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Abstract

This paper considers hypothesis testing problems in semiparametric models which may be non-

regular for certain values of a potentially infinite dimensional nuisance parameter. I establish

that, under mild regularity conditions, tests based on the efficient score function provide locally

uniform size control and enjoy minimax optimality properties. This approach is applicable to

situations with (i) identification failures, (ii) boundary problems and (iii) distortions induced by

the use of regularised estimators. Full details are worked out for two examples: a single index

model where the link function may be relatively flat and a linear simultaneous equations model

that is (weakly) identified by non-Gaussian errors. In practice the tests are easy to implement

and rely on χ2 critical values. I illustrate the approach by using the linear simultaneous equations

model to examine the labour supply decisions of men in the US. I find a small but positive effect

of wage increases on hours worked for hourly paid workers, but no effect for salaried workers.
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1 Introduction

In many econometric models, the behaviour of commonly used inference procedures can

depend crucially on the value of nuisance parameters. There are many cases where the

asymptotic distributions of test statistics derived using standard (fixed parameter) argu-

ments provide poor approximations to the finite sample distribution for certain values of

nuisance parameters. When this occurs, the corresponding tests justified by such asymptotic

arguments may have (finite sample) size far in excess of the nominal level.

In this paper I develop a general framework for conducting inference on a finite dimen-

sional parameter in a semiparametric model, robust to (sequences of) values of a possibly

infinite dimensional nuisance parameter which may invalidate standard inference methods.

In particular, the main contribution of this paper is to show that semiparametric score tests

based on the efficient score function (e.g. Bickel, Klaassen, Ritov, and Wellner, 1998; van der

Vaart, 2002) are robust under mild assumptions which allow for, among others, (i) iden-

tification failure, (ii) nuisance parameters on the boundary and (iii) the use of regularised

estimates of nuisance parameters.

Importantly – and unlike other general approaches put forward in the robust inference

literature (e.g. Andrews and Guggenberger, 2009, McCloskey, 2017 and Elliott, Müller,

and Watson, 2015) – this approach permits the nuisance parameter which causes standard

inferential approaches to break down to be infinite dimensional.

A key benefit of this approach is that this efficient score test does not sacrifice power in

order to obtain this robustness: when classical regularity conditions hold, the test enjoys

classical optimality properties. Additionally, I demonstrate that the test is minimax optimal

in some cases which fall in-between classical regularity conditions and the weaker conditions

under which the robustness results of this paper are obtained. Such results apply, for

example, when the parameter of interest is underidentified. Moreover these tests are often

easy to compute and require only χ2 critical values.

The semiparametric models I consider are parametrised by a pair γ = (θ, η) where θ is

the parameter of interest and η collects all nuisance parameters (and is therefore typically

infinite dimensional). γ fully parametrises the distribution of the observed data and I write

the corresponding probability law as Pγ. This setup permits a large range of models regularly

used in practice and includes both traditional parametric models and models defined by

moment conditions as special cases.

The theoretical results of this paper are derived under a few high level conditions, for

which some more primitive conditions are given subsequently. The main condition is local

asymptotic normality (LAN) of the model, which implicitly defines score functions for θ and

η. LAN specifies that the logarithms of certain likelihood ratios posses a local quadratic

approximation and – in the i.i.d. case considered in this paper – can be demonstrated to
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hold under an L2-differentiability condition known as “differentiability in quadratic mean”

(DQM).1 Such conditions are common in the semiparametric statistical theory as expounded

by e.g. Bickel et al. (1998) or van der Vaart (2002).2 This literature usually complements

LAN (or DQM) with additional regularity conditions, such as (a) the non-singularity of

information matrices and (b) all parameters lying in the interior of the parameter space.3

These conditions rule out a number of cases of interest in econometrics. For example, (a) the

non-singularity of the information matrix is often violated when the parameter of interest

is under- or un-identified; (b) many model specifications permit nuisance parameters to lie

on the boundary. Fortunately, as I show in this paper, valid inference can be conducted

without these additional conditions.4

With the LAN condition in hand, the efficient score function (for the parameter of

interest) can be defined as the orthogonal projection (in L2) of the score function for θ on

the orthocomplement of the set of score functions for η. This efficient score function is the

basis of the robust inferential theory put forward in this paper. The main test statistic I

consider, the efficient score statistic, is the quadratic form of an estimate of the efficient

score function, weighted by a (pseudo-)inverse of its (estimated) variance matrix.5 The key

insight I exploit is that – under the null – the limiting distribution of the efficient score

function is the same regardless of the (local) nuisance parameter sequence along which the

limit is taken. This directly leads to robustness of the efficient score test against such

sequences and consequently that such tests control size in a (locally) uniform manner over

certain compact subsets. In contrast, there are many models in which this property fails to

hold for commonly used test statistics: different sequences of nuisance parameters consistent

with the null hypothesis result in different limiting distributions.

Moving from size to power, the efficient score test has attractive optimality properties if

the possible local nuisance parameter values are indexed by a linear space.6 Firstly, if the

covariance matrix of the efficient score function is non-singular then the efficient score test is

asymptotically uniformly most powerful within the class of asymptotically invariant tests as

defined and demonstrated by Choi et al. (1996).7 Moreover, if the covariance matrix of the

1See e.g. Le Cam and Yang (2000, Chapters 6 and 7).
2Similar quadratic expansions of an objective function have also been previously used to analyse nonstandard
models in econometrics. See, for instance, Andrews (2001); Andrews and Cheng (2012).

3Cf. e.g. Definitions 2.1.1, 2.1.2 and 3.1.1 of Bickel et al. (1998).
4Cf. section 6.9 of Le Cam and Yang (2000) where the authors explicitly discuss a number of simplifying
assumptions which are often made but are not essential. Their point (v), that “the points ... are interior
points of Θ ∈ Rk” is clearly directly relevant to the case (b) with parameters potentially on the bound-
ary. For (a), where un- or under-identification of the parameter of interest may cause singularity of the
information matrix, cf. Le Cam and Yang, 2000, example (a), pp. 56 - 57.

5When the variance matrix is non-singular, the corresponding efficient score test is the same as the “effective
score test” of Choi, Hall, and Schick (1996). Additionally, the efficient score statistic can be viewed as the
semiparametric analogue of Neyman’s C(α) statistic (Neyman, 1959, 1979).

6This is often – but not always – the case. It fails, for example, at boundary points of the parameter space.
See Rieder (2014) for a discussion and some optimality results in such cases.

7For scalar parameters the asymptotic invariance can be replaced by asymptotic unbiasedness for two-sided
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efficient score function has positive rank, I establish that the test enjoys a local asymptotic

minimax optimality property. In addition to the standard full rank case, this situation may

arise when the parameter of interest is underidentified.

I work out the details of the application of the general theory to two econometric models:

a single index model where the link function may be relatively flat compared to sampling

variation and a linear simultaneous equations model where identification may be weak when

an identifying assumption of non-Gaussianity is close to failing. In each case, the models

have nonstandard features which can invalidate some standard approaches to inference. For

each model I give primitive conditions that allow (i) derivation of the efficient score function

and (ii) a demonstration that the high level conditions required for the application of the

previously developed theory are satisfied. Crucially, the assumptions imposed do not carve

out parts of the parameter space which cause problems for other testing approaches.

Firstly, I consider a single index model (SIM). The SIM is a popular model in econo-

metrics as it retains a large amount of flexibility whilst successfully combating the curse

of dimensionality. Identification of parameters in the index function requires a number of

assumptions, including the non-constancy of the link function. As is usual with points of

identification failure, if the link function is sufficiently close to constancy relative to the

sample size, a weak identification problem obtains. Importantly, the identification status of

the parameter of interest in this model depends on the link function, an infinite dimensional

nuisance parameter. Additionally regularised estimation is required to perform inference in

this model. I demonstrate that the efficient score test provides (locally uniformly) valid size

control in spite of these issues.

Secondly, I examine a semiparametric linear simultaneous equations model (LSEM). The

LSEM is a foundational model in econometrics, used to analyse equilibrium relationships.

As is well known, the simultaneity problem precludes the identification of all structural

parameters from observed data without further restrictions, leading researchers to adopt

alternative methods (e.g. analysing only one equation with the help of instrumental variable

techniques); see Dhrymes (1994) for an in-depth review.

In fact, the identification status of the structural parameters of interest depends on the

true error distribution (an infinite dimensional nuisance parameter). In particular, if no

more than one of the (mutually independent) error components is Gaussian the structural

parameters are identified as a consequence of the Darmois-Skitovich Theorem (Comon,

1994).8 If multiple components are Gaussian the structural parameters may be under- or

un-identified and standard inferential approaches may fail to control size. As is typical

in models with points of identification failure, such behaviour is also observed if the true

error distributions are sufficiently to close to Gaussianity, relative to sampling variation.

tests; for one-sided tests the asymptotic optimality holds over all tests of correct asymptotic level.
8Strictly speaking the identification result is up to column permutations and sign changes of the matrix
which transforms the structural shocks into reduced form shocks.
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In addition to these potential identification problems, regularised estimation is required to

handle the non-parametric part of the model, leading to regularisation bias. I demonstrate

that despite the presence of these non-standard features, the efficient score test provides

(locally uniformly) valid and efficient inference in the LSEM model, providing researchers

with a direct approach to conduct inference on structural parameters in linear simultaneous

systems without needing to employ, for example, instrumental variables approaches.

I conduct a large scale simulation study based on each example. The results verify

that the asymptotic size results obtained provide a good guide to finite sample size, with

the efficient score test always being correctly sized, including in cases where alternative

procedures fail to correctly control size. The simulation studies also highlight the power

of this testing approach and suggest that the asymptotic approximations provide a good

guide to finite sample power, with finite sample power curves and surfaces matching the

predictions of the asymptotic theory.

To illustrate the practical application of the approach, I use the LSEM to examine the

labour supply behaviour of US men. Wages and hours are typically considered to form a

simultaneous system. If the distribution of the error terms in this system is not (local to)

Gaussian, this approach permits identification of the structural parameters of interest in the

presence of this simultaneity without, for instance, instrumental variables.9 I find a small

but positive effect of wage increases on hours worked for hourly paid workers, but no effect

for salaried workers.

1.1 Relation to the literature

This paper is primarily a contribution to the literature on general approaches to robust

inference methods for statistical and econometric models with non-standard asymptotic

behaviour in part of the parameter space.

A number of papers analyse size-correction methods to provide inference valid uniformly

over nuisance parameter values. For instance, Andrews and Guggenberger (2009, 2010a,b)

analyse the use of resampling methods and data-dependent critical values to provide uni-

formly correct size control over the parameter space; McCloskey (2017) provides alternative

size correction approaches based on Bonferroni bounds, which can improve the power of such

size corrected tests. The approaches proposed in the cited papers are designed for models

in which a statistic has a limiting distribution which is discontinuous in a finite-dimensional

nuisance parameter.10 This setup is very general but differs from the one considered in the

present paper on a number of key points: (i) in this paper, the parameter which may cause

9If it were local to Gaussian, then as the results of this paper show, the testing procedures used would
continue to be correctly sized.

10In related work, Andrews, Cheng, and Guggenberger (2020) provide some general results to establish
the (uniform) size of tests and (uniform) coverage probabilities of confidence sets based on (pointwise)
asymptotic distributions which are discontinuous in some function of a parameter.
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standard inferential approaches to suffer from size distortions can be infinite dimensional;

(ii) rather than size-correcting tests based on a specific test statistics which have parameter

discontinuous asymptotic distributions, I suggest the use of the the efficient score statistic

which always has a χ2 distribution and hence the tests always use χ2 critical values. There

is not complete overlap between the class of models considered in this paper and those to

which the methods in these papers are applicable: the efficient score test remains valid in

cases where the asymptotic distribution of (other) test statistics may depend on the partic-

ular local sequence of infinite dimensional nuisance parameters. Conversely, the example of

an autoregressive model with a root which may be local to unity studied in Andrews and

Guggenberger (2009) does not satisfy the high-level conditions I impose as such models are

locally asymptotically quadratic (LAQ) but not LAN (Jeganathan, 1995; Jansson, 2008).

Romano and Shaikh (2012) provide high level conditions under which bootstrap and

subsampling procedures yield tests and confidence sets with (uniformly) correct size and

coverage probabilities in a very general class of models. Their approach differs substan-

tially from the approach in this paper, using resampling schemes to provide appropriate

quantiles to conduct tests and construct confidence sets for the values of general parameters

of interest defined on the model. As a result, their approach can deal with more general

parameters of interest than are considered in this paper. On the other hand, there are cases

in which the procedure outlined in this paper correctly controls size, but subsampling and

bootstrapping approaches fail to do so, for example, subsampling TSLS t-type statistics

in IV regression models with weak instruments (Andrews and Guggenberger, 2010a) and

subsampling Wald-type statistics in models with nuisance parameters near the boundary

(Andrews and Guggenberger, 2010b).

Elliott et al. (2015) provide nearly optimal tests for models which have a Gaussian

shift limit experiment (locally to the true parameter) with part of the shift vector being

a nuisance parameter. Their tests correctly control size and (approximately) maximise

weighted average power given a weighting function (over the nonstandard region of the

parameter space). Their approach requires the nuisance parameter to be finite dimensional

and is quite different from the one proposed in this paper, though it shares some common

threads, being based on a least favourable approach in a Gaussian shift limit experiment.11

For numerous classes of nonstandard inference problems a large literature exists analysing

the problem at hand and providing particular solutions. There are too many such examples

to provide a full account here; instead I provide a selective summary of the literature per-

taining to those non-standard features relevant to the examples I consider in detail in this

paper, comprising (a) identification robust inference, (b) inference in models with boundary

constraints and (c) inference post a model selection or regularisation step.

11I do not consider least favourable distributions explicitly, however the efficient score function can be
considered to correspond to an approximately least favourable submodel; see §25.11 in van der Vaart
(1998).
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Inference robust to identification problems has been considered in various settings by,

inter alia, Stock and Wright (2000); Kleibergen (2005); Andrews and Cheng (2012, 2013);

Andrews and Mikusheva (2015, 2016a,b, forthcoming); Han and McCloskey (2019); Andrews

and Guggenberger (2019).12 Dufour (1997) provides some impossibility results. Chen, Chris-

tensen, and Tamer (2018) consider semiparametric models in which parameters may be only

partially identified and suggest inferential procedures based on a Monte Carlo simulation ap-

proach. Kaji (2021) puts forward a general theory of weak identification in semiparametric

models and focusses on efficient estimation rather than robust inference.

A long considered problem is inference in models with boundary constraints, which has

been studied by, amongst others, Chernoff (1954); Geyer (1994); Andrews (2000, 2001); An-

drews and Guggenberger (2010a,b); Chen, Ning, Ning, Liang, and Bandeen-Roche (2017);

Ketz (2018); Cavaliere, Nielsen, Pedersen, and Rahbek (2020). An antecedent to the ap-

proach of this paper in the case of nuisance parameters potentially on (or close to) the

boundary can be found in Andrews (2001, p. 698) where the nuisance parameters are split

into those which satisfy a block diagonality condition with respect to the other parameters

and those which do not. The author of that paper then notes that those which satisfy the

block diagonality condition “may or may not lie on the boundary of the parameter space”.

I exploit a similar idea, as the efficient score function is orthogonal to all nuisance scores

by construction.

Inference post model selection or regularisation is also problem with a long history, which

has become increasingly important in recent years due to the increasing availability of “big

data”. Leeb and Pötscher (2005) analyse in detail some of the difficulties associated with

inference post model selection; additional demonstrations along with applications of some of

the size correction approaches previously mentioned can be found in Andrews and Guggen-

berger (2010a); McCloskey (2020). Chernozhukov, Hansen, and Spindler (2015) outline an

approach to post model selection / post regularisation inference which uses an approach sim-

ilar to the one proposed in this paper with their class of “Neyman orthogonalised” statistics

also being a generalisation of the C(α) approach of Neyman (1959, 1979).13 The devel-

opment in their paper is framed somewhat differently and focusses on post-regularisation

inference in problems defined by a finite vector of known moment conditions with a larger

class of test statistics, whereas I consider a more general class of inference problems with

potentially non-standard features but only one test statistic.14

12There is also a large literature on robust inference in models defined by moment inequalities (and partially
identified models more generally). Additionally a further sub-literature exists on subvector inference for
weakly identified parameters. I do not consider subvector inference in this sense in this paper, though I
note here that Chaudhuri and Zivot (2011) used the efficient score corresponding to a GMM model as a
way to improve power in projection-based subvector inference with weak identification.

13See also Belloni, Chernozhukov, Fernández-Val, and Hansen, 2017 and Chernozhukov, Chetverikov,
Demirer, Duflo, Hansen, Newey, and Robins, 2018.

14In many models, the test statistic considered in this paper would belong to the general class they consider.
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The general approach to inference outlined in this paper is based on the efficient score

function which, along with its variance matrix (the “efficient information matrix”), is a

key quantity in the literature on semiparametric efficiency. Textbook treatments of this

framework can be found in Bickel et al. (1998); van der Vaart (2002) and van der Vaart (1998,

Chapter 25). The efficient score test was shown to be optimal (in certain classes of tests) by

Choi et al. (1996). These ideas have been widely used in statistics and econometrics since

their introduction, particularly to determine efficiency bounds in semiparametric models

and construct estimators which attain them.

I now briefly turn to the specific examples I consider. The first – inference in the

single index model with potential identification failure – is related to the (previously sum-

marised) literatures on inference with potential identification problems and inference post-

regularisation as well as the literature on single index models and extensions thereof. Such

models have been widely studied by, amongst others, Ichimura (1993); Newey and Stoker

(1993); Ma and Zhu (2013).

The second example I consider, the LSEM, is related to the (previously summarised) lit-

eratures on inference with potential identification problems and inference post-regularisation

as well as the statistical literature on independent components analysis (ICA) modelling.

The ICA model has long been used in a number of fields as an approach to the analysis of

data forming systems of simultaneous equations; see Hyvärinen, Karhunen, and Oja (2001)

for many examples.15 By adding covariates to the ICA model a class of linear simultaneous

equations models is obtained. Such systems of equations have a long history in economet-

rics; see the introduction of Lee and Mesters (2021a) for a summary.16 A semiparametric

approach to the ICA model was considered in Amari and Cardoso (1997); Chen and Bickel

(2006). Lee and Mesters (2021a) consider a semiparametric approach to the LSEM which

uses the approach discussed in this paper to conduct tests robust to potential identification

failure. Concretely, they consider testing when the (fixed) distribution of the error terms

may be arbitrarily close to Gaussianity but this distribution is not permitted to change with

the sample size. They provide simulation evidence of a weak identification problem when

the error distribution is sufficiently close to Gaussianity (relative to the sample size), but

their theoretical work assumes a fixed error distribution and consequently does not cover

weak identification. In contrast, in this paper, I explicitly model weak identification and

obtain size results which are valid locally uniformly over subsets of the parameter space.

15The ICA model relates observables Y and errors ε according to Y = A−1ε, Eε = 0, Vε = I where ε has
independent components.

16More recently such models have also been adopted in econometrics as an approach to SVAR modelling,
with an assumption of non-Gaussianity imposed to identify the matrix required to obtain the structural
shocks from the reduced form shocks. A recent summary of this approach is given by Montiel Olea,
Plagborg-Møller, and Qian (2021). Also see, inter alia, Gouriéroux, Monfort, and Renne (2017, 2019);
Lanne and Lütkepohl (2010); Lanne, Meitz, and Saikkonen (2017); Lanne and Luoto (2021); Bekaert,
Engstrom, and Ermolov (2019, 2020); Fiorentini and Sentana (2021, 2020); Davis and Ng (2021). Velasco
(2020) considers the more general SVARMA case. In this paper I do not consider dynamics for simplicity.
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1.2 Outline

The remainder of this paper is organised as follows. Section 2 describes the setting of

the paper, explains the intuition underlying the testing approach and introduces a number

of examples. Section 3 formalises the heuristic definitions given previously, develops the

theoretical contributions of this paper under high level conditions and provides some lower-

level conditions and constructions sufficient for their validity. Two examples are worked out

in detail in sections 4 and 5; these sections also discuss the results from several simulation

studies. Section 6 highlights the results from an empirical study into the labour supply

decisions of US men. Section 7 concludes and discusses possible extensions.

2 Heuristic explanation and examples

I now provide a heuristic discussion of the efficient score test, focussing on the underlying

intuition, and provide a number of examples to demonstrate the breadth of applicability of

my framework. I purposely omit all formal definitions and assumptions, which are provided

in section 3 below.

The parameter of interest is θ ∈ Θ ⊂ Rdθ and the goal is to construct (asymptotically)

correctly sized tests for the hypothesis H0 : θ = θ0 or confidence sets for θ which have

correct (asymptotic) coverage probability over a range of data generating processes (DGPs)

consistent with the null hypothesis.

I suppose that the researcher observes a random sample (Wi)
n
i=1. The considered prob-

ability model for the distribution of each such observation Wi is given by

P = {Pγ : γ ∈ Γ}, Γ = Θ×H, (1)

where γ = (θ, η) with η collecting all the remaining parameters required to fully describe the

distribution of the data (given θ). In the classical parametric setting η is finite dimensional;

in the semiparametric models which are the focus of this paper it may be infinite dimensional.

Analogously to the parametric case, it is possible to define score functions for all of the

parameters in semiparametric models (see section 3 for the details). Let ˙̀
γ be the (vector

of) score functions for θ and Hγ = {Bγh : h ∈ H} a collection of score functions for η.17 All

score functions are mean zero and have finite variance. The efficient score function is defined

as the orthogonal projection (in L2) of the scores for θ onto the orthogonal complement of

the scores for η:
˜̀
γ = ˙̀

γ − Π
(

˙̀
γ

∣∣∣lin Hγ

)
, (2)

17The score functions are indexed by elements h in a set H. In the parametric case this set could be taken
as the integers from 1 to the (finite) number of elements in η. In the case where η is infinite dimensional,
the indexing set H will typically also be infinite dimensional.
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where lin Hγ denotes the closed linear span of the set Hγ.
18 This operation removes from

˙̀
γ that part which can explained by score functions in Hγ. The corresponding variance

matrix, the efficient information matrix is

Ĩγ =

∫
˜̀
γ
˜̀′
γ dPγ.

Analytical derivation of the efficient score function for specific models can be complex,

however due to the central role of the efficient score function in the literature on semi

parametrically efficient estimation the efficient score function has already been derived for

a large number of popular models.19

As a direct consequence of the definition in (2),
∫

˜̀
γ dPγ = 0 and hence the efficient

score function provides a dθ-dimensional vector of moment condition on which one can base

inference about θ. In general, constructing estimators and tests based on the efficient score

function is attractive as these have well established optimality properties (e.g. Bickel et al.,

1998; van der Vaart, 2002; Choi et al., 1996). In some of the examples considered in this

paper, the conditions which are required to obtain such results may fail. For instance, if

θ is unidentified, no consistent estimator of θ can exist, let alone asymptotically efficient

estimators. Nevertheless, I will show that in such situations tests based on the efficient score

function can be used to conduct valid inference provided some mild conditions are satisfied.

To introduce the test statistic, let ˆ̀
n,θ and În,θ denote estimates of ˜̀

γ and Ĩγ respectively.

The efficient score statistic (for a given θ) is given by

Ŝn,θ =

(
1√
n

n∑
i=1

ˆ̀
n,θ(Wi)

)′
Î†n,θ

(
1√
n

n∑
i=1

ˆ̀
n,θ(Wi)

)
,

where “†” denotes the Moore-Penrose pseudo-inverse. Supposing that mild assumptions

hold, I show that, under H0 : θ = θ0, Ŝn,θ0 converges in distribution to a χ2
r random variable

where r = rank(Ĩγ). Importantly (i) this convergence holds under any local sequence of

nuisance parameters and (ii) the assumptions imposed do not require θ to be identified, allow

η to be on the boundary of the parameter space and allow for the estimates to depend on

regularised estimators of η. Based on this convergence, the efficient score test is performed by

comparison of Ŝn,θ0 to the appropriate quantile of the χ2
rn distribution where rn = rank(În,θ0)

and confidence sets for θ can be constructed by inverting the test.

Intuitively there are two features of the efficient score statistic which are responsible for

this result. The first is that the null value θ0 is imposed in the construction of the statistic

which precludes the need for θ to be identifiable or consistently estimable. This is key in

18The projection in the preceding display should be understood componentwise.
19Additionally guidance and a large number of examples can be found in Newey (1990), Bickel et al. (1998)

and van der Vaart (1998, Chapter 25).

9



models with potential identification failures, where such requirements can fail. Second, the

orthogonal projection in the definition of the efficient score function ensures that∫
˜̀
γ Bγh dPγ = 0 for all Bγh ∈Hγ, (3)

i.e. the efficient score function is uncorrelated with the scores Bγh for the nuisance param-

eters (in each direction h). Similar properties have been shown to alleviate size distortions

in a number of settings, including those caused by identification issues (Kleibergen, 2005),

boundary effects (Andrews, 2001) and regularised estimation of nuisance parameters (Cher-

nozhukov et al., 2015, 2018). Property (3) has a fundamentally important role more gener-

ally in models with nuisance parameters in order to obtain the same limiting distribution

regardless of the local sequence of nuisance parameters under which the limit is taken (cf.

Hall and Mathiason, 1990; Choi et al., 1996).20

In addition to the robustness properties that (3) gives the efficient score test, (3) is also

important for its power optimality properties – reflecting the original development of the

C(α) test by Neyman (1959). If the efficient information matrix has full rank – as is usually

the case in well identified models – and local perturbations to the nuisance parameters are

indexed by a linear space, the efficient score test belongs to the class of asymptotically

uniformly most powerful invariant tests (AUMPI) as described and demonstrated in Choi

et al. (1996). Moreover, if the efficient information matrix has positive rank, there are

directions against which non-trivial local power can be attained. I demonstrate that the

efficient score test is minimax optimal in this scenario, in that there is no alternative test

which provides higher power in a minimax sense.

To illustrate the broad applicability of these results, I now present two different examples

to show (i) how commonly used econometric models can be placed into the framework

required by (1) and (ii) how certain (local) sequences of nuisance parameters η can cause

problems for commonly used inferential procedures. Following this I briefly discuss a number

of other important examples in econometrics for which the inferential approach in this paper

could be useful.

Example 1 (Single-index model). Consider the single-index regression model (e.g Ichimura,

1993; Horowitz, 2009)

Y = f(X1 +X2θ) + ε, E(ε|X) = 0,

where f : R→ R belongs to some function class F , X1 and X2 are continuously distributed

random variables and ε is an unobserved error term. (ε,X) ∼ ζ for some Lebesgue density

function ζ which ensures that the conditional mean restriction indicated above is satisfied.

Such single-index models are popular as they relax the commonly imposed linear structure

20See also the discussions comparing Rao’s score test and Neyman’s C(α) test on page 133 of Andrews and
Mikusheva (2015) and page 492 of Kocherlakota and Kocherlakota (1991).
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of linear regression models but avoid the curse of dimensionality by ensuring the argument

of f is a scalar. The density of an observation W = (Y,X) ∈ R3 is

pγ(W ) = ζ(Y − f(X1 +X2θ), X),

and the corresponding model is given by P = {Pγ : γ ∈ Θ×H} for some open Θ ⊂ R and

H = (f, ζ) ∈ F ×Z , where the latter set restricts the possible distribution of (ε,X).

As discussed in Horowitz (2009), θ is unidentified when f is a constant function. Weak

identification can therefore occur when f is sufficiently close to constancy (relative to the

sample size). The potential identification failure here is due to an infinite dimensional

nuisance parameter and therefore robust approaches to inference designed for cases where

identification failure is caused by a finite dimensional nuisance parameter do not apply.

Derivations of the efficient score function for the model above (and various extensions)

can been found in the literature, see e.g. Newey and Stoker (1993); Ma and Zhu (2013);

Kuchibhotla and Patra (2020). The efficient score test permits inference on θ to be performed

which is robust to potential identification failure; full details are given in section 4. 4

Example 2 (Simple linear simultaneous equations model). Suppose that the K × 1 vector

W satisfies

W = A(θ)−1ε,

where A(θ) is a rotation matrix parametrised by θ ∈ Θ and ε a K× 1 vector of independent

structural shocks each with mean zero and unit variance. Let η = (η1, . . . , ηK) ∈ H denote

the densities of the components of ε. This yields the model

P = {Pγ : γ = (θ, η) ∈ Γ = Θ×H},

where Pγ has Lebesgue density pγ(W ) =
∏K

k=1 ηk (Ak(θ)W ).21

If all εk are Gaussian, A(θ) is not identified and hence the same is true of θ. In contrast,

if (at least) K−1 of the components of ε have non-Gaussian distributions, A(θ) is identified

up to sign changes and column permutations (Comon, 1994). Appropriate restrictions on

the signs and labelling of the elements then result in identification of θ. However, if the non-

Gaussian distributions of the εk are sufficiently close to Gaussian, θ is only weakly identified

and inference methods which assume non-Gaussianity can suffer from size distortions.

The efficient score test avoids these size distortions by fixing θ = θ0 under the null and

orthogonalising with respect to (the scores for) η. In section 5, I show that the conclusions

of these heuristic arguments hold formally in a considerably richer class of LSEMs. I also

show that inference based on the efficient score test is minimax optimal in these models,

including in cases where θ is underidentified.

21Ak(θ) is the k-th row of A(θ).
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The identification problem in this example is caused by an infinite dimensional nuisance

parameter and therefore robust approaches to inference designed for cases where identifica-

tion failure is caused by a finite dimensional nuisance parameter do not apply. 4

Other examples

In addition to the preceding examples, robust inference on a large variety of other models

of interest in econometrics can be conducted using the approach in this paper, pending

verification of the high-level conditions in the next section. I briefly discuss four such cases

here.

Firstly, consider inference on the slope parameters θ associated with the endogenous

variables in an instrumental variables regression model. As is well known, many standard

tests are unreliable in instrumental variable regression models if the instruments are weak

(Andrews, Stock, and Sun, 2019). In contrast, the efficient score test could be used to

provide valid inference in this model. In this model – unlike examples 1 or 2 – the lack of

identification is caused by a finite dimensional parameter. Nevertheless, due to potential

heteroskedasticity, the efficient score in this model depends on an infinite dimensional object,

the heteroskedastic function. The resulting test does not coincide with any of the “standard”

weak-IV robust tests, such as the AR, LM and CLR statistics (e.g. Anderson and Rubin,

1949; Staiger and Stock, 1997; Moreira, 2003; Kleibergen, 2002, 2007).

Secondly, consider the classical linear errors-in-variables model (as in, for example, equa-

tion (1.1) of Bickel and Ritov, 1987 or equation (1) of Ben-Moshe, 2020). As discussed by

numerous authors (e.g. Reiersøl, 1950; Willassen, 1979; Bickel and Ritov, 1987; Ben-Moshe,

2020), identification of the regression coefficients may depend on (joint) distributional prop-

erties of the covariates, structural errors and measurement errors. These can include, for

example, independence restrictions and non-Gaussianity assumptions on the latent covari-

ates (Reiersøl, 1950; Willassen, 1979). Similarly to example 2, on verification of the high-

level conditions in the next section, the inferential framework in this paper could be used

to perform inference which will remain valid if, for instance, the distribution of the latent

covariates is sufficiently close to Gaussianity that the regression coefficients become weakly

identified. As in examples 1 and 2, this is a case of non-regularity caused by an infinite

dimensional parameter.

As a third example, consider the mixed proportional hazard model, a common model

used in duration analysis which allows for unobserved heterogeneity (see van den Berg,

2001, for a review). As was demonstrated by Hahn (1994), in the case where the baseline

hazard function is Weibull, the efficient information matrix (for the Euclidean parameters)

is singular, and no regular estimator sequence for these parameters can exist.22 Pending

verification of the high-level conditions in the next section, the inferential framework outlined

22Hahn (1994) also derives the efficient score function for this model.

12



in this paper could be used to perform inference which will remain valid if the baseline hazard

function is (close to) Weibull. As in examples 1 and 2, this is a case of non-regularity caused

by an infinite dimensional parameter.

Finally, as is well known, models with nuisance parameters on or close to the boundary

can cause standard testing approaches to be unreliable (Andrews, 2001; Elliott et al., 2015;

Ketz, 2018). Similar problems may arise in models where nuisance functions are estimated

with shape restrictions imposed (cf. Chetverikov, Santos, and Shaikh, 2018, section 3). Due

to the orthogonality between the scores for the parameter of interest and the nuisance scores,

these restrictions do not affect the limiting distribution of the efficient score statistic and

hence inferential approach in this paper will remain valid in these models – pending the

verification of the high-level conditions in the next section. Depending on the model and

the restriction under consideration, this case of non-regularity may be caused by either a

finite-dimensional parameter or an infinite-dimensional parameter.

The next section describes the high level theory and provides a set of mild assumptions

under which the efficient score test provides robust inference and has power optimality

properties. Thereafter I revisit and generalise examples 1, 2 and work out the details for

implementation.

3 Theory

In this section I formalise inference based on the efficient score statistic. First I set out the

high-level assumptions which will be required throughout and formally define the efficient

score test and associated confidence sets. Second, I perform an asymptotic analysis of

the size properties of this test and the coverage of the associated confidence sets. Third, I

demonstrate that this test has power optimality properties in a number of scenarios. Finally

I provide a number of conditions and constructions which are sufficient for the high-level

assumptions and often simpler to verify. In what follows I will often use operator notation

for integrals, e.g. for a function f and a probability measure P , Pf :=
∫
f dP . Pn denotes

the empirical measure of the sample (Wi)
n
i=1, so Pnf = 1

n

∑n
i=1 f(Wi).

23

3.1 Model setup and maintained assumptions

The first assumption that I impose merely formalises the model of interest as discussed in

section 2 and stipulates that the observed data form a random sample.

Assumption M (Model and sampling). Let (Wi)
n
i=1 be independent copies of a W-valued

random element W , with W a Polish space, all defined on an underlying probability space

23See appendix section A for additional details and notational conventions.
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(Ω,F ,P).24 The considered model for the law of W on (W ,B(W)) is

P := {Pγ : γ ∈ Γ} ,

where Γ has the product form Γ = Θ×H for Θ an open subset of Rdθ and H a metric space.

A typical value γ ∈ Γ will be written as γ = (θ, η) where θ ∈ Θ and η ∈ H. Each Pγ ∈ P is

dominated by a common σ-finite measure ν. �

The next assumption is the key requirement. It imposes that the model satisfies a LAN

condition (e.g. van der Vaart, 1998, Chapter 7; Le Cam and Yang, 2000, Chapter 6), where

the parameter γ = γn can change with the sample size n. In order to state this assumption,

some notation is required. For any Pγ ∈ P I write pγ for its density with respect to ν and

for any two points γ1, γ2 ∈ Γ, Λn(γ1, γ2) denotes the log-likelihood ratio:

Λn(γ1, γ2) := log
n∏
i=1

pγ1
pγ2

. (4)

The LAN requirement is imposed as follows.

Assumption LAN (Local asymptotic normality). Let (γn)n∈N be a sequence in Γ which

converges to a point γ ∈ Γ and Hη a subset of a Banach space, H, which includes 0.

For any sequence τn → τ with each τn, τ ∈ Rdθ , any sequence hn → h with hn, h ∈ Hη, a

convergent sequence of dθ×dθ matrices δn and sequences ηn(hn)→ η with each ηn(hn) ∈ H,

define

γn(τn, hn) := (θn + δnτn, ηn(hn)),

and suppose that

(i) the sequence (Pγn(τn,hn))n≥1 is (eventually) in P ,

(ii) the associated log-likelihood ratio satisfies

Λn(γn(τn, hn), γn) =
1√
n

n∑
i=1

[
τ ′ ˙̀γn +Bγnh

]
− 1

2
Pγn

[
τ ′ ˙̀γn +Bγnh

]2

+ oPγn (1), (5)

for a sequence of functions ( ˙̀
γn)n∈N with each ˙̀

γn ∈ L0
2(Pγn) and a sequence of linear

maps (Bγn)n∈N with each Bγn : Hη → L0
2(Pγn) such that τ ′ ˙̀γn + Bγnh is uniformly

square Pγn-integrable. �

In what follows I use the notation Pγn,τn,hn for Pγn(τn,hn). The functions τ ′ ˙̀γn + Bγnh

will (collectively) be called “score functions”, as will the vector ˙̀
γn (the “score functions for

24A Polish space is a separable completely metrisable topological space. Let d be a metric such that (W, d)
is a complete (separable) metric space. B(W) is the Borel σ-algebra on (W, d).
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θ”) and the functions Bγnh (the “score functions for η”). Such functions play the same role

as score functions in classical parametric models in which – under regularity conditions – a

similar LAN condition holds (e.g. van der Vaart, 1998, Theorem 7.2).

Assumption LAN stipulates that the likelihood ratios Λn(γn(τn, hn), γn) admit a local

quadratic approximation with a particular form. It is important to clarify the roles of the

different sequences of parameters present in these likelihood ratios. I refer to (γn)n∈N as the

“base sequence” and the components δnτn and ηn(hn) − ηn as “local perturbations” to the

elements of this base sequence respectively:

γn(τn, hn) = γn + (δnτn, ηn(hn)− ηn)

=
(
θn + δnτn︸︷︷︸

local perturbation of θn

, ηn + ηn(hn)− ηn︸ ︷︷ ︸
local perturbation of ηn

)
.

That γn is permitted to vary with n has two important implications. Firstly, replacing a

fixed θ with a convergent sequence θn → θ permits the demonstration that confidence sets

constructed by inverting the efficient score test are uniformly valid over compact subsets of

Θ. Secondly, this permits local power analysis in situations where the rate of information

accumulation is non-standard.25

The separation of the local perturbation of θn into a “rate” term δn and a “direction”

term τn is not strictly necessary but clarifies the role each plays in the subsequent power

results. Due to the (possible) infinite dimensionality of the nuisance parameters ηn, the

form of the local perturbation may be complex and generally will be model dependent, but

the role of hn is analogous to that of τn, i.e. it is the “direction” term in the perturbation.

Assumption LAN requires that for any permitted sequence of local perturbations, the

measures Pγn,τn,hn eventually belong to the model and (5) holds. That these hold over all

such local sequences is key for the size results below which demonstrate that the efficient

score test controls size locally uniformly, i.e. over any compact set of local perturbation

directions consistent with the null. I emphasise that in the size and power results below

LAN is only assumed to hold along certain specified base sequences (γn)n∈N which are defined

in the relevant results.

It is also important to note that assumption LAN concerns only the model P and per-

turbation spaces Hη, both of which are chosen by the researcher. This includes the choice of

the metric on H, which – particularly in the infinite dimensional case – has implications for

25For instance, one key feature of weak or semi-strong identification (in the terminology of Andrews and
Cheng, 2012) is that the information that can be learned about the parameter of interest accrues at a
rate slower than the “usual”

√
n; robust tests can then often be built on top of “rescaling” arguments:

some part of γn changes with the sample size, causing a slower rate of information acquisition, which can
be compensated for by a “slower” rate sequence δn — i.e. the local alternatives are “closer” than in the
“usual”

√
n case (Cf. Antoine and Renault, 2009, 2011; Andrews and Mikusheva, 2015). The prototypical

“weak identification” case is usually the limiting case of this argument, where δn 6→ 0 and the “local”
alternatives are, in a sense, “fixed” alternatives.
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the uniformity results obtained below, which hold over compact sets. Specifically, choosing

a stronger metric on H will often simplify the demonstration that assumption LAN holds,

but leads to “fewer” compact sets and therefore weaker uniformity results.26

Finally, rather than establishing LAN directly, one may establish that the relevant sub-

models are differentiable in quadratic mean (see assumption DQM below), which then im-

plies assumption LAN (under assumption M; see proposition 3.10). A detailed analysis of

the relationship between conditions of these types is given by Le Cam (1986, Chapter 17,

section 3); see also Strasser (1985, Theorem 75.9).

