exp
(
ψιγ′wγ′+ξγ′

ν

)
ψιγ (33)

Equilibrium

Equilibrium wages ~wΓ×1 and prices ~pS×1 must satisfy three market clearing conditions:

1. Labor market: ∑
s

`Dγs = `Sg ∀γ ∈ {1, . . . ,Γ}

2. Product market:

yDs = ySs ∀s ∈ {1, . . . , S}

3. Spending = Income = Wages + Profits

Y ≡
∑
s

psy
D
s = W + Π ≡

∑
s

psy
S
s

where

1. Product demand:

yDs =
asY

pηs
∑

s′

(
as′p

1−η
s′

)
2. Product supply:

ySs =
∏
γ

`Dγs
βγs

3. Labor supply:

`Sγ (~w) =
∑
ι

mι

 exp
(
ψιγwγ+ξγ

ν

)
Γ∑

γ′=0

exp
(
ψιγ′wγ′+ξγ′

ν

)
ψιγ
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4. Labor demand:

`Dγs =

[
ps

(
βγs
wγ

)1−
∑
γ′ βγ′s∏

γ′

(
βγ′s
wγ′

)βγ′s] 1
1−
∑
γ′ βγ′s

5. Budget (which can be plugged in for Y in the product demand equation)

Y =
∑
s

psy
S
γs

This is enough for equilibrium, which we find numerically using fixed point iteration.

The algorithm proceeds as follows:

1. Choose vectors of start values for wages ~w and prices ~p

2. Compute labor supply `Sγ (~w) given wages ~w following equation 33

3. Compute labor demand `Dγs (~p, ~w) given these start values following equation 29

4. Compute the product supply ySs
(
{`Dγs(~p, ~w)}Γ

γ=1

)
implied by the labor demand choice

in the previous step following equation 30

5. Compute household income Y =
∑

s psy
S
γs implied by product supply in the previous

step

6. Compute product demand yDs (~p, Y ) following equation 32

7. Update prices using the update rule pt+1
s = pts

(
yDs
ySs

)ρ
, where ρ is a dampening factor

that controls the size of the update and t indexes iterations. Intuitively, we increase

prices if demand exceeds supply, and decrease them if supply exceeds demand. The

size of the update depends on the size of the mismatch between supply and demand.

8. Update wages using the update rule wt+1
γ = wtγ

(
`Dγ
`Sγ

)ρ
9. Repeat steps 2-8 until convergence
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D Choosing number of worker types and markets

Equation 13 defined the probability of observing our network of worker–job matches, denoted

by the adjacency matrix A:

P

(
A

∣∣∣∣~ι, ~γ, ~di, ~dj,P) =
∏
i,j

(
didjPι(i)γ(j)

)Aij
Aij!

exp
(
did

J
i Pι(i)γ(j)

)
. (34)

As Peixoto (2017) shows, we can think of this in Bayesian terms and write the full joint

distribution of the data, A, and the parameters, ~ι, ~γ, ~di, and ~dj as

P

(
A,~ι, ~γ, ~di, ~dj,P

)
= P

(
A

∣∣∣∣~ι, ~γ, ~di, ~dj,P)P(~di, ~dj∣∣∣∣~ι, ~γ,P)P(P∣∣∣∣~ι, ~γ)P(~ι, ~γ) (35)

where P

(
~di, ~dj

∣∣∣∣~ι, ~γ,P), P

(
P
∣∣∣∣~ι, ~γ), and P

(
~ι, ~γ

)
are prior probabilities.

It turns out that this Bayesian formulation has an equivalent information-theoretic in-

terpretation. We can rewrite the joint probability defined in equation (35) as

P

(
A,~ι, ~γ, ~di, ~dj,P

)
= 2−Σ

where

Σ = − log2 P

(
A,~ι, ~γ, ~di, ~dj,P

)
= S + L

is called the description length of the data and represents the number of bits necessary to

encode the data.

