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Abstract

This paper studies treatment effect estimation in a novel two-stage model of
experimentation. In the first stage, using baseline covariates, the researcher selects
units to participate in the experiment from a sample of eligible units. Next, they
assign each selected unit to one of two treatment arms. We relate estimator efficiency
to representative selection of participants and balanced assignment of treatments.
We define a new family of local randomization procedures, which can be used for
both selection and assignment. This family nests stratified block randomization
and matched pairs, the most commonly used designs in practice in development
economics, but also produces many useful new designs, embedding them in a unified
framework. When used to select representative units into the experiment, local
randomization boosts effective sample size, making estimators behave as if they were
estimated using a larger experiment. When used for treatment assignment, local
randomization does model-free non-parametric regression adjustment by design. We
give novel asymptotically exact inference methods for locally randomized selection
and assignment, allowing experimenters to report smaller confidence intervals if
they designed a representative experiment. We apply our methods to the setting of
two-wave design, where the researcher has access to a pilot study when designing
the main experiment. We use local randomization methods to give the first fully
efficient solution to this problem.
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1 Introduction
Randomized controlled trials (RCTs) are increasingly common in economics research.
The AEA RCT registry currently lists over 5000 active experiments, spanning a range
of different fields. Experimental design attempts to reduce the variance of causal ef-
fect estimates, increasing precision for a fixed experiment size. In the literature, design
methodology often focuses on how researchers should assign treatments. For example,
stratified block randomization tries to assign treatments so that covariates are balanced
between the different treatment arms. This paper studies a new dimension of experi-
mental design: selection of the experimental participants. We show that it is possible to
increase efficiency by selecting units that are representative of the broader population.

To implement representative selection, we propose a new family of local randomization
procedures, which use baseline covariates to randomly select a representative subsample
from a larger population of eligible units. Local randomization can also be used for treat-
ment assignment, where it improves upon existing methods by randomizing within fine,
data-adaptive strata that are optimally chosen to produce covariate balance. Applied re-
searchers can use these tools to design a representative and balanced experiment, making
the most efficient use of scarce experimental resources.

We study estimation of the average treatment effect (ATE) in a two-stage design model,
where the researcher first selects units to participate in the experiment from among a
random sample of eligible units,1 then assigns each selected unit to one of two treat-
ment arms. We propose a new family of local randomization methods to implement both
stages of the design. Locally randomized selection makes experimental participants more
representative of the broader population, while locally randomized assignment finely bal-
ances covariates between treatment arms. We give novel asymptotically exact inference
methods for locally randomized selection and assignment, allowing experimenters to re-
port smaller confidence intervals if they designed a representative experiment. We also
apply our methods to the setting where the researcher has access to a pilot study when
designing the main experiment, obtaining the first fully efficient solution to this problem.

In practice, selection of participants is often an unavoidable part of designing an exper-
iment. For example, in a recent paper Abaluck et al. (2021) consider the effect of mask
promotion on village-level covid infection rates in Bangladesh. From a sample of 1000
villages, they first randomly select 600 to be included in the experiment. Next, the se-
lected villages are randomly assigned to various interventions that promote mask usage.
Similarly, Breza et al. (2021) run video ads on Facebook discouraging holiday travel, esti-
mating the effect of low versus high intensity of ads on county-level covid infection rates.
Since experimental resouces are finite, they first select a small set of counties in which
to run ads and collect outcome data. The selected counties are then randomly assigned
to either low or high intensity of treatment.2 Can we do better than completely random
selection in these examples?

1We also allow the case where the researcher can select any unit in the entire population, which is
known. See Remark 3.5 for discussion.

2Alternatively, suppose 5000 job-seekers apply to a employment assistance program, as in Caria et al.
(2021), but the budget only allows for 1000 participants. Who should we let into the program?
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The selection step is most applicable when the researcher has a sample of “eligible” units,
any of which can be included in the experiment. As seen in the examples above, resource
or logistical constraints, common in real life, may make it impossible to select all of
them. In some settings, however, the selection step may be irrelevant or impossible. For
instance, if there are no resource constraints, the researcher should just run the largest
experiment possible, selecting all the eligible units. If the research question is such that
one treatment arm is “do nothing” (control), and outcome data is always observed for the
control units, then the selection problem is trivial (select everyone).

Representative selection can significantly reduce estimator variance, while preserving
finite-sample unbiasedness. To see why, consider estimating the effect of distributing
surgical masks versus cloth masks on covid infection rates, as in Abaluck et al. (2021).
Suppose average resident age predicts vulnerability to covid, so that older villages have
larger treatment effects from switching to surgical masks from cloth masks. If selection
is completely random, the selected villages may be older or younger than the full sample
of eligible villages, just by random chance. If we randomly select mostly old villages, our
treatment effect estimate will be biased up (ex-post), and conversely it will be biased
down if we select villages with only healthy young residents. This illustrates how chance
covariate imbalances created during selection can increase estimator variance (ex-ante)
when treatment effects are heterogeneous. Representative selection avoids this problem,
dampening this source of variance.

This paper implements both representative selection and finely balanced treatment as-
signment using a new family of local randomization algorithms. We introduce the basic
principle of local randomization using the example above. Suppose the researcher has a
sample of 1000 eligible villages, but logistical constraints only allow selection of 300 to
participate in the experiment. Choose a set of baseline village-level covariates expected to
be predictive of both outcomes (covid infection rates) and treatment effect heterogeneity.
Partition the 1000 eligible villages into groups of 10 that are maximally homogeneous3

in the predictive covariates. For instance, the villages in each group of 10 may be very
similar in terms of age, housing density, and baseline infection rates. Randomly select
exactly 3 of 10 villages from each group into the experiment, leaving 300 villages. Sup-
pose welfare considerations or logistical constraints require assigning 2/3 of the villages
to surgical masks and 1/3 to cloth, as in Abaluck et al. (2021). Then during treat-
ment assignment, again partition the 300 selected villages into homogeneous groups of
3. Within each group, randomly assign exactly 2 villages to surgical masks and 1 to cloth.

We give novel algorithms and rate analysis for the combinatorial problem of constructing
maximally homogeneous groups of units. Enforcing group homogeneity allows us to think
of each group as consisting of units of a certain “covariate type.” Selecting exactly 3 out
of 10 units from each group ensures that each type of unit in the larger eligible sample is
well-represented in the experiment. Under completely random selection, by contrast, we
may not select any units from certain groups, while other groups may be over-represented
in the experiment by random chance. Such fluctuations increase estimator variance.

Summarizing the two-stage procedure, during selection we solve an optimization problem
to match eligible units into homogeneous groups, randomly selecting a fixed proportion of

3Defined formally in Section 2.3 below.
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the units in each group to participate in the experiment. During treatment assignment,
we repeat the process among the selected units, again forming homogeneous groups of
selected units and randomly assigning a fixed proportion from each group to one of two
treatment arms. By introducing and studying this two-stage procedure, we make several
contributions to the literature on experimental design.

Our first contribution is to extend the principle of matched-pairs randomization to ar-
bitrary propensity scores p(x) 6= 1/2, producing a large family of novel designs. For
example, consider an experiment where, due to welfare considerations, the researcher
wants to assign older villages to surgical masks with probability 2/3, while younger vil-
lages receive surgical masks with lower probability 1/3. Local randomization provides a
“matched triples” design with varying treatment proportions, implementing this design
constraint while enforcing strong covariate balance. Other novel designs are given in the
many examples throughout the paper.

This paper’s second contribution is the selection model. To the best of our knowledge,
we give a novel formalization of the principle of covariate-adaptive selection. We show
that efficient selection requires finely balancing the covariates that are most predictive
of treatment effect heterogeneity. Effectively, researchers should ensure that the different
“types” of treatment response are well-represented among the selected units. Local ran-
domization methods give an efficient and practical implementation of this idea.

For our third contribution, we give a new central limit theorem for inverse propensity
weighting (IPW) estimators of the ATE4 in experiments with locally-randomized selec-
tion and treatment assignment. We show that local randomization does non-parametric
regression adjustment by design, reducing estimator variance without the need to actually
specify or estimate a regression model ex-post. Similarly, locally randomized selection
reduces the variance due to treatment effect heterogeneity (non-parametrically), to the
extent that the covariates used to form homogeneous groups explain this heterogene-
ity. For selection, the optimal design locally randomizes with respect to the conditional
average treatment effect (CATE). For treatment assignment, the optimal design locally
randomizes with respect to the balance function, a weighted sum of conditional expecta-
tions defined below. The oracle design that locally randomizes with respect to the pair
(CATE, balance function) in both stages of the design achieves full efficiency.

While matched pairs dates back at least to Fisher (1926), its asymptotic analysis is re-
cent (Bai et al. (2021)), likely due to the complicated statistical dependencies created by
solving a global optimization problem to form the pairs. Our analysis extends this work,
proving a general CLT for randomization within fine, data-adaptive strata. This result
can also be applied to obtain a new CLT for classical stratified block randomization with
large, fixed strata, recently studied using entirely different methods in Bugni et al. (2018).

Our fourth contribution gives new methods for asymptotically exact inference on the ATE
under locally randomized selection and assignment. In particular, we allow researchers to
report smaller confidence intervals if they use the methods in this paper to design a rep-
resentative experiment. Our construction allows plug-in asymptotically exact inference
over the entire class of locally randomized designs defined below. As a consequence, we

4We consider both the ATE and finite-population fixed-regressor estimands, as in Abadie et al. (2014).
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get new asymptotically exact variance estimators for matched pairs and classical stratified
block randomization. We also explore an interesting connection between our matching-
based variance estimators and randomization inference.

We apply our methods to the problem of experimental design when the researcher has
data from a pilot study, obtaining the first fully efficient design in this setting. To
achieve full efficiency, we use pilot data to estimate the optimal propensity score5 for
the experiment, which assigns units to each treatment arm in proportion to that arm’s
conditional variance.6 Intuitively, one can think of this as taking more measurements of
the quantity that is harder to measure. We construct a balanced implementation of this
propensity score by double stratification, first stratifying units by our pilot estimate of the
optimal propensity score, then locally randomizing treatments within these propensity
strata. Our analysis shows that this minimizes the estimator variance due to selection
and assignment, as well as the residual variance, independently, while existing methods
make compromises between these different sources of variance.

We also propose a second method that uses the pilot to “estimate what to balance” dur-
ing both selection and assignment. We show that locally randomizing with respect to
a consistent pilot estimate of (CATE, balance function), the optimal design mentioned
above, is also asymptotically fully efficient. However, we argue that such consistency
assumptions gives poor guidance for practice in experimental design. Instead, we advo-
cate a “robustified” approach that balances some key predictive covariates outright, in
addition to balancing the pilot regressions. Finally, for settings where a pilot experiment
is infeasible, we discuss matching on proxy regressions, estimated in a related experiment
or observational data set. In clinical trials, our results allow exact inference for designs
that balance a vector of “risk scores” from previous studies. We also compare our results
with the recent approaches of Tabord-Meehan (2020) and Bai (2020) in this setting.

1.1 Related Literature

There is a large literature on experimental design, see e.g. Athey and Imbens (2017) or
Rosenberger and Lachin (2016) for surveys. See Bruhn and McKenzie (2009) for evidence
on experimental design as used in practice in development economics. The literature may
be divided by assumptions about the timing of the experiment. Our first set of results
assumes the classical timing: (1) all baseline covariates are observed (2) units are selected
into the trial and assigned to interventions and (3) all outcomes are observed. We also
allow additional covariates to be observed after selection (Example 3.3). Alternatively,
some papers assume sequential timing, with units arriving one-by-one and treatment de-
cisions made “on the spot”, as in Efron (1971) or Kapelner and Krieger (2014). Our
results on design with a pilot fit into the adaptive design literature, with some outcomes
observed during the treatment process. See Hu and Rosenberger (2006) for an overview.

With respect to solution concept, some papers emphasize “robustness”, searching for
minimax designs over a class of DGP’s satisfying certain smoothness assumptions. For
example, see Kallus (2017) or the discussion and references in Harshaw et al. (2021).

5For complete randomization, optimal constant treatment proportions are known as the Neyman
allocation. We give a local randomization implementation of the conditional Neyman allocation.

6One can think of this as a design analogue of (optimal) feasible weighted least squares.
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Alternatively, one may use a decision theoretic framework to characterize the optimal
design, as in Kasy (2016). By contrast, this paper defines a new family of randomization
procedures, studying their asymptotic efficiency pointwise in (design, DGP), over a class
of DGP’s satisfying certain regularity conditions.

Our selection model is related to the literature on survey sampling, see e.g. Cochran
(1977). The designs in this paper are examples of blocking, as in Fisher (1926), Higgins
et al. (2015), Fogarty (2018), and Bai (2020). The family we study contains classical
stratified block randomization (SBR) with fixed strata and matched pairs, as analyzed in
Bugni et al. (2018) and Bai et al. (2021). Rerandomization, studied in Morgan and Rubin
(2012) and Li et al. (2018), is not contained in this family. Follow up work in Cytrynbaum
(2021) studies rerandomizing local designs, e.g. giving results for rerandomized SBR and
matched pairs, as well as rerandomized versions of all the other designs studied in this
paper. The main result shows that local randomization generically dominates rerandom-
ization, giving smaller asymptotic variance.

Related to our result that local randomization does non-parametric regression adjust-
ment “by design”, Li et al. (2018) show that rerandomization does (slightly worse than)
linear regression by design. Similarly, Harshaw et al. (2021) bound the MSE of their
“Grahm-Schmidt Walk” design by a quantity related to ridge regression. Cytrynbaum
(2021) shows that rerandomized local designs do semiparametric regression by design.

Our first set of results is most related to Bai (2020), which we build on. Relative to this
paper, we study two-stage designs, with both covariate-adaptive selection and treatment
assignment. For treatment assignment alone, the designs in Bai (2020) are a special case
of our method with (1) dim(ψ) = 1 for the local function defined below (function of
covariates we match on) and (2) constant propensity p = a/k. Allowing dim(ψ) > 1
is necessary to implement the oracle design for joint selection and assignment, as well
as its empirical analogue estimated using pilot data. More generally, our method allows
balancing with respect to more than just a single covariate.

For dim(ψ) > 1, the algorithm used in Bai that constructs groups of units by sorting
their ψ(Xi) values is no longer feasible. We study combinatorial optimization procedures
(graph-partitioning) to form groups in higher dimensions, and give new analysis of their
statistical rates. Our designs allow propensity p(x) non-constant. This innovation is re-
quired for a fully efficient solution to the two-wave design problem, which uses the pilot
to estimate, and “locally” implement, an optimally varying propensity score (Neyman al-
location). Finally, Bai (2020) allows inference only for the case p = 1/2, using the results
of Bai et al. (2021) on matched pairs. Our work gives novel, generic inference methods
that cover the full family of locally randomized designs, including joint covariate-adaptive
selection and assignment.

Our solution to the problem of design with a pilot experiment follows work in Hahn et al.
(2011), Tabord-Meehan (2020), and Bai (2020). More broadly, the two-wave setting is an
example of response-adaptive design, as in Russo (2016) and Kasy and Sautmann (2021).
A detailed comparison with Tabord-Meehan (2020) is given in Section 4.1.1 below. A
comparison with the large pilot results of Bai (2020) is given in Section 4.2.
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The rest of this paper is organized as follows. In Section 2 we formally describe our
method and preview some of our main results. Section 3 gives our main asymptotic
results, describes several useful new designs produced by our framework, and gives the
optimal design. Section 4 gives our results on optimal design with a pilot experiment.
Section 5 gives our inference methods. Section 6 gives our empirical results. Section 8
collects technical results on algorithms for constructing the local groups, including their
asymptotic balancing rates. All proofs are given in the appendix.

2 Motivation and Description of Method
We start with some basic notation. Let Xi denote baseline covariates, observed by the
experimenter before7 choosing the experimental design. Let Yi(0), Yi(1) be potential
outcomes under interventions d ∈ {0, 1}. The data on eligible units (Xi, Yi(0), Yi(1))ni=1

is assumed to be drawn iid. Given all observed covariates (Xi)
n
i=1, the experimenter

chooses which units to select into the experiment and how to assign treatments among
the selected units. Define the selection variable Ti ∈ {0, 1} with Ti = 1 if the unit is
selected into the experiment, and Ti = 0 otherwise. Let Di ∈ {0, 1} denote treatment
assignment. Since a unit’s outcome is observed if and only if it is selected, we may write

Yi = Ti
[
DiYi(1) + (1−Di)Yi(0)

]
Define the conditional average treatment effect (CATE)

c(Xi) = E[Yi(1)− Yi(0)|Xi]

We are interested in the average treatment effect (ATE)

ATE = E[Yi(1)− Yi(0)] = E[c(Xi)]

2.1 Motivating Example

The first stage of the experimental design requires choosing selection variables (Ti)
n
i=1

using the observed covariates (Xi)
n
i=1. We begin by examining how selection affects the

precision of our estimate of the ATE. To do this, we briefly consider a toy model of
an experiment, in which c(Xi) is directly observed for each selected unit Ti = 1. Since
E[c(Xi)] = ATE, we can use a sample-mean estimator

θ̄ = En[c(Xi)|Ti = 1] ≡
∑n

i=1 Tic(Xi)∑n
i=1 Ti

(2.1)

In the example from Abaluck et al. (2021) discussed above, the experimental design re-
quired selecting which Bangladeshi villages would participate in the experiment (Ti = 1).
The selected villages then receive one of two interventions: distribution of cloth or sur-
gical masks (Di = 0, 1). Among the n eligible villages, suppose we select exactly qn
to participate,8 with selection proportion q ∈ (0, 1). For instance, if there are n = 500
villages, but we only have the resources to include 100 in the experiment, then we would

7We also allow additional covariates to be observed after selection but before treatment assignment,
see Example 3.3.

8For brevity, assume this is an integer for now. We explicitly deal with edge effects in Section 3.
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(a) Completely Random (b) Representative

Figure 1: Selecting villages to participate in the experiment using complete randomization
versus representative selection using the local randomization design defined below.

set q = 1/5.

Complete Randomization - One natural way to draw the selection variables is by complete
randomization: picking exactly qn out of n units uniformly9 at random. We denote this
by T1:n ∼ CR(q). Under complete randomization, the estimator θ̄ is unbiased for the
ATE. However, if treatment effects are heterogeneous, so that c(X) varies with X, the
estimator may still have large variance.

2.1.1 Variance due to Selection

Using simulated data, Figure 1 shows one draw T1:n ∼ CR(q) of the selection variables
for q = 1/5. By chance, many of the highly educated, high infection rate villages were
selected. Suppose, for instance, that these types of villages have larger treatment effect
on average (c(Xi) large). Then the estimator θ̄ will over-estimate the average treat-
ment effect. The opposite situation is equally likely: we may randomly select many
low-education, low infection rate villages to participate, under-estimating the average
treatment effect. This creates ex-ante estimator variance due to random selection.

Representative Selection - By contrast, in Figure 1 (b) the distribution of village
types Xi among the selected villages Xi |Ti = 1 closely matches the sample of all eligible
villages (Xi)

n
i=1. By using representative selection, we force the smaller sample of selected

villages to mimick the larger sample of eligible villages, reducing estimator variance.

Local Groups of Villages - How can we construct a representative selection? Consider
the following procedure, shown in Figure 2.

(1) (Local Groups) Match all eligible villages into homogeneous groups. In particular,
for some baseline features ψ(x) of each village chosen by the experimenter, the

9Formally, P (T1:n) =
(
n
qn

)−1 for each T1:n with
∑
i Ti = qn, and 0 otherwise.
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(a) Local Groups (b) Selection

Figure 2: Representative selection: (a) form homogeneous groups of villages (different
colors) and (b) randomly select proportion q units to represent each group.

groups should be local in ψ(x) space. For instance, the units in the lime green
group at the bottom left in Figure 2 are locally clustered in ψ(x) = (x1, x2) =
(education, infections) space. Note that constructing such groups is a hard combi-
natorial optimization problem. We give new algorithms and statistical analysis for
this problem, as discussed in Section 2.3.1 below.

(2) (Selection) Choose exactly proportion q units from each group, completely at ran-
dom, to represent that type of village in the trial. For instance, we have randomly
selected one of the five units to represent the lime green group in the experiment,
since q = 1/5.

By randomizing within local groups instead of globally, Figure 2 shows that we get a
significantly more uniform selection of villages, reducing the estimator variance due to
selection. One can also think of this procedure as data-adaptive fine stratification.

2.1.2 Variance due to Assignment

Leaving the toy experiment behind, consider the classical setting with observed outcomes
Yi = DiYi(1) + (1 −Di)Yi(0) and no selection (q = 1). Suppose the experimenter wants
proportion p ∈ (0, 1) units assigned to the intervention D = 1. The full version of
our method, sketched in Section 2.3.2 below, also allows for non-constant treatment
propensity p(x). For now, assume that p is constant with p = a/k. We may use an
inverse propensity weighting (IPW) estimator of the ATE, which simplifies to difference-
of-means when p = 1/2

θ̂ = En

[
DiYi
p

]
− En

[
(1−Di)Yi

1− p

]
If treatment assignments Di are completely randomized, θ̂ is unbiased ex-ante but may
have large variance. The reason for this is that while En[Di] = p globally, the realized
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(a) Assignment Groups (b) Treatment Assignments

Figure 3: Balanced assignment: for the villages {i : Ti = 1} selected into the experiment,
(a) form homogeneous groups (b) assign exactly proportion p of the villages in each group
to treatment.

propensity can significantly deviate from p in large regions of the the covariate space.
For example, by random chance the villages in the highest education decile could all be
assigned to Di = 1. If education level is positively correlated with mask wearing, this
will lead to positive bias ex-post (after the realization of D1:n).

To formalize this intuition, let md(X) = E[Y (d)|X], with residual εdi = Yi −md(Xi) and
define the balance function

b(X; p) = m1(X)

(
1− p
p

)1/2

+ m0(X)

(
p

1− p

)1/2

(2.2)

We abuse notation and write b(x) = b(x; p) when the propensity is clear. With a few
steps of algebra, the IPW estimator can be written as

θ̂ = En[c(Xi)] + En

[
(Di − p)√
p− p2

b(Xi)

]
+ residualsn (2.3)

If Di = 1 and b(Xi) is large, we get a large positive fluctuation away from the ideal
estimator En[c(Xi)] and vice-versa. From this reasoning, we see that b(x) is the exact
function that needs to be balanced between treatment arms. In fact, the middle term is a
sample correlation between Di and b(Xi), measuring the confounding between treatments
Di and covariates Xi in our finite sample. We would like a balanced assignment procedure
that makes this correlation small (with high probability), reducing estimator variance.

Balanced Assignment - To draw a balanced assignment of treatments, we use the same
“local group” construction as before. Consider the example in Figure 3 with qn = 100
selected villages and treatment proportion p = 2/3. After selecting units using steps (1)
and (2) above, we use the following procedure for treatment assignment:

10



(a) Locally Randomized (b) Completely Randomized

Figure 4: Comparison of local vs. complete randomization, used jointly for both selection
and treatment assignment.

(3) (Local Groups) Partition the selected villages {i : Ti = 1} into groups that are
maximally homogeneous in the baseline features ψ(Xi).

(4) (Assignment) Assign exactly proportion p units in each group to Di = 1 and (1−p)
to Di = 0, completely at random.

Figure 3 shows that the realized propensity is close to p = 2/3 in each local region of the
covariate space, producing strong (weighted) covariate balance between treatment arms.
By contrast, Figure 4 shows selection and assignment by complete randomization, which
produces significant imbalances. For instance, almost all of the highly infected villages
with medium education levels are assigned Di = 1.

2.2 Efficient Estimation under Local Randomization

Putting this all together, we propose to use local randomization for both selection into
the experiment and assignment of interventions, using the procedure outlined in steps
(1)-(4) above. A single realization of this design is shown in Figure 4. We use a modified
IPW estimator for treatment effect estimation

θ̂ = En

[
TiDiYi
qp

]
− En

[
Ti(1−Di)Yi
q(1− p)

]
(2.4)

Next, we briefly outline the efficiency gains from locally randomized selection and assign-
ment. The claims in this section follow from our asymptotic results, which are discussed
in detail in Section 3 below. Let σ2

d(X) = Var(Y (d)|X) denote the heteroskedasticity
function. Observe that the sample size is qn, the number of units selected into the exper-
iment. Under completely randomized selection and assignment√qn(θ̂−ATE)⇒ N (0, V )
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V = Var(c(X))︸ ︷︷ ︸
Selection

+ Var(b(X))︸ ︷︷ ︸
Assignment

+E

[
σ2

1(X)

p
+
σ2

0(X)

1− p

]
(2.5)

The variance due to random selection is controlled by the CATE c(x), while the variance
from treatment assignment is parameterized by the balance function b(x).

Our first main result (Theorem 3.17) shows that local randomization dampens both of
these sources of variance. In particular, if we use baseline covariate features ψ(x) to form
homogeneous groups, then √qn(θ̂ −ATE)⇒ N (0, V ), with smaller asymptotic variance

V = Var(c(X)) ·
(
1− (1− q)R2

c,ψ

)
+ Var(b(X)) ·

(
1−R2

b,ψ

)
+ E

[
σ2

1(X)

p
+
σ2

0(X)

1− p

]
The increase in precision is controlled by the non-parametric R2 coefficients

R2
c,ψ =

Var(E[c(X)|ψ(X)])

Var(c(X))
R2
b,ψ =

Var(E[b(X)|ψ(X)])

Var(b(X))
(2.6)

R2
c,ψ ∈ [0, 1] gives the proportion of variance in treatment effects explained by ψ(X) (in

a non-parametric sense), while R2
b,ψ gives the proportion of variance in b(X), and thus in

experimental outcomes, explained by ψ(X).

Regression Adjustment by Design - By rearranging, the variance due to treatment
assignment may be written

Var(b(X)) ·
(
1−R2

b,ψ

)
= E[(b(X)− E[b(X)|ψ(X)])2] (2.7)

Effectively, b(X) is controlled by the non-parametric regression model E[b(X)|ψ(X)].
This shows that local randomization does non-parametric regression adjustment at the
design stage, without actually estimating a regression.