I now introduce the next assumption, which concerns the limits of the scores.

Assumption CM(i) (Convergence of moments (i)). In the setting of assumption LAN

suppose that there exists a vector of functions ˙̀
γ ∈ L0

2(Pγ) and a bounded linear map

Bγ : Hη → L0
2(Pγ) such that for each (τ, h) ∈ Rdθ ×Hη

lim
n→∞

Pγn

[
τ ′ ˙̀γn +Bγnh

]2

= Pγ

[
τ ′ ˙̀γ +Bγh

]2

.

�

The uniform integrability required by assumption LAN may directly imply that assump-

tion CM(i) holds; see subsection 3.4 for some sufficient conditions.

With the quantities introduced in the preceding assumptions, the efficient score function

can be formally defined. First define the tangent sets for η as

Hγ := {Bγh : h ∈ Hη} , for γ ∈ {γ} ∪ {γn : n ∈ N}.

The efficient score functions are defined as the orthogonal projections of the score functions

for θ, i.e. the ˙̀
γn and ˙̀

γ onto the orthocomplement of Hγn and Hγ respectively. The

corresponding efficient information matrices are the expectations of the outer products of

these (vectors of) functions:

˜̀
γ := ˙̀

γ − Πγ

(
˙̀
γ | lin Hγ

)
, Ĩγ := Pγ

[
˜̀
γ
˜̀′
γ

]
, for γ ∈ {γ} ∪ {γn : n ∈ N},

where Πγ(·|S) is the orthogonal projection on S ⊂ L2(Pγ).

I assume the same uniform integrability moment convergence conditions on the efficient

scores that have been imposed on the scores for θ and η.

Assumption CM(ii) (Convergence of moments (ii)). Suppose that assumption CM(i)

holds and moreover that ‖˜̀γn‖2
2 is uniformly Pγn-integrable and limn→∞ Ĩγn = Ĩγ. �

26More formally, if d1 and d2 are metrics on H with d1 stronger than d2 (i.e. every open subset of H with
respect to d2 is also open with respect to d1), then if a set H ′ ⊂ H is compact with respect to d1, then it
is compact with respect to d2.
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The definition of the efficient score function ensures that Pγ ˜̀
γ = 0, since both ˙̀

γ and the

elements of lin Hγ are mean zero by assumption LAN. In other words, the efficient score

function provides dθ moment conditions on which inference about θ can be based.

In many cases, the efficient score function will not be formed only of observed or known

quantities, but will need to be estimated. The following two conditions impose what is

required of these estimates and complete the collection of high-level assumptions.

Assumption E (Estimation). Let (γn)n∈N be as in assumption LAN and suppose that for

an estimator ˆ̀
n,θn √

nPn
[
ˆ̀
n,θn − ˜̀

γn

]
= oPγn (1), (6)

and for an estimator În,θn ∥∥∥În,θn − Ĩγ∥∥∥
2

= oPγn (1). (7)

�

Assumption R (Rank convergence). Let (γn)n∈N be as in assumption LAN and suppose

that the estimator În,θn of assumption E satisfies

Pγn

(
rank(În,θn) = rank(Ĩγ)

)
→ 1. (8)

�

That the first condition of assumption E, equation (6), can hold is often related to the

specific structure of the efficient score function, particularly the fact that it is orthogonalised

with respect to the nuisance scores. The second condition (7) requires consistency of an

estimator of the efficient information matrix Ĩγ. If the latter is non-singular and (7) holds,

then (8) holds automatically.27 If Ĩγ is rank deficient, (8) must be established separately. A

construction which can ensure this holds, given an initial estimator with known convergence

rate is given in subsection 3.4.

The fact that assumption R is required is due to the fact that the Moore-Penrose pseudo-

inverse (which I denote by M † for an arbitrary matrix M) is not continuous. However, if

En → 0 such that M + En has the same rank as M , then (M + En)† →M †.28

Verification of equations (6) and (7) is model specific and typically requires the appli-

cation of various stochastic limit theorems. Incorporating estimates of Euclidean parts of

the nuisance parameter can typically be achieved relatively simply via discretisation argu-

ments if a
√
n-consistent estimator is available; see the example in section 5 below. For

nonparametric parts, sample splitting can often be used to provide estimators for which the

verification of the required conditions is relatively straightforward.

27See Lemma C.7.
28See e.g. Ben-Israel and Greville (2003, Section 6.6) and Cf. Andrews (1987).
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3.2 The efficient score test

In this section, I define the efficient score test, which forms the basis of the inferential

approach suggested in this paper. Two different definitions are required: one for a (scalar)

one-sided hypothesis and one for a two-sided hypothesis.

For the purposes of testing a two-sided hypothesis at level α ∈ (0, 1), the efficient score

statistic at θ is defined as

Ŝn,θ :=
(√

nPn ˆ̀
n,θ

)′
Î†n,θ

(√
nPn ˆ̀

n,θ

)
. (9)

The efficient score test can then be defined as

φn,θ := 1
{
Ŝn,θ > cn

}
, (10)

where cn is the 1−α quantile of the χ2
rn distribution, with rn := rank(În,θ). The confidence

set corresponding to the efficient score test is denoted by Ĉn and defined as

Ĉn := {θ ∈ Θ : φn,θ = 0} =
{
θ ∈ Θ : Ŝn,θ ≤ cn

}
. (11)

For the purposes of testing a one-sided hypothesis for a scalar parameter, i.e. when

dθ = 1 and α ∈ (0, 1/2], I instead define the efficient score statistic at θ as

Ŝn,θ :=
(√

nPn ˆ̀
n,θ

)√
Î†n,θ, (12)

and define the corresponding test as

φn,θ := 1
{
Ŝn,θ > zα

}
, (13)

where zα is the 1 − α quantile of the N (0, 1) distribution. A confidence set can again be

constructed by test inversion as

Ĉn := {θ ∈ Θ : φn,θ = 0} =
{
θ ∈ Θ : Ŝn,θ ≤ zα

}
. (14)

The use of the same notation for these different objects should not cause any confusion

as only one of the two is applicable to any given testing problem and hence which is meant

will be clear from context.

3.3 Asymptotic properties

I now derive the asymptotic properties of the efficient score test and test inversion confidence

sets. I first state a weak convergence result along local alternatives, which follows directly
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from standard stochastic limit theorems and Le Cam’s third lemma. Following this size

results are given in section 3.3.1 and power results in section 3.3.2.29

Proposition 3.1. Suppose that assumptions M, LAN and CM(i) hold. Then, the sequences

of product measures
(
P n
γn

)
n∈N and

(
P n
γn,τn,hn

)
n∈N are mutually contiguous. If also assumption

CM(ii) holds, then under Pγn,τn,hn

√
nPn ˜̀

γn  N (Ĩγτ, Ĩγ).

If, additionally, (6) of assumption E holds, then also under Pγn,τn,hn

√
nPn ˆ̀

n,θn  N (Ĩγτ, Ĩγ).

The key takeaway from the preceding proposition is that the limiting distributions de-

pend on τ but not on h (or (hn)n∈N): by its construction the efficient score function has an

invariance property with regard to the local nuisance perturbations.

3.3.1 Size results

The invariance property discussed in the preceding paragraph is precisely what ensures

that the size of the efficient score test does not depend on the particular local nuisance

perturbation along which the limit is taken.30

Proposition 3.2. Suppose that assumptions M, LAN, CM(ii), E and R hold for a sequence

(γn)n∈N ⊂ Γ with limit γ ∈ Γ and where θn = θ0 for all n ∈ N. Then, for any compact

subset H ′η of Hη,

lim
n→∞

sup
h∈H′η

P n
γn,0,hφn,θ0 ≤ α.

The preceding proposition demonstrates that the efficient score test is correctly sized

uniformly over local perturbations consistent with the null. Note that this result specifies

that the high-level conditions need hold only along the specified base sequence with γn =

(θ0, ηn) → (θ0, η) = γ. This result immediately implies that the efficient score test is

correctly sized along any sequence of local perturbations of γn = (θ0, ηn) with τn = 0 and

hn → h in Hη.
31

29Readers primarily interested in the robustness results may safely skip section 3.3.2.
30In fact this property can be shown to hold rather more generally, for ˘̀

γn in place of ˜̀
γn as long as

Pγn [˘̀γnBγnh] = 0 for all h ∈ Hη. If ˘̀
γn 6= ˜̀

γn this would typically result in a less powerful test and
hence I do not explicitly consider this case in the theoretical results. Nevertheless this observation can be
particularly useful in cases when the efficient score function is hard to estimate. See e.g. the treatment
of heteroskedasticity in section 4 below.

31In a metric space the union of a convergent sequence and its limit is compact.
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An analogous result holds for confidence sets constructed by test inversion, provided the

high level conditions hold along sequences of the form γn = (θn, ηn) → (θ, η) = γ, for any

convergent sequence θn → θ (in a compact subset of Θ) and a specified ηn → η.

Proposition 3.3. Let Θ′ be a compact subset of Θ. Fix a convergent sequence (ηn)n∈N and

denote its limit by η. Suppose that assumptions M, LAN, CM(ii), E and R hold for any

sequence (γn)n∈N where each γn := (θn, ηn)n∈N ⊂ Θ′ ×H with θn → θ ∈ Θ′. Then, for any

compact subset H ′η of Hη,

lim inf
n→∞

inf
θ∈Θ′

inf
h∈H′η

P n
(θ,ηn),0,h(θ ∈ Ĉn) ≥ 1− α.

3.3.2 Power results

In the scalar case I consider both one-sided tests of the form H0 : θ > θ0 against H1 : θ ≤ θ0

and two-sided tests, i.e. H0 : θ = θ0 against H1 : θ 6= θ0. These results are essentially

standard (Cf. Choi et al., 1996), with the key difference being that here they are stated

with γn potentially changing with n. Whilst this is a potentially useful strengthening,

it simply reflects the corresponding change in the assumptions – i.e. assumption LAN is

assumed to hold along such sequences – with the arguments following in the usual way.32

The first result concerns the power of one-sided tests.

Proposition 3.4. Suppose that assumptions M, LAN, and CM(i) hold. Additionally sup-

pose that Hη is a linear subspace of H and Ĩγ > 0. Then, for any α ∈ (0, 1), any sequence

of asymptotically level-α tests (ψn)n∈N for H0 : τ ≤ 0 against H1 : τ > 0, i.e. any sequence

of tests ψn :Wn → [0, 1] such that

lim sup
n→∞

P n
γn,τ,hψn ≤ α for all τ ≤ 0, h ∈ Hη

is subject to the power bound

lim sup
n→∞

P n
γn,τn,hnψn ≤ 1− Φ

(
zα − Ĩ1/2

γ τ
)
, (15)

for all τn → τ > 0 and hn → h ∈ Hη where zα is the 1− α quantile of the standard normal

distribution and Φ is the standard normal CDF.

Any sequence of tests ψn : Wn → [0, 1] of asymptotic level α which attains the power

bound (15) is called “asymptotically locally uniformly most powerful of level-α”. The effi-

cient score test attains this bound under the assumptions of section 3.1, provided that Hη

is a linear subspace and Ĩγ > 0.

32In particular the proofs are based on convergence of a particular sequence of experiments to a Gaussian
shift limit experiment. The construction of the relevant sequence of experiments is given in section B.
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Corollary 3.5. Suppose that assumptions M, LAN, CM(ii), E hold, with γn = (θ0, ηn) →
(θ0, η) = γ. Additionally suppose that Hη is a linear subspace of H, Ĩγ > 0 and α ∈ (0, 1).

Then the sequence of tests (φn,θ0)n∈N is asymptotically locally uniformly most powerful of

level-α for the hypothesis H0 : θ ≤ θ0 against H1 : θ > θ0, i.e. it is asymptotically level−α
and achieves the power bound in (15) for any τn → τ > 0 and any hn → h ∈ Hη.

A similar result holds for two-sided tests, with the claim of optimality holding in the

class of tests which are (asymptotically) unbiased and of level-α.

Proposition 3.6. Suppose that assumptions M, LAN, CM(i) hold. Additionally suppose

that Hη is a linear subspace of H and Ĩγ > 0. Then, for any α ∈ (0, 1), any sequence of

asymptotically unbiased, level-α tests (ψn)n∈N for H0 : τ = 0 against H1 : τ 6= 0, i.e. any

sequence of tests ψn :Wn → [0, 1] such that

lim sup
n→∞

P n
γn,0,hψn ≤ α for all h ∈ Hγ,

and

lim inf
n→∞

P n
γn,τ,hψn ≥ α for all τ 6= 0, h ∈ Hη

is subject to the power bound

lim sup
n→∞

P n
γn,τn,hnψn ≤ 1− Φ

(
zα/2 − Ĩ1/2

γ τ
)

+ 1− Φ
(
zα/2 + Ĩ1/2

γ τ
)

(16)

for all τn → τ 6= 0 and hn → h ∈ Hη, where zα is the 1− α quantile of the standard normal

distribution and Φ is the standard normal CDF.

Any asymptotically unbiased sequence of tests ψn : Wn → [0, 1] of asymptotic level

α which attains the power bound (15) is called “asymptotically locally uniformly most

powerful unbiased of level-α”. The efficient score test attains this bound under the same

assumptions as for the one-sided case.

Corollary 3.7. Suppose that assumptions M, LAN, CM(ii) and E hold, with γn = (θ0, ηn)→
(θ0, η) = γ. Additionally suppose that Hη is a linear subspace of H, Ĩγ > 0 and α ∈
(0, 1). Then the sequence of tests (φn,θ0)n∈N is asymptotically locally uniformly most powerful

unbiased of level-α for the hypothesis H0 : θ = θ0 against H1 : θ 6= θ0, i.e. it is asymptotically

unbiased and of level-α and achieves the power bound in (16) for any τn → τ 6= 0 and any

hn → h ∈ Hη.

For multivariate hypotheses I consider maximin optimality.33 The difference between the

power bound given here and what might be called the “usual” case (Cf. Theorem 13.5.4 of

33For an alternative approach which restricts the class of tests to those satisfying a rotation invariance
condition see Choi et al. (1996).
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Lehmann and Romano (2005) for the parametric case) is that I do not require the efficient

information matrix to be positive definite. Rather I consider a restricted class of directions

along which θ may be approached. Specifically, letting N(Ĩγ) denote the nullspace of Ĩγ, the

permitted directions are τ ∈ N(Ĩγ)⊥ rather than τ ∈ Rdθ . Note that these coincide if (and

only if) Ĩγ � 0 and hence the “usual” case is a special case of this result. The generalisation

given here is useful for models in which the parameter of interest may be underidentified.34

Proposition 3.8. Suppose that assumptions M, LAN and CM(i) hold. Additionally suppose

that Hη is a linear subspace of H and r := rank(Ĩγ) > 0. Then, for any α ∈ (0, 1), any

sequence of asymptotically level-α tests (ψn)n∈N for H0 : τ = 0 against H1 : τ 6= 0, i.e. any

sequence of tests ψn :Wn → [0, 1] such that

lim sup
n→∞

P n
γn,0,hψn ≤ α for all h ∈ Hη

is subject to the power bound

lim sup
n→∞

inf
(τ,h)∈Ma

P n
γn,τ,hψn ≤ 1− P

(
χ2
r(a) ≤ cr,α

)
, (17)

for all a > 0, where Ma := {(τ, h) ∈ N(Ĩγ)⊥ × Hη : τ ′Ĩγτ ≥ a}, cr,α is the 1 − α quantile

of the χ2
r distribution and χ2

r(a) denotes a non-central χ2 random variable with r degrees of

freedom and non-centrality a.

Any sequence of tests ψn : Wn → [0, 1] of asymptotic level α which attains the power

bound (15) over all compact subsets of Ma is called “asymptotically maximin of level-α”.35

The efficient score test is asymptotically maximin of level-α under the assumptions in section

3.1, provided that Hη is a linear subspace and rank(Ĩγ) > 0.

Corollary 3.9. Suppose that assumptions M, LAN, CM(ii), E and R hold, with γn =

(θ0, ηn) → (θ0, η) = γ. Additionally suppose that Hη is a linear subspace of H, r :=

rank(Ĩγ) > 0 and α ∈ (0, 1). Then the sequence of tests (φn,θ0)n∈N is asymptotically max-

imin of level-α for the hypothesis H0 : θ = θ0 against H1 : θ 6= θ0 over all compacts, in the

sense that for any compact Ka ⊂Ma

lim
n→∞

inf
(τ,h)∈Ka

P n
γn,τ,hφn,θ0 = 1− P

(
χ2
r(a) ≤ cr,α

)
. (18)

There are two key takeaways from this result. Firstly, when the efficient information

matrix is rank deficient, the efficient score test continues to enjoy non-trivial power in

34For details of the construction of the sequence of experiments used to establish this result see appendix
section B.

35Cf. Section 13.5.3 of Lehmann and Romano (2005) for the terminology
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certain directions.36 Secondly the power it achieves is – in a certain sense – optimal.37

3.4 Sufficient conditions for the assumptions

In the i.i.d. setting it is well known that differentiability in quadratic mean (e.g. van der

Vaart, 2002, Definition 1.6) is a sufficient condition for a LAN expansion like that in equation

(5) with a fixed γ ∈ Γ (e.g. Bickel et al., 1998; Le Cam and Yang, 2000; van der Vaart, 2002).

In the setting of interest here, a suitably adapted version of this condition also suffices for

assumption LAN.38

Assumption DQM (Differentiability in quadratic mean). Let (γn)n∈N be a sequence in Γ

which converges to a point γ ∈ Γ and Hη a subset of a Banach space, H, which includes 0.

For any sequence τn → τ with each τn, τ ∈ Rdθ , any sequence hn → h with hn, h ∈ Hη, a

convergent sequence of dθ×dθ matrices δn and sequences ηn(hn)→ η with each ηn(hn) ∈ H,

define γn(τn, hn) as in assumption LAN and suppose that

(i) the sequence (Pγn(τn,hn))n≥1 is (eventually) in P ,

(ii) for some sequence of measurable functions (gn)n∈N such that (g2
n)n∈N are uniformly

Pγn-integrable and Pγngn = o(n−1/2),∫ [√
n(
√
pγn(τn,hn) −

√
pγn)− 1

2
gn
√
pγn

]2

dν → 0. (19)

�

Proposition 3.10. Suppose assumptions M and DQM hold. Moreover suppose that for

a sequence of functions ( ˙̀
γn)n∈N with each ˙̀

γn ∈ L0
2(Pγn) and a sequence of linear maps

(Bγn)n∈N with each Bγn : Hη → L0
2(Pγn),

Pγn

[
τ ′ ˙̀γn +Bγnh− gn

]2

→ 0.

Then assumption LAN holds.

The addtional condition in the display in proposition 3.10 allows DQM to be shown with

any sequence gn such that the L2 distance between gn and the scores τ ′ ˙̀γn +Bγnh vanishes

as n→∞.

36This is demonstrated in a specific example in section 5.5.
37Nevertheless, if one has a particular direction against which one wishes to direct power, or – more generally

– a weighting function over alternatives, a criterion based on weighted average power would seem more
appropriate. Cf. e.g. Elliott et al. (2015); Montiel Olea (2020).

38Results of this nature are known to hold see e.g. Strasser (1985, Chapter 74) or van der Vaart (1988, A.2).
I provide this formulation to facilitate the demonstration of the version of LAN assumed in this paper.

23



I next record two conditions useful for checking the integral convergence required in

CM(ii), once the uniform square Pγn-integrability has been established. The first can be ob-

tained as an immediate corollary of a (stronger) result of Feinberg, Kasyanov, and Zgurovsky

(2016), who establish a uniform (over Borel sets) version of the integral convergence. The

second is effectively the standard result that weak convergence and uniform integrability

imply convergence of moments, where the condition of continuous convergence is imposed

to ensure the weak convergence of the appropriate laws.

Lemma 3.11. Suppose that (Pn)n∈N is a sequence of probability measures which converges

in total variation to P .39 If (fn)n∈N is a sequence of functions in L1(Pn) such that (a)

fn
P−→ f ∈ L1(P ) and (b) (fn)n∈N is uniformly Pn-integrable, then Pnfn → Pf .

Lemma 3.12. Let S be a metric space and suppose that (Pn)n∈N is a sequence of measures

on (S,B(S)) which converge weakly to P . Suppose that (fn)n∈N is a sequence of real-valued

functions with each fn ∈ L1(Pn) which (a) converge continuously to f ∈ L1(P ) and (b) are

uniformly Pn-integrable.40 Then Pnfn → Pf .

Assumption R requires the estimate of the efficient information matrix, În,θn , to have

the same rank as Ĩγ with Pγn-probability approaching one. The following construction is

sufficient to guarantee this; it requires knowledge of the rate of convergence to zero of the

difference (in the spectral norm) of an estimator Ǐn,θn and a matrix In where In → Ĩγ and

rank(In) = rank(Ĩγ) for all sufficiently large n. As there is nothing special about the limit

being the efficient information matrix here, the construction is given more generally.41

In particular, suppose that the sequence of (random) positive semi-definite (symmetric)

matrices (M̌n)n∈N (of fixed dimension L× L) satisfy

Pn
(
‖M̌n −Mn‖2 < νn

)
→ 1, (20)

for a sequence (Pn)n∈N of probability measures, a known non-negative sequence νn → 0 and

a sequence of deterministic matrices Mn →M with rank(Mn) = rank(M) for all sufficiently

large n.42 Let M̌n = ǓnΛ̌nǓ
′
n be the corresponding eigendecompositions and define

M̂n := ǓnΛn(νn)Ǔ ′n , (21)

39Each Pn and P are defined on a common measurable space (S,B(S)).
40Continuous convergence requires fn(sn) → f(s) for all (sn)n∈N ⊂ S with sn → s ∈ S. Here this is

equivalent to compact convergence of the fn to a continuous limit f (cf. Remmert, 1991, Chapter 3, §1,
Section 5).

41A similar construction appears as part of Theorem 2 in Lee and Mesters (2021a). If the (non-zero)
eigenvalues of Ĩγ can be computed, a simpler truncation approach can be utilised, cf. Proposition 2 in
Lütkepohl and Burda (1997).

42(20) is implied by ‖M̌n−Mn‖ = oPγn (νn) for any matrix norm. Moreover, the existence of such a sequence

(νn)n∈N is guaranteed if ‖M̌n −Mn‖2 → 0 in Pn-probability, however its explicit knowledge is necessary
to perform the subsequent construction.
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where Λn(νn) is a diagonal matrix with the νn-truncated eigenvalues of M̌n on the main

diagonal and Ǔn is the matrix of corresponding orthonormal eigenvectors. That is, if

(λ̌n,i)
L
i=1 denote the non-increasing eigenvalues of M̌n, then the (i, i)-th element of Λn(νn) is

λ̌n,i1(λ̌n,i ≥ νn).

Proposition 3.13. If (20) holds, Mn → M and for all n greater than some N ∈ N
rank(Mn) = rank(M), then M̂n

Pn−→M and

Pn

(
rank(M̂n) = rank(M)

)
→ 1, (22)

where M̂n is defined as in (21).

Assumption T. Let (γn)n∈N be a sequence in Γ with a limit γ ∈ Γ, (Ĩn)n∈N a deterministic

sequence of matrices with Ĩn → Ĩγ and rank(Ĩn) = rank(Ĩγ) for all n exceeding some N ∈ N
and suppose that the sequence (Ǐn,θn)n∈N satisfies

Pγn

(
‖Ǐn,θn − Ĩn‖2 < νn

)
→ 1. (23)

�

Corollary 3.14. If assumption T holds, the estimate În,θn formed by truncating the eigen-

decompositions of Ǐn,θn at νn, as in (21), satisfies equation (7) and assumption R.

In practice equation (23) is likely to be established by demonstrating that ‖Ǐn,θn−Ĩn‖ =

oPγn (νn).43 As this condition concerns only asymptotic behaviour, there is wide scope for

different possible sequences which have the same asymptotic behaviour but rather different

behaviour in finite samples. Simulation experiments designed to replicate various possible

DGPs for the case under consideration may provide some guidance.

4 Single index model

In this section I provide details of the application of the theory of section 3 to a more general

version of the single index model in example 1.

Consider the single index (regression) model (SIM), where W = (Y,X) with

Y = f(X1 +X ′2θ) + ε, E[ε|X] = 0, (24)

for X = (X1, X2) ∈ RK a vector of covariates such that (ε,X) ∼ ζ for some Lebesgue density

43For any matrix norm ‖ · ‖.
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ζ and some unknown link function f .44 As recorded in Theorem 2.1 of Horowitz (2009), f

and θ are identified in this model if f is differentiable, not constant on the support ofX1+X ′2θ

and the support of X is not contained in a proper linear subspace of RK . By utilising the

inferential approach developed in section 3, this section provides an inferential approach

for θ in model (24) which is robust to failure of these assumptions, and – perhaps more

importantly – robust in a setting where f is relatively flat when compared with sampling

variation, leading to weak identification of θ.

The first step of the analysis is to formally specify the model under consideration and

establish some primitive assumptions under which the results will be obtained. The basic

model setup is given by the following assumption.

Assumption SIM. Suppose that W = (Y,X) ∈ R1+K satisfies (24) and

(i) Θ ⊂ Rdθ is open,

(ii) (ε,X) ∼ ζ where ζ ∈ Z ,

(iii) f ∈ F ,

where Z and F are defined as follows. Let X ⊂ RK be closed, φ(ε,X) := ∂ log ζ(e,X)
∂e

(ε,X)

the log-density score in the first argument of ζ and ρ > 0. Then Z is the collection:

Z :=

{
ζ ∈ L1(R1+K) : ζ ≥ 0,

∫
R×X

ζ dλ = 1, if (e, Z) ∼ ζ then (26), ζ satisfies (25)

}
,

where L1(R1+K) is the space of Lebesgue integrable functions on R1+K and

e 7→
√
ζ(e,X) is continuously differentiable λ− a.e., (25)

E[ε|X] = 0, E[(φ(ε,X)2+ρ + 1)‖X‖2+ρ
2 ] <∞, E[XX ′] � 0. (26)

F := C1
b (D) is the class of functions which are bounded and continuously differentiable

with bounded derivative λ-a.e. on D := {X1 +X ′2θ : θ ∈ Θ, x ∈X }.
The model is given by P = {Pγ : γ ∈ Γ} for Γ = Θ ×H with H = F ×Z where each

Pγ is the probability measure on R1+K corresponding to the Lebesgue density pγ(W ) =

ζ(Y − f(X1 +X ′2θ), X). �

Part (ii) of the preceding assumption restricts the class of density functions which govern

the distribution of the error term and covariates in (24). The key restrictions it imposes

are (a) the required conditional mean restriction E[ε|X] = 0, (b) the existence of some

44This particular specification of the single index model is relatively simple. More complex versions of this
model (e.g. with a more general index specification or a linear component Z ′ξ) could be analysed using
similar techniques. The form used here is deliberately chosen to retain only the key aspect of the model
relevant to this paper: that θ may be unidentified or weakly identified for certain values of f , an infinite
dimensional nuisance parameter.
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moments of specific functions of the data, and (c) a smoothness condition on the density

function. Part (iii) restricts the link function f to belong to a specified class of functions;

the restrictions imposed on f by this assumption are relatively weak and common in the

literature on single index models.45 Note that these restrictions do not rule out f being

constant on D : if f(v) = c for all v ∈ D and some c ∈ R, f ∈ F .

4.1 Verification of the modelling assumptions

Given a random sample (Wi)
n
i=1 satisfying assumption SIM, assumption M holds. To es-

tablish assumptions LAN and CM(ii) I first need to specify the local perturbations to the

nuisance parameter η for which the quadratic approximation will hold.

The considered local perturbations to the nuisance parameters take the form

ηn(h) := (f + tnh1, ζ(1 + tnh2)) , tn = n−1/2, (27)

with h1 ∈ Ḟ := C1
b (D), the set of real valued functions on R which are continuously

differentiable and bounded λ-a.e. on D , and h2 ∈ ˙Zη where

˙Zη :=
{
h2 ∈ C1|1

b (R1+K) : E[h2(ε, Z)] = 0, E[εh2(ε,X)|X] = 0 if (ε,X) ∼ ζ
}
,

for C
1|1
b (R1+K) is the space of functions h2 : R1+K → R which are bounded λ-a.e. and

such that e 7→ h2(e,X) is continuously differentiable with bounded derivative λ-a.e.. The

perturbation directions for η are Hη := Ḟ × ˙Zη which is a linear subspace of L∞(λ) ×
L∞(G) =: H, for λ the Lebesgue measure on R. Equip H with the norm ‖h‖ = ‖h1‖λ,∞ +

‖h2‖G,∞.

I now establish that the model is differentiable in quadratic mean and hence (by Propo-

sition 3.10) locally asymptotically normal.

Proposition 4.1. Suppose that assumption SIM holds, θn → θ ∈ Θ and η ∈ H and

consider the sequence defined by γn = (θn, η) ∈ Γ. Let δn = I/
√
n, τn → τ , hn ∈ Hη with

hn → h ∈ Hη and define ηn : Hη → H as in (27). Then assumption DQM holds with score

functions gn = τ ˙̀
γn +Bγnh where for Vθn := X1 +X ′2θn, en := Y − f(Vθn),

˙̀
γn(W ) := −φ(en, X)f ′(Vθn)X2

[Bγnh](W ) := −φ(en, X)h1(Vθn) + h2(en, X).

The efficient score function for this model was derived by Newey and Stoker (1993) and

is given in the following Proposition.

45Cf. Assumption 4.1 in Newey and Stoker (1993); Assumptions A0 – A2 in Kuchibhotla and Patra (2020).
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Proposition 4.2. Consider the sequence (γn)n∈N of Proposition 4.1, suppose that assump-

tion SIM holds and

E[εφ(ε,X)|X] = −1, E[φ(ε,X)2|X] < C <∞, 0 < c < E[ε2|X] < C <∞. (28)

Additionally suppose there exists a function m̃ : R→ R which is bounded and continuously

differentiable with bounded derivative such that E[εm̃(ε)|X] is bounded away from zero uni-

formly in X. Then assumption CM(ii) holds and for ω(X) := E[ε2|X]−1 the efficient score

function is

˜̀
γn := ω(X)(Y − f(Vθn))f ′(Vθn)

[
X2 −

E [ω(X)X2|Vθn ]

E [ω(X)|Vθn ]

]
.

The (conditional) moment conditions in (28) are standard. The first is a particular case

of the (conditional) generalised information equality; it will hold provided differentiation

and integration can be interchanged appropriately. The second and third provide uniform

bounds on some conditional expectation functions. Existence of the function m̃ is a weak

condition; see Assumption 4.2 and the subsequent discussion in Newey and Stoker (1993, p.

1210).

4.2 Implementation of the efficient score test

I now consider estimation of the efficient score function just described in order to satisfy

assumptions E and R. Estimation in the (conditionally) heteroskedastic case introduces

technical difficulties which are essentially unrelated to the problem studied in this paper

and therefore I initially focus on the (conditionally) homoskedastic case and subsequently

note that this belongs to a more general class of statistics which remain robust under

heteroskedasticity though are typically not power optimal.46

Suppose that σ2 := E[ε2|X] = E[ε2] > 0. Under this simplification, the efficient score

function is:
˜̀
γn := σ−2(Y − f(Vθn)f ′(Vθn) [X2 − Z(Vθn)] ,

where Z(Vθn) := E [X2|Vθn ].

To estimate the nonparametric parts of the efficient score function I will use split-sample

estimators. Let N (1) = {1, . . . , bn/2c} and N (2) = [n] \ N (1). For i ∈ [n] let N−i denote

whichever of N (1) or N (2) that does not contain i. The class of estimators considered have

the following form:

46The class contains a member which achieves the power bound under appropriate conditions but is not
feasible as it requires knowledge of the optimal weighting function ω(X). Cf. the approach taken for
estimation in Ichimura (1993).
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f̂n,i := f̂n(Vθn,i) := f̌n(Vθn,i, ξ̂1,n,i) ξ̂1,n,i := ξ1,n((Wj)j∈N−i),

f̂ ′n,i := f̂ ′n(Vθn,i) := qf ′n(Vθn,i, ξ̂2,n,i) ξ̂2,n,i := ξ2,n((Wj)j∈N−i),

Ẑn,i := Ẑn(Vθn,i) := Žn(Vθn,i, ξ̂3,n,i) ξ̂3,n,i := ξ3,n((Wj)j∈N−i),

(29)

where each ξ̂j,n,i is a (random) vector whose dimension may increase with the sample size.

This class of estimators includes, for example, series estimators (of conditional moment

functions and their derivatives) as considered by e.g. Newey (1997); Belloni, Chernozhukov,

Chetverikov, and Kato (2015); Chen and Christensen (2015); Cattaneo, Farrell, and Feng

(2020).47 In this case, e.g. f(Vθn) is the conditional expectation of Y given Vθn and estimates

of f(Vθn,i) and f̂ ′(Vθn,i) can be given as

f̂n(Vθn,i) = f̌n(v, ξ̂1,n,i) = qn(Vθn,i)
′ξ̂1,n,i, f̂ ′n(Vθn,i) = qf ′n(Vθn,i, ξ̂2,n,i) = [q′n(Vθn,i)]

′
ξ̂2,n,i,

where qn is a Kn-vector of basis functions from R→ R, q′n their derivatives and

ξ̂1,n,i = ξ̂2,n,i =

∑
j∈N−i

qn(Vθn,j)qn(Vθn,j)
′

−1∑
j∈N−i

qn(Vθn,j)Yj

 .

Similar estimators can be constructed for Z(Vθn) which is the conditional expectation of X2

given Vθn .

Given such estimators I form an estimate of σ2 as

σ̂2
n :=

1

n

n∑
i=1

(Yi − f̂n,i)2,

and the estimates

ˆ̀
n,θn(Wi) := σ̂−2

n

(
Yi − f̂n,i

)
f̂ ′n,i

[
X2,i − Ẑn,i

]
, Ǐn,θn :=

1

n

n∑
i=1

ˆ̀
n,θn(Wi)ˆ̀

n,θn(Wi)
′. (30)

Let În,θn be the eigendecomposition-truncated version of Ǐn,θn at νn (analogously to (21)),

where (νn)n∈N is a non-negative sequence converging to zero. With these estimators as-

sumptions E and R can be shown to hold under conditions on the sequence (νn)n∈N and

the following high-level condition which assumes certain (probabilistic) rates of convergence

47This class of estimators also includes, for example, kernel estimators.
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hold for

R1,n,i :=

(∫ [
f̌n(v, ξ̂1,n,i)− f(v)

]2

dVn(v)

)1/2

,

R2,n,i :=

(∫ [
qf ′n(v, ξ̂2,n,i)− f ′(v)

]2

dVn(v)

)1/2

,

R3,n,i :=

(∫ ∥∥∥Žn(v, ξ̂3,n,i)− Z(v))
∥∥∥2

2
dVn(v)

)1/2

,

where Vn is the distribution of Vθn .

Assumption SIM-NP(i). Suppose that X is a compact set, equation (28) holds, σ2 :=

E[ε2|X] = E[ε2], E[ε4] < ∞ and with Pγn-probability approaching one for l ∈ [3] and each

i ∈ [n], Rl,n,i ≤ rn = o(n−1/4). �

The rates in assumption SIM-NP(i) are attainable under reasonable regularity condi-

tions. For example, series (linear sieve) estimators of f , f ′ and Z can attain these rates

given sufficient smoothness of the target function and other regularity conditions. See, inter

alia, Belloni et al. (2015); Chen and Christensen (2015); Cattaneo et al. (2020); Huang and

Su (2021). This assumption is sufficient for the estimator of σ−2 to be
√
n-consistent.

Lemma 4.3. Suppose that assumption SIM holds and σ2 := E[ε2|X] = E[ε2] ∈ (0,∞) and

let (γn)n∈N be as in Proposition 4.1. If E[ε4] <∞ and with Pγn-probability approaching one,

R1,n,i ≤ rn = o(n−1/4), then
√
n(σ̂−2

n − σ−2) = OPγn (1).

In the general, heteroskedastic, case I consider a related estimator, where – as in Ichimura

(1993) – a known weighting function ω̆(X) is utilised in place of the unknown ω(X). In

particular, I estimate the function

˘̀
γn(W ) := ω̆(X)(Y − f(Vθn))f ′(Vθn)

[
X2 −

E [ω̆(X)X2|Vθn ]

E [ω̆(X)|Vθn ]

]
.

Clearly if ω̆ = ω, ˘̀
γn coincides with the efficient score function and hence power optimality

results are available if the conditions outlined in section 3 hold. In the case where ω̆ 6= ω

the resulting statistic will not be power optimal, but will retain the locally uniform size

control properties of the efficient score statistic.

In the heteroskedastic case, I replace the function Z(Vθn) := E[X2|Vθn ] with Z1(Vθn)/Z2(Vθn)

where Z1(Vθn) := E[ω̆(X)X2|Vθn ] and Z2(Vθn) := E[ω̆(X)|Vθn ]. Let f̂n,i and f̂ ′n,i be as in

(29) and similarly define

Ẑ1,n,i := Ẑ1,n(Vθn,i) := Ž1,n(Vθn,i, ξ̂3,n,i) ξ̌3,n,i := ξ3,n((Wj)j∈N−i)

Ẑ2,n,i := Ẑ2,n(Vθn,i) := Ž2,n(Vθn,i, ξ̂4,n,i) ξ̌4,n,i := ξ4,n((Wj)j∈N−i).
(31)
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With these estimates I can form an estimate of ˘̀
γn and Υγn := Pγn ˘̀

γn
˘̀′
γn according to

ˇ̀
n,θn(Wi) := ω̆(Xi)

(
Yi − f̂n,i

)
f̂ ′n,i

[
X2,i −

Ẑ1,n,i

Ẑ2,n,i

]
, Υ̂n,θn :=

1

n

n∑
i=1

ˇ̀
n,θn(Wi)ˇ̀

n,θn(Wi)
′.

(32)

Let Υ̌n,θn be the eigendecomposition-truncated version of Υ̂n,θn at νn (analogously to (21)).

The test statistic that will be used in this case (for testing a two-sided hypothesis) is

Šn,θ :=
(√

nPn ˇ̀
n,θ

)′
Υ̌†n,θ

(√
nPn ˇ̀

n,θ

)
, (33)

with the test and confidence then being defined analogously to (10) and (11) with Šn,θ in

place of Ŝn,θ. Denote these respectively by φ̌n,θ0 and Čn. This test will be called the “pseudo

efficient score test” in what follows. Let R̆l,n,i := Rl,n,i for l = 1, 2 and define

R̆3,n,i :=

(∫ ∥∥∥Ž1,n(v, ξ̂3,n,i)− Z1(v))
∥∥∥2

2
dVn(v)

)1/2

R̆4,n,i :=

(∫ (
Ž2,n(v, ξ̂4,n,i)− Z2(v))

)2

dVn(v)

)1/2

.