S = − log2 P

(
A

∣∣∣∣~ι, ~γ, ~di, ~dj,P)
represents the number of bits necessary to encode the model, conditional on knowing the

model parameters, and

L = − log2 P

(
~ι, ~γ, ~di, ~dj,P

)
is the number of bits necessary to encode the model parameters. S will be small if the

model fits the data well, and L will be small if the complexity of the model (in our case, the

number of worker types and markets) is small. This implicitly defines a trade-off. As we
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add more worker types and markets, the model fits the data better, reducing S; however,

we are increasing the complexity of the model and thereby increasing L. MDL resolves this

trade-off by minimizing S + L.

We choose the assignment of workers to worker types and jobs to markets that maximizes

the posterior of the distribution, equation (35). This is equivalent to choosing the set of

parameters that yields the smallest description length, and therefore compresses the data

the most. Intuitively, we can think of L as a penalty term that increases with the number

of parameters, and thereby prevents overly complex models. If the number of worker types

and markets becomes large, S will increase, indicating a better model fit, but the penalty

term L will increase as well. The chosen model will therefore be the one that maximizes the

quality of the model fit relative to the cost imposed by the penalty term.

For more detail, see Peixoto (2014b) and Gerlach et al. (2018).

E Identification of Labor Supply Parameters

Taking the first order conditions of equation 17 with respect to each of the parameters

provides intuition for how the parameters are identified.

E.1 ν

`ν = 0⇒
N∑
i=1

T∑
t=1

cit

[∑
γ′

P(γ′|Θ)(φιiγ′ + ξγ′)− (φιγit + ξγit)

]
= 0

Intuitively, ν will be larger if more workers’ actual market choices deviate from the choice

those workers would have made in the absence of the preference shock ε. The first term in

the bracket,
∑

γ′ P(γ′|Θ)(φιiγ′ + ξγ′) is the expected systematic (excluding the idiosyncratic

component, ε) utility of the optimal market choice for worker i and, and the second term,

φιγit + ξγit is the systematic utility for worker i in the market they actually chose in period

t. Intuitively, if this difference is large, it must be because some workers received large

idiosyncratic preference shocks, εiγt, which caused them to accept otherwise suboptimal jobs

and is indicative of a large ν. We can also see this by taking limits. If ν goes to zero, the

P(γ|Θ) degenerates to a single point and therefore the difference inside the brackets would

be zero. On the other hand, as ν goes to infinity, the market choice probabilities converge to

a uniform distribution and the differences between expected and realized systematic utility
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will be large.

E.2 ξγ

`ξγ = 0⇒
N∑
i=1

T∑
t=1

cit1{γit = γ} −
N∑
i=1

T∑
t=1

citP(γ|ιi; Θ) = 0

The above expression chooses ξ, which enters the expression through P(γ|ιi; Θ), in order

to equate the fraction of job switchers observed to choose market γ with the probability that

a given job-switcher would choose γ. In otherwords, ξ is identified by market choices.

E.3 φιγ

`φιγ = 0⇒ 1

σ2

N∑
i=1

T∑
t=1

logωit − log φιγit
φιγit

1{γit = γ, ιi = ι}+

+
1

ν

N∑
i=1

T∑
t=1

cit1{ιi = ι} [1{γit = γ} − P(γit|ιi; Θ)] = 0

The above expression is highly intuitive. It tells us that identification of φιγ comes from

two sources: earnings for all workers (first term), and market choices for job-switchers (second

term). The first term is minimized when log φιγ is close to actual log-earnings logω. The

second term is minimized when the theoretical probability of a type ι job-switcher choosing

a job in market γ equals the fraction of type ι job-switchers who actually choose market γ

jobs. The relative weight of these terms in calculating the likelihood is determined by the

variances of measurement error in wages and idiosyncratic shocks, σ2 and ν, respectively.

Specifically, if wages are observed with considerable error (large σ2) then we put more weight

on the second term, which is identified by job changes. On the other hand, if the idiosyncratic

preferences have high variance (large ν), then wages are more informative than job changes.

Another thing to notice is that in cases where we observe no matches for a particular (ι, γ)

pair, identification comes purely from the second term (because 1{γit = γ, ιi = ι} = 0 in the

first term). This makes sense, because we do not observe wages for matches that do not occur.