Boosting Experiment Size - If ψ(X) = X then R2
c,ψ = 1. Then the asymptotic

variance due to random selection simplifies to

Var(c(X)) ·
(
1− (1− q)R2

c,ψ

)
= qVar(c(X)) (2.8)

In the example above, there were n = 500 eligible villages, and we selected q = 1/5
of them to be in the experiment. By using local randomization to select villages, the
selection component of the variance is dampened from Var(c(X))→ (1/5) Var(c(X)), as
if we had run a much larger experiment using all of the eligible villages. More generally,
rearranging gives

Var(c(X)) ·
(
1− (1− q)R2

c,ψ

)
= qVar(E[c(X)|ψ(X)]) + E[Var(c(X)|ψ(X))] (2.9)

Effectively, we get the large experiment size for the treatment effect heterogeneity pre-
dicted by ψ(X) (first term above). For the heterogeneity not predicted by ψ(X), we get
the smaller true experiment size (second term above).

Choosing the Local Function ψ(x) - The experimenter has a choice of which baseline
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covariates ψ(x) to use when constructing local groups. From Equation 2.6, estimation is
more precise as ψ(X) explains a larger proportion of the variability in c(X) and b(X).
In the limit ψ(X) = X, we have R2 = 1. However, there are statistical tradeoffs when
increasing the dimension of ψ(x) in finite samples. Including many weakly predictive
or irrelevant covariates in ψ(x) reduces the within-group match quality on the most
important covariates, degrading finite sample performance. See Remark 4.7 below and
the simulations in Section 6 for more discussion of these issues.

2.3 Formal Definition and Local Group Construction

They key step in the local randomization procedure outlined above was using baseline
covariates to partition the experimental units into homogeneous groups. For locally ran-
domized selection, this ensured that the different “types” of units in the eligible sample
were well-represented by the selected units. For locally randomized treatment assign-
ment, this ensured strong covariate balance between treatment arms. By homogeneity,
we mean that the units in a group have very similar values of ψi = ψ(Xi), a sub-vector or
transformation of the baseline covariates. Because of this, units within the same group
appear to cluster in a local region of ψ(x) space, as shown in Figure 2.

Group Homogeneity - Formally, let [n] =
⊔
g{i ∈ g} be a partition of the experimental

units into disjoint groups g. For example, g1 = {1, 4, 7}, g2 = {2, 13, 9} and so on. We
require the following homogeneity condition

n−1
∑
g

∑
i,j∈g
i<j

|ψi − ψj|22 = op(1) (2.10)

Equation 2.10 requires that the average squared Euclidean distance between features ψi
and ψj within a group is going to 0 as n → ∞. We refer to ψ(x) as the local function.
These are the covariate features that we use to match units into groups.

To make use of within-group homogeneity, we require that units with similar values of
ψi have similar experimental outcomes, on average. In particular, the efficiency results in
the previous section use the following smoothness condition10

Assumption 2.1 (Smoothness). The map

ψ → E[Y (d)|ψ(X) = ψ]

is Lipschitz continuous for d = 0, 1.

Next, we define local randomization, formalizing steps (1)-(4) in the discussion above.

Definition 2.2 (Local Randomization). Let q = a/k with gcd(a, k) = 1, and consider
the following assumptions

(1) (Local Groups) Assume we have a partition of the eligible units [n] =
⊔
g{i ∈ g} into

groups with |g| = k, possibly excepting a single remainder group with 0 ≤ |g| < k.
Assume that the homogeneity condition 2.10 holds, and that the groups only depend
on the data through the function values (ψ(Xi))

n
i=1.

10This assumption can be significantly weakened at the cost of extra notation. For instance, we can
allow finitely many discontinuities and weaker Hölder smoothness conditions, see Definition 8.1.
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(2) (Randomization) Independently over all groups with |g| = k, draw selection vari-
ables (Ti)i∈g by setting Ti = 1 for exactly a out of k units, completely at random.
For units in the remainder group with |g| < k, draw Ti iid with P (Ti = 1) = a/k.

If the above conditions are satisfied, we say that the design implements q locally with
respect to ψ(x), denoting

T1:n ∼ Locn(ψ, q) (2.11)

For treatment assignment, we repeat the procedure above, replacing the eligible units [n]
by the selected units {i : Ti = 1} and replacing q by the treatment propensity p. To be
clear that we are assigning treatments only for the selected units, we denote

D1:n ∼ Locn(ψ, p |T1:n) (2.12)

The groups in Definition 2.2 may be viewed as fine, data-adaptive strata. They are data-
adaptive in the sense that each group g generally depends on all of the values (ψ(Xi))

n
i=1.

Groups formed during treatment assignment will also depend on the full vector of selection
variables T1:n. By contrast, classical stratified block randomization, as in Bugni et al.
(2018), uses large (stratum size growing � n) fixed strata. The case q = 1 and p = 1/2
gives a matched pairs design.

2.3.1 Group Construction

The key step in Definition 2.2 is the construction of homogeneous groups satisfying Equa-
tion 2.10. Given such groups, the randomization step is easy: we assign binary variables
within each group by complete randomization.

Optimal Groups : Maximally homogeneous groups may be obtained by minimizing Equa-
tion 2.10 over all feasible partitions of the eligible or selected units.

(g∗) = argmin
(g)

∑
g

∑
i,j∈g
i<j

|ψi − ψj|22 (2.13)

Proposition 8.6 shows that the optimal groups satisfy condition 2.10 with rateOp(n
−2/(d+1))

for dim(ψ) = d. However, computing the optimal groups is a hard combinatorial opti-
mization problem (graph-partitioning).

Block Path Algorithm: The proof of Proposition 8.6 gives a constructive algorithm achiev-
ing the same Op(n

−2/(d+1)) rate, extending and sharpening the rates for a construction of
Bai et al. (2021). The procedure partitions the covariate space into blocks of a certain
size, preferentially matching units into groups if they lie in the same block. However, the
time complexity scales poorly with dimension.

Greedy Algorithm: In practice, we find that the following greedy minimization algorithm
works well and is computationally efficient. The algorithm construct groups iteratively.
At each time step, we add a unit j∗ to the group currently under construction that
minimizes the within-group sum of squares, among the units currently assigned to that
group. This process continues until the group size |g| = k, at which point a new random
group is initialized. In pseudo-code, we have
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Algorithm 2.3 (Greedy). Set I = {1, . . . , n} and initialize the first group g = {i}
randomly. Update I ← I \ {i}. While I 6= ∅ repeat the following:

(i) While |g| < k repeat the following:

(a) Find the optimal unit to add to a group

j∗ = argmin
j∈I

∑
i,j∈g
i<j

|ψi − ψj|22

(b) Update g ← g ∪ {j∗} and I ← I \ {j∗}

(ii) Randomly initialize a new group g = {i}

2.3.2 Varying Treatment Proportions

In some situations, experimenters may want treatment assignment proportions p(x) to
vary with baseline covariates. As in the introduction, it could be that the experimenter
needs to assign surgical masks p = 2/3 to villages with more elderly residents, while they
can allow p = 1/3 for younger villages. Allowing non-constant p(x) is also required for
full efficiency, as discussed in Sections 3.2 and 4. We use a double stratification approach
to extend the definition above: first stratifying units by distinct propensity levels, then
locally randomizing within these propensity strata.

Definition 2.4 (Local Randomization). Suppose that p(x) ∈ (pj)j for some finite collec-
tion of propensities pj = aj/kj and gcd(aj, kj) = 1. At the treatment assignment stage,
do the following for each distinct propensity level pj

(i) (Local Groups) Form homogeneous local groups of size |g| = kj among the selected
units Ti = 1 with this propensity level p(Xi) = pj

(ii) (Treatment Assignment) Assign exactly aj out of kj units to treatment in each
group, completely at random.

We denote this generalization by D1:n ∼ Locn(ψ, p(x)). See Definition 3.11 for more
formal conditions, allowing approximation of arbitrary propensity scores p(x).

2.4 Efficient Design with a Pilot Study

We apply local randomization methods to the problem of design with a pilot study,
constructing the first fully efficient design in this setting. Recall that under local ran-
domization D1:n ∼ Locn(ψ, p) we had the variance decomposition

V = Var(c(X)) ·
(
1− (1− q)R2

c,ψ

)
+ Var(b(X)) ·

(
1−R2

b,ψ

)
+ E

[
σ2

1(X)

p
+
σ2

0(X)

1− p

]
We seek a design that is fully efficient in the sense that R2

c,ψ = R2
b,ψ = 1, and the final

residual variance term is also minimized. The first two terms are due to selection and as-
signment, respectively. The final term comes from the residuals εdi = Yi(d)−E[Yi(d)|Xi],
the part of outcomes not predicted by baseline covariates. Since εdi is mean-independent
of baseline covariates Xi, using Xi to form homogeneous groups and randomize “locally”
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cannot change the residual variance.

To minimize the residual variance, we need to change p ∈ (0, 1), the proportion of units
assigned to each treament arm.11 Intuitively, efficiency requires taking more measure-
ments of the “noisier” treatment arm, which is harder to measure. For example, consider
a vaccine trial where vaccine d = 0 always has a small positive effect, but the effect of an
alternative vaccine d = 1 varies widely with unobserved genetic factors. We can reduce
estimator variance by allocating more of our sample size towards the harder statistical
problem of estimating E[Y (1)]. The optimal treatment proportions are given by

p∗ = argmin
p∈(0,1)

E

[
σ2

1(X)

p
+
σ2

0(X)

1− p

]
=

√
E[σ2

1(X)]√
E[σ2

1(X)] +
√
E[σ2

0(X)]
(2.14)

Note that p∗ is increasing in the conditional variance σ2
d(X) = Var(Y (d)|X) of the d = 1

outcome.

Using Pilot Data - While p∗ is not known to the researcher, in settings with a pi-
lot study we can form p̂ → p∗ by estimating the conditional variances above. Locally
randomized assignment D1:n ∼ Locn(X, p̂ ) asymptotically minimizes both the variance
due to treatment assignment and the residual variance (over constant propensity designs).

We can use a pilot study to achieve full efficiency by applying this argument conditionally.
For intuition, note that if σ2

1(x) and σ2
0(x) were known, we could optimize the treatment

proportions at each Xi = x, giving a globally optimal propensity score and pilot estimate

p∗(x) =
σ1(x)

σ1(x) + σ0(x)
p̂(x) =

σ̂1(x)

σ̂1(x) + σ̂0(x)

In Section 4.1, we show that the design D1:n ∼ Locn(X, p̂(x)) is asymptotically fully
efficient if p̂(x) is consistent for p∗(x). In Section 4.2, we give an alternative approach
that uses the pilot to “estimate what to balance.” This method is also asymptotically fully
efficient, and may have better finite sample performance in settings with high-dimensional
baseline covariates.

3 Asymptotics and Optimal Designs
This section gives our main asymptotic results. We show a central limit theorem for
the IPW estimator in Equation 2.4 above under locally randomized selection and as-
signment. We show that our framework produces several useful new designs, described
in the examples below. Next, we characterize various optimal designs that achieve the
asymptotic variance bound. These results give new insights about what experimenters
should attempt to balance at the design stage. We begin with the case of constant,
rational treatment proportions p = a/k. Local randomization with varying treatment
proportions p(x), required for full efficiency, is discussed in Section 3.3 below.

11Changing p also affects the variance due to assignment, since b = b(x; p) If R2
b,ψ = 1, these effects

are lower order.
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For concision, in what follows we denote the balance function b = b(X; p), as defined
in Equation 2.2, and similarly c = c(X) for the CATE, when the context is clear. Let
W1:n = (Xi, Yi(0), Yi(1))ni=1.

3.1 Constant Treatment Proportions

We begin with a central limit theorem, justifying the efficiency claims in Section 2 above.
The technical assumptions 9.3 and 9.6 comprise various moment bounds, as well as the
Lipschitz condition in Assumption 2.1 above.

Theorem 3.1 (CLT). Suppose that conditions 9.3 and 9.6 hold. Assume that the propen-
sity p = a/k is constant with gcd(a, k) = 1. Suppose that selection and assignment are
locally randomized:

(i) T1:n ∼ Locn(ψ, q) or T1:n = 1

(ii) D1:n ∼ Locn(ψ, p |T1:n)

Then √qn(θ̂ − ATE)⇒ N (0, V (ψ, (q, p))

V (ψ, (q, p)) = qVar(c) + (1− q)E[(c− E[c|ψ])2]

+ E[(b− E[b|ψ])2] + E

[
σ2

1(X)

p
+
σ2

0(X)

1− p

]
From the second term in the asymptotic variance, we see that locally randomized treat-
ment assignment does non-parametric regression adjustment by design, leaving only the
residual variance E[(b− E[b|ψ])2] = E[Var(b|ψ)]. Similarly, locally randomized selection
gives non-parametric control over the variance due to treatment effect heterogeneity. In
particular, the first term above “looks like” we ran a larger experiment with sample size
n ≥ qn, up to an additive factor of E[(c − E[c|ψ])2] = E[Var(c|ψ)]. This extra term is
due to the residual treatment effect heterogeneity not explained by ψ(x).

Intuition for key elements of the proof is given in Remark 3.22 below. For the full proof,
see Section 9.2 of the appendix.

Example 3.2 (Matched k-tuples). We can interpret the homogeneous groups of Defi-
nition 2.2 as a generalization of matched pairs. In particular, the local randomization
algorithms in this paper implement “matched k-tuples” that are tightly matched in the
sense of homogeneity Condition 2.10. We use these algorithms to produce homogeneous
groups during both the selection and treatment assignment stages of the design.

For example, consider a situation with n = 700 units willing to participate, but there are
only resources for qn = 300 to ultimately be included in the experiment. The researcher
must randomly select proportion q = 3/7 of the eligible units to participate. Suppose
that intervention D = 1 is more expensive, so that only p = 1/3 of the selected units may
be assigned to D = 1. Following the steps in Definition 2.2, we use local randomization
to design an efficient experiment satisfying these constraints. First, Algorithm 2.3 can
be used to divide the sample into groups of 7 units that are homogeneous in the baseline
covariates ψ(x). From each group, we select exactly 3 units to participate in the trial,
leaving (3/7) · 700 = 300 selected units. Next, we again use our algorithm to divide the
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selected units into homogeneous groups of 3 units, assigning exactly 1 out of 3 in each
group to intervention D = 1. In notation, for the case ψ(x) = x we have

(i) T1:n ∼ Locn(X, 3/7)

(ii) D1:n ∼ Locn(X, 1/3 |T1:n)

Then by Theorem 3.1 √qn(θ̂ − ATE)⇒ N (0, V )

V = (3/7) Var(c(X)) + E

[
σ2

1(X)

2/3
+
σ2

0(X)

1/3

]
Because of the tight matching into 7-tuples, the selection component of the asymptotic
variance behaves as if we had run the trial with all n = 700 units. Because of the “matched
triples” design during treatment assignment, the assignment variance component is lower
order, and doesn’t appear at all in the asymptotic variance. Exact inference for this
design is given by plugging q = 3/7 and p = 1/3 into the variance estimators in Theorem
5.3.

Example 3.3 (Selection on Preliminary Covariates). In practice, experimenters may
learn additional covariate information between the selection and treatment assignment
stages of the design, after committing to select certain units into the experiment. Suppose
that Xi = (Xpre

i , Xpost
i ), with only Xpre

i available at selection time. Consider the design

(i) T1:n ∼ Locn(Xpre, q)

(ii) D1:n ∼ Locn(X, p |T1:n)

Then √qn(θ̂ − ATE)⇒ N (0, V )

V = qVar(E[c(X)|Xpre]) + E[Var(c(X)|Xpre)] + E

[
σ2

1(X)

p
+
σ2

0(X)

1− p

]
We achieve full efficiency (relative to X) if and only if c(X) = c(Xpre). Intuitively, if
c(X) only varies with Xpre, we can use these preliminary covariates to select units into
the trial that are “fully representative” of the variation in treatment effects over X.

Example 3.4 (Complete Randomization). Consider the local function ψ(x) = 1 for all x.
Note that this ψ(x) provides no information at all about experimental units. In particular,
perfect homogeneity in the sense of Condition 2.10 holds for any group, since ψi = ψj = 1
for all i, j. By Proposition 9.15 in the appendix, Locn(1, p) = CR(p) in distribution,
showing formally that “randomly matching” units into groups of k, then treating exactly
a out of k in each group is equivalent to complete randomization CR(a/k). From the
theorem, if T1:n ∼ Locn(1, q) and D1:n ∼ Locn(1, p |T1:n). Then√qn(θ̂−ATE)⇒ N (0, V )

V = Var(c(X)) + Var(b(X)) + E

[
σ2

1(X)

p
+
σ2

0(X)

1− p

]
Remark 3.5 (Finite Population Estimand). If the eligible units [n] are equal to the full
population, then the thought experiment where these units are randomly sampled from
a larger super-population is invalid. For instance, in the Abaluck et al. (2021) example,
it may be that all the villages of interest in Bangladesh are eligible to be included in the
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experiment. In this case, we may consider a finite-population estimand such as En[c(Xi)],
as in Abadie et al. (2014) or Kolesàr and Armstrong (2021). The proof of Theorem 3.1
shows that

√
qn(θ̂ − En[c(Xi)])⇒ N

(
0, V (ψ, (q, p))− qVar(c(X))

)
Thus, we get the same asymptotic variance as before, minus the extra variability due to
sampling eligible units from a larger super-population. Valid inference for this estimand
is given by Theorem 5.3 below, exact for the case ψ(x) = x.

Remark 3.6 (Design as Regression Adjustment). Theorem 3.1 shows that local random-
ization does non-parametric regression at the design stage, without actually specifying
or estimating a regression model ex-post. Similarly, Li et al. (2018) show that rerandom-
ization does linear regression by design, up to a small extra variance term. Recent work
in Harshaw et al. (2021) gives a novel “Grahm-Schmidt walk” design with MSE bounded
by a quantity related to linear ridge regression.

Follow-up work in Cytrynbaum (2021) studies rerandomizing local designs by redrawing
the complete randomizations within each local group until some global measure of bal-
ance is achieved. That paper shows that the variance of rerandomized local designs is
controlled by the residuals of a semi-parametric regression, with the linear component
due to rerandomization. For a fixed regressor ψ(X), non-parametric regression residuals
are smaller than OLS residuals. Because of this, locally balanced designs are asymptoti-
cally more efficient than globally balanced designs such as rerandomization, or stratified
designs with non data-adaptive strata, as in Example 3.18 below.

3.2 The Optimal Design

The following corollary of Theorem 3.1 characterizes the optimal design for estimating
the ATE in a given population, with fixed propensity p. The fully optimal design requires
implementing varying propensity

p∗(x) =
σ1(x)

σ1(x) + σ0(x)

We give this result in Theorem 3.19 below, after discussing how to implement local
randomization with non-constant propensity scores p(x) in Section 3.3.

Theorem 3.7 (Optimal Design). Suppose that conditions 9.3 and 9.6 hold. Let the
function ψ(x) used to form local groups be one of the following

(i) ψ∗(x) = (b(x; p), c(x))

(ii) ψ∗(x) = (m0(x),m1(x))

(iii) ψ∗(x) = x

Suppose that the design is locally randomized:

(i) T1:n ∼ Locn(ψ∗, q) or T1:n = 1

(ii) D1:n ∼ Locn(ψ∗, p |T1:n)
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Then √qn(θ̂ − ATE)⇒ N (0, V ∗)

V ∗ = qVar(c(X)) + E

[
σ2

1(X)

p
+
σ2

0(X)

1− p

]
(3.1)

Under the optimal design, the selection and assignment terms are independently opti-
mized. Note that the term qVar(c(X)) is irreducible.

Remark 3.8 (What Experimenters Should Balance). Consider (i) ψ∗(x) = (b(x; p), c(x)).
Recall that the balance function b(x) describes how outcomes vary with covariates, while
c(x) describes how treatment effects vary. This shows that the optimal design reduces
both the selection and assignment sources of variance by balancing along two distinct
dimensions

(i) (Selection) By forming local groups that are homogeneous in c(Xi), then selecting
exactly proportion q units into the experiment (Ti = 1), the conditional average
treatment effect level c(x) in this group is “well-represented” in the experiment.

(ii) (Assignment) By forming local groups homogeneous in b(x; p), the conditional av-
erage outcome level b(x; p) is “well-represented” among the units assigned to each
treatment arm.

Since (b(x; p), c(x)) are each weighted combinations of (m0(x),m1(x)), matching on both
conditional expectations in (ii) is also sufficient.

Remark 3.9 (Role of Covariate Dimension). Note that (i) and (ii) are both infeasible,
since none of these objects are observed. By contrast, (iii) ψ(x) = x is feasible, and the
theorem shows that this fully attenuates selection and assignment variance, asymptoti-
cally. If x is low-dimensional, experimenters should use the designs above with ψ(x) = x.
However, rates in Section 8 guaranteeing the local balancing condition 3.2 scale poorly
with dimension. Intuitively, matching on ψ(x) = x in high dimensions, with many irrel-
evant components, will likely give poor finite sample performance. In this case, a small
subset of the baseline covariates x expected to be most predictive of variation in both
treatment effects and outcomes should be selected. See remark 4.7 and section 4.2 for
more discussion of this issue.

Example 3.10 (Matching on Risk Scores). In view of the optimal designs in Theorem 3.7,
consider letting ψ(x) = (m̃0(x), m̃1(x)) be regressions of proxy outcomes and treatments
Ỹ (d̃) on X in a previous study (with some shared basline covariates between studies).
For example, if Di is an educational intervention, Xi are student characteristics, and the
outcome of interest Yi is mathematics test scores, the proxy outcome Ỹ may be reading
or overall test scores of different students in a previous study, under a related intervention
d̃. Such approaches are commonly used in clinical trials, where m̃d(x) may be regarded
as patient risk scores. If we use the design

(i) T1:n ∼ Locn((m̃0, m̃1), q)

(ii) D1:n ∼ Locn((m̃0, m̃1), p |T1:n)

Then √qn(θ̂ − ATE)⇒ N (0, V )

V = qVar(c) + (1− q)E[(c− E[c|m̃0, m̃1])2] + E[(b− E[b|m̃0, m̃1])2]

+ E

[
σ2

1(X)

p
+
σ2

0(X)

1− p

]

20



This variance will be small if the risk scores (m̃0(x), m̃1(x)) explain variance in treatment
effects and outcomes (through b(x)) well. Theorem 4.8 below shows that, in the case
where the proxy study is actually a pilot with the same outcomes and treatments, and
m̃d = m̂d are well-specified, consistent regressions, the efficiency bound of Theorem 3.7
is achieved.

3.3 Varying Treatment Proportions

This section describes the full version of the method, giving local randomization designs
for arbitrarily varying treatment proportions p(x). We also formally give conditional
asymptotics for the situation where ψ(x) and p(x) are random, for instance estimated
using data from a pilot or proxy study. As outlined in Definition 2.4, we take a double
stratification approach:

(1) Discretize p(x) to a coarser, rational-valued propensity pn(x)

(2) Stratify units by their discretized propensity values pn(Xi)

(3) Locally randomize with respect to ψ(x) in each propensity stratum {pn(Xi) = a/k}.

For example, we may have pn(x) ∈ {2/5, 2/3}. In the stratum {i : pn(Xi) = 2/5}, we
form homogeneous groups |g| = 5, randomly assigning Di = 1 to 2 out of 5 units. The
reader comfortable with this informal definition may choose to skip to Section 3.4 below,
discussing the fully efficient design. Formally, we require the following conditions

Definition 3.11 (Local Randomization). Assume the following

(a) Discretized propensities (pn)n with approximation rate ‖pn − p‖∞ = O(rpn) = o(1)
and pn(x) ∈ Ln for all x, with rational propensity level set Ln = {pa = qa/ka : a =
1, . . . , |Ln|}, written with gcd(qa, ka) = 1.

(b) (Local groups) Assume we have formed groups (ga,s)
n
s=1 for each propensity level

pa ∈ Ln, noting that there can be at most n groups. Assume that the groups satisfy
the following conditions

(i) Feasible partition: [n] =
⊔|Ln|
a=1

⊔n
s=1 ga,s (disjoint), with propensity level pn(Xi) =

pa for all i ∈ ga,s, full group size |ga,s| = ka for 1 ≤ s ≤ n− 1, and remainder
group 0 ≤ |ga,n| ≤ ka.

(ii) Restricted adaptivity : The groups (ga,s)a,s only depend on the data through
(ψ(Xi), pn(Xi))

n
i=1 and external randomness ξn. In notation, for some ξn ⊥⊥

W1:n we have (ga,s)a,s ∈ σ(ψ1:n, p1:n,n, ξn).
(iii) Homogeneity : For ψi = ψ(Xi)

n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈ga,s
i 6=j

(ψi − ψj)2 = Op(r
ψ
n ) = op(1) (3.2)

(c) (Randomization) Complete randomization of treatment assignments within each
local group (Di)i∈ga,s ∼ CR(pa), independently over groups 1 ≤ s ≤ n − 1. Also,
Di

iid∼Bernoulli(pa) for all units i in the remainder group s = n.
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We say that such a design implements p(x) locally with respect to ψ(x), denoting D1:n ∼
Locn(ψ, p(x)). For treatment post-selection, we will denote D1:n ∼ Locn(ψ, p(x) |T1:n),
replacing the set of eligible units [n] in the above definition with the set of selected units
{i : Ti = 1}.

Example 3.12 (Targeted Matched Triples). Suppose the experimenter expects inter-
vention D = 1 to be highly beneficial for units of type A, but less so for type B. In a
medical trial, these could be old vs. young patients. Suppose that Xi is a vector that
contains unit type, but also other known characteristics of the unit. Welfare or political
constraints may require, for example, p(A) = 2/3 > 1/3 = p(B). Concretely, we can
let the propensity p(x) vary with unity type, with p(A) = 2/3 and p(B) = 1/3. For
D1:n ∼ Locn(X, p = {1/3, 2/3}), the procedure in Definition 2.2 does the following

(1) Group type A units into triples |g| = 3, matched on the full covariate vector Xi.

(2) Assign D = 1 to exactly 2 out of 3 units in each group

(3) Repeat the procedure for the type B units in the pro {i : pn(Xi) = 1/3}, with 1
out of 3 treated.

This procedure (i) satisfies the experimenter’s constraint and (ii) gives the efficiency
of a “matched-pairs” like design, using the design to control for all of the (potentially
continuous) featuresXi. Exact inference procedures for this design follow from the general
formula in Section 5, allowing the experimenter to fully take advantage of this efficiency.

Remark 3.13 (Group Construction Algorithms). Equation 3.2 is the general version of
the group homogeneity Condition 2.10 for the case of non-constant propensity scores.
We analyze group-construction algorithms in Section 8 below that achieve the rate rψn =
O(n−2/(d+1)), with dim(ψ) = d. In practice, we find that the greedy heuristic outlined in
Algorithm 2.3 performs well and is fast.