In the heteroskedastic case, assumption SIM-NP(i) is replaced by the following assumption:

Assumption SIM-NP(ii). Suppose that X is a compact set, equation (28) holds, E[ε4] <

∞, ω̆ : RK → (ω,ω) is a known function and with Pγn-probability approaching one for

l ∈ [4] and each i ∈ [n], R̆l,n,i ≤ rn = o(n−1/4). �

The rates required by this assumption are attainable under reasonable regularity condi-

tions; cf. the discussion following assumption SIM-NP(i).

4.3 Asymptotic properties

I start by detailing the asymptotic properties of the efficient score statistic in the ho-

moskedastic case.

Proposition 4.4. Suppose that assumptions SIM, SIM-NP(i) hold and there exists a func-

tion m̃ as in Proposition 4.2. Consider the sequence (γn)n∈N of proposition 4.1, suppose the

observations form an i.i.d. sample and ˆ̀
n,θn and În,θn are as in (30), with 0 ≤ νn → 0 such

that rn + n−1/2 log(n)1/2+κ = o(νn) for some κ > 0. Then assumptions M, LAN, CM(ii), E

and R hold.

With the estimators ˆ̀
n,θn and În,θn the efficient score statistic, test and confidence set

can be defined as in section 3.2. The following results demonstrate that the efficient score

test is optimal under strong-identification asymptotics and provides robust size control and
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the corresponding confidence sets robust coverage, including under asymptotics in which

the function f is local to a constant (function) at rate
√
n, corresponding to a setting where

θ is weakly identified.

Corollary 4.5. In the setting of Proposition 4.4, let H ′η be a compact subset of Hη. Then,

the efficient score test satisfies

lim sup
n→∞

sup
h∈H′η

P n
γn,0,hφn,θ0 ≤ α,

and, for any compact Θ′ ⊂ Θ, the corresponding test inversion confidence sets satisfy

lim inf
n→∞

inf
θ∈Θ

inf
h∈H′η

P n
γn,0,h(θ ∈ Ĉn) ≥ 1− α.

Corollary 4.6. In the setting of Proposition 4.4, suppose additionally that rank(Ĩγ) > 0.

If dθ = 1, then the efficient score test is locally asymptotically uniformly most powerful

unbiased. If dθ > 1, then the efficient score test is locally asymptotically maximin.

I now establish a similar uniform size control result for the heteroskedastic case, with

the psuedo efficient score test defined immediately following (33).

Proposition 4.7. Suppose that that assumptions SIM, SIM-NP(ii) hold and there exists a

function m̃ as in Proposition 4.2. Consider the sequence (γn)n∈N of proposition 4.1, suppose

the observations form an i.i.d. sample and ˇ̀
n,θn and Υ̌n,θn are as in (32), with 0 ≤ νn → 0

such that rn + n−1/2 log(n)1/2+κ = o(νn) for some κ > 0. Let H ′η be a compact subset of Hη.

Then, the psuedo efficient score test satisfies

lim sup
n→∞

sup
h∈H′η

P n
γn,0,hφ̌n,θ0 ≤ α,

and, for any compact Θ′ ⊂ Θ, the corresponding test inversion confidence sets satisfy

lim inf
n→∞

inf
θ∈Θ

inf
h∈H′η

P n
γn,0,h(θ ∈ Čn) ≥ 1− α.

I remark here that if ω̆ = ω then each ˘̀
γn = ˜̀

γn . In this situation, if the rank of

Υγ = Ĩγ is positive, then in the setting of Proposition 4.7 the (pseudo) efficient score

test is is locally asymptotically uniformly most powerful unbiased if dθ = 1 and locally

asymptotically maximin if dθ > 1. However, as this is infeasible in the heteroskedastic case,

I do not state a formal power result.
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4.4 Simulation study

I conduct a simulation study to examine the finite sample properties of the efficient score

test. I draw n ∈ {200, 400, 600, 800} samples from model (24) for a number of different

functions f and distributions ζ. I set K = 1 throughout and examine finite sample size

using 5000 Monte Carlo replications, at a nominal level of 5%. In each case I test the null

H0 : θ = 1.

Overall the simulation experiments suggest the asymptotic results of section 4.3 provide

a good guide to the performance of the efficient score test (and psuedo efficient score test)

in finite samples.

4.4.1 Homoskedastic case

Initially I consider the homoskedastic case. The error term is taken as either (1) ε ∼ N (0, 1)

or (2) ε|ξ ∼
√

5(−1)ξ Beta(2, 3), ξ ∼ Bernoulli(1/2). In both cases Eε = 0 and Vε = 1.

The covariates are drawn as either (a) Xk = Zk or (b) X = (Z1, 0.2Z1 + 0.4Z2 + 0.8) where

Zk ∼ U(−1, 1) for k = 1, 2. The link functions considered take the form f(v) = δf ?(v)

for f ? ∈ {v 7→ c1(1 + exp(−v))−1, v 7→ c2 exp(−v2), v 7→ c3v
2}, δ ∈ (0, 1).48 Each of these

functions has a different shape; the scalars ci (i = 1, 2, 3) vary across the functions f ? and

distributions for X and are chosen so that the variance of f ?(Vθ) equals 4 under H0: θ = 1,

whilst δ is taken the same for all functions and used to scale this variance.49

To examine the finite sample size of the proposed test, the efficient score function and

efficient information matrix are estimated as in (30), with split-sample (penalised) smoothing

cubic B-splines used to estimate each of f̂ , f̂ ′ and Ẑ.50 I truncate the efficient information

matrix at machine precision. Additionally I consider a Wald statistic estimated using an

Ichimura (1993) style estimator, which uses the same estimates of f̂ , f̂ ′ and Ẑ as the efficient

score statistic.51 The finite sample empirical rejection frequencies are reported in tables 1

- 4. In all specifications considered the efficient score provides good size control, whereas

the Wald statistic based on the Ichimura (1993) type estimator described above displays

substantial over-rejection, particularly for small δ.

To analyse the finite sample power of the efficient score test I consider the finite sample

rejection frequency of the efficient score test of θ = 1 for a grid of values around θ. Specifi-

cally, I take 21 equally spaced values between 0.875 and 1.125 and all other parameters are

the same as for the simulations used to investigate finite sample size. Figures 5 - 8 plot the

48The first of these is the standard Logistic CDF.
49The scaling constants c are calculated in closed form for the case (a) with X = (Z1, Z2). In the correlated

case (b), evaluation of the integrals becomes substantially more complex and so simulated values are used,
based on 10,000,000 draws.

50In particular I use the smooth.spline function in R with its default knot choice and penalty settings.
51This approach estimates θ by minimising the criterion θ 7→ 1

n

∑n
i=1(Yi − f̂n,i(Vθ))2; the estimates of f̂ ′

and Ẑ are necessary to construct the asymptotic variance.
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finite sample power function of the efficient score test, which demonstrate that – as expected

– higher δ leads to higher power for the same distance from the null.

4.4.2 Heteroskedastic case

I now consider the heteroskedastic case. I consider two specifications for the error term: (1)

ε ∼ N (0, s1 log(2+(X1 +X2θ)
2)) and (2) ε ∼ N (0, s2(1+5 sin(X2)2)) where the constants si

(i = 1, 2) are chosen such that in each case V(ε) = 1 (unconditionally) under H0 : θ = 1.52

The distributions for the covariates and the link functions used are the same as in the

homoskedastic case.

To examine the finite sample size of the proposed test, the pseudo-efficient score function

and its variance matrix are estimated as in (32) with split-sample (penalised) smoothing

cubic B-splines used to estimate each of f̂ , f̂ ′, Ẑ1 and Ẑ2.53 As in the homoskedastic case I

truncate the variance matrix at machine precision. Additionally I consider a Wald statistic

estimated using an Ichimura (1993) style estimator, which uses the same nonparametric

estimates as the psuedo-efficient score statistic.54

The finite sample rejection frequencies with ω̆(X) is taken as the infeasible truth ω(X)

are reported in tables 5 - 8, whilst tables 9 - 12 report the finite sample size where ω̆(X) =

1. The results demonstrate qualitatively the same conclusions as the homoskedastic case,

with the pseudo efficient score statistic always providing good size control, unlike the Wald

statistic, which displays large over-rejection, particularly for small δ.

As in the homoskedastic case, to analyse the finite sample power of the pseudo efficient

score test I consider the finite sample rejection frequency of the efficient score test of θ = 1 for

a grid of values around θ. As in the homoskedastic case, I consider 21 equally spaced values

between 0.875 and 1.125 with all other parameters the same as for the simulations used to

investigate finite sample size. Figures 9 - 12 plot the finite sample power curves. Similar

observations apply as in the homoskedastic case, with higher δ leading to higher power for a

given distance from the null. Moreover, as expected, the optimal (but infeasible) weighting

scheme delivers higher power, though the difference seems to be relatively small for the

designs considered.

5 Linear simultaneous equations models

In this section, I work out the details of the application of the theory developed in section 3

to a class of linear simultaneous equations models (LSEMs) where identification is based on

52These are determined by simulation with 10,000,000 draws.
53See footnote 50.
54This approach estimates θ by minimising the criterion θ 7→ 1

n

∑n
i=1 ω̆(Xi)(Yi − f̂n,i(Vθ))2; the estimates

of f̂ ′, Ẑ1, Ẑ2 are necessary to construct the asymptotic variance.
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an assumption of mutually independent and non-Gaussian errors. Under this assumption,

no external information (e.g. instrumental variables) is required in order to identify the

parameter of interest.

Consider the following linear simultaneous equations model (LSEM)

Y = RX + V, V = A(θ, σ)−1ε, Eε = 0,Vε = I, (34)

where the K components of ε are mutually independent, X = (1, X̃ ′)′ is a vector of covariates

independent of ε. R is a K × L matrix of regression coefficients and A(θ, σ) is a K × K
invertible matrix. For later convenience I collect the Euclidean nuisance parameters R and

σ into one vector: β := (β′1, β
′
2)′ := (σ′, vec(R)′)′.

As is well known, in simultaneous equations models of this form the elements of the

mixing matrix, A(θ, σ), are not identified without further restrictions. However, if no more

than one component of ε is Gaussian, the elements of the matrix A(θ, σ) are identified up

to column permutation and sign changes (Comon, 1994). Imposition of sign restrictions

and labelling of the shocks can then yield identification of the elements of A(θ, σ) which –

assuming an identifiable parametrisation – yields that of θ.

Nevetheless, the identifying assumption that no more than one component of ε is Gaus-

sian is not innocuous. In particular, depending on the parametrisation of the model, if

this assumption fails, θ may be underidentified or completely unidentified. Moreover, as is

typical in models with points of identification failure, the impact of the potential identifi-

cation problem here is not binary. “Weak non-Gaussianity”, where the error distribution

is sufficiently close to Gaussianity relative to sampling uncertainty, can cause problems for

inference methods which assume non-Gaussianity to obtain identification.55 In this section

I extend the analysis of Lee and Mesters (2021a) to demonstrate that inference based on the

efficient score test is (i) robust to weak identification (in addition to underidentification and

complete unidentification) and (ii) minimax optimal if θ is identified or underidentified.56

The first step of the analysis is to formally set up the model under consideration. Let

η0 denote the (Lebesgue) density of X̃ and for each k = 1, . . . , K let ηk be the (Lebesgue)

density of εk and define φk as the log-density scores, i.e. φk(e) := d log ηk(s)
ds

(e). I will require a

number of moments of (functions of) ε and X̃ to satisfy certain conditions.57 In particular,

for each k ∈ [K] and some δ > 0

Eεk = 0, Eε2k = 1, E|εk|4+δ <∞, E|φk(εk)|4+δ <∞, Eε4k − 1 > (Eε3k)2, (35)

55See Lee and Mesters (2021a) for simulation evidence of this phenomenon.
56Lee and Mesters (2021a) provide simulation evidence of a weak identification problem in this class of

models, but their theoretical work only considers robustness against fixed distributions under which θ
may be identified, underidentified or unidentified and does not cover weak identification.

57These conditions are the same as imposed in Lee and Mesters (2021a). Additionally I note that such
fourth-moment conditions are common for conducting inference on variance parameters (e.g. White, 1980).
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and

EX̃X̃ ′ � 0, E‖X̃‖4+δ
2 <∞. (36)

These moment restrictions are used to characterise the DGPs permitted by the model.

Specifically, the density functions ηk and η0 are assumed to belong (respectively) to the sets

G and Z which are defined as follows:

G :=

{
g ∈ L1(R) : g ≥ 0,

∫
g dλ = 1,

√
g ∈ C1(R), if εk ∼ g then (35)

}
, (37)

Z :=

{
g ∈ L1(RL−1) : g ≥ 0,

∫
g dλL−1 = 1, if X̃ ∼ g then (36)

}
, (38)

where L1(Rd) denotes the space of integrable functions on Rd with respect to the Lebesgue

measure (which is denoted by λd or λ if the dimension is clear from context) and C1(R)

denotes the space of functions R → R which are continuously differentiable λ-a.e.. Finally

the parameter β = (σ′, vec(R)′)′ is assumed to belong to B ⊂ Rdβ . I will consider two

restrictions on B. Firstly it will be permitted to be an (otherwise unrestricted) open set.

Alternatively – to explicitly handle the case of sign restrictions (or non-negativity restrictions

on variances) – it will be permitted to have the form

B = B1 ×B2, B1 =
dσ∏
l=1

B1,l, (39)

where B2 ⊂ RKL is open and each B1,l ⊂ R is either open or one of (−∞, 0] or [0,∞).

The assumptions imposed on the LSEM model (34) are summarised as follows:

Assumption LSEM. W = (Y, X̃) satisfies (34) where theK components of ε have marginal

densities ηk (k ∈ [K]). Let the density of X̃ be η0.58

(i) Θ ⊂ Rdθ is an open set and B ⊂ Rdβ is either open or has the form B1 ×B2 where

these factors are as described following (39).

(ii) The components of ε are mutually independent and ε is independent of X.

(iii) ηk ∈ G for each k ∈ [K] and η0 ∈ Z , for G and Z defined in (37) and (38) respectively.

(iv) The function (θ, σ) 7→ A(θ, σ) is continuously differentiable with l-th partial derivative

D1,l(θ, σ) and the functions (θ, σ) 7→ D1,l(θ, σ)A(θ, σ)−1 are Lipschitz continuous.

The model is given by P = {Pγ : γ ∈ Γ = Θ×H} with H := B ×Z ×∏K
k=1 G and where

each Pγ has (Lebesgue) density

pγ(W ) = | det(A(θ, σ))|
K∏
k=1

ηk(Ak[Y −RX])× η0(X̃). (40)

58Each ηk is a density with respect to Lebesgue measure on the appropriate Euclidean space.
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The moment and smoothness conditions imposed by part (iii) of assumption LSEM are

reasonably weak, as are the smoothness conditions in (iv). The independence in (ii) is,

however, restrictive. Mutual independence of the components of ε is a testable assumption

in applications (Matteson and Tsay, 2017; Amengual, Fiorentini, and Sentana, 2021). The

independence of X̃ and ε could be replaced by a conditional moment restriction, for which

the general approach outlined in this paper would continue to hold, but the analysis below

would need to be redone under this alternative assumption, with the efficient score function

taking a different form.

5.1 Verification of the modelling assumptions

Assumption LSEM coupled with the assumption that the observed data comprises an i.i.d.

sample (Wi)
n
i=1 ensures that assumption M holds. I next show that assumption DQM holds,

which is sufficient to imply assumption LAN by proposition 3.10.

For any l ∈ [dθ + dσ] and any (k, j) ∈ [K]2, let ζl,k,j := [D1,l(θ, σ)]k[A
−1]′j. Additionally

write D2,l for the derivative of R with respect to the l-th component of β2 = vec (R). C1
b (R)

denotes the space of functions R → R which are bounded, continuously differentiable and

have bounded derivatives λ-a.e. and Cb(RL) denotes the space of functions RL → R which

are bounded and continuous λL-a.e.. Define the sets Ġη,k and ˙Zη as:

Ġη,k :=

{
hk ∈ C1

b (R) :

∫
hk dGk =

∫
hkι dGk =

∫
hkκ dGk = 0

}
, (41)

˙Zη :=

{
h0 ∈ Cb(RL−1) :

∫
h0 dG0 = 0

}
(42)

where Gk is the measure on R corresponding to ηk (k ∈ [K]), G0 the measure on RL−1

corresponding to η0, ι denotes the identity function and κ(e) := e2 − 1. Let

Hη :=
dσ∏
l=1

Vl × RKL × ˙Zη ×
K∏
k=1

Ġη,k ⊂ H := Rdβ × L∞(λL−1)×
K∏
k=1

L∞(λ), (43)

where each Vl = R if β is an interior point of B and otherwise (i) Vl = [0,∞) if B1,l = [0,∞)

and σl = 0 or (ii) Vl = (−∞, 0] if B1,l = (−∞, 0] and σl = 0. H is equipped with the norm

‖h‖ := ‖b‖2 + ‖h0‖λL−1,∞ +
∑K

k=1 ‖hk‖λ,∞, for h = (b, h0, . . . , hK) ∈ H.59 Hη is a linear

subspace of H whenever β is an interior point of B.

The sequences of base parameters considered are γn = (θn, η), with local perturbations

59Each of the factors defining H is a Banach space (with the corresponding norm as just indicated) and
hence the same is true of H when equipped with the indicated norm.
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of the form θn + τn/
√
n→ θ with τn → τ and

ηn(hn) := (β1 + tnb1,n, β2 + tnb2,n, η0(1 + tnhn,0), η1(1 + tnhn,1), . . . , ηK(1 + tnhn,K)) (44)

with hn → h (all in Hη); note that ηn(hn)→ η.

The following proposition establishes the quadratic mean differentiability of the model

and hence LAN in view of Proposition 3.10.

Proposition 5.1. Suppose that assumption LSEM holds, θn → θ ∈ Θ and η ∈ H and

consider the sequence defined by γn = (θn, η) ∈ Γ. Let δn = I/
√
n, tn := n−1/2, τn → τ ,

hn := (bn, hn,0, hn,1, . . . , hn,K) (with bn = (b′1,n, b
′
2,n)′), with hn → h, and define ηn : Hη → H

as in (44). Then assumption DQM holds, with gn := τ ′ ˙̀γn +Bγnh where for l = 1, . . . , dθ,

˙̀
γn,l(W ) :=

K∑
k=1

[
ζl,k,k,n(φk(An,kV )An,kV + 1) +

K∑
j=1,j 6=k

ζl,k,j,nφk(An,kV )An,jV

]
,

[Bγnh](W ) :=

dθ+db1∑
m=dθ+1

b1,m

K∑
k=1

[
ζm,k,k,n(φk(An,kV )An,kV + 1) +

K∑
j=1,j 6=k

ζm,k,j,nφk(An,kV )An,jV

]

+
K∑
k=1

φk(An,kV )

−An,k dβ∑
l=1

b2,lD2,lX

+ h0(X̃) +
K∑
k=1

hk(An,kV ),

with An := A(θn, σ), V := Y −RX.

In order to simplify the expression of the the efficient score function, I suppose the

following moment conditions on φk hold.

Eφk(εk) = 0, Eφk(εk)εk = −1, Eφk(εk)ε2k = 0, Eφk(εk)ε3k = −3. (45)

These moment conditions are weak; if (35) holds then a sufficient condition for (45) to hold

is that the tails of the densities satisfy ηk(x) = o(x−3).60

Proposition 5.2. Suppose that assumption LSEM and equation (45) hold and consider

the sequence (γn)n∈N of Proposition 5.1. Then assumption CM(ii) holds and (provided the

inverse in the subsequent display exists) the efficient score function, ˜̀
γn, is given by

˜̀
γn = ˜̀

γn,1 −
[
Pγn ˜̀

γn,1
˜̀′
γn,2

] [
Pγn ˜̀

γn,2
˜̀′
γn,2

]−1
˜̀
γn,2, (46)

60See Lemma S8 in Lee and Mesters (2021b). Alternatively, these conditions will hold provided differentia-
tion and integration can be appropriately interchanged.
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where for l = 1, . . . , dθ, m = 1, . . . , db1, s = 1, . . . , db2, v := V −RX and µ := EX,

˜̀
γn,1,l(W ) =

K∑
k=1

[
ζl,k,k,n (τk,1An,kV + τk,2κ(An,kV )) +

K∑
j=1,j 6=k

ζl,k,j,nφk(An,kV )An,jV

]

˜̀
γn,2,m(W ) =

K∑
k=1

[
ζm,k,k,n (τk,1An,kV + τk,2κ(An,kV )) +

K∑
j=1,j 6=k

ζm,k,j,nφk(An,kV )An,jV

]

˜̀
γn,2,db1+s(w) =

K∑
k=1

[−An,kD2,s] [(x− µ)φk(An,kV )− µ (ςk,1An,kV + ςk,2κ(An,kV ))] ,

and

τk := M−1
k

(
0

−2

)
, ςk := M−1

k

(
1

0

)
, with Mk :=

(
1 Pγn(An,kV )3

Pγn(An,kV )3 Pγn(An,kV )4 − 1

)
.

The preceding proposition requires the inverse of the variance matrix of ˜̀
γn,2 to exist.

This is only necessary for the projection to be expressed in this precise form; if the matrix in

question is singular, one can drop linearly dependent (in L2(Pγn)) elements from ˜̀
γn,2 until

it is nonsingular. Additionally note that Mk is not indexed by n; under Pγn , An,kV ∼ ηk

and so the moments making up Mk are constant in n.

5.2 Implementation of the efficient score test

Next I impose conditions which are sufficient for the construction of estimates of the efficient

score function and efficient information matrix which satisfy assumptions E and R. First, I

suppose that there is an appropriate estimator of each log density score φk available.

Assumption DSE. Suppose that (βn)n∈N ⊂ B is a deterministic sequence with
√
n(βn −

β) = O(1). Let γ′n := (θn, βn, η), An := A(θn, β1,n) and Vn,i := Yi − RnXi. The array of

estimates (φ̂n,k(An,kVn,i))n∈N,i≤n satisfies

1

n

n∑
i=1

[
φ̂k,n(An,kVn,i)− φk(An,kVn,i)

]
Un,i = oPγ′n

(n−1/2)

1

n

n∑
i=1

([
φ̂n,k(An,kVn,i)− φk(An,kVn,i)

]
Un,i

)2

= oPγ′n
(ν2
n),

(47)

for any (Un,i)n∈N,i≤n such that for each n ∈ N, under Pγ′n , the Un,i ∈ L0
2(Pγ′n), are i.i.d.

with marginal distribution Gu and are independent of each An,kVn,j, and where 0 ≤ νn → 0
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satisfies νn = o(νn) with

νn :=

n−1/2 log(n)1/2+ρ if δ ≥ 4

n(1−p)/(p) otherwise
, (48)

for p := min{1 + δ/4, 2} and some ρ > 0. �

Lee and Mesters (2021a, Appendix B) propose an appropriate estimator of φk using cubic

B-splines – based on the density score estimator of Chen and Bickel (2006) – and demon-

strate that it satisfies assumption DSE under assumption LSEM and some mild additional

restrictions on η.

Given such an estimator, φ̂n,k, of each φk and a ξn := (θn, βn), the efficient score functions

in Proposition 5.2 can be estimated by replacing each φk(Akv) with φ̂n,k(An,kVn,k) and

replacing each τk, ςk and µ by their sample counterparts:

ˆ̀
ξn,1,l(Wi) :=

K∑
k=1

[
ζl,k,k,n (τ̂n,k,1en,k,i + τ̂n,k,2κ(en,k,i)) +

K∑
j=1,j 6=k

ζl,k,j,nφ̂n,k(en,k,i)en,j,i

]

ˆ̀
ξn,2,m(Wi) :=

K∑
k=1

[
ζm,k,k,n (τ̂n,k,1en,k,i + τ̂n,k,2κ(en,k,i)) +

K∑
j=1,j 6=k

ζm,k,j,nφ̂n,k(en,k,i)en,j,i

]

ˆ̀
ξn,2,db1+s(Wi) :=

K∑
k=1

[−An,kD2,s]
[
(Xi − X̄n)φ̂n,k(en,k,i)− X̄n (ς̂n,k,1en,k,i + ς̂n,k,2κ(en,k,i))

]
,

(49)

where en,k,i := An,kVn,i, X̄n := 1
n

∑n
i=1Xi and

τ̂n,k := M̂−1
n,k

(
0

−2

)
, ς̂n,k := M̂−1

n,k

(
1

0

)
, with M̂n,k :=

(
1 1

n

∑n
i=1 e

3
n,k,i

1
n

∑n
i=1 e

3
n,k,i

1
n

∑n
i=1 e

4
n,k,i − 1

)
.

In practice, β is unknown but estimates can be formed using a discretised version of

an estimator for β which is
√
n-consistent under Pγn . In model (34), β2 = vec (R) can be

estimated by OLS. Appropriate estimators of σ = β1 depend on the parametrisation of the

matrix A(θ, σ) but can usually be constructed from the sample analogue of the equality

E(V V ′) = A(θ, σ)−1(A(θ, σ)−1)′ for a given θ and estimate of R.61

Suppose β̂n is a
√
n-consistent estimate of β and let β̄n be the estimate which replaces

β̂n by the closest value in n−1/2CZdβ ∩B.62 Let ξ̄n := (θn, β̄n) and define the estimates

ˆ̀
n,θn := ˆ̀̄

ξn,1 −
[
Pn ˆ̀̄

ξn,1
ˆ̀′
ξ̄n,2

] [
Pn ˆ̀̄

ξn,2
ˆ̀′
ξ̄n,2

]−1
ˆ̀̄
ξn,2

Ǐn,θn := Pn ˆ̀̄
ξn,1

ˆ̀′
ξ̄n,1
−
[
Pn ˆ̀̄

ξn,1
ˆ̀′
ξ̄n,2

] [
Pn ˆ̀̄

ξn,2
ˆ̀′
ξ̄n,2

]−1 [
Pn ˆ̀̄

ξn,2
ˆ̀′
ξ̄n,1

]
,

(50)

61Such initial estimators can often be refined by one step updates, see e.g. §25.8 in van der Vaart (1998).
62For an abritrary constant C > 0.
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and let În,θn be the eigendecomposition-truncated version of Ǐn,θn at νn analogously to (21)

(with νn as in assumption DSE).

5.3 Asymptotic properties

The following proposition demonstrates that the estimation procedure outlined in the pre-

vious subsection satisfies the conditions required for the theory in section 3 to apply.

Proposition 5.3. Suppose that assumptions LSEM, DSE and equation (45) hold and that

the observations form an i.i.d. sample. Consider the sequence (γn)n∈N of Proposition 5.1.

Suppose the inverse in (46) exists, θ 7→ rank(Ĩγ) is locally constant at γ, β̂n is a
√
n-

consistent estimate for β under Pγn and ˆ̀
n,θn, În,θn are as in equation (50). Then assump-

tions M, LAN, CM(ii), E and R hold.63

The preceding proposition requires the rank of Ĩγ to be locally constant in θ at γ. This

reflects the situation under study in which the identification status of θ is determined by

η. Note that since the rank function is lower semi-continuous and non-negative integer

valued, there is always a small enough neighbourhood on which the rank is bounded below

by rank(Ĩγ). Therefore the force of the restriction is only that on some neighbourhood the

rank cannot strictly exceed rank(Ĩγ), which is evidently the case for full rank Ĩγ. For rank

deficient Ĩγ, the assumption has force.64

Given the definition of the efficient score and efficient information matrix estimators in

(50) and supposing the hypothesis of interest is two-sided, the efficient score statistic and

test can be defined as in equations (9) and (10). Since the required conditions have been

established above, the results on size and power of the efficient score test – as established

in section 3 – apply directly.

Corollary 5.4. In the setting of proposition 5.3, let H ′η be a compact subset of Hη. Then

the efficient score test satisfies

lim sup
n→∞

sup
h∈H′η

P n
γn,0,hφn,θ0 ≤ α,

and, for any compact Θ′ ⊂ Θ, the corresponding test inversion confidence sets satisfy

lim inf
n→∞

inf
θ∈Θ′

inf
h∈H′η

P n
(θ,η),0,h(θ ∈ Ĉn) ≥ 1− α.

Corollary 5.4 is the key results as regards robust inference in the presence of possible weak

under- or un-identification of θ, as may occur when the components of η are sufficiently close

63Where the scores and paths in assumption LAN are as in proposition 5.1.
64From this discussion it is evident that an alternative way of stating this restriction would be that θ 7→

rank(Ĩγ) is upper semi-continuous (or continuous) at γ.
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to Gaussianity relative to the sample size. The results demonstrate that the efficient score

has correct asymptotic size uniformly over local perturbations of the nuisance parameters

and the corresponding (test inversion) confidence sets are uniformly valid over compact

subsets of Θ and local perturbations of the nuisance parameters.

As the perturbation sets Hη are linear spaces whenever β ∈ int B, if this condition holds

the efficient score test has optimality properties in the fully- and under- identified cases

Corollary 5.5. In the setting of proposition 5.3 suppose additionally that β is an interior

point of B and rank(Ĩγ) > 0. If dθ = 1, then the efficient score test is locally asymptot-

ically uniformly most powerful unbiased. If dθ > 1, then the efficient score test is locally

asymptotically maximin.

I next examine the finite sample performance of the efficient score test in two explicit

versions of the LSEM via two simulation studies. In the first study I consider a scalar

parameter and focus on potential weak identification as may occur under error distribu-

tions close to Gaussianity. In the second I consider a two dimensional parameter which is

underidentified under Gaussianity.

5.4 Simulation study (i)

Consider model (34), with K = 2, L = 2 and let the mixing matrix A(θ, σ) be

A(θ, σ) =

[
σ−1

2 0

0 σ−1
3

][
1 −θ
−σ1 1

]
.

The null hypothesis under consideration is that H0 : θ = 0. When both ε1 and ε2 are close

to Gaussianity, θ in this model will be only weakly identified.

To shed light on the finite sample performance of the efficient score test, I draw 5000

samples from this model for a range of different sample sizes and distributions for the error

components ε1 and ε2. The X̃ variables are drawn as independent standard normals and

β1 = σ = (0.7, 1.0, 3.0), β2 = vec(R) = (1, 2,−1,−3/2)′ . Table 13 tabulates the considered

error distributions for ε1 and ε2. 3 different distributions are considered for ε1 and 10 for ε2.65

In particular, I consider a fixed distribution for ε1 and examine the finite sample behaviour

of the efficient score test as the distribution of ε2 approaches Gaussianity, starting from 3

non-Gaussian distributions, each with a different shape.

To implement the efficient score test, I estimate each φk using the B-spline based esti-

mator described in Appendix B of Lee and Mesters (2021a), which is adapted from a similar

estimator proposed by Chen and Bickel (2006).66 The remaining (Euclidean) nuisance pa-

rameters are estimated in two ways: (i) β2 = vec(R) is estimated by OLS, with an estimate

65The density functions of these distributions are plotted in figures 1 - 3.
66In each simulation design, I use 6 cubic B-splines and set the upper and lower knots to be the 95th and
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of β1 recovered from the empirical variance matrix of the residuals Yi − R̂Xi. (ii) These

OLS-based estimates are used to estimate the efficient score function for β, and then a

one-step update is made based on this preliminary efficient score.67

With all the required nuisance parameters estimated, the efficient score function is con-

structed as in equation (50), the efficient score statistic is conducted as in equation (9) and

the test performed as in equation (10) at a nominal level of 5%.68

The empirical rejection frequencies for the efficient score test conducted with (i) OLS-

based estimates of the Euclidean nuisance parameters and (ii) one-step updates of these

estimates are recorded in tables 14 - 16; each table corresponds to a different distribution

for ε1. The table of primary interest is table 14, with ε1 ∼ N (0, 1) as this corresponds to

a potentially weakly identified setting. As this table demonstrates, the efficient score test

appears to demonstrate valid size control for all sample sizes and choices of η2 considered.

The version of the efficient score test with one-step updates provides reasonable size control,

though demonstrates slight over-rejection in a number of cases. This finding holds also in

each tables 15 - 16.

Tables 14 – 16 also contain size results for a number of alternative testing approaches.

Two are Wald and LM tests based on a pseudo-maximum likelihood approach, inspired

by the approach in Gouriéroux et al. (2017).69 Here, a density is chosen for each of the

error components and standard psuedo-maximum likelihood tests are performed. Following

Gouriéroux et al. (2017) I choose a (normalised) t(5) distribution for both ε1 and ε2 in this

simulation experiment. As might be expected, the Wald statistic does not control size at

the nominal level and displays both under- and over-rejection (depending on η2) in table

14. Its performance in the settings recorded in tables 15 and 16 is mixed, demonstrating

an ability to control size when at least one psuedo-density is sufficiently close to the truth,

and substantial over-rejection otherwise. In contrast, the LM statistic (which imposes the

null value of θ) does correctly control size for each choice of η2 in tables 14 – 16.

The final two tests are Wald and LM tests based on a GMM framework in which higher

moments of the error terms are used to provide identifying information. The moments used

were drawn from Lanne and Luoto (2021).70 Specifically, the (nine) moment conditions

utilised are:

E[ε1X̃] = E[ε2X̃] = E[κ(ε1)] = E[κ(ε2)] = E[ε1ε2] = E[ε31ε2] = E[ε21ε
2
2 − 1] = 0.

Neither of these GMM based tests (based on these moments) achieve finite sample size close

5th percentile of the samples, respectively adjusted up and down by log(log n), truncated at the maximum
(respectively minimum) sample value.

67I note that in the construction of the test θ is fixed throughout and so considered known.
68The information matrix eigenvalues are truncated at machine precision.
69Gouriéroux et al. (2017) consider a similar problem but in a SVAR setting.
70Like Gouriéroux et al. (2017), Lanne and Luoto (2021) consider a SVAR setting.
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to nominal in the simulation experiments, as can be seen in tables 14 – 16. In the latter two

tables, where weak identification is not present, the finite sample sizes of these tests appear

to be reducing towards the nominal level as n increases, but remain substantially above the

nominal level in each simulation design considered.

I perform a further simulation experiment based on this model to document the failure

of size control of the score test based on the score functions for the Euclidean parameters

(θ′, β′1, β
′
2)′. The relevant scores take the form

˙̀
γ,l(W ) :=

K∑
k=1

[
ζl,k,k(φk(AkV )Ak + 1) +

K∑
j=1,j 6=k

ζl,k,jφk(AkV )AjV

]

˙̀
γ,m(W ) :=

K∑
k=1

[−AkDb,lX]φk(AkV ),

for l = 1, . . . , dθ, dθ +1, . . . , dθ +dβ1 and m = dθ +dβ1 +1, . . . , dθ +dβ1 +dβ2 .
71 Let ˙̀1

γ denote

the first dθ elements, and ˙̀2
γ the remainder. Let Ṡn,θ be the statistic formed analogously to

(9) but based on an estimated version of ˙̀1
γ − İ12İ

−1
22

˙̀2
γ, with İγ = Pγ ˙̀

γ
˙̀′
γ, rather than ˜̀

γ.

Since score functions have finite second moments,

√
nPn

[
˙̀1
γ − İ12İ

−1
22

˙̀2
γ

]
 N (0, İγ,11 − İγ,12İ

−1
γ,22İγ,21),

and hence if ˙̀
γ and İγ could be replaced by estimates with conditions analogous to those

in assumption E and R holding, the test based on Ṡn,θ would correctly control size.

Table 17 demonstrates that this is not the case, with the efficient score based tests

controlling size, whilst the analogous tests based on ˙̀
γ (with the same estimator of φk) do

not.72 The key problem here is the bias caused by the regularised estimation of φk which is

present in the estimate of ˙̀
γ. This bias is removed by the orthogonal projection onto the

nuisance score space in the definition of ˜̀
γ.

Following the size results, I compared the power of the two efficient score tests to that of

the psuedo-ML based LM test which also was able to correctly control size in all designs con-

sidered. Figures 13 - 15 plot the results, corresponding to ε1 ∼ {N (0, 1), t′(5), SN ′(0, 1, 4)}
respectively where t′ and SN ′ denote the standardised version of the indicated distribution.

These finite sample power curves show that the power provided by any of the tests

considered declines as the density η2 approaches Gaussianity, particularly in the potentially

weakly identified case where ε1 ∼ N (0, 1) (figure 13) in which available power appears low.

In constrast, in figures 14 and 15 where there is no (weak) identification issue, the efficient

71Cf. proposition 5.1.
72In this simulation design, ε1 and ε2 have the same distribution, and are at a fixed distance from Gaussianity

to focus on the problem of plugging in an estimate of a non-parametric parameter, rather than potential
identification problems.
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score tests apear to provide good finite sample power, with the version based on one-step

updated estimates providing slightly higher power. The pseudo-maximum likelhood LM

test also provides good power in cases where the chosen pseudo-densities are close to the

truth. In particular, it slightly exceeds the power of the efficient score tests when ε2 has a

(standardised) t distribution in figures 13 and 14. Nevertheless, the efficient score test is

competitive and provides close to identical power in the first row of figure 14, despite the

pseudo density matching the truth in the first panel. Moreover, in cases where the psuedo-

density is far from the truth, the power of the efficient score test is substantially higher than

that provided by the pseudo-ML LM test (see, in particular, the third row of figure 14 and

each row of figure 15).

5.5 Simulation study (ii)

In this second simulation study I consider the power available in a LSEM where the struc-

tural parameter of interest is underidentified. Specifically suppose that the data satisfies

(34) where for θ = (a, b) with a 6= b and β1 = (σ1, σ2) ∈ (0,∞)2,

A(θ, β1) =

[
σ−1

1 0

0 σ−1
2

][
1 −a
1 −b

]
,

and there is one, zero-mean, unit variance X variable with coefficients R = 0. By explicit

calculation, the efficient information matrix in this model takes the form

Ĩγ =
1

(a− b)2

[
E[φ1(ε1)2]c −1

−1 E[φ2(ε2)2]c−1

]
, c := (σ2/σ1)

2 . (51)

I consider three distributions from which to draw each εk: (i) N (0, 1), (ii) t′(5) - a

(standardised) t distribution with 5 degrees of freedom and (iii) st′(5, 2) a (standardised)

skew t distribution constructed as in Fernandez and Steel (1998) with 5 degrees of freedom

and skewness parameter 2.73 These correspond to (i) E[φk(εk)
2] = 1, (ii) E[φk(εk)

2] = 1.25

and (iii) E[φk(εk)
2] ≈ 2.54 respectively.

In the standard normal case (i), Ĩγ has eigenvalues λ1 = (c + c−1)/(a− b)2, λ2 = 0 and

a one-dimensional hyperplane as its nullspace: N(Ĩγ) = {x ∈ R2 : cx1 = x2}. In cases (ii)

and (iii), the matrix is positive definite and so N(Ĩγ) = {0}.
Consider testing θ = θ0 = (a, b) = (1/2, 1/4), where σ1 = σ2 = 1 and hence the

nullspace is the line x1 = x2. I take n ∈ {600, 1000, 1400} and draw simulation samples

according to (34) with θ = θ0 + τ/
√
n and X ∼ N (0, 1). β2 is estimated by OLS and

β1 by GMM using the three moment conditions implied by the relationship E[V V ′] =

73The density functions of these distributions are plotted in figure 4.
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A(θ, β1)−1(A(θ, β1)−1)′. These estimates are used to construct estimates of the efficient score

function and information matrix as in (50). In each case I truncate at machine precision.

The finite sample and asymptotic power surfaces are plotted in figures 16 - 18. Figure

16 demonstrates the expected trivial power along the hyperplane N(Ĩγ) in the Gaussian

case, with power otherwise increasing in ‖τ‖. In contrast, figures 17 and 18 depict the

full rank case, in which trivial power is found only at the point τ = 0.74 In all three

figures, comparison of the finite sample power surface to the asymptotic power surface in

the bottom right suggests that the asymptotic power results provide a good approximation

to finite sample power.

6 Empirical study

In this section I use the LSEM of section 5 to analyse the relationship between hourly wages

and hours worked, using non-Gaussianity in the data to identify the structural parameter

of interest. There is a large literature on the estimation of labour supply equations, which

takes note of many econometric challenges; see Blundell, MaCurdy, and Meghir (2007);

Keane (2011) for detailed reviews. Two of the most notable difficulties include potential

endogeneity and heterogeneity.75

A common labour supply specification is the semi-log formulation (e.g. equation (2.8)

in Blundell et al., 2007):

H = θ logW + γ′1X + ε1, (52)

whereH is hours of work, W the wage rate andX contains an intercept along with additional

explanatory variables. As noted in e.g. Blundell et al. (2007), due to correlation with

unobserved characteristics, wages are unlikely to be exogenous.76 In order to take account

of this potential endogeneity, I stack equation (52) with an equation for log wages of the

form

logW = σ1H + γ′2X + ε2. (53)

Once re-arranged, these two equations form a simultaneous system as in section 5:

Y = RX + V, V = A(θ, σ)−1ε, (54)

where Y = (H, logW ) and X collects (exogenous) covariates. I take the matrix A to be

74Which, of course, is exactly the nullspace of Ĩγ in this case.
75A further difficulty is the fact that individuals select into the labour force. I focus only on the intensive

margin; a more realistic model would take account of potential selection biases which are ignored in the
subsequent analysis.

76Blundell et al. (2007, p. 4676) write that “Wages may well be endogenous because unobservables af-
fecting preferences for work may well be correlated with unobservables affecting productivity and hence
wages”. Additionally, the “division bias” highlighted by Borjas (1980) provides another source of potential
endogeneity.
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parametrised as

A(θ, σ) = D(σ2, σ3)−1S(θ, σ1) =

[
σ−1

2 0

0 σ−1
3

][
1 −θ
−σ1 1

]
, (55)

which permits the errors terms in V to be correlated with each other. Pre-multiplying Y

by S(θ, σ) yields that θ is measure of the effect of a change in the log wage on hours.77

The components β = (σ′, vec (R)′)′, are estimable by OLS and from the variance of V ,

Σ = A(θ, σ)−1[A(θ, σ)−1]′.

Since the model is invariant to sign changes and column permutations of the A matrix, I

choose the sign of the variance parameters σ2, σ3 to fix the column permutation and sign.78

With these restrictions – and given a value of θ – the β parameters are estimable by standard

techniques.79 A confidence set for θ can then be constructed by inverting the efficient score

test over a grid of possible values.

The data are taken from the CEPR uniform extracts of the (US) CPS outgoing rotation

group (ORG) (Center for Economic and Policy Research, 2020). I select the analysis sample

similarly to Bick, Blandin, and Rogerson (2021). In particular, I use the subset of the data

between 2000 and 2007, restricted to males 25 – 64, who are employed (excluding the self-

employed) with one job and at least 10 usual hours of work per week. Any observations

with imputed values for hours or wages are dropped. This procedure leaves just under

200,000 pooled observations. As explanatory variables I include age and its square along

with dummy variables for the year, education level (no high school, high school, some

college, college degree or advanced degree), race (white, black, hispanic, other), whether the

individual is married, whether they have children under the age of 18 in their household

(“kids”) and the interaction of kids with married.

I split the data between individuals who are paid hourly and those who are salaried.

The former group consists of approximately 78,000 observations whilst the latter has ap-

proximately 120,000 observations. I construct confidence intervals for θ by inverting the

efficient score test. Specifically, for each θ in a grid of 200 equally spaced points between

-1.5 and 1.5, I calculate the efficient score statistic (as described in section 5) and form the

confidence set consisting of those points θ for which the efficient score test does not reject

at the 5% level.

This procedure yields confidence intervals of [−0.069, 0.083] for salaried individuals and

[0.26, 0.43] for hourly paid individuals. These are plotted in figure 19; figure 20 plots the

values of the efficient score statistic over the considered grid. The results suggest that the

77β1,1 measures the effect of a change in hours on the log wage, but is not considered a parameter of interest
in this exercise.

78If θ ≥ 0 I take σ2 ≥ 0; if θ < 0 I take σ2 < 0 and check that σ1 ≥ 0. σ3 is always taken as positive.
79R can be estimated by OLS and σ from the system S(θ, σ1)ΣS(θ, σ1)′ = D(σ2, σ3)D(σ2, σ3)′, with popu-

lation moments replaced by sample equivalents based on the OLS residuals.
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choice of hours by salaried individuals is less sensitive to changes in their hourly wage rate

than for those who are paid by the hour. In particular, for the former group, the null

hypothesis of no effect cannot be rejected at the 5% significance level.

Histograms of the residuals from (54) – with θ taken as the value which minimises the

efficient score statistic – are plotted in figure 21 and overlaid with a N (0, 1) density function.

This figure is clearly suggestive of substantial non-Gaussianity in ε1 (but not ε2), providing

identifying power for θ.80

The confidence intervals here suggest a similar qualitative response of labour supply to

changes in wage rates as has been found previously in the literature, i.e. the effect of hourly

wages on hours is small for men.81

7 Discussion

In this paper I demonstrated that score-type statistics based on the efficient score function

can be used to perform uniformly valid inference in a wide class of models. A high level

framework was provided in order to develop the theoretical results, based on the local

asymptotic normality (LAN) framework of Le Cam.

The version of this framework considered permits many models and scenarios in which

standard testing procedures fail to correctly control size, as demonstrated via specific ex-

amples. This class includes models which may suffer from identification problems, models

where nuisance parameters may lie on the boundary of the parameter space and models

which need a regularisation step for their estimation. I demonstrated that the efficient score

test enjoys locally uniformly valid size control. Moreover, I showed that a number of stan-

dard testing optimality results continue to hold in this setup and demonstrated a minimax

optimality result which applies in cases where, for example, the parameter of interest is

underidentified.

A number of examples were studied in detail to demonstrate the applicability of the

suggested framework and how the conditions it requires may be shown to hold. Simulation

studies based on these examples suggest that the asymptotic results obtained provide a

useful guide to finite sample performance. The simulations also show that – in the cases

considered – the procedures based on the efficient score statistic perform better than alter-

native procedures. I applied the linear simultaneous equations model example to the study

of the labour supply decision of US men. This approach permits the study of simultaneous

systems without interventions or instruments.

80A Jarque and Bera (1980) test rejects the null that ε1 is Gaussian at all standard significance levels.
81A coefficient of e.g. θ = 0.3 in the semi-log specification of (52) implies that, for instance, a 50% increase

in the wage rate would increase hours worked by 0.3× log(1.5) ≈ 0.12. For summaries of elasticities found
in the literature, see e.g. Table 3 & Figure 2 of Bargain and Peichl (2016) and Table 3.1 & Figure 3.2 of
Evers, de Mooij, and van Vuuren (2005).
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The treatment in the current paper is restricted to cases where the observed data forms

a random sample. This restriction was made to remove inessential complications in the

derivation of the results. With these now established in the baseline i.i.d. case, an inter-

esting potential extension would be to extend these results to other sampling schemes. An

additional drawback of the current treatment is that the parameter of interest θ is required

to be a bona fide parameter of the model as opposed to a function of the model parameters.

An extension to permit this scenario could be provided along the lines of Susyanto and

Klaassen (2017). Such extensions are left for future work.
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A Notation & conventions

A := B means that A is defined to be B. A ⊂ B indicates that A is a subset of B. All
vector spaces are over the real field R. Given a positive integer K, [K] := {1, . . . , K}.
For any Euclidean parameter, say α, dα denotes the dimension of the space in which it
lives. Similarly for a vector of functions κ, dκ is the number of component functions. For
a sequence (xn)n∈N, (xn)n∈N ⊂ X denotes that each xn ∈ X . For any matrix M , ‖M‖2

is its spectral norm and M † is its Moore-Penrose pseudo-inverse. “�” is used to denote
the Loewner partial order; that is, given two Hermitian matrices A,B, A � B iff A− B is
positive semi-definite and A � B iff A−B is positive definite. If A is a linear operator, N(A)
is its nullspace. Given a topological space S, B(S) is its Borel σ-algebra. Weak convergence
is denoted by “ ”. Operator notation is often used for integrals: Pf :=

∫
f dP . Pn denotes

the empirical measure of a given sample and Gn the empirical process. Throughout this
paper & unless otherwise noted the sample considered is denoted by (Wi)

n
i=1 ∈ Wn, hence

Pnf =
∫
f dPn = 1

n

∑n
i=1 f(Wi). For a sequence of functions (fn)n∈N with each fn having

domain Wn and a sequence of probability measures (Pn)n∈N on W , convergence statements
will often be written as fn  f under Pn. This is shorthand for weak convergence under the
product measures P n

n . If X has distribution G, I write X ∼ G. If g is the density of G (with
respect to some σ-finite measure), I also write X ∼ g. X ' Y indicates that X and Y have
the same distribution. Lp(P ) denotes the space of functions f such that P |f |p <∞. In the
case where f = (f1, . . . , fK) is a vector of functions f ∈ Lp(P ) denotes that each fi ∈ Lp(P )
for i = 1, . . . , K. L0

p(P ) is the subspace of Lp(P ) whose members f satisfy Pf = 0. Given
a (closed) subspace S of a Hilbert space H, the orthogonal projection of a function f ∈ H
onto S is denoted by Π(f |S).

B Additional details and proofs of results in the main

text

B.1 Details and proofs for section 3

B.1.1 Construction of the sequence of experiments

In order to discuss power I use the limits of experiments framework of Le Cam (see e.g.
chapter 9 of van der Vaart (1998) for an introduction). Under the additional assumption
that Hγ is a linear space, I will obtain a Gaussian shift limit experiment on a particular
inner-product space.82

To state the proposition, I need to define the inner-product space that will be used to
parametrise the experiments. LetN(A) denote the null space of a linear transformation A; in
particular N(Ĩγ) denotes the null space of the matrix Ĩγ. For the nuisance perturbations, h,
it is more convenient to parametrise directly by the scores g = Bγh. For each g = Bγh ∈Hγ

let hg,η := {h ∈ Hη : Bγh = g}. Suppose that Hγ is a linear subspace of L2(Pγ) and note that
it is therefore a dense subspace of a its completion (which is a Hilbert space). It therefore
has an orthonormal basis, (gk)k∈N.83 For each element gk in this basis select (arbitrarily) an

82That is, the limit experiment is the restriction of a Gaussian shift experiment on a specific Hilbert space
to the inner-product space of interest. See e.g. Le Cam (1986, Chapter 9, section 3) or Strasser (1985,
Chapter 11) for an introduction to Gaussian shift experiments on Hilbert spaces.

83See footnote 93.
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element hk = hgk from each hgk,η. For any other element g ∈ Hγ choose hg =
∑

k∈N akhk
where g =

∑
k∈N akgk. Denote the collection of such hg as Hγ := {hg : g ∈ Hγ} ⊂ Hη.

84 I
will consider sequences of experiments, where each consists of measures of the form Pγn,τ,g =
Pγn,τ,h for τ ∈ N(Ĩγ)⊥ and g ∈Hγ, h = hg ∈ Hγ (with γ = limn→∞ γn); that is to say, these
experiments are parametrised by the (inner-product) space Hγ := N(Ĩγ)⊥ ×Hγ equipped
with the inner-product given below in (56).

The choice of a particular “representative” h = hg for each score g = Bγh ∈Hγ as in the
preceding construction is a technical point which will not impede statements being made
about the behaviour of tests along sequences with hn → h ∈ Hη \ Hγ due to the following
lemma.

Lemma B.1. Suppose that assumptions M, LAN, CM(i) hold and that (ψn)n∈N is a sequence
of tests on Wn (i.e. each ψn :Wn → [0, 1]).

(i) If (τn)n∈N ⊂ Rdθ and (hn)n∈N ⊂ Hη are convergent sequences with limits τ ∈ Rdθ and
h ∈ Hη respectively, then

lim sup
n→∞

[
P n
γn,τn,hnψn − P n

γn,τ,hψn
]

= 0.

(ii) If h1, h2 ∈ Hη are such that Bγh1 = Bγh2 and h1 − h2 ∈ Hη, then for any convergent
sequences (τn)n∈N ⊂ Rdθ , (h1,n)n∈N ⊂ Hη, (h2,n)n∈N ⊂ Hη with limits τ ∈ Rdθ and
h1, h2 ∈ Hη respectively,

Λn(γn(τn, h1,n), γn)− Λn(γn(τn, h2,n), γn) = oPγn (1),

and
lim sup
n→∞

[
P n
γn,τn,h1,n

ψn − P n
γn,τn,h2,n

ψn

]
= 0.

With the setup previously described the following result concerning convergence of ex-
periments can be stated. This result is straightforward given the assumptions made, and is
quite standard, aside from potentially one key aspect: the definition of the indexing set of
the sequence of experiments — that τ ∈ N(Ĩγ)⊥. This ensures that the inner-product in
equation (56) is an inner-product. If N(Ĩγ)⊥ was replaced by Rdθ and rank(Ĩγ) < dθ, the
map in (56) would only be a positive-semidefinite Hermitian form.85

Proposition B.2. Suppose that assumptions M, LAN and CM(i) hold and that Hγ is a
linear subspace of L2(Pγ). Suppose that rank(Ĩγ) > 0 and let Hγ := N(Ĩγ)⊥ ×Hγ. If the
map 〈·, ·〉Hγ : Hγ ×Hγ → R is defined by

〈(τ1, g1), (τ2, g2)〉 := 〈τ ′1 ˙̀
γ + g1, τ

′
2

˙̀
γ + g2〉Pγ , (56)

then (Hγ, 〈·, ·〉) is an inner-product space. In addition, the sequence of experiments (En)n∈N,
where each

En :=
(
Wn,B(Wn),

{
P n
γn,τ,g : (τ, g) ∈ Hγ

})
, (57)

84I will suppose that the hg = h0 chosen to correspond to g = 0 is hg = h0 = 0. Note that if Bγ is injective
there is only one such hg for each g ∈Hγ .

85That is, 〈(τ, g), (τ, g)〉 = 0 whilst (τ, g) 6= 0 would be possible. In particular, 〈(τ, 0), (τ, 0)〉 = 0 would hold
for all τ ∈ N(Ĩγ), which has positive dimension whenever rank(Ĩγ) < dθ.
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converges weakly to a Gaussian shift on (Hγ, 〈·, ·〉).

B.1.2 Proofs

Proof of proposition 3.1. To simplify the notation, let gn := τ ′ ˙̀γn+Bγnh and g := τ ′ ˙̀γ+Bγh.
Let {Wn,k : k ≤ n, n ∈ N} be a triangular array, where each row Wn,1, . . . ,Wn,n (n ∈ N)
is independently and identically distributed, with each random vector Wn,k having law Pγn .

Let {Zn,k : k ≤ n, n ∈ N} be the array defined by Zn,k :=
(

˜̀
γn(Wn,k)

′, gn(Wn,k)
)′

. The rows

of this array are i.i.d. with EZn,k = 0 and VZn,k =
[
Ĩγn Ĩγnτ
τ ′Ĩγn Pγng

2
n

]
(for each k, n). 86 By

assumption CM(ii)

1

n

n∑
k=1

VZn,k = VZn,1 →
[
Ĩγ Ĩγτ
τ ′Ĩγ σ2

τ,h

]
, (58)

where

σ2
τ,h := Pγg

2 = Pγ[τ
′ ˙̀
γ +Bγh]2 = lim

n→∞
Pγn

[
τ ′ ˙̀γn +Bγnh

]2

= lim
n→∞

Pγng
2
n, (59)

and hence (101) is satisfied. Moreover assumptions LAN and CM(ii) together yield that
(‖Zn,1‖2

2)n∈N is uniformly integrable and hence as the rows are identically distributed, (102)
holds. It then follows by lemma C.1 that under Pγn we have

√
nPn

(
˜̀′
γn , τ

′ ˙̀
γn +Bγnh

)′
 N

((
0
0

)
,

(
Ĩγ Ĩγτ
τ ′Ĩγ σ2

τ,h

))
. (60)

Combining equations (5), (58), (59) and (60) we have(√
nPn ˜̀′

γn , Λn(γn(τn, hn), γn)
)′
 N

((
0

−1
2
σ2
τ,h

)
,

(
Ĩγ Ĩγτ
τ ′Ĩγ σ2

τ,h

))
. (61)

The marginal convergence of the likelihood ratio yields that (P n
γn)n∈N and (P n

γn,τn,hn
)n∈N are

mutually contiguous (e.g. van der Vaart and Wellner, 1996, Example 3.10.6). We remark
here that a completely analogous argument to the foregoing applied to the array {gn(Wn,k) :
k ≤ n, n ∈ N} yields this same marginal convergence under assumption CM(i) rather than
assumption CM(ii) and hence the mutual contiguity of these sequences of measures continues
to hold under this weaker condition, as claimed in the statement of the proposition.

By Le Cam’s third lemma (e.g. van der Vaart and Wellner, 1996, Example 3.10.8) it
follows from (61) that under Pγn,τn,hn

√
nPn ˜̀

γn  N (Ĩγτ, Ĩγ).

Equation (6), the mutual contiguity and Le Cam’s first lemma (e.g. van der Vaart, 1998,
Lemma 6.4) allow us to conclude that

√
nPn

[
ˆ̀
n,θn − ˜̀

γn

]
= oPγn,τn,hn (1)

86We have that Pγn
˜̀
γn

˙̀′
γn = Ĩγn (e.g. Rudin, 1991, Theorem 12.14). Pγn

˜̀
γn [Bγnh] = 0 by the construction

of the efficient score function.
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It follows that under Pγn,τn,hn

√
nPn ˆ̀

n,θn =
√
nPn ˜̀

γn +
√
nPn

[
ˆ̀
n,θn − ˜̀

γn

]
 N (Ĩγτ, Ĩγ).

Proof of lemma B.1. For (i), use (5) to obtain that under Pγn

Λn(γn(τn, hn), γn(τ, h)) = Λn(γn(τn, hn), γn)− Λn(γn(τ, h), γn) = oPγn (1),

and so by the continuous mapping theorem, the mutual contiguity of
(
P n
γn

)
n∈N and

(
P n
γn,τ,h

)
n∈N

(Proposition 3.1) and Le Cam’s first lemma (e.g. van der Vaart, 1998, Lemma 6.4)

exp(Λn(γn(τn, hn), γn(τ, h))) 1, under Pγn,τ,h.

Since ψn since it is bounded between 0 and 1, it is tight under Pγn,τ,h and hence by Prohorov’s
theorem (e.g. Billingsley, 1999, Theorem 5.1) for any subsequence (nj)j∈N of (n)n∈N there
is a further subsequence (nk)k∈N such that ψnk  ψ for some ψ ∈ [0, 1] under Pγn,τ,h. In
conjunction with the preceding display, Slutsky’s lemma yields

(ψn, exp(Λn(γn(τn, hn), γn(τ, h)))) (ψ, 1) under Pγn,τ,h.

By Le Cam’s third lemma (e.g. van der Vaart, 1998, Theorem 6.6) we have that under
Pγn,τn,hn , the law of ψnk converges weakly to the law of ψ in the preceding display. Since
each ψn ∈ [0, 1] it is both uniformly Pγn,τ,h-integrable and uniformly Pγn,τn,hn-integrable.
These observations imply that

lim
k→∞

[
P nk
γnk ,τnk ,gnk

ψn − P nk
γnk ,τ,h

ψnk

]
= 0.

Since the original subsequence (nj)j∈N was arbitrary, this holds also for the original sequence.
For (ii), from (5), assumption CM(i) and the hypothesis that Bγh1 = Bγh2

Λn(γn(τn, h1,n), γn(τn, h2,n)) = Λn(γn(τn, h1,n), γn)− Λn(γn(τn, h2,n), γn)

=
1√
n

n∑
i=1

Bγn(h1 − h2) + oPγn (1).

h := h1−h2 ∈ Hη by assumption. Let hn := h for each n ∈ N and form gn as in the proof of
proposition 3.1 with τ = 0. Argue analogously to the the proof of proposition 3.1 (noting
that for this purpose assumption CM(i) rather than CM(ii) is sufficient) to obtain

1√
n

n∑
i=1

Bγn(h1 − h2) =
1√
n

n∑
i=1

Bγnh N (0, σ2
0,h), under Pγn ,

with σ2
0,h = Pγ [Bγh]2 = Pγ0

2 = 0. It follows from the two preceding displays that

Λn(γn(τn, h1,n), γn(τn, h2,n)) = Λn(γn(τn, h1,n), γn)− Λn(γn(τn, h2,n), γn) = oPγn (1).

With this in hand, the second part of (ii) can be established by an argument analogous to
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that used to establish (i).

Proof of proposition B.2. That Hγ is a linear space is clear. Moreover, linearity, coordinate
symmetry, and positive semi-definiteness of the map in (56) are clear from its definition.
It remains to prove that it is positive definite. Let Π denote the projection onto cl Hγ ⊂
L2(Pγ). Then, we can re-write

〈(τ, g), (τ, g)〉 = τ ′Ĩγτ + 〈τ ′Π ˙̀
γ + g, τ ′Π ˙̀

γ + g〉Pγ . (62)

This is strictly positive whenever τ ∈ N(Ĩγ)⊥ \ {0}.87 If instead τ = 0 but g 6= 0 it is
positive since 〈·, ·〉Pγ is an inner product. Thus 〈·, ·〉Hγ is an inner product and (Hγ, 〈·, ·〉)
is an inner-product space. Denote the completion of this space with respect to the norm
induced by 〈·, ·〉 as (Hγ, 〈·, ·〉).

A Gaussian shift on (Hγ, 〈·, ·〉) is the restriction to Hγ of the standard Gaussian shift
experiment of the Hilbert space (Hγ, 〈·, ·〉). Define

Ln(τ, g) := Λ(γn(τ, hg), γn) +
1

2
‖(τ, g)‖2, (63)

and note that equation (59) and the marginal convergence of the log-likelihood (cf. equation
(60)): √

nPnτ ′ ˙̀γn +Bγnhg  N
(
0, σ2

τ,g

)
under Pγn , (64)

remain valid in this setting, where we write σ2
τ,g for σ2

τ,hg
.88 By equation (59)

‖(τ, g)‖2 = σ2
τ,g = Pγ

[
τ ′ ˙̀γ + g

]2

= lim
n→∞

Pγn

[
τ ′ ˙̀γn +Bγnhg

]2

. (65)

Equations (5), (63) and (65) allow us to write

Ln(τ, g) =
√
nPn

[
τ ′ ˙̀γn +Bγnhg

]
+ oPγn (1),

and hence by (64),

Ln(τ, g) N
(
0, ‖(τ, g)‖2

)
under Pγn , for any (τ, g) ∈ Hγ. (66)

Moreover, for any (τ1, g1), (τ2, g2) ∈ Hγ and any a1, a2 ∈ R we have, where Rn,i = oPγn (1)

87Suppose τ ∈ N(Ĩγ)⊥ and τ ′Ĩγτ = 0. The latter implies that Ĩ1/2γ τ = 0, and hence Ĩγτ = Ĩ1/2γ Ĩ1/2γ τ = 0;

i.e. τ ∈ N(Ĩγ). Since τ is also in N(Ĩγ)⊥ we must have τ ′τ = 0, i.e. τ = 0.
88Proposition 3.1 requires assumption CM(ii) rather than the weaker CM(i). It is easy to see that an

analogous argument as to that given in the proof of proposition 3.1 concerned only with marginal weak
convergence of the log-likelihood in equation (60) holds under the weaker condition.
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for i = 1, 2, 3,

a1Ln(τ1, g1) + a2Ln(τ2, g2)− Ln(a1τ1 + a2τ2, a1g1 + a2g2)

= a1

√
nPn

[
τ ′1

˙̀
γn +Bγnhg1

]
+ a1Rn,1 − a2

√
nPn

[
τ ′2

˙̀
γn +Bγnhg2

]
+ a2Rn,2

−√nPn
[
(a1τ1 + a2τ2)′ ˙̀γn +Bγn [a1hg1 + a2hg2 ]

]
+Rn,3

= a1Rn,1 + a2Rn,2 +Rn,3

= oPγn (1).

That is,

a1Ln(τ1, g1) + a2Ln(τ2, g2)− Ln(a1τ1 + a2τ2, a1g1 + a2g2) = oPγn (1),

whenever a1, a2 ∈ R, (τ1, g1), (τ2, g2) ∈ Hγ.
(67)

By imitating the proof of Theorem 69.4 in Strasser (1985), one obtains that the experiment

E = (Ω,F , {Gτ,g : (τ, g) ∈ Hγ}) (68)

is the restriction to Hγ of a Gaussian shift experiment on (Hγ, 〈·, ·〉) if and only if the
stochastic process (L(τ, g))(τ,g)∈Hγ , defined by

L(τ, g) = Λ((τ, hg), (0, 0)) +
1

2
‖(τ, g)‖2, (69)

with Λ((τ, hg), (0, 0)) the log-likelihood ratio of Gτ,g and G(0,0), is the restriction to Hγ of

a standard Gaussian process defined on Hγ under G(0,0).
89 Combining equations (66) and

(67) we have that for any K ∈ N, a ∈ RK and (τk, gk) ∈ Hγ (for k = 1, . . . , K) we have that
under Pγn

K∑
k=1

akLn(τk, gk) 
K∑
k=1

akL
∗(τk, gk) = L∗

(
K∑
k=1

ak(τk, gk)

)
, (70)

for a square integrable stochastic process L∗ defined on Hγ. Thus we have convergence of the
finite dimensional marginal distributions of Ln to those of L∗ by the Cramér-Wold theorem.
Imitating the proof of Theorem 68.4 in Strasser (1985) yields that a square integrable
stochastic process L defined on Hγ is the restriction to Hγ of a standard Gaussian process
defined on Hγ if and only if L is linear and has a N (0, ‖(τ, g)‖2) marginal distribution for
each (τ, g) ∈ Hγ. Since our process L∗ satisfies these conditions, it follows that it is such
a restriction of a standard Gaussian process. Therefore we have convergence of the finite
dimensional distributions of (Ln(τ, g))(τ,g)∈Hγ to those of (the restriction to Hγ of) a standard

Gaussian process (on (Hγ, 〈·, ·〉)). By (63) and (69) this implies the convergence of the finite
dimensional distributions of (Λn(γn(τ, hg), γn))(τ,g)∈Hγ to those of (Λ((τ, hg), (0, 0)))(τ,g)∈Hγ .
With this in hand, the proof is completed by an appeal to Theorem 61.6 of Strasser (1985),
upon noting that that the sequence of experiments (En)n∈N is contiguous (see e.g. Strasser,
1985, Definition 61.1) by an analogous argument as used to prove the contiguity claimed in
proposition 3.1 and the transitivity of (mutual) contiguity.

89Such a standard Gaussian process is a square integrable stochastic process such that all its finite dimen-
sional distributions are Gaussian with EL(τ1, g1) = 0 and E[L(τ1, g1)L(τ2, g2)] = 〈(τ1, g1), (τ2, g2)〉 for all
(τ1, g1), (τ2, g2) ∈ Hγ .
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Lemma B.3. Suppose that assumptions M, LAN, CM(ii), E and R hold for a sequence
(γn)n∈N ⊂ Γ with limit γ ∈ Γ. Then, for any hn → h with each hn, h ∈ Hη

lim
n→∞

P n
γn,0,hnφn,θn =

{
α if rank(Ĩγ) > 0

0 if rank(Ĩγ) = 0
.

Proof of Lemma B.3. By proposition 3.1 we have that under Pγn,0,hn

√
nPn ˆ̀

n,θn  N (0, Ĩγ).

Equations (7), (8) and Lemma C.6 imply that ‖Î†n,θn−Ĩ†γ‖2 = oPγn (1). The mutual contiguity
established in proposition 3.1 along with Le Cam’s first lemma (e.g. van der Vaart, 1998,
Lemma 6.4) ensures that this result and equation (6) also hold under Pγn,0,hn :

√
nPn

[
ˆ̀
n,θn − ˜̀

γn

]
= oPγn,0,hn (1) and ‖Î†n,θn − Ĩ†γ‖2 = oPγn,0,hn (1).

Write Ẑn :=
√
nPn ˆ̀

n,θn . We have

Ẑn =
√
nPn ˜̀

γn +
√
nPn

[
ˆ̀
n,θn − ˜̀

γn

]
 Z ∼ N (0, Ĩγ)

under Pγn,0,hn . We now cover the case of one-sided and two-sided tests separately. In the
case of a two-sided test, the continuous mapping theorem implies that

Ŝn,θn = Ẑ ′nÎ†n,θnẐn  Z ′Ĩ†γZ =: S ∼ χ2
r,

under Pγn,0,hn where r = rank(Ĩγ).90

Let cn be the 1 − α quantile of the χ2
rn distribution and c the 1 − α quantile of the χ2

r

distribution. We have Pγn{cn = c} = Pγn{rn = r} → 1 by assumption. This implies that
cn−c→ 0 in Pγn-probability and hence by the mutual contiguity and Le Cam’s first lemma,

also under Pγn,0,hn . By continuous mapping once more we have Ŝn,θn − cn  S − c under
Pγn,0,hn .

Now, consider first the case where r > 0. In this case, since the χ2
r distribution is

continuous the portmanteau theorem gives

Pγn,0,hnφn,θn = Pγn,0,hn

(
Ŝn,θn − cn > 0

)
→ L (S − c > 0) = α,

where L is the law of S. In the case where instead r = 0 we note that on the sets {rn = r} =
{rn = 0} we have that Î†n,θn = 0 and cn = 0 and hence do not reject since Ŝn,θn = 0 ≤ cn = 0.
It follows that Pγn,0,hnφn,θn ≤ 1− Pγn,0,hn{rn = r} → 0.

Finally consider a one-sided test with dθ = 1 and 1 − α ∈ [1/2, 1). By the continuous
mapping theorem,

Ŝn,θn = Ẑn

√
Î†n,θn  Z

√
Ĩ†γ.

If r = rank(Ĩγ) = 1, then Z

√
Ĩ†γ = Z/

√
Ĩγ ∼ N (0, 1) and since this distribution is

90The distributional result is given by, for example, Theorem 9.2.2 in Rao and Mitra (1971).
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continuous, the portmanteau theorem yields

Pγn,0,hnφn,θn → 1− Φ(zα) = α,

where Φ is the CDF of the standard normal distribution. If, instead r = 0, then again on
the sets where rn = rank(În,θn) = 0 we have that În,θn = Î†n,θn = 0 and so Ŝn,θn = 0 ≤ zα
and hence we do not reject. It follows that Pγn,0,hnφn,θn ≤ 1− Pγn,0,hn{rn = r} → 0.

Lemma B.4. Suppose that assumptions M, LAN, CM(ii), E and R hold for a convergent
sequence (γn)n∈N ⊂ Γ with limit γ ∈ Γ. Suppose we are given a convergent sequences
hnk → h ∈ Hη with (hnk)k∈N ⊂ Hη. If the limit

S := lim
k→∞

P nk
γnk ,0,hnk

φnk,θnk (71)

exists, then S = α× 1{rank(Ĩγ) > 0}.

Proof. The idea is to construct a new sequence to which proposition B.3 can be applied.91

For all m with m ∈ [nk, nk+1) ∩ N for some k ∈ N put h∗m = hnk . For m = 1, . . . , n1, put
h∗m = hn1 . For each m let γ∗m = γm. By construction h∗m → h, and by our hypotheses and
proposition B.3 we may conclude that

lim
m→∞

Pm
γ∗m,0,h

∗
m
φm,θ∗m = sγ :=

{
α if rank(Ĩγ) > 0

0 if rank(Ĩγ) = 0
.

Fix an arbitrary ε > 0. There is a M ∈ N such that for all m ≥M ,
∣∣∣Pm

γ∗m,0,h
∗
m
φm,θ∗m − sγ

∣∣∣ <
ε/2. By (71) there is a K ∈ N such that if k ≥ K,

∣∣∣S − P nk
γnk ,0,hnk

φnk,θnk

∣∣∣ < ε/2. Hence for

any k sufficiently large that m = nk ≥M and k ≥ K we have

|S − sγ| ≤
∣∣S − Pm

γ∗m,0,h
∗
m
φm,θ∗m

∣∣+
∣∣Pm

γ∗m,0,h
∗
m
φm,θ∗m − sγ

∣∣ < ∣∣∣S − P nk
γnk ,0,hnk

φnk,θnk

∣∣∣+
ε

2
< ε.

Since ε > 0 was arbitrary, the inequality |S − sγ| < ε can be obtained for any ε > 0 and
hence taking the limit as ε ↓ 0 completes the proof.

Proof of proposition 3.2. There is a sequence (hn)n∈N ⊂ H ′η and a subsequence (nj)j∈N of
(n)n∈N such that

S := lim sup
n→∞

sup
h∈H′η

P n
γn,0,hφn,θn = lim sup

n→∞
P n
γn,0,hnφn,θn = lim

j→∞
P
nj
γnj ,0,hnj

φnj ,θnj

There is a further subsequence (nk)k∈N such that hnk → h and S = limk→∞ P
nk
γnk ,0,hnk

φnk,θnk .

Applying lemma B.4 yields that S = α × 1{rank(Ĩγ) > 0}. Since an analogous argument
can be made to obtain the same conclusion but with “”lim inf” replacing “”lim sup” in the
definition of S, we obtain the desired result.

Lemma B.5. Fix a convergent sequence (ηn)n∈N and denote its limit by η. Suppose that
assumptions M, LAN, CM(ii), E and R hold for any sequence (γn)n∈N where each γn :=

91This construction is based on that used in the proofs of e.g. Lemma 6 in Andrews and Guggenberger
(2010b), Lemma 2.1 in Andrews and Cheng (2012).
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(θn, ηn)n∈N ⊂ Θ′ × H =: Γ′ with θn → θ ∈ Θ′ ⊂ Θ. Suppose we are given convergent
sequences γnk → γ with (γnk)k∈N ⊂ Γ′ and hnk → h with (hnk)k∈N ⊂ Hη. If the limit

S := lim
k→∞

P nk
γnk ,0,hnk

φnk,θnk (72)

exists, then S ≤ α.

Proof. The idea is to construct a new sequence to which proposition B.3 can be applied.92

For all m with m ∈ [nk, nk+1) ∩ N for some k ∈ N put θ∗m = θnk and h∗m = hnk . For
m = 1, . . . , n1, put θ∗m = θn1 and h∗m = hn1 . For each m let γ∗m = (θ∗m, ηm). By construction
γ∗m → γ through Γ′ and h∗m → h, and by our hypotheses and proposition B.3 we may
conclude that

lim
m→∞

Pm
γ∗m,0,h

∗
m
φm,θ∗m ≤ α.

Fix an arbitrary ε > 0. There is a M ∈ N such that for all m ≥M , Pm
γ∗m,0,h

∗
m
φm,θ∗m ≤ α+ε/2.

By (72) there is a K ∈ N such that if k ≥ K,
∣∣∣S − P nk

γnk ,0,hnk
φnk,θnk

∣∣∣ < ε/2. Hence for any k

sufficiently large that m = nk ≥M and k ≥ K we have

S ≤
∣∣S − Pm

γ∗m,0,h
∗
m
φm,θ∗m

∣∣+ Pm
γ∗m,0,h

∗
m
φm,θ∗m <

∣∣∣S − P nk
γnk ,0,hnk

φnk,θnk

∣∣∣α +
ε

2
≤ α + ε.

Since ε > 0 was arbitrary, we can obtain the inequality S ≤ α + ε for any ε > 0 and hence
taking the limit as ε ↓ 0 completes the proof.

Proof of proposition 3.3. There are sequences (θn)n∈N ⊂ Θ′ and (hn)n∈N ⊂ H ′η and a subse-
quence (nj)j∈N of (n)n∈N such that

S := lim inf
n→∞

inf
θ∈Θ′

inf
h∈H′η

P n
(θ,ηn),0,h(θ ∈ Ĉn) = lim

j→∞
P
nj
(θnj ,ηnj ),0,hnj

(θnj ∈ Ĉnj).

There is a further subsequence (nk)k∈N of (nj)j∈N such that θnj → θ ∈ Θ′ and hnj → h ∈ H ′η.
We also clearly have

S = lim
k→∞

P nk
(θnk ,ηnk ),0,hnk

(θnk ∈ Ĉnk) = 1− lim
k→∞

P nk
(θnk ,ηnk ),0,hnk

φnk,θnk . (73)

Apply lemma B.5 to conclude that 1−S ≤ α, and rearrange to obtain the desired result.

Proof of proposition 3.4. By (both parts of) lemma B.1, it suffices to show that

lim sup
n→∞

P n
γn,τ,hψn ≤ 1− Φ

(
zα − Ĩ1/2

γ τ
)

for all τ > 0, h ∈ Hγ. (74)

Since dθ = 1 and Ĩγ > 0, N(Ĩγ)⊥ = R. Let g̃ = (gk)k∈N ⊂ Hγ be an orthonormal basis of
cl Hγ.

93 Consider the subspace Gm := Span{g1, . . . , gm}, and let Πm denote the orthogonal

92See footnote 91.
93Such a basis always exists: by assumption M,W is Polish. Take a metric d such that (W, d) is a complete

(separable) metric space. By Theorem 1.3 in Billingsley (1999), Pγ is tight. By Proposition 7.14.12 in
Bogachev (2007) this is a sufficient condition for separability of Pγ which is equivalent to separability
of the Lp(Pγ) spaces for p ∈ (0,∞) (e.g. Bogachev, 2007, Exercise 4.7.63). cl Hγ is therefore separable
as a subset of L2(Pγ). Choose a countable dense subset in Hγ and apply Gram-Schmidt to obtain an
orthonormal basis which satisfies the the desired property.
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projection onto Gm. Fix b = (τ, gb) ∈ (0,∞)×Hγ =: K1 and any ε > 0.94 By lemma C.2 we

can take m ∈ N large enough that
∥∥∥(Πm − Π) ˙̀

γ

∥∥∥
Pγ ,2

< ε. Now consider the restriction of E

to R×Gm for any m ∈ N.95 Choose a = (0, ga) with ga = Πm
(
τΠ ˙̀

γ + gb

)
= τ

(
ΠmΠ ˙̀

γ

)
+gb

and note that by Lemma 28.1 of Strasser (1985) any test ψ of level−α of H0 against H1

satisfies
Gbψ ≤ 1− Φ (zα − ‖b− a‖)

Expand the square of the norm using the Pythagorean theorem to obtain

‖b− a‖2 = τ 2Ĩγ + τ 2
∥∥∥(Πm − Π) ˙̀

γ

∥∥∥2

Pγ ,2
= τ 2Ĩγ + τ 2ε2.

Hence we have

Gbψ ≤ 1− Φ

(
zα −

√
τ 2Ĩγ + τ 2ε2

)
.

Since ε > 0 was arbitrary, we can take the limit as ε ↓ 0 to obtain

Gbψ ≤ 1− Φ
(
zα − Ĩ1/2

? τ
)
, (75)

which holds for all b ∈ K1, since the choice of b ∈ K1 was arbitrary. Moreover, since the
test ψ was an arbitrary test of level-α, this power bound holds for all level-α tests in E .

By proposition B.2 the the sequence of experiments (En)n∈N defined in (57) converge to
the dominated experiment E . (74) then follows on combining the power bound given by
(75) with Theorem 7.2 in van der Vaart (1991).

Proof of corollary 3.5. Since Ĩγ > 0 and dθ = 1, assumption R is automatically satisfied
given assumption E. By proposition 3.1 we have that

√
nPn ˆ̀

n,θ0/Î1/2
n,θ0
 N (Ĩ1/2

γ τ, 1), under Pγn,τn,hn .

Hence by the portmanteau theorem

lim
n→∞

P n
γn,τn,hnφn = lim

n→∞
P n
γn,τn,hn(

√
nPn ˆ̀

n,θ0/Î1/2
n,θ0

> zα) = 1− Φ(zα − Ĩ1/2
γ τ).

For τ ≤ 0, 1 − Φ(zα − Ĩ1/2
? τ) ≤ α; hence this test is level-α as claimed. For any τ > 0, it

attains the power bound in equation (15).

Proof of proposition 3.6. The proof is is very similar to that of proposition 3.4. By lemma
B.1 it suffices to show that for all τ 6= 0 and h ∈ Hγ

lim sup
n→∞

P n
γn,τ,hψn ≤ 1− Φ

(
zα/2 − Ĩ1/2

γ τ
)

+ 1− Φ
(
zα/2 + Ĩ1/2

γ τ
)
. (76)

Since dθ = 1 and Ĩγ > 0, N(Ĩγ)⊥ = R. Let g̃, Gm and Πm be defined as in the proof of
proposition 3.4 and consider the restriction of E to Lm := R × Gm for some m ∈ N which
contains (τ, g) ∈ K1 = {(τ, g) : τ 6= 0, h ∈Hγ}.96 This is a finite dimensional (hence closed)

94We can always change the choice of the orthonormal basis such that gb lies in (each) Gm.
95See equations (68), (69) and the surrounding text for the definitions of E and Gτ,g.
96See footnote 94.
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subspace of Hγ (the completion of Hγ) and so is a Hilbert space. Hence this restriction is a
finite dimensional (standard) Gaussian shift. Take f : R × Gm → R as f(τ, g) = τ and let

Σm := Pγ

(
[I − Πm] ˙̀

γ

)2

, which can be ensured positive by taking m ∈ N sufficiently large.97

Then, letting g ∈ Gm be such that g = −Πm ˙̀
γ ∈ Gm, e = (1, g) /

√
Σm is a unit vector in

R × Gm ⊂ Hγ, orthogonal to N(f) = {(0, g) : g ∈ Gm} and has f(e) = 1/
√

Σm > 0. Thus,
by Theorem 28.8 of Strasser (1985), any unbiased test ψ of level-α has power bounded by

Gτ,gψ ≤ 1− Φ(zα/2 − (Σm)1/2τ) + 1− Φ(zα/2 + (Σm)1/2τ).

Since Σm → Ĩγ as m→∞, by continuity we obtain that

Gτ,gψ ≤ 1− Φ(zα/2 − Ĩ1/2
γ τ) + 1− Φ(zα/2 + Ĩ1/2

γ τ). (77)

Since the point (τ, g) ∈ K1 was arbitrary, this bound holds for all K1.
By proposition B.2 the sequence of experiments (En)n∈N converges to the dominated

experiment E . Let πn(τ, g) := P n
γn,τ,gψn ∈ [0, 1]. Fix a (τ, g) ∈ K1 and let (nj)j∈N be a

subsequence of (n)n∈N along which lim supn→∞ P
n
γn,τ,gψn = limj→∞ P

nj
γnj ,τ,g

ψnj . Since [0, 1]Hγ

is compact in the product topology there is a subnet (nj(α))α∈A of the subsequence (nj)j∈N
and a function π : Hγ → [0, 1] such that limα∈A πnj(α)

(τ, g) = π(τ, g) for every (τ, g) ∈ Hγ.
By Theorem 7.1 in van der Vaart (1991) there is a test ψ in E with power function π. By our
hypotheses and the pointwise convergence we have that for any τ 6= 0 and any g1, g2 ∈Hγ

π(0, g1) = lim
α∈A

πnj(α)
(0, g1) ≤ α ≤ lim

α∈A
πnj(α)

(τ, g2) = π(τ, g2).

It follows that ψ is unbiased and hence combining

lim sup
n→∞

P n
γn,τ,gψn = lim sup

n→∞
πn(τ, g) = lim

j→∞
πnj(τ, g) = lim

α∈A
πnj(α)

(τ, g) = π(τ, g)

with the power bound given by (77) we obtain (76).98

Proof of corollary 3.7. Since Ĩγ > 0 and dθ = 1, assumption R is automatically satisfied
given assumption E. By proposition 3.1 we have that

√
nPn ˆ̀

n,θ0/Î1/2
n,θ0
 N (Ĩ1/2

γ τ, 1), under Pγn,τn,hn .

Let the 1 − α quantile of the χ2
1 distribution be denoted by cα. By assumption R holds

and the contiguity noted in proposition 3.1 we have that Pγn,τn,hn(r̂n = 1) → 1 and hence
cn → cα in Pγn,τn,hn-probability. Hence by the portmanteau theorem

lim
n→∞

P n
γn,τn,hnφn,θ0 = 1− Φ(zα/2 − Ĩ1/2

? τ) + 1− Φ(zα/2 + Ĩ1/2
? τ),

which is exactly the power bound given by equation (16). For τ = 0, 1 − Φ(zα/2) + 1 −
Φ(zα/2) = α; hence this test is level-α as claimed. It is unbiased since the last right hand
side expression in the preceding display exceeds α for any τ 6= 0.

Lemma B.6. If (Hγ, 〈·, ·〉) is the completion of (Hγ, 〈·, ·〉), then

97By lemma C.2 we have that Σm → Ĩγ > 0 as m→∞.
98Where g = Bγh for the h ∈ Hγ in the latter.
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(i) we can take Hγ to be N(Ĩγ)⊥ × cl Hγ;
(ii) (τn, gn)n∈N ⊂ Hγ converges to (τ, g) ∈ Hγ if and only if τn → τ ∈ N(Ĩγ)⊥ and

gn → g ∈ cl Hγ.

Proof. We first note that (x, y) 7→ x′Ĩγy defines an inner-product on N(Ĩγ)⊥. Linearity and
symmetry are obvious. Positive definiteness was established in footnote 87. On Rdθ it defines

a positive-semidefinite Hermitian form and thus induces a semi-norm by ‖x‖ :=
√
x′Ĩγx.

By the Pythagorean theorem we can decompose the square of the Hγ norm as follows

‖(τn, gn)− (τ, g)‖2 = (τn − τ)′Ĩγ(τn − τ) + ‖(τn − τ)′Π ˙̀
γ + gn − g‖2

Pγ ,2. (78)

We start with the first claim. Suppose that (τn, gn)n∈N ⊂ Hγ is a Cauchy sequence.
By (78) we must have that (τn − τm)′Ĩγ(τn − τ)m → 0 as n,m → ∞. Let UDU ′ be

an eigendecomposition of Ĩ1/2
γ with eigenvalues λ1, . . . , λdθ in decreasing order. Then the

eigenvectors uj for j > r are in the null space of Ĩ1/2
γ and so that of Ĩγ. Letting U1 be the

dθ × r matrix of the first r columns of U and U2 the remaining columns, we then have that
‖τn − τm‖2 = ‖U ′(τn − τm)‖2 = ‖U ′1(τn − τm)‖2. Let τ̃n,m := U ′1(τn − τm) and note that by
hypothesis

(τn − τm)′Ĩγ(τn − τm) =
r∑
i=1

λiτ̃
2
n,m,i → 0.

Since the λi are all positive this implies that ‖τ̃n,m‖2 → 0, i.e. τn − τm → 0. Since this is a
Cauchy sequence in N(Ĩγ)⊥, which is a closed subspace of Rdθ , it follows that τn has a limit,

say τ ∗ ∈ N(Ĩγ)⊥. From this and that
∥∥∥(τn − τm)′Π ˙̀

γ + gn − gm
∥∥∥
Pγ ,2
→ 0 (as m,n→∞) we

can also conclude that (gn)n∈N is Cauchy in L2(Pγ) and hence has a limit, say g∗ ∈ cl Hγ.
99

Hence all such Cauchy sequences have limits in N(Ĩγ)⊥ × cl Hγ and so this is complete
under the relevant norm.

To complete the proof we will now show that (τn, gn)n∈N ⊂ Hγ converges to (τ, g) ∈
N(Ĩγ)⊥ × cl Hγ if and only if τn → τ ∈ N(Ĩγ)⊥ and gn → g ∈ cl Hγ. Since this ensures
that N(Ĩγ)⊥× cl Hγ = clHγ, this is the smallest closed set containing Hγ, which completes
the proof of the first part, and hence the second.

Suppose first that (τn, gn)n∈N ⊂ Hγ converges to (τ, g) ∈ N(Ĩγ)⊥ × cl Hγ. Then since
each τn− τ ∈ N(Ĩγ)⊥ we can argue as above via the same eigendecomposition (replacing τm
with τ) to obtain that τn − τ → 0. An argument analogous to that in footnote 99 (replace
gm with g) can be used to show the convergence gn → g in the L2(Pγ) norm.

For the converse, suppose that τn → τ and gn → g. It follows immediately that
(τn − τ)′Ĩγ(τn − τ)→ 0 and ‖(τn − τ)′Π ˙̀

γ‖Pγ ,2 → 0. Using (78) we have

‖(τn, gn)− (τ, g)‖2 . (τn − τ)′Ĩγ(τn − τ) + ‖(τn − τ)′Π ˙̀
γ‖2

Pγ ,2 + ‖gn − g‖2
Pγ ,2 = o(1).

99By the reverse triangle inequality we have

lim
n,m→∞

‖gn − gm‖Pγ ,2 ≤ lim
n,m→∞

∥∥∥(τn − τm)′Π ˙̀
γ + gn − gm

∥∥∥
Pγ ,2

= 0.
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Proof of proposition 3.8. Let M̃a := {(τ, h) ∈Ma : h ∈ Hγ}. We clearly have that

lim sup
n→∞

inf
(τ,h)∈Ma

P n
γn,τ,hψn ≤ lim sup

n→∞
inf

(τ,h)∈M̃a

P n
γn,τ,hψn,

so it will suffice to demonstrate the upper bound in

lim sup
n→∞

inf
(τ,h)∈M̌a

P n
γn,τ,gψn = lim sup

n→∞
inf

(τ,h)∈M̃a

P n
γn,τ,hψn ≤ 1− P

(
χ2
r(a) ≤ cr,α

)
, (79)

where M̌a := {(τ, g) ∈ Hγ : τ ′Ĩγτ ≥ a}. We first observe that if (τ, g) ∈ Hγ then τ ∈ N(Ĩγ)⊥.
Define f : Hγ → Rdθ by f(τ, g) := τ and let L0 := N(f). Let Π0 denote the orthogonal
projection onto L0 in Hγ and Π the orthogonal projection onto cl Hγ in L2(Pγ). The (finite
dimensional) subspace L⊥0 ⊂ Hγ consists of vectors

L⊥0 =
{

(τ,−τ ′Π ˙̀
γ) ∈ Hγ

}
.

It follows from lemma B.6 that this has dimension r, since we can take Hγ = N(Ĩγ)⊥×cl Hγ.
Consider the orthogonal projection onto L0: we must have 〈(τ, g)− Π0(τ, g), (0, g′)〉 = 0

for all (0, g′) ∈ L0. This implies that Π0(τ, g) = (0, g̃) must satisfy g̃ = τ ′Π ˙̀
γ + g. It follows

that ‖(τ, g)− Π0(τ, g)‖2 = τ ′Ĩγτ . Define

Ma =
{

(τ, h) ∈ Hγ : τ ′Ĩγτ ≥ a
}
,

and let M
′
a be the set defined analogously to Ma where “=” replaces “≥”. We note here

that Ma = cl M̌a. For this, note firstly that any convergent (tn, gn)n∈N ⊂ Ma converges in
Ma and hence this is a closed set.100 It follows that cl M̌a ⊂Ma. Suppose that this inclusion
were strict. Then there must be a point (τ, g) ∈ Ma which is not the limit of a sequence
(τn, gn)n∈N ⊂ M̌a. There must exist a sequence (τn, gn)n∈N ⊂ Hγ with (τn, gn)→ (τ, g). By
the argument in footnote 100 we have that τ ′nĨγτn → τ Ĩγτ . If the difference en := τ Ĩγτ −
τ ′nĨγτn → 0 is always negative there is nothing to do. Else take a sequence (τ ′n, 0)n∈N ⊂ Hγ

which converges to (0, 0) and satisfies τ ′nĨγτn ≥ max{en, 0}.101 Then (τn + τ ′n, gn)n∈N ⊂ M̌a

and converges to (τ, g). Hence no such point can exist and the two sets are equal.
Consider the testing problem of K ′0 = {0} against K ′1 = L⊥0 \ {0} in the standard

Gaussian shift experiment on L⊥0 . For any a′ ≥ a and any level−α test ψ we have by
Theorem 30.2 of Strasser (1985) that (Cf. Strasser, 1985, Theorem 71.10)

inf
t∈M ′a′

Gtψ ≤ inf
t∈M ′a′∩L⊥0

Gtψ ≤ P
(
χ2
r(a
′) > cr,α

)
.

100That (τ, g) ∈ Hγ is clear since the latter is complete and hence closed. It remains to show that if

τnĨγτn ≥ a for each n ∈ N then also τ Ĩγτ ≥ a. For this, we note that if (τn, gn)→ (τ, g) then by lemma

B.6 we have that τn → τ . (x, y) 7→ x′Ĩγy defines a positive-semidefinite Hermitian form over Rdθ and

thus induces a semi-norm ‖x‖ :=
√
x′Ĩγx. Hence by the reverse triangle inequality

|‖τn‖ − ‖τ‖| ≤ ‖τn − τ‖ → 0.

That is ‖τn‖ → ‖τ‖ and hence by the continuity of x 7→ x2 we have τnĨγτn = ‖τn‖2 → ‖τ‖2 = τ ′Ĩγτ .
101An explicit construction of such a sequence can be given based on the eigendecomposition of Ĩγ .
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Since Ma = cl M̌a and t 7→ Gtψ is continuous, taking the infimum over a′ ≥ a yields102

inf
t∈M̌a

Gtψ = inf
t∈Ma

Gtψ ≤ P
(
χ2
r(a) > cr,α

)
=: R. (80)

By proposition B.2 (En)n∈N converges to E . Suppose that (17) does not hold for all sequences
of asymptotically level-α tests for H0 : τ = 0 against H1 : τ ∈ N(Ĩγ)⊥ \ {0} in En. Then
there is such a sequence of tests (ψn)n∈N and a subsequence (nj)j∈N such that for some ε > 0

lim
j→∞

inf{πnj(τ, h) : (τ, h) ∈ N(Ĩγ)⊥ ×Hη, τ
′Ĩγτ ≥ a} ≥ R+ ε,

where πn(τ, h) := P n
γn,τ,h

ψn. Since [0, 1]N(Ĩγ)⊥×Hη is compact in the product topology there

is a subnet (nj(α))α∈A of the subsequence (nj)j∈N and a function π : N(Ĩγ)⊥ × Hη → [0, 1]

such that limα∈A πnj(α)
(τ, h) = π(τ, h) for every (τ, h) ∈ N(Ĩγ)⊥ × Hη. Combine this with

the preceding display to conclude that for any (τ, h) ∈ N(Ĩγ)⊥×Hη with τ ′Ĩγτ ≥ a we have

π(τ, h) = lim
α∈A

πnj(α)
(τ, h) ≥ lim

α∈A
inf{πnj(α)

(τ, h) : (τ, h) ∈ N(Ĩγ)⊥ ×Hη, τ
′Ĩγτ ≥ a} ≥ R+ ε.

However, by Theorem 7.1 in van der Vaart (1991) there is a test ψ in E with power function
π and it follows from our hypothesis that this test is of level-α, since for any g ∈Hγ there
is a h ∈ Hγ with Bγh = g and so

G0,gψ = π(0, h) = lim
α∈A

πnj(α)
(τ, h) ≤ lim sup

n
πn(τ, h) ≤ α.

Then by the preceding two displays we have G0,gψ ≤ α for any (0, g) ∈ Hγ and for any
(τ, g) ∈ M̌a

Gτ,gψ = π(τ, hg) ≥ R+ ε,

which contradicts (80).

Proof of corollary 3.9. By proposition 3.1 we have that for τn → τ and hn → h,

√
nPn ˆ̀

n,θ0  N (Ĩγτ, Ĩγ), under Pγn,τn,hn .

As in the proof of proposition B.3, equations (7), (8) and Lemma C.6 imply that ‖Î†n,θn −
Ĩ†γ‖2 = oPγn (1). The mutual contiguity established in proposition 3.1 along with Le Cam’s
first lemma (e.g. van der Vaart, 1998, Lemma 6.4) ensures that this result and equation (6)
also hold under Pγn,τn,hn :

√
nPn

[
ˆ̀
n,θ0 − ˜̀

γn

]
= oPγn,τn,hn (1) and ‖Î†n,θ0 − Ĩ

†
γ‖2 = oPγn,τn,hn (1).

Write Ẑn :=
√
nPn ˆ̀

n,θ0 . We have

Ẑn =
√
nPn ˜̀

γn +
√
nPn

[
ˆ̀
n,θ0 − ˜̀

γn

]
 Z ∼ N (Ĩγτ, Ĩγ)

102The continuity of the indicated map follows directly from the fact that a Gaussian shift experiment is
continuous in the total variation norm.
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under Pγn,τn,hn . The continuous mapping theorem and Theorem 9.2.3 of Rao and Mitra
(1971) imply that

Ŝn,θ0 = Ẑ ′nÎ†n,θ0Ẑn  Z ′Ĩ†γZ =: S ∼ χ2
r(τ
′Ĩγτ),

under Pγn,τn,hn where r = rank(Ĩγ).
Let cn be the 1 − α quantile of the χ2

rn distribution and c the 1 − α quantile of the χ2
r

distribution. We have Pγn{cn = c} = Pγn{rn = r} → 1 by assumption. This implies that
cn−c→ 0 in Pγn-probability and hence by the mutual contiguity and Le Cam’s first lemma,

also under Pγn,τn,hn . By continuous mapping once more we have Ŝn,θ0 − cn  S − c under
Pγn,τn,hn . Hence by the portmanteau theorem

lim
n→∞

P n
γn,τn,hnφn,θ0 = 1− P

(
χ2
r

(
τ Ĩγτ

)
≤ c
)
. (81)

For τ = 0, 1− P (χ2
r (0) ≤ c) = α; hence this test is level-α as claimed.

Let Ka ⊂Ma be compact and suppose (τn, hn)n∈N ⊂ Ka is such that τn → τ and hn → h.
Then, by equation (81) we have that

lim
n→∞

P n
γn,τn,hnφn,θ0 = P(χ2

r

(
τ ′Ĩγτ

)
> c) ≥ P(χ2

r (a) > c) =: R. (82)

Taking a constant sequence in Ka with τ ′Ĩγτ = a we obtain from the preceding display
that lim supn→∞ inf(τ,h)∈Ka P

n
γn,τ,h

φn,θ0 ≤ limn→∞ P
n
γn,τ,h

φn,θ0 = R. It follows that if equation
(18) does not hold then there is a sequence (τn, hn)n∈N ⊂ Ka and a subsequence (nj)j∈N of
(n)n∈N such that

S = lim
j→∞

P
nj
γnj ,τnj ,hnj

φnj ,θ0 < R. (83)

Take a further subsequence (nk)k∈N along which τn → τ and hn → h with (τ, h) ∈ Ka.
Construct new sequences (h∗m)m∈N and (τ ∗m)m∈N as follows. For all m ∈ [nk, nk+1) ∩ N for
some k ∈ N put τ ∗m = τnk and h∗m = hnk . For m = 1, . . . , n1 put τ ∗m = τn1 and h∗m = hn1 . By
construction we have that τ ∗m → τ and h∗m → h. By (82) we have that

lim
m→∞

Pm
γm,τ∗m,h

∗
m
φm,θ0 ≥ R.

Fix an arbitrary ε > 0. There is an M ∈ N such that for all m ≥M we have Pm
γm,τ∗m,h

∗
m
φm,θ0 ≥

R− ε/2. Hence for any k sufficiently large that m = nk ≥M we have

S = S − P nk
γnk ,τnk ,hnk

φnk,θ0 + Pm
γm,τ∗m,h

∗
m
φm,θ0 ≥ S − P nk

γnk ,τnk ,hnk
φnk,θ0 +R− ε/2.

This holds for all large enough k and so taking the limit first as k → ∞ and then as ε ↓ 0
yields that S ≥ R. But this contradicts equation (83).

Proof of proposition 3.10. By proposition A.8 in van der Vaart (1988) and our assumptions

Λn(γn(τn, hn), γn) =
1√
n

n∑
i=1

gn −
1

2
Pγng

2
n + oPγn (1)

=
1√
n

n∑
i=1

[
τ ′ ˙̀γn +Bγnh

]
− 1

2
Pγn

[
τ ′ ˙̀γn +Bγnh

]2

+ oPγn (1).
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since 1
2
Pγn

[
τ ′ ˙̀γn +Bγnh

]2

− 1
2
Pγng

2
n = 1

2
Pγn (f 2

n − g2
n)→ 0, where fn := τ ′ ˙̀γn +Bγnh, as

∣∣Pγn (f 2
n − g2

n

)∣∣ =
∣∣∣‖fn‖2

Pγn ,2
− ‖gn‖2

Pγn ,2

∣∣∣ ≤ ‖fn − gn‖2
Pγn ,2

+ 2‖fn − gn‖Pγn ,2‖g‖Pγn ,2 → 0,

as (gn)n∈N is uniformly square Pγn-integrable and hence Pγng
2
n ≤M for some M ∈ (0,∞).

It remains to show that (fn)n∈N is uniformly square Pγn-integrable. The preceding display
yields that Pγnf

2
n = Pγng

2
n − Pγn(g2

n − f 2
n) = Pγng

2
n + o(1). Hence there is an N ∈ N

such that n > N has Pγnf
2
n ≤ M + 1. It follows that Pγnf

2
n ≤ K < ∞ with K :=

max{M + 1, Pγ1f
2
1 , . . . , PγNf

2
N}. Let ε > 0 be given and note that there is a δ > 0 such that

if Pγn(A) < δ we have Pγn(g2
n1A) < ε/4.103 Hence

Pγn
(
f 2
n1A

)
≤ 2Pγn

(
(fn − gn)21A

)
+ 2Pγn

(
g2
n1A

)
= o(1) +

ε

2
.

Hence there is an N ′ ∈ N such that for all n ≥ N ′ we have Pγn(f 2
n1A) < ε if Pγn(A) < δ. By

Markov’s inequality we have that for K ′ > K/δ, Pγn(f 2
n > K ′) ≤ Pγnf

2
n/K

′ ≤ δ and hence
for all n ≥ N ′, Pγn(f 2

n1{f 2
n > K ′}) < ε. That is, (fn)n∈N is asymptotically uniformly square

Pγn-integrable, which implies that (fn)n∈N is uniformly square Pγn-integrable.104

Proof of lemma 3.11. This is implied by Corollary 2.9 of Feinberg et al. (2016).

Proof of lemma 3.12. Define Qn, Q respectively as the pushforward measures of Pn under
fn and P under f . By the extended continuous mapping theorem of van der Vaart and
Wellner (1996, Theorem 1.11.1), Qn  Q and by hypothesis,

lim
M→∞

sup
n∈N

∫
|x|>M

|x| dQn(x) = lim
M→∞

sup
n∈N

∫
|fn(s)|>M

|f(s)| dPn(s) = 0.

The result now follows from the equivalence of (ii) and (iii) in Proposition A.6.1 of Bickel
et al. (1998).

Proof of proposition 3.13. Throughout let r̂n := rank(M̂n), r := rank(M), Rn := {r̂n = r}
and λl, λn,l, λ̌n,l and λ̂n,l respectively the l-th largest eigenvalue of M , Mn, M̌n and M̂n.

Start with the case r = 0. By Weyl’s perturbation theorem and the fact that Mn = 0
for all n larger than some N ∈ N,

Pn(Rn) = Pn

(
max
l=1,...,L

|λ̌n,l| < νn

)
≥ Pn(‖M̌n −Mn‖2 < νn)→ 1.

On the sets Rn we have that M̂n = 0 = M and so M̂n
Pn−→M as P (Rn)→ 1.

Now suppose that r > 0. let ν := λr/2 > 0 and note that (20) implies that ‖M̌n −
Mn‖2 = oPn(1) and so, by Weyl’s perturbation theorem (e.g. Bhatia, 1997, Corollary III.2.6),

103Given ε > 0, take M <∞ large enough that Pn(g2n1{g2n > M}) < ε/8 for all n ∈ N and let δ < ε/(8M).
Then if Pγn(A) < δ we have

Pγ(g2n1A) ≤ Pγn(g2n1A1{g2n ≤M}) + Pγn(g2n1A1{g2n > M}) ≤MPγn(A) + Pn(g2n1{g2n > M}) < ε/4.

104Increase K ′ to K ′′ as necessary to ensure that also Pγn(f2n1{f2n > K ′′}) < ε for all 1 ≤ n < N ′.
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maxl=1,...,L |λ̌n,l − λn,l| ≤ ‖M̌n −Mn‖2 = oPn(1). Hence, defining En := {λ̌n,r ≥ νn}, for n
large enough such that νn < ν and ‖Mn −M‖2 < ν/2 we have

Pn(En) = Pn
(
λ̌n,r ≥ νn

)
≥ Pn

(
λ̌n,r ≥ ν

)
≥ Pn

(
|λ̌n,r − λn,r| < ν/2

)
→ 1.

If r = L we have that Rn ⊃ En and therefore Pn(Rn) → 1. Additionally, if λ̌n,L ≥ νn
then λ̂n,l = λ̌n,l for each l ∈ [L] and hence M̂n = M̌n, implying ‖M̂n−M‖2 ≤ ‖M̌n−Mn‖2 +
‖Mn −M‖2 = oPn(1).

Now suppose instead that r < L and define Fn := {λ̌n,r+1 < νn}. It follows by Weyl’s
perturbation theorem and the fact that λn,l = 0 for l > r and n ≥ N that as n→∞

Pn(Fn) = Pn(λ̌n,r+1 < νn) ≥ Pn(‖M̌n −Mn‖2 < νn)→ 1.

Since Rn ⊃ En ∩ Fn, this implies that Pn(Rn) → 1 as n → ∞. Additionally, if λ̌n,r ≥ νn,

λ̌n,r+1 < νn and ‖M̌n −M‖2 ≤ υ, we have that λ̂n,k = λ̌n,k for k ≤ r and λ̂n,l = 0 = λl for
l > r and so

‖Λn(νn)− Λ‖2 = max
l=1,...,r

|λ̂n,l − λl| = max
l=1,...,r

|λ̌n,l − λl| ≤ ‖Λ̌n − Λ‖2 ≤ ‖M̌n −M‖2 ≤ υ,

and hence {‖M̌n −M‖2 ≤ υ} ∩En ∩ Fn ⊂ {‖Λn(νn)−Λ‖2 ≤ υ}, from which it follows that

Λn(νn)
Pn−→ Λ as ‖M̌n−M‖2 ≤ ‖M̌n−Mn‖2 + ‖Mn−M‖2

Pn−→ 0. Suppose that (λ1, . . . , λr)
consists of s distinct eigenvalues with values λ1 > λ2 > · · · > λs and multiplicities m1, . . . ,ms

(each at least one).105 λs+1 = 0 is an eigenvalue with multiplicity ms+1 = L − r. Let lki
for k = 1, . . . , s + 1 and i = 1, . . . ,mk denote the column indices of the eigenvectors in U
corresponding to each λk. For each λk, the total eigenprojection is Πk :=

∑mk
i=1 ulki u

′
lki

.106

Total eigenprojections are continuous.107 Therefore, if we construct Πn,k in in an analogous

fashion to Πk but replace columns of U with columns of Ǔn, we have Πn,k
Pn−→ Πk for each

k ∈ [s + 1] since M̌n
Pn−→ M . Spectrally decompose M as M =

∑s
k=1 λ

kΠk, where the sum
runs to s rather than s+ 1 since λs+1 = 0. Then,

M̂n =
s+1∑
k=1

mk∑
i=1

λ̂n,lki un,lki u
′
n,lki

=
s+1∑
k=1

mk∑
i=1

(λ̂n,lki − λ
k)un,lki u

′
n,lki

+
s∑

k=1

λkΠn,k,

whence

‖M̂n −M‖2 ≤
s+1∑
k=1

mk∑
i=1

|λ̂n,lki − λ
k|‖un,lki u

′
n,lki
‖2 +

s∑
k=1

|λk|‖Πn,k − Πk‖2
Pn−→ 0,

by Π̂n,k
Pn−→ Πk, Λ̂n(νn)

Pn−→ Λ and since we have ‖un,lki u
′
n,lki
‖2 = 1 for any i, k, n.

Proof of corollary 3.14. Apply proposition 3.13 with Ǐn,θn = M̌n, În,θn = M̂n, Ĩn = Mn,
Ĩγ = M and Pγn = Pn.

105The superscripts on the λs are indices, not exponents.
106See e.g Chapter 8.8 of Magnus and Neudecker (2019).
107E.g. Theorem 8.7 of Magnus and Neudecker (2019).
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B.2 Additional miscellaneous results

Lemma B.7. Suppose that assumption M holds and assumptions LAN and CM(i) hold
along a convergent sequence (γn)n∈N with γn := (θn, η) → γ ∈ Γ,that η = (η1, η2) with
η1 ∈ H1 ⊂ Rdη1 and that the efficient score function takes the form

˜̀
γn = ˘̀

γn,1 − Ĭγn,12Ĭ
−1
γn,22

˘̀
γn,2, Ĭγn := Pγn ˘̀

γn
˘̀′
γn ,

for a L-dimensional vector of functions ˘̀
γn :=

(
˘̀′
γn,1,

˘̀′
γn,2

)′
. Suppose that Ĩγn → Ĩγ and

rank(Ĩγn) = rank(Ĩγ) for all sufficiently large n ∈ N. Moreover, suppose that along any
sequence (γ′n)n∈N with γ′n := (θn, (ηn,1, η2))→ γ where

√
n‖ηn,1 − η1‖ = O(1),

(i) Pγ′n
˘̀
γ′n = o(n−1/2),

(ii) (‖˘̀γn‖2
2)n∈N is uniformly Pγ′n-integrable,

(iii)
√
nPn

[
ˆ̀
n,ξn − ˘̀

γ′n

]
= oPγ′n

(1),

(iv) ν−1
n ‖În,ξn − Ĭγn‖2 = oPγ′n

(1),

(v)
∫ [

˘̀
γ′n,l
√
pγ′n − ˘̀

γn,l
√
pγn

]2

dν → 0 for each l ∈ [L],

with ξn := (θn, ηn,1). Finally suppose that η̂n,1 satisfies
√
n‖η̂n,1 − η1‖ = OPγn (1). Then if

ξ̄n := (θn, η̄n,1) where η̄n,1 is the version of η̂n,1 discretised on n−1/2CZdη1 ∩H1,

ˆ̀
n,θn := ˆ̀

n,ξ̄n,1 − În,ξ̄n,12Î
−1
n,ξ̄n,22

ˆ̀
n,ξ̄n,2, Ǐn,θn := În,ξ̄n,11 − În,ξ̄n,12Î

−1
n,ξ̄n,22

În,ξ̄n,21, (84)

and În,θn is the eigendecomposition-truncated version of Ǐn,θn at νn analogously to (21), then
assumptions E and R hold.

Proof. Define bn :=
√
n(ηn,1 − η1). Take an arbitrary subsequence (nm)m∈N of (n)n∈N and

a further subsequence (nk)k∈N along which bnk → b ∈ Rdη1 . Construct a “full” sequence
(b?n)n∈N according to b?nk := bnk for all k ∈ N and for all m ∈ N such that m /∈ {nk : k ∈ N}
set b?m := b?m−1 (arbitrarily put b0 = 0). Constructed in this manner b?n → b as n→∞ and
hence β?n,1 := η+

√
nb?n is a deterministic sequence satisfying

√
n(η?n,1−η) = O(1). Note that

we can write γ?n := (θn, (η
?
n,1, η2)) as γ?n = γn(0, h?n) for h?n := (b?n, 0). Since conditions (i) -

(v) are valid along (γ′n)n∈N formed with an arbitrary deterministic
√
n-consistent sequence

(ηn,1)n∈N, they apply along (γ?n)n∈N in particular. Since LAN holds, these observations, in
conjunction with Proposition A.10 in van der Vaart (1988) yield that

√
nPn

[
˘̀
γ?n − ˘̀

γn

]
+ Ĭγn(0′, (b?n)′)′ = oPγn (1).

This clearly implies also that

√
nkPnk

[
˘̀
γ′nk
− ˘̀

γnk

]
+ Ĭγnk (0′, b′nk)

′ =
√
nkPnk

[
˘̀
γ?nk
− ˘̀

γnk

]
+ Ĭγnk (0′, (b?nk)

′)′ = oPγnk (1),

and therefore, as the original subsequence (nm)m∈N was arbitrary,

√
nPn

[
˘̀
γ′n − ˘̀

γn

]
+
√
nĬγn(0′, (ηn,1 − η)′)′ = oPγn (1). (85)

Moreover we have by Proposition 3.1 that (P n
γn)n∈N and (P n

γ?n
)n∈N are mutually contiguous.
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Hence the same is true of (P nk
γnk

)k∈N and (P nk
γ?nk

)k∈N = (P nk
γ′nk

)k∈N. This observation in conjunc-

tion with (iii), (iv) and the fact that our initial subsequence (nm)m∈N was arbitrary yields
the conclusion that

√
nPn

[
ˆ̀
n,ξn − ˘̀

γ′n

]
= oPγn (1), and

∥∥∥În,ξn − Ĭγn∥∥∥
2

= oPγn (νn). (86)

Now, for η]1 ∈ H1 let

R1,n(η]1) :=
√
nPn

[
ˆ̀
n,ξ]n
− ˘̀

γn

]
+
√
nĬγn(0′, (η]1 − η)′), R2,n(η]1) := ν−1

n

[
În,ξ]n − Ĭγn

]
where ξ]n := (θn, η

]
1), η] := (η]1, η2) and γ]n := (θn, η

]). Let As β̄n is discretised on n−1/2CZdη1∩
H1 from η̂1,n it remains

√
n-consistent under Pγn and hence for any ε > 0 there is an M ∈

(0,∞) and N such that for all n ≥ N , Pγn (
√
n‖η̄n,1 − η1‖2 > M) < ε. If

√
n‖η̄n,1−η1‖2 ≤M

then η̄n,1 ∈ Sn := {η[1 ∈ n−1/2CZdη1 ∩ H1 : ‖η[1 − η1‖2 ≤ M/
√
n}. For any fixed M , Sn

has a finite number of elements bounded independently of n, call this number S. For
Rn ∈ {R1,n, R2,n}, any υ > 0 and n ≥ N

Pγn (‖Rn(η̄n,1)‖ > υ) ≤ ε+
∑

ηn,1∈Sn

Pγn ({‖Rn(ηn,1)‖ > υ} ∩ {η̄n,1 = ηn,1})

≤ ε+ SPγn
(
‖Rn(η∗n,1)‖ > υ

)
,

where η∗n,1 ∈ Sn maximises η1 7→ Pγn (‖Rn(η1)‖ > υ). Since (η∗n,1)n∈N is deterministic and√
n-consistent for η1, Pγn

(
‖Rn(η∗n,1)‖ > υ

)
→ 0 by equations (85) & (86). It follows that

‖Ri,n(η̄n,1)‖ = oPγn (1) for i ∈ {1, 2}. It follows that ‖K̂ξ̄n − K̃γn‖2
Pγn−−→ 0 where

K̃γn :=
[
I − Ĭγn,12Ĭ

−1
γn,22

]
, K̂ξ̄n :=

[
I − În,ξ̄n,12Î

−1
n,ξ̄n,22

]
,

with the partitions of the matrices Îξ̄n , Ĭγn corresponds to the partition of the vectors
ˆ̀
n,ξ̄n = (ˆ̀′

n,ξ̄n,1
, ˆ̀′
n,ξ̄n,2

)′, ˘̀
γn = (˜̀′

γn,1,
˜̀′
γn,2)′, ξ̄n := (θn, η̄n,1) and Ĭ−1

γn,22 exists by assumption.

Using these results, (84) and the uniform Pγn-integrability of ‖˘̀γn‖2
2,

√
nPn

[
ˆ̀
n,θn − ˜̀

γn

]
=
(
K̂ξ̄n − K̃γn

)√
nPn

[
ˆ̀
n,ξ̄n − ˘̀

γn

]
+ K̃γn

√
nPn

[
ˆ̀
n,ξ̄n − ˘̀

γn

]
+
(
K̂ξ̄n − K̃γn

)√
nPn ˘̀

γn

= −
[
I − Ĭγn,12Ĭ

−1
γn,22

] [Ĭγn,11 Ĭγn,12

Ĭγn,21 Ĭγn,22

] [
0√

n(η̄n,1 − η1)

]
+ oPγn (1)

= oPγn (1),

which gives (6). To show that equation (7) and assumption R hold, Corollary 3.14 indicates
that it suffices to show that the requirements of assumption T are satisifed. For this note
that by assumption Ĩγn → Ĩγ with rank(Ĩγn) = rank(Ĩγ) for all sufficiently large n ∈ N and
(23) follows from ‖R2,n(η̄n,1)‖ = oPγn (1).
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B.3 Proofs for section 4

Throughout this section I use the notation ι(θ,X) := X1 +X ′2θ.

Proof of Proposition 4.1. Fix arbitrary τn → τ ∈ Rdθ and hn → h ∈ Hη. The perturbed
law is Pγn,τn,hn with density

pγn,τn,hn(W ) := ζ(en, X)(1 + hn,2(en, X)/
√
n),

where en := Y − f(ι(θn + n−1/2τn, X))− n−1/2hn,1(ι(θn + n−1/2τn, X)). Since Θ is are open

and θn → θ, θn+n−1/2τn ∈ Θ for all large enough n ∈ N. The restrictions on Ḟ ensure that
f + n−1/2hn,1 ∈ F . The restrictions on ˙Zη along with the norm on H suffice to ensure that
ζ(1 + hn,2/

√
n) ∈ Z . Specifically, for all large enough n, ζ(1 + hn,2/

√
n) ≥ 0 (λ-a.e.) since

hn,2 is bounded (λ-a.e.) and the conditions on ˙Z ensure that
∫
ζ(1+hn,2/

√
n) dλ =

∫
ζ dλ+

1√
n

∫
hn,2ζ dλ = 1. Continuous differentiability (λ-a.e.) of e 7→

√
ζ(1 + hn,2/

√
n)(e,X)

follows from the same requirement on
√
ζ and hn,2, the boundedness of hn,2 (which ensures

that eventually 1 + hn,2/
√
n is bounded away from zero λ-a.e.) and the chain rule. Finally

it remains to check the conditions in (26). For any A ∈ σ(Z), letting G denote the measure
corresponding to ζ∫

A

εζ(ε,X)(1 + hn,2(ε,X)/
√
n) dλ =

∫
A

ε dG+
1√
n

∫
A

εhn,2(ε,X) dG

=

∫
A

E[ε|X] dG+
1√
n

∫
A

E[εhn,2(ε,X)|X] dG

= 0,

and hence E[ε|X] = 0 (a.s. under ζ(1 + hn,2/
√
n)). For the rest, firstly let m(ε,X) be

non-negative and integrable under G. By the (λ-a.e.) boundedness of hn,2 (by h̄2, say)∫
m(ε,X)ζ(ε,X)(1 + hn,2(ε,X)/

√
n) dλ ≤

(
1 +

h̄2√
n

)∫
m(ε,X) dG <∞.

Secondly, note that by Jensen’s inequality∥∥∥∥∫ XX ′ζ(1 + hn,2/
√
n) dλ−

∫
XX ′ dG

∥∥∥∥
2

≤ h̄2√
n

∥∥∥∥∫ XX ′ dG

∥∥∥∥ ≤ h̄2√
n

∫
‖X‖2

2 dG→ 0,

which implies that for all large enough n,
∫
XX ′ζ(1 + hn,2/

√
n) dλ � 0.

To establish (19), first let γ ∈ Γ, u = (τ, h) ∈ Rdθ × Hη, t ∈ (0,∞) and ϕ := ϕ(u) :=
(τ, h1, ζh2) and let ∆γ(ϕ) := 1

2
[τ ˙̀

γ + Bγh]
√
pγ. By arguing analogously to the preceding

paragraph it is seen that for all t in a sufficiently small neighbourhood U of 0 in [0,∞),
pγ+tϕ is a probability density. t 7→ √

pγ+tϕ is continuously differentiable λ-a.e. by the

corresponding conditions imposed on e 7→
√
ζ(e,X) and e 7→ h3(e,X). For t ∈ U , define

e(t) = Y − f(ι(θ(t), X))− th1(ι(θ(t), X)) with θ(t) := θ + tτ . Define g(t) := ∂
∂s |s=t

log pγ+sϕ
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and note

g(t) = −φ(e(t), X) [f ′(ι(θ(t), X))X ′2τ + h1(ι(θ(t), X)) + th′1(ι(θ(t), X))X ′2τ ]

+
h2(e(t), X) + th′2(e(t), X) [f ′(ι(θ(t), X))X ′2τ + h1(ι(θ(t), X)) + th′1(ι(θ(t), X))X ′2τ ]

1 + th2(e(t), X)
.

By taking U smaller if necessary suppose that 1 + th2 > c > 0, and |f ′|, |h1|, |h′1|, |h2| and
|h′2| are bounded by C ∈ (0,∞) λ-a.e.. Let tn → t through U and note that g(tn) → g(t)
λ-a.e. by the continuity and continuous differentiability assumptions. For any t ∈ U∫

|g(t)|2+ρ dPγ+tϕ .
∫

(φ(ε,X)2+ρ + 1)‖X‖2+ρ
2 ζ(ε,X) dλ <∞,

which can be used in conjunction with Markov’s inequality to obtain the uniform Pγ+tnϕ-
integrability of (g(tn)2)n∈N. Since also pγ+tnϕ → pγ+tϕ λ-a.e. as is easily verified by inspec-
tion, Lemma 3.11 implies that

∫
g(tn)2 dPγ+tnϕ →

∫
g(t)2 dPγ+tϕ. By Lemma 1.8 in van der

Vaart (2002)

lim
t↓0

∥∥∥∥√pγ+tϕ −√pγ
t

−∆γ(ϕ)

∥∥∥∥
λ,2

= 0. (87)

Next let (δn)n∈N ⊂ [0, 1] be an arbitrary sequence, tn ↓ 0 and define γn := γn + δntnϕn for
ϕn := ϕ(un) with un → u ∈ Rdθ × Hη. Define ẽn := Y − f(ι(θ̃n, X)) − δntnhn,1(ι(θ̃n, X))
with θ̃n := θn + δntnτn,

φn := φ(ẽn, X) +
δntnh

′
n,2(ẽn, X)

1 + δntnhn,2(ẽn, X)
.

Then, ∆γn(ϕn) := 1
2
[τ ′n

˙̀
γn +Bγnhn]

√
pγn , with

pγn(W ) = ζ(ẽn, X)(1 + δntnhn,2(ẽn, X))

˙̀
γn(W ) = −φnf ′(ι(θ̃n, X))X2

[Bγnh](W ) = −φnhn,1(ι(θ̃n, X)) + hn,2(ẽn, X).

It may be verified by inspection that ∆γn(ϕn)→ ∆γ(ϕ) λ-a.e. under our assumptions. Argue
analogously to the demonstration that

∫
g(tn)2 dPγ+tnϕ →

∫
g(t)2 dPγ+tϕ above to conclude

‖∆γn(ϕn)‖2
λ,2 → ‖∆γ(ϕ)‖2

λ,2 and hence by Proposition 2.29 in van der Vaart (1998),

‖∆γn(ϕn)−∆γ(ϕ)‖λ,2 → 0. (88)

Now we establish (19). First suppose that θn = θ for all n ∈ N, let un → u be arbitrary, put
ϕn := ϕ(un), ϕ := ϕ(u) and tn ↓ 0. For all large enough n, γ + tnϕn ∈ Γ and so using (87)
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and the mean-value theorem (e.g. Drabek and Milota, 2007, Theorem 3.2.7), for such n∥∥∥∥√pγ+tnϕn −
√
pγ

tn
−∆γ(ϕ)

∥∥∥∥
λ,2

≤
∥∥∥∥√pγ+tnϕn −

√
pγ+tnϕ

tn

∥∥∥∥
λ,2

+

∥∥∥∥√pγ+tnϕ −
√
pγ

tn
−∆γ(ϕ)

∥∥∥∥
λ,2

≤ sup
δ∈[0,1]

∥∥∆γ+δtn(ϕn−ϕ)(ϕn−ϕ)

∥∥
λ,2

+ o(1)

= o(1),
(89)

where the last step uses that for any sequence (δn)n∈N ⊂ [0, 1], ‖∆γ+δntn(ϕn−ϕ)(ϕn − ϕ) −
∆γ(0)‖λ,2 → 0 by (88) and ∆γ(0) = 0. Now consider an arbitrary sequence θn → θ and
γn = (θn, η). Using (89) and applying the mean-value theorem at each n ∈ N gives∥∥∥∥√pγn+tnϕn −

√
pγn

tn
−∆γn(ϕ)

∥∥∥∥
λ,2

≤ |t−1
n | sup

δ∈[0,1]

‖∆γn+δntnϕn(tnϕn)− tn∆γn(ϕ)‖λ,2

= sup
δ∈[0,1]

‖∆γn+δntnϕn(ϕn)−∆γn(ϕ)‖λ,2.

By (88), for some sequence (δn)n∈N ⊂ [0, 1]108

lim sup
n→∞

sup
δ∈[0,1]

‖∆γn+δtnϕn(ϕn)−∆γn(ϕ)‖λ,2

≤ lim sup
n→∞

‖∆γn+δntnϕn(ϕn)−∆γ(ϕ)‖λ,2 + lim sup
n→∞

‖∆γn(ϕ)−∆γ(ϕ)‖λ,2
= o(1).

Combine the two preceding displays and take tn = n−1/2 to yield (19):∥∥∥∥√n (√pγn,τn,hn −√pγn)− 1

2
gn
√
pγn

∥∥∥∥
λ,2

=

∥∥∥∥√pγn+tnϕn −
√
pγ

tn
−∆γn(ϕ)

∥∥∥∥
λ,2

= o(1).

To conclude we note that Lemma 1.8 in van der Vaart (2002) along with (87) applied for
each γn separately yields that Pγngn = 0. The uniform square Pγn-integrability of gn follows
by Lemma C.8 on noting that by (88) (applied with δn = tn = 0 and un = 0) Pγng

2
n → Pγg

2

(where g := τ ˙̀
γ +Bγh), and pγn → pγ λ-a.e.. Linearity of each Bγn is clear.

Lemma B.8. In the setting of Proposition 4.2, let G be the measure on R1+K corresponding

to ζ and U = (ε,X) ∼ ζ. Let N :=
{
−φ(ε,X)h1(ι(θ,X)) + h2(ε,X) : h1 ∈ Ḟ , h2 ∈ ˙Zη

}
.

The closed linear span of N in L2(G) is

lin N = {q ∈ L2(G) : E[q(U)] = 0, E[εq(U)|X] = E[εq(U)|ι(θ,X)]} .

Proof. 109 Let h1 ∈ Ḟ and h2 ∈ ˙Zη. The definition of the sets Ḟ , ˙Zη and (26) ensure
that N ⊂ L2(G). Taking h1 = 0 and h2 = 0, we have that E[−φ(ε,X)h1(ι(θ,X))] = 0 by
Proposition 4.1. E[h2(ε,X)] = 0 by definition. Additionally, we have by (28)

E[−εφ(U)h1(ι(θ,X)) + εh2(U)|X] = h1(ι(θ,X)),

108On the right hand side take ϕn = ϕ and δn = 0.
109Cf. the proof of Lemma A.1 in Newey and Stoker (1993, pp. 1219 – 1220).
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and since σ(ι(θ,X)) ⊂ σ(X), by (28) and the law of iterated expectations

E[−εφ(U)h1(ι(θ,X)) + εh2(U)|ι(θ,X)] = h1(ι(θ,X)).

Hence N ⊂ {q ∈ L2(G) : E[q(U)] = 0, E[εq(U)|X] = E[εq(U)|ι(θ,X)]}. Both sets are clearly
linear spaces, hence it suffices to show that the latter is the closure of the former. Suppose
that q ∈ {q ∈ L2(G) : E[q(U)] = 0, E[εq(U)|X] = E[εq(U)|ι(θ,X)]}.

It follows from the defintion of m̃ that m̄(U) := m̃(ε) − E[m̃(ε)|X] is bounded and
e 7→ m̄((e,X)) is continuously differentiable with bounded derivative. For any bounded
function U 7→ q̃(U) such that e 7→ q̃((e,X)) is continuously differentiable with bounded
deriviatives, define q̄(U) := q̃(U) − E[q̃(U)|X] and put for a bounded function a : R → R
where a is continuously differentiable with bounded derivative,

q(U) := q̄(U)− m̄(ε) [E[m̄(ε)ε|X]]−1 [E[q̄(U)ε|X]− a(ι(θ,X))] .

By construction, q is bounded, e 7→ q((e,X)) is continuously differentiable with bounded
derivative, E [q(U)|X] = 0 and E [εq(U)|X] = 0. Hence q ∈ ˙Zη. For any ε > 0, by Lemma
C.7 of Newey (1991), there are q̃, a and ψ such that q̃ and a satisfy the conditions required
for the construction of q above and ‖q − q̃‖2

G,2 < ε, ‖E[εq|ι(θ,X)]− a(ι(θ,X))‖2
G,2 < ε and

‖E[q|X]−ψ(X)‖2
G,2 < ε.110 The proof is completed by arguing as in display (A.11) of Newey

and Stoker (1993, p. 1220).

Proof of Proposition 4.2. Lemma B.8 establishes the closed linear span of the nuisance
tangent set. The orthogonal projection (in L2(G)) of a function onto the orthocomple-
ment of this set is given by Lemma A.2 in Newey and Stoker (1993). In particular, for
U = (ε,X) ∼ G and Vn := ι(θn, X), the projection Π

(
−φ(U)f ′(Vn)X2)

∣∣N ⊥) has the form

ω(X)ε

[
E[−εφ(U)f ′(Vn)X2)|X]− E [−ω(X)εφ(U)f ′(Vn)X2)|Vn]

E [ω(X)|Vn]

]
= ω(X)εf ′(Vn)

[
E [X2E [−εφ(U)|X] |Vn]− E [ω(X)X2E [−εφ(U)|X] |Vn]

E [ω(X)|Vn]

]
= ω(X)εf ′(Vn)

[
E [X2|Vn]− E [ω(X)X2|Vn]

E [ω(X)|Vn]

]
,

where the last equality is by (28). As (Y − f(Vn), X) ∼ G under Pγn , the claimed form of
the efficient score function follows.

Proof of Lemma 4.3. We first show that
√
n(σ̂2

n − σ2) = OPγn (1). For ε̃2i := ε2i − σ2 we have

√
n|σ̂2

n − σ2| . 1√
n

n∑
i=1

ε̃2i +
1√
n

n∑
i=1

(
f(Vn,i)− f̂n,i

)2

=
1√
n

n∑
i=1

ε̃2i +
1√
n

 ∑
i∈N(1)

(
f(Vn,i)− f̂n,i

)2

+
∑
i∈N(2)

(
f(Vn,i)− f̂n,i

)2

 ,
110I.e. a is bounded, continuously differentiable with bounded derivative and q̃ is bounded and e 7→ q̃((e,X))

is continuously differentiable with bounded deriviatives.
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The first right hand side term is OPγn (1) by the CLT. Next define f̃n,i := (f(Vn,i)− f̂n,i) and

Cn := (Wj)j∈N−i . On a set En with Pγn(En)→ 1 we have E[f̃ 2
n,i|Cn] ≤ R1,n,i ≤ r2

n = o(n−1/2)
and hence by Markov’s inequality, the second and third terms are oPγn (1). Finally note that

√
n|σ̂−2

n − σ−2| =
√
n|σ̂2 − σ2|
|σ̂2
nσ

2| = oPγn (1),

by
√
n|σ̂2

n − σ2| = OPγn (1) and since for some c > 0, σ2 > c and with Pγn-probability
approaching 1, σ̂2

n > c and so 1/|σ̂2
nσ

2| = OPγn (1).

Proof of Proposition 4.4. That assumptions M, LAN and CM(ii) hold follows from Propo-
sitions 3.10, 4.1 and 4.2. We next show (6) holds. Let Cn be some collection of random
vectors. Let δn → 0, δ′n → 0. For a triangular array of random vectors (Rn,i)n∈N,i≤n if with
Pγn-probability approaching one either (a) E[‖Rn,i‖2|Cn] ≤ δnn

−1/2 or (b) for each element
Rn,i,s of Rn,i and each j ≤ n′, E[Rn,i,sRn,j,s|Cn] = 0 (Pγn-a.s.) and E[R2

n,i,s|Cn] ≤ δ′n then by

Markov’s inequality, 1√
n

∑n′

i=1Rn,i = oPγn (1) for n′ ≤ n. We establish that (a) or (b) holds

for terms which sum to ˆ̀
n,θn(Wi)− ˜̀

γn(Wi). Abbreviate Zn,i := Z(Vn,i) and let

R1,n,i := (f̂n,i − f(Vn,i))f
′(Vn,i)(X2,i − Zn,i)

R2,n,i := (Yi − f(Vn,i))
(
f ′(Vn,i)− f̂ ′n,i

)
(X2,i − Zn,i)

R3,n,i := (Yi − f(Vn,i))f̂ ′n,i

(
Ẑn,i − Zn,i

)
R4,n,i := (f̂n,i − f(Vn,i))

(
f ′(Vn,i)− f̂ ′n,i

)
(X2,i − Zn,i)

R5,n,i := (f̂n,i − f(Vn,i))f̂ ′n,i

(
Ẑn,i − Zn,i

)
For some aj ∈ {−1, 1}, we have that

1√
n

n∑
i=1

ˆ̀
n,θn(Wi)− ˜̀

γn(Wi) =
√
n(σ̂−2

n − σ−2)σ2 1

n

n∑
i=1

˜̀
γn(Wi)

+ σ̂−2
n

5∑
j=1

aj
1√
n

 ∑
i∈N(1)

Rj,n,i +
∑
i∈N(2)

Rj,n,i

 .
The first term on the right hand side is oPγn (1) by Lemma 4.3 and Proposition 3.1. For the
second right hand side term first note that Lemma 4.3 also implies that σ̂−2

n = OPγn (1). Let
En be sets on which conditions (i) and (ii) in assumption SIM-NP(i) hold with Pγn(En)→ 1.
For j ∈ [3] we will show that (b) holds on En (for i ∈ N (1) or i ∈ N (2)). That these
terms are conditionally mean zero follows from the construction of the estimates. Specif-
ically, using the fact that each f̂n,i, f̂ ′n,i, Ẑn,i is σ(Vn,i, {Wj}j∈N−i) measurable, indepen-
dence, the LIE, Lemma C.5, E[εi|Xi] = 0 and E[(X2,i − Zn,i)|Vn,i] = 0, it follows that each
E[Rj,n,i,sRj,n,k,s|Cn] = 0 for j ∈ [3] and k /∈ N−i with Cn = (Wj)j∈N(1) for i ∈ N (2) and Cn =

(Wj)j∈N(2) for i ∈ N (1). Similar arguments along with the (Pγn-a.s.) boundedness of X2 and
assumption SIM-NP(i) show that on En each component E[R2

j,n,i,s|Cn] ≤ r2
n. For j ∈ {4, 5}

(a) holds on En as by SIM-NP(i), on En, each E[‖Rj,n,i‖2|Cn] . Rl,n,iRk,n,i ≤ r2
n = o(n−1/2)

for l, k ∈ [3].
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For the second part we will verify assumption T, which suffices to establish (7) and
assumption R by Corollary 3.14. Note first that by (28) and assumption SIM-NP(i) the
elements of ˜̀

γn satisfy E[˜̀4
γn,l

] = E[(εif
′(Vn,i)ω(Xi)(X2,i − Zn,i))4] . E[ε4i ] < ∞ and so by

Cauchy-Schwarz and e.g. Theorem 2.5.11 in Durrett (2019), 1
n

∑n
i=1

˜̀
γn,l

˜̀
γn,k−E˜̀

γn,l
˜̀
γn,k =

OPγn (n−1/2 log(n)1/2+κ) for any κ > 0. The distributional observation that under Pγn , (Y −
f(Vn), X) ∼ G and the form of ˜̀

γn then implies that Ĩγn = Ĩγ and hence∥∥∥∥∥ 1

n

n∑
i=1

˜̀
γn

˜̀′
γn − Ĩγ

∥∥∥∥∥
2

≤
∥∥∥∥∥ 1

n

n∑
i=1

˜̀
γn

˜̀′
γn − Ĩγ

∥∥∥∥∥
F

= OPγn (n−1/2 log(n)1/2+κ). (90)

Secondly, write

1

n

n∑
i=1

(
ˆ̀
n,θn,l − ˜̀

γn,l

)2

. σ̂−4
n

5∑
j=1

1

n

 ∑
i∈N(1)

R2
j,n,i,l +

∑
i∈N(2)

R2
j,n,i,l

+ (σ̂−2
n − σ2)2σ4Pn ˜̀2

γn,l.

By Lemma 4.3, σ̂−4
n = OPγn (1). Under assumptions SIM and SIM-NP(i), on En, each

E[R2
j,n,i,l|Cn] . r2

n as noted above. Since rn = o(νn), Markov’s inequality then implies that
1
n

∑
i∈N(s) R2

j,n,i,l = oPγn (ν2
n) for s = 1, 2. By Lemma 4.3 and equation (58), the second RHS

term is OPγn (n−1). Adding and subtracting and using Cauchy-Schwarz yields∥∥∥∥∥ 1

n

n∑
i=1

ˆ̀
n,θn

ˆ̀′
n,θn − ˜̀

γn
˜̀′
γn

∥∥∥∥∥
2

≤
∥∥∥∥∥ 1

n

n∑
i=1

ˆ̀
n,θn

ˆ̀′
n,θn − ˜̀

γn
˜̀′
γn

∥∥∥∥∥
F

= oPγn (νn). (91)

Combine (90) and (91) to see that assumption T is satisfied with any sequence (νn)n∈N as
in the statement of the proposition.

Proof of Proposition 4.7. Let Vn := ι(θn, X). We first note that (i) ˘̀
γn ∈ L0

2(Pγn) and (ii)

Pγn

[
˘̀
γnBγnh

]
= 0 for all h ∈ Hη. For (i) use the LIE to obtain that if W ∼ Pγn

E˘̀
γn(W ) = E

[
E[ε|X]f ′(Vn)ω̆(X)

(
X2 −

E [ω̆(X)X2|Vn]

E [ω̆(X)|Vn]

)]
= 0,

and note that by boundedness of ω̆ (above and below), f ′, compactness of X we have
E˘̀

γn,k(W )4 < ∞ for each k = 1, . . . , K − 1 which implies (i) and moreover that ‖˘̀γn‖2
2 is

uniformly Pγn-integrable. For (ii), if W ∼ Pγn then by the LIE, definition of ˙Zη and (28)

E
[
˘̀
γn(W )[Bγnh](W )

]
= E

[
E[εh2(ε,X)|X]f ′(Vn)ω̆(X)

(
X2 −

E [ω̆(X)X2|Vn]

E [ω̆(X)|Vn]

)]
+ E

[
−E[εφ(ε,X)|X]f ′(Vn)ω̆(X)

(
X2 −

E [ω̆(X)X2|Vn]

E [ω̆(X)|Vn]

)]
= E

[
f ′(Vn)E

[
ω̆(X)X2 −

ω̆(X)E [ω̆(X)X2|Vn]

E [ω̆(X)|Vn]

∣∣∣∣Vn]]
= 0.

The distributional observation that under Pγn , (Y − f(Vn), X) ∼ G and the form of ˘̀
γn

then implies that Υγn = Υγ. Using this, along with (a) and (b) above, we can argue
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analogously to as in the proof of Proposition 3.1 (with ˜̀
γn replaced by ˘̀

γn and Ĩγn replaced

by Υγn) to conclude that under Pγn,τn,hn ,
√
nPn ˘̀

γn  N (Υγτ,Υγ). Arguing as in the proofs
of Propositions 3.2, 3.3 and Lemmas B.3, B.4, B.5 reveals that this suffices for the result
provided we show that equations (6), (7) and (8) hold with ˇ̀

n,θn replacing ˆ̀
n,θn , ˘̀

γn replacing
˜̀
γn , Υ̌n,θn replacing În,θn and Υγ replacing Ĩγ.

To this end we argue as in the proof of Proposition 4.4. Let Cn be some collection of
random vectors, δn → 0 and δ′n → 0. For any triangular array of random vectors (Rn,i)n∈N,i≤n
if with Pγn-probability approaching one either (a) E[‖Rn,i‖2|Cn] ≤ δnn

−1/2 or (b) for each
element Rn,i,s of Rn,i and any j ≤ n′, E[Rn,i,sRn,j,s|Cn] = 0 (Pγn-a.s.) and E[R2

n,i,s|Cn] ≤ δ′n
then by Markov’s inequality, 1√

n

∑n′

i=1 Rn,i = oPγn (1) for n′ ≤ n. We establish that (a) or

(b) holds for terms which sum to ˇ̀
n,θn(Wi)− ˘̀

γn(Wi). Abbreviate Zl,n,i := Zl(Vn,i) for l ∈ [2]
and let

R1,n,i := (f̂n,i − f(Vn,i))f
′(Vn,i)ω̆(Xi)(X2,i − Zn,i)

R2,n,i := (Yi − f(Vn,i))
(
f ′(Vn,i)− f̂ ′n,i

)
ω̆(Xi)(X2,i − Zn,i)

R3,n,i := (Yi − f(Vn,i))f̂ ′n,iω̆(Xi)
(
Ẑn,i − Zn,i

)
R4,n,i := (f̂n,i − f(Vn,i))

(
f ′(Vn,i)− f̂ ′n,i

)
ω̆(Xi)(X2,i − Zn,i)

R5,n,i := (f̂n,i − f(Vn,i))f̂ ′n,iω̆(Xi)
(
Ẑn,i − Zn,i

)
,

with Zn,i := Z1,n,i/Z2,n,i and Ẑn,i := Ẑ1,n,i/Ẑ2,n,i. For some aj ∈ {−1, 1}, we have that

1√
n

n∑
i=1

ˇ̀
n,θn(Wi)− ˘̀

γn(Wi) =
5∑
j=1

aj
1√
n

 ∑
i∈N(1)

Rj,n,i +
∑
i∈N(2)

Rj,n,i

 .
Note also that

Ẑn,i − Zn,i =
(Ẑ1,n,i − Z1,n,i)Z2,n,i + (Z2,n,i − Ẑ2,n,i)Z1,n,i

Ẑ2,n,iZ2,n,i

,

and by assumption SIM-NP(ii) there is a sequence of sets En with Pγn(En) → 1 such that

each R̆l,n,i ≤ rn and each f̂n,i, f̂ ′n,i, Ẑ1,n,i,k are bounded uniformly in i and for all large

enough n ∈ N and Ẑ2,n,i is bounded below and above, uniformly in i and for all large

enough n ∈ N. From this it follows that E
[
‖Ẑn,i − Zn,i‖2

2|Cn
]
. r2

n = o(n−1/2) on En

where Cn = (Wj)j∈N(1) for i ∈ N (2) and Cn = (Wj)j∈N(2) for i ∈ N (1). Combining these

observations we obtain that for j ∈ {4, 5}, on En, E[‖Rj,n,i‖2|Cn] . r2
n = o(n−1/2), which

establishes (a). For j ∈ [3] we establish (b). Specifically, using the fact that each f̂n,i, f̂ ′n,i,

Ẑn,i is σ(Vn,i, {Wj}j∈N−i) measurable, independence, the LIE, Lemma C.5, E[εi|Xi] = 0 and
E[ω̆(Xi)(X2,i−Zn,i)|Vn,i] = 0, it follows that E[Rj,n,i,sRj,n,k,s|Cn] = 0 for j ∈ [3] and k /∈ N−i
with Cn as above. Similar arguments along with the (Pγn-a.s.) boundedness of X2 and the
probabilistic rate and boundedness observations above show that on En each component
E[R2

j,n,i,s|Cn] . r2
n. For the second part we will verify assumption T, which suffices to

establish the required modifications of (7) and (8) by Corollary 3.14. Note first that as
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noted above the components of ˘̀
γn satisfy E[˘̀4

γn,l
] <∞ and so by Cauchy-Schwarz and e.g.

Theorem 2.5.11 in Durrett (2019), 1
n

∑n
i=1

˘̀
γn,l

˘̀
γn,k − E˘̀

γn,l
˘̀
γn,k = OPγn (n−1/2 log(n)1/2+κ)

for any κ > 0. As noted above Υγn = Υγ and hence∥∥∥∥∥ 1

n

n∑
i=1

˘̀
γn

˘̀′
γn −Υγ

∥∥∥∥∥
2

≤
∥∥∥∥∥ 1

n

n∑
i=1

˘̀
γn

˘̀′
γn −Υγ

∥∥∥∥∥
F

= OPγn (n−1/2 log(n)1/2+κ). (92)

Secondly, write

1

n

n∑
i=1

(
ˇ̀
n,θn,l − ˘̀

γn,l

)2

.
5∑
j=1

1

n

 ∑
i∈N(1)

R2
j,n,i,l +

∑
i∈N(2)

R2
j,n,i,l

 .

As noted above, on En, each E[R2
j,n,i,l|Cn] . r2

n. Since rn = o(νn), Markov’s inequality then

implies that 1
n

∑
i∈N(s) R2

j,n,i,l = oPγn (ν2
n) for s = 1, 2. Adding and subtracting and using

Cauchy-Schwarz yields∥∥∥∥∥ 1

n

n∑
i=1

ˇ̀
n,θn

ˇ̀′
n,θn − ˘̀

γn
˘̀′
γn

∥∥∥∥∥
2

≤
∥∥∥∥∥ 1

n

n∑
i=1

ˇ̀
n,θn

ˇ̀′
n,θn − ˘̀

γn
˘̀′
γn

∥∥∥∥∥
F

= oPγn (νn). (93)

Combine (92) and (93) to see that assumption T is satisfied with any sequence (νn)n∈N as
in the statement of the proposition.

B.4 Proofs for section 5

Proof of proposition 5.1. Fix arbitrary τn → τ ∈ Rdθ and hn → h ∈ Hη. Since Θ is open
and θn + τn/

√
n→ θ ∈ Θ for sufficiently large n, θn + τn/

√
n ∈ Θ. The construction of Hη

ensures that also β+ bn/
√
n ∈ B for large enough n. The restrictions on ˙Zη and Ġη,k along

with the norm on H suffice to ensure that η0(1 + tnhn,0) ∈ Z and each ηk(1 + tnhn,k) ∈ G .
Specifically, for k = 0, 1, . . . , K, the convergence in ensures the exists of an M ∈ (0,∞)
such that, for all large enough n, |hn,k| ≤ M and M/

√
n < 1, λ-a.e.. This ensures that

each (1 + tnhn,k) > 0 and hence ηk(1 + tnhn,k) ≥ 0 (λ-a.e.). Moreover, the positivity of

1 + tnhn,k in combination with the continuous differentiability of e 7→
√
ηk(e) and the fact

that the square-root function is continuously differentiable away from 0, yields (via the chain
rule) that

√
ηk(1 + tnhn,k) is continuously differentiable λ-a.e. (for k ∈ [K]). Moreover, for

k ∈ [K] ∪ {0},∫
ηk(1 + tnhn,k) dλ =

∫
ηk dλ+ tn

∫
hn,kηk dλ = 1 + tn

∫
hk dGk = 1.

Additionally by Jensen’s inequality∥∥∥∥∫ X̃X̃ ′ζ(1 + hn,0/
√
n) dλ−

∫
X̃X̃ ′ dG

∥∥∥∥
2

≤ M√
n

∥∥∥∥∫ X̃X̃ ′ dG

∥∥∥∥ ≤ M√
n

∫
‖X̃‖2

2 dG→ 0,
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which implies that for all large enough n,
∫
X̃X̃ ′ζ(1+hn,1/

√
n) dλ � 0. By the boundedness

of each hn,k for large enough n, for such n and any non-negative function f with Gkf <∞,∫
ηk(1 + tnhn,k)f dλ ≤ (1 + tnM)Gkf <∞.

Applying this with k = 0 and f(x̃) = ‖x̃‖4+δ
2 completes the demonstration that η0(1 +

tnhn,0) ∈ Z for all large enough n. Similarly applying it with k ∈ [K] and f(e) = |e|4+δ

& f(e) = |φk(e)|4+δ ensures that the finite moment requirements in (35) are satisfied under
ηk(1 + tnhn,k) for large enough n. By the definitions of G and Ġη,k,∫

ι ηk(1 + tnhn,k) dλ =

∫
κ ηk(1 + tnhn,k) dλ = 0,

verifying that the first two conditions of (35) hold under ηk(1 + tnhn,k). Lastly, since
Gk|εk|4+δ <∞, the boundedness of |hn,k| ensures that∫

e4tnhn,k(e) dGk(e)→ 0,

[∫
e3tnhn,k(e) dGk(e)

]2

→ 0

which, combined with Eε4k − 1 > (Eε3k)2 implies that for large enough n,∫
e4(1 + tnhn,k(e)) dGk(e)− 1 >

[∫
e3(1 + tnhn,k(e)) dGk(e)

]2

,

completing the verification that ηk(1 + tnhn,k) ∈ G for all large enough n.
The next step is to establish (19). Firstly, for any given u := (τ, h) ∈ Rdθ × Hη let

ϕ := ϕ(u) := (τ, b1, b2, η0h0, . . . , ηKhK). Then, for any γ ∈ Γ, t ∈ [0,∞) and u ∈ Rdθ ×Hη,
define qγ,t,u := pγ+tϕ and qγ := qγ,0,0 = pγ. Finally, let ∆γ(ϕ) := 1

2
[τ ′ ˙̀γ + Bγh]

√
pγ. For any

γ ∈ Γ and any u ∈ Rdθ ×Hη, by Lemma S4 in Lee and Mesters (2021b),

lim
t↓0

∥∥∥∥√pγ+tϕ −√pγ
t

−∆γ(ϕ)

∥∥∥∥
λ,2

= lim
t↓0

∥∥∥∥√qγ,t,u −√qγt
− 1

2
[τ ′ ˙̀γ +Bγh]

√
qγ

∥∥∥∥
λ,2

= 0. (94)

In order to strengthen this directional differentiability into the result required by (19), we
first establish an intermediate result. Let (δn)n∈N ⊂ [0, 1] be an arbitrary sequence, tn ↓ 0
and define γn := γn + δntnϕn for ϕn := ϕ(un) with un → u ∈ Rdθ ×Hη. Define also An :=
A(θn+δntnτn, β1 +δntnbn,1), D1,l,n := D1,l(θn+δntnτn, β1 +δtnbn,1), ζl,k,j,n := [D1,l,n]k[A

−1
n ]′j,

Rn is such that vec(Rn) = β2 + δntnbn,2, Vn := Y −RnX and finally

φk,n := φk +
δntnh

′
n,k

1 + δntnhn,k
.

We will show that ‖∆γn(ϕn) − ∆γ(ϕ)‖λ,2 → 0 (∗). By Proposition 2.29 in van der Vaart
(1998) it suffices to show that (i) ∆γn(ϕn)→ ∆γ(ϕ) λ-a.e. and (ii) lim supn→∞ ‖∆γn(ϕn)‖2

λ,2 ≤
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‖∆γ(ϕ)‖2
λ,2 <∞. We have that ∆γn(ϕn) := 1

2
[τ ′n

˙̀
γn +Bγnhn]

√
pγn , with

pγn(W ) = | det(An)|
K∏
k=1

[ηk(1 + δntnhn,k)] (An,kVn)× [η0(1 + δntnhn,0)](X̃)

˙̀
γn,l(W ) =

K∑
k=1

ζl,k,k,n [φk,n (An,kVn)An,kVn + 1] +
K∑
k=1

K∑
j=1, j 6=k

ζl,k,j,nφk,n (An,kVn)An,jVn

[Bγnhn] (W ) = hn,0(X̃) +
K∑
k=1

hn,k(An,kVn)−
dβ2∑
l=1

bn,2,l

K∑
k=1

φk,n (An,kVn)An,kD2,lX

+

dθ+dβ1∑
m=dθ+1

bn,1,m

[
K∑
k=1

ζm,k,k,n [φk,n (An,kVn)An,kVn + 1]

]

+

dθ+dβ1∑
m=dθ+1

bn,1,m

[
K∑
k=1

K∑
j=1, j 6=k

ζm,k,j,nφk,n (An,kVn)An,jVn

]
.

Note first that there is a N ∈ N such that for n ≥ N each |hn,k| and |h′n,k| is bounded above

λ-a.e. by some h̄ ∈ (0,∞). This implies that φk,n → φk λ-a.e. The assumed continuity of
D1,l and A imply that An → A and each ζl,j,k,n → ζl,j,k and it is clear from its definition
that Vn → V := Y −RX. Inspection of the preceding display in light of these observations
reveals that (i) holds. For (ii), the finiteness of ‖∆γ(ϕ)‖2

λ,2 = 1/4Pγ[τ
′ ˙̀
γ +Bγh]2 follows from

Lemma 1.7 of van der Vaart (2002) and (94). For the remaining inequality it suffices to

show that Pγn

[
τn ˙̀

γn +Bγnhn

]2

→ Pγ

[
τ ˙̀

γ +Bγh
]2

. This will follow by Lemma 3.11 if we

show that (a) Pγn converges to Pγ in total variation, (b) g′n := τn ˙̀
γn + Bγnhn ∈ L2(Pγn)

and g := τ ˙̀
γ + Bγh ∈ L2(Pγ), (c) g′n → g in Pγ-probability and (d) (g′n)n∈N is uniformly

square Pγn-integrable.111 For (a), note that inspection of the preceding display reveals that
pγn → pγ λ-a.e.. Hence, Pγn → Pγ in total variation by Scheffé’s theorem. (b) follows from
the fact that (94) holds for each γ ∈ Γ, τ ∈ Rdθ , h ∈ Hη and Lemma 1.7 in van der Vaart
(2002). For (c) note that inspection of the preceding display once more gives that g′n → g
λ-a.e. and hence Pγ-a.s. as Pγ � λ. Finally, for (d), let ρ = 2+δ/2 where δ > 0 is as in (35)
& (36). Let N be large enough that for n ≥ N , tn ∈ [0, 1), each |hn,k|, |h′n,k| ≤ h̄ ∈ (0,∞),

each |τn,l| ≤ 2|τl|, |ςn,l| ≤ 2|ςl| ‖An‖2 ≤ 2‖A‖2, each |ζl,k,j,n| ≤ 2|ζl,k,j|, |φn,k| ≤ |φk| + h̄
and Pγn ∈ P .112 It suffices to show that supn≥N Pγn|g′n|ρ < ∞. In particular, by Hölder’s
inequality (and given the bounds just discussed holding for n ≥ N), it is enough to show
that each of Pγn|φn,k(An,kVn)An,jVn|ρ for all (k, j) ∈ [K]2 and Pγn|φn,k(An,kVn)An,kD2,lX|ρ
for all k ∈ [K] and l ∈ [dβ2 ] are bounded independently of n (for n ≥ N). Note that under

111Since we are interested only in the limiting behaviour, we can replace any Pγn which are not probability
measures with Pγn′ where n′ indicates the first index for which all subsequent elements of the sequence are
probability measures. That each Pγn is a probability measure for n sufficiently large can be established
analogously to the same for Pγn,τn,hn , which was established at the start of this proof, upon replacing
the tn used in the argument there with δntn.

112See footnote 111.
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Pγn , An,kVn ∼ ηk(1 + δntnhn,k) and X̃ ∼ η0(1 + δntnhn,0). By Cauchy-Schwarz we have

Pγn [|φn,k(An,kVn)|ρ|An,jVn|ρ] ≤ Pγn|φn,k(An,kVn)|4+δPγn|An,jVn|4+δ,

Pγn [|φn,k(An,kVn)|ρ|An,kD2,lX|ρ] ≤ Pγn|φn,k(An,kVn)|4+δPγn|An,kD2,lX|4+δ.

For n ≥ N , ηk(1 + δntnhn,k) ≤ ηk(1 + h̄) and so by (35) & (36), for a constant C which does
not depend on n,

Pγn|An,jVn|4+δ ≤ (1 + h̄)

∫
e4+δηj(e) dλ <∞,

Pγn|φn,k(An,kVn)|4+δ ≤ C(1 + h̄)

∫ [
|φk(e)|4+δ + h̄d+δ

]
ηk(e) dλ <∞,

Pγn|An,jD2,lX|4+δ ≤ (1 + h̄)[2‖A‖2‖D2,l‖2]4+δ

∫
‖(1, x̃′)‖4+δ

2 η0(x̃) dλ <∞.

As each right hand side term in the preceding display does not depend on n, this completes
the demonstration of (d) and hence of (∗).

We now establish (19). Suppose first that θn = θ and let un → u be arbitrary and put
ϕn := ϕ(un), ϕ := ϕ(u) and tn ↓ 0. Also let gγ := τ ′ ˙̀γ +Bγh. For large enough n, γ+ϕn ∈ Γ
and so applying (94) and the mean value theorem (e.g. Drabek and Milota, 2007, Theorem
3.2.7) for all such n,∥∥∥∥t−1

n

(√
qγ,tn,un −

√
qγ
)
− 1

2
gγ
√
qγ

∥∥∥∥
λ,2

≤
∥∥t−1
n

(√
qγ,tn,un −

√
qγ,tn,u

)∥∥
λ,2

+

∥∥∥∥t−1
n

(√
qγ,tn,u −

√
qγ
)
− 1

2
gγ
√
qγ

∥∥∥∥
λ,2

≤ sup
δ∈[0,1]

∥∥∆γ+δtn(ϕn−ϕ)(ϕn − ϕ)
∥∥
λ,2

+ o(1).

(95)

For any sequence (δn)n∈N ⊂ [0, 1] we have that ‖∆γ+δntn(ϕn−ϕ)(ϕn−ϕ)−∆γ(0)‖λ,2 → 0 by (∗)
and ‖∆γ(0)‖λ,2 = 0.113 It follows that lim supn→∞ supδ∈[0,1]

∥∥∆γ+δtn(ϕn−ϕ)(ϕn − ϕ)
∥∥
λ,2

= 0

and hence∥∥∥∥√pγ+tnϕn −
√
pγ

tn
−∆γ(ϕ)

∥∥∥∥
λ,2

=

∥∥∥∥√qγ,tn,un −√qγtn
− 1

2
gγ
√
qγ

∥∥∥∥
λ,2

= o(1), (96)

which we note holds for any γ ∈ Γ, since such γ was arbitrary. Now, consider an arbitrary
sequence θn → θ and γn = (θn, η). Using (96) and applying the mean value theorem at each
n ∈ N gives (e.g. Drabek and Milota, 2007, Theorem 3.2.7)∥∥∥∥t−1

n

(√
qγn,tn,un −

√
qγn
)
− 1

2
gγn
√
qγn

∥∥∥∥
λ,2

≤ |t−1
n | sup

δ∈[0,1]

‖∆γn+δtnϕn(tnϕn)− tn∆γn(ϕ)‖λ,2

= sup
δ∈[0,1]

‖∆γn+δtnϕn(ϕn)−∆γn(ϕ)‖λ,2 .

(97)

113The latter observation follows directly from the definition of ∆γ
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By (∗) we have for some sequence (δn)n∈N ⊂ [0, 1],114

lim sup
n→∞

sup
δ∈[0,1]

‖∆γn+δtnϕn(ϕn)−∆γn(ϕ)‖λ,2

≤ lim sup
n→∞

‖∆γn+δntnϕn(ϕn)−∆γ(ϕ)‖λ,2 + lim sup
n→∞

‖∆γn(ϕ)−∆γ(ϕ)‖λ,2
= o(1).

Combining this with (97) and taking tn = n−1/2 yields∥∥∥∥√n (√pγn,τn,hn −√pγn)− 1

2
gγn
√
pγn

∥∥∥∥
λ,2

=

∥∥∥∥t−1
n

(√
qγn,tn,un −

√
qγn
)
− 1

2
gγn
√
qγn

∥∥∥∥
λ,2

= o(1),

which implies (19).
Finally we demonstrate that Pγngn = 0 and the uniform square Pγn-integrability of the

score functions gn. That Pγngn = 0 and gn ∈ L2(Pγn) follows from (94) applied separately
for each n ∈ N (with γ = γn) and Lemma 1.7 in van der Vaart (2002). The uniform square
Pγn-integrability of (gn)n∈N follows from the uniform square Pγn-integrability of (g′n)n∈N
established in (d) above applied with δn = 0, any tn ↓ 0 and un = 0.

Proof of proposition 5.2. The claim regarding the form of the efficient score function follows
from proposition 5.1, Lemma 3 of Lee and Mesters (2021a) and Lemma C.4.

For assumption CM(ii), fix τ ∈ Rdθ and h ∈ Hη and let gn = τ ′ ˙̀γn +Bγnh and g := τ ′ ˙̀γ+
Bγh where ˙̀

γ and Bγ are defined analogously to in Proposition 5.1 but with A = A(θ, β1)
in place of An = A(θn, β1). During the demonstration of (∗) in the proof of Proposition 5.1
it was shown that limn→∞ Pγn(g′n)2 = Pγg

2. Applying this result with δn = 0, any tn ↓ 0
and un = 0 yields limn→∞ Pγng

2
n = Pγg

2.

A similar argument can be used for the efficient score function. Let ˘̀
γ := (˜̀′

γ,1,
˜̀′
γ,2)′.

Applied with δn = 0, any tn ↓ 0 and un = 0, (a) in the proof of Proposition 5.1 yields that
Pγn → Pγ in total variation. Since the components of ˘̀

γ and ˘̀
γ are defined as orthogonal

projections onto subspaces of L2(Pγn) and ∈ L2(Pγ) respectively, they lie in these spaces.

Inspection of the form of each element of ˘̀
γn and ˘̀

γ reveals that ˘̀
γn → ˘̀

γ λ-a.e. and hence
Pγ-a.s. as Pγ � λ. Let ρ = 2 + δ/2 where δ is as in (35) & (36). Let N ∈ N be large enough
that for n ≥ N , each |τn,l| ≤ 2|τl|, |ςn,l| ≤ 2|ςl|, ‖An‖2 ≤ 2‖A‖2, each |ζl,k,j,n| ≤ 2|ζl,k,j| and

Pγn ∈ P . To show that ˘̀2
γn,l

is uniformly Pγn-integrable for each l ∈ [dθ + dβ] it suffices to

show that supn≥N Pγn|˘̀γn,l|ρ <∞ for each such l. In particular, by Hölder’s inequality (and
given the bounds just discussed holding for n ≥ N) it is sufficient to show that each of (for
all (k, j) ∈ [K]2 with k 6= j and s ∈ [dβ2 ])

Pγn|An,kVn|ρ, Pγn|κ(An,kVn)|ρ, Pγn|φk(An,kVn)Aj,nVn|ρ, Pγn|An,kD2,s(X − µ)φk(Ak,nVn)|ρ,

are bounded independently of n (for n ≥ N). Under Pγn An,kVn ∼ ηk and X ∼ η0. Using
independence, Hölder’s inequality and (35) & (36) for constants C1, C2 ∈ (0,∞) independent

114On the right hand side take the trivial sequences ϕn = ϕ and δn = 0.
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of n

Pγn|An,kVn|ρ =

∫
eρ dGk(e) <∞

Pγn|κ(An,kVn)|ρ ≤ C1

∫
(e4+δ + 1) dGk(e) <∞

Pγn|φk(An,kVn)Aj,nVn|ρ =

∫
|φk(ek)|ρ dGk(ek)

∫
|ej|ρ dGj(ej) <∞

Pγn|An,kD2,s(X − µ)φk(Ak,nVn)|ρ ≤ C2

∫
(‖(1, x̃)‖ρ2 + ‖µ‖ρ2) dG0(x̃)

∫
|φk(ek)|ρ dGk(ek) <∞.

Since each right hand side term in the preceding display does not depend on n, this es-
tablishes the uniform Pγn-integrability of each ˘̀2

γn,l
. By Cauchy-Schwarz, the continuous

mapping theorem and Lemma 3.11 it then follows that Pγn

[
˘̀
γn

˘̀′
γn

]
→ Pγ

[
˘̀
γ
˘̀′
γ

]
. To com-

plete the argument, note that the convergence just established along with the uniform
Pγn-integrability of each ˘̀2

γn,l
implies that also each component ˜̀2

γn,l
(for l ∈ [dθ]) is uni-

formly Pγn-integrable and so the same holds for ‖˜̀γn‖2
2. Again by definition each component

˜̀
γn,l ∈ L2(Pγn) and ˜̀

γ,l ∈ L2(Pγ) and so using the uniform Pγn-integrability just estab-

lished, (46), Pγn

[
˘̀
γn

˘̀′
γn

]
→ Pγ

[
˘̀
γ
˘̀′
γ

]
, Cauchy-Schwarz, the continuous mapping theorem

and Lemma 3.11 once more we may conclude that limn→∞ Ĩγn = Ĩγ.
It remains to check the boundedness of Bγ, which follows directly as

‖Bγh‖Pγ ,2 . ‖b1‖2 + ‖b2‖2 +
K∑
k=1

‖hk‖Gk,2 . ‖b‖2 +
K∑
k=1

‖hk‖ = ‖h‖.

Proof of proposition 5.3. That assumption M holds is a consequence of the model setup in
assumption LSEM & the sampling assumption. Assumption CM(ii) follows by proposition
5.2. Assumption DQM holds by proposition 5.1, the proof of which also shows that the scores
˙̀
γn ∈ L0

2(Pγn) & Bγn : Hη → L0
2(Pγn). Then proposition 3.10 applied with gn = τ ′ ˙̀γn +Bγnh

yields that assumption LAN holds.
It remains to show that assumptions E and R hold.115 Suppose that (βn)n∈N ⊂ B

is a deterministic
√
n-consistent sequence for β (as in assumption DSE) and let ˆ̀

ξn,1 &
ˆ̀
ξn,2 be formed as in equation (49). Let γ′n := (θn, ηn) with ηn := (βn, η0, . . . , ηK). Let

˘̀
γ := (˜̀′

γ,1,
˜̀′
γ,2)′ and ˇ̀

ξn := (ˆ̀′
ξn,1

, ˆ̀′
ξn,2

)′. Components of ˇ̀
ξn have one of two forms:

ˆ̀
ξn,m,l(Wi) =

K∑
k=1

[
ζl,k,k,n (τ̂n,k,1en,k,i + τ̂n,k,2κ(en,k,i)) +

K∑
j=1,j 6=k

ζl,k,j,nφ̂n,k(en,k,i)en,j,i

]
,

ˆ̀
ξn,2,db1+s(Wi) =

K∑
k=1

[−An,kD2,s]
[
(Xi − X̄n)φ̂n,k(en,k,i)− X̄n (ς̂n,k,1en,k,i + ς̂n,k,2κ(en,k,i))

]
(with m = 1 and l ∈ [dθ] or m = 2 and l ∈ [dβ1 ] and s ∈ [dβ2 ]). Under Pγ′n , en,k,i ' εk and

115The argument in this section proceeds similarly to the relevant parts of the proofs of Theorem 2 &
Proposition 2 of Lee and Mesters (2021a).
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en,j,i ' εk. Therefore, by assumptions LSEM and DSE, 1
n

∑n
i=1

[
φ̂n,k(en,k,i)− φk(en,k,i)

]
en,j,i =

oPγ′n
(n−1/2) and 1

n

∑n
i=1

[
φ̂n,k(en,k,i)− φk(en,k,i)

]
(Xi − µ) = oPγ′n

(n−1/2). Additionally, since

(en,k,i)
n
i=1 and (κ(en,k,i))

n
i=1 and (φk(en,k,i))n∈N are i.i.d. samples from mean zero distribu-

tions with finite variance under Pγ′n given assumption LSEM and equation (45), it follows
that 1√

n

∑n
i=1 an,k,i = OPγ′n

(1), for an,k,i ∈ {en,k,i, κ(en,k,i), φk(en,k,i)}. The argument of

Lemma 7 in Lee and Mesters (2021a) implies that ‖κ̂n,k − κk‖2 = oPγ′n
(νn) = oP ′γn (1)

for κ ∈ {τ, ς} where νn is defined as in assumption DSE.116 Since X̃ ∼ η0 under Pγ′n ,
1
n

∑n
i=1Xi − µ = oPγ′n

(1) by the LLN. The continuity of A and D1,l yields that each
ζl,k,j,n → ζl,k,j and hence are bounded. Combining these observations yields that

√
nPn

[
ˇ̀
ξn − ˘̀

γ′n

]
= oPγ′n

(1). (98)

Let Îξn := Pn ˇ̀
ξn

ˇ̀′
ξn

, Ǐγ′n := Pn ˘̀
γ′n

˘̀′
γ′n

and Ĭγn := Pγn ˘̀
γn

˘̀′
γn . Firstly, let m, r ∈ {1, 2} and

l, s be indices such that ˆ̀
ξn,m,l and ˆ̀

ξn,r,s are components of ˇ̀
ξn . Let Ûn,i,m,l := ˆ̀

ξn,m,l(Wi),

Ũn,i,m,l := ˜̀
ξn,m,l(Wi) and Dn,i,m,l := Ûn,i,m,l − Ũn,i,m,l. By Cauchy-Schwarz, assumptions

LSEM, DSE, (45) and arguing analogously to Lemma 8 of Lee and Mesters (2021a)∣∣∣∣∣ 1n
n∑
i=1

Dn,i,l,mŨn,i,r,s

∣∣∣∣∣ ≤
(

1

n

n∑
i=1

Ũ2
n,i,r,s

)1/2(
1

n

n∑
i=1

D2
n,i,l,m

)1/2

= oP ′γn (νn)∣∣∣∣∣ 1n
n∑
i=1

Ũn,i,l,mDn,i,r,s

∣∣∣∣∣ ≤
(

1

n

n∑
i=1

Û2
n,i,l,m

)1/2(
1

n

n∑
i=1

D2
n,i,r,r

)1/2

= oP ′γn (νn),

and hence R1,n := ‖Îξn − Ǐξn‖2 ≤ ‖Îξn − Ǐξn‖F = oPγ′n
(νn).117 Next let

Qn,i,l,m,r,s := ˜̀
γ′n,l,m(Wi)˜̀

γ′n,r,s(Wi)− ˜̀
γn,l,m(Wi)˜̀

γn,r,s(Wi),

and let Q̆n,i,l,m,r,s be defined analogously except with each en,k,i replaced by εi,k. Note that

the distribution of Qn,i,l,m,r,s under Pγ′n is the same as that of Q̆n,i,l,m,r,s under the product

measure G =
∏K

k=0Gk. Therefore, arguing analogously to the corresponding part of the
proof of proposition 2 in Lee and Mesters (2021a), using their Lemma 6 and Theorems
2.5.11 & 2.5.12 in Durrett (2019) gives that R2,n := ‖Ǐξn − Ĭγn‖2 = oP ′γn (νn). Combining
this with the result for R1,n we have that

‖Îξn − Ĭγn‖2 = oPγ′n
(νn). (99)

116The Lemma as stated does not apply directly since it is for the case where θn = θ. Regardless, since
en,k,i ∼ ηk and X̃ ∼ η0 under Pγ′

n
the argument also holds in our case.

117Similarly to footnote 116, whilst Lemma 8 in Lee and Mesters (2021a) cannot be directly applied since
it assumes θn = θ, the underlying argument continues to apply here as it is based on the fact that under
the relevant measure (here Pγ′

n
) en,k,i ∼ ηk and X̃ ∼ η0. Moreover their assumptions 5 & 6 hold under

assumptions LSEM, DSE and (45).
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Next we demonstrate that for each pair m, l indexing and element of ˘̀
γn we have∫

[˜̀γ′n,m,l
√
pγ′n − ˜̀

γn,m,l
√
pγn ]2 dλ→ 0. (100)

Note that λ-a.e. each ˜̀
γ′n,m,l

√
pγ′n → ˜̀

γ,m,l
√
pγ and ˜̀

γn,m,l
√
pγn → ˜̀

γ,m,l
√
pγ by the assumed

continuity of A, each D1,l, each ηk and each φk and the form of these functions. Hence by
Proposition 2.29 in van der Vaart (1998) it suffices to show that

∫
˜̀2
γ′n,m,l

dPγ′n →
∫

˜̀2
γ,m,l dPγ

and
∫

˜̀2
γn,m,l

dPγn →
∫

˜̀2
γ,m,l dPγ, since ˜̀

γ,m,l ∈ L2(Pγ) by its definition. Define Qn,i,l,m :=
˜̀2
γn,m,l

, Q′n,l,m := ˜̀2
γ′n,m,l

and Q̆n,l,m, Q̆′n,l,m which are defined analogously except with each

en,k,i replaced by εi,k. Under Pγn , Qn,l,m has the same distribution as Q̆n,l,m has under

G; similarly under Pγ′n , Q′n,l,m has the same distribution as Q̆′n,l,m has under G. Hence,∫
˜̀2
γ′n,m,l

dPγ′n =
∫
Q′n,m,l dG and

∫
˜̀2
γn,m,l

dPγn =
∫
Qn,m,l dG. This observation and the the

continuity of A and each D1,l is sufficient for the required integral convergence to hold.118

We note that the same argument which yielded the uniform Pγn-integrability of ‖˜̀γn‖2
2 in

the proof of Proposition 5.2 can be used to show that that ‖˜̀γ′n‖2
2 is uniform Pγ′n-integrable.

Since θ 7→ rank(Ĩγ) is locally constant, for all sufficiently large n ∈ N we have rank(Ĩγn) =
rank(Ĩγ). Ĩγn → Ĩγ (which holds as we have shown that assumption CM(ii) does). The
proof is completed by applying Lemma B.7.

Proof of corollary 5.4. This follows from propositions 5.3, 3.2 and 3.3.

Proof of corollary 5.5. This follows from proposition 5.3 and corollaries 3.7 & 3.9, on noting
that Hη – as defined in equation (43) – is a linear subspace of H whenever β ∈ int B.

C Supporting results

Lemma C.1. Let {Zn,k : k ≤ n, n ∈ N} be a triangular array of L−dimensional random
vectors, such that each row is independent with E[Zn,k] = 0 and Σn,k := E

[
Zn,kZ

′
n,k

]
exists.

Suppose that
1

n

n∑
k=1

Σn,k → Σ?, (101)

with Σ? positive semi-definite (and finite) and that for each ε > 0

1

n

n∑
k=1

E
[
‖Zn,k‖21{‖Zn,k‖ ≥ ε

√
n}
]
→ 0. (102)

Then
1√
n

n∑
k=1

Zn,k  N (0,Σ?).

Proof. Put ξn,k := Zn,k/
√
n for k ≤ n and ξn,k := 0 otherwise. Fix a ∈ RL. For each n ∈ N,

let Fn,k = σ(ξn,t : t ≤ k) for k ≤ n and Fn,k = Fn,n otherwise. The adapted sequence
(a′ξn,k,Fn,k)k∈N is clearly a martingale difference sequence by the independence, mean zero
and (square) integrability of each Zn,k. Moreover, the sums

∑∞
k=1 a

′ξn,k =
∑n

k=1 a
′ξn,k and

118See the corresponding part of the proof of proposition 2 in Lee and Mesters (2021a) for additional details.
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∑∞
k=1 E[(a′ξn,k)

2] =
∑n

k=1 E[(a′ξn,k)
2] trivially converge with probability 1 for each n ∈ N.

By linearity and continuity we have that

∞∑
k=1

E[(a′ξn,k)
2] =

n∑
k=1

E[(a′ξn,k)
2] = a′

[
1

n

n∑
k=1

Σn,k

]
a→ a′Σ?a ≥ 0.

Next, suppose that a 6= 0 and let ε > 0. We have that {|a′Zn,k| ≥ ε
√
n} ⊂ {‖Zn,k‖ ≥

ε
√
n/‖a‖} and therefore

∞∑
k=1

E
[
(a′ξn,k)

21{|a′ξn,k| ≥ ε}
]
≤ ‖a‖2 1

n

n∑
k=1

E
[
‖Zn,k‖21{‖Zn,k‖ ≥ ε

√
n/‖a‖}

]
→ 0,

by assumption.119 Noting the assumed independence, the conditions of Theorem 18.1 of
Billingsley (1999) are satisfied and hence

1√
n

n∑
k=1

a′Zn,k =
∞∑
k=1

a′ξn,k  N (0, a′Σ?a).

The claimed result then follows by an application of the Cramér-Wold theorem.

Remark C.1. Lemma C.1 is, of course, completely standard. I record it here because I have
been unable to find a reference for a multivariate CLT for triangular arrays which permits
a positive semi -definite limiting variance matrix.

Lemma C.2. Let G be a closed subspace of L2(P ) where the latter is separable and let
(gm)m∈N denote an orthonormal basis in G. Let for m ∈ N, let Πm denote the orthogonal
projection on Gm := lin{g1, . . . , gm} and let Π denote the orthogonal projection on G. Then,
for any X ∈ L2(P ) we have that ΠmX → ΠX in L2(P ) as m→∞.

Proof. We first note that the formulation in the lemma is well-defined: every subspace of a
separable metric space is itself separable (see e.g. Proposition 26, section 9.6 of Royden and
Fitzpatrick, 2010, p. 204-205). Since a closed subspace of a Hilbert space is also a Hilbert
space (with the same inner product), it follows that G is separable and therefore possesses
an orthonormal basis (e.g. Theorem 11, Section 16.3 of Royden and Fitzpatrick, 2010, p.
317-318). Since any finite dimensional subset of a Hilbert space is closed, the orthogonal
projection operators Πm are well defined. Throughout 〈·, ·〉 and ‖ · ‖ will denote the inner
product in L2(P ).

By proposition I.4.7 in Conway (1985, p. 15) we have that

ΠmX =
m∑
k=1

〈X, gk〉gk.

ΠX is the unique vector in G such that 〈X − ΠX, g〉 = 0 for all g ∈ G (see e.g. I.2.6
- I.2.8 in Conway, 1985, p. 9-10). Now, let Y =

∑∞
k=1〈X, gk〉gk which converges by e.g.

lemma I.4.12 in Conway (1985, p. 16). By continuity and linearity of the inner product we

119In the case that a = 0 this limit trivially holds.
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then have that for any gj

〈X − Y , gj〉 = 〈X, gj〉 −
∞∑
k=1

〈X, gk〉〈gk, gj〉 = 〈X, gj〉 − 〈X, gj〉 = 0.

Using linearity and continuity of the inner product once more permits the conclusion
that 〈X − Y , g〉 = 0 for any g ∈ G. Hence Y = ΠX. Then, we have ΠX − ΠmX =∑∞

k=m+1〈X, gk〉gk = Y −∑m
k=1〈X, gk〉gk which converges to 0 in L2(P ) by the convergence

of
∑m

k=1〈X, gk〉gk to Y .

Lemma C.3. Let X be an integrable random variable and Z a random element in a metric
space Z, both defined on a probability space (Ω,F ,P). Then E[X|Z] = 0 (P-almost surely)
if and only if E[Xf(Z)] = 0 for all square integrable functions f : Z → R such that Xf(Z)
is integrable.

Proof. Suppose that E[X|Z] = 0. We have

E[Xf(Z)] = E[E[Xf(Z)|Z]] = E[E[X|Z]f(Z)] = 0.

Conversely suppose that E[Xf(Z)] = 0 for all square-integrable functions f : Z → R with
Xf(Z) integrable. Let Y be any of the conditional expectations E[X|Z] and let A ∈ σ(Z).
There is a set B ∈ B(R) such that A = Z−1(B). Put f as the indicator f(z) := 1{z ∈ B}.
Clearly Ef(Z)2 ≤ 1 and Xf(Z) is integrable. Then, by definition,∫

A

Y dP =

∫
A

X dP =

∫
Xf(Z) dP = E[Xf(Z)] = 0.

Now, suppose {Y 6= 0} has positive measure. Then one of {Y > 0} or {Y < 0} must. Say
the first, the argument for the latter is analogous. This is {Y > 0} = E = ∪n≥1En for
En := {Y > 1/n}. So one Ek at least has positive measure. So

∫
E
Y dP ≥

∫
Ek
Y dP ≥∫

Ek
1/k dP = P(Ek)/k > 0. But this is a contradiction since E ∈ σ(Z).

Lemma C.4. Let ˙̀ and κ̇ be L- and K- dimensional vectors of functions in L2(P ) re-
spectively. Define B := lin{κ̇1, . . . , κ̇K} and suppose that G is a subspace of L2(P ). For
any closed subspace S ⊂ L2(P ), denote the orthogonal projection of X ∈ L2(P ) on S by
Π (X | S). Then if X̆ := Π

(
X | G ⊥

)
we have

˜̀ := Π
(

˙̀ | [B + G ]⊥
)

= ˘̀− Π
(

˘̀ | lin{κ̆1, . . . , κ̆K}
)
. (103)

Moreover, if Ĩ := P
[
˜̀̀̃ ′
]

and J̆ := P

[(
˘̀′, κ̆′

)′ (
˘̀′, κ̆′

)]
and J̆22 is positive-definite then

˜̀= ˘̀− J̆12J̆
−1
22 κ̆, and Ĩ = J̆11 − J̆12J̆

−1
22 J̆21. (104)

Proof. The proof of the first claim is as discussed on p. 74 of Bickel et al. (1998). As there,
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noting that G ⊂ lin B + G and using their equation (A.2.11) (p. 428) we obtain

˜̀= ˙̀− Π
(

˙̀ | G
)
− Π

(
˙̀ | (B + G ) ∩ G ⊥

)
= ˙̀− Π

(
˙̀ | G

)
− Π

(
˙̀− Π

(
˙̀ | G

)
| (B + G ) ∩ G ⊥

)
= ˘̀− Π

(
˘̀ | (B + G ) ∩ G ⊥

)
.

Now, suppose that f ∈ lin{κ̆1, . . . , κ̆K}. Then we have

f =
K∑
k=1

akκ̆k =
K∑
k=1

akκ̇k −
K∑
k=1

akΠ(κ̇k | G ) ∈ lin B + G ,

and moreover, since each κ̆k ∈ G ⊥, linearity of the inner product implies the same holds for
f . Hence f ∈ (B + G )∩G ⊥. For the reverse containment, suppose that f ∈ (B + G )∩G ⊥.
Then, we have for some g ∈ G that

f =
K∑
k=1

akκ̇k + g.

Now, suppose that g 6= −∑K
k=1 akΠ (κ̇k | G ), and hence g = −∑K

k=1 akΠ (κ̇k | G ) + h 6= 0
for some h ∈ G with h 6= 0. Then

〈f, h〉 =
K∑
k=1

ak〈κ̇k, h〉 −
K∑
k=1

ak〈Π(κ̇k | G ), h〉+ 〈h, h〉 =
K∑
k=1

ak〈κ̆k, h〉+ 〈h, h〉 = 〈h, h〉 > 0,

which is a contradiction to f ∈ G ⊥. Hence we must have g = −∑K
k=1 akΠ (κ̇k | G ) and

therefore f =
∑K

k=1 akκ̆k ∈ lin{κ̆1, . . . , κ̆K}. It follows that (B + G )∩G ⊥ = lin{κ̆1, . . . , κ̆K}
which, in conjunction with the first display of the proof, yields (103).

Next, if J̆22 is positive definite, then the formulae in in (104) are well-defined. For the
left hand side note that we have

P
[(

˘̀− J̆12J̆
−1
22 κ̆

)
κ̆′
]

= J̆12 − J̆12J̆
−1
22 J̆22 = J̆12 − J̆12 = 0,

implying that ˘̀− J̆12J̆
−1
22 κ̆ is the orthogonal projection of ˘̀ onto the orthocomplement

of lin{κ̆1, . . . , κ̆K} (e.g. Conway, 1985, Theorem I.2.6) and hence satisfies the condition
given in (103). The formula on the right hand side of (104) then follows by elementary
calculations.

Lemma C.5. Suppose that X is an integrable random variable on (Ω,F , P ), G,H ⊂ F and
σ(σ(X) ∪H) is independent of G. Then, almost surely E[X|σ(G ∪ H)] = E[X|H].

Proof. (i) E(X|H) is σ(G ∪H) measurable since E(X|H) is H-measurable by definition. (ii)
E(X|H) is integrable by definition of conditional expectation. (iii) We demonstrate that for
each A ∈ σ(G ∪ H), ∫

A

E(X|H) dP =

∫
A

X dP.

Let M = {B ∩ C : B ∈ G, C ∈ H}. This is closed under intersections and contains Ω.
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Additionally, we have that G∪H ⊂M ⊂ σ(G∪H) and therefore, σ(M) = σ(G∪H). Hence,
by Theorem 34.1 in Billingsley (1995) it is sufficient to demonstrate

∫
B∩C E(X|H) dP =∫

B∩C X dP for B ∈ G and C ∈ H. To this end, suppose that X ≥ 0 (without loss of
generality, since the following argument can be applied to the two positive parts X =
X+ +X− separately and linearity used to conclude otherwise). Then, we have that∫

B∩C
X dP = E(1B1CX) = E(1B)E(1CX),

since G is independent of σ(σ(X) ∪H). Additionally,∫
B∩C

E[X|H] dP = E (1B1CE[X|H])

= E(1B)E [1CE[X|H]]

= E(1B)E [E[1CX|H]]

= E(1B)E(1CX),

using the independence between G and H, 10.10 in Davidson (1994) and the LIE.

Lemma C.6 (Cf. Theorem 2 in Andrews, 1987). Suppose that equations (7) and (8) hold.
Then,

‖Î†n,θn − Ĩ†γ‖2 = oPγn (1).

Proof. Let r := rank(Ĩγ) and let M denote the set of dθ × dθ matrices with rank r. Fix
ε > 0 and let δ > 0 be small enough that whenever M ∈M is such that ‖Ĩγ −M‖2 < δ we
have ‖Ĩ†γ −M †‖2 < ε.120 It follows that for each n ∈ N,{

‖Î†n,θn − Ĩ†γ‖2 ≥ ε
}
⊂
{
‖În,θn − Ĩγ‖2 ≥ δ

}
∪
{

rank(În,θn) 6= r
}
,

and so

Pγn

(
‖Î†n,θn − Ĩ†γ‖2 ≥ ε

)
≤ Pγn

(
‖În,θn − Ĩγ‖2 ≥ δ

)
+ Pγn

(
rank(În,θn) 6= r

)
→ 0.

Lemma C.7. Suppose that equation (7) holds and Ĩγ � 0. Then assumption R holds.

Proof. The function M 7→ rank(M) is lower-semicontinuous on the set of matrices of any
(fixed) dimension. There is a δ > 0 such that on the set {‖În,θn − Ĩγ‖2 < δ}, dθ ≥
rank(În,θn) ≥ rank(Ĩγ)− 1/2 > dθ − 1, implying rank(Ĩγ) = dθ = rank(În,θn). Hence, by (7)

Pγn

(
rank(În,θn) = rank(Ĩγ)

)
≤ Pγn({‖În,θn − Ĩγ‖2 < δ})→ 1.

Lemma C.8. Suppose that S is a Polish space and (Pn)n∈N is a sequence of probability
measures which converges in total variation to P , with each Pn and P defined on (S,B(S)).

If (fn)n∈N is a sequence of non-negative functions in L1(Pn) such that (a) fn
P−→ f ∈ L1(P )

and (b) Pnfn → Pf then (fn)n∈N is uniformly Pn-integrable.
120See e.g. section 6.6 in Ben-Israel and Greville (2003).
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Proof. Condition (a) and Pn
TV−−→ P together imply that Qn  Q where Qn is the pushfor-

ward measure of Pn under fn andQ the same of P under f . Let h ∈ Cb(S). By change of vari-
ables (e.g. Bogachev, 2007, Theorem 3.6.1)

∫
h dQn =

∫
h(fn) dPn and

∫
g dQ =

∫
h(f) dP .

By (a) and the bounded convergence theorem,
∫
h(fn) dP →

∫
h(f) dP . By Pn

TV−−→ P∣∣∣∣∫ h(fn) dPn −
∫
h(fn) dP

∣∣∣∣ ≤ 2h̄ sup

{∣∣∣∣∫ g dPn −
∫
g dP

∣∣∣∣}→ 0,

where |h| ≤ h̄ ∈ (0,∞) and the supremum is taken over all measurable g with 0 ≤ g ≤ 1.
Hence Qn  Q as claimed. This, in conjunction with (b), Theorem 3.6 of Billingsley (1999)
and translating terms yields the result.

D Tables & figures

D.1 Empirical rejection frequencies (ERF)

D.1.1 SIM
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Table 1: ERF (%) ε ∼ N (0, 1), Xk ∼ U(−1, 1)

Ŝ W

n δ−1 f = δf1 f = δf2 f = δf3 f = δf1 f = δf2 f = δf3

200
√

1 5.24 6.58 6.14 15.94 14.38 18.92

400
√

1 5.38 5.20 5.40 10.28 10.14 13.82

600
√

1 5.50 5.70 5.14 8.06 7.88 11.22

800
√

1 4.74 4.76 5.36 6.94 7.78 10.28

200
√

2 5.46 5.36 5.38 17.62 15.18 19.90

400
√

2 5.58 5.68 5.58 12.72 10.26 14.58

600
√

2 4.60 5.48 5.42 10.66 9.14 13.20

800
√

2 5.20 5.34 5.74 9.20 8.98 10.60

200
√

4 5.22 5.50 5.62 20.86 19.10 24.62

400
√

4 4.98 5.86 5.60 14.68 12.62 17.04

600
√

4 4.92 5.20 5.52 12.80 9.82 15.10

800
√

4 5.48 4.96 6.02 10.48 9.32 13.08

200
√

8 5.12 5.34 5.60 16.28 22.52 26.20

400
√

8 5.98 5.50 5.12 19.48 16.12 19.98

600
√

8 5.62 5.00 6.48 15.24 14.18 16.94

800
√

8 4.98 5.54 5.40 13.02 11.76 14.42

200
√

16 4.82 5.64 5.22 12.28 20.08 21.76

400
√

16 5.28 5.30 6.02 15.66 18.66 23.66

600
√

16 4.58 5.46 5.62 19.30 15.68 19.64

800
√

16 5.30 5.56 5.32 17.02 14.68 17.62

Notes: Based on 5000 Monte carlo replications. Ŝ is the efficient score
test. W is a Wald test based on an Ichimura (1993) type estimator as
described in section 4.4. f1(v) = c1(1+exp(−v))−1, f2(v) = c2 exp(−v2),
f3(v) = c3v

2, where the constants ci (i = 1, 2, 3) are chosen to ensure
V(fi(Vθ)) = 4 under the null.
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Table 2: ERF (%), ε|ξ ∼
√

5(−1)ξ Beta(2, 3), ξ ∼ Bernoulli(1/2), Xk ∼ U(−1, 1)

Ŝ W

n δ−1 f = δf1 f = δf2 f = δf3 f = δf1 f = δf2 f = δf3

200
√

1 4.82 5.56 5.94 14.72 12.88 16.98

400
√

1 5.74 4.96 5.50 10.28 10.68 12.42

600
√

1 4.78 4.98 5.08 7.98 8.52 10.56

800
√

1 5.14 4.88 5.34 7.06 7.78 9.58

200
√

2 4.82 5.84 5.94 17.06 15.38 19.58

400
√

2 5.14 5.86 5.52 11.86 10.02 14.20

600
√

2 5.18 5.26 5.46 9.72 9.22 12.84

800
√

2 5.04 5.12 5.40 8.72 8.60 11.90

200
√

4 5.26 5.48 5.78 19.84 18.44 22.34

400
√

4 5.64 5.38 5.62 15.18 12.20 16.02

600
√

4 6.18 5.66 5.64 10.92 10.18 15.18

800
√

4 4.88 5.26 4.84 10.12 9.52 13.24

200
√

8 5.10 5.38 5.08 15.36 20.18 25.64

400
√

8 4.66 5.58 4.96 19.08 16.20 20.44

600
√

8 5.22 4.92 5.52 15.14 13.08 16.36

800
√

8 5.10 4.98 5.66 12.64 11.00 14.78

200
√

16 5.28 4.76 5.60 12.58 18.62 21.90

400
√

16 5.54 5.56 5.34 15.38 19.14 23.40

600
√

16 5.24 5.20 5.32 18.08 14.98 20.26

800
√

16 4.92 5.30 5.02 17.54 13.60 18.08

Notes: Based on 5000 Monte carlo replications. Ŝ is the efficient score
test. W is a Wald test based on an Ichimura (1993) type estimator as
described in section 4.4. f1(v) = c1(1+exp(−v))−1, f2(v) = c2 exp(−v2),
f3(v) = c3v

2, where the constants ci (i = 1, 2, 3) are chosen to ensure
V(fi(Vθ)) = 4 under the null.
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Table 3: ERF (%), ε ∼ N (0, 1), X = (Z1, 0.2Z1 + 0.4Z2 + 0.8), Zk ∼ U(−1, 1)

Ŝ W

n δ−1 f = δf1 f = δf2 f = δf3 f = δf1 f = δf2 f = δf3

200
√

1 5.28 5.56 6.52 14.74 15.76 14.42

400
√

1 6.20 5.94 5.96 10.62 10.88 10.68

600
√

1 5.64 5.62 5.70 9.28 9.00 9.06

800
√

1 5.10 5.80 5.00 7.28 8.78 8.18

200
√

2 6.14 5.62 5.80 17.74 20.14 16.92

400
√

2 5.62 5.96 6.52 12.08 14.02 11.02

600
√

2 5.70 5.26 5.66 9.72 11.16 9.94

800
√

2 5.38 5.08 5.78 9.68 10.34 9.02

200
√

4 6.20 5.44 5.32 20.84 25.02 20.26

400
√

4 5.64 5.62 5.90 15.70 16.82 14.22

600
√

4 5.24 5.54 5.88 12.20 13.08 11.32

800
√

4 5.68 5.74 5.38 11.18 13.14 10.62

200
√

8 5.42 5.88 5.54 15.70 25.26 16.86

400
√

8 5.82 5.42 5.32 17.24 21.64 17.42

600
√

8 5.80 5.84 5.94 15.82 16.56 15.24

800
√

8 5.44 5.68 5.60 13.14 15.14 13.14

200
√

16 5.52 5.94 5.86 12.32 20.14 12.94

400
√

16 6.18 5.68 5.58 16.06 24.22 15.98

600
√

16 5.76 5.72 5.66 17.90 22.20 16.80

800
√

16 5.24 5.28 5.02 17.40 19.54 15.38

Notes: Based on 5000 Monte carlo replications. Ŝ is the efficient score
test. W is a Wald test based on an Ichimura (1993) type estimator as
described in section 4.4. f1(v) = c1(1+exp(−v))−1, f2(v) = c2 exp(−v2),
f3(v) = c3v

2, where the constants ci (i = 1, 2, 3) are chosen to ensure
V(fi(Vθ)) = 4 under the null.
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Table 4: ERF (%), ε|ξ ∼
√

5(−1)ξ Beta(2, 3), ξ ∼ Bernoulli(1/2), X = (Z1, 0.2Z1 + 0.4Z2 +
0.8), Zk ∼ U(−1, 1)

Ŝ W

n δ−1 f = δf1 f = δf2 f = δf3 f = δf1 f = δf2 f = δf3

200
√

1 5.26 5.92 6.18 14.78 15.28 13.60

400
√

1 5.50 5.84 5.54 10.44 10.90 9.50

600
√

1 5.22 5.70 5.36 8.62 9.14 8.28

800
√

1 5.26 5.32 5.90 8.26 9.72 8.40

200
√

2 5.96 6.00 6.02 17.62 19.86 15.54

400
√

2 5.18 5.16 5.96 12.32 14.40 11.10

600
√

2 5.22 6.02 5.34 10.86 10.58 9.14

800
√

2 5.38 4.96 6.02 8.94 10.44 8.36

200
√

4 5.96 6.26 5.58 20.32 24.04 20.48

400
√

4 5.78 6.40 6.00 15.26 16.46 13.52

600
√

4 5.30 5.26 5.60 13.16 13.72 11.06

800
√

4 5.18 5.62 5.04 10.12 12.38 9.56

200
√

8 5.72 5.78 5.72 15.14 25.52 16.50

400
√

8 5.24 5.54 6.14 18.22 21.88 17.82

600
√

8 5.76 4.96 5.10 15.18 17.34 14.70

800
√

8 5.46 5.48 5.82 14.26 15.30 13.28

200
√

16 5.66 5.16 5.96 11.42 20.78 12.82

400
√

16 5.66 5.84 6.00 15.58 24.86 16.28

600
√

16 5.00 4.78 5.98 17.44 22.06 16.72

800
√

16 5.60 5.64 5.36 16.78 19.94 15.90

Notes: Based on 5000 Monte carlo replications. Ŝ is the efficient score
test. W is a Wald test based on an Ichimura (1993) type estimator as
described in section 4.4. f1(v) = c1(1+exp(−v))−1, f2(v) = c2 exp(−v2),
f3(v) = c3v

2, where the constants ci (i = 1, 2, 3) are chosen to ensure
V(fi(Vθ)) = 4 under the null.
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Table 5: ERF (%), ε ∼ N (0, s1 log(2 + (X1 +X2θ)
2)), Xk ∼ U(−1, 1), ω̆(X) = ω(X)

Ŝ W

n δ−1 f = δf1 f = δf2 f = δf3 f = δf1 f = δf2 f = δf3

200
√

1 6.38 6.64 6.20 18.72 16.76 23.46

400
√

1 6.24 5.84 6.50 12.34 11.70 17.26

600
√

1 5.78 5.12 5.72 10.38 10.96 14.70

800
√

1 5.88 5.58 5.92 8.50 9.94 12.76

200
√

2 5.76 5.76 6.12 22.62 19.30 25.86

400
√

2 5.96 6.22 6.26 16.30 13.72 20.08

600
√

2 5.52 5.46 6.26 14.46 11.70 15.70

800
√

2 5.34 5.94 5.68 11.26 10.14 14.78

200
√

4 5.32 5.72 5.44 27.12 24.36 30.40

400
√

4 5.42 5.96 6.12 21.06 16.28 22.48

600
√

4 5.24 5.52 5.74 15.50 13.38 19.58

800
√

4 5.74 5.72 5.76 13.74 11.16 17.78

200
√

8 5.40 5.64 5.46 19.66 25.36 30.08

400
√

8 6.60 6.22 6.32 25.42 21.10 28.72

600
√

8 5.50 5.80 6.60 21.34 17.78 23.80

800
√

8 5.42 5.84 6.06 17.86 15.58 21.08

200
√

16 5.86 6.26 5.74 14.06 23.96 25.06

400
√

16 5.52 6.50 6.46 20.32 23.98 29.78

600
√

16 5.50 5.74 5.08 25.04 22.00 29.20

800
√

16 5.28 4.82 5.24 22.90 19.90 25.40

Notes: Based on 5000 Monte carlo replications. Ŝ is the psuedo effi-
cient score test. W is a Wald test based on an Ichimura (1993) type
estimator as described in section 4.4. f1(v) = c1(1 + exp(−v))−1,
f2(v) = c2 exp(−v2), f3(v) = c3v

2, where the constants ci (i = 1, 2, 3) are
chosen to ensure V(fi(Vθ)) = 4 under the null. Similarly the constants
si (i = 1, 2) are chosen to ensure that Vε = 1 under the null.
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Table 6: ERF (%), ε ∼ N (0, s2(1 + 5 sin(X1)2)), Xk ∼ U(−1, 1), ω̆(X) = ω(X)

Ŝ W

n δ−1 f = δf1 f = δf2 f = δf3 f = δf1 f = δf2 f = δf3

200
√

1 5.40 5.94 6.46 19.10 16.34 18.46

400
√

1 6.68 6.34 7.42 13.36 11.24 13.72

600
√

1 5.94 6.14 6.00 10.28 8.74 10.88

800
√

1 5.86 5.70 5.78 8.86 7.68 9.76

200
√

2 5.12 5.32 5.70 23.74 19.96 22.58

400
√

2 5.42 6.28 6.62 15.70 12.92 15.72

600
√

2 5.92 6.00 5.92 12.66 10.44 12.86

800
√

2 5.68 5.76 5.78 10.38 9.58 11.90

200
√

4 5.64 6.50 5.94 23.30 22.86 25.92

400
√

4 5.48 5.82 6.84 19.76 16.60 18.44

600
√

4 5.82 5.74 6.24 15.70 13.08 14.30

800
√

4 5.80 5.82 6.18 13.86 12.16 12.54

200
√

8 5.98 5.70 5.50 14.74 23.00 28.56

400
√

8 5.48 6.50 5.78 22.32 20.00 23.70

600
√

8 5.46 5.76 6.24 20.56 16.76 19.02

800
√

8 5.36 6.00 6.18 17.94 13.74 16.50

200
√

16 4.96 6.20 5.42 12.96 18.18 26.24

400
√

16 5.42 6.50 6.70 12.78 21.82 25.66

600
√

16 5.20 5.86 5.58 18.30 21.24 23.82

800
√

16 5.06 5.66 5.92 21.44 18.76 20.98

Notes: Based on 5000 Monte carlo replications. Ŝ is the psuedo effi-
cient score test. W is a Wald test based on an Ichimura (1993) type
estimator as described in section 4.4. f1(v) = c1(1 + exp(−v))−1,
f2(v) = c2 exp(−v2), f3(v) = c3v

2, where the constants ci (i = 1, 2, 3) are
chosen to ensure V(fi(Vθ)) = 4 under the null. Similarly the constants
si (i = 1, 2) are chosen to ensure that Vε = 1 under the null.
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Table 7: ERF (%), ε ∼ N (0, s1 log(2 + (X1 + X2θ)
2)), X = (Z1, 0.2Z1 + 0.4Z2 + 0.8),

Zk ∼ U(−1, 1), ω̆(X) = ω(X)

Ŝ W

n δ−1 f = δf1 f = δf2 f = δf3 f = δf1 f = δf2 f = δf3

200
√

1 5.08 5.98 6.10 15.22 16.62 16.40

400
√

1 5.06 5.74 5.54 9.62 11.76 12.00

600
√

1 5.56 5.94 5.84 8.18 11.02 10.86

800
√

1 5.02 5.58 5.44 8.00 9.02 9.50

200
√

2 5.70 5.62 5.50 17.94 19.58 19.94

400
√

2 5.92 5.80 6.06 12.90 13.24 14.08

600
√

2 6.20 6.02 5.38 9.52 11.22 11.54

800
√

2 5.60 5.70 5.48 8.78 10.76 9.78

200
√

4 5.66 6.02 5.50 20.92 24.00 22.28

400
√

4 5.90 5.68 5.86 16.50 16.98 17.84

600
√

4 5.08 5.40 5.92 12.20 14.42 14.44

800
√

4 5.32 4.88 5.72 10.74 11.96 12.54

200
√

8 5.62 5.36 5.56 18.02 26.58 17.74

400
√

8 5.90 5.76 5.44 19.70 21.66 20.64

600
√

8 5.70 5.86 5.76 16.72 17.70 18.04

800
√

8 5.42 5.18 5.26 13.30 14.92 14.82

200
√

16 5.20 5.18 5.30 12.16 21.54 15.70

400
√

16 5.58 5.26 5.80 17.04 25.38 18.52

600
√

16 5.68 5.42 5.88 18.78 22.58 20.06

800
√

16 5.08 5.26 5.46 17.80 19.20 18.82

Notes: Based on 5000 Monte carlo replications. Ŝ is the psuedo effi-
cient score test. W is a Wald test based on an Ichimura (1993) type
estimator as described in section 4.4. f1(v) = c1(1 + exp(−v))−1,
f2(v) = c2 exp(−v2), f3(v) = c3v

2, where the constants ci (i = 1, 2, 3) are
chosen to ensure V(fi(Vθ)) = 4 under the null. Similarly the constants
si (i = 1, 2) are chosen to ensure that Vε = 1 under the null.
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Table 8: ERF (%), ε ∼ N (0, s2(1 + 5 sin(X1)2)), X = (Z1, 0.2Z1 + 0.4Z2 + 0.8), Zk ∼
U(−1, 1), ω̆(X) = ω(X)

Ŝ W

n δ−1 f = δf1 f = δf2 f = δf3 f = δf1 f = δf2 f = δf3

200
√

1 4.74 5.34 5.66 14.86 14.12 17.52

400
√

1 5.60 6.28 6.12 9.34 10.24 10.12

600
√

1 5.66 6.00 5.48 6.82 7.76 7.62

800
√

1 5.82 6.42 5.64 6.70 7.54 6.62

200
√

2 5.16 5.56 5.84 19.24 17.10 20.10

400
√

2 6.38 6.14 6.38 11.50 11.92 12.28

600
√

2 5.62 5.08 6.02 8.34 9.38 9.98

800
√

2 5.50 6.10 5.50 8.14 8.94 7.42

200
√

4 5.88 5.58 5.48 24.48 22.80 23.50

400
√

4 6.10 6.04 6.10 15.04 15.08 15.72

600
√

4 5.98 6.32 5.84 11.54 11.70 11.30

800
√

4 5.68 5.82 5.62 9.24 10.88 9.78

200
√

8 5.48 4.96 5.26 24.04 27.46 24.94

400
√

8 5.42 5.42 5.94 20.26 19.66 20.38

600
√

8 5.74 5.58 5.76 16.10 15.44 15.22

800
√

8 5.40 5.08 5.60 12.26 12.80 13.88

200
√

16 5.50 4.60 5.10 17.84 22.32 22.20

400
√

16 5.38 5.80 5.66 20.82 23.02 22.36

600
√

16 5.54 5.86 5.56 19.78 19.58 21.86

800
√

16 5.70 5.80 5.60 17.88 17.00 17.14

Notes: Based on 5000 Monte carlo replications. Ŝ is the psuedo effi-
cient score test. W is a Wald test based on an Ichimura (1993) type
estimator as described in section 4.4. f1(v) = c1(1 + exp(−v))−1,
f2(v) = c2 exp(−v2), f3(v) = c3v

2, where the constants ci (i = 1, 2, 3) are
chosen to ensure V(fi(Vθ)) = 4 under the null. Similarly the constants
si (i = 1, 2) are chosen to ensure that Vε = 1 under the null.
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Table 9: ERF (%), ε ∼ N (0, s1 log(2 + (X1 +X2θ)
2)), Xk ∼ U(−1, 1), ω̆(X) = 1

Ŝ W

n δ−1 f = δf1 f = δf2 f = δf3 f = δf1 f = δf2 f = δf3

200
√

1 4.86 5.74 5.62 22.22 19.88 23.22

400
√

1 5.64 5.20 6.04 15.80 13.76 18.40

600
√

1 5.10 5.72 5.50 12.08 12.14 14.68

800
√

1 5.32 4.88 5.32 10.82 11.06 13.50

200
√

2 4.68 5.90 5.98 26.22 23.80 27.42

400
√

2 5.18 5.72 6.44 19.14 15.68 20.74

600
√

2 5.26 5.72 5.24 15.98 13.20 17.00

800
√

2 5.28 5.28 6.16 14.00 12.24 16.22

200
√

4 5.78 5.18 5.54 29.72 27.44 32.58

400
√

4 5.88 5.46 6.14 24.32 19.24 24.88

600
√

4 5.34 5.14 6.18 20.10 15.92 19.62

800
√

4 5.14 5.28 5.10 17.86 14.08 18.12

200
√

8 6.02 5.74 6.18 23.12 29.98 32.70

400
√

8 5.44 5.34 5.94 29.00 26.08 29.76

600
√

8 5.52 5.72 5.04 25.26 20.50 24.70

800
√

8 5.16 5.70 6.18 21.74 17.42 22.78

200
√

16 5.48 5.16 5.40 15.62 25.38 28.04

400
√

16 5.78 5.50 5.86 23.62 28.28 33.34

600
√

16 5.02 4.74 6.10 28.38 25.90 30.54

800
√

16 5.00 5.14 5.28 27.00 21.72 26.24

Notes: Based on 5000 Monte carlo replications. Ŝ is the psuedo effi-
cient score test. W is a Wald test based on an Ichimura (1993) type
estimator as described in section 4.4. f1(v) = c1(1 + exp(−v))−1,
f2(v) = c2 exp(−v2), f3(v) = c3v

2, where the constants ci (i = 1, 2, 3) are
chosen to ensure V(fi(Vθ)) = 4 under the null. Similarly the constants
si (i = 1, 2) are chosen to ensure that Vε = 1 under the null.
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Table 10: ERF (%), ε ∼ N (0, s2(1 + 5 sin(X1)2)), Xk ∼ U(−1, 1), ω̆(X) = 1

Ŝ W

n δ−1 f = δf1 f = δf2 f = δf3 f = δf1 f = δf2 f = δf3

200
√

1 5.10 5.34 6.56 18.52 18.06 22.40

400
√

1 5.90 5.52 5.26 13.12 12.60 15.68

600
√

1 5.28 5.10 5.36 9.94 10.36 13.10

800
√

1 5.08 5.18 5.06 9.10 9.58 12.78

200
√

2 5.48 5.86 5.86 21.18 19.64 23.92

400
√

2 5.64 5.14 5.64 15.58 13.28 18.48

600
√

2 4.70 5.86 5.52 11.58 11.48 14.84

800
√

2 5.36 5.34 5.20 11.18 10.54 13.80

200
√

4 4.84 5.22 5.78 21.96 23.54 27.20

400
√

4 5.52 6.26 6.32 19.00 16.60 20.88

600
√

4 5.18 5.76 5.14 15.90 13.58 18.66

800
√

4 5.34 4.88 5.56 13.58 11.90 16.62

200
√

8 4.86 5.92 5.30 15.86 23.46 27.62

400
√

8 4.96 5.36 5.78 22.28 20.46 25.90

600
√

8 5.22 5.66 5.44 19.80 16.18 21.58

800
√

8 5.10 5.24 5.28 17.08 15.36 19.78

200
√

16 5.10 5.42 5.68 12.16 17.86 20.54

400
√

16 5.50 5.70 5.60 13.54 23.14 27.24

600
√

16 5.54 5.36 5.98 18.22 20.12 25.44

800
√

16 4.40 5.38 5.00 20.90 18.50 23.26

Notes: Based on 5000 Monte carlo replications. Ŝ is the psuedo effi-
cient score test. W is a Wald test based on an Ichimura (1993) type
estimator as described in section 4.4. f1(v) = c1(1 + exp(−v))−1,
f2(v) = c2 exp(−v2), f3(v) = c3v

2, where the constants ci (i = 1, 2, 3) are
chosen to ensure V(fi(Vθ)) = 4 under the null. Similarly the constants
si (i = 1, 2) are chosen to ensure that Vε = 1 under the null.
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Table 11: ERF (%), ε ∼ N (0, s1 log(2 + (X1 + X2θ)
2)), X = (Z1, 0.2Z1 + 0.4Z2 + 0.8),

Zk ∼ U(−1, 1), ω̆(X) = 1

Ŝ W

n δ−1 f = δf1 f = δf2 f = δf3 f = δf1 f = δf2 f = δf3

200
√

1 6.14 5.46 6.16 17.80 18.88 17.66

400
√

1 6.24 6.10 5.98 12.54 13.54 12.90

600
√

1 6.02 5.58 6.44 10.78 11.70 9.96

800
√

1 5.66 5.42 5.26 10.44 10.90 9.48

200
√

2 6.08 5.62 5.42 22.22 22.46 20.82

400
√

2 5.58 5.12 6.00 16.24 16.44 13.68

600
√

2 5.64 5.66 6.02 12.46 13.22 11.64

800
√

2 6.08 5.88 5.42 11.96 12.94 10.28

200
√

4 6.04 5.98 6.12 26.00 28.62 21.70

400
√

4 5.94 5.60 5.48 19.68 20.80 17.68

600
√

4 6.10 5.44 5.54 16.54 16.96 14.42

800
√

4 5.34 5.32 5.74 13.46 15.26 12.44

200
√

8 5.36 5.72 5.44 19.90 28.44 17.34

400
√

8 6.36 5.74 5.72 22.72 26.44 20.62

600
√

8 5.82 5.68 4.98 19.84 20.78 17.80

800
√

8 4.98 5.36 5.80 17.74 18.96 15.46

200
√

16 4.90 5.42 5.28 15.04 23.14 15.82

400
√

16 5.66 5.40 6.06 20.76 28.06 17.40

600
√

16 5.64 5.26 5.72 22.92 26.58 19.36

800
√

16 4.84 5.20 5.00 20.84 23.30 18.86

Notes: Based on 5000 Monte carlo replications. Ŝ is the psuedo effi-
cient score test. W is a Wald test based on an Ichimura (1993) type
estimator as described in section 4.4. f1(v) = c1(1 + exp(−v))−1,
f2(v) = c2 exp(−v2), f3(v) = c3v

2, where the constants ci (i = 1, 2, 3) are
chosen to ensure V(fi(Vθ)) = 4 under the null. Similarly the constants
si (i = 1, 2) are chosen to ensure that Vε = 1 under the null.
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Table 12: ERF (%), ε ∼ N (0, s2(1 + 5 sin(X1)2)), X = (Z1, 0.2Z1 + 0.4Z2 + 0.8), Zk ∼
U(−1, 1), ω̆(X) = 1

Ŝ W

n δ−1 f = δf1 f = δf2 f = δf3 f = δf1 f = δf2 f = δf3

200
√

1 6.20 6.34 5.80 18.88 21.20 19.30

400
√

1 6.36 5.90 5.40 15.04 16.58 13.84

600
√

1 5.40 5.74 5.24 12.34 14.32 12.60

800
√

1 5.54 5.66 5.22 10.64 12.30 10.66

200
√

2 5.72 5.98 6.70 23.24 25.90 23.48

400
√

2 5.64 6.10 5.82 16.66 19.28 16.56

600
√

2 5.28 5.22 5.64 14.12 16.08 13.76

800
√

2 5.92 5.66 6.02 12.94 14.52 11.92

200
√

4 5.94 6.46 6.12 29.54 29.14 27.76

400
√

4 6.08 6.16 5.78 21.66 24.08 20.16

600
√

4 5.10 5.80 5.56 17.50 18.74 14.90

800
√

4 5.24 5.76 5.32 16.62 18.08 14.58

200
√

8 6.30 5.96 5.82 26.38 34.50 25.68

400
√

8 5.64 5.30 5.84 25.76 28.60 24.70

600
√

8 5.52 5.84 5.72 22.16 23.56 20.06

800
√

8 5.20 5.74 5.12 18.92 21.02 17.36

200
√

16 5.44 5.06 6.18 15.94 28.06 18.10

400
√

16 5.36 5.80 6.50 26.70 33.90 26.38

600
√

16 5.04 6.00 5.46 26.72 29.04 24.70

800
√

16 5.46 5.84 5.46 23.14 26.78 22.62

Notes: Based on 5000 Monte carlo replications. Ŝ is the psuedo effi-
cient score test. W is a Wald test based on an Ichimura (1993) type
estimator as described in section 4.4. f1(v) = c1(1 + exp(−v))−1,
f2(v) = c2 exp(−v2), f3(v) = c3v

2, where the constants ci (i = 1, 2, 3) are
chosen to ensure V(fi(Vθ)) = 4 under the null. Similarly the constants
si (i = 1, 2) are chosen to ensure that Vε = 1 under the null.
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D.1.2 LSEM

Table 13: True error distributions

η1 η2

a N (0, 1) 0 – 1 N (0, 1)

b t′(5) 1 – 1 t′(5)

c SN ′(0, 1, 4) 1 – 2 t′(10)

– – 1 – 3 t′(15)

– – 2 – 1 SN ′(0, 1, 4)

– – 2 – 2 SN ′(0, 1, 3)

– – 2 – 3 SN ′(0, 1, 2)

– – 3 – 1 3/4N (0, 1) + 1/4N (3/2, 1/9)

– – 3 – 2 17/20N (0, 1) + 3/20N (3/2, 1/9)

– – 3 – 3 19/20N (0, 1) + 1/20N (3/2, 1/9)

Notes: SN (µ, σ, α) denotes the skew normal distribution with location µ, scale σ and shape α. t′ and SN ′
indicate that the corresponding t and skew normal distributions have been normalised to have zero mean

and unit variance. The mixutre density in the right hand column is based on the “Skewed bimodal” density

in Marron and Wand (1992).
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Figure 1: Density function of t′(ν)
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Densities 1 – j for j = 1, 2, 3 in table 13.

Figure 2: Density function of SN ′(0, 1, α)
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Densities 2 – j for j = 1, 2, 3 in table 13.
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Figure 3: Density function of αN (0, 1) + (1− α)N (3/2, 1/9)

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4
x

 α 0.75 0.85 0.95 1

Densities 3 – j for j = 1, 2, 3 in table 13.

Figure 4: Density functions for distributions used in LSEM simulation study (ii).
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Table 14: Empirical rejection frequencies (%) for LSEM, ε1 ∼ N (0, 1)

n 0 – 1 1 – 1 1 – 2 1 – 3 2 – 1 2 – 2 2 – 3 3 – 1 3 – 2 3 – 3

Ŝ
200 4.74 5.62 5.90 5.50 3.20 3.86 4.48 2.92 3.58 4.62
400 4.78 5.52 4.44 5.16 2.82 3.68 4.66 1.92 3.58 4.24
600 4.60 4.84 4.20 4.74 2.50 3.42 3.76 2.18 3.34 4.56
800 4.56 4.28 4.48 4.12 2.62 2.94 3.56 2.52 3.86 4.16

Ŝ∗

200 6.94 6.58 6.76 7.26 6.74 6.78 6.46 7.10 7.00 6.88
400 6.82 6.66 6.44 6.76 8.02 7.36 7.74 5.94 7.12 6.46
600 7.04 7.32 5.86 6.58 8.60 7.80 6.68 6.50 6.74 6.82
800 6.68 6.38 6.48 6.04 8.68 7.50 5.84 5.74 7.20 6.82

Ŵ
200 24.36 4.02 10.10 14.22 18.32 18.80 20.20 58.96 48.82 32.56
400 24.50 1.90 6.20 10.56 15.20 16.32 17.24 74.46 61.24 36.14
600 23.76 2.22 5.24 9.38 14.70 14.58 16.48 84.72 71.18 39.54
800 24.14 2.04 3.52 7.90 13.60 12.62 14.96 90.12 77.34 43.04

ˆLM
200 4.96 4.86 4.90 5.32 5.08 5.32 4.78 5.28 5.44 4.74
400 5.42 4.88 5.08 5.30 4.50 5.88 5.14 5.38 4.86 5.10
600 5.14 5.54 5.34 5.28 5.18 5.36 5.32 4.84 5.08 5.22
800 5.14 4.80 4.60 4.82 4.44 4.84 4.78 4.68 5.36 5.42

W̃
200 27.38 32.18 30.20 29.80 28.28 29.48 28.76 23.10 24.40 25.50
400 25.26 30.24 28.76 27.92 27.60 27.88 26.58 21.94 22.70 22.60
600 23.82 28.14 27.54 28.14 26.02 26.12 26.74 18.76 20.78 21.68
800 23.14 26.86 26.94 25.86 26.62 26.54 25.64 16.88 20.26 20.86

˜LM
200 30.52 35.66 32.88 31.76 31.16 32.52 31.28 22.90 24.66 28.04
400 21.64 27.26 23.34 23.56 22.84 22.74 22.38 14.66 15.86 17.74
600 16.64 22.86 18.76 19.58 18.30 18.46 20.16 9.10 11.02 14.36
800 14.72 19.68 15.72 15.88 16.60 16.70 16.50 6.84 8.52 11.52

Notes: Based on 5000 Monte carlo replications. Ŝ is the efficient score test computed
using OLS estimates of β; Ŝ∗ is the efficient score test computed using 1-step updates
from the OLS estimates. Ŵ, L̂M denote the Wald and LM tests based on a psuedo-
maximum likelihood estimator inspired by Gouriéroux et al. (2017). W̃ and L̃M
denote the Wald and LM tests based on a GMM estimator inspired by Lanne and
Luoto (2021). Columns 2 – 14 denote the choice of density for ε2, as in Table 13.
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Table 15: Empirical rejection frequencies (%) for LSEM, ε1 ∼ t′(5)

n 0 – 1 1 – 1 1 – 2 1 – 3 2 – 1 2 – 2 2 – 3 3 – 1 3 – 2 3 – 3

Ŝ
200 6.16 7.58 6.10 6.00 3.96 4.92 5.40 3.20 4.32 5.74
400 5.40 6.76 5.72 5.86 3.54 4.50 5.06 4.06 3.90 5.34
600 4.96 5.58 5.32 6.06 3.52 4.18 4.82 3.26 4.10 5.50
800 5.04 5.48 5.32 5.58 3.70 4.34 4.78 3.20 4.14 4.80

Ŝ∗

200 7.24 7.20 6.52 6.88 7.70 7.56 6.92 6.92 7.00 7.20
400 6.38 7.22 6.18 6.52 7.74 6.96 6.70 6.74 6.24 6.52
600 5.64 6.04 5.96 6.72 7.08 6.68 6.28 5.30 5.60 6.42
800 6.12 6.50 6.10 6.32 6.74 7.18 6.40 5.58 5.44 5.68

Ŵ
200 4.04 1.78 2.42 2.48 3.00 2.78 3.02 9.24 7.46 4.66
400 2.26 2.38 2.14 2.06 2.22 2.44 2.10 6.40 4.10 2.70
600 2.22 2.38 2.32 2.42 2.16 2.20 1.98 5.02 2.98 2.26
800 1.92 2.78 3.14 2.98 2.36 2.32 2.42 3.10 2.78 1.88

ˆLM
200 5.20 4.72 4.70 5.00 5.24 5.24 5.46 5.46 5.60 5.42
400 5.40 5.10 5.04 4.80 5.34 4.98 5.30 5.84 5.62 5.14
600 4.78 4.64 4.44 5.18 4.94 5.02 5.22 5.48 5.40 5.12
800 4.82 5.04 5.50 5.40 5.28 4.84 4.38 5.72 5.66 4.48

W̃
200 24.94 32.26 27.54 26.12 26.34 26.00 25.92 19.88 22.06 22.20
400 20.18 27.78 22.60 21.02 21.04 21.20 20.68 17.38 16.50 19.62
600 17.98 24.62 20.32 19.84 19.52 19.02 17.94 14.96 14.64 16.90
800 16.16 22.20 18.88 18.16 17.66 17.70 16.70 13.42 13.82 15.66

˜LM
200 37.10 44.10 39.78 39.18 39.44 39.34 37.88 30.94 33.26 34.90
400 29.16 36.58 30.58 29.46 30.74 29.78 29.38 25.06 24.26 27.80
600 23.56 31.82 27.36 26.44 26.52 25.60 24.58 21.06 21.64 23.62
800 21.62 28.30 23.90 23.16 23.22 23.64 21.80 19.20 20.46 21.22

Notes: Based on 5000 Monte carlo replications. Ŝ is the efficient score test computed
using OLS estimates of β; Ŝ∗ is the efficient score test computed using 1-step updates
from the OLS estimates. Ŵ, L̂M denote the Wald and LM tests based on a psuedo-
maximum likelihood estimator inspired by Gouriéroux et al. (2017). W̃ and L̃M
denote the Wald and LM tests based on a GMM estimator inspired by Lanne and
Luoto (2021). Columns 2 – 14 denote the choice of density for ε2, as in Table 13.
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Table 16: Empirical rejection frequencies (%) for LSEM, ε1 ∼ SN ′(0, 1, 4)

n 0 – 1 1 – 1 1 – 2 1 – 3 2 – 1 2 – 2 2 – 3 3 – 1 3 – 2 3 – 3

Ŝ
200 4.90 5.84 5.56 5.48 3.88 4.62 5.16 3.58 4.16 5.08
400 5.22 5.70 5.14 5.00 3.38 4.52 4.92 3.88 4.18 4.54
600 5.18 5.72 4.98 5.52 3.46 4.22 4.78 3.00 4.10 5.08
800 5.10 5.02 5.12 5.22 3.76 3.78 5.08 4.02 3.84 5.02

Ŝ∗

200 6.02 6.68 6.26 6.40 7.44 6.56 6.74 6.42 6.32 6.18
400 6.34 6.42 6.12 5.84 6.96 6.82 6.46 7.16 6.88 6.32
600 6.34 6.44 5.94 6.40 6.64 6.74 6.26 5.88 6.18 6.16
800 5.58 6.12 6.12 5.86 7.66 5.82 6.42 6.08 5.54 6.40

Ŵ
200 18.16 2.38 8.40 10.84 14.02 13.36 15.06 47.78 38.68 24.94
400 15.92 1.88 4.82 7.00 10.98 9.78 11.00 60.44 46.74 23.96
600 14.70 1.78 2.76 5.20 8.72 9.00 9.88 66.76 50.96 25.66
800 13.30 2.20 2.68 4.40 6.94 7.44 8.06 73.76 57.02 24.14

ˆLM
200 4.84 4.74 5.46 4.36 4.80 5.34 5.46 5.42 5.26 5.16
400 5.44 4.94 5.10 4.26 5.50 5.12 4.26 4.82 5.66 5.42
600 5.02 4.80 5.40 5.30 5.18 4.66 4.88 5.14 5.04 5.02
800 4.98 5.20 4.90 5.58 5.66 4.80 5.70 4.84 5.04 4.90

W̃
200 27.76 34.48 31.56 29.22 31.88 30.72 30.84 23.16 23.90 26.04
400 24.48 32.28 29.04 28.04 27.94 27.70 27.48 17.80 18.94 23.36
600 20.88 29.54 26.58 24.60 25.72 24.32 23.58 14.38 15.06 18.48
800 20.42 27.94 26.74 23.54 25.42 24.08 23.52 12.50 13.26 16.72

˜LM
200 35.10 39.54 37.00 36.14 38.18 37.32 38.24 28.98 29.82 33.76
400 27.72 29.62 27.98 28.28 27.94 27.52 27.54 18.90 21.02 25.62
600 21.22 24.22 23.04 21.74 22.74 22.24 22.80 15.42 16.26 19.70
800 20.18 22.34 20.74 18.36 20.48 20.52 21.18 12.18 13.64 17.50

Notes: Based on 5000 Monte carlo replications. Ŝ is the efficient score test computed
using OLS estimates of β; Ŝ∗ is the efficient score test computed using 1-step updates
from the OLS estimates. Ŵ, L̂M denote the Wald and LM tests based on a psuedo-
maximum likelihood estimator inspired by Gouriéroux et al. (2017). W̃ and L̃M
denote the Wald and LM tests based on a GMM estimator inspired by Lanne and
Luoto (2021). Columns 2 – 14 denote the choice of density for ε2, as in Table 13.
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Table 17: Empirical rejection frequencies (%) for LSEM

η1, η2 n Ŝ Ŝ∗ Ṡ Ṡ∗

1 200 5.20 7.52 7.24 11.84
1 400 4.80 7.24 7.92 12.66
1 600 4.32 6.86 7.58 11.94
1 800 4.32 6.30 7.38 10.76

2 200 7.42 7.68 6.14 9.92
2 400 6.46 6.92 5.48 8.60
2 600 5.56 6.42 5.48 7.98
2 800 5.32 6.24 4.96 7.86

3 200 4.26 7.18 9.10 13.20
3 400 4.06 7.28 8.42 12.68
3 600 3.52 6.90 7.84 12.04
3 800 4.06 7.36 7.56 11.98

Notes: Based on 5000 Monte carlo repli-
cations. Ŝ is the efficient score test com-
puted using OLS estimates of β; Ŝ∗ is the
efficient score test computed using 1-step
updates from the OLS estimates. Ṡ and
Ṡ∗ are score tests based on the score func-
tion for the Euclidean parameters using
OLS estimates and 1-step updates respec-
tively. The first column denotes the choice
of density for both ε1 and ε2 as in the left
colum of Table 13.
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D.2 Power curves

D.2.1 SIM

Figure 5: ε ∼ N (0, 1), Xk ∼ U(−1, 1)
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Based on 5000 Monte carlo replications with a sample size of n = 800. f1(v) = c1(1 + exp(−v))−1, f2(v) = c2 exp(−v2),
f3(v) = c3v2, where the constants ci (i = 1, 2, 3) are chosen to ensure V(fi(Vθ)) = 4 under the null.
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Figure 6: ε|ξ ∼
√

5(−1)ξ Beta(2, 3), ξ ∼ Bernoulli(1/2), Xk ∼ U(−1, 1)
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Based on 5000 Monte carlo replications with a sample size of n = 800. f1(v) = c1(1 + exp(−v))−1, f2(v) = c2 exp(−v2),
f3(v) = c3v2, where the constants ci (i = 1, 2, 3) are chosen to ensure V(fi(Vθ)) = 4 under the null.

Figure 7: ε ∼ N (0, 1), X = (Z1, 0.2Z1 + 0.4Z2 + 0.8), Zk ∼ U(−1, 1)
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Based on 5000 Monte carlo replications with a sample size of n = 800. f1(v) = c1(1 + exp(−v))−1, f2(v) = c2 exp(−v2),
f3(v) = c3v2, where the constants ci (i = 1, 2, 3) are chosen to ensure V(fi(Vθ)) = 4 under the null.
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Figure 8: ε|ξ ∼
√

5(−1)ξ Beta(2, 3), ξ ∼ Bernoulli(1/2) X = (Z1, 0.2Z1 + 0.4Z2 + 0.8),
Zk ∼ U(−1, 1)
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Based on 5000 Monte carlo replications with a sample size of n = 800. f1(v) = c1(1 + exp(−v))−1, f2(v) = c2 exp(−v2),
f3(v) = c3v2, where the constants ci (i = 1, 2, 3) are chosen to ensure V(fi(Vθ)) = 4 under the null.

Figure 9: ε ∼ N (0, s1 log(2 + (X1 +X2θ)
2)), Xk ∼ U(−1, 1)
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Based on 5000 Monte carlo replications with a sample size of n = 800. f1(v) = c1(1 + exp(−v))−1, f2(v) = c2 exp(−v2),
f3(v) = c3v2, where the constants ci (i = 1, 2, 3) are chosen to ensure V(fi(Vθ)) = 4 under the null. Similarly the constants si
(i = 1, 2) are chosen to ensure that Vε = 1 under the null. Uniform weighting: ω̆(X) = 1; Optimal weighting: ω̆(X) = ω(X).
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Figure 10: ε ∼ N (0, s2(1 + 5 sin(X1)2)), Xk ∼ U(−1, 1)
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Based on 5000 Monte carlo replications with a sample size of n = 800. f1(v) = c1(1 + exp(−v))−1, f2(v) = c2 exp(−v2),
f3(v) = c3v2, where the constants ci (i = 1, 2, 3) are chosen to ensure V(fi(Vθ)) = 4 under the null. Similarly the constants si
(i = 1, 2) are chosen to ensure that Vε = 1 under the null. Uniform weighting: ω̆(X) = 1; Optimal weighting: ω̆(X) = ω(X).

Figure 11: ε ∼ N (0, s1 log(2+(X1 +X2θ)
2)), X = (Z1, 0.2Z1 +0.4Z2 +0.8), Zk ∼ U(−1, 1)
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Based on 5000 Monte carlo replications with a sample size of n = 800. f1(v) = c1(1 + exp(−v))−1, f2(v) = c2 exp(−v2),
f3(v) = c3v2, where the constants ci (i = 1, 2, 3) are chosen to ensure V(fi(Vθ)) = 4 under the null. Similarly the constants si
(i = 1, 2) are chosen to ensure that Vε = 1 under the null. Uniform weighting: ω̆(X) = 1; Optimal weighting: ω̆(X) = ω(X).
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Figure 12: ε ∼ N (0, s2(1 + 5 sin(X1)2)), X = (Z1, 0.2Z1 + 0.4Z2 + 0.8), Zk ∼ U(−1, 1)
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Based on 5000 Monte carlo replications with a sample size of n = 800. f1(v) = c1(1 + exp(−v))−1, f2(v) = c2 exp(−v2),
f3(v) = c3v2, where the constants ci (i = 1, 2, 3) are chosen to ensure V(fi(Vθ)) = 4 under the null. Similarly the constants si
(i = 1, 2) are chosen to ensure that Vε = 1 under the null. Uniform weighting: ω̆(X) = 1; Optimal weighting: ω̆(X) = ω(X).

D.2.2 LSEM
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Figure 13: Power curves for LSEM (i), ε1 ∼ N (0, 1)
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Based on 5000 Monte carlo replications. Ŝ is the efficient score test computed using OLS estimates of β; Ŝ∗ is the efficient
score test computed using 1-step updates from the OLS estimates. L̂M denotes the LM test based on a psuedo-maximum
likelihood estimator inspired by Gouriéroux et al. (2017). The distribution for ε2 in the (i, j)− th panel has distribution i –
j in table 13.

Figure 14: Power curves for LSEM (i), ε1 ∼ t′(5)
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Based on 5000 Monte carlo replications. Ŝ is the efficient score test computed using OLS estimates of β; Ŝ∗ is the efficient
score test computed using 1-step updates from the OLS estimates. L̂M denotes the LM test based on a psuedo-maximum
likelihood estimator inspired by Gouriéroux et al. (2017). The distribution for ε2 in the (i, j)− th panel has distribution i –
j in table 13.
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Figure 15: Power curves for LSEM (i), ε1 ∼ SN ′(0, 1, 4)
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Based on 5000 Monte carlo replications. Ŝ is the efficient score test computed using OLS estimates of β; Ŝ∗ is the efficient
score test computed using 1-step updates from the OLS estimates. L̂M denotes the LM test based on a psuedo-maximum
likelihood estimator inspired by Gouriéroux et al. (2017). The distribution for ε2 in the (i, j)− th panel has distribution i –
j in table 13.

Figure 16: Power surfaces for LSEM (ii), η1 ∼ N (0, 1), η2 ∼ N (0, 1)
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Asymptotic

The bottom right panel depicts the asymptotic power surface based on (18) and (51) with θ = (a, b) = (1/2, 1/4) and
σ1 = σ2 = 1. The top-left, top-right and bottom-left panels are Monte Carlo version based on 5000 replications of the
efficient score test as described in section 5.5, with n = 600, 1000, 1400 respectively.
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Figure 17: Power surfaces for LSEM (ii), η1 ∼ t′(5), η2 ∼ t′(5)
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The bottom right panel depicts the asymptotic power surface based on (18) and (51) with θ = (a, b) = (1/2, 1/4) and
σ1 = σ2 = 1. The top-left, top-right and bottom-left panels are Monte Carlo version based on 5000 replications of the
efficient score test as described in section 5.5, with n = 600, 1000, 1400 respectively. ηk ∼ t′(5) indicates that each εk is drawn
from a (standardised) t distribution with 5 degrees of freedom.

Figure 18: Power surfaces for LSEM (ii), η1 ∼ st′(5, 2), η2 ∼ st′(5, 2)
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Asymptotic

The bottom right panel depicts the asymptotic power surface based on (18) and (51) with θ = (a, b) = (1/2, 1/4) and
σ1 = σ2 = 1. The top-left, top-right and bottom-left panels are Monte Carlo version based on 5000 replications of the
efficient score test as described in section 5.5, with n = 600, 1000, 1400 respectively. ηk ∼ st′(5, 2) indicates that each εk is
drawn from a (standardised) skew t distribution, as in Fernandez and Steel (1998) with 5 degrees of freedom and skewness
parameter 2.
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D.3 Empirical study

Figure 19: Confidence intervals for θ
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The red, dashed line is the 95th quantile of the χ2
1 distribution; values below this are included in the confidence set.
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Figure 21: Residuals from LSEM model
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Residuals from (54) with θ taken as the value which minimises the efficient score statistic. The dashed blue line is the N (0, 1)
density function.
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