Identification based on job choices in the second term relies on the assumption of a T1EV-

distributed preference parameter. This is because, in order to achieve a choice probability

of zero to match the count of observed matches, φιγ + ξγ will be forced towards −∞. In

practice, we will do something to handle zeros because we do not want to set φιγ +ξγ = −∞.
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This allows us to achieve identification of the entire Φ matrix despite sparsity in observed

(ι, γ) matches, although identification for sparse parts of Φ relies strongly on functional form

assumptions. While identification based on functional form assumptions is suboptimal, we

are doing so primarily for (ι, γ) pairs that rarely match, so imprecise estimation of these

parameters will have minimal effect on our actual results. On the other hand, moving away

from non-parametric identification allows us to identify a much higher degree of productivity

heterogeneity.

More technically, if an (ι, γ) cell has zero matches, i.e. if 1{γit = γ, ιi = ι} = 0 for

all i, t, then the FOC above will be reduced to
∑N

i=1

∑T
t=1 cit1{ιi = ι}P(γit|ιi; Θ) = 0.

This implies that there is no solution to the MLE problem, as φιγ + ξγ would have to

go to minus infinity to make the FOC equation zero. A potential way to handle this is

to add a small positive constant inside the last FOC brackets multiplied by the indicator

1

{∑N
i=1

∑T
t=1 cit1{γit = γ, ιi = ι} = 0

}
.

E.4 λ

Note that we have dropped ιγ subscripts here, but the estimation would be approximately

the same with the subscripts.

`λ = 0⇒ 1

λ

(
N∑
i=1

T∑
t=2

cit

)
− 1

1− λ

(
(T − 1)N −

N∑
i=1

T∑
t=2

cit

)
= 0

⇒ (1− λ)

(
N∑
i=1

T∑
t=2

cit

)
= λ

(
(T − 1)N −

N∑
i=1

T∑
t=2

cit

)

⇒

(
N∑
i=1

T∑
t=2

cit

)
= λ(T − 1)N

⇒ λ̂ =

∑N
i=1

∑T
t=2 cit

(T − 1)N

E.5 σ

Again, we have dropped ιγ subscripts here, but the estimation would be approximately the

same with the subscripts.

We proceed taking derivatives w.r.t. σ, knowing that fω(ω|Θ) = 1
ωσ
√

2π
e
− 1

2

(
logω−log φιγ

σ

)2

=

1
ωσ
φ
(

logω−log φιγ
σ

)
and that log fω(ω|Θ) = − log(ω

√
2π)− log σ − σ−2 1

2
(logω − log φιγ)

2
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Figure 10: Coefficient estimates with worker and job misclassification

`σ = 0⇒
N∑
i=1

T∑
t=1

∂ log fω(ωit|Θ)

∂σ
= 0

= −NT
σ

+ σ−3

N∑
i=1

T∑
t=1

(logωit − log φιγit)
2 = 0

⇒ σ̂2 =
N∑
i=1

T∑
t=1

(
logωit − log φ̂ιγit

)2

NT
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Figure 11: R2 values with worker and job misclassification
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F Misclassification

G Measurement error

The Bartik regressions in equation 20 can be written

∆Earningsg = β0 + β1Bartikg + εg

where

Bartikg =
∑
m

(Exposuregm × Shockm)

The earnings variable depends only on worker classifications, g, however the Bartik instru-

ment depends on both worker and job classifications, g and m. This means that worker

classification error will affect both the LHS and the RHS, while job classification error will

affect only the RHS.