Remark 3.14 (Propensity Approximation). Our asymptotic framework allows the set
of propensity levels Ln to grow with n, accommodating asymptotic approximation of
arbitrary propensity scores. With kn = maxpa∈Ln ka the maximal group size, we impose
the technical condition

kn ∨ |Ln| = O(
√
n/ log(n)) (3.3)

requiring that the maximal group size and number of distinct propensity levels |Ln| don’t
grow too fast.

Remark 3.15 (Balancing Estimated Functions). In Section 4, we study a setting where
the local function ψ(x) is estimated using a pilot data set, asking if we can “estimate what
to balance.” To formalize this setting, we write ψ = ψ(·, ζ) with ζ ⊥⊥ (Xi, Yi(0), Yi(1))ni=1

a random element. In our applications, ζ includes objects estimated out-of-sample, e.g.
in a pilot or proxy data set. We also allow p(·) = p(·, ζ), for instance allowing local ran-
domization using an independent estimate of the optimal propensity score, as in Theorem
4.3. Theorem 3.17 and the inference methods in Section 5 are conditionally valid given
the realized value of ζ. See the proof of Theorem 9.5 in the appendix for more details.

Example 3.16 (Pilot Study). Let ζ = (m̂d)d=0,1 be estimates ofmd(x) = E[Y (d)|X = x],
from a pilot experiment. Consider setting

ψ(x, ζ) =

(
m̂1(x)− m̂0(x), m̂1(x)

(
1− p
p

)1/2

+ m̂0(x)

(
p

1− p

)1/2
)
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Notice that this ψ is a (random) pilot estimate of the optimal design ψ∗(x) = (c(x), b(x))
from Theorem 3.19. The results below give consistent inference conditional on ζ, without
requiring consistency of the regression estimates. If the regressions m̂d(x) are consistent,
Theorem 4.8 in the next section shows selection and assignment that are locally random-
ized with respect to ψ(x, ζ) gives asymptotic efficiency.

Abusing notation, for local randomization with varying propensity score p(x), discretized
to pn(x) as above, we use the IPW estimator

θ̂ = En

[
TiDiYi
qpn(Xi)

]
− En

[
Ti(1−Di)Yi
q(1− pn(Xi))

]
(3.4)

We also extend our definition of the balance function

b(x; p(x)) = m1(x)

(
1− p(x)

p(x)

)1/2

+ m0(x)

(
p(x)

1− p(x)

)1/2

(3.5)

The following theorem gives the most general version of our asymptotic results, extending
Theorem 3.1 above.

Theorem 3.17 (CLT). Suppose that conditions 9.3 and 9.7 hold. Suppose that local
functions ψ′ = ψ′(·, ζ) and ψ = ψ(·, ζ) are increasing in granularity, in the sense that
ψ′ ∈ σ(ψ). Suppose that treatment proportions p = p(·, ζ) with random element ζ ⊥⊥ W1:n.
Assume that selection and assignment are locally randomized

(i) T1:n ∼ Locn(ψ′, q) or T1:n = 1

(ii) D1:n ∼ Locn(ψ, p(x) |T1:n)

Then √qn(θ̂ − ATE)|ζ ⇒ N (0, V ((ψ′, ψ), (q, p))

V ((ψ′, ψ), (q, p)) = qVar(c) + (1− q)E[(c− E[c|ψ′, ζ])2|ζ]

+ E[(b− E[b|ψ, p, ζ])2|ζ] + E

[
σ2

1(X)

p(X, ζ)
+

σ2
0(X)

1− p(X, ζ)

∣∣∣∣ζ]
Under the same conditions

√
qn(θ̂ − En[c(Xi)])|ζ ⇒ N

(
0, V ((ψ′, ψ), (q, p))− qVar(c(X))

)
Example 3.18 (Jointly Stratified Selection and Assignment). In this example, we show
that local randomization subsumes stratified block randomization (SBR) with fixed strata
(not data-adaptive). For the case without selection, this design was recently studied us-
ing alternative methods in Bugni et al. (2018). Our work gives asymptotics and exact
inference for a more general class of designs with jointly stratified selection and assign-
ment. Consider a fixed stratification ψ(x) = S(x) ∈ {1, . . . , K}. For example, if X are
village-level infection rates, S(X) ∈ {1, . . . , 5} could be a discretized “infection-quintile.”
By Proposition 9.15 in the appendix, Locn(S, p(S)) is equivalent12 to SBR(S, p(S)). Con-
sider a design with both stratified selection and assignment

12D1:n ∼ Locn(S, p(S)) may differ from other implementations of SBR due to our explicit handling of
remainder groups, when p(s) · |{i : Si = s}| is not an integer. The theorem shows that these differences
are higher order.
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(i) T1:n ∼ Locn(S(x), q)

(ii) D1:n ∼ Locn(S(x), p(S(x)) |T1:n)

Then by Theorem 3.17, √qn(θ̂ − ATE)⇒ N (0, V )

V = qVar(c) + (1− q)E[(c− E[c|S])2] + E[(b− E[b|S])2] + E

[
σ2

1(X)

p(S)
+

σ2
0(X)

1− p(S)

]
The variance due to treatment assignment is reduced from Var(b(X)) under complete ran-
domization to E[(b − E[b|S])2] = E[Var(b(X)|S)] under SBR. Thus, b(X) is effectively
“controlled” by a non-parametric regression with regressor S(X), and similarly for the
selection variance term E[(c−E[c|S])2]. Exact inference for this design may be obtained
by plugging q and p(s) into the variance estimators in Section 5.

Connection to OLS: We can relate the increase in precision from stratified selection
and assignment to linear regression adjustment as follows. Let 1S be a full set of strata
indicator functions. Consider the population OLS equations

b(X) = Γ′b1S + vb E[1Svb] = 0

c(X) = Γ′c1S + vc E[1Svc] = 0

Then the variance expression above can be rewritten in terms of the population OLS
residuals

V = qVar(c) + (1− q) Var(vc) + Var(vb) + E

[
σ2

1(X)

p(S)
+

σ2
0(X)

1− p(S)

]
This shows that stratified selection and assignment, with large, fixed strata, does linear
regression adjustment by design.

3.4 Fully Optimal Designs

In Section 3.2, we gave restricted optimal designs implementing the constant treat-
ment proportions p = a/k. In this section, we use the double stratification methods
from the previous section to give fully optimal designs, which generically require im-
plementing a non-constant optimal propensity score p∗(x). To state the result, recall
σ2
d(x) = Var(Y (d)|X = x) and define

p∗(x) =
σ1(x)

σ1(x) + σ0(x)

The propensity p∗(x) is known as the Neyman allocation. Intuitively, p∗(x) assigns the
noisier treatment arm more often (at each Xi = x), making optimal use of sample size.
Such effects are discussed in detail in section 4, where we use local randomization to
implement a pilot estimate of p∗(x). Let pn(x) be a discretization of p∗(x), satisfying the
conditions in Definition 3.11. We also require a generalization of Equation 3.5, giving a
balance function with the implemented (discretized) propensity weights pn(x)

bn(x) = m1(x)

(
1− pn(x)

pn(x)

)1/2

+ m0(x)

(
pn(x)

1− pn(x)

)1/2

(3.6)
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Note that bn(x) = b(x; pn(x)). The next result improves on the restricted optimal designs
of Theorem 3.7.

Theorem 3.19 (Optimal Design). Suppose that conditions 9.3 and 9.7 hold. Let the
function ψ(x) used to form local groups be one of the following

(i) ψ∗(x) = (bn(x), c(x))

(ii) ψ∗(x) = (m0(x),m1(x))

(iii) ψ∗(x) = x

Suppose that the design is locally randomized:

(i) T1:n ∼ Locn(ψ∗, q) or T1:n = 1

(ii) D1:n ∼ Locn(ψ∗, p∗(x) |T1:n)

Then √qn(θ̂ − ATE)⇒ N (0, V ∗)

V ∗ = qVar(c(X)) + min
p∈L2(X)
0<p<1

E

[
σ2

1(X)

p(X)
+

σ2
0(X)

1− p(X)

]
(3.7)

Under the fully optimal design, the selection, assignment, and residual components of the
asymptotic variance are all independently optimized.

3.5 Theory Discussion

This section collects various discussions that may be of interest to researchers working on
statistical theory for experimental design. In particular, we give intuition for some key
elements of the proof of our asymptotic results in Remark 3.22.

Remark 3.20 (Efficient IPW Estimation). Suppose there is no selection (q = 1) and
consider simple random sampling, which draws treatments Di

inid∼ Bernoulli(p), as in Hahn
et al. (2011). The results of Hirano et al. (2003) show that in this setting IPW estima-
tion using the true propensity weights p(Xi) is inefficient, while weighting with a non-
parametric estimate p̂(Xi) of the known propensity achieves the semi-parametric variance
bound

V ∗ = Var(c(X)) + E

[
σ2

1(X)

p(X)
+

σ2
0(X)

1− p(X)

]
By contrast, ifD1:n ∼ Locn(X, p(x)), then by Theorem 3.17

√
n(θ̂−ATE)⇒ N (0, V ∗). In

particular, the IPW estimator with true propensity weights achieves the semi-parametric
variance bound, removing the need for an extra step where we non-parametrically “re-
estimate” a known quantity.

To understand this improvement, note that under independent treatment assignment,
for any “nice” local region A ⊆ X we have

√
nEn[(Di − p(Xi))1(Xi ∈ A)] = Ωp(1),

reflecting order n−1/2 dispersion of the sample treatment proportions away from the
target proportions p(x). Unless we update the propensity weights p(Xi) → p̂(Xi) to
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reflect the realized, in-sample treatment proportions, this dispersion increases the first-
order asymptotic variance. By contrast, Lemma 9.4 in the appendix shows that under
local randomization

√
nEn[(Di − pn(Xi))1(Xi ∈ A)] = Op(n

−1/(d+1))

with d = dim(X). Local randomization forces the sample treatment proportions in each
fixed region of the covariate space to be equal to the target proportions, up to lower order.
Also see Figure 4, which shows an example where in-sample propensity widely diverges
from the population propensity under complete randomization.

Remark 3.21 (Robustness vs. Efficiency). By Theorem 3.17, the assignment variance
under D1:n ∼ Locn(ψ, p) is, using the law of total variance

E[(b− E[b|ψ, p])2] = Var(b(X))− Var(E[b|ψ, p]) ≤ Var(b(X))

This shows that, at least asymptotically, balancing any function of the covariates weakly
dominates complete randomization, which achieves the maximal variance Var(b(X)). The
proof of Theorem 9.5 shows that, in finite samples, this variance ordering still holds ex-
ante, but may fail conditionally on X1:n, e.g. if ψ(X) predicts outcomes poorly, echoing a
similar observation in Imbens (2011) for matched pair designs. The conditional variance
calculations in Theorem 9.5 show that such problematic variance components vanish
asymptotically at rate Op(n

−1/2). For details, see the discussion in Remark 3.22 below.

Remark 3.22 (Proof Intuition). In this remark, we give intuition for the proof of our
CLT in Theorem 3.1. Consider the special case T1:n = 1 and D1:n ∼ Locn(ψ, p) with
p = a/k. By the fundamental decomposition of the IPW estimator

θ̂ = En[c(Xi)] + En

[
(Di − a/k)√
a/k − (a/k)2

b(Xi)

]
+ residualsn

We highlight two key elements of the proof of Theorem 9.5 (from which Theorem 3.17
above is derived), focusing on our conditional CLT for the middle term above

(1) We show that within-group randomization non-parametrically “partials out” the
projection E[b|ψ], leaving only the variation not predicted by ψ(X) (to first order).
This gives the coupling below
√
nEn[(Di − a/k)b(Xi)] =

√
nEn[(Di − a/k)(b− E[b|ψ])(Xi)] +Op

(
(rψn )1/2

)
(2) We show that the leftover residuals ui ≡ bi − E[b|ψi] behave “as if” randomly

assigned to groups, so the effect of data-adaptive group construction and correlated
assignment decays asymptotically (for the residuals)

E[uiuj|i, j ∈ g] = E[uiuj] = 0

For (1), observe that bi = E[b|ψi] + (bi −E[b|ψi]). If ψ → E[b|ψ] is Lipschitz, by Lemma
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9.20 the local-group correlation structure of the treatment assignments gives

Var
(√

nEn[(Di − a/k)E[b|ψi]|X1:n, πn
)
≤ k−1

∑
g

∑
i,j∈g
i 6=j

(E[b|ψi]− E[b|ψj])2 +Op(log(n)/n)

.P k
−1
∑
g

∑
i,j∈g
i 6=j

(ψi − ψj)2 = Op(r
ψ
n ) = op(1)

using the balancing rate guarantees for groups constructed in section 8. External ran-
domness πn ⊥⊥ W1:n is needed to break potential ties during group construction.

For (2), since the algorithms in section 8 use all values ψ1:n = (ψ(Xi))
n
i=1 to globally

optimize the balance criterion, each group g has stochastic dependence g = g(ψ1:n, πn).
Then one argues that E[uiuj|i, j ∈ g] = E[E[uiuj|ψ1:n, πn]|i, j ∈ g] = 0, showing the
residuals behave “as if” randomly assigned to groups. The proof of Theorem 9.5 shows
that

Var
(√

nEn[(Di − a/k)ui|X1:n, πn
)

= E[(b− E[b|ψ])2]− a(k − a)

k2(k − 1)

∑
g

∑
i,j∈g
i 6=j

uiuj + op(1)

By this “anti-selection” result for the residuals, the middle term can be shown to be
Op(n

−1/2). For more details, see Lemmas 9.20, 9.22, and the proof of Theorem 9.5 in the
appendix. For concrete rate guarantees on rψn under weaker smoothness assumptions, see
section 8.

4 Efficient Design with a Pilot Experiment
This section proposes new methods that use data from a pilot13 study in order to design
a more efficient main experiment. In particular, we give the first asymptotically fully
efficient designs in this setting.

Local randomization methods can be used to minimize the variance due to selection and
treatment assignment. However, since the residuals εdi = Yi(d) − E[Yi(d)|Xi] are mean-
independent of the baseline covariates Xi used to form local groups, randomizing within
local groups cannot affect the residual variance. To further minimize the residual vari-
ance, we need to change the design’s treatment proportions, assigning more units to the
“noisier” treatment arm. Intuitively, one can think of this as taking more measurements of
the quantity that is harder to measure. Full efficiency requires implementing the optimal
treatment proportions conditionally, in proportion to the conditional standard deviation
σd(x) = Var(Y (d)|X = x)1/2 for d = 0, 1. While σd(x) is unknown, it may be consistently
estimated using pilot data.

Thus, we propose to use the pilot experiment to construct a feasible version of the fully
optimal design in two steps, using the double stratification approach of Section 3.3. First,

13The results from this section also apply with access to observational data from the population of
interest, as long as the relevant causal quantites are identified and estimable.
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we stratify units on a pilot estimate of the optimal treatment proportions

p̂(x) =
σ̂1(x)

σ̂1(x) + σ̂0(x)
p∗(x) =

σ1(x)

σ1(x) + σ0(x)
(4.1)

Next, we implement these treatment proportions by local randomization within each
propensity stratum.

For example, suppose the pilot estimate of the optimal treatment proportions takes values
p̂(x) ∈ {1/2, 3/5}. In the propensity stratum {i : p̂(Xi) = 3/5} we partition the units
into homogeneous groups of 5, assigning exactly 3 in each group to D = 1, and similarly
for the stratum with p̂(Xi) = 1/2. By implementing p̂(x) by randomization within
local groups, we strongly control the variance due to treatment assignment, while also
minimizing the residual variance. In particular, our strategy independently minimizes
the selection, assignment, and residual components of the asymptotic variance (Theorem
4.8), giving the first fully efficient design in this setting.

Remark 4.1 (High Dimensional Covariates). Section 4.1 proposes a robust method that
does not require correct specification or estimation of outcome regression models How-
ever, the finite sample performance of this approach may be poor in high-dimensional
settings with many weakly predictive covariates. Therefore, in Section 4.2 we provide an
alternative method that uses the pilot study to “estimate what to balance.” In particular,
we show that locally randomizing with respect to a pilot estimate ψ(x) = (̂bn(x), ĉ(x))
of the optimal design ψ∗(x) = (bn(x), c(x)) given by Theorem 3.19 is also asymptotically
fully efficient if the pilot regressions are estimated consistently. However, we argue that
strong consistency assumptions may be inappropriate for experimental design, leading
us to prefer a “robustified” version of the second method with ψ(x) = (̂bn(x), ĉ(x), xpred),
also balancing some predictive covariates outright. See the discussion in Remark 4.12.

Advice for Practice - The theory developed in this section suggests

(1) For low-dimensional baseline covariates Xi, let selection variables and treatment
assignments be drawn by T1:n ∼ Locn(X, q) and D1:n ∼ Locn(X, p̂(x) |T1:n), where
p̂(x) is a “working model” of the Neyman allocation estimated using pilot data. For
considerations involved in choosing the estimate p̂(x), see the practical discussion
in Remark 4.5 below.

(2) For high-dimensional baseline covariates Xi, let ψ(x) = (̂bn(x), ĉ(x), xpred), includ-
ing a pilot estimate of the balance function and CATE, and also including outright
a few of the covariates thought to be most predictive of outcomes. Then, let se-
lections and treatment assignments be drawn by T1:n ∼ Locn(ψ, q) and D1:n ∼
Locn(ψ, p̂(x) |T1:n).

4.1 Robust Solution

This section presents our robust solution. First, we discuss implementation of the Neyman
allocation estimate in Equation 4.1 in more detail. Consider a simple implementation of
the propensity p̂(x) using independent sampling

Di
inid∼ Bernoulli(p̂(Xi))
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Unfortunately, under this strategy the realized treatment proportions may significantly
differ from the pilot estimate p̂(x) that we wish to implement, due to the O(n−1/2) dis-
persion created by independent sampling. This dispersion creates covariate imbalances
that need to be removed ex-post in the analysis stage. For instance, this may require
well-specified regression adjustment, as in Robinson (1988), or ex-post, non-parametric
re-estimation of the (known) propensity score, as in Hirano et al. (2003).

Double Stratification - Alternatively, consider assignments D1:n ∼ Locn(X, p̂(x)), us-
ing the double stratification approach defined in Section 3.3 above. This gives a fast
implementation of p̂(x), forcing the realized treatment proportions to be exactly p̂(x), up
to lower order dispersion.14 Using this method, we can implement the estimated optimal
treatment proportions p̂(x), while also strongly controlling the selection and assignment
components of the asymptotic variance.

Remark 4.2 (Large Pilot Asymptotics). In the following theorem, we assume that the
pilot sample size npilot � n, working in large pilot asymptotics as in Hahn et al. (2011).
This formally allows for consistent estimation ‖σ̂d − σd‖2,X = op(1) using the pilot data.

While consistency is required for the asymptotic optimality result below, in practice we
advocate treating σ̂d(x) as a “working model” of the variance function. Using the pilot
data to implement an estimate of the optimal treatment proportions p∗(x) will generally
improve upon an arbitrary propensity score, such as p = 1/2, even if the estimator σ̂d(x)
is misspecified or formed using a small pilot.

Theorem 4.3. Suppose ‖σ̂d−σd‖2,X = op(1) and impose assumptions 9.3 and 9.9. With
p̂(x) the pilot Neyman allocation estimate in Equation 4.1, suppose that

(i) T1:n ∼ Locn(X, q)

(ii) D1:n ∼ Locn(X, p̂(x) |T1:n)

Then √qn(θ̂ − ATE)⇒ N (0, V ∗)

V ∗ = qVar(c(X)) + min
p∈L2(X)
0<p<1

E

[
σ2

1(X)

p(X)
+

σ2
0(X)

1− p(X)

]

Theorem 4.3 shows that the selection, assignment, and residual components of the asymp-
totic variance are independently minimized. In particular, the variance due to treatment
assignment is lower order. For the proof of this theorem, see section 9.3 of the appendix.

Remark 4.4 (Double Stratification). For more intuition, consider the treatment assign-
ment step in detail. The notation D1:n ∼ Locn(X, p̂(x) |T1:n) does the following:

(1) Stratify the selected units on pn(Xi), values of a discretized15 version of the es-
timated optimal treatment proportions p̂(x). This partitions units based on the
relative noisiness of potential outcomes Yi(1) vs. Yi(0) at Xi, forming strata of
units with similar optimal treatment probabilities.

14Formally, for A ⊆ X a fixed “nice” region of the covariate space, En[(Di − pn(Xi))1(Xi ∈ A)] =
Op((r

ψ
n/n)

1/2). See Lemma 9.4 for details
15If the discretization has |Ln| propensity levels with kn = maxqa/ka∈Ln

ka, the local balancing results
in section 8 require |Ln|kn = o(n). For the standard discretization {1/kn, . . . kn − 1/kn}, let 1/kn �
log(n)/

√
n.
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(2) Within each propensity stratum {i : pn(Xi) = a/k}, match units on baseline co-
variates Xi into homogeneous groups of size |g| = k, assigning Di = 1 to exactly a
out of k of them, uniformly at random.

By doing this, we simultaneously (1) implement treatment proportions that optimize the
residual variance and (2) do “matched k-tuples” (Example 3.12) within each propensity
stratum, producing asymptotically lower order assignment variance.

Remark 4.5 (Variance Models in Practice). While the asymptotic full efficiency of
Theorem 4.3 requires well-specified, consistent σ̂2

d(x), the asymptotics and inference re-
sults in Theorem 3.17 and Theorem 5.3 hold for any, potentially inconsistent, estimate
p̂(x) ⊥⊥ data of the optimal treatment proportions, including the following:

(a) p̂ = σ̂1
σ̂1+σ̂0

constant with σ̂2
d estimated from a previous experiment with different,

but conceptually related, treatments and outcomes

(b) p̂ = σ̂1
σ̂1+σ̂0

an educated guess of the relative variability of outcomes for d = 0, 1

(c) p̂(x) = σ̂1(x)
σ̂1(x)+σ̂0(x)

with σ̂2
d(x) estimated inconsistently from confounded observa-

tional data

In each case, assigning D1:n ∼ Locn(X, p̂(x) |T1:n) attempts to reduce estimator variance
by (1) taking more samples of the treatment arm with noisier outcomes and (2) imple-
menting these treatment proportions using local randomization methods. Asymptotically
exact inference, with no assumptions on the consistency or well-specification of p̂(x), is
given by Theorem 5.3 in the next section.

In the remainder of this subsection, we compare our method with the recent “optimal
stratification tree” approach of Tabord-Meehan (2020).

4.1.1 Comparison with Optimal Stratification Trees

Recall that classical stratified block randomization (SBR) assigns exactly proportion p(s)
units to treatment, completely at random, within the stratum {S(Xi) = s}, for some fixed
stratification of the covariate space S ∈ {1, . . . , K}. Tabord-Meehan (2020), henceforth
TM, uses pilot data to estimate an efficient stratification and propensity score (Ŝ, p̂(s))
over a set of tree partitions of the covariate space, denoted T .

Theorem 3.1 of TM16 shows that if D1:n ∼ SBR(Ŝ, p̂(s)) then an IPW estimator θ̂ has√
n(θ̂ − ATE)⇒ N (0, V ) with asymptotic variance

V = Var(c(X)) + min
S∈T

(
E[(b(X;S)− E[b(X;S)|S(X)])2] + E

[
σ2

1(X)

p∗(X;S)
+

σ2
0(X)

1− p∗(X;S)

])
The within-stratum optimal propensity p∗(X : S) and balance function are given by

p∗(X;S) =
Var(Y (1)|S)1/2

Var(Y (1)|S)1/2 + Var(Y (0)|S)1/2

b(X;S) = m1(X)

√
1− p∗(X;S)

p∗(X;S)
+m0(X)

√
p∗(X;S)

1− p∗(X;S)

16For a formal transformation of the SBR variance of Bugni et al. (2018) (cited in TM) into “balance
function adjustment” form, see section 9.3 of the appendix
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From the minimization problem in the first display, we see that the optimal tree stratifi-
cation chooses a compromise between:

(1) In the first term, minimizing variance due to treatment assignment by choosing
strata that predict outcomes well (parameterized by the balance function b(X;S))

(2) In the second term, minimizing residual variance by sampling treatment arms
proportionally to their relative residual variance, through the induced propensity
p∗(X;S)

By contrast, for the case with no selection into the experiment (q = 1), the local ran-
domization approach of Theorem 4.3 achieves asymptotic variance

V ∗ = Var(c(X)) + min
p∈L2(X)
0<p<1

E

[
σ2

1(X)

p(X)
+

σ2
0(X)

1− p(X)

]

Both terms are independently optimized, and the variance due to assignment is asymptot-
ically vanishing due to local matching within propensity strata. In particular, V ∗ ≤ V .

Remark 4.6 (Discussion). Our strategy exploits the fact that we have stronger control
over the variance due to treatment assignment than the residual variance. Note that

(1) The variance due to treatment assignment can be made asymptotically lower order
by locally randomizing on ψ(x) = x.

(2) The variance due to residuals εdi = Yi(d) − E[Yi(d)|Xi] cannot be affected by
matching-like methods, including classical stratification, since the baseline covari-
ates Xi used for stratification are mean-independent of εdi . The only parameter we
can use to affect the residual variance is the propensity score p(x), through which
the proportion of residuals εdi drawn from each arm d = 0, 1 may be optimized.

The assignment variance is the easier term: we can ensure that it is lower order by
implementing a consistent estimate of the optimal propensity p∗(x) with local random-
ization methods. By contrast, optimal stratification trees force us to choose a compromise
between the easier assignment component and the residual component of the variance,
leading to asymptotic sub-optimality.

Remark 4.7 (Role of Covariate Dimension). If D1:n ∼ Locn(X, p̂(x) |T1:n), our results
show that the variance due to treatment assignment is asymptotically lower order. In
particular, the covariate imbalance term in the IPW expansion has

√
nEn[(Di − pn(Xi))bn(Xi)] = Op(n

−1/(d+1)) d = dim(X)

See Lemma 9.4 in the appendix for details. If X is high-dimensional, the assignment vari-
ance may be non-negligible in finite samples due to the slow convergence rate above. For
instance, if many components of X are irrelevant for predicting outcomes, the “signal” of
the relevant covariates may be lost by matching on all components of the high-dimensional
vector X. Motivated by this, Section 4.2 considers using pilot data to “estimate what to
balance,” rather than balancing the whole vector X. Section 6 gives empirical evidence
showing the deterioration of finite sample performance in high dimensions.
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4.2 Using a Pilot Study to “Estimate what to Balance”

This section considers an alternative method that uses the pilot study to “estimate what
to balance,” motivated by concerns about poor finite-sample performance of the robust
method in high-dimensions (Remark 4.7). In Section 3.4, we showed that a design that
locally randomizes with respect to ψ∗(x) = (bn(x), c(x)) during both selection and as-
signment is fully efficient.17 Since the optimal design ψ∗(x) is unknown, we consider es-
timating it using data from a pilot study, extending Bai (2020). Under well-specification
and consistency of the pilot regressions, Theorem 4.8 shows that this feasible design is
asymptotically fully efficient.

In spite of this result, we argue that such formal assumptions are too strong for design
theory, giving poor guidance for practice. In particular, Proposition 4.11 shows a sense
in which, under such assumptions, all designs are asymptotically equivalent. This leads
us to prefer a “robustified” version of the method, discussed in Remark 4.13.

Advice for Practice - For high-dimensional settings with many weakly predictive covari-
ates, experimenters can draw selection and assignment variables by local randomization
with respect to ψ(x) = (̂bn(x), ĉ(x), xpred), including pilot estimates of the balance func-
tion and CATE. They should also include, outright, a small vector of covariates xpred
thought to be good predictors of treatment efffect heterogeneity and variation in poten-
tial outcomes, if available. Theorem 5.3 in the next section gives asymptotically exact
inference, conditional on the pilot data, for the designs in this section.

Theorem 4.8 (Balancing Pilot Regressions). Consider pilot regression estimators (m̂d)d=0,1

consistent with rate ‖m̂d −md‖2,P = Op(n
−rm) and ‖m̂d‖∞ < m < ∞ a.s. for d = 0, 1.

Require assumption 9.9, and let p̂(x) be a consistent estimate of the Neyman allocation as
in Theorem 4.3, with discretization pn(x) satisfying assumption 9.1. Define the estimators

b̂n(x) = m̂1(x)

(
1− pn(x)

pn(x)

)1/2

+ m̂0(x)

(
pn(x)

1− pn(x)

)1/2

ĉ(x) = m̂1(x)− m̂0(x)

Suppose one of the following

(a) ψ̂(x) = (̂bn, ĉ )(x)

(b) ψ̂(x) = (m̂0, m̂1)(x)

Suppose that the design is given by

(1) T1:n ∼ Locn(ψ̂, q)

(2) D1:n ∼ Locn(ψ̂, p̂(x) |T1:n)

Then
√
n(θ̂ − ATE)⇒ N (0, V ∗), with V ∗ the optimal variance of Theorem 3.19.

Theorem 4.8 achieves full efficiency by embedding the pilot regression estimators into the
design, as we discuss in the following remark. Note that this result extends Bai (2020).
See Remark 4.14 below for a discussion.

17See Remark 3.8 above for an intuitive discussion of this result.
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Remark 4.9 (Embedding Regressions). Assigning D1:n ∼ Locn(ψ̂, p̂(x) |T1:n) gives full
efficiency by embedding the regression estimators above into the design. Formally, con-
sider D1:n ∼ Locn(̂b, 1/2). The proof of Theorem 4.8 shows that the variance due to
treatment assignment comes from the following term

assignmentn ∝ En[(Di − 1/2)b(Xi)] = En[(Di − 1/2)(b− b̂)(Xi)] + En[(Di − 1/2)̂b(Xi)]

= En[(Di − 1/2)(b− b̂)(Xi)] +Op(n
−1)

The final equality follows by matching on b̂(x) in the design. Up to lower order, we are left
with the bias term for a regression-augmented (AIPW) estimator, as in the doubly robust
analysis of observational studies (Chernozhukov et al. (2017)). Thus, locally balancing
a regression b̂(x), makes the IPW estimator behave like a doubly-robust estimator using
the pilot regression b̂(x) for regression-augmentation.

Design Irrelevance: Motivated by the previous result, we study regression-augmented
IPW estimation for locally randomized designs. The next result shows that under (1)
regression-augmented estimation (AIPW) and (2) assuming consistent pilot estimation
of md(x) = E[Y (d)|X = x], all designs are equivalent in first-order asymptotics. Before
continuing, we formally define the cross-fit AIPW estimator, as in Chernozhukov et al.
(2017)

Definition 4.10 (Cross-fit AIPW). Let [n] = ∪Kk=1Ik be a random partition. Define the
out-of kth fold regression estimate m̂d,k ≡ m̂d((Wi)i∈Ick). For each k define the within kth
fold estimator

θ̃k ≡ n−1
∑
i∈Ik

ĉk(Xi) + n−1
∑
i∈Ik

(
Di(Yi − m̂1,k(Xi))

pn(Xi)
− (1−Di)(Yi − m̂0,k(Xi))

1− pn(Xi)

)

Define the cross-fit AIPW estimator θ̃ =
∑

k θ̃k.

Proposition 4.11 (Design Irrelevance). Suppose (m̂d)d=0,1 have ‖m̂d −md‖2,P = op(1).
Suppose that one of the following holds

(1) (Di)i∈Ik ∼ Locn(ψ, p(x)|Ik) for (Ik)
K
k=1 a random partition of [n].

(2) Di
inid∼ p(Xi)

Let θ̃ be a cross-fit AIPW estimator as in Definition 4.10, with weights pn = p in case
(2). Then

√
n(θ̃ − ATE)⇒ N (0, V )

V = Var(c(X)) + E

[
σ2

1(X)

p(X)
+

σ2
0(X)

1− p(X)

]
Remark 4.12 (Consistency vs. Robustness). Regression consistency is necessary for
point estimation of treatment effects in observational settings, but unnecessary with
experimental data. If we impose this assumption anyway in an experimental context,
Proposition 4.11 shows that all designs in the class Locn(ψ, p(x)) are first-order equiv-
alent to simple random sampling (iid treatments). Then, as a tool for studying design
theory, this assumption is self-defeating : by imposing asymptotic regression consistency,
first-order asymptotics lose all power to differentiate between designs. Considering this,
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we argue that such consistency assumptions are too strong to provide guidance for prac-
tice in experimental design.

In particular, Proposition 4.11 shows that the naive design Di
inid∼ p(Xi) is asymptotically

equivalent to the significantly more balanced designs in the class Locn(ψ, p(x)) under this
assumption. Independent sampling amounts to creating covariate imbalances18 between
treatment arms by design, but promising to correct them later with regression adjustment.
This is an absurd recommendation for practice. For instance, consider that by Theorem
3.19 assigning D1:n ∼ Locn(X, p(X)) gives asymptotic full efficiency by design, without
the need for ex-post correction of imbalances by regression estimation.

Remark 4.13 (Robust Design with a Pilot). The full efficiency statement of Theorem
4.8 required assuming pilot regression consistency, which we just argued is too strong for
experimental design theory. Alternatively, note that Theorem 3.17 gives the asymptotic
variance of local randomization with ψ(x) = (m̂1(x), m̂0(x)) considered to be a fixed (not
changing with n) random function. Using this result, we can remain agnostic about the
specification of the outcome model. If we also include some predictive covariates xpred
outright, setting ψ(x) = (m̂1(x), m̂0(x), xpred), then Theorem 3.17 gives the asymptotic
variance components

selection = qVar(c(X)) + (1− q)E[(c(X)− E[c(X)|m̂1(X), m̂0(X), Xpred])
2]

assignment = E[(b(X)− E[b(X)|m̂1(X), m̂0(X), Xpred])
2]

By additionally including xpred, researchers can robustify the design against both (1)
misspecification of pilot regressions and (2) pilot estimation error. See also the discussion
of matching on regressions estimated in proxy studies in Example 3.10.

Remark 4.14 (Comparison with Bai (2020)). As mentioned above, Theorem 4.8 extends
the large pilot CLT of Bai (2020). In our notation, Theorem 5.1 of Bai gives the case
T1:n = 1 (no selection) and D1:n ∼ Locn(̂b, a/k). See section 5.3 of Bai for an alterna-
tive approach to robustness motivated by optimality in a Bayesian framework under the
assumption of linear conditional expectations md(x) = β′dx.

5 Inference Methods
This section gives procedures for valid inference on average treatment effects under local
randomization. Theorem 5.3 gives asymptotically exact inference for the ATE and fixed
regressor estimand En[c(Xi)] under a two-stage design where both selection into the ex-
periment and treatment assignment are done by covariate-adaptive local randomization.
In particular, we give novel methods allowing experimenters to report smaller uncertainty
about treatment effects when selection into the experiment is representative of the het-
erogeneity in treatment effects. We also illustrate an interesting connection between the
matching estimators defined below and classical permutation inference. See Remark 5.4
for a discussion.

18Such imbalances are mean-zero (at the known propensity weights), creating variance but not asymp-
totic bias. For D1:n ∼ SRS(p), the assignment variance is E[b(X)2]. Compare this to E[(b − E[b|ψ])2]
achieved by local randomization.
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Group Replicates - As noted in Fisher (1926), exact inference requires replicates of each
treatment arm under similar experimental conditions. For D1:n ∼ Locn(ψ, p), ideal data
would contain exact replicates of the outcomes (Yi)i∈g in each local group under identical
observed experimental conditions (identical (ψi, pi) values). To approximate this ideal
situation, we match each group g to a neighboring group in ψ(x), giving approximate
replicates of the outcomes in g under similar experimental conditions.

Matching Construction - Our approach to finding approximate replicates is based on
computing a pairwise matches between the centroids of each group in ψ(x) space. In
particular, we do the following

(1) Form the group centroids ψ̄g = 1
|g|
∑

i∈g ψi

(2) For each distinct propensity level pa, compute a pairwise matching of groups g → g′

within this propensity level by treating each centroid ψ̄g as an experimental unit
and using one of the algorithms in Section 8.

(3) For matched groups (g, g′), choose a random matching of treated to treated units,
and control to control units. In notation, randomly choose a bijective matching

γ : {i ∈ g,Di = 1} −→ {i ∈ g′, Di = 1}

Proposition 8.8 in the technical material shows that if the local groups g satisfy our
strong homogeneity condition (Equation 3.2), the centroid construction above produces
a one-to-one matching γ satisfying the following approximate replicate condition. This
is a key condition for the proof of Theorem 5.3 below, and the construction of exact
variance estimators.

Definition 5.1 (Approximate Replicates). The matching function γ : [n] → [n] gives
approximate replicates if

(i) Di = Dγ(i) and γ :
⋃
s ga,s →

⋃
s ga,s

(ii) γ2 = Id, γ(i) 6= i, and γ ∈ σ((ga,s)a,s, D1:n, ξn)

(iii) En[(ψi − ψγ(i))
2 |Ti = 1] = Op(r

ψ
n )

Part (i) requires that matched units are assigned to the same treatment arm and have the
same propensity score pn(Xi) = pa. By (ii), γ is a well-defined bijective matching, only
depending on the groups, treatment values, and external randomness ξn. Condition (iii)
is the approximate replicate condition, requiring that matched units have approximately
the same experimental conditions (on average).

Next, we use this matching to construct variance estimators For intuition about the
form of these matching estimators and a connection to permutation inference, see the
discussion in Remark 5.4 below.

Definition 5.2 (Variance Estimators). Let G be a bounded, Lipschitz function. Let γ
be a matching satisfying the conditions of Definition 5.1. With pi,n = pn(Xi), define the
matching estimators

v̂1[G] ≡ En

[
TiDi

qpi,n
G(pi,n)YiYγ(i)

]
v̂0[G] ≡ En

[
Ti(1−Di)

q(1− pi,n)
G(pi,n)YiYγ(i)

]
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Also define the cross-moment estimator and IPW sample moment

v̂10 ≡ 2n−1
∑

1≤i<j≤n

TiTj
q

1(g(i) = g(j))

|g|
Di(1−Dj)YiYj
pi,n(1− pj,n)

v̂I,2 = En

[
Ti
q

(
(Di − pi,n)Yi
pi,n − p2

i,n

)2
]

The following theorem shows exact or valid (but conservative) inference for various causal
estimands and designs by varying the weights G(p) in the estimators above. The degree of
conservativeness in the non-exact cases is also given. We summarize the results provided
by Theorem 5.3 as follows:

1. Exact Inference

(a) θ = ATE, T1:n ∼ Locn(ψ, q) and D1:n ∼ Locn(ψ, p(x) |T1:n), with p(x) = p(ψ)

(b) θ = ATE, T1:n = 1 and D1:n ∼ Locn(ψ, p(x))

(c) θ = En[c(Xi)], T1:n ∼ Locn(X, q) and D1:n ∼ Locn(X, p(x)|T1:n)

2. Valid Inference

(a) θ = ATE, general case T1:n ∼ Locn(ψ′, q) and D1:n ∼ Locn(ψ, p(x)|T1:n)

(b) θ = En[c(Xi)], T1:n ∼ Locn(ψ, q) and D1:n ∼ Locn(ψ, p(x) |T1:n), p = p(ψ)

(c) θ = En[c(Xi)], T1:n = 1 and D1:n ∼ Locn(ψ, p(x))

Theorem 5.3 (Inference). Suppose that assumptions 9.1, 9.3, and 9.11 are satisfied.

1. Suppose that T1:n ∼ Locn(ψ′, q) and D1:n ∼ Locn(ψ, p(x) |T1:n). If ψ′ = ψ and
p(x) = p(ψ, ζ) then

v̂I,2 − v̂1

[
1− qp
p

]
− v̂0

[
1− q(1− p)

1− p

]
− 2qv̂10 − qθ̂2 = V (ψ, (q, p)) + op(1)

For the fixed regressor case

v̂I,2 − v̂1

[
p−1
]
− v̂0

[
(1− p)−1

]
= V (ψ, (q, p))− qVar(c(X)) + qE[Var(c(Xi)|ψi, ζ)|ζ] + op(1)

≥ V (ψ, (q, p))− qVar(c(X)) + op(1)

2. Suppose that T1:n = 1 and D1:n ∼ Locn(ψ, p(x)) then with Varn the sample variance

Varn

(
(Di − pi,n)Yi
pi,n − p2

i,n

)
− v̂1

[
1− p
p

]
− v̂0

[
p

1− p

]
− 2v̂10 = V (ψ, p) + op(1)

For the fixed regressor case

v̂I,2 − v̂1

[
p−1
]
− v̂0

[
(1− p)−1

]
≥ V (ψ, p)− Var(c(X)) + op(1)
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3. Suppose that T1:n ∼ Locn(ψ′, q) and D1:n ∼ Locn(ψ, p(x)|T1:n)

Varn

(
(Di − pi,n)Yi
pi,n − p2

i,n

)
− v̂1

[
1− p
p

]
− v̂0

[
p

1− p

]
= V ((ψ′, ψ), (q, p)) + (1− q) Var(E[c(Xi)|ψ′i, ζ]|ζ) + op(1)

≥ V ((ψ′, ψ), (q, p)) + op(1)

See section 9.4 of the appendix for the proof.

Remark 5.4 (Randomization Inference). In this remark, we argue that the inference
strategy in Theorem 5.3 can be interpreted as an estimation version of classical random-
ization inference. Consider case (2) above with T1:n = 1 and D1:n ∼ Locn(ψ, p(x)). The
appendix shows that, for treatment assignments D1:n ∼ Locn(ψ, p(x)), the first term is
consistent for the asymptotic variance of the least balanced design: Di

inid∼ p(Xi), also
known as simple random sampling (SRS)

Varn

(
(Di − pi,n)Yi
pi,n − p2

i,n

)
p→ E

[
Y (1)2

p(Xi)

]
+ E

[
Y (0)2

1− p(Xi)

]
= Var(SRS(p))

Our inference method effectively starts with an estimate of the variance under the least
efficient design, then reduces it by subtracting off the correction v̂1 + v̂0. Thus, our es-
timate of uncertainty about the average treatment effect is small when the correction
terms v̂1 and v̂0 are large.

Measuring Homogeneity : To see when v̂1 will be large, consider the matched products
(YiYγ(i))i in the definition. By the Hardy-Littlewood inequality, v̂1 is maximized19 when
matched outcomes are maximally homogeneous: large outcomes Yi multiplied by large
outcomes Yγ(i) and vice-versa. Then we can regard v̂1 as a measure of the average homo-
geneity of potential outcomes Yi(1) within local groups.

Permuting Treatments : The more homogeneous Yi(1) and Yi(0) are within local groups,
the smaller the variance due to treatment assignment. To see this, imagine rerandomizing
by permuting the treatment assignment variables (Di)i∈g in each group g. If the potential
outcome Yi(1) is approximately constant over i ∈ g (and the same for Yi(0)), permuting
treatments in this way will have almost no effect on the IPW estimator, since the weighted
difference of observed outcomes Yi will be approximately unchanged within each group,
and thus globally. Summarizing this discussion, on average over the local groups the
following are equivalent

(1) Correction terms v̂1 + v̂0 are large

(2) Potential outcomes (Yi(1), Yi(0))i∈g are homogeneous

(3) Estimator variance due to permuting treatments (Di)i∈g is small

Remark 5.5 (Inference Methods for Covariate-Adaptive Selection). Note that the first
result requires selection and assignment to be locally randomized using the same function

19Formally, for the case with weights G = 1, the optimum is achieved by matching adjacent order
statistics within treatment class, Y(1)Y(2) + Y(3)Y(4) + · · ·
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ψ′(x) = ψ(x). By enforcing this condition, we make the selection and assignment variance
components comparable

E[(c− E[c|ψ′])2] E[(b− E[b|ψ])2]

In particular, they are both weighted combinations of the residualsmd(x)−E[md(x)|ψ(x)],
d = 0, 1. This allows us to give exact inference for the two-step process of covariate-
adaptive selection and assignment, even though the variance corrections v̂1, v̂0, v̂10 are
only defined using local groups formed during the treatment assignment stage of the de-
sign. Effectively, we require that the “level of covariate balance” during the selection and
assignment steps is the same.

This requirement may be undesirable when, as in Example 3.3, extra covariates are
gathered about each unit after committing enrollment it in the study (Ti = 1), with
Xpre
i ( Xi. For this case, conservative inference is given by the third result. It may be

possible to use ex-post matching methods, as in Abadie and Imbens (2012), to give exact
inference for this case. We leave such extensions to future work.

Remark 5.6 (Model-free Conditional Inference). Recall that the assignment variance de-
pends on the non-parametric regression residuals E[(b−E[b|ψ])2]. However, the variance
corrections above only use local group structure of the design and realized outcomes Yi,
without explicitly estimating a regression. In particular, these corrections are agnostic
to the form of the CATE and balance function, as well as to the true non-parametric
regression models E[c|ψ], E[b|ψ] for these objects. For D1:n ∼ Locn(ψ, p) and ψ = ψ(·, ζ)
a function estimated on proxy data ζ, the proof of Theorem 5.3 shows that

v̂1[1] = c1 ·R2(ψ, ζ) + c2 + op(1) R2(ψ, ζ) =
Var(E[m1(X)|ψ(X, ζ), ζ]|ζ)

Var(m1(X))

with constants c1, c2 independent20 of the design. R2(ψ, ζ) measures the non-parametric
predictive power of ψ(·, ζ) for m1(X) at the realized value of ζ. Thus, conditionally
valid inference is achieved by measuring how well ψ(·, ζ) (non-parametrically) controls
for variation in b(X), c(X) ex-post, without actually specifying or estimating a regression
model.

Example 5.7 (Complete Randomization). Consider inference for θ = ATE in a com-
pletely randomized experimentD1:n ∼ CR(1/2). The sample variance 16 Varn ((Di − 1/2)Yi),
while exact if Di are iid, is conservative under complete randomization due correlation
of the treatment assignments. Proposition 9.15 shows that CR(1/2) = Locn(1, 1/2), giv-
ing a “random matched pairs” representation of CR(1/2). Then, consider the following
inference strategy: let γ, φ : [n] → [n] random, bijective matchings with Di = Dγ(i) and
Di = 1−Dφ(i), respectively. In this case, the variance corrections of Theorem 5.3 have

v̂1[1] + v̂0[1] = 2En
[
(Di + (1−Di))YiYγ(i)

]
= 2En

[
YiYγ(i)

]
20In particular, c1 = Var(m1(X)) and c2 = E[Y (1)]2
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Then by21 Theorem 5.3, the following variance estimator is exact

V̂ = 16 Varn((Di − 1/2)Yi)− 2En
[
YiYγ(i)

]
− 2En

[
YiYφ(i)

]
6 Empirical Results
This section examines the finite sample properties of the estimation and inference methods
studied above through a series of monte carlo simulation studies.

6.1 Simulations

Our first set of simulations focuses on the efficiency gain and inference properties of locally
randomized selection into the experiment. Let Xi ∈ R2 and consider quadratic potential
outcome models of the form

Yi(0) = X ′iβ(0) + σ2
1(Xi)εi(0) Yi(1) = X ′iβ(1) +X ′iAXi + σ2

0(Xi)εi(1)

We sample from the following DGP’s

Model 1: β(0) = (1, 1), β(1) = (2, 2), A12 = A21 = 1/2, A11 = A00 = 0, with
residual variance σ2

1 = σ2
0 = 0.1

Model 2: As in (1) but with β(0) = (1, 1), β(1) = (2, 2), A = 0

Model 3: As in (1) but with β(0) = β(1) = (1, 1), A = 0

We let Xij
iid∼ 2(Beta(2, 2)− 1/2) and εi(d) ∼ N (0, 1).

Designs - In Table 1 we vary n, the number of units eligible for selection, fixing the
experiment size qn =

∑
i Ti = 100. To highlight the marginal efficiency gains from

representative selection, while also using locally randomized treatment assignment, we
fix the assignment procedure to be “matched triples” on ψ(x) = (x1, x2) with p = 2/3, as
in example 3.12. In our notation, we let selections T1:n and treatment assignments D1:n

be given by

(1) T1:n ∼ Locn(ψ, q) (selection) with n = 100/q

(2) D1:n ∼ Locn(ψ, 2/3) (treatment assignment)

Evaluation Criteria - Table 1 presents metrics evaluating both the efficiency gains from
locally-randomized selection, as well as the power and validity of our inference procedure.
Note that n = 100 is the usual case of random selection. We evaluate each metric rel-
ative to this least efficient benchmark design using 1000 monte carlo replications drawn
from the DGP’s above. %∆SD is the change in estimator standard deviation relative to
random selection. ESS is the effective sample size. This is the size of an experiment with
units selected completely at random needed to achieve the same variance as representa-
tive selection. Algebraically, ESS = 100

1+%∆Var. . For inference, %∆Length is the reduction
in confidence interval (CI) length, relative to the CI length under random selection.

21Since the matched pairs in Locn(ψ = 1, 1/2) are formed randomly, it suffices to use the random
matchings γ, φ to define local groups ex-post.
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Results - The variance reduction increases as the number of eligible units n = 100/q
is larger (q is smaller). This is expected from Theorem 3.17, which gives a reduction
asymptotic variance of −(1− q) Var(c(X)) from local randomization. The boost in effec-
tive sample size (ESS) is significant relative to completely random selection. Note that
this comes essentially “for free” by being slightly more careful about choosing which units
to enroll in the experiment. In Model 3, c(x) = 0 identically, so the theory predicts no
efficiency gain due to selection. The small variance reduction seen in practice is likely a
finite sample effect where balanced first-stage selection facilitates better matches during
the second-stage assignment process.

Efficiency Inference

Model n %∆SD ESS Coverage %∆Length

1

100 0.0 100 95 0.0
200 -17.4 147 97 -10.3
300 -22.8 168 97 -13.6
400 -26.4 185 97 -15.9

2

100 0.0 100 94 0.0
200 -17.7 148 96 -9.5
300 -25.1 178 98 -12.4
400 -28.6 196 97 -14.5

3

100 0.0 100 96 0.0
200 -0.4 101 95 -4.2
300 -5.5 112 96 -4.9
400 -10.6 125 97 -5.6

Table 1: Effect of Representative Selection

Table 1 suggests our inference procedure is generally slightly conservative in finite sam-
ples. This is likely due to the between-group matching used for inference in Section 5
giving slightly worse matches than the groups produced by the design itself. The ar-
gument in Remark 5.4 shows that worse matches lead to smaller correction terms, and
thus larger confidence intervals. For CI length, finite-sample exact inference would have
%∆Length = %∆SD. In finite samples, our inference procedure gives a significant reduc-
tion in CI length, reflecting the increase in estimator precision due to selection.

Our second set of simulations focuses on the choice of ψ(x). Asymptotically, includ-
ing more baseline covariates always weakly improves estimator efficiency. However, as
discussed in Remark 4.7, the within-group matching discrepancies converge slowly in
high dimensions, giving balancing rate rψn = O(n−2/(d+1)). This suggests preferentially
including covariates that are predictive of outcomes and treatment effect heterogeneity
(predict functions bn(x) and c(x)), excluding “noise covariates” that contain little addi-
tional information. Consider the quadratic model and variable distributions above, but
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with Xi ∈ R10 and

β(0) = (1, 1, 1, .4, .4, .4, 0, 0, 0, 0) β(1) = 2β(1) A = (1/20)(11′ − diag(1))

The first three covariates are important. The next three are less important. The last four
provide no information about outcomes. We also include nonlinear interaction terms. For
each ψ(x) considered below, we select q = 1/2 of the eligible units n by matched pairs,
then use matched triples for treatment assignment. Formally, we have

(1) T1:n ∼ Locn(ψ, 1/2) (selection)

(2) D1:n ∼ Locn(ψ, 2/3) (treatment assignment)

In Table 2 below, ψ∗(x) = (bn(x), c(x)), the optimal design for joint selection and assign-
ment given in Section 3.2. The evaluation criteria are the same as above, comparing to
the least efficient design with selection and assignment done by complete randomization
(CR).

Efficiency Inference

(n, qn) ψ(x) %∆SD ESS Coverage %∆Length

(200, 100)

CR 0.0 100 95 0.0
x1, x2 -28.7 197 96 -23.5
x1 . . . x4 -37.4 256 97 -28.2
x1 . . . x6 -36.0 244 97 -23.5
x1 . . . x8 -33.9 229 98 -19.6
ψ∗(x) -57.1 543 95 -53.0

(400, 200)

CR 0.0 100 95 0.0
x1, x2 -27.2 188 96 -24.6
x1 . . . x4 -40.4 282 98 -32.0
x1 . . . x6 -36.5 248 98 -28.0
x1 . . . x8 -33.2 224 98 -22.8
ψ∗(x) -56.7 534 97 -54.1

Table 2: Varying ψ(x)

Results - There are significant precision gains from locally randomized selection and
assignment, as predicted by Theorem 3.17. Theorem 5.3 shows that our inference proce-
dures are asymptotically exact, but we get slight conservativeness in finite samples, likely
due to between-group match quality during inference being worse than the within-group
matches. Note that, contrary to the asymptotic theory, including x1 . . . x6 is slightly
worse than x1 . . . x4 in finite samples. Recall have the largest weight in the outcome
model. Additionally including x4 . . . x6, which are less predictive of outcomes, degrades
match quality for the important covariates x1 . . . x3, reducing efficiency in finite samples.
Including noise covariates x7, x8 performs still worse. As in Theorem 3.19, the optimal
design ψ∗(x) = (bn(x), c(x)) gives the largest efficiency gains.
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7 Conclusion
This paper proposes a flexible new family of designs that randomize within maximally ho-
mogeneous local groups. We show that experimenting on a representative sample of units
increases estimator precision, providing a practical implementation by locally randomized
selection. We give novel asymptotically exact inference methods for covariate-adaptive
selection and assignment, allowing researchers to shrink their confidence intervals if they
use our methods to design a representative experiment. We also applied our methods to
the setting of design with a pilot experiment. By using pilot data to estimate the optimal
treatment proportions, then locally randomizing within estimated propensity strata, we
construct the first asymptotically fully efficient design in this setting.

This line of research can be extended in several interesting directions. It is clear how to
extend our methods to k > 2 treatments, though this case is not included in our analysis.
Accommodating continuous treatments is more difficult, given the discrete nature of the
assignment process. Doing so would enable more efficient estimation of marginal effects
and dose-response curves. We implicitly allow cluster-randomized trials by treating each
cluster as a separate experimental unit. It could be helpful to practitioners to study this
example more formally, explicitly accounting for heterogeneous cluster size. The design
ordering we propose may not be optimal. For instance, we could reverse the process, first
matching units into assignment pairs, then selecting a representative sample of pairs into
the experiment. The current ordering emphasizes representativeness at the cost of match
quality during treatment assignment. We suspect these variations to be asymptotically
equivalent, though they may differ in finite samples.

A more conceptual extension could study targeted selection. For instance, we could
acknowledge that the participants that sign up for a trial differ systematically from the
target population (site selection bias). It would be interesting to try to use non-constant
selection proportions q(x) to “unwind” this bias at the design stage. For instance, we could
imagine that the designer is given covariate data or moments from the target population.
Can we give practical and statistically efficient designs that reverse the site selection bias?
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8 Local Balancing Rates
This section collects technical results guaranteeing the local balancing rate rψn = o(1).

Definition 8.1 (Uniformly Piecewise Hölder). Let dim(ψ) = 1. Let ζn be a random
variable and (hn)n≥1 a sequence of deterministic functions. (hn)n≥1 is uniformly piecewise
Hölder with bounded breaks if there exists 0 < α ≤ 1

(a) There exists break sets Bn(a, ζn) ⊆ R and Cn(ζn) such that ∀pa ∈ Ln

|hn(ψ, pa, ζn)− hn(ψ′, pa, ζn)| ≤ Cn|ψ − ψ′|α ∀ψ, ψ′ : [ψ, ψ′] ∩Bn(a, ζn) = ∅

with maxpa∈Ln Card(Bn(a, ζn)) ≤ B̄ <∞ and Cn(ζn) < C̄ <∞, ζn-a.s.

(b) |hn(ψ, pa, ζn)− hn(ψ′, pa, ζn)| ≤ M̄ <∞ for all ψ, ψ′, pa, ζn-a.s.

Note that α = 1, ζn = 1 corresponds to a piecewise Lipschitz assumption.

Example 8.2 (Stratified Block Randomization). Recall that by Proposition 9.15, SBR
with discrete strata S(X) ∈ {1, . . . , T} is equivalent to D1:n ∼ Locn(S, p). Let F (s, p) be
a piecewise constant version22 of E[b(X)|S(X) = s, p(S(X)) = p] on [1, T ]× (0, 1). Then
Fn = F satisfies the conditions of definition 8.1 with Cn = 0, break sets Bp,n = {1, . . . , T},
and Mn = maxs,p F (s, p)−mins,p F (s, p), and α = 1.

Consider a simple rank-statistic based approach for forming the local groups (ga,s)a,s

Algorithm 8.3 (Rank-Ordering). Require dim(ψ) = 1. Set Ia = {i : pn(Xi, ζn) = pa}
for each pa ∈ Ln; set s = 1 and form index groups (ga,s)

n
s=1 as follows:

(i) Sort the indices in Ia by increasing ψi value, producing Isorta = (i1, i2, . . . , im(a)).
Ties are broken with data-independent randomness πn.

(ii) Define ga,s = {i1, . . . , ika}
(iii) Increment s→ s+ 1 and Ia → Ia \ ga,s and return to step (i)

Under the piecewise Hölder assumption and dim(ψ) = 1, rank ordering is a simple way
to guarantee strong-balancing, as the next proposition shows

Proposition 8.4 (Balancing I). Let dim(ψ) = 1 and ψ(X, ζn) ∈ [a, b] compact ζn-a.s.
Let (ga,s)a,s be constructed as in Algorithm 8.3. Let hi,n = hn(ψ(Xi, ζn), pn(Xi, ζn), ζn)
and suppose that (hn)n≥1 is uniformly piecewise Hölder as in Definition 8.1 with α ≥ 1/2.
Then groups (ga,s)a,s satisfy

n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈ga,s
i 6=j

(hi,n − hj,n)2 = O(rψn ) = o(1) (8.1)

In particular, Equation 3.2 holds with rate rψn = kn|Ln|n−1

For dim(ψ) > 1, Algorithm 8.3 is no longer feasible, and we take an explicit optimization
approach. We impose a slightly stronger assumption.

22Since S(X) ∈ {1, . . . , T} w.p.1, we may define E[b(X)|S(X) = s, p(S(X)) = p] arbitrarily on R\ [T ],
and still get a version of the conditional expectation. Then take F (s, p) = F (bsc, p) ∀s ∈ [1, T ].
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Definition 8.5 (Uniformly Lipschitz). Let dim(ψ) ≥ 1. Let ζn be a random variable
and (hn)n≥1 a sequence of deterministic functions. We say (hn)n≥1 is uniformly Lipschitz
if ∀pa ∈ Ln

|hn(ψ, pa, ζn)− hn(ψ′, pa, ζn)| ≤ Cn(ζn)|ψ − ψ′|

with Cn < C̄ <∞, ζn-a.s.

Proposition 8.6 (Balancing II). Let dim(ψ) = dψ. Let hi,n = hn(ψ(Xi, ζn), pn(Xi, ζn), ζn)
and suppose that (hn)n≥1 is uniformly Lipschitz as in Definition 8.5. With ψi,n =
ψ(Xi, ζn), consider groups (ga,s)a,s formed by solving the program

min
(ga,s)a,s

n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈ga,s
i 6=j

|ψi,n − ψj,n|22 (8.2)

s. t. pn(Xi, ζn) = pa ∀i ∈ ga,s ∀s = 1, . . . , n (8.3)

Then the balancing rate

n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈ga,s
i 6=j

(hi,n − hj,n)2 = O
((
n/(kn|Ln|)

)−2/(dψ+1)
)

Alternatively, if (ga,s)a,s solve the modified problem

min
(ga,s)a,s

n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈ga,s
i 6=j

|ψi,n − ψj,n|2 (8.4)

s. t. pn(Xi, ζn) = pa ∀i ∈ ga,s ∀s = 1, . . . , n (8.5)

Then the slower rate is achieved

n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈ga,s
i 6=j

(hi,n − hj,n)2 = O
((
n/(kn|Ln|)

)−1/dψ
)

In particular, if kn|Ln|n−1 = o(1) then (ga,s)a,s satisfy Equation 3.2.

Remark 8.7 (Matched Pair Designs). As above, the caseD1:n ∼ Locn(ψ, 1/2) for ψ(X) =
X is equivalent to classical pairwise matching, as recently analyzed by Bai et al. (2021). In
this case, kn = |Ln| = 2 for all n ≥ 1. Plugging in to the slow rate in the proposition, we
get n−1/d, recovering the rate of that paper. The (new) fast rate in this case is n−2/(d+1),
which requires instead minimizing the sum of squares above.

The following additional result on finding a well-balanced between-group matching is
needed for variance estimation in Theorem 5.3 below.

Proposition 8.8 (Balancing III). Let dim(ψ) = dψ and consider groups (ga,s)a,s with
balancing rate rψn = o(1). Define the group representative ψa,s = k−1

a

∑
i∈ga,s ψi. For each

a = 1, . . . , |Ln|, form between-group matching νa : [n] → [n], ν2
a = Id as the solution

to minνa
∑n

s=1 ‖ψa,s − ψa,νa(s)‖2. Consider γ : [n] → [n] with γ2 = Id any matching of
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units subordinate to the optimal group matching. Specifically, require γ(i) ∈ ga,νa(s) for
each i ∈ ga,s. Let selection variables T1:n satisfy assumption 9.3. Then the between-group
balancing rate

En[Ti(ψi − ψγ(i))
2] = Op

((
n/(kn|Ln|)

)−2/(dψ+1)
)

+Op(r
ψ
n ) (8.6)

For the proof of these propositions, see Section 9.1 in the appendix.

9 Proofs

9.1 Proofs - Balancing

9.1.1 Proof of Proposition 8.4

Proof. Consider Hölder coefficient 1/2 ≤ α ≤ 1. Let ψi,n = ψ(Xi, ζn), let ψla,s,n ≡
mini∈ga,s ψi,n and ψua,s,n ≡ maxi∈ga,s ψi,n. Define diam(ga,s, ψ(·, ζn)) ≡ ψua,s,n − ψla,s,n if
ga,s 6= ∅, and 0 otherwise. Then since x2α = xx2(α−1/2) ≤ x for all 0 ≤ x ≤ 1, observe
that

diam(ga,s, ψ(·, ζn))2α = (b− a)2α

(
diam(ga,s, ψ(·, ζn))

(b− a)

)2α

≤ (b− a)2α−1 diam(ga,s, ψ(·, ζn)) . diam(ga,s, ψ(·, ζn))

Using this fact, observe that

n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈ga,s
i 6=j

|ψi,n − ψj,n|2α ≤ n−1

|Ln|∑
a=1

n∑
s=1

k2
a − ka
ka

diam(ga,s, ψ(·, ζn))2α1(ga,s 6= ∅)

. n−1

|Ln|∑
a=1

ka

n∑
s=1

diam(ga,s, ψ(·, ζn))1(ga,s 6= ∅) ≤ n−1

|Ln|∑
a=1

ka · (1− 0) = O(|Ln|knn−1)

For the final equality, for ga,s 6= ∅ define open intervals Ia,s,n ≡ (ψla,s,n, ψ
u
a,s,n) ⊆ [0, 1].

By (i) uniqueness of group membership, and (ii) the ordered construction of the groups
within each level a, the intervals (Ia,s,n)ns=1 are mutually disjoint for fixed a. Then we
have

n∑
s=1
ga,s 6=∅

diam(ga,s, ψ(·, ζn)) =
n∑
s=1
ga,s 6=∅

L(Ia,s,n) = L

 n⊔
s=1
ga,s 6=∅

Ia,s,n

 ≤ L([0, 1])
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Define Ea,s ≡ {[ψla,s, ψua,s] ∩ Bn(a, ζn) = ∅} for each a, s. (1) First, we analyze balance in
the the groups where Ea,s occurs

n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈ga,s
i 6=j

(hn(ψ(Xi, ζn), pa, ζn)− hn(ψ(Xj, ζn), pa, ζn))21(Ea,s)

≤ n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈ga,s
i 6=j

Cn(ζn)|ψi,n − ψj,n|2α1(Ea,s) = O(|Ln|knn−1)

The first inequality is by the piecewise Lipschitz assumption, noting that [ψi,n, ψj,n] ∩
Ba,n = ∅ ∀i, j ∈ ga,s if Ea,s occurs. The second equality drops the indicator 1(Ea,s) and
uses the fact proved above.

(2) Next, we analyze the terms where Ec
a,s occurs. Let Qa,s ≡ Ec

a,s∩{diam(ga,s, ψ(·, ζn)) >
0}. Note that on the event {diam(ga,s, ψ(·, ζn)) = 0}, we have ψi,n = ψj,n ∀i, j ∈ ga,s,
so that hn(ψ(Xi, ζn), pa, ζn) − hn(ψ(Xj, ζn), pa, ζn) = 0. Then it suffices to consider the
terms

n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈ga,s
i 6=j

(hn(ψ(Xi, ζn), pa, ζn)− hn(ψ(Xj, ζn), pa, ζn))21(Qa,s)

≤M2
nn
−1

|Ln|∑
a=1

n∑
s=1

k−1
a 1(Qa,s)

∑
i,j∈ga,s
i 6=j

1 ≤M2
nn
−1

|Ln|∑
a=1

k−1
a (k2

a − ka)
n∑
s=1

1(Qa,s)

To bound the inner sum, define the correspondence

ϕ : Bn(a, ζn)⇒ {s : 1(Qa,s) = 1}
ϕ(b) −→ {s : b ∈ Ia,s}

where Ia,s ≡ [ψla,s, ψ
u
a,s]. This correspondence assigns each breakpoint to the set of group

intervals it belongs to. We claim that Card(ϕ(b)) ≤ 2 for all b ∈ Bn(a, ζn). Suppose
not, then we have b ∈ Ia,s ∩ Ia,s′ ∩ Ia,s′′ for distinct intervals. Without loss suppose that
ψla,s < ψua,s ≤ ψla,s′ < ψua,s′ ≤ ψla,s′′ < ψua,s′′ . The weak inequality follows from the grouping
algorithm, and strict inequality since all indices are in {s : diam(ga,s, ψ(·, ζn)) > 0}. By
assumption ψua,s ≥ b. Then we have ψla,s′′ ≥ ψua,s′ > ψla,s′ ≥ ψua,s ≥ b. From the strict
inequality, we see that b 6∈ Ia,s′′ , which is a contradiction. Clearly, the correspondence ϕ
is a surjection, so we have

n∑
s=1

1(Qa,s) = Card ({s : 1(Qa,s) = 1}) = Card

 ⋃
b∈Bn(a,ζn)

ϕ(b)


≤

∑
b∈Bn(a,ζn)

Card(ϕ(b)) ≤ 2 Card(Bn(a, ζn)) ≤ 2B̄
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Then continuing the display above gives

M2
nn
−1

|Ln|∑
a=1

k−1
a (k2

a − ka)
n∑
s=1

1(Qa,s) ≤M2
nknn

−1

|Ln|∑
a=1

2 Card(Bn(a, ζn))

≤ 2M2
nB̄|Ln|knn−1 = Op(|Ln|knn−1)

Putting this all together, we have shown that

n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈ga,s
i 6=j

((hn(ψ(Xi, ζn), pa, ζn)− hn(ψ(Xj, ζn), pa, ζn))2 = Op(|Ln|knn−1)

This completes the proof.

9.1.2 Proof of Proposition 8.6

Proof. Suppose that ψ(X, ζn) ∈ [0, 1]dψ , ζn-a.s. and define ψi,n = ψ(Xi, ζn). Fixm > 1 an
integer. We call (Bl)

m
dψ

l=1 an ordered block partition of [0, 1]dψ if (1) diam(Bl, ‖·‖∞) ≤ 1/m
and (2) for all x ∈ Bl and y ∈ Bl+1 there exists j∗(l) such that |xi − yi| ≤ 1/m for all
i ∈ [dψ] i 6= j∗(l) and |xj∗(l) − yj∗(l)| ≤ 2/m. Intuitively, the (Bl)l form a contiguous, ex-
haustive path through [0, 1]dψ . See Bai et al. (2021) for an explicit construction. Abusing
notation, define l(i) = minm

dψ

l=1 {l : ψi ∈ Bl}.

Algorithm - Fix a and form groups (ga,s)
n
s=1 by induction as follows. For all units with

l(i) = 1 and pn(Xi, ζn) = pa, form groups arbitrarily (possibly using external randomness
πn). This process results in at most one partially filled group (with less than ka units),
say ga,s′ . Increment l→ l + 1, adding units to the group until Card(ga,s′) = ka. Suppose
that ga,s′ is completed with a unit from Bl′ . Then repeat the process above starting with
the next group ga,s′+1 and the units in block Bl′ , excluding all units (with pn(Xi, ζn) = pa)
that are already in a group. Since there are n <∞ units, this process terminates. Repeat
this for each a = 1, . . . , |Ln|.

By construction, this creates groups (ga,s)
n
s=1 with the ordering property

l(i) ≤ l(j) ∀i ∈ ga,s, j ∈ ga,s′ s < s′ a = 1, . . . , |Ln| (9.1)

Fix an arbitrary indexing of all within-group pairs (pa,s,t)
k2a−ka
t=1 ≡ {(i, j) : i 6= j; i, j ∈

ga,s}, and denote pa,s,t = (ia,s,t, ja,s,t). Define Ea,s,t = {l(ia,s,t) = l(ja,s,t)}, the event that
a pair is in the same element of the block partition. With this notation, we have

n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈ga,s
i 6=j

|ψi,n − ψj,n|22 = n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

k2a−ka∑
t=1

|ψia,s,t,n − ψja,s,t,n|221(ga,s 6= ∅)

(1) Suppose Ea,s,t occurs. Define da,s,t ≡ |ψia,s,t,n − ψja,s,t,n|2 ≤ maxm
dψ

l=1 diam(Bl, | · |2) ≤

49



√
dψ/m on this event. Then we may bound

n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

k2a−ka∑
t=1

d2
a,s,t1(Ea,s,t)1(ga,s 6= ∅) ≤

dψ
nm2

|Ln|∑
a=1

n∑
s=1

k−1
a

k2a−ka∑
t=1

1(ga,s 6= ∅)

≤ dψ
nm2

|Ln|∑
a=1

n∑
s=1

ka1(ga,s 6= ∅) =
dψ
m2

The final equality since the final double sum exactly counts the number of units in the
sample (by group)

∑|Ln|
a=1

∑n
s=1 ka1(ga,s 6= ∅) =

∑
i Ti ≤ n. An identical calculation shows

that the un-squared distances

n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

k2a−ka∑
t=1

da,s,t1(Ea,s,t) ≤
√
dψ
m

(2) Now consider the terms where Ea,s,t does not occur. Fix any such pair (ia,s,t, ja,s,t).
Without loss, suppose the block membership l(ia,s,t) < l(ja,s,t). For l(ia,s,t) ≤ l ≤ l(ja,s,t),
define a sequence zl as follows. zl(ia,s,t) = ψia,s,t,n, zl(ja,s,t) = ψja,s,t,n and zl ∈ Bl chosen
arbitrarily otherwise. Note that for x ∈ Bl and y ∈ Bl+1, by construction of the contigu-
ous blocks |x−y|2 ≤ 2

√
dψ/m. Then by telescoping and triangle inequality, on the event

Ec
a,s,t

da,s,t = |ψia,s,t,n − ψja,s,t,n|2 ≤
l(ja,s,t)−1∑
l=l(ia,s,t)

|zl+1 − zl| ≤
2
√
dψ

m
· [l(ia,s,t)− l(ja,s,t)]

Using this calculation, we have

n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

k2a−ka∑
t=1

da,s,t1(Ec
a,s,t) ≤

|Ln|∑
a=1

2
√
dψ

mnka

k2a−ka∑
t=1

n∑
s=1

[l(ia,s,t)− l(ja,s,t)]1(Ec
a,s,t)

≤
|Ln|∑
a=1

2
√
dψ

mnka

k2a−ka∑
t=1

mdψ ≤
|Ln|∑
a=1

2
√
dψm

dψ

mn
ka ≤ 2

√
dψ|Ln|knn−1mdψ−1

The second inequality follows by the ordering property in equation 9.1 above, since for
each t = 1, . . . , k2

a− ka, the intervals ([l(ia,s,t), l(ja,s,t)])
n
s=1 are non-overlapping, and there

are at most mdψ blocks. Summarizing the above work, we have shown that

n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈ga,s
i 6=j

|ψi,n − ψj,n|2 = n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

k2a−ka∑
t=1

da,s,t ≤
√
dψ
m

+ 2
√
dψ|Ln|knn−1mdψ−1

Note the following fact: for x, y ∈ [0, 1]dψ , |x − y|22 = dψ

(
|x−y|2√
dψ

)2

≤
√
dψ|x − y|2, using

|x−y|2√
dψ
≤ 1 and c2 ≤ c for 0 ≤ c ≤ 1. In particular, we have d2

a,s,t ≤
√
dψ · da,s,t. Then we
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have

n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈ga,s
i 6=j

|ψi,n − ψj,n|22 ≤ n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

k2a−ka∑
t=1

d2
a,s,t1(Ea,s,t) +

√
dψda,s,t1(Ec

a,s,t)

≤ dψ
m2

+ 2dψ|Ln|knn−1mdψ−1

Let (ga,s)a,s be constructed as above, with m �
(
n/(|Ln|kn)

)1/dψ . By the first “un-
squared” bound

n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈ga,s
i 6=j

|ψi,n − ψj,n|2 = O
((
n/(|Ln|kn)

)−1/dψ
)

Let (ga,s)a,s be constructed as in the algorithm above, with m �
(
n/(|Ln|kn)

)1/(dψ+1).
Then by the second bound

n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈ga,s
i 6=j

|ψi,n − ψj,n|22 = O
((
n/(|Ln|kn)

)−2/(dψ+1)
)

By construction, (ga,s)a,s satisfies the constraints in the programs 8.2 and 8.4. Then
any groups (g∗a,s)a,s that attain the minima in 8.2 and 8.4 achieve the rates above by
optimality. The conclusion the follows from the Lipschitz condition. For instance, for the
slower rate, let (g∗a,s)a,s optimal for program 8.4, then

n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈g∗a,s
i 6=j

(hn(ψ(Xi, ζn), pn(Xi, ζn), ζn)− hn(ψ(Xj, ζn), pn(Xi, ζn), ζn))2

= n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈g∗a,s
i 6=j

(hn(ψ(Xi, ζn), pa, ζn)− hn(ψ(Xj, ζn), pa, ζn))2

≤ Cn(ζn)n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈g∗a,s
i 6=j

|ψi,n − ψj,n|22 ≤
√
dψC̄n

−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈g∗a,s
i 6=j

|ψi,n − ψj,n|2

≤
√
dψC̄n

−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈ga,s
i 6=j

|ψi,n − ψj,n|2 = O
((
n/(|Ln|kn)

)−1/dψ
)

The first equality is by constraint satisfaction. The first inequality by the Lipschitz
assumption. The second inequality uses the norm comparison fact above. The final
inequality is by constrained optimality of (g∗a,s)a,s, and since (ga,s)a,s satisfy the propen-
sity constraints by construction. The fast rate case is similar, just omitting the norm
comparison step.
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Proof of Proposition 8.8. We suppress the n notation, letting ψi = ψi,n. First, note that
under our matching construction, for i ∈ ga,s by comparing with group representatives
and an application of Jensen we have

(ψi − ψγ(i))
2 = (ψi − ψa,s + ψa,s − ψa,νa(s) + ψa,νa(s) − ψγ(i))

2

≤ 3(ψi − ψa,s)2 + 3(ψa,s − ψa,νa(s))
2 + 3(ψa,νa(s) − ψγ(i))

2

Consider the first term. We have ψi − ψa,s = ψi − k−1
a

∑
j∈ga,s ψj = k−1

a

∑
j∈ga,s
j 6=i

(ψi − ψj).

(ψi − ψa,s)2 ≤
(
ka − 1

ka

)2

(ka − 1)−1
∑
j∈ga,s
j 6=i

(ψi − ψj)2 ≤ k−1
a

∑
j∈ga,s
j 6=i

(ψi − ψj)2

by Jensen again. Since by construction γ(i) ∈ ga,νa(s), the same reasoning applies to the
third term above, giving

n−1

|Ln|∑
a=1

n∑
s=1

∑
i∈ga,s

(ψi − ψa,s)2 + (ψa,νa(s) − ψγ(i))
2 ≤ n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈ga,s
i 6=j

(ψi − ψj)2 = O(rψn )

Next, consider the middle term
∑n

s=1

∑
i∈ga,s(ψa,s − ψa,νa(s))

2 = ka
∑n

s=1(ψa,s − ψa,νa(s))
2.

Let na ≡
∑n

s=1 1(ga,s 6= ∅). For ma ≥ 1, the same ordered block construction as in
Proposition 8.6 can be used to construct a matching νa with

ka

n∑
s=1

(ψa,s − ψa,νa(s))
2 � kana

m2
a

+ kam
dψ−1
a � kan

dψ−1

dψ+1

a

letting ma � n
1/(dψ+1)
a . Accumulating over levels using

∑|Ln|
a=1 naka = n and Jensen gives

n−1

|Ln|∑
a=1

n∑
s=1

∑
i∈ga,s

(ψa,s − ψa,νa(s))
2 � n−1

|Ln|∑
a=1

kan

dψ−1

dψ+1

a = n−1

|Ln|∑
a=1

k
2

dψ+1

a (kana)
dψ−1

dψ+1

≤ (k
2

dψ+1

n n−1|Ln|) · |Ln|−1

|Ln|∑
a=1

(kana)
dψ−1

dψ+1 ≤ k
2

dψ+1

n n−1|Ln|

|Ln|−1

|Ln|∑
a=1

kana


dψ−1

dψ+1

≤ k
2

dψ+1

n n−1|Ln|(|Ln|−1n)
dψ−1

dψ+1 = ((|Ln|kn)−1n)
−2
dψ+1

Then the matching solving the program in Proposition 8.8 achieves this rate by optimality.
This finishes the proof.
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9.2 Proofs - Asymptotics

9.2.1 Assumptions

Assumption 9.1 (Propensity Approximation). There exist deterministic functions pn,
p̂n, p, and ψ with dependence

pi,n = pn(Xi, ζn) p̂i,n = p̂n(Xi, ζn) pi = p(Xi, ζn) ψi = ψ(Xi, ζn) (9.2)

These satisfy

(a) pi,n, pi, p̂i,n ∈ (δ, 1− δ) ζn-a.s.
(b) ‖pn(·, ζn)− p̂n(·, ζn)‖∞ ≤ rpn = o(1), ζn-a.s.

(c) (E[(p̂i,n − pi)2|ζn])1/2 = Op(r̄
p
n)

(d) Im(pn) ⊆ Ln for n ≥ 1

Assumption 9.2 (CLT). With variables defined as in assumption 9.1, for t ∈ [T ],
consider (ft,n)n≥1 deterministic functions. Define

fi,t,n = ft,n(Xi, ζn) ui,t,n ≡ ft,n(Xi, ζn)− E[ft,n(Xi, ζn)|ψ(Xi, ζn), pn(Xi, ζn), ζn]

Let ζn ⊥⊥ (W1:n, πn, τ) and suppose that

(a) E[ft,n(X, ζn)2|ζn] = Op(1) and E[u4
i,t,n|ζn] = Op(1) and E[σ2

d(X)2] <∞
(b) ∃ ui,t ∈ L2(Xi, ζn) with E[(ui,t,n − ui,t)

2|ζn] = op(1) and E[u2
i,tu

2
i,t′ |ζn] = Op(1)

∀t, t′ ∈ [T ]

(c) E[(pi − p2
i )ui,tui,t′|ζn]

p→ Σtt′ for t, t′ ∈ [T ]

(d) There exist c > 0 and polynomial h(·) such that ζn-a.s.

E[u2
i,t,n1(u2

i,t,n > z)|ζn] ≤ h(z) exp(−cz)

for all n ≥ 1, z ≥ 0

(e) kn ∨ |Ln| = o
((

logn
n

)1/2
)

Assumption 9.3 (Selection). With variables defined as in assumption 9.1, consider
T1:n, D1:n ∈ {0, 1}. Let D1:n ∼ Locn(ψ, p) with local group structure (ga,s)a,s and suppose

(a) T1:n ∼ Locn(ψ′, q) and q = a′/k′ ∈ (δ, 1− δ), gcd(a′, k′) = 1

(b) ψ′1:n ∈ σ(ψ1:n), so that T1:n ∈ σ(ψ1:n, π
t
n, τ

t)

(c) {i : Ti = 1} =
⊔
a,s ga,s with (ga,s)a,s ∈ σ(T1:n, ψ1:n, p1:n,n, π

d
n) ⊆ σ(ψ1:n, p1:n,n, π

d
n, π

t
n, τ

t)
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9.2.2 Coupling and General CLT

Lemma 9.4 (Coupling). Suppose assumption 9.1 holds. Consider a function fn(Xi, ζn)
with

hn(ψ, pa, ζ) ≡ E[fn(Xi, ζn)|ψ(Xi, ζn) = ψ, pn(Xi, ζn) = pa, ζn = ζ]

ui,n ≡ fn(Xi, ζn)− hn(ψ(Xi, ζn), pn(Xi, ζn), ζn) ≡ fi,n − hi,n

Let hn(ψ, pa, ζn) satisfy the smoothness conditions in Definition 8.1 or 8.5. Define hi,n =
h(ψi, pi,n, ζn). Let D1:n ∼ Locn(ψ, p) and either T1:n = 1 or T1:n ∼ Locn(ψ′, q) and
satisfies assumption 9.3. If E[maxni=1 hi,n] = O(log n)

√
nEn[Ti(Di − pi,n)fn(Xi, ζn)] =

√
nEn[Ti(Di − pi,n)ui,n] +Op

((
rψn ∨

kn|Ln| log n

n

)1/2
)

Proof. Let Fx,n = σ(X1:n, π
d
n, π

t
n, τ

t, ζn). Then by assumption 9.3, (ga,s)a,s, (hi,n)ni=1 ∈
Fx,n, and Fx,n ⊥⊥ τ d. Then by Lemma 9.20 and Proposition 8.4 or Proposition 8.6
(depending on the smoothness condition)

Var
(√

nEn[Ti(Di − pi,n)hi,n]|Fx,n
)
≤ n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈ga,s
i 6=j

(hi,n − hj,n)2 + n−1kn|Ln|
n

max
i=1

hi,n

≤ Op(r
ψ
n ) + n−1kn|Ln|

n
max
i=1

hi,n = Op

(
rψn ∨

kn|Ln| log n

n

)
The final equality is by Markov. Also we have E[

√
nEn[Ti(Di − pi,n)hi,n]|Fx,n] = 0 by

Lemma 9.20, so the claim follows from conditional Chebyshev (Lemma 9.16).

Theorem 9.5 (CLT). Impose assumptions 9.1 and 9.2. Require that either assumption
9.3 holds, or T1:n = 1 and q = 1. Let Fx,n = σ(X1:n, π

d
n, π

t
n, τ

t, ζn). Then weak convergence
holds as in definition 9.13

√
n (En[Ti(Di − pi,n)ui,t,n])Tt=1

∣∣Fx,n ⇒ N (0,Σ)

with variance matrix

Σtt′ = qE[(pi − p2
i )ui,tui,t′ |ζn] + op(1) t, t′ ∈ [T ]

Let F(x,d),n = σ(X1:n, π
d
n, π

t
n, τ

d, τ t, ζn). We have

√
nEn

[
TiDiε

1
i

pi,n
+
Ti(1−Di)ε

0
i

1− pi,n

] ∣∣∣∣F(x,d),n ⇒ N
(

0, plim
n→∞

qE

[
σ2

1(X)

p(X, ζn)
+

σ2
0(X)

1− p(X, ζn)

∣∣∣∣ζn])
Proof of Theorem 9.5. The proof is an application of the martingale CLT of Proposition
9.14. Consider the following filtration structure

F0,n = {Ωn, ∅}
F(a−1)n+s,n = σ(X1:n, π

d
n, π

t
n, τ

t, ζn, τ
d
a′,1:n : 1 ≤ a′ ≤ a− 1, τa,1:s) 1 ≤ s ≤ n; 1 ≤ a ≤ |Ln|

F|Ln|n+j,n = σ(X1:n, π
d
n, π

t
n, τ

t, ζn, τ
d, εd1:j : d = 0, 1) 1 ≤ j ≤ n
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We will apply the Cramer-Wold device to show the first claim. To that end, let (λt)
T
t=1 ∈

RT and define weighted residuals ui,n =
∑T

t=1 λtui,t,n. Define the martingale difference
increments

Z(a−1)n+s,n =
∑
i∈ga,s

(Di − pa)ui,n 1 ≤ s ≤ n; 1 ≤ a ≤ |Ln|

Z|Ln|n+i,n =
TiDiε

1
i

pi,n
− Ti(1−Di)ε

0
i

1− pi,n
1 ≤ i ≤ n

We focus on the conditional statements, from which marginal convergence will follow. To
apply Proposition 9.14, we need to check (1) martingale difference condition (2) variance
process limit (and appropriate measurability) and (3) conditional Lindberg. We check
each in turn.

Martingale Condition - First, we claim that (Zs,n)
n|Ln|+n
s=1 defines an MDS. In what follows,

we will make frequent use of the crucial fact that

(A,B) ⊥⊥ C =⇒ A ⊥⊥ C|B (9.3)

(1) Let 1 ≤ s ≤ n and 1 ≤ a ≤ |Ln|. By the representation in Lemma 9.19.(i)

Di1(i ∈ ga,s) =
ka∑
`=1

1(i = ga,s,`)τ
d
a,s,` = Gi,n(ga,s, τ

d
a,s) = Gi,n(ψ1:n, p1:n,n, π

d
n, π

t
n, τ

t, τ da,s)

Then using the fact above

E[Di1(i ∈ ga,s)|F(a−1)n+(s−1),n]

= E[Gi,n(ψ1:n, p1:n,n, π
d
n, π

t
n, τ

t, τ da,s)|X1:n, π
d
n, π

t
n, τ

t, ζn, τa′,1:n : 1 ≤ a′ ≤ a− 1, τa,1:(s−1)]

= E[Gi,n(ψ1:n, p1:n,n, π
d
n, π

t
n, τ

t, τ da,s)|X1:n, π
d
n, π

t
n, τ

t, ζn]

= E[Di1(i ∈ ga,s)|X1:n, π
d
n, π

t
n, τ

t, ζn] = E[Di1(i ∈ ga,s)|Fx,n] = pa1(i ∈ ga,s)

The final equality follows by Lemma 9.19.(ii) since Fx,n ⊥⊥ τ d and (ga,s)a,s ∈ Fx,n by as-
sumptions 9.3 and 9.1. Using ui,n ∈ σ(X1:n, ζn) and this calculation, E[Z(a−1)n+(s−1),n|F(a−1)n+(s−1),n]
is equal to

E

[
n∑
i=1

(Di − pa)1(i ∈ ga,s)ui,n|X1:n, π
d
n, π

t
n, τ

t, ζn, τa′,1:n : 1 ≤ a′ ≤ a− 1, τa,1:(s−1)

]
= 0

(2) By assumption, pi,n ∈ σ(X1:n, ζn) ⊆ Fn|Ln|+j,n for j ≥ 1. By the representation in the
previous section, we see that Dj ∈ Fn|Ln|+j,n for all 1 ≤ j ≤ n. Let h : R2 → R be a fixed
function and note that

E[h(ε1j , ε
0
j)|Fn|Ln|+(j−1),n] = E[h(ε1j , ε

0
j)|X1:n, π

d
n, π

t
n, τ

t, ζn, τ
d, ε0,11:(j−1)]

= E[h(ε1j , ε
0
j)|X1:n, ε

0,1
1:(j−1)] = E[h(ε1j , ε

0
j)|Xj]

This follows by making repeated use of 9.3, independent sampling, and that the external
variables (πdn, π

t
n, τ

t, ζn, τ
d) ⊥⊥ (X1:n, Y1:n(1), Y1:n(0)). In particular, applying this shows

that E[εdj |Fn|Ln|+(j−1),n] = E[εdj |Xj] = 0 for d = 0, 1. Then we see that E[Zn|Ln|+j,n|Fn|Ln|+(j−1),n] =
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0. This shows that (Zj,n)
n(|Ln|+1)
j=1 is an MDS. Next, we characterize the variance process.

Variance Process - We will characterize the probability limit of each variance process,
and show the relevant measurability condition.

(1) For 1 ≤ s ≤ n and 1 ≤ a ≤ |Ln|, we have 1(i ∈ ga,s), ui,n ∈ Fx,n ⊆ F(a−1)n+(s−1),n.
Similarly to the argument in (1) above, we have E[Z2

(a−1)n+s,n|F(a−1)n+(s−1),n] = E[Z2
(a−1)n+s,n|Fx,n].

Since (ga,s)a,s ∈ Fx,n and Fx,n ⊥⊥ τ d, Lemma 9.19.(iii) applies, giving covariances

n−1

|Ln|∑
a=1

n∑
s=1

E[Z2
(a−1)n+s,n|F(a−1)n+(s−1),n] = n−1

|Ln|∑
a=1

n∑
s=1

qa(ka − qa)
k2
a

n∑
i∈ga,s

u2
i,n

− n−1

|Ln|∑
a=1

n−1∑
s=1

qa(ka − qa)
k2
a(ka − 1)

n∑
i,j∈ga,s
i 6=j

ui,nuj,n ≡ An +Bn

Clearly, these are both Fx,n-measurable, so we have verified the required measurability
condition. We first consider the diagonal terms An. Note that by algebra

pi,n − p2
i,n − (pi − p2

i ) = (pi,n − pi)[1− (pi + pi,n)] = (pi,n − p̂i,n + p̂i,n − pi)[1− (pi + pi,n)]

Then we have

An = n−1

|Ln|∑
a=1

n∑
s=1

n∑
i∈ga,s

pi,n(1− pi,n)u2
i,n = En[Tipi,n(1− pi,n)u2

i,n]

= En[Tipi(1− pi)u2
i,n] + En[Ti(pi,n − p̂i,n + p̂i,n − pi)[1− (pi + pi,n)]u2

i,n]

Consider the second term. First note that

E[|En[Ti(pi,n − p̂i,n)[1− (pi + pi,n)]u2
i,n]||ζn] ≤ E[|pn − p̂n|∞u2

i,n|ζn]

≤rpn · T
∑
t∈[T ]

λ2
tE[u2

i,t,n|ζn] ≤ rpn · T
∑
t∈[T ]

λ2
tE[ft,n(Xi, ζn)2|ζn] = O(rpn)

The first inequality since Ti|1 − (pi + pi,n)| ≤ 1 and since (ui,n)ni=1 are identically dis-
tributed, conditional on ζn. The second inequality is by Jensen, and the final inequality
by properties of projection. Similarly, we have

E[|En[Ti(p̂i,n − pi)[1− (pi + pi,n)]u2
i,n]||ζn] ≤ E[|p̂i,n − pi|u2

i,n|ζn]

≤E[(p̂i,n − pi)2|ζn]1/2E[u4
i,n|ζn]1/2 = op(r̄

p
n)Op(1)

Summarizing, we have shown that An = En[Tipi(1− pi)u2
i,n] +Op(r

p
n) +Op(r̄

p
n).

Define the population residual sum ui =
∑T

t=1 λtui,t. Claim that

En[Tipi(1− pi)(u2
i,n − u2

i )] = Op

(
max
t∈[T ]

E[(ui,t,n − ui,t)2|ζn]1/2
)
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Note that we have

E
[
|En[Tipi(1− pi)(u2

i,n − u2
i )]||ζn

]
≤ E[|pi(1− pi)(u2

i,n − u2
i )||ζn] ≤ (1/4)E[|(u2

i,n − u2
i )||ζn]

. E[(ui,n − ui)2|ζn]1/2E[(ui,n + ui)
2|ζn]1/2 ≤ E[(ui,n − ui)2]1/2

(
E[u2

i,n|ζn]1/2 + E[u2
i |ζn]1/2

)
≤ E[(ui,n − ui)2|ζn]1/2Op(1) .

T∑
t=1

|λt|E[(ui,t,n − ui,t)2|ζn]1/2

The third inequality uses a2 − b2 = (a − b)(a + b) and Cauchy-Schwarz. For the fifth
inequality, observe that

E[u2
i,n|ζn]1/2 ≤

∑
t∈[T ]

|λt|E[u2
i,t,n|ζn]1/2 ≤

∑
t∈[T ]

|λt|E[ft,n(Xi, ζn)2|ζn]1/2 = Op(1)

E[u2
i |ζn]1/2 ≤

∑
t∈[T ]

|λt|E[u2
i,t|ζn]1/2 = Op(1)

The second inequality follows by properties of projection. The third inequality is triangle
inequality. The claim then follows from conditional Markov inequality (Lemma 9.16).
Above work has shown that

An = En[Tipi(1− pi)u2
i ] +Op(r

p
n) +Op(r̄

p
n) +Op

(
max
t∈[T ]

E[(ui,t,n − ui,t)2|ζn]1/2
)

=
T∑

t,t′=1

λtλt′En[Tipi(1− pi)ui,tui,t′ ] + op(1)

=
T∑

t,t′=1

λtλt′En[(Ti − q)pi(1− pi)ui,tui,t′ ] + q
T∑

t,t′=1

λtλt′En[pi(1− pi)ui,tui,t′ ] + op(1)

If T1:n = 1 and q = 1, the first term is identically 0. Otherwise, by assumption 9.3 we have
T1:n ∼ Locn(ψ′, q). Then Lemma 9.20 shows that En[(Ti−q)pi(1−pi)ui,tui,t′ ] = Op(n

−1/2)
for each t ∈ [T ] if E[u2

i,tu
2
i,t′ |ζn] <∞, which we assume.

For the second term, note that E[En[pi(1− pi)ui,tui,t′ ]|ζn] = E[pi(1− pi)ui,tui,t′|ζn] and

Var (En[pi(1− pi)ui,tui,t′ ]|ζn) = n−2

n∑
i 6=j

Cov

(
pi(1− pi)ui,tui,t′ , pj(1− pj)uj,tuj,t′ |ζn

)
+ n−1En [Var(pi(1− pi)ui,tui,t′ |ζn)] ≤ (4n)−1E[u2

i,tu
2
i,t′|ζn] = Op(n

−1)

For the inequality, note that pi(1 − pi)ui,tui,t′ ⊥⊥ pj(1 − pj)uj,tuj,t′ |ζn for i 6= j by our
assumptions, so the off-diagonal terms vanish. Then, we bound the variance by a second
moment. By conditional Chebyshev in Lemma 9.16 and summarizing the above work,
we have shown that

An = q

T∑
t,t′=1

λtλt′E[(p− p2)(Xi)ui,tui,t′ |ζn] +Op(n
−1/2) + op(1)

Next, consider the off-diagonal terms Bn. Let F(ψ,pn),n = σ(ψ1:n, p1:n,n, π
d
n, π

t
n, τ

t, ζn).
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Note that (ga,s)a,s ∈ F(ψ,pn),n by assumption 9.3. Applying Lemma 9.22 on residual
selection with functions Fi,n(Xi, ζn) =

∑
t∈[T ] λtft,n(Xi, ζn) and random element ξn =

(πdn, π
t
n, τ

t) gives the following moments for i, j, l, f ∈ [n] distinct indices

E[ui,nuj,n|F(ψ,pn),n] = 0 E[ui,nuj,nul,nuf,n|F(ψ,pn),n] = 0 E[u2
i,nuj,nuf,n|F(ψ,pn),n] = 0

E[u2
i,nu

2
j,n|F(ψ,pn),n] = E[u2

i,n|ψi, pi,n, ζn]E[u2
j,n|ψj, pj,n, ζn]

We apply these facts, computing

E[Bn|F(ψ,pn),n] = E

n−1

|Ln|∑
a=1

n−1∑
s=1

qa(ka − qa)
k2
a(ka − 1)

n∑
i 6=j

1(i, j ∈ ga,s)ui,nuj,n
∣∣∣∣F(ψ,pn),n


= n−1

|Ln|∑
a=1

n−1∑
s=1

qa(ka − qa)
k2
a(ka − 1)

n∑
i 6=j

1(i, j ∈ ga,s)E[ui,nuj,n|F(ψ,pn),n] = 0

Define wa ≡ qa(ka−qa)
k2a(ka−1)

. Then the conditional variance E[B2
n|F(ψ,pn),n] is given by

n−2

|Ln|∑
a,a′=1

n−1∑
s,s′=1

wawa′
n∑
i 6=j

n∑
l 6=f

1(i, j ∈ ga,s)1(l, f ∈ ga′,s′)E[ui,nuj,nul,nuf,n|F(ψ,pn),n]

Case 1: {i, j} ∩ {l, f} = ∅ Then E[ui,nuj,nul,nuf,n|F(ψ,pn),n] = 0. By uniqueness of group
identity, we are in this case if (a, s) 6= (a′, s′).
Case 2: i ∈ {l, f} or j ∈ {l, f}, exclusive. By symmetry, without loss assume i = l, then
the inner conditional expectation is E[u2

i,nuj,nuf,n|F(ψ,pn),n] = 0.
Case 3: {i, j} = {l, f}. By symmetry, the terms associated with (i, j) = (l, f) and
(i, j) = (f, l) are the same. Summarizing these observations, the remaining terms are

E[B2
n|F(ψ,pn),n] = 4n−2

|Ln|∑
a=1

n−1∑
s=1

w2
a

n∑
i,j∈ga,s
i<j

E[u2
i,nu

2
j,n|F(ψ,pn),n]

≤ 4n−2

|Ln|∑
a=1

n∑
s=1

w2
a

∑
i,j∈ga,s
i<j

E[u2
i,n|ψi, pi,n, ζn]E[u2

j,n|ψj, pj,n, ζn]

≤2n−2

|Ln|∑
a=1

n∑
s=1

w2
a

 n∑
i∈ga,s

E[u2
i,n|ψi, pi,n, ζn]

2

≤ 2n−2

|Ln|∑
a=1

n∑
s=1

w2
aka

n∑
i∈ga,s

E[u2
i,n|ψi, pi,n, ζn]2

≤ n−2

|Ln|∑
a=1

n∑
s=1

n∑
i∈ga,s

E[u2
i,n|ψi, pi,n, ζn]2 = n−1En[TiE[u2

i,n|ψi, pi,n, ζn]2] = Op(n
−1)

The first inequality follows by adding in the s = n term (positive) and the moments
above. The second inequality follows by adding and subtracting the diagonal terms. The
third inequality is by Jensen. The fourth inequality follows since kaw2

a = ka
ka−1

pa(1−pa) ≤
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2 · (1/4) for ka ≥ 2. For the final equality, observe that

E[n−1En[TiE[u2
i,n|ψi, pi,n, ζn]2]|ζn] ≤ E[E[u2

i,n|ψi, pi,n, ζn]2|ζn] ≤ E[u4
i,n|ζn]

≤ T 3
∑
t∈[T ]

E[u4
i,t,n|ζn] = Op(1)

The first inequality is by conditional Jensen and tower law. The second inequality again
by Jensen. Putting this together, we have

An +Bn = q

T∑
t,t′=1

λtλt′E[(p− p2)(Xi)ui,tui,t′ |ζn] + op(1)

(2) Let 1 ≤ i ≤ n and note that since Di(1−Di) = 0 we have

E[Z2
|Ln|n+i,n|F|Ln|n+(i−1),n] = E

[
TiDi(ε

1
i )

2

p2
i,n

+
Ti(1−Di)(ε

0
i )

2

(1− pi,n)2

∣∣∣∣F|Ln|n+(i−1),n

]
=
TiDiE[(ε1i )

2|Xi]

p2
i,n

+
Ti(1−Di)E[(ε0i )

2|Xi]

(1− pi,n)2
=
TiDiσ

2
1(Xi)

p2
i,n

+
Ti(1−Di)σ

2
0(Xi)

(1− pi,n)2

The second equality uses the fact from our discussion when proving the MDS property
(2) above with h(x, y) = x2 and h(x, y) = y2. Then the sum of conditional variances is

n−1

n∑
i=1

E[Z2
|Ln|n+i,n|F|Ln|n+(i−1),n] = n−1

n∑
i=1

TiDiσ
2
1(Xi)

p2
i,n

+
Ti(1−Di)σ

2
0(Xi)

(1− pi,n)2

=En

[
TiDi

(
σ2

1(Xi)

p2
i,n

− σ2
0(Xi)

(1− pi,n)2

)]
+ En

[
Tiσ

2
0(Xi)

(1− pi,n)2

]
=En

[
Ti(Di − pi,n)

(
σ2

1(Xi)

p2
i,n

− σ2
0(Xi)

(1− pi,n)2

)]
+ En

[
Ti

(
σ2

1(Xi)

pi,n
+

σ2
0(Xi)

(1− pi,n)

)]
=En

[
Ti(Di − pi,n)

(
σ2

1(Xi)

p2
i,n

− σ2
0(Xi)

(1− pi,n)2

)]
+ En

[
(Ti − q)

(
σ2

1(Xi)

pi,n
+

σ2
0(Xi)

(1− pi,n)

)]
+ qEn

[(
σ2

1(Xi)

pi,n
+

σ2
0(Xi)

(1− pi,n)

)]
≡ An +Bn + Cn

From the first expression, we see that this process is F(x,d),n-measurable. The first three
equalities follow by algebra.

Consider An. Let vn(Xi) ≡ σ2
1(Xi)

p2i,n
− σ2

0(Xi)

(1−pi,n)2
. By Lemma 9.20 we have An = Op(n

−1/2) if
supn≥1E[vn(Xi)

2] <∞. To see this, note that

E[vn(Xi)
2] ≤ E

[
2
σ2

1(Xi)
2

p4
i,n

+ 2
σ2

0(Xi)
2

(1− pi,n)4

]
≤ 2δ−4E[σ2

1(X)2 + σ2
0(X)2] <∞

The first inequality is Young’s, then using propensity score bound and assumption. If
T1:n = 1 and q = 1, then Bn = 0. Otherwise, by assumption 9.3 we have T1:n ∼
Locn(ψ′, q), then Bn = Op(n

−1/2) by Lemma 9.20 and an identical argument.
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Next consider Cn. We can calculate∣∣∣∣En [σ2
1(Xi)

(
1

pi,n
− 1

pi

)]∣∣∣∣ =

∣∣∣∣En [σ2
1(Xi)

pi − pi,n
pipi,n

]∣∣∣∣ ≤ δ−2En
[
σ2

1(Xi)|pi − p̂i,n + p̂i,n − pi,n|
]

. En
[
σ2

1(Xi)|pi − p̂i,n|
]

+ rpnEn
[
σ2

1(Xi)
]

= En
[
σ2

1(Xi)|pi − p̂i,n|
]

+Op(r
p
n)

Now taking expectations, note that

E[En[σ2
1(Xi)|pi − p̂i,n|]|ζn] = E[σ2

1(Xi)|pi − p̂i,n||ζn] ≤ (E[σ2
1(Xi)

2])1/2(E[(pi − p̂i,n)2|ζn])1/2

Then by Lemma 9.16, we have En [σ2
1(Xi)|pi − p̂i,n|] = Op(r̄

p
n). The analysis for the term

involving σ2
0(Xi) is identical. Then by WLLN, we have shown that

Cn = qEn

[
σ2

1(Xi)

pi
+

σ2
0(Xi)

(1− pi)

]
+Op(r

p
n ∨ r̄pn)

= qE

[
σ2

1(Xi)

pi
+

σ2
0(Xi)

(1− pi)

∣∣∣∣ζn]+Op(n
−1/2) + op(1)

Summarizing the work above, the conditional variance process is

n−1

n∑
i=1

E[Z2
|Ln|n+i,n|F|Ln|n+(i−1),n] = qE

[
σ2

1(Xi)

pi
+

σ2
0(Xi)

(1− pi)

∣∣∣∣ζn]+Op(n
−1/2)+Op(r

p
n)+Op(r̄

p
n)

Lindberg Condition - We show the Lindberg condition in probability, conditional on the
appropriate set.

(1) For 1 ≤ s ≤ n and 1 ≤ a ≤ |Ln|, Z(a−1)n+s,n =
∑

i∈ga,s(di − pa)ui,n. Now note that

n−1

|Ln|∑
a=1

n∑
s=1

E
[
Z2

(a−1)n+s,n1(|Z(a−1)n+s,n| >
√
nε)|Fx,n

]
= n−1

|Ln|∑
a=1

n∑
s=1

E

∑
i∈ga,s

(di − pa)ui,n

2

1

∑
i∈ga,s

(di − pa)ui,n

2

> nε2

∣∣∣∣Fx,n


≤ n−1

|Ln|∑
a=1

n∑
s=1

|ga,s|E

∑
i∈ga,s

(di − pa)2u2
i,n1

|ga,s|∑
i∈ga,s

(di − pa)2u2
i,n > nε2

∣∣∣∣Fx,n


Continuing, this is

≤ knn
−1

|Ln|∑
a=1

n∑
s=1

E

∑
i∈ga,s

u2
i,n1

∑
i∈ga,s

u2
i,n > nε2k

−1

n

∣∣∣∣Fx,n


≤ Tknn
−1

|Ln|∑
a=1

n∑
s=1

E

∑
i∈ga,s

∑
t∈[T ]

u2
i,t,n1

∑
i∈ga,s

∑
t∈[T ]

u2
i,t,n > nε2(knT )−1

∣∣∣∣Fx,n

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The first and third inequalities follow because
(∑

i∈I ai
)2 ≤ |I|

∑
i∈I a

2
i for any scalar array

(ai)i∈I by Jensen inequality. The second inequality uses |di − pa| ≤ max(pa, 1 − pa) ≤ 1
and |ga,s| ≤ kn by definition. Now note that for any positive scalar array (ai)i∈I we have

∑
i∈I

ai · 1

(∑
i∈I

ai > c

)
≤ |I|

∑
i∈I

ai · 1 (ai > c/|I|) (9.4)

To see this, note that in the case aj = maxi∈I ai, the LHS above is bounded by |I|aj1(|I|aj >
c). Summing this bound over j ∈ I accounts for all the cases, giving a uniform upper
bound. Using this in the final expression above yields

Tknn
−1

|Ln|∑
a=1

n∑
s=1

E

∑
i∈ga,s

∑
t∈[T ]

u2
i,t,n1

∑
i∈ga,s

∑
t∈[T ]

u2
i,t,n > nε2(knT )−1

∣∣∣∣Fx,n


≤ Tknn
−1

|Ln|∑
a=1

n∑
s=1

E

knT ∑
i∈ga,s

∑
t∈[T ]

u2
i,t,n1

(
u2
i,t,n > nε2(knT )−2

) ∣∣∣∣Fx,n


= (Tkn)2n−1
∑
t∈[T ]

|Ln|∑
a=1

n∑
s=1

∑
i∈ga,s

E

[
u2
i,t,n1

(
u2
i,t,n > nε2(knT )−2

) ∣∣∣∣Fx,n]

Continuing using {i : Ti = 1} =
⊔
a,s ga,s from assumption 9.3

= (Tkn)2
∑
t∈[T ]

En

[
TiE

[
u2
i,t,n1

(
u2
i,t,n > nε2(knT )−2

) ∣∣∣∣Fx,n]]

≤ (Tkn)2
∑
t∈[T ]

En

[
E

[
u2
i,t,n1

(
u2
i,t,n > nε2(knT )−2

) ∣∣∣∣Fx,n]]

The third equality follows since ga,s ∈ Fx,n for all a, s. Taking an expectation of the final
upper bound gives, using linearity and tower law gives

(Tkn)2
∑
t∈[T ]

E
[
u2
i,t,n1

(
u2
i,t,n > nε2(knT )−2

)
|ζn
]
. (kn)2h(nε2(knT )−2) exp

(
−cnε2(knT )−2

)
. (kn)2 exp

(
−(1/2)cnε2(knT )−2

)
= exp

(
2 log(kn)

(
−(1/2)cnε2

2 log(kn)(knT )2
+ 1

))
= o(1)

The first inequality is by assumption. The second inequality follows using that f is
polynomial, so that f(sn) exp(−(1/2)csn) = o(1) for any sn → ∞, and n(kn)−2 → ∞
by assumption. The last line follows since n−1 log(kn)(kn)2 = o(1) by assumption. By
Markov inequality and the chain of upper bounds, we have shown that

n−1

|Ln|∑
a=1

n∑
s=1

E
[
Z2

(a−1)n+s,n1(|Z(a−1)n+s,n| >
√
nε)|Fx,n

]
= op(1)
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(2) Let 1 ≤ i ≤ n and consider the bound

Z2
n|Ln|+i,n = Ti

(
Diε

1
i

pi,n
− (1−Di)ε

0
i

1− pi,n

)2

=
TiDi(ε

1
i )

2

p2
i,n

+
Ti(1−Di)(ε

0
i )

2

(1− pi,n)2

≤ max(p−1
i,n, (1− pi,n)−1)2

∑
d=0,1

(εdi )
2 ≤ δ−2

∑
d=0,1

(εdi )
2

Then we have

n−1

n∑
i=1

E
[
Z2
|Ln|n+i,n1(|Z|Ln|n+i,n| >

√
nε)|F(x,d),n

]
≤ n−1

n∑
i=1

E

[
δ−2

∑
d=0,1

(εdi )
21

(
δ−2

∑
d=0,1

(εdi )
2 > nε2

)∣∣∣∣X1:n, π
d
n, π

t
n, τ

d, τ t, ζn

]

= n−1

n∑
i=1

E

[
δ−2

∑
d=0,1

(εdi )
21

(
δ−2

∑
d=0,1

(εdi )
2 > nε2

)∣∣∣∣X1:n

]

= n−1

n∑
i=1

E

[
δ−2

∑
d=0,1

(εdi )
21

(
δ−2

∑
d=0,1

(εdi )
2 > nε2

)∣∣∣∣Xi

]

Consider the expectation of the final term, which is

δ−2n−1

n∑
i=1

E

[∑
d=0,1

(εdi )
21

(∑
d=0,1

(εdi )
2 > δ2nε2

)]
≤ δ−2E

[∑
d=0,1

(εdi )
21

(∑
d=0,1

(εdi )
2 > M(n)

)]

The inequality holds for any sequence M(n) > δ2nε2. The RHS is o(1) as n→∞ since

E

[∑
d=0,1

(εdi )
2

]
=
∑
d=0,1

E[σ2
d(X)] <∞

by law of total variance. Then n−1
∑n

i=1 E
[
Z2
|Ln|n+i,n1(|Z|Ln|n+i,n| >

√
nε)|F(x,d),n

]
=

op(1) by Markov inequality.

The MDS condition, variance limits and measurability, and Lindberg conditions in prob-
ability (conditional on Fx,n and F(x,d),n respectively) are sufficient to invoke Proposition
9.14, which proves the first two claims.

Assumption 9.6 (CLT I). Suppose p = a/k. In this context, define

F d
i = E[md(Xi)|ψi] udi = md(Xi)− F d

i

For d = 0, 1, require the following conditions

(a) E[md(X)2] <∞, E[σ2
d(X)2] <∞, and E[(udi )

4] <∞
(b) There exist c > 0 and polynomial h(·) such that

E[(udi )
21((udi )

2 > z)] ≤ h(z) exp(−cz)
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for all n ≥ 1, z ≥ 0

(c) F d(ψ) = E[md(Xi)|ψi = ψ] satisfies the smoothness conditions in either Definition
8.1 or 8.5. Also, E[maxni=1 |F d

i |] = O(log n).

Assumption 9.7 (CLT II). Require Assumption 9.1 with ζn = ζ for all n ≥ 1 and
p̂i,n = pi = p(Xi, ζ). Assume ψ′i = ψ′(Xi, ζ) ∈ σ(ψi) for ψi = ψ(Xi, ζ). In this context,
define the following

F d
i,n = E[md(Xi)|pi,n, ψi, ζ] udi,n = md(Xi)− F d

i,n

F d
i = E[md(Xi)|pi, ψi, ζ] udi = md(Xi)− F d

i

F̃ d
i = E[md(Xi)|ψ′i, ζ] ũdi = md(Xi)− F̃ d

i

For d = 0, 1, require the following conditions

(a) E[md(X)2] <∞ and E[σ2
d(X)2] <∞

(b) E[(udi,n − udi )2|ζ] = op(1).

(c) E[(udi,n)4|ζ] <∞, E[(udi )
4|ζ] <∞, and E[(ũdi )

4|ζ] <∞, ζ-a.s.

(d) There exist c > 0 and polynomial h(·) such that ζ-a.s.

E[(udi,n)21((udi,n)2 > z)|ζ] ∨ E[(ũdi )
21((ũdi )

2 > z)|ζ] ≤ h(z) exp(−cz)

for all n ≥ 1, z ≥ 0

(e) F d
n(ψ, pa, ζ) and F̃ d(ψ′, ζ) satisfy the smoothness conditions in either Definition 8.1

or 8.5. Also, E[maxni=1 |F d
i,n|] = O(log n) and E[maxni=1 |F̃ d

i |] = O(log n)

(f) kn ∨ |Ln| = o
((

logn
n

)1/2
)

In the following easy lemma, we justify focusing on the IPW estimator with population
normalization q in this section, rather than the (random) realized propensity En[Ti]

−1.

Lemma 9.8 (Normalization). Under the assumptions of Theorem 3.17

En

[
Ti(Di − pn(Xi))Yi
q(pn − p2

n)(Xi)

]
− En

[
(Di − pn(Xi))Yi
(pn − p2

n)(Xi)

∣∣∣∣Ti = 1

]
= Op(n

−1)

Proof. Suppose that q = a/k. First note that by Definition 2.2, we have w.p.1

n∑
i=1

Ti =
n−1∑
s=1

∑
i∈gs

Ti +
∑
i∈gn

Ti ∈
[
bn/kca, bn/kca+ k

]
⊆ [qn− a, qn+ k]

Then En[Ti] ∈ [q − a/n, q + k/n]. In particular, this shows that En[Ti]
−1 = Op(1) and

En[Ti]− q = Op(n
−1). By Theorem 3.17, we have

En

[
Ti(Di − pn(Xi))Yi

(pn − p2
n)(Xi)

]
= θ̂/q = ATE /q +Op(n

−1/2) = Op(1)

Then the difference above can be written

1

qEn[Ti]
En

[
Ti(Di − pn(Xi))Yi

(pn − p2
n)(Xi)

]
(En[Ti]− q) = Op(1)Op(n

−1) = Op(n
−1)
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This finishes the claim

Proof of Theorem 3.17. (1) Assignment Term: With udi,n and udi as above, in the notation
of Theorem 9.5 define

f1,n(Xi, ζ) ≡ bn(Xi, ζ)√
pi,n − p2

i,n

=
m1(Xi)

pi,n
+
m0(Xi)

1− pi,n

ui,1,n ≡ ui,n =
bn(Xi, ζ)√
pi,n − p2

i,n

− E

 bn(Xi, ζ)√
pi,n − p2

i,n

∣∣∣∣ψi, pi,n, ζ
 =

u1
i,n

pi,n
+

u0
i,n

1− pi,n

ui,1 ≡ ui =
b(Xi, ζ)√
pi − p2

i

− E

[
b(Xi, ζ)√
pi − p2

i

∣∣∣∣ψi, pi, ζ
]

=
u1
i

pi
+

u0
i

1− pi

We start by verifying Assumption 9.2 for these variables, justifying application of the
general CLT in Theorem 9.5. Observe that

E[f 2
1,n|ζ] ≤ 2δ−2E[m2

1(Xi) +m2
0(Xi)|ζ] . E[m2

1(Xi) +m2
0(Xi)] <∞

E[u4
i,n|ζ] ≤ 8δ−4E[(u1

i,n)4 + (u0
i,n)4|ζ] <∞

In both lines, the first inequality follows by Young’s inequality and our propensity bound.
This shows assumption 9.2.(a).

Next, we claim that E[(ui,n − ui)2|ζ] = op(1).∣∣∣∣u1
i

pi
−
u1
i,n

pi,n

∣∣∣∣ ≤ δ−2
∣∣u1
i pi,n − u1

i,npi
∣∣ . |pi,n − pi||u1

i |+ |u1
i − u1

i,n|

≤ rpn|u1
i |+ |pi||u1

i − u1
i,n|

The first inequality by our propensity bound. The second inequality by telescoping. The
final inequality follows since |p̂n − pn|∞ ≤ rpn by assumption 9.1 and since we let p = p̂n
known. Using this gives

E

[(
u1
i

pi
−
u1
i,n

pi,n

)2 ∣∣∣∣ζ
]
. (rpn)2E[(u1

i )
2|ζ] + E[|u1

i − u1
i,n|2|ζ] = op(1)

The proof for d = 0 is identical. This suffices to show E[(ui,n−ui)2|ζ] = op(1), completing
the proof of assumption 9.2.(b). Define the target assignment variance

Σ11 = E[(pi − p2
i )u

2
i |ζ] = E

(pi − p2
i )

(
bi − E[bi|ψi, pi, ζ]√

pi − p2
i

)2 ∣∣∣∣ζ
 = E

[
(bi − E[bi|ψi, pi, ζ])2 |ζ

]
Then assumption 9.2.(c) is trivially satisfied since ζn = ζ ∀n ≥ 1 is constant. By Young’s

64



inequality and propensity bound, u2
i,n ≤ 2δ−2((u1

i,n)2 + (u0
i,n)2). Then we have

E[(ui,n)21((ui,n)2 > z)|ζ] ≤ E[2δ−2((u1
i,n)2 + (u0

i,n)2)1(2δ−2((u1
i,n)2 + (u0

i,n)2) > z)|ζ]

. E[((u1
i,n)2 + (u0

i,n)2)1(((u1
i,n)2 + (u0

i,n)2) > (1/2)δ2z)|ζ]

≤ 2
∑
d=0,1

E[(udi,n)21((udi,n)2) > (1/4)δ2z)|ζ]

The final equality follows by fact 9.4 used in the general CLT proof. Then by our as-
sumption on the tails of udi,n, we see that assumption 9.2.(d) is satisfied, and assumption
9.2.(e) is the same. This completes the verification of assumptions needed for Theorem
9.5.

Let Fx,n = σ(X1:n, π
d
n, π

t
n, τ

t, ζ) and F(x,d),n = σ(X1:n, π
d
n, π

t
n, τ

t, τ d, ζ). Invoking Theorem
9.5 gives weak convergence

√
nEn[Ti(Di − pi,n)ui,n]

∣∣Fx,n ⇒ N (0, qΣ11)

as well as

√
nEn

[
TiDiε

1
i

pi,n
+
Ti(1−Di)ε

0
i

1− pi,n

] ∣∣∣∣F(x,d),n ⇒ N
(

0, qE

[
σ2

1(X)

p(X, ζ)
+

σ2
0(X)

1− p(X, ζ)

∣∣∣∣ζ])
(2) Selection Term: Next, we will apply Theorem 9.5 again using only the selection
variables T1:n ∼ Locn(ψ′, q) and different residuals. Define f̃1,n(Xi) = c(Xi) = m1(Xi)−
m0(Xi) and

ũi ≡ ũi,1 ≡ m1(Xi)−m0(Xi)− E[m1(Xi)−m0(Xi)|ψ′i, ζ] ≡ ũ1
i − ũ0

i

This has the same form as f1,n, ui,1,n defined above, with ũi now a linear combination of
(ũ1

i , ũ
0
i ) with weights (1,−1) instead of (p−1

i,n, (1 − pi,n)−1). Then an identical argument
shows that assumption 9.2 is satisfied for this choice of f̃1,n(Xi, ζ) and ũi. Then applying
Theorem 9.5 with FTx,n = σ(X1:n, π

t
n, ζ) and switching roles T1:n → 1 and D1:n → T1:n

gives weak convergence
√
nEn[(Ti − q)(ũ1

i − ũ0
i )]
∣∣FTx,n ⇒ N (0,Σt)

with variance

Σt = E[(q − q2)(ũ1
i − ũ0

i )
2|ζ] = q(1− q)E[(ci − E[ci|ψ′i, ζ])2|ζ]

Residual Coupling : In the notation of coupling Lemma 9.4, the projection of f1,n is

hn(ψ, pa, ζ
′) ≡ E [f1,n(Xi, ζ)|ψi = ψ, pi,n = pa, ζ = ζ ′]

= E

 bn(Xi, ζ)√
pi,n − p2

i,n

∣∣∣∣ψi = ψ, pi,n = pa, ζ = ζ ′

 =
F 1
n(ψ, pa, ζ

′)

pa
+
F 0
n(ψ, pa, ζ

′)

1− pa

Then Fn satisfies the smoothness conditions in Definition 8.1 or 8.5 if F d
n does for d = 0, 1.

Similarly F̃ (ψ′, ζ ′) ≡ E[c(Xi)|ψ′i = ψ′, ζ = ζ ′] = F 1(ψ′, ζ ′) − F 0(ψ′, ζ ′) satisfies the
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smoothness conditions. Under our assumptions (including the maximal inequalities for
F̃ d
i and F d

i,n), Lemma 9.4 gives the couplings

√
nEn

Ti(Di − pi,n)√
pi,n − p2

i,n

bi,n

 =
√
nEn [Ti(Di − pi,n)ui,n] + op(1)

√
nEn [(Ti − q)c(Xi)] =

√
nEn [(Ti − q)ũi] + op(1)

To finish the proof, we apply the weak convergence and couplings above to the form of
the IPW estimator. Consider the decomposition

qθ̂ = qEn

[
Ti(Di − pi,n)Yi
q(pi,n − p2

i,n)

]
= En [Tic(Xi)] + En

Ti(Di − pi,n)√
pi,n − p2

i,n

bi,n


+ En

[
TiDiε

1
i

pi,n
− Ti(1−Di)ε

0
i

1− pi,n

]
= qEn [c(Xi)] + En [(Ti − q)c(Xi)]

+ En

Ti(Di − pi,n)√
pi,n − p2

i,n

bi,n

+ En

[
TiDiε

1
i

pi,n
− Ti(1−Di)ε

0
i

1− pi,n

]

Using the work above gives the coupling

q
√
n(θ̂ − ATE) = q

√
nEn [c(Xi)− ATE] +

√
nEn [(Ti − q)ũi]

+
√
nEn [Ti(Di − pi,n)ui,n] +

√
nEn

[
TiDiε

1
i

pi,n
− Ti(1−Di)ε

0
i

1− pi,n

]
+ op(1)

≡ An +Bn + Cn +Dn + op(1)

Note that An ⇒ N (0, q2 Var(c(X)) by vanilla CLT. Let φa, φb, φc, φd be the limiting
characteristic functions for each of these four terms given by the weak convergence results
above. For instance, E[eitCn|Fx,n]

p→ φc(t) = e−
1
2
qΣ11t2 . Then for any t ∈ R we have

E[eitq
√
n(θ̂−ATE)|ζ] = E[eit(An+Bn+Cn+Dn)|ζ] = E[eit(An+Bn+Cn)E[eitDn|F(x,d),n]|ζ]

Then note that eit(An+Bn+Cn)
(
E[eitCn|F(x,d),n]− φd(t)

)
= op(1) and is totally bounded.

Then by Lemma 9.16, E
[
eit(An+Bn+Cn)

(
E[eitDn|F(x,d),n]− φd(t)

)
|ζ
]

= op(1). Then we
have

E[eitq
√
n(θ̂−ATE)|ζ] = E[eit(An+Bn+Cn)φd(t)|ζ] + op(1) = φd(t)E[eit(An+Bn)E[eitCn|Fx,n]|ζ] + op(1)

= φd(t)φc(t)E[eitAnE[eitBn|FTx,n]|ζ] + op(1) = φd(t)φc(t)φb(t)E[eitAn|ζ] + op(1)

= φd(t)φc(t)φb(t)E[eitAn ] + op(1) = φa(t)φb(t)φc(t)φd(t) + op(1)

The second equality follows since Bn ∈ Fx,n. The fourth equality follows since An ∈ FTx,n.
The third equality by identical reasoning as above, using that E[eitBn|Fx,n]−φb(t) = op(1)
and is totally bounded. The fourth equality since W1:n ⊥⊥ ζ, then the final equality is by
vanilla CLT. Then by adding variances and continuous mapping applied to x → q−1/2x,
we have √qn(θ̂ − ATE)|ζ ⇒ N (0, V (ψ, p)) with the claimed limit.
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Fixed Regressors : Consider that by our estimator decomposition

q
√
n(θ̂ − En[c(Xi)]) = q

√
n(θ̂ − ATE)− q

√
n(En[c(Xi)]− ATE)

= Bn + Cn +Dn + op(1)

The claim then follows by work above, setting An = 0, so φa(t) = 1. This finishes the
proof.

9.3 Proofs - Design with a Pilot

Assumption 9.9. Consider σ̂2
d(x) estimated out-of-sample. The following hold for d =

0, 1

(a) E[md(X)2] <∞ and E[σ2
d(X)2] <∞ a.s.

(b) ‖σ̂d − σd‖2,X = op(1) or ‖σ̂2
d − σ2

d‖2,X = op(1)

(c) min(σ2
d(X), σ̂2

d(X)) ≥ σ > 0 and σ2
d(X) ≤ B, (X, ζn)-a.s.

(d) md(x) satisfies either Definition 8.1 or 8.5 and E[maxni=1md(Xi)] = O(log n)

Proof of Theorem 4.3. Define ζn = (p̂d)d=0,1, so ζn ⊥⊥ (W1:n, π
d
n, π

t
n, τ

d, τ t). In the nota-
tion of coupling Lemma 9.4, the projection of f1,n(Xi, ζn) = bn(Xi,ζ)√

pi,n−p2i,n
is given by

hn(x, pa, ζ) ≡ E [f1,n(Xi, ζ)|Xi = x, pi,n = pa, ζn = ζ]

= E

 bn(Xi, ζ)√
pi,n − p2

i,n

∣∣∣∣Xi = x, pi,n = pa, ζn = ζ

 =
m1(x)

pa
+
m0(x)

1− pa
= hn(x, pa)

By the propensity bound p−1
a ∨ (1 − pa)

−1 < δ−1, we see hn satisfies the smoothness
conditions in Definition 8.1 or 8.5 if md(x) does for d = 0, 1, which we assume. Similarly,
we have

h̃n(x, ζ) ≡ E[c(Xi)|Xi = x, ζn = ζ] = m1(x)−m0(x) = h̃(x)

Then h̃(x) also satisfies one of the smoothness conditions. Note that

ui,n ≡
bn(Xi, ζ)√
pi,n − p2

i,n

− hn(Xi, pi,n, ζn) =
bn(Xi, ζ)√
pi,n − p2

i,n

− bn(Xi, ζ)√
pi,n − p2

i,n

= 0

ui ≡ c(Xi)− h̃n(Xi, ζn) = c(Xi)− c(Xi) = 0

Then Lemma 9.4 implies that
√
nEn [(Ti − q)c(Xi)] = op(1)

√
nEn [Ti(Di − pi,n)bi,n] = op(1)

Next, we verify conditions in assumptions 9.1, 9.2 of the general CLT Theorem 9.5. Aside
from E[md(X)2] <∞, the remaining assumptions were only required for the conditional
CLT of

√
nEn[Ti(Di−pi,n)ui,n] = 0 in this case. Then we only need verify that (E[(p̂i,n−

67



pi)
2|ζn])1/2 = op(1). A calculation shows that

p̂(x)− p∗(x) =
σ̂1(x)

σ̂1(x) + σ̂0(x)
− σ1(x)

σ1(x) + σ0(x)
=

(σ̂1 − σ1)(x)σ0(x) + σ1(x)(σ0 − σ̂0)(x)

(σ̂1 + σ̂0)(x)(σ1 + σ0)(x)

Then almost surely

(p̂(Xi)− p∗(Xi))
2 ≤ (σ̂1 − σ1)2(Xi)σ

2
0(Xi) + σ2

1(Xi)(σ0 − σ̂0)2(Xi)

8σ4

≤ B

8σ4

∑
d=0,1

(σ̂d − σd)2(Xi)

For the case ‖σ̂d−σd‖2,X = op(1), the claim follows immediately. Otherwise, observe that

∑
d=0,1

(σ̂d − σd)2(Xi) =
∑
d=0,1

(σ̂2
d − σ2

d)
2(Xi)

(σ̂d + σd)2(Xi)
.
∑
d=0,1

(σ̂2
d − σ2

d)
2(Xi)

This shows that ‖σ̂2
d−σ2

d‖2,X = op(1) is also sufficient. Let F(x,d),n = σ(X1:n, π
d
n, π

t
n, τ

d, τ t, ζn).
By Theorem 9.5, we have

√
nEn

[
TiDiε

1
i

pi,n
+
Ti(1−Di)ε

0
i

1− pi,n

] ∣∣∣∣F(x,d),n ⇒ N
(

0, qE

[
σ2

1(X)

p∗(X)
+

σ2
0(X)

1− p∗(X)

])
Summarizing using the coupling above, we have shown that

q
√
n(θ̂ − θ) = q

√
nEn [c(Xi)− θ] +

√
nEn

[
TiDiε

1
i

pi,n
− Ti(1−Di)ε

0
i

1− pi,n

]
+ op(1)

The conclusion follows by repeating the argument at the end of the proof of Theorem
3.17.

Proposition 9.10 (Consistent Regressions). Require the assumptions and definitions in
Theorem 4.8. Let p(x) be a fixed, known propensity score. If T1:n ∼ Locn(ψ̂, q) and
D1:n ∼ Loc(ψ̂, p |T1:n) then

√
n(θ̂ − ATE)⇒ N (0, V )

V = qVar(c(X)) + E

[
σ2

1(X)

p(X)
+

σ2
0(X)

1− p(X)

]
Proof of Proposition 9.10 and Theorem 4.8. First, we consider coupling arguments. De-
fine ζn = (m̂d)d. In the notation of Lemma 9.4, let fn(Xi, ζn) = ĉ(Xi). Let ψ = (ψ1, ψ2) ∈
R2.

hn(ψ, pa, ζ) = E[fn(Xi, ζn)|ψ(Xi, ζn) = ψ, pi,n = pa, ζn = ζ]

= E
[
ĉ(Xi)|(ĉ(Xi), b̂n(Xi)) = (ψ1, ψ2), pi,n = pa, ζn = ζ

]
= ψ1

Then hn is a Lipschitz function of ψ = (ψ1, ψ2). In particular, in the notation of Lemma
9.4 hi,n = ĉ(Xi), so ui,n = fn(Xi, ζn)− hi,n = 0. Note that

n
max
i=1

h2
i,n =

n
max
i=1

ĉ(Xi)
2 ≤ 2 max

d
‖m̂d‖2

∞ ≤ 2m2
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Then E[maxni=1 h
2
i,n] = O(1), so the relevant maximal inequality is satisfied. Then Lemma

9.4 implies
√
nEn[(Ti − q)ĉ(Xi)] =

√
nEn[(Ti − q)ui,n] + op(1) = op(1)

Similarly, let f ′n(Xi, ζn) = b̂n(Xi)√
pi,n−p2i,n

and define projection

h′n(ψ, pa, ζ) = E

 b̂n(Xi)√
pi,n − p2

i,n

∣∣∣∣(ĉ(Xi), b̂n(Xi)) = (ψ1, ψ2), pi,n = pa, ζn = ζ

 =
ψ2√
pa − p2

a

Since pa∨1−pa ≤ δ−1 by assumption, h′n is Lipschitz in (ψ1, ψ2). Again, f ′n(Xi, ζn)−h′i,n =
0 and E[maxni=1(h′i,n)2] = O(1) by similar arguments. Then Lemma 9.4 implies

√
nEn

Ti(Di − pi,n)
b̂n(Xi)√
pi,n − p2

i,n

 = op(1)

Then by telescoping, the estimator expansion

q
√
n(θ̂ − ATE) = q

√
nEn [c(Xi)− ATE] +

√
nEn [(Ti − q)(c(Xi)− ĉ(Xi) + ĉ(Xi))]

+
√
nEn

Ti(Di − pi,n)
bi,n − b̂n(Xi) + b̂n(Xi)√

pi,n − p2
i,n

+
√
nEn

[
TiDiε

1
i

pi,n
− Ti(1−Di)ε

0
i

1− pi,n

]
= q
√
nEn [c(Xi)− ATE] +

√
nEn [(Ti − q)(c(Xi)− ĉ(Xi))]

+
√
nEn

Ti(Di − pi,n)
bi,n − b̂n(Xi)√
pi,n − p2

i,n

+
√
nEn

[
TiDiε

1
i

pi,n
− Ti(1−Di)ε

0
i

1− pi,n

]
+ op(1)

≡ An +Bn + Cn +Dn

Define Fx,n = σ(X1:n, π
t
n, τ

t, ζn). Then (ga,s)a,s ∈ σ(ψ̂1:n, p1:n,n, π
t
n, τ

t) ⊆ Fx,n, and for all
i ∈ [n], bi,n−b̂n(Xi)√

pi,n−p2i,n
∈ Fx,n. Also Fx,n ⊥⊥ τ d by randomization. Then Lemma 9.20 applies,

showing E[Cn|Fx,n] = 0 and conditional variance

Var(Cn|Fx,n) ≤ 2En

[
(bi,n − b̂n(Xi))

2

pi,n − p2
i,n

]
= 2En

[(
m1(Xi)− m̂1(Xi)

pi,n
+
m0(Xi)− m̂0(Xi)

1− pi,n

)2
]

≤ 4δ−2
∑
d=0,1

En[(md(Xi)− m̂d(Xi))
2] = Op(n

−2rm)

The last line by conditional Markov, since ζn ⊥⊥ W1:n we haveE[En[(md(Xi)−m̂d(Xi))
2]|ζn] =

‖m̂d − md‖2
2,P = Op(n

−2rm). Then by conditional Chebyshev (Lemma 9.16), Cn =
Op(n

−rm). An identical argument, using out-of-sample condition ζn ⊥⊥ W1:n, estimator
rates, and Lemma 9.20 shows Bn = Op(n

−rm). Summarizing the work above

q
√
n(θ̂ − θ) = q

√
nEn [c(Xi)− θ] +

√
nEn

[
TiDiε

1
i

pi,n
− Ti(1−Di)ε

0
i

1− pi,n

]
+ op(1)
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This is identical to the final coupling in the proof of Theorem 4.3, which shows the
conclusion for Theorem 4.8. For Proposition 9.10, the required condition (E[(p̂i,n −
pi)

2|ζn])1/2 = op(1) is trivial, since we may take p̂ = p (known propensity).

Calculations for Section 4.1.1. Define c′(S) = E[Y (1)−Y (0)|S] = E[c(X)|S] and v2
d(S) =

Var(Y (d)|S). By the law of total variance

Var(c(X)) = Var(E[c(X)|S]) + E[Var(c(X)|S)] = Var(c′(S)) + E[Var(c(X)|S)]

Var(Y (d)|S) = Var(E[Y (d)|X]|S) + E[Var(Y (d)|X)|S] = Var(md(X)|S) + E[σ2
d(X)|S]

We can use these to rewrite the asymptotic variance in TM (2020) as

Var(c′(S)) + E

[
v2

1(S)

p(S)
+

v2
0(S)

1− p(S)

]
= Var(c(X))− E[Var(c(X)|S)] + E

[
σ2

1(X)

p(S)
+

σ2
0(X)

1− p(S)

]
+ E

[
1

p(S)
Var (m1(X)|S) +

1

1− p(S)
Var (m0(X)|S)

]
Since c(X) = m1(X)−m0(X), adding the 2nd and 4th terms gives

E

[
1− p(S)

p(S)
Var (m1(X)|S) +

1− (1− p(S))

1− p(S)
Var (m0(X)|S) + 2 Cov(m1(X),m0(X)|S)

]
= E

[
Var

(
m1(X)

√
1− p(S)

p(S)
+m0(X)

√
p(S)

1− p(S)

∣∣∣∣S
)]

= E[Var(b(X;S)|S)]

= E[(b(X;S)− E[b(X;S)|S])2]

Alternatively, this follows from Theorem 3.17 with ψ(x) = S(x) and p = p(S(x)).

Proof of Proposition 4.11. First, consider the case (Di)i∈Ik ∼ Locn(ψ, p|Ik). Let ξn be
external randomness forming the partition: (Ik)

K
k=1 = Fn(ξn) for deterministic Fn. Define

the operator En,k[Zi] = n−1
∑

i∈Ik Zi. A standard expansion of the AIPW estimator
(algebra) gives, for the kth fold estimator

θ̃k = En,k[c(Xi)] + En,k

[
(Di − pn(Xi))

(
(m1 − m̂1,k)(Xi)

pn(Xi)
+

(m0 − m̂0,k)(Xi)

1− pn(Xi)

)]
+ En,k

[(
Diε

1
i

pn(Xi)
− (1−Di)ε

0
i

1− pn(Xi)

)]
≡ An,k +Bn,k + Cn,k

Consider Bn,k. Let (gka,s)a,s denote the groups for the kth design (Di)i∈Ik ∼ Locn(ψ, p|Ik).
Let πdn(k) and τ dk denote tie-breaking randomness and within-group randomization vari-
ables for the kth design and πdn = (πdn(k))k. Define Fn,k = σ((Yi, Di, Xi)i∈Ick , X1:n, π

d
n, ξn).

We check the conditions to apply Lemma 9.20. By cross-fitting of the design, {i : 1(i ∈
Ik) = 1} =

⊔
a,s g

k
a,s. Observe that (gka,s)a,s ∈ σ((Xi)i∈Ik , π

d
n(k), ξn) ⊆ Fn,k and, in the

notation of Lemma 9.20

hn(Wi) ≡
(

(m1 − m̂1,k)(Xi)

pn(Xi)
+

(m0 − m̂0,k)(Xi)

1− pn(Xi)

)
∈ Fn,k
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By Lemma 9.19.(i) and cross-fitting of the design.

(Di)i∈Ick ∈ σ
(

(gk
′

a,s)a,s, τ
d
k′ : k′ 6= k

)
∈ σ((Xi)i∈Ik′ , π

d
n(k′), ξn, τ

d
k′ : k′ 6= k) (9.5)

Then we see that

Fn,k ⊆ σ((Wi)i∈Ick , (Di)i∈Ick , X1:n, π
d
n, ξn) ⊆ σ((Wi)i∈Ick , X1:n, π

d
n, ξn, τ

d
k′ : k′ 6= k) ⊥⊥ τ dk

Then we may apply Lemma 9.20 with Si = 1(i ∈ Ik), which gives E[Bn,k|Fn,k] = 0 and

Var(
√
nBn,k|Fn,k) ≤ 2En

[
1(i ∈ Ik)

(
(m1 − m̂1,k)(Xi)

pn(Xi)
+

(m0 − m̂0,k)(Xi)

1− pn(Xi)

)2
]

≤ 4δ−2En

[
1(i ∈ Ik)

∑
d=0,1

(md − m̂d,k)(Xi)
2

]

Now, taking a conditional expectation

E

[
En

[
1(i ∈ Ik)

∑
d=0,1

(md − m̂d,k)(Xi)
2

] ∣∣∣∣(Yi, Di, Xi)i∈Ick , ξn

]
= (|Ik|/n)

∑
d=0,1

‖md − m̂d,k‖2
2,P

To see the equality, note that 1(i ∈ Ik) ∈ σ(ξn) and by tower law and Equation 9.5 above

E
[
1(i ∈ Ik)(md − m̂d,k)(Xi)

2|(Yi, Di, Xi)i∈Ick , ξn
]

=E
[
E
[
1(i ∈ Ik)(md − m̂d,k)(Xi)

2|(Wi)i∈Ick , (π
d
n(k′), τ dk′) : k′ 6= k, ξn

]
|(Yi, Di, Xi)i∈Ick , ξn

]
=1(i ∈ Ik)‖md − m̂d,k‖2

2,P

Then by conditional Markov and conditional Chebyshev (Lemma 9.16), we have shown
that

√
nBn,k = op(1), so that

√
n
∑K

k=1Bn,k = op(1). Then returning to the decomposi-
tion above

√
n(θ̃ − ATE) =

√
n

(
K∑
k=1

θ̃k − ATE

)
=
√
nEn[c(Xi)− ATE] +

√
n

K∑
k=1

Bn,k

+
√
nEn

[(
Diε

1
i

pn(Xi)
− (1−Di)ε

0
i

1− pn(Xi)

)]
=
√
nEn[c(Xi)− ATE] +

√
nEn

[(
Diε

1
i

pn(Xi)
− (1−Di)ε

0
i

1− pn(Xi)

)]
+ op(1)

Similar reasoning as in the proof of 3.17 may now be used to show the claimed CLT. The
case Di

inid∼ p(Xi) follows from Chernozhukov et al. (2017), Theorem 5.1.
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9.4 Proofs - Inference

9.4.1 Proof of Theorem 5.3

Proof. First, we show the claim in (1). Suppose p = p(ψ, ζ) and ψ′ = ψ. In this case

F d
i = E[md(Xi)|ψi, p(ψi, ζ), ζ] = E[md(Xi)|ψi, ζ]

udi = md(Xi)− E[md(Xi)|ψi, ζ]

By Theorem 3.17, in this case the limiting variance of
√
n(θ̂ − ATE) is

V (ψ, (q, p)) = qVar(c(X)) + (1− q)E[(c− E[c|ψ, ζ])2|ζ]

+ E[(b− E[b|ψ, p, ζ])2|ζ] + E

[
σ2

1(X)

p(X, ζ)
+

σ2
0(X)

1− p(X, ζ)

∣∣∣∣ζ]
Since ζ ⊥⊥ Xi we have E[c(Xi)|ζ] = E[c(Xi)] = ATE and

Var(c(Xi)) = E[(c(Xi)− ATE)2] = E[(c(Xi)− ATE)2|ζ] = E[(c(Xi)− E[c(Xi)|ζ])2|ζ]

= Var(c(Xi)|ζ) = E[((F 1
i − F 0

i ) + (u1
i − u0

i ))
2|ζ]− ATE2

= E[(F 1
i − F 0

i )2|ζ] + E[(u1
i − u0

i ))
2|ζ]− ATE2

Similarly we have

E[(c(Xi)− E[c(Xi)|ψi, ζ])2|ζ] = E[(u1
i − u0

i ))
2|ζ]

Then the first two terms can be written

qVar(c(Xi)) + (1− q)E[(c(Xi)− E[c(Xi)|ψi, ζ])2|ζ] = qE[(F 1
i − F 0

i )2|ζ] + E[(u1
i − u0

i ))
2|ζ]

− qATE2

Under our assumptions, with pi = p(ψi, ζ) we have

E[b(Xi)|ψi, p(ψi, ζ), ζ] = E

[
m1(Xi)

√
1− pi
pi

+m0(Xi)

√
pi

1− pi

∣∣∣∣ψi, ζ]
= F 1

i

√
1− pi
pi

+ F 0
i

√
pi

1− pi

Using this, the middle term becomes

E[(b(Xi)− E[b(Xi)|ψi, p(ψi, ζ), ζ])2|ζ] = E

[(
u1
i

√
1− pi
pi

+ u0
i

√
pi

1− pi

)2 ∣∣∣∣ζ
]

= E

[
(u1

i )
2 1− pi

pi
+ (u0

i )
2 pi
1− pi

+ 2u1
iu

0
i

∣∣∣∣ζ]
= E

[
(u1

i )
2 1

pi
+ (u0

i )
2 1

1− pi

∣∣∣∣ζ]− E[(u1
i − u0

i )
2|ζ]
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Then adding all four terms gives

qE[(F 1
i − F 0

i )2|ζ] + E[(u1
i − u0

i ))
2|ζ]− qATE2 +E

[
(u1

i )
2

pi
+

(u0
i )

2

1− pi

∣∣∣∣ζ]
−E[(u1

i − u0
i )

2|ζ] + E

[
σ2

1(Xi)

pi
+
σ2

0(Xi)

1− pi

∣∣∣∣ζ]
= E

[
(u1

i )
2 + σ2

1(Xi)

pi
+

(u0
i )

2 + σ2
0(Xi)

1− pi

∣∣∣∣ζ]+ qE[(F 1
i − F 0

i )2|ζ]− qATE2

Next, we write this in terms of estimable quantities. Note that

E

[
Yi(1)2

pi

∣∣∣∣ζ] = E

[
(m1(Xi) + ε1i )

2

pi

∣∣∣∣ζ] = E

[
(F 1

i + u1
i + ε1i )

2

pi

∣∣∣∣ζ]
= E

[
(F 1

i )2 + (u1
i )

2 + (ε1i )
2

pi

∣∣∣∣ζ] = E

[
(F 1

i )2 + (u1
i )

2 + σ2
1(Xi)

pi

∣∣∣∣ζ]
To see the last two equalities, note that since pi = p(ψi, ζ)

E[p−1
i u1

iF
1
i |ζ] = E[p−1

i E[u1
iF

1
i |ψi, ζ]ζ] = E[p−1

i F 1
i E[u1

i |ψi, ζ]ζ] = 0

E[p−1
i ε1iF

1
i |ζ] = E[p−1

i F 1
i E[ε1i |Xi, ζ]|ζ] = E[p−1

i F 1
i E[ε1i |Xi]|ζ] = 0

E[p−1
i ε1iu

1
i |ζ] = E[p−1

i u1
iE[ε1i |Xi, ζ]|ζ] = E[p−1

i u1
iE[ε1i |Xi]|ζ] = 0

E[p−1
i (ε1i )

2|ζ] = E[p−1
i E[(ε1i )

2|Xi, ζ]|ζ] = E[p−1
i E[(ε1i )

2|Xi]|ζ] = E[p−1
i σ2

1(Xi)|ζ]

Similarly for d = 0

E

[
Yi(0)2

1− pi

∣∣∣∣ζ] = E

[
(F 0

i )2 + (u0
i )

2 + σ2
0(Xi)

1− pi

∣∣∣∣ζ]
Comparing the calculations above, we see that

V (ψ, (q, p)) = E

[
Yi(1)2

pi

∣∣∣∣ζ]+ E

[
Yi(0)2

1− pi

∣∣∣∣ζ]− E [(F 1
i )2

pi

∣∣∣∣ζ]− E [ (F 0
i )2

1− pi

∣∣∣∣ζ]
+ qE

[
(F 1

i − F 0
i )2|ζ

]
− qATE2

Now observe that

E

[
(F 1

i )2

pi

∣∣∣∣ζ]+ E

[
(F 0

i )2

1− pi

∣∣∣∣ζ]− qE [(F 1
i − F 0

i )2|ζ
]

= E

[
(F 1

i )2(1− qpi)
pi

∣∣∣∣ζ]+ E

[
(F 0

i )2(1− q(1− pi))
1− pi

∣∣∣∣ζ]+ 2qE[F 1
i F

0
i |ζ]

Summarizing, we have shown that

V (ψ, (q, p)) = E

[
Yi(1)2

pi

∣∣∣∣ζ]+ E

[
Yi(0)2

1− pi

∣∣∣∣ζ]− E [(F 1
i )2(1− qpi)

pi

∣∣∣∣ζ]
− E

[
(F 0

i )2(1− q(1− pi))
1− pi

∣∣∣∣ζ]− 2qE[F 1
i F

0
i |ζ]− qATE2
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Then by Lemma 9.12 we have

V (ψ, (q, p)) = v̂I,2 − v̂1

[
1− qp
p

]
− v̂0

[
1− q(1− p)

1− p

]
− 2qv̂10 − qθ̂2 + op(1)

Next, consider the limiting variance V (ψ, p) − qVar(c(X)) for the fixed regressor case.
By the work above, this is

(1− q)E[(u1
i − u0

i ))
2|ζ] + E

[
(u1

i )
2 1

pi
+ (u0

i )
2 1

1− pi

∣∣∣∣ζ]− E[(u1
i − u0

i )
2|ζ]

+ E

[
σ2

1(Xi)

pi
+
σ2

0(Xi)

1− pi

∣∣∣∣ζ] = E

[
(u1

i )
2 + σ2

1(Xi)

pi
+

(u0
i )

2 + σ2
0(Xi)

1− pi

∣∣∣∣ζ]− qE[(u1
i − u0

i )
2|ζ]

≤ E

[
(u1

i )
2 + σ2

1(Xi)

pi
+

(u0
i )

2 + σ2
0(Xi)

1− pi

∣∣∣∣ζ]
Then comparing with the calculations above.

V (ψ, p)− qVar(c(X)) ≤ E

[
Yi(1)2

pi

∣∣∣∣ζ]+ E

[
Yi(0)2

1− pi

∣∣∣∣ζ]− E [(F 1
i )2

pi

∣∣∣∣ζ]− E [ (F 0
i )2

1− pi

∣∣∣∣ζ]
= v̂I,2 − v̂1

[
p−1
]
− v̂0

[
(1− p)−1

]
+ op(1)

The final equality follows by Lemma 9.12. Conservativeness is given by the residual
variance

qE[(u1
i − u0

i )
2|ζ] = qE[(c− E[c|ψi, ζ])2|ζ] = qE[Var(c(Xi)|ψi, ζ)|ζ]

This completes the proof of claim (1).

Next, we show claim (2). In this general case we have pi = p(Xi, ζ)

F d
i = E[md(Xi)|ψi, p(Xi, ζ), ζ]

udi = md(Xi)− E[md(Xi)|ψi, p(Xi, ζ), ζ]

Identical calculations, substituting the new definitions of F d
i , u

d
i , show the same identities

above for each of the variance components. Then we have

V (ψ, p) = Var(c(Xi)) + E[(b− E[b|ψi, pi, ζ])2|ζ] + E

[
σ2

1(Xi)

pi
+
σ2

0(Xi)

1− pi

∣∣∣∣ζ]
= E[(F 1

i − F 0
i )2|ζ] + E[(u1

i − u0
i )

2|ζ]− ATE2

+E

[
(u1

i )
2 1

pi
+ (u0

i )
2 1

1− pi

∣∣∣∣ζ]− E[(u1
i − u0

i )
2|ζ] + E

[
σ2

1(Xi)

pi
+
σ2

0(Xi)

1− pi

∣∣∣∣ζ]
= E

[
(u1

i )
2 + σ2

1(Xi)

pi
+

(u0
i )

2 + σ2
0(Xi)

1− pi

∣∣∣∣ζ]+ E[(F 1
i − F 0

i )2|ζ]− ATE2

= E

[
Yi(1)2

pi

∣∣∣∣ζ]+ E

[
Yi(0)2

1− pi

∣∣∣∣ζ]− ATE2

− E

[
(F 1

i )2

pi

∣∣∣∣ζ]− E [ (F 0
i )2

1− pi

∣∣∣∣ζ]+ E[(F 1
i − F 0

i )2|ζ]
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Note that the last line is

E

[
(F 1

i )2

pi

∣∣∣∣ζ]+ E

[
(F 0

i )2

1− pi

∣∣∣∣ζ]− E[(F 1
i − F 0

i )2|ζ]

= E

[
(F 1

i )2 1− pi
pi

∣∣∣∣ζ]+ E

[
(F 0

i )2 pi
1− pi

∣∣∣∣ζ]+ 2E[F 1
i F

0
i |ζ]

Then by Lemma 9.12

V (ψ, p) = Varn

(
(Di − pi,n)Yi
pi,n − p2

i,n

)
− v̂1

[
1− p
p

]
− v̂0

[
p

1− p

]
− 2v̂10 + op(1)

This completes the proof of the second claim. For the fixed regressors case, by the work
above

V (ψ, p)− Var(c(Xi)) = E

[
(u1

i )
2 + σ2

1(Xi)

pi
+

(u0
i )

2 + σ2
0(Xi)

1− pi

∣∣∣∣ζ]− E[(u1
i − u0

i )
2|ζ]

≤ E

[
(u1

i )
2 + σ2

1(Xi)

pi
+

(u0
i )

2 + σ2
0(Xi)

1− pi

∣∣∣∣ζ]
= E

[
Yi(1)2

pi

∣∣∣∣ζ]+ E

[
Yi(0)2

1− pi

∣∣∣∣ζ]− E [(F 1
i )2

pi

∣∣∣∣ζ]− E [ (F 0
i )2

1− pi

∣∣∣∣ζ]
Claim (3) follows from (2) and Lemma 9.12, noting that for the general case ψ′i ∈ σ(ψi)

Var(c(Xi))− qVar(c(Xi)) + (1− q)E[(c− E[c|ψ′i, ζ])2|ζ]

= (1− q)
[

Var(c(Xi))− E[Var(c(Xi)|ψ′i, ζ)|ζ]

]
= (1− q) Var(E[c(Xi)|ψ′i, ζ]|ζ)

This finishes the proof.

Assumption 9.11 (Inference). Require assumption 9.1 with ζn = ζ for n ≥ 1 and p̂ = p
and assumption 9.3. Define the projection

F d
n(ψ, pa, ζ

′) = E[md(Xi)|ψ(Xi, ζ) = ψ, pn(Xi, ζ) = pa, ζ = ζ ′]

Also define F d
i,n = F d

n(ψi,n, pi,n, ζ). Similarly, define F d
i = E[md(Xi)|ψ(Xi, ζ), p(Xi, ζ), ζ],

udi,n = md(Xi) − F d
i,n, and udi = md(Xi) − F d

i . Define σ2
u,i,n = E[(ui,n)2|ψi, pi,n, ζ] for

ui,n = udi,n and d = 0, 1. Require that

(1) E[Y (d)4] <∞ and E[(F d
i )4|ζ] < F̄ and E[(F d

i,n)4|ζ] < F̄ <∞, ζ-a.s. for d = 0, 1

(2) σ2
ud,i,n

< σ2 and σ2
d(Xi) ≤ σ2 <∞ for d = 0, 1

(3) F d
n(ψ, pa, ζ) satisfies Hölder conditions in either Definition 8.1 or 8.5 for d = 0, 1.

(4) E[(F d
i,n − F d

i )2|ζ]1/2 = Op(r
F
n ) for d = 0, 1.

(5) γ is an admissible matching as in Definition 5.1

(6) kn ∨ Ln = o(n) and rψn ∨ rFn ∨ rpn = o(1)
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Lemma 9.12. Suppose that assumptions 9.1, 9.3, and 9.11 hold. Then the IPW second
moment (for the selected units)

v̂I,2 = En

[
Ti
q

(
(Di − pi,n)Yi
pi,n − p2

i,n

)2
]

= E

[
Yi(1)2

pi

∣∣∣∣ζ]+ E

[
Yi(0)2

1− pi

∣∣∣∣ζ]+ Op(n
−1/2) +Op(r

p
n)

Let G be any bounded, Lipschitz function. Then the matching terms satisfy

v̂1[G] ≡ En

[
TiDi

qpi,n
G(pi,n)YiYγ(i)

]
= E

[
G(pi)(F

1
i )2|ζ

]
+Op(r1,n)

v̂0[G] ≡ En

[
Ti(1−Di)

q(1− pi,n)
G(pi,n)YiYγ(i)

]
= E

[
G(pi)(F

0
i )2|ζ

]
+Op(r0,n)

v̂10 ≡ 2n−1
∑

1≤i<j≤n

TiTj
q

1(g(i) = g(j))

Card(g)

Di(1−Dj)YiYj
pi,n(1− pj,n)

= E[F 1
i F

0
i |ζ] +Op(r10,n)

With convergence rates

r1,n ∨ r0,n = O(n−1/2) +O(rpn) +O(rFn ) +O(rψn )

r10,n = O(n−1/2) +O(rFn ) +O(rψn ) +O((kn/n)1/2) +O
(√
|Ln|/n

)
Proof. First, we show consistency for v̂I . From Theorem 9.5, we have θ̂ = ATE +Op(n

−1/2),
so (θ̂)2 = ATE2 +Op(n

−1/2). Since Di(1−Di) = 0, the first term is

En

[
Ti
q

(
(Di − pi,n)Yi
pi,n − p2

i,n

)2
]

= En

[
Ti
q

(
DiYi(1)

pi,n
− (1−Di)Yi(0)

1− pi,n

)2
]

= En

[
Ti
q

(
DiYi(1)2

p2
i,n

+
(1−Di)Yi(0)2

(1− pi,n)2

)]
Consider the d = 1 term

En

[
Ti
q

DiYi(1)2

p2
i,n

]
= En

[
Ti
q

(Di − pi,n)Yi(1)2

p2
i,n

]
+ En

[
Ti
q

Yi(1)2

pi,n

]
= En

[
Ti
q

(Di − pi,n)Yi(1)2

p2
i,n

]
+ En

[
Ti − q
q

Yi(1)2

pi,n

]
+ En

[
Yi(1)2

pi,n

]
≡ An +Bn + Cn

We check the conditions of Lemma 9.20.(4). Let Fn = σ(W1:n, ζn, π
t
n, π

d
n, τ

t). Then by
Assumption 9.3 and 9.1, (ga,s)a,s,

Yi(1)2

p2i,nq
, Yi(1)2

pi,nq
∈ Fn and Fn ⊥⊥ τ d. Moreover, note that

sup
n≥1

E

[
Yi(1)4

(pi,nq)2

]
≤ sup

n≥1
E

[
Yi(1)4

p4
i,nq

2

]
≤ δ−6E[Y (1)4] <∞

Then Lemma 9.20.(4) shows thatAn, