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1 Introduction

In many econometric models, the behaviour of commonly used inference procedures can
depend crucially on the value of nuisance parameters. There are many cases where the
asymptotic distributions of test statistics derived using standard (fixed parameter) argu-
ments provide poor approximations to the finite sample distribution for certain values of
nuisance parameters. When this occurs, the corresponding tests justified by such asymptotic
arguments may have (finite sample) size far in excess of the nominal level.

In this paper I develop a general framework for conducting inference on a finite dimen-
sional parameter in a semiparametric model, robust to (sequences of) values of a possibly
infinite dimensional nuisance parameter which may invalidate standard inference methods.
In particular, the main contribution of this paper is to show that semiparametric score tests
based on the efficient score function (e.g. Bickel, Klaassen, Ritov, and Wellner, 1998; van der
Vaart, 2002) are robust under mild assumptions which allow for, among others, (i) iden-
tification failure, (ii) nuisance parameters on the boundary and (iii) the use of regularised
estimates of nuisance parameters.

Importantly — and unlike other general approaches put forward in the robust inference
literature (e.g. Andrews and Guggenberger, 2009, McCloskey, 2017 and Elliott, Miiller,
and Watson, 2015) — this approach permits the nuisance parameter which causes standard
inferential approaches to break down to be infinite dimensional.

A key benefit of this approach is that this efficient score test does not sacrifice power in
order to obtain this robustness: when classical regularity conditions hold, the test enjoys
classical optimality properties. Additionally, I demonstrate that the test is minimax optimal
in some cases which fall in-between classical regularity conditions and the weaker conditions
under which the robustness results of this paper are obtained. Such results apply, for
example, when the parameter of interest is underidentified. Moreover these tests are often
easy to compute and require only x? critical values.

The semiparametric models I consider are parametrised by a pair v = (0,n) where 0 is
the parameter of interest and 7 collects all nuisance parameters (and is therefore typically
infinite dimensional). ~ fully parametrises the distribution of the observed data and I write
the corresponding probability law as P,. This setup permits a large range of models regularly
used in practice and includes both traditional parametric models and models defined by
moment conditions as special cases.

The theoretical results of this paper are derived under a few high level conditions, for
which some more primitive conditions are given subsequently. The main condition is local
asymptotic normality (LAN) of the model, which implicitly defines score functions for 6 and
1. LAN specifies that the logarithms of certain likelihood ratios posses a local quadratic

approximation and — in the i.i.d. case considered in this paper — can be demonstrated to



hold under an Lo-differentiability condition known as “differentiability in quadratic mean”
(DQM).! Such conditions are common in the semiparametric statistical theory as expounded
by e.g. Bickel et al. (1998) or van der Vaart (2002).? This literature usually complements
LAN (or DQM) with additional regularity conditions, such as (a) the non-singularity of
information matrices and (b) all parameters lying in the interior of the parameter space.?
These conditions rule out a number of cases of interest in econometrics. For example, (a) the
non-singularity of the information matrix is often violated when the parameter of interest
is under- or un-identified; (b) many model specifications permit nuisance parameters to lie
on the boundary. Fortunately, as I show in this paper, valid inference can be conducted
without these additional conditions.*

With the LAN condition in hand, the efficient score function (for the parameter of
interest) can be defined as the orthogonal projection (in Ls) of the score function for 6 on
the orthocomplement of the set of score functions for 7. This efficient score function is the
basis of the robust inferential theory put forward in this paper. The main test statistic I
consider, the efficient score statistic, is the quadratic form of an estimate of the efficient
score function, weighted by a (pseudo-)inverse of its (estimated) variance matrix.> The key
insight I exploit is that — under the null — the limiting distribution of the efficient score
function is the same regardless of the (local) nuisance parameter sequence along which the
limit is taken. This directly leads to robustness of the efficient score test against such
sequences and consequently that such tests control size in a (locally) uniform manner over
certain compact subsets. In contrast, there are many models in which this property fails to
hold for commonly used test statistics: different sequences of nuisance parameters consistent
with the null hypothesis result in different limiting distributions.

Moving from size to power, the efficient score test has attractive optimality properties if
the possible local nuisance parameter values are indexed by a linear space.® Firstly, if the
covariance matrix of the efficient score function is non-singular then the efficient score test is
asymptotically uniformly most powerful within the class of asymptotically invariant tests as

defined and demonstrated by Choi et al. (1996).” Moreover, if the covariance matrix of the

1See e.g. Le Cam and Yang (2000, Chapters 6 and 7).

2Similar quadratic expansions of an objective function have also been previously used to analyse nonstandard
models in econometrics. See, for instance, Andrews (2001); Andrews and Cheng (2012).

3Cf. e.g. Definitions 2.1.1, 2.1.2 and 3.1.1 of Bickel et al. (1998).

4Cf. section 6.9 of Le Cam and Yang (2000) where the authors explicitly discuss a number of simplifying
assumptions which are often made but are not essential. Their point (v), that “the points ... are interior
points of © € R¥” is clearly directly relevant to the case (b) with parameters potentially on the bound-
ary. For (a), where un- or under-identification of the parameter of interest may cause singularity of the
information matrix, cf. Le Cam and Yang, 2000, example (a), pp. 56 - 57.

5When the variance matrix is non-singular, the corresponding efficient score test is the same as the “effective
score test” of Choi, Hall, and Schick (1996). Additionally, the efficient score statistic can be viewed as the
semiparametric analogue of Neyman’s C(«) statistic (Neyman, 1959, 1979).

6This is often — but not always — the case. It fails, for example, at boundary points of the parameter space.
See Rieder (2014) for a discussion and some optimality results in such cases.

"For scalar parameters the asymptotic invariance can be replaced by asymptotic unbiasedness for two-sided



efficient score function has positive rank, I establish that the test enjoys a local asymptotic
minimax optimality property. In addition to the standard full rank case, this situation may
arise when the parameter of interest is underidentified.

I work out the details of the application of the general theory to two econometric models:
a single index model where the link function may be relatively flat compared to sampling
variation and a linear simultaneous equations model where identification may be weak when
an identifying assumption of non-Gaussianity is close to failing. In each case, the models
have nonstandard features which can invalidate some standard approaches to inference. For
each model I give primitive conditions that allow (i) derivation of the efficient score function
and (ii) a demonstration that the high level conditions required for the application of the
previously developed theory are satisfied. Crucially, the assumptions imposed do not carve
out parts of the parameter space which cause problems for other testing approaches.

Firstly, I consider a single index model (SIM). The SIM is a popular model in econo-
metrics as it retains a large amount of flexibility whilst successfully combating the curse
of dimensionality. Identification of parameters in the index function requires a number of
assumptions, including the non-constancy of the link function. As is usual with points of
identification failure, if the link function is sufficiently close to constancy relative to the
sample size, a weak identification problem obtains. Importantly, the identification status of
the parameter of interest in this model depends on the link function, an infinite dimensional
nuisance parameter. Additionally regularised estimation is required to perform inference in
this model. I demonstrate that the efficient score test provides (locally uniformly) valid size
control in spite of these issues.

Secondly, I examine a semiparametric linear simultaneous equations model (LSEM). The
LSEM is a foundational model in econometrics, used to analyse equilibrium relationships.
As is well known, the simultaneity problem precludes the identification of all structural
parameters from observed data without further restrictions, leading researchers to adopt
alternative methods (e.g. analysing only one equation with the help of instrumental variable
techniques); see Dhrymes (1994) for an in-depth review.

In fact, the identification status of the structural parameters of interest depends on the
true error distribution (an infinite dimensional nuisance parameter). In particular, if no
more than one of the (mutually independent) error components is Gaussian the structural
parameters are identified as a consequence of the Darmois-Skitovich Theorem (Comon,
1994).% If multiple components are Gaussian the structural parameters may be under- or
un-identified and standard inferential approaches may fail to control size. As is typical
in models with points of identification failure, such behaviour is also observed if the true

error distributions are sufficiently to close to Gaussianity, relative to sampling variation.

tests; for one-sided tests the asymptotic optimality holds over all tests of correct asymptotic level.
8Strictly speaking the identification result is up to column permutations and sign changes of the matrix
which transforms the structural shocks into reduced form shocks.



In addition to these potential identification problems, regularised estimation is required to
handle the non-parametric part of the model, leading to regularisation bias. I demonstrate
that despite the presence of these non-standard features, the efficient score test provides
(locally uniformly) valid and efficient inference in the LSEM model, providing researchers
with a direct approach to conduct inference on structural parameters in linear simultaneous
systems without needing to employ, for example, instrumental variables approaches.

I conduct a large scale simulation study based on each example. The results verify
that the asymptotic size results obtained provide a good guide to finite sample size, with
the efficient score test always being correctly sized, including in cases where alternative
procedures fail to correctly control size. The simulation studies also highlight the power
of this testing approach and suggest that the asymptotic approximations provide a good
guide to finite sample power, with finite sample power curves and surfaces matching the
predictions of the asymptotic theory.

To illustrate the practical application of the approach, I use the LSEM to examine the
labour supply behaviour of US men. Wages and hours are typically considered to form a
simultaneous system. If the distribution of the error terms in this system is not (local to)
Gaussian, this approach permits identification of the structural parameters of interest in the
presence of this simultaneity without, for instance, instrumental variables.? T find a small
but positive effect of wage increases on hours worked for hourly paid workers, but no effect

for salaried workers.

1.1 Relation to the literature

This paper is primarily a contribution to the literature on general approaches to robust
inference methods for statistical and econometric models with non-standard asymptotic
behaviour in part of the parameter space.

A number of papers analyse size-correction methods to provide inference valid uniformly
over nuisance parameter values. For instance, Andrews and Guggenberger (2009, 2010a,b)
analyse the use of resampling methods and data-dependent critical values to provide uni-
formly correct size control over the parameter space; McCloskey (2017) provides alternative
size correction approaches based on Bonferroni bounds, which can improve the power of such
size corrected tests. The approaches proposed in the cited papers are designed for models
in which a statistic has a limiting distribution which is discontinuous in a finite-dimensional
nuisance parameter.'® This setup is very general but differs from the one considered in the

present paper on a number of key points: (i) in this paper, the parameter which may cause

91f it were local to Gaussian, then as the results of this paper show, the testing procedures used would
continue to be correctly sized.

0Tn related work, Andrews, Cheng, and Guggenberger (2020) provide some general results to establish
the (uniform) size of tests and (uniform) coverage probabilities of confidence sets based on (pointwise)
asymptotic distributions which are discontinuous in some function of a parameter.



standard inferential approaches to suffer from size distortions can be infinite dimensional;
(ii) rather than size-correcting tests based on a specific test statistics which have parameter
discontinuous asymptotic distributions, I suggest the use of the the efficient score statistic
which always has a x? distribution and hence the tests always use x? critical values. There
is not complete overlap between the class of models considered in this paper and those to
which the methods in these papers are applicable: the efficient score test remains valid in
cases where the asymptotic distribution of (other) test statistics may depend on the partic-
ular local sequence of infinite dimensional nuisance parameters. Conversely, the example of
an autoregressive model with a root which may be local to unity studied in Andrews and
Guggenberger (2009) does not satisfy the high-level conditions I impose as such models are
locally asymptotically quadratic (LAQ) but not LAN (Jeganathan, 1995; Jansson, 2008).

Romano and Shaikh (2012) provide high level conditions under which bootstrap and
subsampling procedures yield tests and confidence sets with (uniformly) correct size and
coverage probabilities in a very general class of models. Their approach differs substan-
tially from the approach in this paper, using resampling schemes to provide appropriate
quantiles to conduct tests and construct confidence sets for the values of general parameters
of interest defined on the model. As a result, their approach can deal with more general
parameters of interest than are considered in this paper. On the other hand, there are cases
in which the procedure outlined in this paper correctly controls size, but subsampling and
bootstrapping approaches fail to do so, for example, subsampling TSLS t-type statistics
in IV regression models with weak instruments (Andrews and Guggenberger, 2010a) and
subsampling Wald-type statistics in models with nuisance parameters near the boundary
(Andrews and Guggenberger, 2010b).

Elliott et al. (2015) provide nearly optimal tests for models which have a Gaussian
shift limit experiment (locally to the true parameter) with part of the shift vector being
a nuisance parameter. Their tests correctly control size and (approximately) maximise
weighted average power given a weighting function (over the nonstandard region of the
parameter space). Their approach requires the nuisance parameter to be finite dimensional
and is quite different from the one proposed in this paper, though it shares some common
threads, being based on a least favourable approach in a Gaussian shift limit experiment.!

For numerous classes of nonstandard inference problems a large literature exists analysing
the problem at hand and providing particular solutions. There are too many such examples
to provide a full account here; instead I provide a selective summary of the literature per-
taining to those non-standard features relevant to the examples I consider in detail in this
paper, comprising (a) identification robust inference, (b) inference in models with boundary

constraints and (c) inference post a model selection or regularisation step.

1T do not consider least favourable distributions explicitly, however the efficient score function can be
considered to correspond to an approximately least favourable submodel; see §25.11 in van der Vaart
(1998).



Inference robust to identification problems has been considered in various settings by,
inter alia, Stock and Wright (2000); Kleibergen (2005); Andrews and Cheng (2012, 2013);
Andrews and Mikusheva (2015, 2016a,b, forthcoming); Han and McCloskey (2019); Andrews
and Guggenberger (2019)."? Dufour (1997) provides some impossibility results. Chen, Chris-
tensen, and Tamer (2018) consider semiparametric models in which parameters may be only
partially identified and suggest inferential procedures based on a Monte Carlo simulation ap-
proach. Kaji (2021) puts forward a general theory of weak identification in semiparametric
models and focusses on efficient estimation rather than robust inference.

A long considered problem is inference in models with boundary constraints, which has
been studied by, amongst others, Chernoff (1954); Geyer (1994); Andrews (2000, 2001); An-
drews and Guggenberger (2010a,b); Chen, Ning, Ning, Liang, and Bandeen-Roche (2017);
Ketz (2018); Cavaliere, Nielsen, Pedersen, and Rahbek (2020). An antecedent to the ap-
proach of this paper in the case of nuisance parameters potentially on (or close to) the
boundary can be found in Andrews (2001, p. 698) where the nuisance parameters are split
into those which satisfy a block diagonality condition with respect to the other parameters
and those which do not. The author of that paper then notes that those which satisfy the
block diagonality condition “may or may not lie on the boundary of the parameter space”.
I exploit a similar idea, as the efficient score function is orthogonal to all nuisance scores
by construction.

Inference post model selection or regularisation is also problem with a long history, which
has become increasingly important in recent years due to the increasing availability of “big
data”. Leeb and Potscher (2005) analyse in detail some of the difficulties associated with
inference post model selection; additional demonstrations along with applications of some of
the size correction approaches previously mentioned can be found in Andrews and Guggen-
berger (2010a); McCloskey (2020). Chernozhukov, Hansen, and Spindler (2015) outline an
approach to post model selection / post regularisation inference which uses an approach sim-
ilar to the one proposed in this paper with their class of “Neyman orthogonalised” statistics
also being a generalisation of the C(a) approach of Neyman (1959, 1979).'* The devel-
opment in their paper is framed somewhat differently and focusses on post-regularisation
inference in problems defined by a finite vector of known moment conditions with a larger
class of test statistics, whereas I consider a more general class of inference problems with

potentially non-standard features but only one test statistic.'*

12There is also a large literature on robust inference in models defined by moment inequalities (and partially
identified models more generally). Additionally a further sub-literature exists on subvector inference for
weakly identified parameters. I do not consider subvector inference in this sense in this paper, though I
note here that Chaudhuri and Zivot (2011) used the efficient score corresponding to a GMM model as a
way to improve power in projection-based subvector inference with weak identification.

13Gee also Belloni, Chernozhukov, Ferndndez-Val, and Hansen, 2017 and Chernozhukov, Chetverikov,
Demirer, Duflo, Hansen, Newey, and Robins, 2018.

14Tn many models, the test statistic considered in this paper would belong to the general class they consider.



The general approach to inference outlined in this paper is based on the efficient score
function which, along with its variance matrix (the “efficient information matrix”), is a
key quantity in the literature on semiparametric efficiency. Textbook treatments of this
framework can be found in Bickel et al. (1998); van der Vaart (2002) and van der Vaart (1998,
Chapter 25). The efficient score test was shown to be optimal (in certain classes of tests) by
Choi et al. (1996). These ideas have been widely used in statistics and econometrics since
their introduction, particularly to determine efficiency bounds in semiparametric models
and construct estimators which attain them.

I now briefly turn to the specific examples I consider. The first — inference in the
single index model with potential identification failure — is related to the (previously sum-
marised) literatures on inference with potential identification problems and inference post-
regularisation as well as the literature on single index models and extensions thereof. Such
models have been widely studied by, amongst others, Ichimura (1993); Newey and Stoker
(1993); Ma and Zhu (2013).

The second example I consider, the LSEM, is related to the (previously summarised) lit-
eratures on inference with potential identification problems and inference post-regularisation
as well as the statistical literature on independent components analysis (ICA) modelling.
The ICA model has long been used in a number of fields as an approach to the analysis of
data forming systems of simultaneous equations; see Hyvérinen, Karhunen, and Oja (2001)
for many examples.'® By adding covariates to the ICA model a class of linear simultaneous
equations models is obtained. Such systems of equations have a long history in economet-
rics; see the introduction of Lee and Mesters (2021a) for a summary.’® A semiparametric
approach to the ICA model was considered in Amari and Cardoso (1997); Chen and Bickel
(2006). Lee and Mesters (2021a) consider a semiparametric approach to the LSEM which
uses the approach discussed in this paper to conduct tests robust to potential identification
failure. Concretely, they consider testing when the (fixed) distribution of the error terms
may be arbitrarily close to Gaussianity but this distribution is not permitted to change with
the sample size. They provide simulation evidence of a weak identification problem when
the error distribution is sufficiently close to Gaussianity (relative to the sample size), but
their theoretical work assumes a fixed error distribution and consequently does not cover
weak identification. In contrast, in this paper, I explicitly model weak identification and

obtain size results which are valid locally uniformly over subsets of the parameter space.

15The ICA model relates observables Y and errors € according to Y = A='e, [Ee =0, Ve = I where ¢ has
independent components.

16More recently such models have also been adopted in econometrics as an approach to SVAR modelling,
with an assumption of non-Gaussianity imposed to identify the matrix required to obtain the structural
shocks from the reduced form shocks. A recent summary of this approach is given by Montiel Olea,
Plagborg-Mgller, and Qian (2021). Also see, inter alia, Gouriéroux, Monfort, and Renne (2017, 2019);
Lanne and Liitkepohl (2010); Lanne, Meitz, and Saikkonen (2017); Lanne and Luoto (2021); Bekaert,
Engstrom, and Ermolov (2019, 2020); Fiorentini and Sentana (2021, 2020); Davis and Ng (2021). Velasco
(2020) considers the more general SVARMA case. In this paper I do not consider dynamics for simplicity.



1.2 Outline

The remainder of this paper is organised as follows. Section 2 describes the setting of
the paper, explains the intuition underlying the testing approach and introduces a number
of examples. Section 3 formalises the heuristic definitions given previously, develops the
theoretical contributions of this paper under high level conditions and provides some lower-
level conditions and constructions sufficient for their validity. Two examples are worked out
in detail in sections 4 and 5; these sections also discuss the results from several simulation
studies. Section 6 highlights the results from an empirical study into the labour supply

decisions of US men. Section 7 concludes and discusses possible extensions.

2 Heuristic explanation and examples

I now provide a heuristic discussion of the efficient score test, focussing on the underlying
intuition, and provide a number of examples to demonstrate the breadth of applicability of
my framework. I purposely omit all formal definitions and assumptions, which are provided
in section 3 below.

The parameter of interest is # € © C R% and the goal is to construct (asymptotically)
correctly sized tests for the hypothesis Hy : 8 = 6, or confidence sets for 6 which have
correct (asymptotic) coverage probability over a range of data generating processes (DGPs)
consistent with the null hypothesis.

I suppose that the researcher observes a random sample (W;)"_ ;. The considered prob-

ability model for the distribution of each such observation W; is given by
P={P,:vel'}, '=0xH, (1)

where v = (6, 7n) with 5 collecting all the remaining parameters required to fully describe the
distribution of the data (given ). In the classical parametric setting 7 is finite dimensional;
in the semiparametric models which are the focus of this paper it may be infinite dimensional.
Analogously to the parametric case, it is possible to define score functions for all of the
parameters in semiparametric models (see section 3 for the details). Let lﬁ,y be the (vector
of) score functions for 6 and %, = {B,h : h € H} a collection of score functions for n.'” All
score functions are mean zero and have finite variance. The efficient score function is defined
as the orthogonal projection (in Ls) of the scores for 6 onto the orthogonal complement of

the scores for n:
f=i-u(i,

i J2,) (2)

I"The score functions are indexed by elements A in a set H. In the parametric case this set could be taken
as the integers from 1 to the (finite) number of elements in 7. In the case where 7 is infinite dimensional,
the indexing set H will typically also be infinite dimensional.



where lin Z, denotes the closed linear span of the set #2,.'® This operation removes from
l@ that part which can explained by score functions in .%%. The corresponding variance

matrix, the efficient information matrix is
7 - / 07 ap,.

Analytical derivation of the efficient score function for specific models can be complex,
however due to the central role of the efficient score function in the literature on semi
parametrically efficient estimation the efficient score function has already been derived for
a large number of popular models.’

As a direct consequence of the definition in (2), [ (,dP, = 0 and hence the efficient
score function provides a dy-dimensional vector of moment condition on which one can base
inference about #. In general, constructing estimators and tests based on the efficient score
function is attractive as these have well established optimality properties (e.g. Bickel et al.,
1998; van der Vaart, 2002; Choi et al., 1996). In some of the examples considered in this
paper, the conditions which are required to obtain such results may fail. For instance, if
6 is unidentified, no consistent estimator of # can exist, let alone asymptotically efficient
estimators. Nevertheless, I will show that in such situations tests based on the efficient score
function can be used to conduct valid inference provided some mild conditions are satisfied.

To introduce the test statistic, let gn’g and j:n’g denote estimates of lz and f7 respectively.

The efficient score statistic (for a given ) is given by

. 1 < - " 1 < -
Snp = (ﬁ%%d”@) ', (%Z nﬂ(Wi)) ;

where “t” denotes the Moore-Penrose pseudo-inverse. Supposing that mild assumptions
hold, I show that, under Hy : 0 = 6, gnﬁo converges in distribution to a x? random variable
where r = rank(Z,). Tmportantly (i) this convergence holds under any local sequence of
nuisance parameters and (ii) the assumptions imposed do not require 0 to be identified, allow
7 to be on the boundary of the parameter space and allow for the estimates to depend on
regularised estimators of n. Based on this convergence, the efficient score test is performed by
comparison of Sn’go to the appropriate quantile of the x2 distribution where r,, = rank(inﬂo)
and confidence sets for # can be constructed by inverting the test.

Intuitively there are two features of the efficient score statistic which are responsible for
this result. The first is that the null value 6, is imposed in the construction of the statistic

which precludes the need for 6 to be identifiable or consistently estimable. This is key in

18The projection in the preceding display should be understood componentwise.
19 Additionally guidance and a large number of examples can be found in Newey (1990), Bickel et al. (1998)
and van der Vaart (1998, Chapter 25).



models with potential identification failures, where such requirements can fail. Second, the

orthogonal projection in the definition of the efficient score function ensures that
/ 0, B,hdP, =0 for all B,h€ /2, (3)

i.e. the efficient score function is uncorrelated with the scores B,h for the nuisance param-
eters (in each direction h). Similar properties have been shown to alleviate size distortions
in a number of settings, including those caused by identification issues (Kleibergen, 2005),
boundary effects (Andrews, 2001) and regularised estimation of nuisance parameters (Cher-
nozhukov et al., 2015, 2018). Property (3) has a fundamentally important role more gener-
ally in models with nuisance parameters in order to obtain the same limiting distribution
regardless of the local sequence of nuisance parameters under which the limit is taken (cf.
Hall and Mathiason, 1990; Choi et al., 1996).%

In addition to the robustness properties that (3) gives the efficient score test, (3) is also
important for its power optimality properties — reflecting the original development of the
C(a) test by Neyman (1959). If the efficient information matrix has full rank — as is usually
the case in well identified models — and local perturbations to the nuisance parameters are
indexed by a linear space, the efficient score test belongs to the class of asymptotically
uniformly most powerful invariant tests (AUMPI) as described and demonstrated in Choi
et al. (1996). Moreover, if the efficient information matrix has positive rank, there are
directions against which non-trivial local power can be attained. I demonstrate that the
efficient score test is minimax optimal in this scenario, in that there is no alternative test
which provides higher power in a minimax sense.

To illustrate the broad applicability of these results, I now present two different examples
to show (i) how commonly used econometric models can be placed into the framework
required by (1) and (ii) how certain (local) sequences of nuisance parameters 7 can cause
problems for commonly used inferential procedures. Following this I briefly discuss a number
of other important examples in econometrics for which the inferential approach in this paper

could be useful.

Example 1 (Single-index model). Consider the single-index regression model (e.g Ichimura,
1993; Horowitz, 2009)
Y = f(X1 4+ Xa20) +¢, E(|X) =0,

where f : R — R belongs to some function class .%, X; and X3 are continuously distributed
random variables and € is an unobserved error term. (¢, X) ~ ( for some Lebesgue density
function ¢ which ensures that the conditional mean restriction indicated above is satisfied.

Such single-index models are popular as they relax the commonly imposed linear structure

208ee also the discussions comparing Rao’s score test and Neyman’s C(a) test on page 133 of Andrews and
Mikusheva (2015) and page 492 of Kocherlakota and Kocherlakota (1991).
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of linear regression models but avoid the curse of dimensionality by ensuring the argument
of f is a scalar. The density of an observation W = (Y, X) € R? is

(W) = (Y — (X1 + X»0), X),

and the corresponding model is given by P = {P, : v € © x H} for some open © C R and
H=(f,C) €.F x Z, where the latter set restricts the possible distribution of (e, X).

As discussed in Horowitz (2009), # is unidentified when f is a constant function. Weak
identification can therefore occur when f is sufficiently close to constancy (relative to the
sample size). The potential identification failure here is due to an infinite dimensional
nuisance parameter and therefore robust approaches to inference designed for cases where
identification failure is caused by a finite dimensional nuisance parameter do not apply.
Derivations of the efficient score function for the model above (and various extensions)
can been found in the literature, see e.g. Newey and Stoker (1993); Ma and Zhu (2013);
Kuchibhotla and Patra (2020). The efficient score test permits inference on 6 to be performed

which is robust to potential identification failure; full details are given in section 4. A

Example 2 (Simple linear simultaneous equations model). Suppose that the K x 1 vector
W satisfies
W = A(6) e,

where A(#) is a rotation matrix parametrised by 6 € © and € a K x 1 vector of independent
structural shocks each with mean zero and unit variance. Let n = (11,...,nx) € H denote

the densities of the components of €. This yields the model
P={P,:y=(0,) €T =0 x H},

where P, has Lebesgue density p, (W) = [, m (Ax(9)W). 2!

If all €, are Gaussian, A(€) is not identified and hence the same is true of 6. In contrast,
if (at least) K —1 of the components of € have non-Gaussian distributions, A(6) is identified
up to sign changes and column permutations (Comon, 1994). Appropriate restrictions on
the signs and labelling of the elements then result in identification of 8. However, if the non-
Gaussian distributions of the ¢ are sufficiently close to Gaussian, # is only weakly identified
and inference methods which assume non-Gaussianity can suffer from size distortions.

The efficient score test avoids these size distortions by fixing # = 6y under the null and
orthogonalising with respect to (the scores for) 7. In section 5, I show that the conclusions
of these heuristic arguments hold formally in a considerably richer class of LSEMs. I also
show that inference based on the efficient score test is minimax optimal in these models,

including in cases where 6 is underidentified.

2L Ak (0) is the k-th row of A(6).
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The identification problem in this example is caused by an infinite dimensional nuisance
parameter and therefore robust approaches to inference designed for cases where identifica-

tion failure is caused by a finite dimensional nuisance parameter do not apply. A

Other examples

In addition to the preceding examples, robust inference on a large variety of other models
of interest in econometrics can be conducted using the approach in this paper, pending
verification of the high-level conditions in the next section. I briefly discuss four such cases
here.

Firstly, consider inference on the slope parameters 6 associated with the endogenous
variables in an instrumental variables regression model. As is well known, many standard
tests are unreliable in instrumental variable regression models if the instruments are weak
(Andrews, Stock, and Sun, 2019). In contrast, the efficient score test could be used to
provide valid inference in this model. In this model — unlike examples 1 or 2 — the lack of
identification is caused by a finite dimensional parameter. Nevertheless, due to potential
heteroskedasticity, the efficient score in this model depends on an infinite dimensional object,
the heteroskedastic function. The resulting test does not coincide with any of the “standard”
weak-IV robust tests, such as the AR, LM and CLR statistics (e.g. Anderson and Rubin,
1949; Staiger and Stock, 1997; Moreira, 2003; Kleibergen, 2002, 2007).

Secondly, consider the classical linear errors-in-variables model (as in, for example, equa-
tion (1.1) of Bickel and Ritov, 1987 or equation (1) of Ben-Moshe, 2020). As discussed by
numerous authors (e.g. Reiersgl, 1950; Willassen, 1979; Bickel and Ritov, 1987; Ben-Moshe,
2020), identification of the regression coefficients may depend on (joint) distributional prop-
erties of the covariates, structural errors and measurement errors. These can include, for
example, independence restrictions and non-Gaussianity assumptions on the latent covari-
ates (Reiersgl, 1950; Willassen, 1979). Similarly to example 2, on verification of the high-
level conditions in the next section, the inferential framework in this paper could be used
to perform inference which will remain valid if, for instance, the distribution of the latent
covariates is sufficiently close to Gaussianity that the regression coefficients become weakly
identified. As in examples 1 and 2, this is a case of non-regularity caused by an infinite
dimensional parameter.

As a third example, consider the mixed proportional hazard model, a common model
used in duration analysis which allows for unobserved heterogeneity (see van den Berg,
2001, for a review). As was demonstrated by Hahn (1994), in the case where the baseline
hazard function is Weibull, the efficient information matrix (for the Euclidean parameters)
is singular, and no regular estimator sequence for these parameters can exist.?? Pending

verification of the high-level conditions in the next section, the inferential framework outlined

22Hahn (1994) also derives the efficient score function for this model.
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in this paper could be used to perform inference which will remain valid if the baseline hazard
function is (close to) Weibull. As in examples 1 and 2, this is a case of non-regularity caused
by an infinite dimensional parameter.

Finally, as is well known, models with nuisance parameters on or close to the boundary
can cause standard testing approaches to be unreliable (Andrews, 2001; Elliott et al., 2015;
Ketz, 2018). Similar problems may arise in models where nuisance functions are estimated
with shape restrictions imposed (cf. Chetverikov, Santos, and Shaikh, 2018, section 3). Due
to the orthogonality between the scores for the parameter of interest and the nuisance scores,
these restrictions do not affect the limiting distribution of the efficient score statistic and
hence inferential approach in this paper will remain valid in these models — pending the
verification of the high-level conditions in the next section. Depending on the model and
the restriction under consideration, this case of non-regularity may be caused by either a
finite-dimensional parameter or an infinite-dimensional parameter.

The next section describes the high level theory and provides a set of mild assumptions
under which the efficient score test provides robust inference and has power optimality
properties. Thereafter I revisit and generalise examples 1, 2 and work out the details for

implementation.

3 Theory

In this section I formalise inference based on the efficient score statistic. First I set out the
high-level assumptions which will be required throughout and formally define the efficient
score test and associated confidence sets. Second, I perform an asymptotic analysis of
the size properties of this test and the coverage of the associated confidence sets. Third, I
demonstrate that this test has power optimality properties in a number of scenarios. Finally
I provide a number of conditions and constructions which are sufficient for the high-level
assumptions and often simpler to verify. In what follows I will often use operator notation
for integrals, e.g. for a function f and a probability measure P, Pf := [ fdP. P, denotes
the empirical measure of the sample (W;)y, so P, f = + 31" | f(W;).%

3.1 Model setup and maintained assumptions

The first assumption that I impose merely formalises the model of interest as discussed in

section 2 and stipulates that the observed data form a random sample.

Assumption M (Model and sampling). Let (W;)"; be independent copies of a W-valued

random element W, with W a Polish space, all defined on an underlying probability space

23See appendix section A for additional details and notational conventions.
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(Q, F,P).2* The considered model for the law of W on (W, B(W)) is

P={P,:yeTl},

where I has the product form I' = © x H for © an open subset of R% and H a metric space.
A typical value v € I" will be written as v = (#,7) where § € © and n € H. Each P, € P is

dominated by a common o-finite measure v. o

The next assumption is the key requirement. It imposes that the model satisfies a LAN
condition (e.g. van der Vaart, 1998, Chapter 7; Le Cam and Yang, 2000, Chapter 6), where
the parameter v = ~,, can change with the sample size n. In order to state this assumption,
some notation is required. For any P, € P I write p, for its density with respect to v and

for any two points v1,v2 € ', A, (71,72) denotes the log-likelihood ratio:

An(1,72) = 1ong“ (4)

i=1 p'YZ
The LAN requirement is imposed as follows.

Assumption LAN (Local asymptotic normality). Let (v,)n,en be a sequence in I" which
converges to a point v € I' and H,, a subset of a Banach space, H, which includes 0.

For any sequence 7, — 7 with each 7,,, 7 € R%_ any sequence h,, — h with h,,h € H,, a
convergent sequence of dy X dp matrices ¢,, and sequences 7, (h,) — n with each n,(h,) € H,
define

YTy h) = (O + 00T, M (Bn)),

and suppose that

(i) the sequence (P, (s, h.))n>1 is (eventually) in P,

(i) the associated log-likelihood ratio satisfies
/ 1 y 2
Ao (T B, ) = \F Z 7+ B = 5Py, [, 4 Byh| tor, (1), (5)

for a sequence of functions (£, ),en with each £, € LY(P,,) and a sequence of linear
maps (B, Jneny with each B, : H, — L3(P, ) such that 7'¢, + B, h is uniformly

square P, -integrable. o

In what follows I use the notation P, ., p, for P, (. n,)- The functions 7’ é% + By, h

will (collectively) be called “score functions”, as will the vector 55% (the “score functions for

24 A Polish space is a separable completely metrisable topological space. Let d be a metric such that (W, d)
is a complete (separable) metric space. B(W) is the Borel o-algebra on (W, d).
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6”) and the functions B, h (the “score functions for 1”). Such functions play the same role
as score functions in classical parametric models in which — under regularity conditions — a
similar LAN condition holds (e.g. van der Vaart, 1998, Theorem 7.2).

Assumption LAN stipulates that the likelihood ratios A, (7, (T, hn),7s) admit a local
quadratic approximation with a particular form. It is important to clarify the roles of the
different sequences of parameters present in these likelihood ratios. I refer to (7, )nen as the
“base sequence” and the components 6,7, and 1, (h,) — 1, as “local perturbations” to the

elements of this base sequence respectively:

~—~ N————
local perturbation of 6, local perturbation of 0,

That -, is permitted to vary with n has two important implications. Firstly, replacing a
fixed 0 with a convergent sequence #,, — 6 permits the demonstration that confidence sets
constructed by inverting the efficient score test are uniformly valid over compact subsets of
©. Secondly, this permits local power analysis in situations where the rate of information
accumulation is non-standard.?

The separation of the local perturbation of #, into a “rate” term 9, and a “direction”
term 7, is not strictly necessary but clarifies the role each plays in the subsequent power
results. Due to the (possible) infinite dimensionality of the nuisance parameters 7,, the
form of the local perturbation may be complex and generally will be model dependent, but
the role of h,, is analogous to that of 7,, i.e. it is the “direction” term in the perturbation.

Assumption LAN requires that for any permitted sequence of local perturbations, the
measures P, . 5 eventually belong to the model and (5) holds. That these hold over all
such local sequences is key for the size results below which demonstrate that the efficient
score test controls size locally uniformly, i.e. over any compact set of local perturbation
directions consistent with the null. I emphasise that in the size and power results below
LAN is only assumed to hold along certain specified base sequences (7, )neny Which are defined
in the relevant results.

It is also important to note that assumption LAN concerns only the model P and per-
turbation spaces H,, both of which are chosen by the researcher. This includes the choice of

the metric on H, which — particularly in the infinite dimensional case — has implications for

25For instance, one key feature of weak or semi-strong identification (in the terminology of Andrews and
Cheng, 2012) is that the information that can be learned about the parameter of interest accrues at a
rate slower than the “usual” y/m; robust tests can then often be built on top of “rescaling” arguments:
some part of 7, changes with the sample size, causing a slower rate of information acquisition, which can
be compensated for by a “slower” rate sequence §,, — i.e. the local alternatives are “closer” than in the
“usual” /n case (Cf. Antoine and Renault, 2009, 2011; Andrews and Mikusheva, 2015). The prototypical
“weak identification” case is usually the limiting case of this argument, where §,, 4 0 and the “local”
alternatives are, in a sense, “fixed” alternatives.
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the uniformity results obtained below, which hold over compact sets. Specifically, choosing
a stronger metric on H will often simplify the demonstration that assumption LAN holds,
but leads to “fewer” compact sets and therefore weaker uniformity results.?

Finally, rather than establishing LAN directly, one may establish that the relevant sub-
models are differentiable in quadratic mean (see assumption DQM below), which then im-
plies assumption LAN (under assumption M; see proposition 3.10). A detailed analysis of
the relationship between conditions of these types is given by Le Cam (1986, Chapter 17,
section 3); see also Strasser (1985, Theorem 75.9).

I now introduce the next assumption, which concerns the limits of the scores.

Assumption CM(i) (Convergence of moments (i)). In the setting of assumption LAN
suppose that there exists a vector of functions £, € LY(P,) and a bounded linear map
B, : H, — LY(P,) such that for each (7,h) € R% x H,

. 2 . 2
lim P, |76, + By, =P, |7, + B,h|

n—oo

O

The uniform integrability required by assumption LAN may directly imply that assump-
tion CM(i) holds; see subsection 3.4 for some sufficient conditions.
With the quantities introduced in the preceding assumptions, the efficient score function

can be formally defined. First define the tangent sets for n as
s, ={Byh:heH,}, for ye{y}U{vy,:neN}L

The efficient score functions are defined as the orthogonal projections of the score functions
for 0, i.e. the é% and l@ onto the orthocomplement of JZ, and JZ, respectively. The
corresponding efficient information matrices are the expectations of the outer products of

these (vectors of) functions:
b= tby=Ty (b 1T ), T= P [40], for ye{}uln nen}

where II, (-|S) is the orthogonal projection on S C Lo(P,).
I assume the same uniform integrability moment convergence conditions on the efficient

scores that have been imposed on the scores for § and 7.

Assumption CM(ii) (Convergence of moments (ii)). Suppose that assumption CM(i)

holds and moreover that ||, |3 is uniformly P, -integrable and lim,, o Z,, = Z. o

26More formally, if d; and do are metrics on H with d; stronger than dy (i.e. every open subset of H with
respect to ds is also open with respect to dy), then if a set H' C H is compact with respect to dy, then it
is compact with respect to ds.
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The definition of the efficient score function ensures that P,f, = 0, since both £, and the
elements of lin %, are mean zero by assumption LAN. In other words, the efficient score
function provides dy moment conditions on which inference about # can be based.

In many cases, the efficient score function will not be formed only of observed or known
quantities, but will need to be estimated. The following two conditions impose what is

required of these estimates and complete the collection of high-level assumptions.

Assumption E (Estimation). Let (v, )nen be as in assumption LAN and suppose that for

an estimator £, g,

VP, [én,en - gvn] = op,, (1), (6)

and for an estimator Z,, 4,

~ ~

Ing —.,Z:.y ) = OPvn(l)‘ (7)

Un

Assumption R (Rank convergence). Let (7,)nen be as in assumption LAN and suppose

that the estimator .’Znygn of assumption E satisfies
P, (rank(fn,(;n) = rank(fw)) — 1. (8)

o

That the first condition of assumption E, equation (6), can hold is often related to the
specific structure of the efficient score function, particularly the fact that it is orthogonalised
with respect to the nuisance scores. The second condition (7) requires consistency of an
estimator of the efficient information matrix Z,. If the latter is non-singular and (7) holds,
then (8) holds automatically.?” If Z, is rank deficient, (8) must be established separately. A
construction which can ensure this holds, given an initial estimator with known convergence
rate is given in subsection 3.4.

The fact that assumption R is required is due to the fact that the Moore-Penrose pseudo-
inverse (which I denote by MT for an arbitrary matrix M) is not continuous. However, if
E, — 0 such that M + E,, has the same rank as M, then (M + E,)" — M2

Verification of equations (6) and (7) is model specific and typically requires the appli-
cation of various stochastic limit theorems. Incorporating estimates of Euclidean parts of
the nuisance parameter can typically be achieved relatively simply via discretisation argu-
ments if a y/n-consistent estimator is available; see the example in section 5 below. For
nonparametric parts, sample splitting can often be used to provide estimators for which the

verification of the required conditions is relatively straightforward.

27See Lemma C.7.
28See e.g. Ben-Israel and Greville (2003, Section 6.6) and Cf. Andrews (1987).
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3.2 The efficient score test

In this section, I define the efficient score test, which forms the basis of the inferential
approach suggested in this paper. Two different definitions are required: one for a (scalar)
one-sided hypothesis and one for a two-sided hypothesis.

For the purposes of testing a two-sided hypothesis at level « € (0, 1), the efficient score

statistic at @ is defined as
g = (mn@n,g)’f;ﬂ (VAPulng) (9)
The efficient score test can then be defined as
g =1 {ﬁn,e > cn} : (10)

where ¢, is the 1 — a quantile of the in distribution, with r, = rank(i’mg). The confidence

set corresponding to the efficient score test is denoted by C, and defined as
C’n::{ﬁe@:qug:()}:{06@:§n,9§cn}. (11)

For the purposes of testing a one-sided hypothesis for a scalar parameter, i.e. when
dg =1 and o € (0,1/2], T instead define the efficient score statistic at 6 as

Suo = (ViPalno) \/Th,. (12)

and define the corresponding test as

g =1 {S*n,g > za} , (13)

where z, is the 1 — a quantile of the A(0,1) distribution. A confidence set can again be

constructed by test inversion as
én::{ee@:d)n,@:()}:{ee@;ﬁnﬂgza}. (14)

The use of the same notation for these different objects should not cause any confusion
as only one of the two is applicable to any given testing problem and hence which is meant

will be clear from context.

3.3 Asymptotic properties

I now derive the asymptotic properties of the efficient score test and test inversion confidence

sets. I first state a weak convergence result along local alternatives, which follows directly
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from standard stochastic limit theorems and Le Cam’s third lemma. Following this size

results are given in section 3.3.1 and power results in section 3.3.2.%

Proposition 3.1. Suppose that assumptions M, LAN and CM(i) hold. Then, the sequences

of product measures (P;"‘n)neN and (Pé’n,m,hn)neN

CM(ii) holds, then under Py, - p.,

are mutually contiguous. If also assumption

VNP, L, ~ N(Z,7,T,).

If, additionally, (6) of assumption E holds, then also under P,

YnsTrshn
\/E]P)ngnygn ~ N(j—VT, fw)

The key takeaway from the preceding proposition is that the limiting distributions de-
pend on 7 but not on h (or (hy,)nen): by its construction the efficient score function has an

invariance property with regard to the local nuisance perturbations.

3.3.1 Size results

The invariance property discussed in the preceding paragraph is precisely what ensures
that the size of the efficient score test does not depend on the particular local nuisance

perturbation along which the limit is taken.?"

Proposition 3.2. Suppose that assumptions M, LAN, CM(ii), E and R hold for a sequence
(Yn)nen C T with limit v € T and where 6,, = 6y for all n € N. Then, for any compact
subset H, of H,,

lim sup P ) ¢ng, < .

n— o0 hEH{I Y0k 7o

The preceding proposition demonstrates that the efficient score test is correctly sized

uniformly over local perturbations consistent with the null. Note that this result specifies
that the high-level conditions need hold only along the specified base sequence with ~, =
(0o, mn) — (6o,m) = ~. This result immediately implies that the efficient score test is
correctly sized along any sequence of local perturbations of 7, = (6y,7,) with 7,, = 0 and
h, — hin H,.*!

29Readers primarily interested in the robustness results may safely skip section 3.3.2.

30Tn fact this property can be shown to hold rather more generally, for Z% in place of Z.Yn as long as
P, [E%B% h] = 0 for all h € H,. If Eu% # EN% this would typically result in a less powerful test and
hence I do not explicitly consider this case in the theoretical results. Nevertheless this observation can be
particularly useful in cases when the efficient score function is hard to estimate. See e.g. the treatment
of heteroskedasticity in section 4 below.

31In a metric space the union of a convergent sequence and its limit is compact.
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An analogous result holds for confidence sets constructed by test inversion, provided the
high level conditions hold along sequences of the form ~, = (0,,m,) — (6,1) = =, for any

convergent sequence 6,, — 6 (in a compact subset of ©) and a specified n,, — 7.

Proposition 3.3. Let ©' be a compact subset of ©. Fix a convergent sequence (0, )nen and
denote its limit by n. Suppose that assumptions M, LAN, CM(ii), E and R hold for any
sequence (Yn)nen where each vy = (On, Nn)neny C ©' X H with 8, — 0 € ©'. Then, for any
compact subset H, of H,,

liminf inf inf P e, >1-—a.
n—oo €O’ heH; (9vnn),0,h( n) >

3.3.2 Power results

In the scalar case I consider both one-sided tests of the form Hy : 6 > 6, against H; : 0 < 6,
and two-sided tests, i.e. Hy : 0 = 0y against Hy : 6 # 6. These results are essentially
standard (Cf. Choi et al., 1996), with the key difference being that here they are stated
with v, potentially changing with n. Whilst this is a potentially useful strengthening,
it simply reflects the corresponding change in the assumptions — i.e. assumption LAN is
assumed to hold along such sequences — with the arguments following in the usual way.*?

The first result concerns the power of one-sided tests.

Proposition 3.4. Suppose that assumptions M, LAN, and CM(i) hold. Additionally sup-
pose that H, is a linear subspace of H and f7 > 0. Then, for any a € (0,1), any sequence
of asymptotically level-av tests (Y )nen for Ho : 7 < 0 against Hy : 7 > 0, i.e. any sequence
of tests 1, : W" — [0, 1] such that

limsup P} ¢, <a  forallT <0, h e H,

n—oo

15 subject to the power bound

limsup P7" o ¥, <1 —® (za - 7:'}/27'> : (15)
n—oo

for all 7, = 7 >0 and h, — h € H, where z, is the 1 — o quantile of the standard normal

distribution and ® s the standard normal CDF.

Any sequence of tests 1, : W™ — [0, 1] of asymptotic level @ which attains the power
bound (15) is called “asymptotically locally uniformly most powerful of level-a”. The effi-
cient score test attains this bound under the assumptions of section 3.1, provided that H,

is a linear subspace and iv > 0.

32In particular the proofs are based on convergence of a particular sequence of experiments to a Gaussian
shift limit experiment. The construction of the relevant sequence of experiments is given in section B.
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Corollary 3.5. Suppose that assumptions M, LAN, CM(ii), E hold, with ~, = (6o, m,) —
(6o,m) = . Additionally suppose that H,, is a linear subspace of H, iv >0 and o € (0,1).
Then the sequence of tests (Pn.g,)nen is asymptotically locally uniformly most powerful of
level-av for the hypothesis Hy : 0 < 0y against Hy : 0 > 0, i.e. it is asymptotically level—a
and achieves the power bound in (15) for any 7, = 7 > 0 and any h,, — h € H,,.

A similar result holds for two-sided tests, with the claim of optimality holding in the

class of tests which are (asymptotically) unbiased and of level-a.

Proposition 3.6. Suppose that assumptions M, LAN, CM(i) hold. Additionally suppose
that H, is a linear subspace of H and iv > 0. Then, for any a € (0,1), any sequence of
asymptotically unbiased, level-a tests (Vn)nen for Hy : 7 = 0 against Hy : 7 # 0, i.e. any
sequence of tests 1, : W™ — [0, 1] such that

limsup P o, ¢n <« forall h € H,,

n—o0

and
liminf P} .4, >«  forallT #0, h e H,

n—oo n,T,

15 subject to the power bound

limsup P, ., i < 1@ (a2 = T27) 41 = @ (202 + 227 (16)
for all 7, = 7 # 0 and h, — h € H,, where 2, is the 1 — o quantile of the standard normal
distribution and ® s the standard normal CDF.

Any asymptotically unbiased sequence of tests 1, : W™ — [0,1] of asymptotic level
a which attains the power bound (15) is called “asymptotically locally uniformly most

Y

powerful unbiased of level-o”. The efficient score test attains this bound under the same

assumptions as for the one-sided case.

Corollary 3.7. Suppose that assumptions M, LAN, CM(ii) and E hold, with v, = (6y,n,) —
(6o,m) = . Additionally suppose that H, is a linear subspace of H, jw > 0 and o €
(0,1). Then the sequence of tests (¢n g, )nen is asymptotically locally uniformly most powerful
unbiased of level-a for the hypothesis Hy : 0 = 0y against Hy : 0 # 0y, i.e. it is asymptotically
unbiased and of level-a and achieves the power bound in (16) for any 7, — 7 # 0 and any
h, — h € H,.

For multivariate hypotheses I consider maximin optimality.®* The difference between the

power bound given here and what might be called the “usual” case (Cf. Theorem 13.5.4 of

33For an alternative approach which restricts the class of tests to those satisfying a rotation invariance
condition see Choi et al. (1996).
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Lehmann and Romano (2005) for the parametric case) is that I do not require the efficient
information matrix to be positive definite. Rather I consider a restricted class of directions
along which # may be approached. Specifically, letting N (i7> denote the nullspace of f,y, the
permitted directions are 7 € N(Z,)* rather than 7 € R%. Note that these coincide if (and
only if) 7:'7 > 0 and hence the “usual” case is a special case of this result. The generalisation

given here is useful for models in which the parameter of interest may be underidentified.*

Proposition 3.8. Suppose that assumptions M, LAN and CM(1) hold. Additionally suppose
that H, is a linear subspace of H and r = rank(i,) > 0. Then, for any o € (0,1), any
sequence of asymptotically level-c tests (Vn)nen for Ho : 7 =0 against Hy : 7 # 0, i.e. any

sequence of tests 1, : W™ — [0, 1] such that

limsup P! o0 < forallh € H,

n—o0

15 subject to the power bound

li inf P b, <1—P(x2(a) < cra 17
imsup inf Py 9. < (x7(a@) < era) (17)
for all a > 0, where M, := {(1,h) € N(Z,)* x H, : T'Z,7 > a}, ¢, is the 1 — a quantile
of the x? distribution and x*(a) denotes a non-central x* random variable with r degrees of

freedom and non-centrality a.

Any sequence of tests 1, : W" — [0, 1] of asymptotic level o which attains the power
bound (15) over all compact subsets of M, is called “asymptotically maximin of level-a”.%°
The efficient score test is asymptotically maximin of level-a under the assumptions in section

3.1, provided that H, is a linear subspace and rank(Z,) > 0.

Corollary 3.9. Suppose that assumptions M, LAN, CM(ii), E and R hold, with ~, =
(Oo,mn) — (60,m) = ~. Additionally suppose that H, is a linear subspace of H, r =
rank(Z,) > 0 and o € (0,1). Then the sequence of tests (¢n.g,)nen is asymptotically maz-
imin of level-a for the hypothesis Hy : 0 = 6y against Hy : 0 # 0y over all compacts, in the

sense that for any compact K, C M,

lim inf PP o dng =1—P(xi(a) < cra) - (18)

n—oo (1,h)eK, ™

There are two key takeaways from this result. Firstly, when the efficient information

matrix is rank deficient, the efficient score test continues to enjoy non-trivial power in

34For details of the construction of the sequence of experiments used to establish this result see appendix
section B.
35Cf. Section 13.5.3 of Lehmann and Romano (2005) for the terminology
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certain directions.*® Secondly the power it achieves is — in a certain sense — optimal.®”

3.4 Sufficient conditions for the assumptions

In the i.i.d. setting it is well known that differentiability in quadratic mean (e.g. van der
Vaart, 2002, Definition 1.6) is a sufficient condition for a LAN expansion like that in equation
(5) with a fixed v € T (e.g. Bickel et al., 1998; Le Cam and Yang, 2000; van der Vaart, 2002).
In the setting of interest here, a suitably adapted version of this condition also suffices for

assumption LAN.®

Assumption DQM (Differentiability in quadratic mean). Let (7,)nen be a sequence in T’
which converges to a point v € I' and H,, a subset of a Banach space, H, which includes 0.

For any sequence 7, — 7 with each 7, 7 € R% any sequence h,, — h with h,,h € H,, a
convergent sequence of dy X dy matrices d,, and sequences 1, (h,,) — 1 with each 0, (h,) € H,

define 7, (7, hy,) as in assumption LAN and suppose that

(i) the sequence (P, (s, h,))n>1 i (eventually) in P,
(ii) for some sequence of measurable functions (g, )neny such that (¢g2),en are uniformly

P, -integrable and P, g, = o(n~'/?),

2

[ Vit = v - g av o (19)

o

Proposition 3.10. Suppose assumptions M and DQM hold. Moreover suppose that for

a sequence of functions (é')/n)nEN with each é'yn € L3(P,,) and a sequence of linear maps
(B%)neN with each B, : Hy — Lg(p%)’

. 2
P [P0+ Bh—g.| 0.

Then assumption LAN holds.

The addtional condition in the display in proposition 3.10 allows DQM to be shown with
any sequence ¢, such that the Ly distance between g, and the scores 7/ é% + B,, h vanishes

as n — o0.

36This is demonstrated in a specific example in section 5.5.

37Nevertheless, if one has a particular direction against which one wishes to direct power, or — more generally
— a weighting function over alternatives, a criterion based on weighted average power would seem more
appropriate. Cf. e.g. Elliott et al. (2015); Montiel Olea (2020).

38Results of this nature are known to hold see e.g. Strasser (1985, Chapter 74) or van der Vaart (1988, A.2).
I provide this formulation to facilitate the demonstration of the version of LAN assumed in this paper.
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I next record two conditions useful for checking the integral convergence required in
CM(ii), once the uniform square P, -integrability has been established. The first can be ob-
tained as an immediate corollary of a (stronger) result of Feinberg, Kasyanov, and Zgurovsky
(2016), who establish a uniform (over Borel sets) version of the integral convergence. The
second is effectively the standard result that weak convergence and uniform integrability
imply convergence of moments, where the condition of continuous convergence is imposed

to ensure the weak convergence of the appropriate laws.

Lemma 3.11. Suppose that (P,)nen s a sequence of probability measures which converges
in total variation to P.3° If (fu)nen is a sequence of functions in Ly(P,) such that (a)
fn i f e Li(P) and (b) (fn)nen is uniformly P,-integrable, then P, f, — Pf.

Lemma 3.12. Let S be a metric space and suppose that (P,)nen is a sequence of measures
on (S, B(S)) which converge weakly to P. Suppose that (fy)nen s a sequence of real-valued
functions with each f, € Li(P,) which (a) converge continuously to f € Li(P) and (b) are
uniformly P,-integrable.** Then P, f, — Pf.

Assumption R requires the estimate of the efficient information matrix, j:n’gn, to have
the same rank as Z, with P, -probability approaching one. The following construction is
sufficient to guarantee this; it requires knowledge of the rate of convergence to zero of the
difference (in the spectral norm) of an estimator .’Zn’gn and a matrix Z,, where Z,, — f,y and
rank(Z,) = rank(Z,) for all sufficiently large n. As there is nothing special about the limit
being the efficient information matrix here, the construction is given more generally.*!

In particular, suppose that the sequence of (random) positive semi-definite (symmetric)

matrices (M, )nen (of fixed dimension L x L) satisfy
Py (M, — My|l2 < v) — 1, (20)

for a sequence (P,),en of probability measures, a known non-negative sequence v, — 0 and
a sequence of deterministic matrices M,, — M with rank(M,,) = rank(M) for all sufficiently

large n.*? Let M, = U,A, U’ be the corresponding eigendecompositions and define

M, = U, Ay (v,) U, (21)

39Fach P, and P are defined on a common measurable space (S, B(.9)).

40Continuous convergence requires f,(s,) — f(s) for all (s,)neny C S with s, — s € S. Here this is
equivalent to compact convergence of the f, to a continuous limit f (cf. Remmert, 1991, Chapter 3, §1,
Section 5).

41A similar construction appears as part of Theorem 2 in Lee and Mesters (2021a). If the (non-zero)
eigenvalues of iv can be computed, a simpler truncation approach can be utilised, cf. Proposition 2 in
Liitkepohl and Burda (1997).

42(20) is implied by || M,, — M, || = o p,,, (vn) for any matrix norm. Moreover, the existence of such a sequence
(Vn)nen is guaranteed if | M,, — M, ||z — 0 in P,-probability, however its explicit knowledge is necessary
to perform the subsequent construction.
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where A, (v,) is a diagonal matrix with the v,-truncated eigenvalues of M,, on the main
diagonal and U, is the matrix of corresponding orthonormal eigenvectors. That is, if
(Ani)E, denote the non-increasing eigenvalues of M,,, then the (i,4)-th element of A,,(1,) is
Xml(j\m > ).

Proposition 3.13. If (20) holds, M,, — M and for all n greater than some N € N
rank(M,) = rank(M), then M, Loy M and

P, (rank(Mn) - rank(M)) S, (22)

where M, is defined as in (21).

Assumption T. Let (7,)nen be a sequence in I' with a limit y € T', (Z,,),en a deterministic
sequence of matrices with Z,, — Z, and rank(Z,) = rank(Z,) for all n exceeding some N € N

and suppose that the sequence (Z,, 4, )nen satisfies
Py, (a0, = Tallz < ) = 1. (23)

<

Corollary 3.14. If assumption T holds, the estimate jn,gn formed by truncating the eigen-

decompositions of I, p, at vy, as in (21), satisfies equation (7) and assumption R.

In practice equation (23) is likely to be established by demonstrating that ||Z,.¢, —Z,|| =
Op%<l/n).43 As this condition concerns only asymptotic behaviour, there is wide scope for
different possible sequences which have the same asymptotic behaviour but rather different
behaviour in finite samples. Simulation experiments designed to replicate various possible

DGPs for the case under consideration may provide some guidance.

4 Single index model

In this section I provide details of the application of the theory of section 3 to a more general

version of the single index model in example 1.

Consider the single index (regression) model (SIM), where W = (Y, X) with
Y = f(X1+X50) +¢, Ele|X]=0, (24)

for X = (X1, X3) € R¥ a vector of covariates such that (e, X) ~ ¢ for some Lebesgue density

43For any matrix norm || - ||.
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¢ and some unknown link function f.** As recorded in Theorem 2.1 of Horowitz (2009), f
and 6 are identified in this model if f is differentiable, not constant on the support of X;+X}6
and the support of X is not contained in a proper linear subspace of R¥X. By utilising the
inferential approach developed in section 3, this section provides an inferential approach
for 6 in model (24) which is robust to failure of these assumptions, and — perhaps more
importantly — robust in a setting where f is relatively flat when compared with sampling
variation, leading to weak identification of 6.

The first step of the analysis is to formally specify the model under consideration and
establish some primitive assumptions under which the results will be obtained. The basic

model setup is given by the following assumption.

Assumption SIM. Suppose that W = (Y, X) € R'"*¥ satisfies (24) and

(i) © C R% is open,
(i) (e, X) ~ ¢ where ( € Z,
(i) f € .7,

where 2 and .Z are defined as follows. Let 2~ C R be closed, ¢(e, X) == alo%ée’)()(e,X)
the log-density score in the first argument of ¢ and p > 0. Then 2 is the collection:

¥ = {C € Li(R"™8): ¢ >0, / ¢dA =1, if (e, Z) ~ ( then (26), ( satisfies (25)},
R

XX

where L;(R*%) is the space of Lebesgue integrable functions on R'*¥ and
e — 1/((e, X) is continuously differentiable A\ — a.e., (25)

Ele|X] =0, E[(¢(e, X)) +1)||X|57] < o0, E[XX']> 0. (26)

F = C}(2) is the class of functions which are bounded and continuously differentiable
with bounded derivative A-a.e. on ¥ = {X; + X}0:0 € ©,2 € Z'}.

The model is given by P = {P, : v € I'} for I' = © x H with H = .# x Z where each
P, is the probability measure on R'** corresponding to the Lebesgue density p, (W) =
CY — f(X1+ X50), X). o

Part (ii) of the preceding assumption restricts the class of density functions which govern
the distribution of the error term and covariates in (24). The key restrictions it imposes

are (a) the required conditional mean restriction E[e|X] = 0, (b) the existence of some

44This particular specification of the single index model is relatively simple. More complex versions of this
model (e.g. with a more general index specification or a linear component Z’¢) could be analysed using
similar techniques. The form used here is deliberately chosen to retain only the key aspect of the model
relevant to this paper: that # may be unidentified or weakly identified for certain values of f, an infinite
dimensional nuisance parameter.
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moments of specific functions of the data, and (c) a smoothness condition on the density
function. Part (iii) restricts the link function f to belong to a specified class of functions;
the restrictions imposed on f by this assumption are relatively weak and common in the
literature on single index models.*> Note that these restrictions do not rule out f being
constant on Z: if f(v) = c for all v € Z and some c € R, f € .Z.

4.1 Verification of the modelling assumptions

Given a random sample (W;)"; satisfying assumption SIM, assumption M holds. To es-
tablish assumptions LAN and CM(ii) I first need to specify the local perturbations to the
nuisance parameter n for which the quadratic approximation will hold.

The considered local perturbations to the nuisance parameters take the form

Ma(h) = (f +tohy, C(14+t,hs)), t,= n~12, (27)

with by € F = C}(Z), the set of real valued functions on R which are continuously
differentiable and bounded A-a.e. on ¥, and hy € .5;";7 where

7 = {h2 € CIHRYK) : Elhy(e, Z2)] = 0, Eleha(e, X)|X] = 0if (e, X) ~ g} ,

for C;'l(RHK ) is the space of functions hy : R — R which are bounded M-a.e. and
such that e — hy(e, X) is continuously differentiable with bounded derivative A-a.e.. The
perturbation directions for 7 are H, = % x 2, which is a linear subspace of Lo ()) X
Lo(G) = H, for X the Lebesgue measure on R. Equip H with the norm ||h]| = |[h1]|x.00 +
e

I now establish that the model is differentiable in quadratic mean and hence (by Propo-

sition 3.10) locally asymptotically normal.

Proposition 4.1. Suppose that assumption SIM holds, 68, — 6 € © and n € H and
consider the sequence defined by v, = (0,,n) € I'. Let 6, = I/\/n, 1, — 7, h,, € H, with
h, — h € H, and define n,, : Hy, — H as in (27). Then assumption DQM holds with score
functions g, = 7L, + B, h where for Vs, = X1 + X0, €n =Y — f(Va,),

(B, h|(W) == —¢(en, X)h1(Vp,) + ho(en, X).

The efficient score function for this model was derived by Newey and Stoker (1993) and

is given in the following Proposition.

45Cf. Assumption 4.1 in Newey and Stoker (1993); Assumptions A0 — A2 in Kuchibhotla and Patra (2020).
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Proposition 4.2. Consider the sequence (v, )nen of Proposition 4.1, suppose that assump-
tion SIM holds and

Elep(e, X)|X] = 1, E[p(e, X)?|X] < C <00, 0<c<E[eX]<C < o0. (28)

Additionally suppose there exists a function m : R — R which is bounded and continuously
differentiable with bounded derivative such that Elem(e)|X] is bounded away from zero uni-
formly in X. Then assumption CM(ii) holds and for w(X) = E[e?|X]|™! the efficient score

function is
0y, = w(X)(Y — f(Vo,) ' (Va,) | Xa — Elg*[)‘ffgv’v]]

n

The (conditional) moment conditions in (28) are standard. The first is a particular case
of the (conditional) generalised information equality; it will hold provided differentiation
and integration can be interchanged appropriately. The second and third provide uniform
bounds on some conditional expectation functions. Existence of the function m is a weak
condition; see Assumption 4.2 and the subsequent discussion in Newey and Stoker (1993, p.
1210).

4.2 Implementation of the efficient score test

I now consider estimation of the efficient score function just described in order to satisfy
assumptions E and R. Estimation in the (conditionally) heteroskedastic case introduces
technical difficulties which are essentially unrelated to the problem studied in this paper
and therefore I initially focus on the (conditionally) homoskedastic case and subsequently
note that this belongs to a more general class of statistics which remain robust under
heteroskedasticity though are typically not power optimal.*6

Suppose that o2 := E[e?|X] = E[¢?] > 0. Under this simplification, the efficient score
function is:

by, =072 Y = f(Va,) ' (Vo,) [Xo = Z(Va,)] .

n

where Z(Vp,) = E [X5|Vj, ].

To estimate the nonparametric parts of the efficient score function I will use split-sample
estimators. Let NV = {1,...,[n/2]} and N® = [n] \ N, For i € [n] let N_; denote
whichever of N or N that does not contain i. The class of estimators considered have

the following form:

46The class contains a member which achieves the power bound under appropriate conditions but is not
feasible as it requires knowledge of the optimal weighting function w(X). Cf. the approach taken for
estimation in Ichimura (1993).
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i fn(ven» FaVorirs€in)  Eini = En((W))jen_.),
J/C\,nz (‘/Gn,z> VIn<‘/9n,i752ni) 52,71,1 = 52 n(( )jEN—z) (29)
)

Z”M (‘/9 = (‘/Gn,zaf?;nz) éB,n,z = 63 n(( )jEN_ )

where each ¢, ; is a (random) vector whose dimension may increase with the sample size.

n,

This class of estimators includes, for example, series estimators (of conditional moment
functions and their derivatives) as considered by e.g. Newey (1997); Belloni, Chernozhukov,
Chetverikov, and Kato (2015); Chen and Christensen (2015); Cattaneo, Farrell, and Feng
(2020).*7 In this case, e.g. f(Vp,) is the conditional expectation of Y given Vj, and estimates
of f(Vp,.:) and f’(ngi) can be given as

FaWVoni) = Fa@,€100) = (Vo) €1mis FuVonid) = F(Vowis o) = [da(Von )] Eomis

where g, is a K,-vector of basis functions from R — R, ¢/, their derivatives and

-1

gm,z‘ = éan = Z Qn(Ven,j)Qn(Ven,j)/ Z %(VHmj)Yj

JEN_; JEN_;

Similar estimators can be constructed for Z(Vjp, ) which is the conditional expectation of X,
given Vjp, .

Given such estimators I form an estimate of o2 as

and the estimates

~

B () = 7 (Vi = o) P [Xoi = 2] T o= S b (W, (W) (30)

Let Z, 4, be the eigendecomposition-truncated version of Z, 5, at v, (analogously to (21)),
where (v,)nen IS a non-negative sequence converging to zero. With these estimators as-
sumptions E and R can be shown to hold under conditions on the sequence (v,)nen and

the following high-level condition which assumes certain (probabilistic) rates of convergence

47This class of estimators also includes, for example, kernel estimators.
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hold for
] R 1/2
Rl,n,i = (/ [fn(vvfl,n,i) - f(’l))}2 an(U)) )

Roni = (/ [f/n(,U?éQ,n,i) - f’(U)]2 an(U)>1/2,

1/2
R3,n,i = (/)

. . 2
Za(0,6ans) — 2D, )
where V), is the distribution of Vj, .

Assumption SIM-NP(i). Suppose that 2" is a compact set, equation (28) holds, o2 =
E[e?|X] = E[¢?], E[¢*] < oo and with P, -probability approaching one for [ € [3] and each
i € [n], Rini <1y = o(n=Y4). o

The rates in assumption SIM-NP(i) are attainable under reasonable regularity condi-
tions. For example, series (linear sieve) estimators of f, f' and Z can attain these rates
given sufficient smoothness of the target function and other regularity conditions. See, inter
alia, Belloni et al. (2015); Chen and Christensen (2015); Cattaneo et al. (2020); Huang and

Su (2021). This assumption is sufficient for the estimator of 072 to be y/n-consistent.

Lemma 4.3. Suppose that assumption SIM holds and o* = E[e*|X] = E[¢?] € (0,00) and
let (Yn)nen be as in Proposition 4.1. If E[e*] < co and with P.,,-probability approaching one,
Rini < 1p=o0(n"4), then /n(6,2—072) = Op,, (1).

In the general, heteroskedastic, case I consider a related estimator, where — as in Ichimura
(1993) — a known weighting function (X)) is utilised in place of the unknown w(X). In
particular, I estimate the function

] . ) /  E[®(X)Xa|V,]
b (W) = OO = fVa ) (Vo) | X2 = g 60T ]

Clearly if ® = w, ?% coincides with the efficient score function and hence power optimality
results are available if the conditions outlined in section 3 hold. In the case where & # w
the resulting statistic will not be power optimal, but will retain the locally uniform size
control properties of the efficient score statistic.

In the heteroskedastic case, I replace the function Z(Vjp, ) = E[X3|Vp, | with Z1(Vp, )/ Z2(Va,)
where Z,(Vy,) = E[0(X)X,|Vp,] and Zy(Vp,) == E[0(X)|Vp,]. Let f,; and f’m be as in
(29) and similarly define

Zl,n,i = Zl,n(%n,i) = Zl,n(%n,i, é?)nz) éan = 53,n(<wj)j€N,¢)

A A -~

. . (31)
Z2,n,i = Z2,n(V9n,z‘) = 2,n(Vbn,z‘, 5.4,n,z‘) £4m,i = é4,n((wj)j€N_i)'
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With these estimates I can form an estimate of Z% and T, = P%E%E’% according to

. 1 o - y
5 Tn,On = Zgnﬁn(l/vi)gn,en(vvi)/-
=1

n -

b ) = (%) (Y = o) Ty [X s

2.n,1

(32)
Let T,, be the eigendecomposition-truncated version of T, 4, at v, (analogously to (21)).

The test statistic that will be used in this case (for testing a two-sided hypothesis) is

Sn,@ = (\/E]P)nénﬂ)/ TL’Q (\/E]P)ngnﬂ) ) (33)

with the test and confidence then being defined analogously to (10) and (11) with S, 4 in
place of Sn’g. Denote these respectively by én,@o and C,,. This test will be called the “pseudo

efficient score test” in what follows. Let ﬁlnz = Ryn, for l =1,2 and define

R = (/ HZl’”(”’é?»nﬂ‘) - Zl(U))Hz an(v))l/z

In the heteroskedastic case, assumption SIM-NP(i) is replaced by the following assumption:

Assumption SIM-NP (ii). Suppose that 2" is a compact set, equation (28) holds, E[e*] <
00, 0 : RY — (w, W) is a known function and with P, -probability approaching one for
I € [4] and each i € [n], Ryn: < 7 = o(n~/4). o

The rates required by this assumption are attainable under reasonable regularity condi-

tions; cf. the discussion following assumption SIM-NP(i).

4.3 Asymptotic properties

I start by detailing the asymptotic properties of the efficient score statistic in the ho-

moskedastic case.

Proposition 4.4. Suppose that assumptions SIM, SIM-NP(i) hold and there exists a func-
tion m as in Proposition J.2. Consider the sequence (7, )nen of proposition 4.1, suppose the
observations form an i.i.d. sample and lﬁmgn and j:n’@n are as in (30), with 0 < v, — 0 such
that r, +n~"?log(n)/*** = o(v,,) for some x > 0. Then assumptions M, LAN, CM(ii), E
and R hold.

With the estimators émgn and jn,gn the efficient score statistic, test and confidence set
can be defined as in section 3.2. The following results demonstrate that the efficient score

test is optimal under strong-identification asymptotics and provides robust size control and
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the corresponding confidence sets robust coverage, including under asymptotics in which
the function f is local to a constant (function) at rate \/n, corresponding to a setting where
6 is weakly identified.

Corollary 4.5. In the setting of Proposition 4.4, let H;7 be a compact subset of H,. Then,

the efficient score test satisfies

: n
limsup sup P o ,0n0, < @,
n—oo  heH]

and, for any compact © C ©, the corresponding test inversion confidence sets satisfy

liminf inf inf P” becC)>1-—a.
n—oco 06 heH), 0 n) 2

Corollary 4.6. In the setting of Proposition 4.4, suppose additionally that rank(Z,) > 0.
If d9 = 1, then the efficient score test is locally asymptotically uniformly most powerful

unbiased. If dg > 1, then the efficient score test is locally asymptotically mazimin.

I now establish a similar uniform size control result for the heteroskedastic case, with

the psuedo efficient score test defined immediately following (33).

Proposition 4.7. Suppose that that assumptions SIM, SIM-NP(ii) hold and there exists a
function m as in Proposition 4.2. Consider the sequence (vn)nen of proposition 4.1, suppose
the observations form an i.i.d. sample and ngn and Tn,gn are as in (32), with 0 < v, — 0
such that ry, +n~"/?log(n)"/** = o(v,) for some x > 0. Let H) be a compact subset of H,.

Then, the psuedo efficient score test satisfies

. mn M
limsup sup P70 o ,0n0, < @,
n—00 hEH,’7

and, for any compact ©' C O, the corresponding test inversion confidence sets satisfy

liminf inf inf P" 0ecC)>1-—a.
n—co 0EO heH) o0 € Cn) 2

I remark here that if & = w then each Z% = E%, In this situation, if the rank of
T, = ~7 is positive, then in the setting of Proposition 4.7 the (pseudo) efficient score
test is is locally asymptotically uniformly most powerful unbiased if dy = 1 and locally
asymptotically maximin if dg > 1. However, as this is infeasible in the heteroskedastic case,

I do not state a formal power result.
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4.4 Simulation study

I conduct a simulation study to examine the finite sample properties of the efficient score
test. I draw n € {200, 400,600,800} samples from model (24) for a number of different
functions f and distributions (. I set K = 1 throughout and examine finite sample size
using 5000 Monte Carlo replications, at a nominal level of 5%. In each case I test the null
Hy:0=1.

Overall the simulation experiments suggest the asymptotic results of section 4.3 provide
a good guide to the performance of the efficient score test (and psuedo efficient score test)

in finite samples.

4.4.1 Homoskedastic case

Initially I consider the homoskedastic case. The error term is taken as either (1) e ~ N (0, 1)
or (2) €|¢ ~ v/5(—1)¢Beta(2,3), ¢ ~ Bernoulli(1/2). In both cases Ee = 0 and Ve = 1.
The covariates are drawn as either (a) Xy = Z; or (b) X = (Z;,0.2Z; + 0.4Z5 + 0.8) where
Zy ~ U(—1,1) for k = 1,2. The link functions considered take the form f(v) = 0f*(v)
for f* € {v— c1(1 4+ exp(—v))~tv = cpexp(—v?),v — c3v?}, 6 € (0,1).%% Each of these
functions has a different shape; the scalars ¢; (i = 1,2,3) vary across the functions f* and
distributions for X and are chosen so that the variance of f*(V}) equals 4 under Hy: 0 = 1,
whilst ¢ is taken the same for all functions and used to scale this variance.”

To examine the finite sample size of the proposed test, the efficient score function and
efficient information matrix are estimated as in (30), with split-sample (penalised) smoothing
cubic B-splines used to estimate each of f , ]?’ and Z.5° 1 truncate the efficient information
matrix at machine precision. Additionally I consider a Wald statistic estimated using an
Ichimura (1993) style estimator, which uses the same estimates of f , J/"'\’ and Z as the efficient
score statistic.”> The finite sample empirical rejection frequencies are reported in tables 1
- 4. In all specifications considered the efficient score provides good size control, whereas
the Wald statistic based on the Ichimura (1993) type estimator described above displays
substantial over-rejection, particularly for small §.

To analyse the finite sample power of the efficient score test I consider the finite sample
rejection frequency of the efficient score test of 8 = 1 for a grid of values around 6. Specifi-
cally, I take 21 equally spaced values between 0.875 and 1.125 and all other parameters are

the same as for the simulations used to investigate finite sample size. Figures 5 - 8 plot the

48The first of these is the standard Logistic CDF.

49The scaling constants ¢ are calculated in closed form for the case (a) with X = (Z1, Z3). In the correlated
case (b), evaluation of the integrals becomes substantially more complex and so simulated values are used,
based on 10,000,000 draws.

50In particular I use the smooth.spline function in R with its default knot choice and penalty settings.

L This approach estimates ¢ by minimising the criterion 6 — 23"  (Y; — fn’i(Vg))z; the estimates of f'
and Z are necessary to construct the asymptotic variance.
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finite sample power function of the efficient score test, which demonstrate that — as expected

— higher § leads to higher power for the same distance from the null.

4.4.2 Heteroskedastic case

I now consider the heteroskedastic case. I consider two specifications for the error term: (1)
e ~ N (0,51 log(2+ (X1 +X20)?)) and (2) € ~ N (0, s2(1+5sin(X3)?)) where the constants s;
(i = 1,2) are chosen such that in each case V(¢) = 1 (unconditionally) under Hy : 6§ = 1.2
The distributions for the covariates and the link functions used are the same as in the
homoskedastic case.

To examine the finite sample size of the proposed test, the pseudo-efficient score function
and its variance matrix are estimated as in (32) with split-sample (penalised) smoothing
cubic B-splines used to estimate each of f , f’, Z1 and Z,.%% As in the homoskedastic case I
truncate the variance matrix at machine precision. Additionally I consider a Wald statistic
estimated using an Ichimura (1993) style estimator, which uses the same nonparametric
estimates as the psuedo-efficient score statistic.®

The finite sample rejection frequencies with (X)) is taken as the infeasible truth w(X)
are reported in tables 5 - 8, whilst tables 9 - 12 report the finite sample size where @ (X) =
1. The results demonstrate qualitatively the same conclusions as the homoskedastic case,
with the pseudo efficient score statistic always providing good size control, unlike the Wald
statistic, which displays large over-rejection, particularly for small §.

As in the homoskedastic case, to analyse the finite sample power of the pseudo efficient
score test I consider the finite sample rejection frequency of the efficient score test of 8 = 1 for
a grid of values around 6. As in the homoskedastic case, I consider 21 equally spaced values
between 0.875 and 1.125 with all other parameters the same as for the simulations used to
investigate finite sample size. Figures 9 - 12 plot the finite sample power curves. Similar
observations apply as in the homoskedastic case, with higher § leading to higher power for a
given distance from the null. Moreover, as expected, the optimal (but infeasible) weighting
scheme delivers higher power, though the difference seems to be relatively small for the

designs considered.

5 Linear simultaneous equations models

In this section, I work out the details of the application of the theory developed in section 3

to a class of linear simultaneous equations models (LSEMs) where identification is based on

52These are determined by simulation with 10,000,000 draws.

53See footnote 50.

S4This approach estimates 6 by minimising the criterion 6 — 2 3" @& (X;)(Y; — fn.i(Vo))?; the estimates
of f’, Zl, Zs are necessary to construct the asymptotic variance.
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an assumption of mutually independent and non-Gaussian errors. Under this assumption,
no external information (e.g. instrumental variables) is required in order to identify the
parameter of interest.

Consider the following linear simultaneous equations model (LSEM)
Y =RX+V, V=A0,0)"¢ Ee=0Ve=1I, (34)

where the K components of € are mutually independent, X = (1, X' ) is a vector of covariates
independent of €. R is a K x L matrix of regression coefficients and A(f,0) is a K x K
invertible matrix. For later convenience I collect the Euclidean nuisance parameters R and
o into one vector: (= (0], 53) = (¢, vec(R)').

As is well known, in simultaneous equations models of this form the elements of the
mixing matrix, A(6, o), are not identified without further restrictions. However, if no more
than one component of € is Gaussian, the elements of the matrix A(f, o) are identified up
to column permutation and sign changes (Comon, 1994). Imposition of sign restrictions
and labelling of the shocks can then yield identification of the elements of A(f, ) which —
assuming an identifiable parametrisation — yields that of 6.

Nevetheless, the identifying assumption that no more than one component of € is Gaus-
sian is not innocuous. In particular, depending on the parametrisation of the model, if
this assumption fails, § may be underidentified or completely unidentified. Moreover, as is
typical in models with points of identification failure, the impact of the potential identifi-
cation problem here is not binary. “Weak non-Gaussianity”, where the error distribution
is sufficiently close to Gaussianity relative to sampling uncertainty, can cause problems for
inference methods which assume non-Gaussianity to obtain identification.?® In this section
I extend the analysis of Lee and Mesters (2021a) to demonstrate that inference based on the
efficient score test is (i) robust to weak identification (in addition to underidentification and
complete unidentification) and (i) minimax optimal if 6 is identified or underidentified.?®

The first step of the analysis is to formally set up the model under consideration. Let

no denote the (Lebesgue) density of X and for each k = 1,..., K let 1, be the (Lebesgue)

_ dlognk(s)
ds

number of moments of (functions of) ¢ and X to satisfy certain conditions.’” In particular,
for each k € [K] and some 6§ > 0

density of €, and define ¢, as the log-density scores, i.e. ¢ (e) : (e). I will require a

Ee, =0, Ee? = 1, Elep[*™ < 00, Eldp(er)*™ < 00, Eep — 1 > (Eel)?, (35)

5See Lee and Mesters (2021a) for simulation evidence of this phenomenon.

56Lee and Mesters (2021a) provide simulation evidence of a weak identification problem in this class of
models, but their theoretical work only considers robustness against fixed distributions under which 6
may be identified, underidentified or unidentified and does not cover weak identification.

5TThese conditions are the same as imposed in Lee and Mesters (2021a). Additionally I note that such
fourth-moment conditions are common for conducting inference on variance parameters (e.g. White, 1980).
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and
EXX' >0, E|X|i <. (36)

These moment restrictions are used to characterise the DGPs permitted by the model.

Specifically, the density functions 7 and 7y are assumed to belong (respectively) to the sets
¢ and 2 which are defined as follows:

G = {g €eLi(R):g> O,/gd)\ =1,/ € C'(R), if ¢, ~ g then (35)} : (37)

= {g € Li(RF1Y) g >0, /gd)\Ll =1, if X ~ g then (36)} , (38)

where L;(R?) denotes the space of integrable functions on R? with respect to the Lebesgue
measure (which is denoted by A% or X if the dimension is clear from context) and C*(R)
denotes the space of functions R — R which are continuously differentiable A-a.e.. Finally
the parameter 3 = (0, vec(R)') is assumed to belong to % C R%. 1 will consider two
restrictions on Z. Firstly it will be permitted to be an (otherwise unrestricted) open set.
Alternatively — to explicitly handle the case of sign restrictions (or non-negativity restrictions

on variances) — it will be permitted to have the form
do
B =B x By, B =]] R (39)
I=1

where %, C RXL is open and each %, C R is either open or one of (—oo, 0] or [0, 00).

The assumptions imposed on the LSEM model (34) are summarised as follows:

Assumption LSEM. W = (Y, X) satisfies (34) where the K components of € have marginal
densities 7y, (k € [K]). Let the density of X be 79.%®

(i) © C R% is an open set and 8 C R% is either open or has the form %, x %, where
these factors are as described following (39).
(ii) The components of € are mutually independent and € is independent of X.
(iii) nx € 4 foreach k € [K]and ny € Z, for 4 and Z defined in (37) and (38) respectively.
(iv) The function (6, 0) — A(6,0) is continuously differentiable with [-th partial derivative
Dy ,(6,0) and the functions (0, 0) — Dq,(0,0)A(6,0)"" are Lipschitz continuous.

The model is given by P = {P, : v € I = © x H} with H == B x % x [[}_, ¥ and where
each P, has (Lebesgue) density
K ~

py (W) = [ det(A(0, )| [ me(AxlY = RX]) x no(X). (40)
k=1

58FEach 7y, is a density with respect to Lebesgue measure on the appropriate Euclidean space.
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The moment and smoothness conditions imposed by part (iii) of assumption LSEM are
reasonably weak, as are the smoothness conditions in (iv). The independence in (ii) is,
however, restrictive. Mutual independence of the components of € is a testable assumption
in applications (Matteson and Tsay, 2017; Amengual, Fiorentini, and Sentana, 2021). The
independence of X and e could be replaced by a conditional moment restriction, for which
the general approach outlined in this paper would continue to hold, but the analysis below
would need to be redone under this alternative assumption, with the efficient score function

taking a different form.

5.1 Verification of the modelling assumptions

Assumption LSEM coupled with the assumption that the observed data comprises an i.i.d.
sample (W;)"_, ensures that assumption M holds. I next show that assumption DQM holds,
which is sufficient to imply assumption LAN by proposition 3.10.

For any I € [dg + d,] and any (k, j) € [K]?, let ;= [D14(6, 0)]k[A7"];. Additionally
write Dy, for the derivative of R with respect to the I-th component of 35 = vec (R). C}(R)
denotes the space of functions R — R which are bounded, continuously differentiable and
have bounded derivatives A-a.e. and Cy(R*) denotes the space of functions RY — R which

are bounded and continuous A*-a.e.. Define the sets g@,ﬂ and %7 as:

%, = {ho € Cy(REY) /ho dGy = o} (42)

where G}, is the measure on R corresponding to n, (k € [K]), Gy the measure on RE™!

corresponding to 7o, ¢ denotes the identity function and x(e) :== e? — 1. Let

do K K
1'—’[77 = H% X RKL X %7 X Hgmk C H = RdB X Loo<>‘L_1) X HLOO()\)ﬂ (43)
=1 k=1 h=1

where each 7] = R if § is an interior point of Z and otherwise (i) ¥ = [0, 00) if %, = [0, 00)
and o, = 0 or (ii) ¥ = (—00,0] if #1; = (—00,0] and ¢; = 0. H is equipped with the norm
IR]| = [|bll2 + I1Pollar—1.00 + Sory 1PklIrse, for B = (b ho,...,hix) € H. H, is a linear
subspace of H whenever 3 is an interior point of %.

The sequences of base parameters considered are ~, = (6,,,7n), with local perturbations

59Each of the factors defining H is a Banach space (with the corresponding norm as just indicated) and
hence the same is true of H when equipped with the indicated norm.
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of the form 6, + 7,/+/n — 6 with 7,, — 7 and

nn(hn) = (Bl + tnbl,m 52 + tnb2,n7 770(1 + tnhn,O)v 7]1(1 + tnhn,1)7 LR 777K(1 + tnhn,K)) (44)

with h, — h (all in H,); note that 1, (h,) — 7.
The following proposition establishes the quadratic mean differentiability of the model
and hence LAN in view of Proposition 3.10.

Proposition 5.1. Suppose that assumption LSEM holds, 6, — 6 € © and n € H and
consider the sequence defined by v, = (0n,m) € . Let 6, = I/\/n, t, = n"% 7, — 1,
b= (bns Py Pt - - B ) (with by = (V) ,,,05,)" ), with hy, — h, and define n, : H, — H
as in (44). Then assumption DQM holds, with g, = T’é% + B, h where for l =1,..., dy,

K
AUSEDY [Clkkn(¢k( nk V) An iV + 1) + Z Gk jn®r(An V)ALV |
k=1 Jj=1,j#k
dg+dp, K
[B’Ynh](W) = Z blmz (mkkn Qbk( nkv) nkv+ 1 Z Cm,k,j,n@bk(An,kV)An,jV
m=dg+1 k=1 j=1,j#k

dg

K K
+ Z Ok(AniV) | —Ank Z ba Do X | + ho(X) + Z hi(An i V),
k=1 =1

with Ay, = A(0p,0), V=Y — RX.

In order to simplify the expression of the the efficient score function, I suppose the

following moment conditions on ¢; hold.
E¢k(6k) - 0, ]E¢k<€k)€k == —1, E¢k(€k)€z == 0, E¢k(€k>€i = -3. (45)

These moment conditions are weak; if (35) holds then a sufficient condition for (45) to hold
is that the tails of the densities satisfy n(z) = o(z73).%

Proposition 5.2. Suppose that assumption LSEM and equation (45) hold and consider
the sequence (Yn)nen of Proposition 5.1. Then assumption CM(ii) holds and (provided the

inverse in the subsequent display exists) the efficient score function, @%, 15 given by

l = Gy = [ Prlynl, o] [P loal o] L, (46)

60See Lemma S8 in Lee and Mesters (2021b). Alternatively, these conditions will hold provided differentia-
tion and integration can be appropriately interchanged.
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where forl=1,...,dg, m=1,...,dp,, s=1,...,dp,, v =V — RX and p =EX,

K T K

Cyp1a(W) = Z Gk (Tea An iV + Thok(An V) + Z Qi@ (An V) AV
k=1 L j=1,j#k

i K T K

Cyom(W) = Z Cmken (Th, 1 An iV + Tk (AnkV)) + Z Cmkjn Pk (Ank V) An iV
=1 L =LAk

E’YmQ,dbl +s (w) -

[M] >

[— A, kDo s| [(x — 1) (AnkV) — o (k1 An iV + Grar(AniV))],

i
I

and

0 1 1 P, (A, :V)?
T = M o= M . with M, = (A V) .
_2 0 P’Yn (Anykv)g P’Yn (Anakv)4 - 1

The preceding proposition requires the inverse of the variance matrix of !7%2 to exist.
This is only necessary for the projection to be expressed in this precise form; if the matrix in
question is singular, one can drop linearly dependent (in Ly(P,,)) elements from /., , until
it is nonsingular. Additionally note that M; is not indexed by n; under P, , A,V ~

and so the moments making up M) are constant in n.

5.2 Implementation of the efficient score test

Next I impose conditions which are sufficient for the construction of estimates of the efficient
score function and efficient information matrix which satisfy assumptions E and R. First, I

suppose that there is an appropriate estimator of each log density score ¢, available.

Assumption DSE. Suppose that (5,),en C £ is a deterministic sequence with v/n(3, —
B) = O(1). Let ), = (0,,08n.1n), A = A0, 1) and V,,;, =Y, — R, X;. The array of
estimates (fign,k(An,kVn,i))neN,ign satisfies
1~ Ts ~1/2
E Z |:¢k,n(An,kVn,z) - ¢k(An7kVn,z):| Un,i - OP’Y@ (TL )

n (47)
1 ) 2 ,
E Z ([¢n,k(An,kVn,i) - ¢k(An,kVn,z)] Un,i) - OP%Q (Vn>7

i=1
for any (U,i)nen,i<n such that for each n € N, under Py, the U,; € LY(P, ), are i.id.

with marginal distribution G, and are independent of each A,, ;V, ;, and where 0 <v,, — 0
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satisfies v,, = o(1,,) with

n~12log(n)/?tr  if § > 4
v, = ) (48)

n(1=p)/ () otherwise

for p == min{1 4+ 6/4,2} and some p > 0. o

Lee and Mesters (2021a, Appendix B) propose an appropriate estimator of ¢, using cubic
B-splines — based on the density score estimator of Chen and Bickel (2006) — and demon-
strate that it satisfies assumption DSE under assumption LSEM and some mild additional
restrictions on 7.

Given such an estimator, an,lm of each ¢ and a &, :== (6, B,,), the efficient score functions
in Proposition 5.2 can be estimated by replacing each ¢y(Axv) with ngSnk(AnkVnk) and

replacing each 7, ¢ and p by their sample counterparts:

WE

K
le,10(W5) Ck ki (Tak1€nkyi + Tok2b(€n ki) + Z Cl,k,j,n¢n,k(en,k,i)en,j,i]

k=1 j=1,j#k

K K
‘gfn,2,m(VVi> = Z Cm,k,k,n (fn,k,len,k,i + 7A-n,k,ZI'f(en,k,i)) + Z Cm,k,j,n¢n,k(en,k,i)en,j,i]
k=1 J=1,j#k

K
gén,Z,dbl+s(VVi> = Z[_An,kDQ,s] |:(Xz - Xn)¢n,k<en,k,i) - Xn (én,k,len,k,i + fn,k,2/€(en,k,i)):| )

(49)
where e, 1; = Ap i Vii, Xp =+ >, X and

. 0 . 1 . 1 LS~ el

S . -1 ~ . -1 : . =1 "n,k,i
Tk = Mn’k 5] Sk = ank , with M, = L—n 3 | en ¢ A nE

- 0 oy Zi:l Cnki n Zi:l Cnki

In practice, § is unknown but estimates can be formed using a discretised version of
an estimator for § which is y/n-consistent under P, . In model (34), 8, = vec(R) can be
estimated by OLS. Appropriate estimators of 0 = ; depend on the parametrisation of the
matrix A(f,0) but can usually be constructed from the sample analogue of the equality
E(VV') = A(0,0)" (A(0,0)~1) for a given 6 and estimate of R.%!

Suppose Bn is a /n-consistent estimate of 3 and let 3, be the estimate which replaces
3, by the closest value in n=/2CZ% N B.2 Let &, = (0,,, B3,) and define the estimates

~

~ ~ ~ ~ ~ -1 .
b, = o1 = [Pule, ol 5| [Pule, ol o] .

" (50)

A A A ~ ~ ~ -1 ~ A~
Lo, = Pule, il — [Pule, ol 5| [Pule, ol 5| [Pule, 2l |

61Such initial estimators can often be refined by one step updates, see e.g. §25.8 in van der Vaart (1998).
52For an abritrary constant C' > 0.
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and let inﬂn be the eigendecomposition-truncated version of inﬂn at v, analogously to (21)

(with v, as in assumption DSE).

5.3 Asymptotic properties

The following proposition demonstrates that the estimation procedure outlined in the pre-

vious subsection satisfies the conditions required for the theory in section 3 to apply.

Proposition 5.3. Suppose that assumptions LSEM, DSE and equation (45) hold and that
the observations form an i.i.d. sample. Consider the sequence (Y, )nen of Proposition 5.1.
Suppose the inverse in (46) exists, 6 — rank(iy) is locally constant at vy, B is a Vn-

consistent estimate for B under P, and émgn, fn,gn are as in equation (50). Then assump-
tions M, LAN, CM(ii), E and R hold.®

The preceding proposition requires the rank of f,y to be locally constant in 6 at . This
reflects the situation under study in which the identification status of # is determined by
1. Note that since the rank function is lower semi-continuous and non-negative integer
valued, there is always a small enough neighbourhood on which the rank is bounded below
by rank(i’v). Therefore the force of the restriction is only that on some neighbourhood the
rank cannot strictly exceed rank(Z,), which is evidently the case for full rank Z.. For rank
deficient Z., the assumption has force.*

Given the definition of the efficient score and efficient information matrix estimators in
(50) and supposing the hypothesis of interest is two-sided, the efficient score statistic and
test can be defined as in equations (9) and (10). Since the required conditions have been
established above, the results on size and power of the efficient score test — as established

in section 3 — apply directly.

Corollary 5.4. In the setting of proposition 5.5, let H} be a compact subset of H,. Then

the efficient score test satisfies

: n
limsup sup P7 ;,0ng, < @,
n—o0 hEH{7

and, for any compact ©' C O, the corresponding test inversion confidence sets satisfy

liminf inf inf P/} 0ecC)>1-a.
n—oo 0€©’ heH;, (9177),0,h< n) >

Corollary 5.4 is the key results as regards robust inference in the presence of possible weak

under- or un-identification of €, as may occur when the components of 7 are sufficiently close

63Where the scores and paths in assumption LAN are as in proposition 5.1.
64From this discussion it is evident that an alternative way of stating this restriction would be that 6

rank(Z,) is upper semi-continuous (or continuous) at +.
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to Gaussianity relative to the sample size. The results demonstrate that the efficient score
has correct asymptotic size uniformly over local perturbations of the nuisance parameters
and the corresponding (test inversion) confidence sets are uniformly valid over compact
subsets of © and local perturbations of the nuisance parameters.

As the perturbation sets H, are linear spaces whenever § € int 4, if this condition holds

the efficient score test has optimality properties in the fully- and under- identified cases

Corollary 5.5. In the setting of proposition 5.3 suppose additionally that B is an interior
point of B and rank(fv) > 0. If dy = 1, then the efficient score test is locally asymptot-
weally uniformly most powerful unbiased. If dy > 1, then the efficient score test is locally

asymptotically maximin.

I next examine the finite sample performance of the efficient score test in two explicit
versions of the LSEM via two simulation studies. In the first study I consider a scalar
parameter and focus on potential weak identification as may occur under error distribu-
tions close to Gaussianity. In the second I consider a two dimensional parameter which is

underidentified under Gaussianity.

5.4 Simulation study (i)

Consider model (34), with K =2, L = 2 and let the mixing matrix A(¢,c) be

o' 0 1 -6
Alb o) = [ 0 03_1] [—01 1].

The null hypothesis under consideration is that Hy : # = 0. When both €; and ey are close
to Gaussianity, # in this model will be only weakly identified.

To shed light on the finite sample performance of the efficient score test, I draw 5000
samples from this model for a range of different sample sizes and distributions for the error
components €; and €. The X variables are drawn as independent standard normals and
1 =0=1(0.7,1.0,3.0), By = vec(R) = (1,2,—1,—3/2)" . Table 13 tabulates the considered
error distributions for €; and e,. 3 different distributions are considered for ¢; and 10 for €.
In particular, I consider a fixed distribution for €; and examine the finite sample behaviour
of the efficient score test as the distribution of €5 approaches Gaussianity, starting from 3
non-Gaussian distributions, each with a different shape.

To implement the efficient score test, I estimate each ¢, using the B-spline based esti-
mator described in Appendix B of Lee and Mesters (2021a), which is adapted from a similar
estimator proposed by Chen and Bickel (2006).°° The remaining (Euclidean) nuisance pa-

rameters are estimated in two ways: (i) Sy = vec(R) is estimated by OLS, with an estimate

65The density functions of these distributions are plotted in figures 1 - 3.
66Tn each simulation design, I use 6 cubic B-splines and set the upper and lower knots to be the 95th and
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of By recovered from the empirical variance matrix of the residuals Y; — RX;. (ii) These
OLS-based estimates are used to estimate the efficient score function for £, and then a
one-step update is made based on this preliminary efficient score.®”

With all the required nuisance parameters estimated, the efficient score function is con-
structed as in equation (50), the efficient score statistic is conducted as in equation (9) and
the test performed as in equation (10) at a nominal level of 5%.%

The empirical rejection frequencies for the efficient score test conducted with (i) OLS-
based estimates of the Euclidean nuisance parameters and (ii) one-step updates of these
estimates are recorded in tables 14 - 16; each table corresponds to a different distribution
for ;. The table of primary interest is table 14, with ¢; ~ A(0,1) as this corresponds to
a potentially weakly identified setting. As this table demonstrates, the efficient score test
appears to demonstrate valid size control for all sample sizes and choices of 7, considered.
The version of the efficient score test with one-step updates provides reasonable size control,
though demonstrates slight over-rejection in a number of cases. This finding holds also in
each tables 15 - 16.

Tables 14 — 16 also contain size results for a number of alternative testing approaches.
Two are Wald and LM tests based on a pseudo-maximum likelihood approach, inspired
by the approach in Gouriéroux et al. (2017).%° Here, a density is chosen for each of the
error components and standard psuedo-maximum likelihood tests are performed. Following
Gouriéroux et al. (2017) I choose a (normalised) ¢(5) distribution for both €; and €, in this
simulation experiment. As might be expected, the Wald statistic does not control size at
the nominal level and displays both under- and over-rejection (depending on 7,) in table
14. TIts performance in the settings recorded in tables 15 and 16 is mixed, demonstrating
an ability to control size when at least one psuedo-density is sufficiently close to the truth,
and substantial over-rejection otherwise. In contrast, the LM statistic (which imposes the
null value of #) does correctly control size for each choice of 7 in tables 14 — 16.

The final two tests are Wald and LM tests based on a GMM framework in which higher
moments of the error terms are used to provide identifying information. The moments used
were drawn from Lanne and Luoto (2021).7° Specifically, the (nine) moment conditions

utilised are:
E[e;X] = E[e; X] = E[r(e1)] = E[(e2)] = E[e1€5] = E[eSes] = E[e2e2 — 1] = 0.

Neither of these GMM based tests (based on these moments) achieve finite sample size close

5th percentile of the samples, respectively adjusted up and down by log(logn), truncated at the maximum
(respectively minimum) sample value.

671 note that in the construction of the test @ is fixed throughout and so considered known.

68The information matrix eigenvalues are truncated at machine precision.

89Gouriéroux et al. (2017) consider a similar problem but in a SVAR setting.

"0Like Gouriéroux et al. (2017), Lanne and Luoto (2021) consider a SVAR setting.
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to nominal in the simulation experiments, as can be seen in tables 14 — 16. In the latter two
tables, where weak identification is not present, the finite sample sizes of these tests appear
to be reducing towards the nominal level as n increases, but remain substantially above the
nominal level in each simulation design considered.

I perform a further simulation experiment based on this model to document the failure
of size control of the score test based on the score functions for the Euclidean parameters
(0,1, 55)". The relevant scores take the form

K K

U g (W) =) GGk (AV) A+ 1)+ > Qurgdn(AV) AV
k=1 j=1,j#k

] K

(W) = [~ A Dy X] 1AV,
k=1

forl =1,....dg,dg+1,...,dg+ds, andm =dg+ds, +1,...,dg+ds, +ds,.™ Let (% denote

the first dy elements, and Ei the remainder. Let S, ¢ be the statistic formed analogously to

(9) but based on an estimated version of 6}{ - f12f2_21€3/, with I, = Pvéwlf’w rather than .
Since score functions have finite second moments,

VP, @ — ]12]2_2153] ~ N(0, jq/,ll - j’y,le';%Qj'y,Ql)y

and hence if l@, and jﬂ, could be replaced by estimates with conditions analogous to those
in assumption E and R holding, the test based on Sme would correctly control size.

Table 17 demonstrates that this is not the case, with the efficient score based tests
controlling size, whilst the analogous tests based on é,y (with the same estimator of ¢;) do
not.” The key problem here is the bias caused by the regularised estimation of ¢, which is
present in the estimate of l@. This bias is removed by the orthogonal projection onto the
nuisance score space in the definition of E}.

Following the size results, I compared the power of the two efficient score tests to that of
the psuedo-ML based LM test which also was able to correctly control size in all designs con-
sidered. Figures 13 - 15 plot the results, corresponding to €; ~ {N(0,1), #(5), SN'(0,1,4)}
respectively where ¢’ and SN’ denote the standardised version of the indicated distribution.

These finite sample power curves show that the power provided by any of the tests
considered declines as the density 7, approaches Gaussianity, particularly in the potentially
weakly identified case where ¢; ~ N(0,1) (figure 13) in which available power appears low.

In constrast, in figures 14 and 15 where there is no (weak) identification issue, the efficient

"LCf. proposition 5.1.

"2In this simulation design, €; and €5 have the same distribution, and are at a fixed distance from Gaussianity
to focus on the problem of plugging in an estimate of a non-parametric parameter, rather than potential
identification problems.
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score tests apear to provide good finite sample power, with the version based on one-step
updated estimates providing slightly higher power. The pseudo-maximum likelhood LM
test also provides good power in cases where the chosen pseudo-densities are close to the
truth. In particular, it slightly exceeds the power of the efficient score tests when e, has a
(standardised) ¢ distribution in figures 13 and 14. Nevertheless, the efficient score test is
competitive and provides close to identical power in the first row of figure 14, despite the
pseudo density matching the truth in the first panel. Moreover, in cases where the psuedo-
density is far from the truth, the power of the efficient score test is substantially higher than
that provided by the pseudo-ML LM test (see, in particular, the third row of figure 14 and

each row of figure 15).

5.5 Simulation study (ii)

In this second simulation study I consider the power available in a LSEM where the struc-
tural parameter of interest is underidentified. Specifically suppose that the data satisfies
(34) where for 6 = (a,b) with a # b and 8, = (01, 02) € (0,00)?,

ot 0 1 —a
A(0, 1) = [ 0 021] L _b],

and there is one, zero-mean, unit variance X variable with coefficients R = 0. By explicit
calculation, the efficient information matrix in this model takes the form

~ 1

E[¢1(€1)2]C -1
5= (a —b)?

-1 E[¢ps(€2)?]c™!

] . ci=(02fo). (51)

I consider three distributions from which to draw each ¢,: (i) N(0,1), (ii) #(5) - a
(standardised) t distribution with 5 degrees of freedom and (iii) st'(5,2) a (standardised)
skew t distribution constructed as in Fernandez and Steel (1998) with 5 degrees of freedom
and skewness parameter 2.”® These correspond to (i) E[¢x(er)?] = 1, (ii) E[ér(ex)?] = 1.25
and (iii) E[¢x(er)?] & 2.54 respectively.

In the standard normal case (i), Z, has eigenvalues A\; = (¢ + ¢ 1)/(a — b)?, Ay = 0 and

a one-dimensional hyperplane as its nullspace: N(Z,) = {z € R? : cx; = x5}. In cases (ii)
and (iii), the matrix is positive definite and so N(Z,) = {0}.

Consider testing 0 = 6y = (a,b) = (1/2,1/4), where 0y = 03 = 1 and hence the
nullspace is the line z; = z5. I take n € {600, 1000, 1400} and draw simulation samples
according to (34) with 0 = 6y + 7/y/n and X ~ N(0,1). [y is estimated by OLS and

1 by GMM using the three moment conditions implied by the relationship E[VV'] =

"The density functions of these distributions are plotted in figure 4.
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A0, 1) (A(0, B1) 7). These estimates are used to construct estimates of the efficient score
function and information matrix as in (50). In each case I truncate at machine precision.
The finite sample and asymptotic power surfaces are plotted in figures 16 - 18. Figure
16 demonstrates the expected trivial power along the hyperplane N (Zy) in the Gaussian
case, with power otherwise increasing in ||7]|. In contrast, figures 17 and 18 depict the
full rank case, in which trivial power is found only at the point 7 = 0.7 In all three
figures, comparison of the finite sample power surface to the asymptotic power surface in
the bottom right suggests that the asymptotic power results provide a good approximation

to finite sample power.

6 Empirical study

In this section I use the LSEM of section 5 to analyse the relationship between hourly wages
and hours worked, using non-Gaussianity in the data to identify the structural parameter
of interest. There is a large literature on the estimation of labour supply equations, which
takes note of many econometric challenges; see Blundell, MaCurdy, and Meghir (2007);
Keane (2011) for detailed reviews. Two of the most notable difficulties include potential
endogeneity and heterogeneity.”
A common labour supply specification is the semi-log formulation (e.g. equation (2.8)
in Blundell et al., 2007):
H =0logW + 91X + e, (52)

where H is hours of work, W the wage rate and X contains an intercept along with additional
explanatory variables. As noted in e.g. Blundell et al. (2007), due to correlation with
unobserved characteristics, wages are unlikely to be exogenous.”® In order to take account
of this potential endogeneity, I stack equation (52) with an equation for log wages of the
form

logW = o1 H + v, X + €. (53)

Once re-arranged, these two equations form a simultaneous system as in section 5:
Y=RX+V, V=A(0,0)" (54)

where Y = (H,logWW) and X collects (exogenous) covariates. I take the matrix A to be

"Which, of course, is exactly the nullspace of 7:'.7 in this case.

"5 A further difficulty is the fact that individuals select into the labour force. I focus only on the intensive
margin; a more realistic model would take account of potential selection biases which are ignored in the
subsequent analysis.

"Blundell et al. (2007, p. 4676) write that “Wages may well be endogenous because unobservables af-
fecting preferences for work may well be correlated with unobservables affecting productivity and hence
wages”. Additionally, the “division bias” highlighted by Borjas (1980) provides another source of potential
endogeneity.
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parametrised as

A(0,0) = D(03,03)"1S(0,01) = [“g (31] [ . _9], (55)

O3 —op 1

which permits the errors terms in V' to be correlated with each other. Pre-multiplying Y
by S(,0) yields that 6 is measure of the effect of a change in the log wage on hours.”™
The components 3 = (o/,vec (R)'), are estimable by OLS and from the variance of V,
Y= A(0,0)7 A0, 0)71].

Since the model is invariant to sign changes and column permutations of the A matrix, I
choose the sign of the variance parameters o, o5 to fix the column permutation and sign.™
With these restrictions — and given a value of § — the  parameters are estimable by standard
techniques.”™ A confidence set for § can then be constructed by inverting the efficient score
test over a grid of possible values.

The data are taken from the CEPR uniform extracts of the (US) CPS outgoing rotation
group (ORG) (Center for Economic and Policy Research, 2020). I select the analysis sample
similarly to Bick, Blandin, and Rogerson (2021). In particular, I use the subset of the data
between 2000 and 2007, restricted to males 25 — 64, who are employed (excluding the self-
employed) with one job and at least 10 usual hours of work per week. Any observations
with imputed values for hours or wages are dropped. This procedure leaves just under
200,000 pooled observations. As explanatory variables I include age and its square along
with dummy variables for the year, education level (no high school, high school, some
college, college degree or advanced degree), race (white, black, hispanic, other), whether the
individual is married, whether they have children under the age of 18 in their household
(“kids”) and the interaction of kids with married.

I split the data between individuals who are paid hourly and those who are salaried.
The former group consists of approximately 78,000 observations whilst the latter has ap-
proximately 120,000 observations. I construct confidence intervals for # by inverting the
efficient score test. Specifically, for each 6 in a grid of 200 equally spaced points between
-1.5 and 1.5, I calculate the efficient score statistic (as described in section 5) and form the
confidence set consisting of those points # for which the efficient score test does not reject
at the 5% level.

This procedure yields confidence intervals of [—0.069, 0.083] for salaried individuals and
[0.26,0.43] for hourly paid individuals. These are plotted in figure 19; figure 20 plots the

values of the efficient score statistic over the considered grid. The results suggest that the

7731.1 measures the effect of a change in hours on the log wage, but is not considered a parameter of interest
in this exercise.

T8If @ > 01 take oo > 0; if § < 0 I take oo < 0 and check that o; > 0. o3 is always taken as positive.

™R can be estimated by OLS and o from the system S(0,01)35(0,01) = D(09,03)D(02,03)’, with popu-
lation moments replaced by sample equivalents based on the OLS residuals.
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choice of hours by salaried individuals is less sensitive to changes in their hourly wage rate
than for those who are paid by the hour. In particular, for the former group, the null
hypothesis of no effect cannot be rejected at the 5% significance level.

Histograms of the residuals from (54) — with 6 taken as the value which minimises the
efficient score statistic — are plotted in figure 21 and overlaid with a N'(0, 1) density function.
This figure is clearly suggestive of substantial non-Gaussianity in €; (but not €;), providing
identifying power for 0.5

The confidence intervals here suggest a similar qualitative response of labour supply to
changes in wage rates as has been found previously in the literature, i.e. the effect of hourly

wages on hours is small for men.®!

7 Discussion

In this paper I demonstrated that score-type statistics based on the efficient score function
can be used to perform uniformly valid inference in a wide class of models. A high level
framework was provided in order to develop the theoretical results, based on the local
asymptotic normality (LAN) framework of Le Cam.

The version of this framework considered permits many models and scenarios in which
standard testing procedures fail to correctly control size, as demonstrated via specific ex-
amples. This class includes models which may suffer from identification problems, models
where nuisance parameters may lie on the boundary of the parameter space and models
which need a regularisation step for their estimation. I demonstrated that the efficient score
test enjoys locally uniformly valid size control. Moreover, I showed that a number of stan-
dard testing optimality results continue to hold in this setup and demonstrated a minimax
optimality result which applies in cases where, for example, the parameter of interest is
underidentified.

A number of examples were studied in detail to demonstrate the applicability of the
suggested framework and how the conditions it requires may be shown to hold. Simulation
studies based on these examples suggest that the asymptotic results obtained provide a
useful guide to finite sample performance. The simulations also show that — in the cases
considered — the procedures based on the efficient score statistic perform better than alter-
native procedures. I applied the linear simultaneous equations model example to the study
of the labour supply decision of US men. This approach permits the study of simultaneous

systems without interventions or instruments.

80A Jarque and Bera (1980) test rejects the null that €; is Gaussian at all standard significance levels.

8L A coefficient of e.g. # = 0.3 in the semi-log specification of (52) implies that, for instance, a 50% increase
in the wage rate would increase hours worked by 0.3 x log(1.5) ~ 0.12. For summaries of elasticities found
in the literature, see e.g. Table 3 & Figure 2 of Bargain and Peichl (2016) and Table 3.1 & Figure 3.2 of
Evers, de Mooij, and van Vuuren (2005).
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The treatment in the current paper is restricted to cases where the observed data forms
a random sample. This restriction was made to remove inessential complications in the
derivation of the results. With these now established in the baseline i.i.d. case, an inter-
esting potential extension would be to extend these results to other sampling schemes. An
additional drawback of the current treatment is that the parameter of interest 6 is required
to be a bona fide parameter of the model as opposed to a function of the model parameters.
An extension to permit this scenario could be provided along the lines of Susyanto and

Klaassen (2017). Such extensions are left for future work.
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A Notation & conventions

A = B means that A is defined to be B. A C B indicates that A is a subset of B. All
vector spaces are over the real field R. Given a positive integer K, [K| == {1,...,K}.
For any Euclidean parameter, say «, d, denotes the dimension of the space in which it
lives. Similarly for a vector of functions k, d, is the number of component functions. For
a sequence (Tp)nen, (Tn)nen C X denotes that each x,, € X. For any matrix M, [|[M]|,
is its spectral norm and MT is its Moore-Penrose pseudo-inverse. “>” is used to denote
the Loewner partial order; that is, given two Hermitian matrices A, B, A = B iff A — B is
positive semi-definite and A > B iff A— B is positive definite. If A is a linear operator, N(A)
is its nullspace. Given a topological space S, B(.S) is its Borel o-algebra. Weak convergence
is denoted by “~”. Operator notation is often used for integrals: Pf := [ fdP. P, denotes
the empirical measure of a given sample and G,, the empirical process. Throughout this
paper & unless otherwise noted the sample considered is denoted by (W;)™, € W™, hence
P.f = [ fdP, = %Z?:l f(W,;). For a sequence of functions (f,,)nen with each f, having
domain W™ and a sequence of probability measures (P, ),eny on W, convergence statements
will often be written as f,, ~» f under P,. This is shorthand for weak convergence under the
product measures P”. If X has distribution G, I write X ~ G. If g is the density of G (with
respect to some o-finite measure), I also write X ~ g. X ~ Y indicates that X and Y have
the same distribution. L,(P) denotes the space of functions f such that P|f]? < co. In the
case where f = (f1,..., fi) is a vector of functions f € L,(P) denotes that each f; € L,(P)
for i =1,..., K. L)(P) is the subspace of L,(P) whose members f satisfy Pf = 0. Given
a (closed) subspace S of a Hilbert space H, the orthogonal projection of a function f € H
onto S is denoted by II(f]S).

B Additional details and proofs of results in the main
text

B.1 Details and proofs for section 3
B.1.1 Construction of the sequence of experiments

In order to discuss power I use the limits of experiments framework of Le Cam (see e.g.
chapter 9 of van der Vaart (1998) for an introduction). Under the additional assumption
that JZ, is a linear space, I will obtain a Gaussian shift limit experiment on a particular
inner-product space.®

To state the proposition, I need to define the inner-product space that will be used to
parametrise the experiments. Let N(A) denote the null space of a linear transformation A; in
particular N (iv) denotes the null space of the matrix iv' For the nuisance perturbations, A,
it is more convenient to parametrise directly by the scores ¢ = B,h. For each g = B,h € JZ,
let by, = {h € H, : B,h = g}. Suppose that ./, is a linear subspace of Ly(P,) and note that
it is therefore a dense subspace of a its completion (which is a Hilbert space). It therefore
has an orthonormal basis, (gx)ren.®® For each element g in this basis select (arbitrarily) an

82That is, the limit experiment is the restriction of a Gaussian shift experiment on a specific Hilbert space
to the inner-product space of interest. See e.g. Le Cam (1986, Chapter 9, section 3) or Strasser (1985,
Chapter 11) for an introduction to Gaussian shift experiments on Hilbert spaces.
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element hj, = hy, from each b, ,. For any other element g € JZ, choose hy = >, .y axhi
where g = 3",y argr. Denote the collection of such hy as $, = {hy : g € JE} C H,.* 1
will consider sequences of experiments, where each consists of measures of the form P, ., =
P, . for 7€ N(Z,)" and g € S, h = h, € $, (with y = limn_>O<> Yn); that is to say, these
experiments are parametrised by the (inner-product) space H, = N (Z )t X £, equipped
with the inner-product given below in (56).

The choice of a particular “representative” h = hy for each score g = B,h € JZ, as in the
preceding construction is a technical point which will not impede statements being made
about the behaviour of tests along sequences with h,, — h € H, \ £, due to the following
lemma.

Lemma B.1. Suppose that assumptions M, LAN, CM(i) hold and that (¢p,)nen is a sequence
of tests on W™ (i.e. each 1, : W" — [0,1]).

(i) If (Tn)nen C R% and (hy)nen C H, are convergent sequences with limits 7 € R% and
h € H, respectively, then

lim sup [P7 . hyUn — P h@/)n} =

n—oo

(it) If hy, hy € H, are such that B,hy = B,hy and hy — hy € H,, then for any convergent
sequences (Tp)nen C R, (hyn)nen C Hyy, (hon)nen C H, with limits 7 € R% and
hi, ho € H,, respectively,

Ar (YT hin), Yn) = A (Y (T h2,n)a Vo) = op,, (1),

and

hm Sup ’Y Tn,hl n¢n - '771 7Tn,h2 n¢n] - 0
n—oo

With the setup previously described the following result concerning convergence of ex-
periments can be stated. This result is straightforward given the assumptions made, and is
quite standard, aside from potentially one key aspect: the definition of the indexing set of
the sequence of experiments — that 7 € N (j ). This ensures that the inner-product in
equation (56) is an inner-product. If N(Z,)* was replaced by R% and rank(Z,) < dj, the
map in (56) would only be a positive-semidefinite Hermitian form.*®

Proposition B.2. Suppose that assumptions M, LAN and C’M(Z) hold and that 2, is a
linear subspace of Ly(P,). Suppose that rank(Z,) > 0 and let H, = N(Z,)" x J,. If the
map (-, ), : Hy x H, — R is defined by

<(7—17 gl)a (7—27 92>> = <T{é’7 + g1, Téé’Y + 92>P~/7 (56)

then (H.,, (-,-)) is an inner-product space. In addition, the sequence of experiments (&, )nen,
where each

éa" = (Wn Wn { Vg (T7 g) S H’Y}) ’ (57)

841 will suppose that the h, = hg chosen to correspond to g = 0 is h, = ho = 0. Note that if B, is injective
there is only one such hy for each g € J7Z,.

$5That is, ((1,9), (1,9)) = 0 whilst (7, g) # 0 would be possible. In particular, ((7,0), (r,0)) = 0 would hold
for all 7 € N(Z,), which has positive dimension whenever rank(Z,) < dp.
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converges weakly to a Gaussian shift on (H,, (-,-)).

B.1.2 Proofs

Proof of proposition 3.1. To simplify the notation, let g, == 7’/ @n%—B%h and g .= 7/ év“‘th-
Let {Wy,r : k < n,n € N} be a triangular array, where each row W,,1,...,W,,,, (n € N)
is independently and identically distributed, with each random vector W), ;, having law P, .

~ /
Let {Z,x : k <n,n € N} be the array defined by Z,, ; = <€7n(Wn,k)’,gn(Wn,k)> . The rows
of this array are i.i.d. with EZ,; = 0 and VZ,; = [ I Dot ] (for each k,n). ¢ By

TlI"/n P’Yn g?},

assumption CM(ii)

i I 7
=N Vg =V I, I (58)
n ’ 7 TLy Orp
k:1 ’
where
. . 2
02 = Pog? = PoI7L + B = Tim Py, |7'h, + By h| = lim Pg2 (59)

and hence (101) is satisfied. Moreover assumptions LAN and CM(ii) together yield that
(| Zn1||3) nen is uniformly integrable and hence as the rows are identically distributed, (102)
holds. It then follows by lemma C.1 that under P, we have

VP, (Zgn, 7l + B%h)/ - N ((8) , <T,Il I’f)) . (60)

Y UT,h

Combining equations (5), (58), (59) and (60) we have

(vt Attt ) =& (L ). (5 7)) @

1
_20 T Ly O-T,h

The marginal convergence of the likelihood ratio yields that (P} )neny and (P, 1} Jnen are
mutually contiguous (e.g. van der Vaart and Wellner, 1996, Example 3.10.6). We remark
here that a completely analogous argument to the foregoing applied to the array {g,(W,x) :
k < mn,n € N} yields this same marginal convergence under assumption CM(i) rather than
assumption CM(ii) and hence the mutual contiguity of these sequences of measures continues
to hold under this weaker condition, as claimed in the statement of the proposition.

By Le Cam’s third lemma (e.g. van der Vaart and Wellner, 1996, Example 3.10.8) it
follows from (61) that under P, . p.,

VP, ~ N(Z,7,T,).

Equation (6), the mutual contiguity and Le Cam’s first lemma (e.g. van der Vaart, 1998,
Lemma 6.4) allow us to conclude that

VnP, [gn,en - an} =0p,, (1)

86We have that Pyl%@ﬁ/ =7, (e.g Rudin, 1991, Theorem 12.14). P, £, [B,. h] =0 by the construction
of the efficient score function.
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It follows that under P, ;, 1.

VIPabrg, = VoL, + By |lng, = L, |~ N(T7. L),
O
Proof of lemma B.1. For (i), use (5) to obtain that under P,
A (Y (T o), (75 1)) = A (Y (T B ), ) = A (Y (7, B), vm) = 0, (1),
and so by the continuous mapping theorem, the mutual contiguity of <P7nn>neN and (Pvnn . h)neN

(Proposition 3.1) and Le Cam’s first lemma (e.g. van der Vaart, 1998, Lemma 6.4)
exp(Ap (Yo (Tns P ), (7, R))) ~» 1, under P, ..

Since 1), since it is bounded between 0 and 1, it is tight under P, ;; and hence by Prohorov’s
theorem (e.g. Billingsley, 1999, Theorem 5.1) for any subsequence (n;);jen of (n)nen there
is a further subsequence (ny)ren such that ¢, ~> ¢ for some ¢ € [0,1] under P, ;5. In
conjunction with the preceding display, Slutsky’s lemma yields

(¢n7 eXp(An('yn(Tm hn)a ’771(7_7 h)))) ~ (¢7 1) under P“/nmh‘

By Le Cam’s third lemma (e.g. van der Vaart, 1998, Theorem 6.6) we have that under
P, + h., the law of ¢, converges weakly to the law of ¢ in the preceding display. Since
each v, € [0,1] it is both uniformly P, .-integrable and uniformly P, ; 5,-integrable.
These observations imply that

lim | P Uy — P

k—00 T Tny s9ng 'Ynkﬂ—ahwnk] =0.

Since the original subsequence (n;) ey was arbitrary, this holds also for the original sequence.
For (ii), from (5), assumption CM(i) and the hypothesis that B,hy = B, hs

An('-)/n(’rna hl,n)a 7n<7n7 h?,n)) == An(7n<7n7 hl,n); ’Yn) - An(7n<7n> h2,n)7 ’Yn)

1 n
v > B,.(h1—ha) +op, (1).
i=1

h := hy —hy € H, by assumption. Let h,, := h for each n € N and form g, as in the proof of
proposition 3.1 with 7 = 0. Argue analogously to the the proof of proposition 3.1 (noting
that for this purpose assumption CM(i) rather than CM(ii) is sufficient) to obtain

I IR
NG Z B, (hy — hy) = = Z By, h~ N(0,05,), under P, ,
i=1 =1

with 08’ n =P [BJL]2 = P,0? = 0. It follows from the two preceding displays that

An("}/n('rna hl,n)> P)/n(’rna h2,n)) = An(’)/n('rna hl,n)a ’Yn) - An(’Yn(Tna hZ,n)a ’Yn) = OP% (1)

With this in hand, the second part of (ii) can be established by an argument analogous to
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that used to establish (i). O

Proof of proposition B.2. That H, is a linear space is clear. Moreover, linearity, coordinate
symmetry, and positive semi-definiteness of the map in (56) are clear from its definition.
It remains to prove that it is positive definite. Let II denote the projection onto cl.JZ, C
Ly(Py). Then, we can re-write

((1,9),(7,9) = T/jvT + <7—,H£7 +9, T,HE’Y + 9>P7~ (62)

This is strictly positive whenever 7 € N(Z,)* \ {0}.57 If instead 7 = 0 but g # 0 it is

positive since (-,-)p, is an inner product. Thus (-, )z, is an inner product and (H,, (-,-))

is an inner-product space. Denote the completion of this space with respect to the norm
induced by (-,-) as (H,, (-,-)).

A Gaussian shift on (H,, (-,-)) is the restriction to H, of the standard Gaussian shift

experiment of the Hilbert space (H,, (-, -)). Define

L(r,9) = Al (r, hg) ) + 5 I (63)

and note that equation (59) and the marginal convergence of the log-likelihood (cf. equation

(60)):

VP, 7., + B, h, ~ N (0,02 under P, , 64
Tn Tn'"g T,9 Tn
remain valid in this setting, where we write o2  for 02, .** By equation (59)
. y 2 y 2
(7, 9)|I” = Org = P, [T gv"‘g] :Jl_{gopﬂm [T Ly, +B7nhg] ‘ (65)

Equations (5), (63) and (65) allow us to write

Ln(T7 g) = \/EPTL |:T/€’Yn + B’Ynh’gi| + OP“/n <1)’
and hence by (64),
Lo(1,9) ~ N (0, I|(T, g)H2) under P, , for any (7,9) € H,. (66)

Moreover, for any (71, 91), (72,92) € H, and any a;,as € R we have, where R,,; = op, (1)

87Suppose T € N(iy)J- and T’f,yr = 0. The latter implies that f},/zr = 0, and hence i.yT = f},ﬂf},/zr =0;
i.e. 7€ N(Z,). Since 7 is also in N(Z,)* we must have 7/7 = 0, i.e. 7= 0.

88Proposition 3.1 requires assumption CM(ii) rather than the weaker CM(i). It is easy to see that an
analogous argument as to that given in the proof of proposition 3.1 concerned only with marginal weak
convergence of the log-likelihood in equation (60) holds under the weaker condition.
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fori=1,2,3,

a1 Ly (11, 91) + ao Ly (T2, g2) — Ln(a171 + aa7, a191 + asgo)
— a1/nP, [T{é% + B, hgl} + ar Ry — azy/nBy [T;é% n B%hﬂ] + apRps

—/nP, [(alﬁ + CLZTQ)/é'Yn + B, [alh!]l + a2h92]} + Rn3

= a1 Ry +aaRyo+ Ry 3
= OP"m (1)

That is,

arLn (71, 91) + a2 Ly (T2, 92) — Ln(a1m1 + as72, a191 + a2g2) = op,, (1), (67)
whenever ay, a2 € R, (71, ¢1), (72, 92) € H,.

By imitating the proof of Theorem 69.4 in Strasser (1985), one obtains that the experiment
&= (QwFa {GT,Q : (T’ g) € HW}) (68)

is the restriction to HL, of a Gaussian shift experiment on (H.,(-,-)) if and only if the
stochastic process (L(7,g))(r.g)en, , defined by

L(7, 9) = A(7, hy), (0,0)) + %H(T? Ol (69)

with A((7, hy), (0,0)) the log-likelihood ratio of G4 and G, is the restriction to H, of
a standard Gaussian process defined on H, under G(g).* Combining equations (66) and
(67) we have that for any K € N, a € R¥ and (73, gx) € H, (for k =1,..., K) we have that
under P,

K K K
> aLn(Ti, gx) ~ > axL (7, g1) = L* <Z ak(Tk,gkz)> : (70)
k=1 k=1 k=1

for a square integrable stochastic process L* defined on H.,. Thus we have convergence of the
finite dimensional marginal distributions of L,, to those of L* by the Cramér-Wold theorem.
Imitating the proof of Theorem 68.4 in Strasser (1985) yields that a square integrable
stochastic process L defined on H., is the restriction to H, of a standard Gaussian process
defined on HL, if and only if L is linear and has a N (0, ||(7, g)||?) marginal distribution for
each (7,¢) € H,. Since our process L* satisfies these conditions, it follows that it is such
a restriction of a standard Gaussian process. Therefore we have convergence of the finite
dimensional distributions of (L, (7, g))(r,¢)cm, to those of (the restriction to H., of) a standard
Gaussian process (on (HL,, (,-))). By (63) and (69) this implies the convergence of the finite
dimensional distributions of (A, (7n(7, hg), n))(rg)em, to those of (A((7,hy),(0,0)))r.g)eH, -
With this in hand, the proof is completed by an appeal to Theorem 61.6 of Strasser (1985),
upon noting that that the sequence of experiments (&), ),en is contiguous (see e.g. Strasser,
1985, Definition 61.1) by an analogous argument as used to prove the contiguity claimed in
proposition 3.1 and the transitivity of (mutual) contiguity. O

89Guch a standard Gaussian process is a square integrable stochastic process such that all its finite dimen-
sional distributions are Gaussian with EL(7y,g1) = 0 and E[L(71, g1)L(72, g2)] = (71, 91), (T2, 92)) for all
(Tla gl)a (7—2792) € H’Y'
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Lemma B.3. Suppose that assumptions M, LAN, CM(ii), E and R hold for a sequence
(Yn)nen C T with limit v € . Then, for any h, — h with each h,,h € H,

lim P"

n—00 Yny0,hn

bug = a if rank(Z,) > 0
T 0 i rank(Z,) =0

Proof of Lemma B.3. By proposition 3.1 we have that under P, o5,
VPl g, ~» N(0,Z,).

Equations (7), (8) and Lemma C.6 imply that ||j;29n —:Z',JH|2 = op, (1). The mutual contiguity
established in proposition 3.1 along with Le Cam’s first lemma (e.g. van der Vaart, 1998,
Lemma 6.4) ensures that this result and equation (6) also hold under P, o,

~ ~

VAR, [, = ] = 00, () and  [ZLy =Tl o =0, (1)

Write Z,, == ﬁPngn,gn. We have

~

Zn = /0P, + /0P, [fn,en - l@n} ~ Z ~N(0,1,)

under P, on,- We now cover the case of one-sided and two-sided tests separately. In the
case of a two-sided test, the continuous mapping theorem implies that

Suon = 2T o Zny > Z'TNZ = S ~ X2,

n=n,0,

under P, o, where r = rank(Z,).”

Let ¢, be the 1 — a quantile of the X%n distribution and ¢ the 1 — a quantile of the x?
distribution. We have P, {c, = ¢} = P, {r, = r} — 1 by assumption. This implies that
¢, —c — 0in P, -probability and hence by the mutual contiguity and Le Cam’s first lemma,
also under P, o4,. By continuous mapping once more we have S’n,gn — ¢, ~ S — ¢ under
Pryn707hn.

Now, consider first the case where r > 0. In this case, since the x? distribution is
continuous the portmanteau theorem gives

Py 0.0 Prbn = Py 0 (Sn,en —Cp > 0> —L(S—c>0)=q,

where L is the law of S. In the case where instead » = 0 we note that on the sets {r, = r} =
{r, = 0} we have that jl,an = 0 and ¢,, = 0 and hence do not reject since S”n,gn =0<¢,=0.
It follows that Py, o4, ¢n0, <1 — P,y on{mn =7} —0.

Finally consider a one-sided test with dy = 1 and 1 — « € [1/2,1). By the continuous

mapping theorem,
Sty = Zu\| I}y ~ Z0\/ T},

If r = rank(Z,) = 1, then Z\/Z) = Z/4/Z, ~ N(0,1) and since this distribution is

90The distributional result is given by, for example, Theorem 9.2.2 in Rao and Mitra (1971).
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continuous, the portmanteau theorem yields

P’Ynyo,hnqsnyen — 1 - ®(Za) = O[,

where @ is the CDF of the standard normal distribution. If, instead r = 0, then again on
the sets where r,, = rank(I .) = 0 we have that Ing = IT = 0 and so qun =0< z,
and hence we do not reject. It follows that P, opn,dne, <1 — P%O,hn {rn=r}—0. O

Lemma B.4. Suppose that assumptions M, LAN, CM(ii), E and R hold for a convergent
sequence (Yn)nen C T with limit v € T'. Suppose we are given a convergent sequences
hy, — h € H, with (hy, )ken C H,. If the limit

S = lim P* o, P, (71)

k—o0 Vg0
exists, then S = a x 1{rank(Z,) > 0}.

Proof. The idea is to construct a new sequence to which proposition B.3 can be applied.”!
For all m with m € [ng, ng41) NN for some k& € N put b, = h,,. For m =1,...,ny, put
hr, = hy,. For each m let ) = ~,,. By construction A}, — h, and by our hypotheses and
proposition B.3 we may conclude that

if rank(Z
m P o s Ome;, = Sy = {a if ran (iv) >0

m—oo M 0 if rank(Z,) =0

Fix an arbitrary € > 0. There is a M € N such that for all m > M, <

v, 0.k, Dm0z, — Sy

£/2. By (71) there is a K € N such that if £ > K, e 0, hnk%kﬂnk < ¢/2. Hence for

any k sufficiently large that m = ny > M and k > K we have

IS
+ = <e.

S =5, <[S— P 0hs, @m0z, 5

+ ‘P;?WO,h:anmﬂ?n - 57} < ’S P:fk 0,k Prig O,
Since € > 0 was arbitrary, the inequality |S — s,| < ¢ can be obtained for any ¢ > 0 and
hence taking the limit as € | 0 completes the proof. O

Proof of proposition 3.2. There is a sequence (h,)nen C H, and a subsequence (n;);en of
(n)nen such that

1 n 1 n BT n;
S = limsup sup P} ,bnp, = limsup P} o, dng, = im P ) dn 0,
n—oo heH) n—00 J—00 3 J

There is a further subsequence (ny)gen such that hnk — hand S = limy_, o P;:fk,o - Drig -

Applying lemma B.4 yields that S = o x 1{rank(Z,) > 0}. Since an analogous argument
can be made to obtain the same conclusion but with “’lim inf” replacing “’lim sup” in the
definition of S, we obtain the desired result. m

Lemma B.5. Fix a convergent sequence (N,)nen and denote its limit by n. Suppose that
assumptions M, LAN, CM(ii), E and R hold for any sequence (Vn)neny where each 7y, =

91This construction is based on that used in the proofs of e.g. Lemma 6 in Andrews and Guggenberger
(2010b), Lemma 2.1 in Andrews and Cheng (2012).
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(Ony M)neny C © X H = I with 6, — 0 € © C ©. Suppose we are given convergent
sequences Yn, — 7 With (Y, Jken C I and hy,, — h with (hy, )ren C H,y. If the limit
S = lim P™ Py, (72)

k—00 ’Ynk107h’nk
exists, then S < a.

Proof. The idea is to construct a new sequence to which proposition B.3 can be applied.”
For all m with m € [ng,ngr1) NN for some & € N put 6%, = 6, and h}, = h,,. For
m=1,...,ny, put 65, = 0,, and h’, = h,,. For each m let v}, = (0,, ). By construction
vk — ~ through I'' and A}, — h, and by our hypotheses and proposition B.3 we may
conclude that

: m
Jm P o g, Omoy, < @

Fix an arbitrary ¢ > 0. There is a M € N such that for allm > M, P . ¢y p: < a+e/2.
By (72) there is a K € N such that if £ > K, ‘S — P O,hnk¢”k79nk‘ < /2. Hence for any k

T

sufficiently large that m =n;, > M and k > K we have

S <|S =P on;, mos,

g

Ty

Since € > 0 was arbitrary, we can obtain the inequality & < a4+ ¢ for any € > 0 and hence
taking the limit as € | 0 completes the proof. O]

Proof of proposition 3.3. There are sequences (0, ),eny C O and (hy,)nen C H; and a subse-
quence (1) en of (n)nen such that

A

S = liminf inf inf Ppy, ;. (0 € C,) = lim P (On; € Cn,).

n—oo 0O’ hEH% j—o0 (enj annj)707hnj

There is a further subsequence (ng)ren of (n;)jen such that 6,, — 6 € © and h,,, — h € H].
We also clearly have

~

S = lim P}t (O, € Cp) =1— lim PF Drig - (73)

k—o0 (e”ﬂk 777nk)707hnk k—o0 (Gnk 777nk)70»hnk
Apply lemma B.5 to conclude that 1 -8 < «, and rearrange to obtain the desired result. [J

Proof of proposition 3.4. By (both parts of) lemma B.1, it suffices to show that

limsup P! 0, <1 — @ <Za - f$/27> for all 7> 0, h € 9,. (74)

n—oo

Since dy = 1 and Z, > 0, N(Z,)* = R. Let § = (gx)ren C £, be an orthonormal basis of
cl.7#,.% Consider the subspace G™ := Span{gi, ..., gm}, and let II"™ denote the orthogonal

92Gee footnote 91.

93Such a basis always exists: by assumption M, W is Polish. Take a metric d such that (W, d) is a complete
(separable) metric space. By Theorem 1.3 in Billingsley (1999), P, is tight. By Proposition 7.14.12 in
Bogachev (2007) this is a sufficient condition for separability of P, which is equivalent to separability
of the L,(Py) spaces for p € (0,00) (e.g. Bogachev, 2007, Exercise 4.7.63). cl./Z, is therefore separable
as a subset of Ly(P,). Choose a countable dense subset in %, and apply Gram-Schmidt to obtain an
orthonormal basis which satisfies the the desired property.
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projection onto G™. Fix b = (7, ) € (0,00) x 5, = K; and any £ > 0. By lemma C.2 we

can take m € N large enough that H (I — H)l@, < €. Now consider the restriction of &

to Rx G™ for any m € N.%° Choose a = (0, g,) with g, = [I"™ (TH@7 + gb> =T (H’”H&,) +a
and note that by Lemma 28.1 of Strasser (1985) any test 1) of level—« of Hy against H;
satisfies

G <1 =P (20 — [b—al)

Expand the square of the norm using the Pythagorean theorem to obtain

~ .12 ~
b= al? = L, + 72| — i, || =T, + 7%

P2

Gyp<1—9 (za — \/7'2f7 +T2€2> )

Since £ > (0 was arbitrary, we can take the limit as ¢ | 0 to obtain

Hence we have

G <1— <za _ i”%) , (75)

which holds for all b € K, since the choice of b € K; was arbitrary. Moreover, since the
test 1) was an arbitrary test of level-a, this power bound holds for all level-a tests in &.
By proposition B.2 the the sequence of experiments (&),)nen defined in (57) converge to
the dominated experiment &. (74) then follows on combining the power bound given by
(75) with Theorem 7.2 in van der Vaart (1991). O

Proof of corollary 3.5. Since iv > 0 and dy = 1, assumption R is automatically satisfied
given assumption E. By proposition 3.1 we have that

\/ﬁPnénvgo/iiﬁ) ~ ./\/'(7:1/27‘, 1), under P, ., p,-
Hence by the portmanteau theorem

. n . n o ~1/2 nd
lim Py 60 = lm PP (ViPalug /Lo > 2a) = 1= @(z0 — 1)/°7).
For 7 <0, 1— ®(z, — f*l/QT) < «; hence this test is level-a as claimed. For any 7 > 0, it
attains the power bound in equation (15). O

Proof of proposition 3.6. The proof is is very similar to that of proposition 3.4. By lemma
B.1 it suffices to show that for all 7 # 0 and h € $,

lim sup Pyt <1 (za P i;/%) T1-® <za P iy%) . (76)
Since dy = 1 and f7 >0, ]\7@7)l = R. Let g, G™ and II"™ be defined as in the proof of

proposition 3.4 and consider the restriction of & to L™ := R x G for some m € N which
contains (1,9) € Ky = {(7,9) : 7 # 0, h € 7,}.% This is a finite dimensional (hence closed)

94We can always change the choice of the orthonormal basis such that g lies in (each) G™.
9See equations (68), (69) and the surrounding text for the definitions of & and G ,.
96See footnote 94.
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subspace of E (the completion of H.,) and so is a Hilbert space. Hence this restriction is a
finite dimensional (standard) Gaussian shift. Take f: R x g™ — R as f(7,¢9) = 7 and let

N2
¥m=P, <[I — Hm]év) , which can be ensured positive by taking m € N sufficiently large.””
Then, letting g € G™ be such that g = —Hmé7 € Gm e=(1,g9)/VvXE™ is a unit vector in

R x g™ C H,, orthogonal to N(f) = {(0,9) : g € G} and has f(e) = 1/vE™ > 0. Thus,
by Theorem 28.8 of Strasser (1985), any unbiased test ¢ of level-a has power bounded by

Grogh < 1= (202 — (Z™)127) + 1 — B(2,2 + (Z™)27).
Since X" — i, as m — 00, by continuity we obtain that
Grgth <1 —PB(2ap2 — I77) + 1 — B(20)2 + I2/%7). (77)

Since the point (7,¢g) € K; was arbitrary, this bound holds for all Kj.

By proposition B.2 the sequence of experiments (&),),en converges to the dominated
experiment &. Let m,(7,g) = P} _ b, € [0,1]. Fix a (1,9) € K; and let (n;);en be a
subsequence of (n),ey along which limsup,, ., P} 4, = lim; P;:f] 7.gUn,. Since [0,1]%
is compact in the product topology there is a subnet (n(x))«xca of the subsequence (n;);en
and a function 7 : H, — [0, 1] such that limuea 70, (7, 9) = 7(7,g) for every (7, g) € H,.
By Theorem 7.1 in van der Vaart (1991) there is a test ¢ in & with power function 7. By our
hypotheses and the pointwise convergence we have that for any 7 # 0 and any ¢, g2 € I,

7(0,1) = limm, . (0,91) <@ <limm, (7, 95) = 7(7, 90)-
It follows that v is unbiased and hence combining

limsup P, .yt = lim sup (7, ) = Hm m, (7, 9) = lim 7, (7, 9) = (7 9)

with the power bound given by (77) we obtain (76).%8 O

Proof of corollary 3.7. Since iw > 0 and dy = 1, assumption R is automatically satisfied
given assumption E. By proposition 3.1 we have that

\/ﬁpnén,eo/jjl{;o ~ N(i}//QTa ]-)7 under P’Ynﬂ'n,hn'

Let the 1 — a quantile of the x? distribution be denoted by c¢,. By assumption R holds
and the contiguity noted in proposition 3.1 we have that P, . 5. (7, = 1) — 1 and hence
Cp — Cq in P, - 4 -probability. Hence by the portmanteau theorem

lim Py bngy = 1= ®(zap2 = L/P7) +1 = B(zapp + L%7),
which is exactly the power bound given by equation (16). For 7 = 0, 1 — ®(24/2) + 1 —
®(24/2) = «; hence this test is level-o as claimed. It is unbiased since the last right hand
side expression in the preceding display exceeds « for any 7 # 0. O]

Lemma B.6. If (H,, (-,-)) is the completion of (H.,, (-,)), then

97By lemma, C.2 we have that X™ — i, >0 as m — oo.
9¥Where g = B, h for the h € $, in the latter.
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(i) we can take H, to be N(Z,)* x cl.7,; o )
(5) (Ta, gn)nen C H, converges to (7,9) € H, if and only if 7, — 7 € N(Z,)* and
gn — g € cl I,

Proof. We first note that (z,y) — 2’ Nyy defines an inner-product on N (f,y)% Linearity and
symmetry are obvious. Positive definiteness was established in footnote 87. On R% it defines

a positive-semidefinite Hermitian form and thus induces a semi-norm by ||z|| == {/2'Z,x.

By the Pythagorean theorem we can decompose the square of the E norm as follows

(s gn) = (7 D)1 = (7 = 7)'Ly (70 = 7) + || (70 = )T + gu = gl[2, - (78)

We start with the first claim. Suppose that (7,,gn)nen C H, is a Cauchy sequence.
By (78) we must have that (7, — 7,,,)’Zy(7, — 7)m — 0 as n,m — oo. Let UDU’ be

an eigendecomposition of ii/ ? with eigenvalues A1, ..., Ay, in decreasing order. Then the

0
eigenvectors u; for j > r are in the null space of i;/Z and so that of iy. Letting U; be the
dg x r matrix of the first  columns of U and U, the remaining columns, we then have that
7 — Tmll2 = U (10 — 7)) ||l2 = U1 (70s — Tin)||2- Let 7o = U{ (7, — 7in) and note that by
hypothesis

(Tn = Tom)' Ty (Trs = i) Z/\ T mi

Since the A; are all positive this implies that |7, |2 — 0, i.e. 7, — 7, — 0. Since this is a
Cauchy sequence in N(Z,)*, which is a closed subspace of R%, it follows that 7, has a limit,

say 7* € N(Z,)*. From this and that H(Tn — )T + gn — Gim

— 0 (as m,n — 00) we
Y

can also conclude that (g, )nen is Cauchy in Ly(P,) and hence has a limit, say g* € ¢l %%
Hence all such Cauchy sequences have limits in N (fy)L x cl 7%, and so this is complete
under the relevant norm.

To complete the proof we will now show that (7,,gn)nen C H, converges to (7,g) €
N(Z,)* x 1., if and only if 7, — 7 € N(Z,)* and g, — g € cl%ﬂ Since this ensures
that N (Z )+ x cl%” = clHL,, this is the smallest closed set containing HW, which completes
the proof of the ﬁrst part, and hence the second.

Suppose first that (7,,, gn)neny C H., converges to (1,9) € N(Z,)* x cl.##,. Then since
each 7, —7 €N (fv)L we can argue as above via the same eigendecomposition (replacing 7,,
with 7) to obtain that 7,, — 7 — 0. An argument analogous to that in footnote 99 (replace
gm With g) can be used to show the convergence g, — g in the Lo(P,) norm.

For the converse, suppose that 7, — 7 and ¢, — ¢. It follows immediately that
(7n — 7)Ty(15, — 7) — 0 and ||(7,, — T)IHE,‘/HP%Q — 0. Using (78) we have

(T, 90) = (TIPS (7 = 7)'Ty (70 = 7) + ([ (7 = )T [, 2 + [l g — 9l 2 = 0(1).

99By the reverse triangle inequality we have

= 0.
P2

lim_llgn = gmllp,2 < lim_||(r = 70) T + g0 = g
7,1M— 00
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Proof of proposition 3.8. Let M, = {(r,h) € M, : h € $,}. We clearly have that

limsup inf P74, <limsup inf P 1,
n—oo (Th)EMa n—oo (7,h)EM,

so it will suffice to demonstrate the upper bound in

limsup inf P74, =limsup inf P74, <1—-P(x2(a) <o), (79)

77-7 "
n—oo (7,h)EM, T n—oo (1,h)EM,

where M, == {(7,g) € H, : 7'Z,7 > a}. We first observe that if (1, g) € H, then 7 € N(Z,)".
Define f : H, — R% by f(r,g) == 7 and let Ly := N(f). Let Il denote the orthogonal
projection onto Lo in H, and IT the orthogonal projection onto cl %, in Ly(P,). The (finite
dimensional) subspace Ly C H, consists of vectors

Ly = {(7‘, —7'TlL,) € E} :

It follows from lemma B.6 that this has dimension r, since we can take H, = N(Z,)* x cl .

Consider the orthogonal projection onto Ly: we must have ((7, g) — IIy(7, g), (0,¢")) =0
for all (0,¢') € Lo. This implies that Iy(7, g) = (0, §) must satisfy § = 7/TI¢,, + g. It follows
that ||(7, g) — o(7, g)||* = 7'Z,7. Define

M, = {(T,h) cH,:7'Z,7> a},

and let M; be the set defined analogously to M, where “=" replaces “>”. We note here
that M, = cl M,. For this, note firstly that any convergent (t,, gn)nen C M, converges in
M, and hence this is a closed set.'% It follows that cl M, C M,. Suppose that this inclusion
were strict. Then there must be a point (7,g) € M, which is not the limit of a sequence
(Tn, Gn)nen C M,. There must exist a sequence (7,, gn)nen C H, with (7,,, 9,) — (7,9). By
the argument in footnote 100 we have that TTIZ:Z'VTn — Tiﬂ'. If the difference e,, = T:Z.,YT —
Téj-,yTn — 0 is always negative there is nothing to do. Else take a sequence (7;,,0),eny C H,
which converges to (0,0) and satisfies T,’Lfﬂn > max{ey,0}.'% Then (7, + 7, gn)nen C M,
and converges to (7,¢g). Hence no such point can exist and the two sets are equal.

Consider the testing problem of K| = {0} against K; = Lg \ {0} in the standard
Gaussian shift experiment on Lg. For any a’ > a and any level—a test ¢ we have by
Theorem 30.2 of Strasser (1985) that (Cf. Strasser, 1985, Theorem 71.10)

inf G < inf G <P (2 (d) > cra) -

teM. teM,/NLE

190That (7,9) € H, is clear since the latter is complete and hence closed. It remains to show that if
TnZyTn > a for each n € N then also 7Z,7 > a. For this, we note that if (7,,, g,) = (7, g) then by lemma
B.6 we have that 7, — 7. (z,y) — 2'Z,y defines a positive-semidefinite Hermitian form over R% and

thus induces a semi-norm ||| := {/2'Z,x. Hence by the reverse triangle inequality
il = 7l < 170 — 7] = .

That is ||7,|| — [|7] and hence by the continuity of = — 2 we have 7,Z,7, = ||7.]> — ||7||> = 7/Z, .
101 Ay explicit construction of such a sequence can be given based on the eigendecomposition of Z,.
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Since M, = cl M, and t — Gy is continuous, taking the infimum over ¢’ > a yields!??

inf Gy = mf G <P (xi(a) > ¢ra) = R. (80)

teM,

By proposition B.2 (&}, )nen converges to &. Suppose that (17) does not hold for all sequences
of asymptotically level-a tests for Hy : 7 = 0 against H, : 7 € N(Z,)* \ {0} in &,. Then
there is such a sequence of tests (1, )nen and a subsequence (n;) ey such that for some e > 0

lim inf{m, (7,h) : (,h) € N(Z,)* x H,, 7,7 > a} >R +e¢,

j—o0

where 7,(7, h) == P _,,. Since [0, 1] N(Zy)*xHy s compact in the product topology there

is a subnet (1w )aca of the subsequence (n;);en and a function 7 : : N(Z,)* x H, — [0,1]
such that limaea 7, (7, h) = 7(7, k) for every (7,h) € N(Z,)* x H,. Combine this with
the preceding dlsplay to conclude that for any (7,h) € N(Z,)* x H, with 7Z,7 > a we have

m(r,h) = hr%wn( (7 h) > liminf{m, (7,h):(7,h) € N(Z)* x H,, 77,7 >a} >R +e.

ax€A

However, by Theorem 7.1 in van der Vaart (1991) there is a test ¢ in & with power function
7 and it follows from our hypothesis that this test is of level-c, since for any g € JZ, there
isa h € %, with Byh = g and so

Gogtp =m(0,h) = lclerf}x LT (7, h) < limsup7,(7,h) < @

n

Then by the preceding two displays we have Go g9 < « for any (0,9) € H, and for any
(7—7 g) S MCL
Grgth = 7(r,hy) > Rt e,

which contradicts (80).

Proof of corollary 3.9. By proposition 3.1 we have that for 7, — 7 and h,, — h,
\/ﬁIF’nl?nﬂo ~ N(iﬂ', iy), under P, - p..

As in the proof of proposition B.3, equations (7), (8) and Lemma C.6 imply that HI;QTL —

i’;Hg = op,, (1). The mutual contiguity established in proposition 3.1 along with Le Cam’s
first lemma (e.g. van der Vaart, 1998, Lemma 6.4) ensures that this result and equation (6)
also hold under P, . 4, :

VP gy = ] = 0r, 0 (D) and |2, = T =op, (1),
Write Z,, = \/ﬁIP’nlfn,go. We have

Zn = APl + VB by = 0, | ~ 2~ N7 T)

102The continuity of the indicated map follows directly from the fact that a Gaussian shift experiment is
continuous in the total variation norm.
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under P, . .. The continuous mapping theorem and Theorem 9.2.3 of Rao and Mitra
(1971) imply that R
Sute = Z)IL g 2~ Z'TZ = S ~ XHT'L,T),

n~n,0g

under P, .. . where r = rank(Z,).

Let ¢, be the 1 — « quantile of the x2 distribution and ¢ the 1 — a quantile of the x?
distribution. We have P, {c, = ¢} = P, {r, = r} — 1 by assumption. This implies that
¢, —c — 0 in P, -probability and hence by the mutual contiguity and Le Cam’s first lemma,
also under P,  5,.. By continuous mapping once more we have S’H,go — ¢, ~ S — ¢ under
P, . n,- Hence by the portmanteau theorem

hm P%,Tn,hnﬁbn,eo =1-P (XE (T.'Z'WT) S c> . (81)

For 7=0,1—P (x?(0) < ¢) = a; hence this test is level-a as claimed.
Let K, C M, be compact and suppose (7, hp)nen C K, is such that 7,, — 7 and h,, — h.
Then, by equation (81) we have that
Tim P2 dng = POC (T’Lr) >¢) > P(x(a) > ¢) = R. (82)
Taking a constant sequence in K, with T/i,yT = a we obtain from the preceding display
that imsup,,_, . inf(- nyex, P pPnoy < lMyseo P dng, = R. 1t follows that if equation
(18) does not hold then there is a sequence (7, hy)neny C K, and a subsequence (n;) ey of

(n)nen such that
S = lim P I b, Pnj00 < R. (83)

]A)OO

Take a further subsequence (ny)gen along which 7,, — 7 and h,, — h with (1,h) € K,.
Construct new sequences (h},)nen and (7)) nmen as follows. For all m € [ng, ngy1) NN for
some k € Nput 7, =7, and h), = h,, . Form =1,...,ny put 77, = 7,, and h;, = h,,. By
construction we have that 7}, — 7 and h}, — h. By (82) we have that

m
hm P%“T B Pmae, = R

Fix an arbitrary € > 0. There is an M € N such that for all m > M we have P;:Ln - Dm0y =
R — €/2. Hence for any k sufficiently large that m = n, > M we have

S§=85- ¢nk,90 + PWT:; T h, ¢m 6o =S — P* T, ¢nk790 +R — 6/2.

'YnkyTnk 7hnk ’777.k77’ﬂk7

This holds for all large enough k and so taking the limit first as & — oo and then as € | 0
yields that § > R. But this contradicts equation (83). O

Proof of proposition 3.10. By proposition A.8 in van der Vaart (1988) and our assumptions

An(’Yn(Tm h n = Zgn - ann + Op,, (1)

. 1 : 2
=3[ Bm] =3P [+ B on, ()
=1
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since 3P, [T’é% + B%h] tP.g2 =3P, (f2—g2) — 0, where f, = 70, + B, h, as

‘P’Yn (fi - 9721)‘ = )anH?DW,Q - HgnH?%n,Q < | fu— gn”?%n,z + 2|/ fn — gnHPWnQ”gHPW,Q — 0,

as (gn)nen is uniformly square P, -integrable and hence P, g2 < M for some M € (0, 00).

It remains to show that ( fn)neN is uniformly square P, -integrable. The preceding display
yields that P, f2 = P, g> — P, (g2 — f?) = P,.g> + o(1). Hence there is an N € N
such that n > N has P, f2 < M+ 1. It follows that P, f2 < K < oo with K =
max{M +1,P,, f£,..., P, f&}. Let € > 0 be given and note that there is a § > 0 such that
if P, (A) <& we have P, (g214) < ¢/4." Hence

£
Hence there is an N’ € N such that for all n > N’ we have P, (f214) < e if P, (A) < 4. By
Markov’s inequality we have that for K’ > K/4, P, (f2 > K') < P, f?/K' < § and hence
foralln > N', P, (f21{f2? > K'}) < e. That is, (f,)nen is asymptotically uniformly square
P, -integrable, which implies that (f,)nen is uniformly square P, -integrable.'* O

Proof of lemma 3.11. This is implied by Corollary 2.9 of Feinberg et al. (2016). H

Proof of lemma 3.12. Define Q,,, @) respectively as the pushforward measures of P, under
fn and P under f. By the extended continuous mapping theorem of van der Vaart and
Wellner (1996, Theorem 1.11.1), @,, ~ @ and by hypothesis,

lim sup/ |z| dQ,(z) = lim sup/ |f(s)|dP,(s) = 0.
|z|>M |fn(s)|>M

M—00 neN M—00 peN

The result now follows from the equivalence of (ii) and (iii) in Proposition A.6.1 of Bickel
et al. (1998). O

Proof of proposition 3.13. Throughout let 7, = rank(M,), r .= rank(M), R ={f, =7}
and A\j, Ay, 1, )\n ; and )\n ; respectively the [-th largest e1genvalue of M, M, M and M

Start with the case r = 0. By Weyl’s perturbation theorem and the fact that M, = 0
for all n larger than some N € N,

P.(R,) = P, ( IrllaXL|5\n7l| < I/n> > Pn(||Mn — M,z < vn) — 1.

-----

On the sets R,, we have that M, =0 = M and so M, Py M as P(R,) — 1. )
Now suppose that » > 0. let v = \,/2 > 0 and note that (20) implies that | M, —
M,|ls = op, (1) and so, by Weyl’s perturbation theorem (e.g. Bhatia, 1997, Corollary I11.2.6),

103Given € > 0, take M < oo large enough that P, (g21{g2 > M}) < /8 for all n € N and let § < /(8 M).
Then if P, (A) < ¢ we have
Py(g21a) < Py, (921a42{g; < M}) + Py, (9n1al{gn > M}) < MP, (A) + Pu(gn1{g; > M}) < /4.

104 ncrease K’ to K’ as necessary to ensure that also P, (f21{f2 > K"}) <eforall1<n < N'.
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max—i,..r, ]5\“,; — Any] < |M,, — M,||> = op,(1). Hence, defining E,, = {Xn,r > vy}, for n
large enough such that v, < v and ||M,, — M||2 < v/2 we have

Pn(En) = Pn (5\n,r > Vn) > Pn (5\n,r > Z) > Pn (|}\n,r - )\n,r| < 2/2) — 1.

If » = L we have that R, D F, and therefore P,(R,) — 1. Additionally, if 5\n7 L > Un
then S\M = A, for each | € [L] and hence M, = M, implying || M, — M ||y < ||M, — M,||»+
| M, — M|z = op,(1). )

Now suppose instead that r < L and define F,, == {\,,+1 < v, }. It follows by Weyl’s
perturbation theorem and the fact that A\,; =0 for [ > r and n > N that as n — oo

Po(F,) = Py(Anys1 < vn) > Po(|| M, — M,||a < vy) — 1.

Since R, D E, N F,, this implies that P,(R,) — 1 as n — oo. Additionally, if 5‘n,r > Uy,
Mps1 < Vn and |M,, — M|ls < v, we have that A, = A\, for k <7 and \,; = 0 =)\ for
[ > r and so

[An(v) = Alls = max [y = Al = max [Su0 = M| < [|Ay = Alls < [, = M]l» < v,

and hence {||M,, — M|y < v}NE,NF, C {||A.(v,) — Al]2 < v}, from which it follows that
Pa - - Pa
An(vn) = N as || M, — M||2 < [|M,, — My||2 + [|M,, — M||2 = 0. Suppose that (A1,...,\,)
consists of s distinct eigenvalues with values A\! > A\? > ... > \* and multiplicities my, ..., m;
(each at least one).'% A**1 = 0 is an eigenvalue with multiplicity m,,; = L —r. Let I¥
fork=1,...,s+1and ¢ = 1,...,m; denote the column indices of the eigenvectors in U
corresponding to each A*. For each A*, the total eigenprojection is I = > 7™ upu), .
Total eigenprojections are continuous.'” Therefore, if we construct II,,  in in an analogous
fashion to II; but replace columns of U with columns of U,,, we have IL, RN II, for each

k € [s+ 1] since M, 2% M. Spectrally decompose M as M = > AMII, where the sum
runs to s rather than s + 1 since A\*** = 0. Then,

s+1 my s+1 my S
My=3 D Mgttt e = > > (A = MYyt e+ N T,
k=1 i=1 k=1 i=1 k=1
whence
s+1 myg S
. . P,
1Mo = Mllz <Y 0> g = Al st el + D I = Till2 = 0,
k=1 i=1 k=1
by T, Doy 14, An () L= A and since we have “u”»lfu;z,lf“? =1 for any ¢, k, n. O

Proof of corollary 5.14. Apply proposition 3.13 with fn,on = M,, fn,gn = M,, I, = M,,
Z,=M and P,, = P,. O

105The superscripts on the As are indices, not exponents.
106Gee e.g Chapter 8.8 of Magnus and Neudecker (2019).
107E.g. Theorem 8.7 of Magnus and Neudecker (2019).
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B.2 Additional miscellaneous results

Lemma B.7. Suppose that assumption M holds and assumptions LAN and CM(i) hold
along a convergent sequence (Vp)nen with v, = (0,,mn) — v € T,that n = (1, n2) with
m € Hi1 C R and that the efficient score function takes the form

v v v v
-1

g’Yn = 6%71 - ]’Yn7121’7n,22£7n727 I = P € 6/

I yn?

o / - -
for a L-dimensional vector of functions £, = 7 N . Suppose that T, — 1L, and
Tn Yn,10 Y Yn,2

rank@%) = rank( ) for all sufficiently large n € N. Moreover, suppose that along any
sequence (7, Jnen with 7, = (On, (M1, 72)) = 7 where v/nl|nay — ni|| = O(1),

(i) Py by = o(n™'1?),
(i1) (||E%||§)neN is uniformly P, -integrable,

(ZZZ) \/ﬁpn [lﬁnjgn — Z’Yé] = Op’yél(l),
(i) v s, — Lulla = o, (1),
2
(v) [ [ 1 in/Py, — fwml p%} dv — 0 for each | € [L],

with &, = (0, Mn1). Finally suppose that 0,1 satisfies \/n||H,1 —m| = Op, (1). Then if
&, = (01, 1) where 7,1 s the version of 1,1 discretised on n “12074m N\ H,,

) ) A 7—1 i 7 . o r—1 T
f T E - nfn 12]n§n 22£n§n27 In,en — Ipg, 11 — ]nén 12In€ 22]715 21 (84)

and fmgn 1s the eigendecomposition-truncated version Ofinﬂn at v, analogously to (21), then
assumptions E and R hold.

Proof. Define b, = \/n(n,1 —m). Take an arbitrary subsequence (7, )men 0f (n)neny and
a further subsequence (ny)zeny along which b,, — b € R . Construct a “full” sequence
(b} )Jnen according to b}y = by, for all k € N and for all m € N such that m ¢ {n;, : k € N}
set by, == b’ _, (arbitrarily put by = 0). Constructed in this manner b} — b as n — oo and
hence 3}, | == 77—1—\/56; is a deterministic sequence satisfying v/n(n}; ; —n) = O(1). Note that
we can write v, = (On, (y1,72)) as 75 = (0, hy,) for hy = (b},0). Since conditions (i) -
(v) are valid along (7 )nen formed with an arbitrary deterministic /n-consistent sequence
(Mn.1)nen, they apply along (77 )nen in particular. Since LAN holds, these observations, in
conjunction with Proposition A.10 in van der Vaart (1988) yield that

VIR, Gy = | + L, (0, 87)) = op, (1),

This clearly implies also that

ViR, Ly, =0 |+ L, (008, = Vi, |Gy, = G, |+ 6, 008,)) = 0, (1),

and therefore, as the original subsequence (n,,)men Was arbitrary,

VB, |Gy = 6]+ VAL (0, (s = ) = 0, (1) (85)

Moreover we have by Proposition 3.1 that (P )nen and (P )nen are mutually contiguous.
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Hence the same is true of (P;ka )ren and (P:f Jken = (P” ) ren. This observation in conjunc-
n ny

tion with (iii), (iv) and the fact that our initial subsequence (N )men Was arbitrary yields
the conclusion that

VnP, [l%gn — Z%} =op, (1), and

~

In7£n - j/’Yn 9 = OP’\/n (Vn) (86)

Now, for 77§ € Hy let
Rl,n(ﬁ%) = \/E]P)n [é’rlngg o Z”Ynj| + \/ﬁj’Yn (0/7 (U? - 77)/), R2,n(77§) = Vrjl [jn,gﬁ - an]

where & == (0,,7%), n* == (0}, n2) and 7% == (0,,,n"). Let As 3, is discretised on n=/2CZ4m N
H, from 1), it remains y/n-consistent under P,, and hence for any ¢ > 0 there is an M €
(0,00) and N such that for alln > N, P, (v/nl|fny — mlla > M) <e. E/n||f1—m|s < M
then 7,1 € &, = {1, € n V2CZm NH, : |0} —ml2 < M/y/n}. For any fixed M, &,
has a finite number of elements bounded independently of n, call this number &. For
R, € {R1,,Ropn}, any v >0and n > N

Py (|Ra(fan)ll > v) < et Y Py ({I1Ra(mun) | > 03 0 {1 = 10a})

Mn, 1€6,

<e+ 6P, (Rl > ),

where 77 | € &, maximises 1, — P, (||R.(n1)|| > v). Since (1} ;)nen is deterministic and
V/n-consistent for 7y, P, (|| Rn(n;)]| > v) — 0 by equations (85) & (86). It follows that

HRz,n(ﬁnJ)H = OP’Yn(l) for i € {172} It follows that ‘|]€€n B ’6771H2 Pl) 0 where
K, = [] — ]%7121%1722} , Kg, = [I I, £ 12]_& 22] ;

with the partitions of the matrices Ig , f% corresponds to the partition of the vectors

log, = (0! Y, b, = (L

n,€n,10 “n,En,2 Yn,17 ’Yn
Using these results, (84) and the uniform P, -integrability of Hﬁ% 1%,

VP g, — |
= (Ke, = 3. ) ViPs |bg, = ] + Koy [l — b, | + (Ke, = K, ) VAR,

. Lo I 0
Sl LA Y oy {f”’” v”"’m] [ 7 }H 1
[ V125,22 L, 01 1, 2 V(in,1 —m) o (1)

5)s & = (0, 7,1) and [ 99 €xists by assumption.

= OP'WL(]‘)7

which gives (6). To show that equation (7) and assumption R hold, Corollary 3.14 indicates
that it suffices to show that the requirements of assumption T are satisifed. For this note
that by assumption Z,, — Z, with rank(Z,, ) = rank(Z,) for all sufficiently large n € N and
(23) follows from || Rap (7n,1)|| = op,, (1). O
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B.3 Proofs for section 4
Throughout this section I use the notation (6, X) := X; + X}0.

Proof of Proposition 4.1. Fix arbitrary 7,, = 7 € R% and h, — h € H,. The perturbed
law is P, -, n, with density

p’ynﬁn,hn(W) = ((en, X)(1 + hp2(€n, X)/\/ﬁ),

where e, =Y — f(u(0, +n"?7,, X)) —n"2h, 1 (U6, +n~?7,, X)). Since O is are open
and 0, — 0, 6,, +n"?7, € © for all large enough n € N. The restrictions on .% ensure that
f+n"%h,, € . The restrictions on QF along with the norm on H suffice to ensure that
C(1+ hnyg/\/_) € Z. Specifically, for all large enough n, ((1+ hy2/v/n) > 0 (A-a.e.) since
By is bounded (M\-a.e.) and the conditions on 2 ensure that [ ((14-hno/v/n)d\ = [¢dA+
\/iﬁfhn,gé d\ = 1. Continuous differentiability (A\-a.e.) of e — /C(1 + hy2/v/n)(e, X)
follows from the same requirement on /¢ and .2, the boundedness of h, 5 (which ensures
that eventually 1+ h,2/1/n is bounded away from zero A-a.e.) and the chain rule. Finally
it remains to check the conditions in (26). For any A € ¢(Z), letting G denote the measure
corresponding to ¢

/Aeg(e,X)(l+hn72(e,X)/\/ﬁ)d)\:/edG+—/ vale, X)d

/E[ dG+—/ [ehn2(e, X)|X]dG
A
0,

and hence E[e|X] = 0 (a.s. under ((1 + hy,2//n)). For the rest, firstly let m(e, X) be
non-negative and integrable under G. By the (A-a.e.) boundedness of h, s (by ho, say)

/m(e, X)C(e, X)(1+ hpale, X)/v/n) dX < (1 + %) /m(e,X) 4G < .

Secondly, note that by Jensen’s inequality

H/XX’C(l + hpo/v/n) dA — /XX/dG

dGH 2n/||X||§dG—>O,

which implies that for all large enough n, [ XX'C(1+ hy2/+/n)dA = 0.

To establish (19), first let Y el u=(r,h) € R% x H,, t € (0,00) and ¢ = p(u) =
(1,h1,Chs) and let A, (p) = [Tﬁ + B,h]\/py. By argumg analogously to the preceding
paragraph it is seen that for all t in a sufficiently small neighbourhood % of 0 in [0, c0),
P+t 18 a probability density. ¢ +— /Dy, is continuously differentiable A-a.e. by the

corresponding conditions imposed on e — /((e, X) and e — hs(e, X). For t € %, define
e(t) =Y — f(U6(t), X)) — thi((6(t), X)) with 6(t) := 6 + t7. Define g(t) == 2 35 oy 108 Dytsg
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and note

g(t) = —o(e(t), X) [f'(L(0(t), X)) X5 + ha (U(B(2), X)) + th (L(0(t), X)) X57]
ha(e(?), X) + thy(e(t), X) [f'((0(t), X)) X7 + I ((0(F), X)) + thy (UO(t), X)) Xo7]

+ 1+ th(e(d), X)

By taking % smaller if necessary suppose that 1+ thy > ¢ > 0, and |f'|, |hy]|, |R}], |ha| and
|h}| are bounded by C' € (0,00) A-a.e.. Let t,, — ¢ through % and note that g(t,) — g(t)
A-a.e. by the continuity and continuous differentiability assumptions. For any t € %

/Ig(t)|2+p dPyiip S /(¢(6,X)2+” + DX (e, X) dA < oo,

which can be used in conjunction with Markov’s inequality to obtain the uniform P, .-
integrability of (g(t,)?)nen. Since also Pwtnw — pww )\ a.e. as is easily verified by inspec-
tion, Lemma 3.11 implies that [ ¢(¢,)* dPy4t,o — [ 9(t)? dPy4sp. By Lemma 1.8 in van der

Vaart (2002)
\/P — /P
'Y+t90t v Afy<§0>

= 0. (87)

ti0 A2

Next let (8,)nen C [0, 1] be an arbitrary sequence, ¢, | 0 and define v, = v, + 8,t,p, for
©n = p(uy) with u, — u € R% x H,. Define &, =Y — (U, X)) = Sntnhn1(L(bn, X))
with 6, =0, + 6,t,7,,

Sptnhy, o(En, X)
1+ Sntnhn,Q(énu X) .

(bn = (b(émX) =+

Then, Ay, (¢n) = %[TT/LEY" + By, hnl\/Dy,, With

Dy, (W) = C(ém X)(l + 6ntnhnz(ém X))
gYn(W) = _(bnf/(t(én’ X))XQ
[By, K] (W) = —¢nhn1 (1B, X)) + hno(En, X).

It may be verified by inspection that A, (¢,) = A, (p) A-a.e. under our assumptions. Argue
analogously to the demonstration that [ ¢(¢,)* dPy4+,, — [ 9(t)? dPy44, above to conclude
1Ay, (@n)l52 = 1A, ()3, and hence by Proposition 2.29 in van der Vaart (1998),

1Ay, (#n) = Aq(@)lIn2 = 0. (88)

Now we establish (19). First suppose that 6,, = @ for all n € N, let u,, — u be arbitrary, put
©n = @(u,), ¢ = @(u) and t, | 0. For all large enough n, v+ t,p, € I' and so using (87)
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and the mean-value theorem (e.g. Drabek and Milota, 2007, Theorem 3.2.7), for such n

H st VB 5 ()] < ' rstnn ZSPritne |-y H e R
n A2 n A2 n A2
< sup ||A7+6tn(<pn—so)(<pn—<ﬂ)HA,2 +o(1)
5€[0,1]
= 0(1)7
(89)

where the last step uses that for any sequence (8,)nen C [0,1], [|Ayis,tn(pn—v)(Pn — @) —
A, (0)]]x2 — 0 by (88) and A,(0) = 0. Now consider an arbitrary sequence ¢,, — 6 and
Yn = (0n,n). Using (89) and applying the mean-value theorem at each n € N gives

\V4 p’Yn+t7L90n - vV p’Yn A
¢ — Ay (p)

< 6,1 sup 1Ay, +5,t0n (tnon) = talay, ()02
22 5€[0,1]

5€[0,1]

By (88), for some sequence (8,)nen C [0, 1]1%®

limsup sup |[|As, tstnen (©n) — A%(‘P)H,\,z

n—oo  5€(0,1]

S hm Sup HA’Yn‘f'éntn(Pn ((pn) - A’Y(QD)H)\’Z + hm_)sup ||A'Yn (80) - A'Y(@) ||)\72

n—oo

=o(1).
Combine the two preceding displays and take ¢, = n~'/2 to yield (19):

|t VB p )| = o)

A2

1
H\/ﬁ (\/Prmrrdin. — /Pym) — 59v/Pr

A2

To conclude we note that Lemma 1.8 in van der Vaart (2002) along with (87) applied for
each v, separately yields that P, g, = 0. The uniform square P, -integrability of g, follows
by Lemma C.8 on noting that by (88) (applied with &, = ¢, = 0 and u,, = 0) P,, g2 — P,g¢*
(where g := T@ + B,h), and p,, — p, M-a.e.. Linearity of each B, is clear. O

Lemma B.8. In the setting of Proposition 4.2, let G be the measure on R*™X corresponding
to ¢ and U = (¢, X) ~ C. Let N = {—¢(e, X)hi (U0, X)) + ho(e, X) - by € F hy € ,%*’;7}.
The closed linear span of A in Lo(G) is

lin A = {g € Ly(G) : E[g(U)] = 0, E[eq(U)|X] = Eleq(U)]L(6, X)]}.

Proof." Let hy € & and hy € Z,. The definition of the sets .%, %, and (26) ensure
that A4~ C Ly(G). Taking h; = 0 and hy = 0, we have that E[—¢(e, X)hi(1(0, X))] = 0 by
Proposition 4.1. E[hs(e, X)] = 0 by definition. Additionally, we have by (28)

E[—e¢(U)h1(1(0, X)) + eha(U)|X] = ha (U, X)),

1080n the right hand side take ¢,, = ¢ and §,, = 0.
109Cf. the proof of Lemma A.1 in Newey and Stoker (1993, pp. 1219 — 1220).
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and since o(1(0, X)) C o(X), by (28) and the law of iterated expectations

E[—e¢(U)h (10, X)) + eha(U)[1(0, X)] = A1 (1(0, X)).

Hence A" C {q € Ls(G) : E[q(U)] =0, Eleq(U)|X] = Eleq(U)|u(0, X)]}. Both sets are clearly
linear spaces, hence it suffices to show that the latter is the closure of the former. Suppose
that ¢ € {g € Ly(G) : E[g(U)] = 0, El[eq(U)|X] = Eleq(U)[1(6, X)]}-

It follows from the defintion of m that m(U) = m(e) — E[m(e)|X] is bounded and
e — m((e, X)) is continuously differentiable with bounded derivative. For any bounded
function U — q(U) such that e — q((e, X)) is continuously differentiable with bounded
deriviatives, define q(U) = q(U) — E[q(U)|X] and put for a bounded function a : R — R
where a is continuously differentiable with bounded derivative,

q(U) = q(U) — m(e) [Elm(e)e| X]] " [E[GU)e[X] — a(u(d, X))].

By construction, ¢ is bounded, e — q((e, X)) is continuously differentiable with bounded
derivative, E [q(U)|X] = 0 and E [eq(U)|X] = 0. Hence q € 2. For any ¢ > 0, by Lemma
C.7 of Newey (1991), there are q, a and P such that q and a satisfy the conditions required
for the construction of q above and |l¢ — §||z, < ¢, [[E[eq|1(6, X)] — a(uf, X))||& 5 < € and
|E[g| X]=(X)||%, < e.''” The proof is completed by arguing as in display (A.11) of Newey
and Stoker (1993, p. 1220). O

Proof of Proposition 4.2. Lemma B.8 establishes the closed linear span of the nuisance
tangent set. The orthogonal projection (in Ls(G)) of a function onto the orthocomple-
ment of this set is given by Lemma A.2 in Newey and Stoker (1993). In particular, for
U= (e,X) ~ G and V, = 1(,, X), the projection IT (—¢(U) f'(V,,) X2)|.#*) has the form

w(X)e [Bl-co()f (V)] - I XI]
— w(X)ef (V) [E LB [-eo(v)]x] 3] - =T eI

= w(X)ef (V,) {E [X2|Va] = Eﬁifﬁvm ’

where the last equality is by (28). As (Y — f(V,,),X) ~ G under P, , the claimed form of
the efficient score function follows. O]

Proof of Lemma 4.3. We first show that \/n(62 — %) = Op, (1). For & = € — 0 we have

Vile? - o* Z &+ Z (FVa) — Fus)

=1

:%g@u% S (10— fu) X (s - 4) |

ieN1) ieN(®)

10T e. a is bounded, continuously differentiable with bounded derivative and q is bounded and e + q((e, X))
is continuously differentiable with bounded deriviatives.
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The first right hand side term is Op, (1) by the CLT. Next define fm = (f(Vai) — fm) and
Cp = (Wj)jen_,- On aset E, with P, (E,) — 1 we have E[f?|C,] < Rin; <12 =o(n"'/?)
and hence by Markov’s inequality, the second and third terms are op, (1). Finally note that

by v/nl62 — o*| = Op, (1) and since for some ¢ > 0, 0* > ¢ and with P, -probability
approaching 1, 62 > ¢ and so 1/|620%| = Op, (1). O

Proof of Proposition 4.4. That assumptions M, LAN and CM(ii) hold follows from Propo-
sitions 3.10, 4.1 and 4.2. We next show (6) holds. Let C, be some collection of random
vectors. Let 6, — 0, 0, — 0. For a triangular array of random vectors (R, ;)nen.i<n if with
P, -probability approaching one either (a) E[||Ry|[2|Cn] < 6,n7"/% or (b) for each element
R, ;s of R,,; and each j < n/, E[R,; R, ;s|C;] =0 (P,,-a.s.) and E[Ri7i7s|cn] < ¢/, then by

Markov’s inequality, \/iﬁ Zil R, :~0p%(1) for n” < n. We establish that (a) or (b) holds
for terms which sum to ¢, 9, (W;) — ¢,,(W;). Abbreviate Z, ; = Z(V,,;) and let

)
Vnz»]\v i (an - Zn,i)

For some a; € {—1,1}, we have that

1 & o o ol
= 2 o (W) = 1, (W) = V(6,2 = 07)0% - 3 s, (W)
=1 ;

The first term on the right hand side is op, (1) by Lemma 4.3 and Proposition 3.1. For the
second right hand side term first note that Lemma 4.3 also implies that 6,> = Op, (1). Let
E,, be sets on which conditions (i) and (ii) in assumption SIM-NP(i) hold with P, (E,) — 1.
For j € [3] we will show that (b) holds on E, (for i € N or i € N®). That these
terms are conditionally mean zero follows from the construction of the estimates. Specif-
ically, using the fact that each fm, fnis Zm is o(Vy,i, {W;}jen_,) measurable, indepen-
dence, the LIE, Lemma C.5, E[¢;|X;] = 0 and E[(X2; — Z,,:)|Vai] = 0, it follows that each
E[Rjn,isRjn,s|Co] =0 for j € [3] and k ¢ N_; with C,, = (W});cnye for i € N® and C, =
(W) jene for i € N Similar arguments along with the (P, -a.s.) boundedness of X, and
assumption SIM-NP(i) show that on E, each component E[R?, ; |C,] < 7. For j € {4,5}
(a) holds on E,, as by SIM-NP(i), on E,, each E[||R;.ll2|Cn] < RiniRimi <12 = o(n/?)
for I,k € [3].
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For the second part we will verify assumption T, which suffices to establish (7) and
assumption R by Corollary 3.14. Note first that by (28) and assumption SIM-NP(i) the
elements of £, satisfy E[£3 ] = E[(e;f' (Vi) w(Xi)(Xp; — Zm)) ] S Ele}] < oo and so by

Cauchy-Schwarz and e.g. Theorem 2.5.11 in Durrett (2019), - D E% ZE% El@n zg%,k =

Op, (n"1/?log(n)'/*™) for any k > 0. The distributional observation that under P, , (Y —
f(Vi), X) ~ G and the form of £, then implies that Z,, = Z, and hence
}:e%,w 7, }:e%/v ~Z|| =O0p, (n7?log(n)/**). (90)
F

Secondly, write

1 — 2 ° 1

E ) / A*4§: E: E: -2 — o2)254P. 2
" (gnﬂn,l - g’}’n,l) 5 On - jnzl + jnzl % ) o IEDngyml
n < =n

ieN(@) ieN®)
By Lemma 4.3, 6,4 = Op,, (1). Under assumptions SIM and SIM-NP(i), on E,, each
E[R3, 11Cn] < r2 as noted above. Since 7, = o(v,,), Markov’s inequality then implies that
1 ZZ N B, =op, (v7) for s = 1,2. By Lemma 4.3 and equation (58), the second RHS

term is Op, (nfl). Adding and subtracting and using Cauchy-Schwarz yields

1”AA
=1

Combine (90) and (91) to see that assumption T is satisfied with any sequence (v, )nen as
in the statement of the proposition. O]

Proof of Proposition 4.7. Let V,, := 1(8,, X). We first note that (i) ¢,, € L)(P,,) and (ii)
P, [EU%B% h} =0 for all h € H,. For (i) use the LIE to obtain that if W ~ P,

=op, (Vn)- (91)

F

L) = B B (h)a () (X - et | <o

E [0 (X)[V,)]

and note that by boundedness of @ (above and below), f’, compactness of 2~ we have
El,, x(W)* < oo for each k = 1,..., K — 1 which implies (i) and moreover that ||/, ||2 is
uniformly P, -integrable. For (ii), if W ~ P, then by the LIE, definition of Z, and (28)

E [£,,(W)[B,, k(7)) = E{E[ehg(e X)[X]f (V) (X) (XQ—EIé[é&W‘Z])}

IE [—E[e¢<e,X>|X1f'<vn>w<X> (Xz - Eﬁ()( ));WW] ])]

gl

The distributional observation that under P, , (Y — f(V,), X) ~ G and the form of /.,
then implies that T, = T,. Using this, along with (a) and (b) above, we can argue

:EVMEPMMF

=0.
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analogously to as in the proof of Proposition 3.1 (with 57% replaced by Z% and f% replaced
by T,,) to conclude that under P, . 5., V1P, E ~ N(T,7,T,). Arguing as in the proofs
of Proposmons 3.2, 3.3 and Lemmas B.3, B.4, B 5 reveals that this suffices for the result
provided we show that equations (6), (7) and (8) hold with £, g, replacing £, ., (-, replacing
6%, T, o, replacing In 0, and T, replacing I

To this end we argue as in the proof of Proposition 4.4. Let C, be some collection of
random vectors, §,, — 0 and 6, — 0. For any triangular array of random vectors (R, ;)nen,i<n
if with P, -probability approaching one either (a) E[||R,l2|Cs] < 6,n7 2 or (b) for each
element R, ;, of R,; and any j < n/, B[Ry sRns|Cn] = 0 (Py,-a.s.) and E[R?; (|C,] < 6},
then by Markov’s inequality, \/Lﬁ Z:il R,; = op,, (1) for n' < n. We establish that (a) or
(b) holds for terms which sum to En,gn(WG) —Z%(Wi). Abbreviate Z; ,,; == Z;(V,,;) for | € [2]
and let

(fri = FVa)) f (Vi) 0(Xi) (X2 — Zni)
( (£ (Vo) = Fru) @(X0) (X = Zu)
Ry = (Vi = [(Vai) Froi(X0) (Zs = 7,)
(i = FVai)) (F Vi) = Pl ) @0(X0) (X = Zn)
( ng f(vn,z L?/n,zd)(XZ) <Zn,z - Zn,z) )
with Z,,; = Z1n.i/Zon; and an = ZAlm/ZAQm For some a; € {—1, 1}, we have that
1 & » °
= o, W) = L, W) =D 0= | S Rijwit+ > Ry
\/ﬁ i=1 j=1 \/_ ieN@) ieN(2)

Note also that

5 7 (Zimi — Zini)Zomi + (Zoni — Zomi) Z1mi
naet -~ Hng — ~ )
LomiZon,i

and by assumption SIM- NP(H) there is a sequence of sets F,, with P, (F,) — 1 such that
each le < r, and each fm, f
enough n € N and ZQ,W is bounded below and above, uniformly in ¢ and for all large

enough n € N. From this it follows that E [HZAM - Zm|]§|Cn] <72 = o(nY?) on E,

where C, = (W;),eym for i € N® and C, = (W));cne for i € N(l). Combining these
observations we obtain that for j € {4,5}, on E,,, E[||R;..i|2|C.] < 77 = o(n *1/2), which
establishes (a). For j € [3] we establish (b). Specifically, using the fact that each fm, i i
Zni is 0(Vyi, {W;}jen_,) measurable, independence, the LIE, Lemma C.5, E[¢;]X;] = 0 and
]E[JJ(XZ)(XQ’Z — ZW)H/W] = 0, it follows that E[Rj,n,i,st,n,k,s|Cn] =0 fOl"j S [3] and k ¢ N—i
with C,, as above. Similar arguments along with the (P, -a.s.) boundedness of X, and the
probabilistic rate and boundedness observations above show that on FE, each component

E[R?, . .|Ci] < 72 For the second part we will verify assumption T, which suffices to
establish the required modifications of (7) and (8) by Corollary 3.14. Note first that as

Zlm r are bounded uniformly in ¢ and for all large

nZ’
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noted above the components of fuv satisfy E[[m ) < oo and so by Cauchy-Schwarz and e.g.

Theorem 2.5.11 in Durrett (2019), - Ly 15% lﬁ% EZ%,é%k = Op,, (n=1/21og(n)1/2+x)
for any k > 0. As noted above T, = T, and hence

ze% - £ ST

= Op,, (0" log(n)"/*7%). (92)

= F
Secondly, write
1 n 5 . 9 _ 5 1 ) )
O SICRNRTEN S ST B S W S |
1=1 Jj=1 ieN®) ieN(2)
As noted above on E,, each E[R?, ;[C,] < 7. Since 7, = o(v,), Markov’s inequality then

implies that + >, v B2, = OPW( v2) for s = 1,2. Adding and subtracting and using
Cauchy-Schwarz yields

ZEnGH n,0n, 7 ZEnQn 1,00 fwnﬂy

Combine (92) and (93) to see that assumption T is satisfied with any sequence (v,)nen as
in the statement of the proposition. O

Nc

Q B3

=op,, (Vn). (93)

B.4 Proofs for section 5

Proof of proposition 5.1. Fix arbitrary 7, — 7 € R% and h, — h € H,. Since O is open
and 0,, + 7,/y/n — 0 € O for sufficiently large n, 6,, + 7,//n € ©. The construction of H,
ensures that also 5+ b, /v/n € % for large enough n. The restrictions on ,,@’;7 and Eémk along
with the norm on H suffice to ensure that no(1 + t,,h,0) € 2 and each ng(1 + t,h, i) € 9.
Specifically, for £ = 0,1,..., K, the convergence in ensures the exists of an M € (0, 00)
such that, for all large enough n, |h, x| < M and M/\/n < 1, M-a.e.. This ensures that
cach (1 + t,h,y) > 0 and hence ng(1 + t,h,x) > 0 (A-a.e.). Moreover, the positivity of
1 + t,h,, in combination with the continuous differentiability of e — /nx(e) and the fact
that the square-root function is continuously differentiable away from 0, yields (via the chain
rule) that \/ng(1 + tph, k) is continuously differentiable A-a.e. (for k € [K]). Moreover, for

e [K]u {0},

Additionally by Jensen’s inequality

H/XX’Q(l + hno/v/n) dX — /XX/dG
2

3 M 3
1| < —/HX]@dG—)O,
7
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which implies that for all large enough n, [ XX'c(1 +hn1/v/n) dX = 0. By the boundedness
of each h,, ; for large enough n, for such n and any non-negative function f with G f < oo,

[+ o) AN < (400G < .

Applying this with & = 0 and f(Z) = ||Z|3"° completes the demonstration that ny(1 +
tohno) € Z for all large enough n. Similarly applying it with k& € [K] and f(e) = |e|**°
& f(e) = |gr(e)|*T° ensures that the finite moment requirements in (35) are satisfied under
(1 4 t,hy, ) for large enough n. By the definitions of ¢ and Sfmk,

[om st ar= [ rm(+ g ar=o

verifying that the first two conditions of (35) hold under n(1 + t,h, ). Lastly, since
Glex|*° < oo, the boundedness of |h,, ;| ensures that

/ b p(€) AGr(e) — 0, [ / b (€) de(e)] T 0

which, combined with Ee} — 1 > (Ee})? implies that for large enough n,

/64(1 + tphai(e)) dGre) — 1 > [/ (14 tphni(e)) de(e)r,

completing the verification that ny(1 + t,h, k) € ¢ for all large enough n.

The next step is to establish (19). Firstly, for any given u == (1,h) € R% x H, let
¢ = @(u) = (1,b1, by, Moho, - .., nhx). Then, for any v € T', ¢ E [0,00) and u € R% x H,,
define gy 1y = pyitp and ¢, = gy,00 = p,. Finally, let A, (p) = 3[7 "0, + B.h] /Dy For any
v €T and any u € R% x H,, by Lemma S4 in Lee and Mesters (2021b),

VPt ZVP A ) e 2SI e, + BT

= lim
t10

—0. (94)

A2

uo A2
In order to strengthen this directional differentiability into the result required by (19), we
first establish an intermediate result. Let (8,)nen C [0, 1] be an arbitrary sequence, ¢, | 0
and define v, = 7y, + Sutnp, for ¢, = p(u,) with u,, — v € R% x H,. Define also A, =
A(9 —|—6 tn’Tn, 61 —|—5 t bn 1) Dlln = Dl 1(9 +6 t nTns 51 +6t bn 1) Q kjn = [DLl,n]k[A;l];;
R, is such that vec(R,,) = B2 + Ontnbn2, Vi, =Y — R, X and finally

' Sutnltl,
(bk,n — Qbk + m

We will show that [|A,, (¢n) — Ay(@)]la2 = 0 (). By Proposition 2.29 in van der Vaart
(1998) it suffices to show that (i) Ay, (¢n) = Ay (@) A-a.e. and (i) limsup,, ., [|Ay, (on)]|52 <
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1A, (©)[32 < co. We have that A, (¢,) = %[legyn + By, hy]\/Dy,, with

K
Py, (W) = | det(4,)] H[nk(l + Sntnhuni)] (An Vi) X [mo(1 + 6ntnhn,0>](X>
k=1
K K
évn, ZClkkn ¢kn( nkV)An,kVn+1 +Z Z C, ,jn¢kn nkvn>An,jVn
k=1 k=1 j=1, j#k
) K dp,
[BVnh ](W) :hn,O(X)+Zhn nkV an2lz¢kn nkv nkDQ,lX
k=1
do+dg, i
+ Z bn,l,m Z Cm,k,k,n [¢k,n (An,kvn) An,kvn + 1]
m:d9+1 | k=1
do+dg, [ K K
+ Z bn,l,m Z Z Cm k.j, n¢k n n kVn) An,jVn
m=dp+1 =1 j=1, j#k

Note first that there is a NV € N such that for n > N each |h,, x| and |h;, [ is bounded above
M-a.e. by some h € (0,00). This implies that ¢y, — ¢, A-a.e. The assumed continuity of
D,; and A imply that A, — A and each (;jrn — (jr and it is clear from its definition
that V,, - V =Y — RX. Inspection of the preceding display in light of these observations
reveals that (i) holds. For (ii), the finiteness of | A, (¢)[3, = YaP, [7¢, + B, h)? follows from
Lemma 1.7 of van der Vaart (2002) and (94). For the remaining inequality it suffices to

. 2 : 2
show that P, [Tnéyn + By, hn] — P, [7‘47 + th} . This will follow by Lemma 3.11 if we

show that (a) P,, converges to P, in total variation, (b) g, == 7uly, + By, hn € La(P,,)
and g = 70, + B,h € Ly(P,), (¢) g, — g in P,-probability and (d) (¢, )nen is uniformly
square P, -integrable.'’! For (a), note that inspection of the preceding display reveals that
Py, — Dy A-a.e.. Hence, P, — P, in total variation by Scheffé’s theorem. (b) follows from
the fact that (94) holds for each v € I', 7 € R%, h € H, and Lemma 1.7 in van der Vaart
(2002). For (c) note that inspection of the preceding display once more gives that g, — ¢
A-a.e. and hence Py-a.s. as P, < A. Finally, for (d), let p = 240/2 where § > 0 is as in (35)
& (36). Let N be large enough that for n > N, t, € [0,1), each |y, B, | < h € (0,00),
each 71| < 2071, lsnt] < 2lal [Aulls < 20/ All, each Gl < 2Cusl |6nsl < 64| + b
and P, € P.'? Tt suffices to show that sup,~y Py, |g,|? < co. In particular, by Holder’s
inequality (and given the bounds just discussed holding for n > N ), it is enough to show
that each of Py, | (A iVin)An,;Val? for all (k,j) € [K]? and Py, |¢nk(AniVi)An kD2, X |P
for all k € [K] and [ € [dg,] are bounded independently of n (for n > N). Note that under

H1Since we are interested only in the limiting behaviour, we can replace any Py, which are not probability
measures with P, where n’ indicates the first index for which all subsequent elements of the sequence are
probability measures. That each P, is a probability measure for n sufficiently large can be established
analogously to the same for P, ;. »,, which was established at the start of this proof, upon replacing
the t,, used in the argument there with §,%,

12Gee footnote 111.
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P, Ap Vi ~ ne(1+ dptnhy ) and X ~ no(1 + dntnhnp). By Cauchy-Schwarz we have

Pvn [|¢n,k<An,kVn)|p|An7jVn|p] < Pvn |¢n,k(An,kVn)|4+6PYn |An,jvn’4+6’
Py, |6k (An Vi) IP| Ak Doy X 17] < Py, (A Vo) [Py, | An o Doy X |70

For n > N, (14 8ntnhnr) < ni(1+h) and so by (35) & (36), for a constant C' which does
not depend on n,

Pyn|An,jVn|4+5 < (1+ h)/e4+5nj(e) d\ < oo,
Py |6 si(An i Vo) [0 < C(1+ B)/ [ ()| + R mr(e) dA < o0,
Py, |Ap Doy X |70 < (14 1)[2]| All2]| Dayl2 4+5/|| (L,&)]3n0(2) dX < 0.

As each right hand side term in the preceding display does not depend on n, this completes
the demonstration of (d) and hence of (x).

We now establish (19). Suppose first that ¢,, = 6 and let u,, — u be arbitrary and put
©n = (uy), ¢ = p(u) and t,, | 0. Also let g, == T’lﬁﬁ—th. For large enough n, v+¢, € I’
and so applying (94) and the mean value theorem (e.g. Drabek and Milota, 2007, Theorem
3.2.7) for all such n,

. (V q%tmun - \/%) - 5

= Ht;l (V&b = VTt t) H)\,2 ' (Vtew — V&) — B

S sup HA’erétn(@n ®) (gpn - SO)H)\Q + 0(1)
5€0,1]

For any sequence (3,,)nen C [0, 1] we have that ||A'y+6ntn(apn—<p)‘(80n_90)_ +(0)|la2 = 0by (%)

and [|A,(0)[lx2 = 0. Tt follows that limsup,, . supsco 1 | A st (on—) (n — H>\72 0
and hence
p +tn n t’n Un, 1
[P )| = || S | =o, (o0
A2

which we note holds for any v € T', since such v was arbitrary. Now, consider an arbitrary
sequence #,, — 0 and vy, = (0,,n). Using (96) and applying the mean value theorem at each
n € N gives (e.g. Drabek and Milota, 2007, Theorem 3.2.7)

_ 1
tnl (\/ q’Yﬂvthn Y, q'Yn) - 59’)’71 V q’Yn

< ‘tﬁly sup HAanrétngon(tnSOn) — A, (@)HA,Q
22 5€0,1]

= sup || Ay, 4stup. (9n) — A%(SO)HA,Q :
5€[0,1]

(97)

13 The latter observation follows directly from the definition of A,
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By (*) we have for some sequence (8,),en C [0, 1],114

limsup sup ||Ay,tst,e, (©n) — A%(SO)H,\,Q
n—oo  5€[0,1]

< limsup [[Ay, +5,t00, (Pn) — A’Y(SO)H)\Q + limsup [[A,, (¢) — A, (p) ||>\,2
n—oo

n—oo

=o(1).

Combining this with (97) and taking ¢, = n='/? yields

A2

= 0(1)a
A2

_ 1
tnl (V q’Ynatnaun TV q’Yn) - Eg’Yn V q’Yn

1
H\/E (\/p'Ynmihn —V p’Yn) - §g’Yn \/p'yn

which implies (19).

Finally we demonstrate that P, ¢, = 0 and the uniform square P, -integrability of the
score functions g,. That P, g, = 0 and g, € Lo(FP,,) follows from (94) applied separately
for each n € N (with v = ~,,) and Lemma 1.7 in van der Vaart (2002). The uniform square
P, -integrability of (g,)nen follows from the uniform square P, -integrability of (g, )nen
established in (d) above applied with §,, = 0, any ¢, | 0 and u, = 0. O]

Proof of proposition 5.2. The claim regarding the form of the efficient score function follows
from proposition 5.1, Lemma 3 of Lee and Mesters (2021a) and Lemma C.4.

For assumption CM(ii), fix 7 € R% and h € H, and let g, = 7'0,, + B, hand g == 70, +
B,h where l@ and B, are defined analogously to in Proposition 5.1 but with A = A(#, 1)
in place of A,, = A(0,, 51). During the demonstration of (x) in the proof of Proposition 5.1
it was shown that lim, , Py, (¢,)* = P,g*. Applying this result with §,, = 0, any ¢, | 0
and u, = 0 yields lim,, o P, g2 = Pyg2.

A similar argument can be used for the efficient score function. Let li, = (5971,5’772)’ .
Applied with §,, = 0, any t,, | 0 and u,, = 0, (a) in the proof of Proposition 5.1 yields that
P, — P, in total variation. Since the components of 57 and ZV are defined as orthogonal
projections onto subspaces of Ly(P,,) and € Lo(F,) respectively, they lie in these spaces.
Inspection of the form of each element of f% and Ey reveals that Z% — Zv A-a.e. and hence
Pi-as. as Py < . Let p=2+§/2 where § is as in (35) & (36). Let N € N be large enough
that for n > N, each |7, < 2|7, [sng] < 2|s|, [|Anllz < 2]|A]l2, each |G jn| < 2|Gk, ;| and
P, € P. To show that Ein,z is uniformly P, -integrable for each [ € [dy + dj] it suffices to

show that sup,,> P, |, 1|7 < oo for each such I. In particular, by Holder’s inequality (and
given the bounds just discussed holding for n > N) it is sufficient to show that each of (for
all (k,7) € [K]* with k # j and s € [dg,])

P%|An,kvn|pv P”/n|”€(An7kVn)|p7 P% |¢k(An7kVn)Aj,nVN|pv P% |An,kD2,8(X - l’d)ﬁbk(Ak,nVan:

are bounded independently of n (for n > N). Under P, A, ;V, ~ n; and X ~ 1. Using
independence, Hélder’s inequality and (35) & (36) for constants Cy, Cy € (0, 00) independent

1140n the right hand side take the trivial sequences ¢, = ¢ and §,, = 0.
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of n
Py | Ay Vil = / ¢ dG(e) < o
P, |5(An V)P < O / (e*0 +1)dGy(e) < oo
P lon(AniVi) AiaVil? = [lon(en)” dGutes) [ 16l a6 (e5) < o0
P i DX = won(AcaV)l” < Ca [ (1,2)18 + 118 dGo(@) [ lonen)l dGler) < o0

Since each right hand side term in the preceding dlsplay does not depend on n, this es-
tablishes the uniform P, -integrability of each € . By Cauchy-Schwarz, the continuous

mapping theorem and Lemma 3.11 it then follows that P, [Z%E’%] — P, [ng/v] To com-
plete the argument, note that the convergence just established along with the uniform
P, -integrability of each £2 ; implies that also each component (2 ; (for I € [dp]) is uni-

formly P, -integrable and so the same holds for 12, ]13. Again by deﬁnltlon each component
ly.1 € LQ(P%) and (,; € Ly(P,) and so using the uniform P, -integrability just estab-

lished, (46), P. [6%6'7 } P, [szly]» Cauchy-Schwarz, the continuous mapping theorem
and Lemma 3.11 once more we may conclude that lim,,_, f% = iv-

It remains to check the boundedness of B, which follows directly as

[1Byhllpy2 S [1ball2 + [[b2l2 +Z 1Pkllc,2 S N10ll2 + Z 1kl = [[7]-

k=1

]

Proof of proposition 5.3. That assumption M holds is a consequence of the model setup in
assumption LSEM & the sampling assumption. Assumption CM(ii) follows by proposition
5.2. Assumption DQM holds by proposition 5.1, the proof of which also shows that the scores
(, € LY(P,) & B, : Hy,— LY(P,,). Then proposition 3.10 applied with g, = 7'¢.,, + B, h
yields that assumption LAN holds.

It remains to show that assumptions E and R hold.''® Suppose that (8,)neny C £
is a deterministic y/n-consistent sequence for 8 (as in assumption DSE) and let lﬁgml &
65 2 be formed as in equatlon (49) Let 7, = (0p,n,) with n, = (Ba,no,--.,NK). Let
E = (¢ ,, 0 ,) and /¢, : (E’gn 1,6’5 ). Components of l¢, have one of two forms;

v,19 ¥v,2
K K
ey mi(Wi) = Z [Q,k,k,n (Tak1€nki + Tnk2k(Enki)) + Z Cl,k,j,nﬂ%,k(en,k,i)en,j,i] ;
k=1 j=1,j#k
K
ey 2y +s(Wi) = ) [—AnkDas] [(Xz — X)) Onp(npi) — Xn (Suki€nii + fn,k,w(en,k,i))]
k=1

(withm =1 and [ € [dg] or m =2 and | € [dg,| and s € [dg,]). Under Py, e,; =~ € and

115The argument in this section proceeds similarly to the relevant parts of the proofs of Theorem 2 &
Proposition 2 of Lee and Mesters (2021a).
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€n,ji ~ €;. Therefore, by assumptions LSEM and DSE, % Yo [(ﬁnﬁk(enﬁm) — Or(enpi)| enji =

op, (n=1/2) and %Z?:l [qgnk(en;”) — ¢k(en,k,i)] (X;—p) = op, (n~1/2). Additionally, since
(enki)i—y and (k(enr:))iey and (Pr(enki))nen are iid. samples from mean zero distribu-
tions with finite variance under P, given assumption LSEM and equation (45), it follows
that \/EZZZI An i = Op%( ), for anki € {enkirk(€nki) dr(enki)}. The argument of
Lemma 7 in Lee and Mesters (2021a) implies that |5z, x — 2|2 = op, (vn) = op (1)
for » € {r,¢} where v, is defined as in assumption DSE."'® Since X ~ 7, under Py,
1 Sy X - = oP,( ) by the LLN. The continuity of A and D;; yields that each
Cz kg — Gy and hence are bounded. Combining these observations yields that

Vi, [le, - m — op, (1). (98)

Let I, == P égng’ I, =P, Z Z’, and f = P%K%E7 Firstly, let m,r € {1,2} and
[, s be indices such that Egn m, and Eé‘n rs are Components of Eg Let Um,m,l = lﬁgmmJ(I/Vi),
Unmm’l = Egnml(VVi) and Dy, = Un,z,m,l Un,%m,l By Cauchy-Schwarz, assumptions

LSEM, DSE, (45) and arguing analogously to Lemma 8 of Lee and Mesters (2021a)

~ - ) -
ﬁ ZZI Dn,i,l,mUn,i,'r,s S (E Z Un,i,r,s) <ﬁ Z Dn,i,l,m) — OP,’YTL (Vn)

i=1 i=1
Lo - 1/2 Lo 1/2
7 T2 2
ﬁ E Un,i,l,mDn,i,r,s < (E E Un,i,l,m) <E § Dn,i,r,r) =op, (Vn)7
i=1 =1 i=1

and hence %y, = || Ie, — Ie,|l2 < |le, — Ie, || F = op, (V)" Next let

Qn,i,l,m,r,s = g’y{l,l,m<Wi)g’y§l,r,s(Wi) - g'yn,l,m(VVZ')g'yn,r,s(VVi)7

and let Qnyi,hm,m be defined analogously except with each e, ;; replaced by ¢, ;. Note that
the distribution of @, ;1m,s under P, is the same as that of Qvn,i,hmms under the product
measure G = Hszo (. Therefore, arguing analogously to the corresponding part of the
proof of proposition 2 in Lee and Mesters (2021a), using their Lemma 6 and Theorems
2.5.11 & 2.5.12 in Durrett (2019) gives that %5, = ||, — L, |2 = op; (v,). Combining
this with the result for %, ,, we have that

e, = L, ll2 = op, (va)- (99)

116The Lemma as stated does not apply directly since it is for the case where 6,, = 6. Regardless, since
€n ki ~ Mk and X ~ 1o under P% the argument also holds in our case.

H7Similarly to footnote 116, whilst Lemma 8 in Lee and Mesters (2021a) cannot be directly applied since
it assumes 60, = 6, the underlying argument continues to apply here as it is based on the fact that under
the relevant measure (here P%) enk,i ~ N and X ~ No- Moreover their assumptions 5 & 6 hold under
assumptions LSEM, DSE and (45).
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Next we demonstrate that for each pair m, [ indexing and element of ZW we have

/ [Cs min/Do, — Cymin/Pom]” AX — 0. (100)

Note that A-a.e. each ZZ%MJ, /Dy —> g%ml. /P~ and g%,m,l, /Dy — gv,m,l, /P~ by the assumed
continuity of A, each D, each n; and each ¢; and the form of these functions. Hence by

Proposition 2.29 in van der Vaart (1998) it suffices to show that [ l%;wmvl AP, — [&2,,,dP,
and fﬁ ma APy, — ff mld , since £, € Ly(P,) by its definition. Define Qipm =

02 / .
'anmvl’ n,l,m ’

en ki replaced by €. Under P, , @, has the same distribution as Qn,l,m has under

G; similarly under P, @, has the same distribution as u;”m has under G. Hence,

f&mmldP ;= anmldG and fﬁv mi APy, = [ Qum,dG. This observation and the the
continuity of A and each D, is sufficient for the required integral convergence to hold.!!®
We note that the same argument which yielded the uniform P, -integrability of 12, |13 in
the proof of Proposition 5.2 can be used to show that that ||€,, ||3 is uniform P., -integrable.

= Ei my and QmLm, Q;llm which are defined analogously except with each

Since 6 — rank(Iv) is locally constant, for all sufficiently large n € N we have rank(Z,,) =
rank(Z,). Z,, — I, (which holds as we have shown that assumption CM(ii) does). The
proof is Completed by applying Lemma B.7. O]

Proof of corollary 5./. This follows from propositions 5.3, 3.2 and 3.3. n

Proof of corollary 5.5. This follows from proposition 5.3 and corollaries 3.7 & 3.9, on noting
that H, — as defined in equation (43) — is a linear subspace of H whenever § € int%4. O

C Swupporting results

Lemma C.1. Let {Z, ) : k < n,n € N} be a triangular array of L—dimensional random
vectors, such that each row is independent with E[Z, ;] =0 and ¥, :=E [Zn,kZ;“k] exists.
Suppose that

1 n
— E Yk = D, (101)
n

with 3, positive semi-definite (and finite) and that for each € > 0
1 n
- > E 1 Z0sP1{[1 Zu ]l = ev/n}] — 0. (102)
k=1

Then
\/_ZZ &~ N(0,3,).

Proof. Put &, 1 = Zn1/v/n for k <n and &, = 0 otherwise. Fix a € RL. For each n € N,
let F,, k = 0(&ut : t < k) for k < n and F,, = F,, otherwise. The adapted sequence
(@' ke, Fok)ken is clearly a martingale difference sequence by the independence, mean zero
and (square) integrability of each Z, ;. Moreover, the sums » ;~, a’&,p = >, _, d’&, ) and

118Gee the corresponding part of the proof of proposition 2 in Lee and Mesters (2021a) for additional details.
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S El(@énr)?] = Y on_ E[(@/&,x)% trivially converge with probability 1 for each n € N.
By linearity and continuity we have that

> E[(d6x)) = > E(d6r)?] = d [% > En,k] a— a'S.a> 0.
k=1 k=1 k=1

Next, suppose that a # 0 and let ¢ > 0. We have that {|d'Z, x| > ev/n} C {||Znkll >
ev/n/llal|} and therefore

(o0} 1 n
Y E[(@nn)*H|dGuul = €}] < lall*~ Y E[IZuslP1{|Zuk]l = v/ llall}] — 0,
k=1 k=1

by assumption.!'? Noting the assumed independence, the conditions of Theorem 18.1 of
Billingsley (1999) are satisfied and hence

1 n ) oo
— Z a'Zny = Z a'&nr ~ N(0,a'S,a).
vn k=1 k=1

The claimed result then follows by an application of the Cramér-Wold theorem. n

Remark C.1. Lemma C.1 is, of course, completely standard. I record it here because I have
been unable to find a reference for a multivariate CLT for triangular arrays which permits
a positive semi-definite limiting variance matrix.

Lemma C.2. Let G be a closed subspace of Lo(P) where the latter is separable and let
(gm)men denote an orthonormal basis in G. Let for m € N, let Il,,, denote the orthogonal
projection on G, ==1in{gy, ..., gm} and let I1 denote the orthogonal projection on G. Then,
for any X € Ly(P) we have that 11,, X — ILX in Ly(P) as m — oo.

Proof. We first note that the formulation in the lemma is well-defined: every subspace of a
separable metric space is itself separable (see e.g. Proposition 26, section 9.6 of Royden and
Fitzpatrick, 2010, p. 204-205). Since a closed subspace of a Hilbert space is also a Hilbert
space (with the same inner product), it follows that G is separable and therefore possesses
an orthonormal basis (e.g. Theorem 11, Section 16.3 of Royden and Fitzpatrick, 2010, p.
317-318). Since any finite dimensional subset of a Hilbert space is closed, the orthogonal
projection operators II,, are well defined. Throughout (-,-) and || - || will denote the inner
product in Ly(P).
By proposition 1.4.7 in Conway (1985, p. 15) we have that

m

k=1

[1X is the unique vector in G such that (X —I1X,g) = 0 for all g € G (see e.g. 1.2.6
- 1.2.8 in Conway, 1985, p. 9-10). Now, let Y = >7 (X, gx)gx which converges by e.g.
lemma 1.4.12 in Conway (1985, p. 16). By continuity and linearity of the inner product we

19Tp the case that a = 0 this limit trivially holds.
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then have that for any g;

(X =Y, g) = (X, g5) = > (X, ) 95) = (X, 95) — (X, g;) = 0.
k=1

Using linearity and continuity of the inner product once more permits the conclusion
that (X —Y,g) = 0 for any ¢ € G. Hence Y = IIX. Then, we have I1X — II,,X =
Y et (X gk gk =Y = >0 (X, gr)gr which converges to 0 in Ly(P) by the convergence
of Y70 (X, gr)gr to Y. O

Lemma C.3. Let X be an integrable random variable and Z a random element in a metric
space Z, both defined on a probability space (Q, F,P). Then E[X|Z] =0 (P-almost surely)
if and only if E[X f(Z)] = 0 for all square integrable functions f : Z — R such that X f(Z)

15 integrable.

Proof. Suppose that E[X|Z] = 0. We have

E[X[(Z)] = E[E[X f(2)|2]] = E[E[X|Z]f(Z)] = 0.

Conversely suppose that E[X f(Z)] = 0 for all square-integrable functions f : Z — R with
X f(Z) integrable. Let Y be any of the conditional expectations E[X|Z] and let A € o(Z).
There is a set B € B(R) such that A = Z7'(B). Put f as the indicator f(z) := 1{z € B}.
Clearly Ef(Z)* <1 and X f(Z) is integrable. Then, by definition,

/AYdP:/AXdP:/Xf(Z)dPZE[Xf(Z)]:

Now, suppose {Y # 0} has positive measure. Then one of {Y > 0} or {Y < 0} must. Say
the first, the argument for the latter is analogous. This is {Y > 0} = F = U,> FE, for
E, ={Y > 1/n}. So one Ej at least has positive measure. So [, Y dP > fEdeP >

fEk 1/kdP = P(E))/k > 0. But this is a contradiction since F € o(Z). O

Lemma C.4. Let { and /i be L- and K- dimensional vectors of functions in Ly(P) re-
spectively. Define B = lin{ky, ..., kx} and suppose that G is a subspace of Lyo(P). For
any closed subspace S C Lo(P), denote the orthogonal projection of X € Lo(P) on S by
I1(X |S). Then if X =TI (X | 9+%) we have

e::n(m [%+g]¢):Z—n(mnn{le,...,@}). (103)
Moreover, if I = P [EE’} and J =P {(Z’, /%’)l <Z’, /2")] and Jas is positive-definite then

~ V]

{=10— j12j2—211%’ and i = jll — j12j2_21j21. (104)

Proof. The proof of the first claim is as discussed on p. 74 of Bickel et al. (1998). As there,
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noting that ¢4 C lin Z + ¢ and using their equation (A.2.11) (p. 428) we obtain

i—i @|g)_n@|@awmmgg

—1I
e—H(Mg)—H(@—H@|g)u@+gvm%ﬁ
~ 11

=/ (Z\(%JF%)Q%L).

Now, suppose that f € lin{i1,...,kx}. Then we have
K K K
f = Zak/%k = Zak/ﬁk — Zakﬂ(ﬁ;k | %) c hl’l%—i-g,

and moreover, since each &, € ¥+, linearity of the inner product implies the same holds for
f. Hence f € (% +9)N%+. For the reverse containment, suppose that f € (Z +9)NY~+.
Then, we have for some g € 4 that

K
f= Z arfy + g.
k=1

Now, suppose that g # — Zszl apl (ky, | ¢), and hence g = — Zszl all (kg |9)+h #0
for some h € ¢ with h # 0. Then

K K K

(fh) = arlin, h) =Y ar(M(ix [ 9), h) + (b, h) = axiig, h) + (b, h) = (h, h) > 0,
k=1 k=1 k=1

which is a contradiction to f € 9. Hence we must have g = — Y1 a,T1 (A | ) and

therefore f = ST apiy € lin{ky, ..., kx}. It follows that (Z +9)NG* =lin{k,, ..., ki}
which, in conjunction with the first display of the proof, yields (103).

Next, if Jos is positive definite, then the formulae in in (104) are well-defined. For the
left hand side note that we have

P [(Z_ j12j231/%> /Vi/} = j12 - jwj{gljm = j12 - j12 =0,

implying that (- jlgj;zlff is the orthogonal projection of ¢ onto the orthocomplement
of lin{ky,...,kx} (e.g. Conway, 1985, Theorem 1.2.6) and hence satisfies the condition
given in (103). The formula on the right hand side of (104) then follows by elementary
calculations. ]

Lemma C.5. Suppose that X is an integrable random variable on (Q, F, P), G,H C F and
o(o(X)U®H) is independent of G. Then, almost surely E[X|o(G U H)] = E[X|H].

Proof. (i) E(X|H) is 0(GUH) measurable since E(X|H) is H-measurable by definition. (ii)
E(X|H) is integrable by definition of conditional expectation. (iii) We demonstrate that for

each A € 0(GUH),
/EMWMPz/XM?
A A

Let M ={BNC:Be€GC_C e H} Thisis closed under intersections and contains 2.
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Additionally, we have that GUH C M C o(GUH) and therefore, 0(M) = c(GUH). Hence,
by Theorem 34.1 in Billingsley (1995) it is sufficient to demonstrate [, E(X|H)dP =
meCXdP for B € G and C' € H. To this end, suppose that X > 0 (without loss of
generality, since the following argument can be applied to the two positive parts X =
X1 + X~ separately and linearity used to conclude otherwise). Then, we have that

XdP =E(151cX) = E(15)E(1cX),
BNC

since G is independent of o(o(X) U #H). Additionally,

/ E[X[}] dP = E (1510E[X|H])
BNC
= E(15)E [1cE[X[H]]
= E(15)E [E[1cX[H]]
=E(1p)E(1cX),
using the independence between G and H, 10.10 in Davidson (1994) and the LIE. O

Lemma C.6 (Cf. Theorem 2 in Andrews, 1987). Suppose that equations (7) and (8) hold.
Then,

IZ} o, — Zill2 = op,, (1).

Proof. Let r = rank(Z,) and let M denote the set of dy x dy matrices with rank 7. Fix
e > 0 and let 6 > 0 be small enough that whenever M € M is such that ||Z, — M|, < 0 we
have ||Z! — MT||y < ."* Tt follows that for each n € N,

{” 10n —ITH2 > &t} C {Hingn —Z |2 > 6} U {rank( Lo, # 7’}

and so

Py (120, =Tz =€) < P, (1200, = Lll2 2 8) + P, (rank(Z,0,) #7) =0

Lemma C.7. Suppose that equation (7) holds and il, > 0. Then assumption R holds.

Proof. The function M + rank(M) is lower-semicontinuous on the set of matrices of any
(fixed) dimension. There is a 0 > 0 such that on the set (N Zno, — )2 < 6}, dop >
rank(Z, ,) > rank(Z,) — /2 > dy — 1, implying rank(Z,) = dy = rank(Z, , ). Hence, by (7)

P, (rank(Zyy,) = rank(Z,)) < Py, ({1 Zug, = T ll2 < 6}) > 1

[
Lemma C.8. Suppose that S is a Polish space and (P,)nen s a sequence of probability
measures which converges in total variation to P, with each P, and P defined on (S, B(S)).

If (fu)nen is a sequence of non-negative functions in Li(P,) such that (a) f, Lfe L,(P)
and (b) P, f, — Pf then (f,)nen is uniformly P,-integrable.

120Gee e.g. section 6.6 in Ben-Israel and Greville (2003).
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Proof. Condition (a) and P, p together imply that @, ~~» @ where @), is the pushfor-
ward measure of P, under f,, and @) the same of P under f. Let h € C,(S). By change of vari-
ables (e.g. Bogachev, 2007, Theorem 3.6.1) [ hdQ, = [ h(f,)dP, and [ ¢dQ = [ h(f)dP.

By (a) and the bounded convergence theorem, [ h(f,)dP — [h(f)dP. By P, . p

‘/h(fn)dPn—/h(fn)dP' §2hsup{‘/gdpn—/gdp‘} 0,

where |h| < h € (0,00) and the supremum is taken over all measurable g with 0 < g < 1.
Hence @,, ~ @ as claimed. This, in conjunction with (b), Theorem 3.6 of Billingsley (1999)
and translating terms yields the result. O

D Tables & figures

D.1 Empirical rejection frequencies (ERF)
D.1.1 SIM
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Table 1: ERF (%) e ~ N(0,1), X ~ U(—1,1)

S w

n &t f=6fi f=6fr f=6fs [f=0fi [=0fr f=04fs
200 V1 5.24 6.58 6.14 15.94 14.38 18.92
400 V1 5.38 5.20 5.40 10.28 10.14 13.82
600 1 5.50 5.70 5.14 8.06 7.88 11.22
800 V1 4.74 4.76 5.36 6.94 7.78 10.28
200 V2 5.46 5.36 5.38 17.62 15.18 19.90
400 V2 5.58 5.68 5.58 12.72 10.26 14.58
600 V2 4.60 5.48 5.42 10.66 9.14 13.20
800 2 5.20 5.34 5.74 9.20 8.98 10.60
200 VA4 5.22 5.50 5.62 20.86 19.10 24.62
400 V4 4.98 5.86 5.60 14.68 12.62 17.04
600 V4 4.92 5.20 5.52 12.80 9.82 15.10
800 VA4 5.48 4.96 6.02 10.48 9.32 13.08
200 /8 5.12 5.34 5.60 16.28 22.52 26.20
400 /8 5.98 5.50 5.12 19.48 16.12 19.98
600 /8 5.62 5.00 6.48 15.24 14.18 16.94
800 /8 4.98 5.54 5.40 13.02 11.76 14.42
200 V16 4.82 5.64 5.22 12.28 20.08 21.76
400 16  5.28 5.30 6.02 15.66 18.66 23.66
600 16  4.58 5.46 5.62 19.30 15.68 19.64
800 /16  5.30 5.56 5.32 17.02 14.68 17.62

Notes: Based on 5000 Monte carlo replications. S is the efficient score
test. W is a Wald test based on an Ichimura (1993) type estimator as
described in section 4.4. f1(v) = ¢1(14+exp(—v)) 71, f2(v) = ez exp(—v?),
f3(v) = c3v?, where the constants ¢; (i = 1,2,3) are chosen to ensure
V(fi(Vp)) = 4 under the null.
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Table 2: ERF (%), €[¢ ~ v/5(—1)¢ Beta(2,3), ¢ ~ Bernoulli(1/2), X;, ~ U(—1,1)

S W
n &Y f=6fi f=6fa [f=0fs [f=0fi [f=0fr f=6fs
200 V1 4.82 5.56 5.94 14.72 12.88 16.98
400 V1 5.74 4.96 5.50 10.28 10.68 12.42
600 V1 4.78 4.98 5.08 7.98 8.52 10.56
800 V1 5.14 4.88 5.34 7.06 7.78 9.58
200 V2 4.82 5.84 5.94 17.06 15.38 19.58
400 V2 5.14 5.86 5.52 11.86 10.02 14.20
600 V2 5.18 5.26 5.46 9.72 9.22 12.84
800 V2 5.04 5.12 5.40 8.72 8.60 11.90
200 VA4 5.26 5.48 5.78 19.84 18.44 22.34
400 V4 5.64 5.38 5.62 15.18 12.20 16.02
600 V4 6.18 5.66 5.64 10.92 10.18 15.18
800 4 4.88 5.26 4.84 10.12 9.52 13.24
200 /8 5.10 5.38 5.08 15.36 20.18 25.64
400 /8 4.66 5.58 4.96 19.08 16.20 20.44
600 /8 5.22 4.92 5.52 15.14 13.08 16.36
800 /8 5.10 4.98 5.66 12.64 11.00 14.78
200 V16  5.28 4.76 5.60 12.58 18.62 21.90
400 V16  5.54 5.56 5.34 15.38 19.14 23.40
600 16  5.24 5.20 5.32 18.08 14.98 20.26
800 16  4.92 5.30 5.02 17.54 13.60 18.08

Notes: Based on 5000 Monte carlo replications. S is the efficient score
test. W is a Wald test based on an Ichimura (1993) type estimator as
described in section 4.4. f1(v) = c1(14+exp(—v)) 7Y, f2(v) = ez exp(—v?),
f3(v) = c3v?, where the constants ¢; (i = 1,2,3) are chosen to ensure
V(fi:(Vg)) = 4 under the null.
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Table 3: ERF (%), e ~ N(0,1), X = (Z,0.27; + 0.47Z + 0.8), Z ~ U(—1,1)

S w

n &t f=6fi f=6fr f=6fs [f=0fi [=0fr f=04fs
200 V1 5.28 5.56 6.52 14.74 15.76 14.42
400 V1 6.20 5.94 5.96 10.62 10.88 10.68
600 V1 5.64 5.62 5.70 9.28 9.00 9.06
800 /1 5.10 5.80 5.00 7.28 8.78 8.18
200 V2 6.14 5.62 5.80 17.74 20.14 16.92
400 V2 5.62 5.96 6.52 12.08 14.02 11.02
600 V2 5.70 5.26 5.66 9.72 11.16 9.94
800 /2 5.38 5.08 5.78 9.68 10.34 9.02
200 V4 6.20 5.44 5.32 20.84 25.02 20.26
400 V4 5.64 5.62 5.90 15.70 16.82 14.22
600 V4 5.24 5.54 5.88 12.20 13.08 11.32
800 VA4 5.68 5.74 5.38 11.18 13.14 10.62
200 /8 5.42 5.88 5.54 15.70 25.26 16.86
400 8 5.82 5.42 5.32 17.24 21.64 17.42
600 /8 5.80 5.84 5.94 15.82 16.56 15.24
800 /8 5.44 5.68 5.60 13.14 15.14 13.14
200 V16  5.52 5.94 5.86 12.32 20.14 12.94
400 16  6.18 5.68 5.58 16.06 24.22 15.98
600 16  5.76 5.72 5.66 17.90 22.20 16.80
800 V16  5.24 5.28 5.02 17.40 19.54 15.38

Notes: Based on 5000 Monte carlo replications. S is the efficient score
test. W is a Wald test based on an Ichimura (1993) type estimator as
described in section 4.4. f1(v) = ¢1(14+exp(—v)) 71, f2(v) = ez exp(—v?),
f3(v) = c3v?, where the constants ¢; (i = 1,2,3) are chosen to ensure
V(fi(Vp)) = 4 under the null.
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Table 4: ERF (%), €|¢ ~ v/5(—1)¢ Beta(2,3), € ~ Bernoulli(1/2), X = (Z1,0.22, +0.47, +
0.8), Zp ~ U(—1,1)

S w
n &Y f=6fi f=6fa [f=0fs [f=0fi [f=0fr [f=6fs
200 V1 5.26 5.92 6.18 14.78 15.28 13.60
400 V1 5.50 5.84 5.54 10.44 10.90 9.50
600 V1 5.22 5.70 5.36 8.62 9.14 8.28
800 V1 5.26 5.32 5.90 8.26 9.72 8.40
200 V2 5.96 6.00 6.02 17.62 19.86 15.54
400 V2 5.18 5.16 5.96 12.32 14.40 11.10
600 2 5.22 6.02 5.34 10.86 10.58 9.14
800 2 5.38 4.96 6.02 8.94 10.44 8.36
200 VA4 5.96 6.26 5.58 20.32 24.04 20.48
400 4 5.78 6.40 6.00 15.26 16.46 13.52
600 V4 5.30 5.26 5.60 13.16 13.72 11.06
800 V4 5.18 5.62 5.04 10.12 12.38 9.56
200 /8 5.72 5.78 5.72 15.14 25.52 16.50
400 /8 5.24 5.54 6.14 18.22 21.88 17.82
600 /8 5.76 4.96 5.10 15.18 17.34 14.70
800 /8 5.46 5.48 5.82 14.26 15.30 13.28
200 V16  5.66 5.16 5.96 11.42 20.78 12.82
400 V16  5.66 5.84 6.00 15.58 24.86 16.28
600 16  5.00 4.78 5.98 17.44 22.06 16.72
800 16  5.60 5.64 5.36 16.78 19.94 15.90

Notes: Based on 5000 Monte carlo replications. S is the efficient score
test. W is a Wald test based on an Ichimura (1993) type estimator as
described in section 4.4. f1(v) = ci(14+exp(—v))~L, fa(v) = co exp(—v?),
f3(v) = c3v?, where the constants ¢; (i = 1,2,3) are chosen to ensure
V(f:(Vy)) = 4 under the null.
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Table 5: ERF (%), € ~ N(0,s110g(2 + (X1 + X20)?)), X}, ~ U(—1,1), O(X) = w(X)

S w
n &Y f=6fi f=6fa [f=0fs [f=0fi f=0fr [f=6fs
200 1 6.38 6.64 6.20 18.72 16.76 23.46
400 V1 6.24 5.84 6.50 12.34 11.70 17.26
600 V1 5.78 5.12 5.72 10.38 10.96 14.70
800 /1 5.88 5.58 5.92 8.50 9.94 12.76
200 V2 5.76 5.76 6.12 22.62 19.30 25.86
400 V2 5.96 6.22 6.26 16.30 13.72 20.08
600 V2 5.52 5.46 6.26 14.46 11.70 15.70
800 2 5.34 5.94 5.68 11.26 10.14 14.78
200 V4 5.32 5.72 5.44 27.12 24.36 30.40
400 V4 5.42 5.96 6.12 21.06 16.28 22.48
600 /4 5.24 5.52 5.74 15.50 13.38 19.58
800 V4 5.74 5.72 5.76 13.74 11.16 17.78
200 /8 5.40 5.64 5.46 19.66 25.36 30.08
400 /8 6.60 6.22 6.32 25.42 21.10 28.72
600 /8 5.50 5.80 6.60 21.34 17.78 23.80
800 /8 5.42 5.84 6.06 17.86 15.58 21.08
200 V16  5.86 6.26 5.74 14.06 23.96 25.06
400 V16  5.52 6.50 6.46 20.32 23.98 29.78
600 16  5.50 5.74 5.08 25.04 22.00 29.20
800 16  5.28 4.82 5.24 22.90 19.90 25.40

Notes: Based on 5000 Monte carlo replications. S is the psuedo effi-
cient score test. W is a Wald test based on an Ichimura (1993) type
estimator as described in section 4.4. fi(v) = c1(1 + exp(—v))~t,
f2(v) = caexp(—v?), f3(v) = c3v?, where the constants ¢; (i = 1,2, 3) are
chosen to ensure V(f;(Vp)) = 4 under the null. Similarly the constants
s; (1 =1,2) are chosen to ensure that Ve = 1 under the null.
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Table 6: ERF (%), € ~ N (0, s2(1 + 5sin(X1)2)), Xj, ~ U(=1,1), O(X) = w(X)

S w
n &Y f=6fi f=6fa [f=0fs [f=0fi f=0fr [f=6fs
200 V1 5.40 5.94 6.46 19.10 16.34 18.46
400 V1 6.68 6.34 7.42 13.36 11.24 13.72
600 V1 5.94 6.14 6.00 10.28 8.74 10.88
800 /1 5.86 5.70 5.78 8.86 7.68 9.76
200 V2 5.12 5.32 5.70 23.74 19.96 22.58
400 V2 5.42 6.28 6.62 15.70 12.92 15.72
600 V2 5.92 6.00 5.92 12.66 10.44 12.86
800 /2 5.68 5.76 5.78 10.38 9.58 11.90
200 V4 5.64 6.50 5.94 23.30 22.86 25.92
400 V4 5.48 5.82 6.84 19.76 16.60 18.44
600 /4 5.82 5.74 6.24 15.70 13.08 14.30
800 V4 5.80 5.82 6.18 13.86 12.16 12.54
200 /8 5.98 5.70 5.50 14.74 23.00 28.56
400 V8 5.48 6.50 5.78 22.32 20.00 23.70
600 /8 5.46 5.76 6.24 20.56 16.76 19.02
800 /8 5.36 6.00 6.18 17.94 13.74 16.50
200 16  4.96 6.20 5.42 12.96 18.18 26.24
400 V16 5.42 6.50 6.70 12.78 21.82 25.66
600 16  5.20 5.86 5.58 18.30 21.24 23.82
800 16  5.06 5.66 5.92 21.44 18.76 20.98

Notes: Based on 5000 Monte carlo replications. S is the psuedo effi-
cient score test. W is a Wald test based on an Ichimura (1993) type
estimator as described in section 4.4. fi(v) = c1(1 + exp(—v))~t,
f2(v) = caexp(—v?), f3(v) = c3v?, where the constants ¢; (i = 1,2, 3) are
chosen to ensure V(f;(Vp)) = 4 under the null. Similarly the constants
s; (1 =1,2) are chosen to ensure that Ve = 1 under the null.
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Table 7. ERF (%), ¢ ~ N(0,s11og(2 + (X, + X20)%)), X = (Z1,0.22Z; + 0.4Z, + 0.8),

S w

n &Y f=0fi f=06fs f=6fs [f=6fi [=0fr [f=4fs
200 V1 5.08 5.98 6.10 15.22 16.62 16.40
400 V1 5.06 5.74 5.54 9.62 11.76 12.00
600 V1 5.56 5.94 5.84 8.18 11.02 10.86
800 V1 5.02 5.58 5.44 8.00 9.02 9.50
200 V2 5.70 5.62 5.50 17.94 19.58 19.94
400 V2 5.92 5.80 6.06 12.90 13.24 14.08
600 V2 6.20 6.02 5.38 9.52 11.22 11.54
800 /2 5.60 5.70 5.48 8.78 10.76 9.78
200 V4 5.66 6.02 5.50 20.92 24.00 22.98
400 V4 5.90 5.68 5.86 16.50 16.98 17.84
600 V4 5.08 5.40 5.92 12.20 14.42 14.44
800 4 5.32 4.88 5.72 10.74 11.96 12.54
200 /8 5.62 5.36 5.56 18.02 26.58 17.74
400 /8 5.90 5.76 5.44 19.70 21.66 20.64
600 /8 5.70 5.86 5.76 16.72 17.70 18.04
800 /8 5.42 5.18 5.26 13.30 14.92 14.82
200 V16  5.20 5.18 5.30 12.16 21.54 15.70
400 V16  5.58 5.26 5.80 17.04 25.38 18.52
600 16  5.68 5.42 5.88 18.78 22.58 20.06
800 16  5.08 5.26 5.46 17.80 19.20 18.82

Notes: Based on 5000 Monte carlo replications. S is the psuedo effi-
cient score test. W is a Wald test based on an Ichimura (1993) type
estimator as described in section 4.4. fi(v) = c1(1 + exp(—v))~ !,
f2(v) = coexp(—v?), f3(v) = c3v?, where the constants ¢; (i = 1,2,3) are
chosen to ensure V(f;(Vp)) = 4 under the null. Similarly the constants
s; (1 =1,2) are chosen to ensure that Ve = 1 under the null.
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Table 8: ERF (% ) ~ N0, 52(1 + 58in(X1)%), X = (Z,,0.2Z; + 0.4Z5 + 0.8), Zy ~

S w

n &Y f=0fi f=06fs f=6fs [f=6fi [=0fr [f=4fs
200 V1 4.74 5.34 5.66 14.86 14.12 17.52
400 V1 5.60 6.28 6.12 9.34 10.24 10.12
600 V1 5.66 6.00 5.48 6.82 7.76 7.62
800 1 5.82 6.42 5.64 6.70 7.54 6.62
200 V2 5.16 5.56 5.84 19.24 17.10 20.10
400 V2 6.38 6.14 6.38 11.50 11.92 12.28
600 V2 5.62 5.08 6.02 8.34 9.38 9.98
800 /2 5.50 6.10 5.50 8.14 8.94 7.42
200 V4 5.88 5.58 5.48 24.48 22.80 23.50
400 V4 6.10 6.04 6.10 15.04 15.08 15.72
600 V4 5.98 6.32 5.84 11.54 11.70 11.30
800 V4 5.68 5.82 5.62 9.24 10.88 9.78
200 /8 5.48 4.96 5.26 24.04 27.46 24.94
400 /8 5.42 5.42 5.94 20.26 19.66 20.38
600 /8 5.74 5.58 5.76 16.10 15.44 15.22
800 /8 5.40 5.08 5.60 12.26 12.80 13.88
200 16  5.50 4.60 5.10 17.84 22.32 22.20
400 V16  5.38 5.80 5.66 20.82 23.02 22.36
600 16  5.54 5.86 5.56 19.78 19.58 21.86
800 16  5.70 5.80 5.60 17.88 17.00 17.14

Notes: Based on 5000 Monte carlo replications. S is the psuedo effi-
cient score test. W is a Wald test based on an Ichimura (1993) type
estimator as described in section 4.4. fi(v) = c1(1 + exp(—v))~ !,
f2(v) = coexp(—v?), f3(v) = c3v?, where the constants ¢; (i = 1,2,3) are
chosen to ensure V(f;(Vp)) = 4 under the null. Similarly the constants
s; (1 =1,2) are chosen to ensure that Ve = 1 under the null.
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Table 9: ERF (%), € ~ N (0, 51 1log(2 + (X7 4+ X20)?)), X ~U(-1,1), ®(X) =1

S w
n &Y f=6fi f=6fa [f=0fs [f=0fi f=0fr [f=6fs
200 V1 4.86 5.74 5.62 22.292 19.88 23.22
400 V1 5.64 5.20 6.04 15.80 13.76 18.40
600 V1 5.10 5.72 5.50 12.08 12.14 14.68
800 /1 5.32 4.88 5.32 10.82 11.06 13.50
200 V2 4.68 5.90 5.98 26.22 23.80 27.42
400 V2 5.18 5.72 6.44 19.14 15.68 20.74
600 V2 5.26 5.72 5.24 15.98 13.20 17.00
800 /2 5.28 5.28 6.16 14.00 12.24 16.22
200 V4 5.78 5.18 5.54 29.72 27.44 32.58
400 V4 5.88 5.46 6.14 24.32 19.24 24.88
600 /4 5.34 5.14 6.18 20.10 15.92 19.62
800 VA4 5.14 5.28 5.10 17.86 14.08 18.12
200 /8 6.02 5.74 6.18 23.12 20.98 32.70
400 /8 5.44 5.34 5.94 29.00 26.08 29.76
600 /8 5.52 5.72 5.04 25.26 20.50 24.70
800 /8 5.16 5.70 6.18 21.74 17.42 22.78
200 V16  5.48 5.16 5.40 15.62 25.38 28.04
400 V16  5.78 5.50 5.86 23.62 28.28 33.34
600 16  5.02 4.74 6.10 28.38 25.90 30.54
800 /16  5.00 5.14 5.28 27.00 21.72 26.24

Notes: Based on 5000 Monte carlo replications. S is the psuedo effi-
cient score test. W is a Wald test based on an Ichimura (1993) type
estimator as described in section 4.4. fi(v) = c1(1 + exp(—v))~t,
f2(v) = caexp(—v?), f3(v) = c3v?, where the constants ¢; (i = 1,2, 3) are
chosen to ensure V(f;(Vp)) = 4 under the null. Similarly the constants
s; (1 =1,2) are chosen to ensure that Ve = 1 under the null.
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Table 10: ERF (%), € ~ N(0, s2(1 + 5sin(X1)?)), X ~ U(=1,1), &(X) =1

S w
n &Y f=6fi f=6fa [f=0fs [f=0fi f=0fr [f=6fs
200 V1 5.10 5.34 6.56 18.52 18.06 22.40
400 V1 5.90 5.52 5.26 13.12 12.60 15.68
600 V1 5.28 5.10 5.36 9.94 10.36 13.10
800 /1 5.08 5.18 5.06 9.10 9.58 12.78
200 V2 5.48 5.86 5.86 21.18 19.64 23.92
400 V2 5.64 5.14 5.64 15.58 13.28 18.48
600 V2 4.70 5.86 5.52 11.58 11.48 14.84
800 2 5.36 5.34 5.20 11.18 10.54 13.80
200 V4 4.84 5.22 5.78 21.96 23.54 27.20
400 V4 5.52 6.26 6.32 19.00 16.60 20.88
600 /4 5.18 5.76 5.14 15.90 13.58 18.66
800 V4 5.34 4.88 5.56 13.58 11.90 16.62
200 /8 4.86 5.92 5.30 15.86 23.46 27.62
400 V8 4.96 5.36 5.78 22.28 20.46 25.90
600 /8 5.22 5.66 5.44 19.80 16.18 21.58
800 /8 5.10 5.24 5.28 17.08 15.36 19.78
200 V16  5.10 5.42 5.68 12.16 17.86 20.54
400 V16  5.50 5.70 5.60 13.54 23.14 27.24
600 16  5.54 5.36 5.98 18.22 20.12 25.44
800 16  4.40 5.38 5.00 20.90 18.50 23.26

Notes: Based on 5000 Monte carlo replications. S is the psuedo effi-
cient score test. W is a Wald test based on an Ichimura (1993) type
estimator as described in section 4.4. fi(v) = c1(1 + exp(—v))~t,
f2(v) = caexp(—v?), f3(v) = c3v?, where the constants ¢; (i = 1,2, 3) are
chosen to ensure V(f;(Vp)) = 4 under the null. Similarly the constants
s; (1 =1,2) are chosen to ensure that Ve = 1 under the null.
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Table 11:  ERF (%), € ~ N(0,5,log(2 + (X, + X260)2)), X = (Z1,0.2Z; + 0.4Z, + 0.8),
Z, ~U(=1,1), ®(X) =1

S w
n 0t f=0fi f=6fs f=0fs [f=6f [f=0fr [=6fs
200 V1 6.14 5.46 6.16 17.80 18.88 17.66
400 V1 6.24 6.10 5.98 12.54 13.54 12.90
600 V1 6.02 5.58 6.44 10.78 11.70 9.96
800 1 5.66 5.42 5.26 10.44 10.90 9.48
200 V2 6.08 5.62 5.42 22.292 22.46 20.82
400 2 5.58 5.12 6.00 16.24 16.44 13.68
600 V2 5.64 5.66 6.02 12.46 13.22 11.64
800 2 6.08 5.88 5.42 11.96 12.94 10.28
200 4 6.04 5.98 6.12 26.00 28.62 21.70
400 V4 5.94 5.60 5.48 19.68 20.80 17.68
600 V4 6.10 5.44 5.54 16.54 16.96 14.42
800 V4 5.34 5.32 5.74 13.46 15.26 12.44
200 /8 5.36 5.72 5.44 19.90 28.44 17.34
400 /8 6.36 5.74 5.72 22.72 26.44 20.62
600 /8 5.82 5.68 4.98 19.84 20.78 17.80
800 /8 4.98 5.36 5.80 17.74 18.96 15.46
200 16  4.90 5.42 5.28 15.04 23.14 15.82
400 V16  5.66 5.40 6.06 20.76 28.06 17.40
600 V16  5.64 5.26 5.72 22.92 26.58 19.36
800 16  4.84 5.20 5.00 20.84 23.30 18.86

Notes: Based on 5000 Monte carlo replications. S is the psuedo effi-
cient score test. W is a Wald test based on an Ichimura (1993) type
estimator as described in section 4.4. fi(v) = c1(1 + exp(—v))~ !,
f2(v) = coexp(—v?), f3(v) = c3v?, where the constants ¢; (i = 1,2,3) are
chosen to ensure V(f;(Vp)) = 4 under the null. Similarly the constants
s; (1 =1,2) are chosen to ensure that Ve = 1 under the null.
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Table 12: ERF (%), € ~ N(0,52(1 + 5sin(X1)?)), X = (Z1,0.22, + 0.4Z5 + 0.8), Zy, ~
U(=1,1), d(X) =1

S w
n &Y f=0fi f=06fs f=6fs [f=6fi [=0fr [f=4fs
200 V1 6.20 6.34 5.80 18.88 21.20 19.30
400 V1 6.36 5.90 5.40 15.04 16.58 13.84
600 V1 5.40 5.74 5.24 12.34 14.32 12.60
800 V1 5.54 5.66 5.22 10.64 12.30 10.66
200 V2 5.72 5.98 6.70 23.24 25.90 23.48
400 V2 5.64 6.10 5.82 16.66 19.28 16.56
600 V2 5.28 5.22 5.64 14.12 16.08 13.76
800 /2 5.92 5.66 6.02 12.94 14.52 11.92
200 4 5.94 6.46 6.12 29.54 29.14 27.76
400 V4 6.08 6.16 5.78 21.66 24.08 20.16
600 V4 5.10 5.80 5.56 17.50 18.74 14.90
800 V4 5.24 5.76 5.32 16.62 18.08 14.58
200 /8 6.30 5.96 5.82 26.38 34.50 25.68
400 8 5.64 5.30 5.84 25.76 28.60 24.70
600 /8 5.52 5.84 5.72 22.16 23.56 20.06
800 /8 5.20 5.74 5.12 18.92 21.02 17.36
200 /16  5.44 5.06 6.18 15.94 28.06 18.10
400 V16  5.36 5.80 6.50 26.70 33.90 26.38
600 V16  5.04 6.00 5.46 26.72 29.04 24.70
800 16  5.46 5.84 5.46 23.14 26.78 22.62

Notes: Based on 5000 Monte carlo replications. S is the psuedo effi-
cient score test. W is a Wald test based on an Ichimura (1993) type
estimator as described in section 4.4. fi(v) = c1(1 + exp(—v))~ !,
f2(v) = coexp(—v?), f3(v) = c3v?, where the constants ¢; (i = 1,2,3) are
chosen to ensure V(f;(Vp)) = 4 under the null. Similarly the constants
s; (1 =1,2) are chosen to ensure that Ve = 1 under the null.
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D.1.2 LSEM

Table 13: True error distributions

T 12

a N(0, 1) 0-1 N(0, 1)
b t(5) 1-1 t(5)

c SN0, 1,4) 1-2 #'(10)

- - 1-3 #(15)

— —~ 2-1 SN'(0, 1, 4)
- — 2 -2 SN'(0, 1, 3)
- - 2-3 SN'(0, 1, 2)

— — 3-1  3aN(0,1)+ Y/aN(3/2,1)9)
- - 3-2 1/20N(0,1)+3/20N(3/2,1)9)
- - 3—-3 19/20N(0,1)+ /20N (3/2,1)9)

Notes: SN (11,0, ) denotes the skew normal distribution with location pu, scale o and shape a. ¢ and SN’
indicate that the corresponding ¢ and skew normal distributions have been normalised to have zero mean
and unit variance. The mixutre density in the right hand column is based on the “Skewed bimodal” density
in Marron and Wand (1992).

109



0.5-

0.4-

0.3-

0.2-

0.1-

0.0-

0.4-

0.3-

0.2-

0.1-

0.0-

Figure 1: Density function of ¢'(v)
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Densities 1 — j for j = 1,2, 3 in table 13.

Figure 2: Density function of SA”(0, 1, «)
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Densities 2 — j for j = 1,2,3 in table 13.
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Figure 3: Density function of aN(0,1) + (1 — a)N (3/2,1/9)
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Densities 3 — j for j = 1,2, 3 in table 13.

Figure 4: Density functions for distributions used in LSEM simulation study (ii).
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Table 14: Empirical rejection frequencies (%) for LSEM, €; ~ A(0, 1)

n 0-1 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3
S
200 4.74 5.62 590 550 320 3.86 4.48 292 358 4.62
400 478 552 444 516 282 3.68 4.66 1.92 358 4.24
600 4.60 4.84 420 474 250 342 3.76 218 3.34  4.56
800 4.56  4.28 448 412 262 294 356 252 3.86 4.16
S*
200 6.94 658 6.76 7.26 6.74 6.718 6.46 7.10 7.00 6.88
400 6.82 6.66 644 6.76 802 7.36 7.74 594 712  6.46
600 7.04 732 586 658 860 7.80 6.68 6.50 6.74 6.82
800 6.68 6.38 6.48 6.04 868 7.50 581 574 720 6.82
1474
200 24.36 4.02 10.10 14.22 18.32 18.80 20.20 58.96 48.82 32.56
400 2450  1.90 620 1056 1520 16.32 17.24 74.46 61.24 36.14
600 23.76 222 524 938 14.70 14.58 16.48 84.72 71.18 39.54
800 24.14 2.04 352 7.90 13.60 12.62 14.96 90.12 77.34 43.04
LM
200 4.96 4.86 490 532 508 532 478 528 544 4.74
400 542 488 5.08 530 450 588 5.14 538 486  5.10
600 514 554 534 528 518 536 532 4.84 508 5.22
800 5.14 4.80 460 4.82 444 4.84 478 4.68 536  5.42
W
200 27.38 32.18 30.20 29.80 28.28 29.48 28.76 23.10 24.40 25.50
400 2526 30.24 28.76 27.92 27.60 27.88 26.58 21.94 22.70 22.60
600 23.82 28.14 27.54 28.14 26.02 26.12 26.74 18.76 20.78 21.68
800 23.14 26.86 26.94 2586 26.62 26.54 25.64 16.88 20.26 20.86
LM
200 30.52 35.66 32.88 31.76 31.16 32.52 31.28 22.90 24.66 28.04
400 21.64 27.26 23.34 2356 2284 2274 22.38 14.66 15.86 17.74
600 16.64 22.86 18.76 19.58 18.30 18.46 20.16 9.10 11.02 14.36
800 14.72 19.68 15.72 15.88 16.60 16.70 16.50 6.84 852 11.52

Notes: Based on 5000 Monte carlo replications. S is the efficient score test computed
using OLS estimates of 3; S* is the efficient score test computed using 1-step updates
from the OLS estimates. W, LM denote the Wald and LM tests based on a psuedo-

maximum likelihood estimator inspired by Gouriéroux et al. (2017).

W and LM

denote the Wald and LM tests based on a GMM estimator inspired by Lanne and
Luoto (2021). Columns 2 — 14 denote the choice of density for €3, as in Table 13.
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Table 15: Empirical rejection frequencies (%) for LSEM, ¢ ~ t/(5)

n 0-1 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3
S
200 6.16 7.58 6.10 6.00 3.96 4.92 540 3.20 432 5.74
400 540 6.76 572 586 354 450 5.06 4.06 3.90 5.34
600 496 558 532  6.06 352 4.18 482 3.26 410 5.50
800 504 548 532 558 370 4.34 478 320 414  4.80
S*
200 724 720 652 6.88 7.70 756 692 6.92 7.00 7.20
400 6.38 7.22 618 652 774 696 670 6.74 624  6.52
600 564 6.04 596 672 T7.08 6.68 628 530 560 6.42
800 6.12 650 6.10 6.32 674 7.8 6.40 558 544  5.68
1474
200 4.04 1.78 242 248 3.00 278 3.02 924 7.46 4.66
400 226 238 214 206 222 244 210 6.40 4.10 2.70
600 222 238 232 242 216 220 198 5.02 298 2.26
800 1.92 278 314 298 236 232 242 3.10 278 1.88
LM
200 520 4.72 470 500 524 524 546 546 5.60 5.42
400 540 510 5.04 480 534 498 530 584 562 5.14
600 4.78 4.64 444 518 494 502 522 548 540 5.12
800 4.82 5.04 550 540 528 4.84 438 572 566 4.48
W
200 24.94 3226 27.54 26.12 26.34 26.00 25.92 19.88 22.06 22.20
400 20.18 27.78 22.60 21.02 21.04 21.20 20.68 17.38 16.50 19.62
600 17.98 24.62 20.32 19.84 19.52 19.02 17.94 14.96 14.64 16.90
800 16.16 22.20 18.88 18.16 17.66 17.70 16.70 13.42 13.82 15.66
LM
200 37.10 44.10 39.78 39.18 39.44 39.34 37.88 30.94 33.26 34.90
400 29.16 36.58 30.58 29.46 30.74 29.78 29.38 25.06 24.26 27.80
600 23.56 31.82 27.36 26.44 26.52 25.60 24.58 21.06 21.64 23.62
800 21.62 28.30 23.90 23.16 23.22 23.64 21.80 19.20 20.46 21.22

Notes: Based on 5000 Monte carlo replications. S is the efficient score test computed
using OLS estimates of 3; S* is the efficient score test computed using 1-step updates
from the OLS estimates. W, LM denote the Wald and LM tests based on a psuedo-

maximum likelihood estimator inspired by Gouriéroux et al. (2017).

W and LM

denote the Wald and LM tests based on a GMM estimator inspired by Lanne and
Luoto (2021). Columns 2 — 14 denote the choice of density for €3, as in Table 13.
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Table 16: Empirical rejection frequencies (%) for LSEM, €; ~ SN”(0,1,4)

n -1 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3

200 490 584 556 548 3.8 462 516 3.58 416  5.08
400 5.22 570 514 500 338 452 492 388 418 454
600 5.18 5.72 498 552 346 422 478 3.00 410 5.08
800  5.10 5.02 512 522 376 3.78 5.08 4.02 384 5.02

S*

200 6.02 668 626 640 744 656 6.74 642 632 6.18
400 6.34 642 612 584 696 682 646 716 688 6.32
600 634 644 594 640 664 6.74 6.26 588 6.18 6.16
800 558 6.12 6.12 586 7.66 582 642 6.08 554 6.40

w

200 18.16 238 840 10.84 14.02 1336 15.06 47.78 38.68 24.94
400 1592 188 482 7.00 1098 9.78 11.00 60.44 46.74 23.96
600 14.70 178 276 520 872 9.00 9.88 66.76 50.96 25.66
800 13.30 220 268 440 694 744 806 73.76 57.02 24.14

LM

200 484 474 546 436 480 534 546 542 526  5.16
400 544 494 510 426 550 512 426 482 566  5.42
600 5.02 480 540 530 518 466 488 514 504 5.02
800 498 520 490 558 566 480 570 484 504 490

w

200 27.76 3448 31.56 29.22 31.88 30.72 30.84 23.16 23.90 26.04
400 24.48 3228 29.04 28.04 2794 27.70 2748 1780 18.94 23.36
600 20.88 29.54 26.58 24.60 25.72 24.32 23.58 14.38 15.06 18.48
800 20.42 2794 26.74 23.54 2542 24.08 23.52 12,50 13.26 16.72

LM

200 35.10 39.54 37.00 36.14 38.18 37.32 38.24 28.98 29.82 33.76
400 27.72  29.62 27.98 28.28 2794 27.52 2754 1890 21.02 25.62
600 21.22 24.22 23.04 21.74 2274 2224 2280 1542 16.26 19.70
800 20.18 2234 20.74 1836 20.48 20.52 21.18 12.18 13.64 17.50

Notes: Based on 5000 Monte carlo replications. S is the efficient score test computed
using OLS estimates of 8; S* is the efficient score test computed using 1-step updates
from the OLS estimates. W, LM denote the Wald and LM tests based on a psuedo-
maximum likelihood estimator inspired by Gouriéroux et al. (2017). W and LM
denote the Wald and LM tests based on a GMM estimator inspired by Lanne and
Luoto (2021). Columns 2 — 14 denote the choice of density for €3, as in Table 13.
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Table 17: Empirical rejection frequencies (%) for LSEM

1, 12 n S S S S*

200 5.20 7.52 7.24 11.84
400 4.80 7.24 7.92 12.66
600 4.32 6.86 7.58 11.94
800 4.32 6.30 7.38 10.76

200 742 7.68 6.14 9.92
400 6.46 6.92 5.48 8.60
600 5.56 6.42 5.48 7.98
800 5.32 6.24 496 7.86

200 4.26 7.18 9.10 13.20
400 4.06 7.28 8.42 12.68
600 3.52 6.90 7.84 12.04
800 4.06 7.36 7.56 11.98

Notes: Based on 5000 Monte carlo repli-
cations. S is the efficient score test com-
puted using OLS estimates of ; S* is the
efficient score test computed using 1-step
updates from the OLS estimates. S and
S* are score tests based on the score func-
tion for the Euclidean parameters using
OLS estimates and 1-step updates respec-
tively. The first column denotes the choice
of density for both €; and €5 as in the left
colum of Table 13.
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D.2 Power curves
D.2.1 SIM

Figure 5: ¢ ~N(0,1), X ~U(-1,1)
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Based on 5000 Monte carlo replications with a sample size of n = 800. f1(v) = c1(1 + exp(—v))~!, fa(v) = c2 exp(—v?),
f3(v) = c3v?, where the constants ¢; (i = 1,2,3) are chosen to ensure V(f;(V3)) = 4 under the null.
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Figure 6: €|¢ ~ v/5(—1)¢ Beta(2,3), £ ~ Bernoulli(1/2), Xj ~ U(—1,1)
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Based on 5000 Monte carlo replications with a sample size of n = 800. f1(v) = c1(1 + exp(—v))~!, fa(v) = c2 exp(—v?),
f3(v) = c3v?, where the constants ¢; (i = 1,2,3) are chosen to ensure V(f;(Vp)) = 4 under the null.

Figure 7: e ~N(0,1), X = (71,0221 + 0.4Z,+ 0.8), Zp ~ U(—1,1)
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Based on 5000 Monte carlo replications with a sample size of n = 800. f1(v) = c1(1 + exp(—v))~!, fa(v) = c2 exp(—v?),
f3(v) = c3v?, where the constants ¢; (i = 1,2,3) are chosen to ensure V(f;(Vp)) = 4 under the null.
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Figure 8: ¢|¢ ~ v/5(—1)¢Beta(2,3), & ~ Bernoulli(1/2) X = (Z,,0.2Z; + 0.4Z, + 0.8),
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Based on 5000 Monte carlo replications with a sample size of n = 800. f1(v) = c1(1 + exp(—v))~!, fa(v) = ca exp(—v?),
f3(v) = c3v?, where the constants ¢; (i = 1,2,3) are chosen to ensure V(f;(Vp)) = 4 under the null.

Figure 9: € ~ N(0, s110og(2 + (X1 + X10)?)), Xj. ~ U(-1,1)

Optimal weighting Uniform weighting
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Based on 5000 Monte carlo replications with a sample size of n = 800. f1(v) = c1(1 + exp(—v))~!, fa(v) = c2 exp(—v?),
f3(v) = c3v?, where the constants c; (i = 1,2, 3) are chosen to ensure V(f;(Vp)) = 4 under the null. Similarly the constants s;
(¢ = 1,2) are chosen to ensure that Ve = 1 under the null. Uniform weighting: @(X) = 1; Optimal weighting: ®(X) = w(X).
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Figure 10: € ~ N(0, s2(1 + 5sin(X;)?)), X ~ U(-1,1)
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Based on 5000 Monte carlo replications with a sample size of n = 800. f1(v) = c1(1 + exp(—v))~!, fa(v) = c2 exp(—v?),
f3(v) = c3v?, where the constants c; (i = 1,2, 3) are chosen to ensure V(f;(Vp)) = 4 under the null. Similarly the constants s;
(i = 1,2) are chosen to ensure that Ve = 1 under the null. Uniform weighting: @(X) = 1; Optimal weighting: ®(X) = w(X).

Figure 11: € ~ N(0, s11og(2+ (X + X20)?)), X = (Z1,0.2Z,4+0.4Z5+0.8), Z ~ U(—1,1)

Optimal weighting Uniform weighting
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Based on 5000 Monte carlo replications with a sample size of n = 800. f1(v) = c1(1 + exp(—v))~L, fa2(v) = c2exp(—v?),
f3(v) = c3v?, where the constants c; (i = 1,2, 3) are chosen to ensure V(f;(Vp)) = 4 under the null. Similarly the constants s;
(¢ = 1,2) are chosen to ensure that Ve = 1 under the null. Uniform weighting: @ (X) = 1; Optimal weighting: ®(X) = w(X).
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Figure 12: € ~ N(0, so(1 + 5sin(X1)?)), X = (Z1,0.22, + 0.4Z5 4+ 0.8), Z, ~ U(—1,1)
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Based on 5000 Monte carlo replications with a sample size of n = 800. f1(v) = c1(1 + exp(—v))~1, fa(v) = c2 exp(—v?),
f3(v) = c3v?, where the constants ¢; (i = 1,2, 3) are chosen to ensure V(f;(Vp)) = 4 under the null. Similarly the constants s;
(¢ = 1,2) are chosen to ensure that Ve = 1 under the null. Uniform weighting: @ (X) = 1; Optimal weighting: ®(X) = w(X).

D.2.2 LSEM
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Figure 13: Power curves for LSEM (i), €; ~ AN(0,1)
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Based on 5000 Monte carlo replications. S is the efficient score test computed using OLS estimates of f3; S* is the efficient
score test computed using 1-step updates from the OLS estimates. LM denotes the LM test based on a psuedo-maximum
likelihood estimator inspired by Gouriéroux et al. (2017). The distribution for €2 in the (¢, j) — th panel has distribution ¢ —
7 in table 13.

Figure 14: Power curves for LSEM (i), €; ~ ¢/(5)
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Based on 5000 Monte carlo replications. § is the efficient score test computed using OLS estimates of 3; S* is the efficient
score test computed using 1-step updates from the OLS estimates. LM denotes the LM test based on a psuedo-maximum
likelihood estimator inspired by Gouriéroux et al. (2017). The distribution for €2 in the (4, j) — th panel has distribution ¢ —
j in table 13.
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Figure 15: Power curves for LSEM (i), e; ~ SN(0,1,4)
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Based on 5000 Monte carlo replications. § is the efficient score test computed using OLS estimates of 3; S* is the efficient
score test computed using 1-step updates from the OLS estimates. LM denotes the LM test based on a psuedo-maximum
likelihood estimator inspired by Gouriéroux et al. (2017). The distribution for ez in the (¢, ) — th panel has distribution ¢ —
7 in table 13.

Figure 16: Power surfaces for LSEM (ii), 7, ~ N(0,1), g2 ~ N(0,1)
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The bottom right panel depicts the asymptotic power surface based on (18) and (51) with 6 = (a,b) = (1/2,1/4) and
o1 = o2 = 1. The top-left, top-right and bottom-left panels are Monte Carlo version based on 5000 replications of the
efficient score test as described in section 5.5, with n = 600, 1000, 1400 respectively.
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Figure 17: Power surfaces for LSEM (ii), n ~ t'(5), 7o ~ '(5)
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The bottom right panel depicts the asymptotic power surface based on (18) and (51) with 6 = (a,b) = (1/2,1/4) and

o1 = o2 = 1.

The top-left, top-right and bottom-left panels are Monte Carlo version based on 5000 replications of the

efficient score test as described in section 5.5, with n = 600, 1000, 1400 respectively. n ~ t/(5) indicates that each € is drawn
from a (standardised) t distribution with 5 degrees of freedom.

Figure 18: Power surfaces for LSEM (ii), ny ~ st'(5,2), gy ~ st'(5, 2)
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The bottom right panel depicts the asymptotic power surface based on (18) and (51) with § = (a,b) = (1/2,1/4) and

o1 = o2 = 1.

The top-left, top-right and bottom-left panels are Monte Carlo version based on 5000 replications of the

efficient score test as described in section 5.5, with n = 600, 1000, 1400 respectively. n, ~ st’(5,2) indicates that each € is
drawn from a (standardised) skew t distribution, as in Fernandez and Steel (1998) with 5 degrees of freedom and skewness
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D.3 Empirical study

Figure 19: Confidence intervals for 6
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Figure 20: Value of efficient score statistic over 6 grid
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The red, dashed line is the 95th quantile of the X% distribution; values below this are included in the confidence set.
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Figure 21: Residuals from LSEM model
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Residuals from (54) with 6 taken as the value which minimises the efficient score statistic. The dashed blue line is the A(0,1)
density function.
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