For simplicity, Let Y = {∆Earningsg}Gg=1, X = {Bartikg}Gg=1, and U = {εg}Gg=1. Then

our regression model is

Y = Xβ + U

However we measure both X and Y with additive measurement error, VX and VY . Denote

our measures of X and Y , X̃ and Ỹ , respectively, where

X̃ = X + VX

Ỹ = Y + VY

If we estimate the regression using the noisy measures X̃ and Ỹ we obtain

β̃ = (X̃T X̃)−1(X̃T Ỹ )

For simplicity, let’s assume that X, VX , and VY are orthogonal to the regression error term
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ε. Asymptotically,

β̃
p→ Cov(X + VX , Y + VY )

V ar(X + VX)

=
Cov(X + VX , Xβ + U + VY )

V ar(X + VX)

=
βV ar(X) + Cov(X,U) + Cov(X, VY ) + βCov(X, VX) + Cov(VX , U) + Cov(VX , VY )

V ar(X) + V ar(VX) + 2Cov(X, VX)

For simplicity, and because we are focusing on the problem of measurement error rather than

endogenous regressors, we assume that the regression error U is independent of both X and

VX : U ⊥⊥ X, VX . This implies that Cov(X,U) = Cov(VX , U) = 0 and allows us to simplify

the above expression to

β̃
p→ βV ar(X) + βCov(X, VX) + Cov(X, VY ) + Cov(VX , VY )

V ar(X) + V ar(VX) + 2Cov(X, VX)

The true coefficient β can be written

β =
Cov(X, Y )

V ar(X)

and in our application we can reasonably assume β > 0⇔ Cov(X, Y ) > 0.

To ascertain the direction of the bias created by measurement error we compare β̃ to β̂.

Theoretically, the direction of the bias is ambiguous. However, we can determine the sign of

the bias under different assumptions about the covariances.

The simplest assumption would be that all of the covariances involving measurement

error terms are 0: Cov(X, VY ) = Cov(X, VX) = Cov(VX , VY ) = 0. This is equivalent to

classical measurement error, giving us the familiar attenuation bias result:

β̃
p→ Cov(X, Y )

V ar(X) + V ar(VX)
< β̂

p→ Cov(X, Y )

V ar(X)
.

However, we almost certainly have non-classical measurement error, so let’s consider

what the bias would be under more reasonable assumptions. Suppose we randomly assigned

workers and jobs to groups. Then both X̃ and Ỹ would simply be equal to the overall means:

X̃g = X̄ ∀g and Ỹg = Ȳ ∀g. This means that for large values of Y , Ỹ < Y and similarly for

X. This implies that Cov(X, VX) < 0 and Cov(Y, VY ) < 0. Combining this with the fact

that Cov(X, Y ) > 0 implies that Cov(X, VY ) < 0, Cov(Y, VX) < 0, and Cov(VX , VY ) > 0.
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Therefore,

β̃
p→ βV ar(X) + β

<0︷ ︸︸ ︷
Cov(X, VX) +

<0︷ ︸︸ ︷
Cov(X, VY ) +

>0︷ ︸︸ ︷
Cov(VX , VY )

V ar(X) + V ar(VX)︸ ︷︷ ︸
>0

+ 2Cov(X, VX)︸ ︷︷ ︸
<0

In this case it is theoretically ambiguous whether β̃ > β̂ or β̃ < β̂. Empirically, we con-

sistently find that β̃ < β̂. This means that it must be the case that the terms that tend

to reduce β̃ — V ar(VX), βCov(X, VX), and Cov(X, VY ) — must dominate the terms that

increase β̃ — Cov(VX , VY ) and 2Cov(X, VX).

We demonstrate this point through a simulation. We simulate a shock as described in

Section 8.2. We estimate a series of regressions on changes in earnings by worker type on the

Bartik instrument with jobs classified by market, however in each regression we randomly

misclassify some percentage of workers and jobs. We loop from 0 to 100 percent of workers

misclassified in intervals of five percent, and within each loop perform the same loop from

0 to 100 percent of jobs misclassified. We present the coefficients on the Bartik instrument

in Figure 10 and the R2 values in Figure 11. R2 values decline approximately monotonically

with the degree of misclassification in both the worker and job dimensions, as expected. By

contrast, there is much less of a coherent story with the regression coefficients. Again, this

is consistent with the theoretical prediction that the effect of misclassification on regression

coefficients is indeterminate.

H Proof that Aij follows a Poisson distribution

If an individual worker i only searched for a job once, then the probability of worker i match-

ing with job j would be equal to Pij = Pιγdj and Aij would follow a Bernoulli distribution:

Aij ∼ Bernoulli(Pιγdj).

However, since worker i searches for jobs ci ≡
∑T

t=1 cit times, Aij is actually the sum of ci

Bernoulli random variables, and is therefore a Binomial random variable. Conditional on

knowing ci,

Aij|ci ∼ Binomial(ci,Pιγdj).

However, we still need to take into account the fact that ci is a Poisson-distributed random

variable with arrival rate di. Consequently, the unconditional distribution of Aij is Poisson
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as well:

Aij ∼ Poisson(didjPιγ).

We prove this fact by multiplying the conditional density of Aij|ci by the marginal density

of ci to get the joint density of Aij and ci, and then integrating out ci.

P (Aij, ci) = P (Aij|ci)︸ ︷︷ ︸
Bin(ci,djPιγ)

× P (ci)︸ ︷︷ ︸
Poisson(di)

Deriving the joint distribution:

P (Aij, ci) =

(
ci
Aij

)
(djPιγ)

Aij(1− djPιγ)ci−Aij ×
dcii exp (−di)

ci!

We want to find out the marginal distribution of Aij:

P (Aij) =
∞∑
ci=0

P (Aij, ci)

=
∞∑
ci=0

(
ci
Aij

)
(djPιγ)

Aij(1− djPιγ)ci−Aij ×
dcii exp (−di)

ci!

=
∞∑
ci=0

ci!

Aij!(di− Aij)!
(djPιγ)

Aij(1− djPιγ)ci−Aij ×
dcii exp (−di)

ci!

=
(djPιγ)

Aij exp (−di)
Aij!

∞∑
ci=0

1

(di− Aij)!
(1− djPιγ)ci−Aijdcii

If the summation term is equal to

∞∑
ci=0

1

(di− Aij)!
(1− djPιγ)ci−Aijdcii = d

Aij
i exp (di(1− djPιγ)) (36)

then P (Aij) =
(didjPιγ)Aij exp (−didjPιγ)

Aij !
, i.e. Aij would be Poisson distributed:

Aij ∼ Poisson(didjPιγ)
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Proving (36) is equivalent to proving the following equality:

1 =
1

d
Aij
i exp (di(1− djPιγ))

∞∑
ci=0

1

(di− Aij)!
(1− djPιγ)ci−Aijdcii

Proof:

d
−Aij
i exp (−di(1− djPιγ))

∞∑
ci=0

1

(di− Aij)!
(1− djPιγ)ci−Aijdcii =

=
∞∑
ci=0

exp (−di(1− djPιγ))
(di− Aij)!

(1− djPιγ)ci−Aijd
ci−Aij
i

=
∞∑
ci=0

exp (−di(1− djPιγ))
(di− Aij)!

(di(1− djPιγ))ci−Aij

We assume λ = di(1− djPιγ) for simplicity and we apply a change of variables z = ci − Aij

=
∞∑
z=0

exp (−λ)

z!
λz, knowing that in our problem ci ≥ Aij, i.e. z ≥ 0.

= 1

Since we have the p.d.f. of a Poisson r.v. inside the summation, i.e. z ∼ Poisson(λ) �

Therefore, we have

Aij ∼ Poisson(didjPιγ)

I Worker and firm fixed effects

Following Bonhomme et al. (2020) and others, we decompose the variance in workers’ log

earnings into a component explained by worker fixed effects, a component explained by firm

fixed effects, and a component explained by the covariance between worker and firm fixed

effects. We find that firm effects explain 16% of the variance in log earnings in our data and

the covariance between worker and firm effects explains 11%. However, Bonhomme et al.

(2020) show that estimates of the firm effects component are subject to considerable upward

bias due to limited mobility of workers between firms. Therefore, building upon the approach

of Bonhomme et al. (2019; 2021), we re-estimate the model at the group level, replacing firm
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effects with market (γ) effects. Using this grouped-data approach, we find that the share of

the variance explained by market effects, as opposed to firm effects, falls to 1.2% and the

share of variance explained by worker–market covariance is 2.6%.
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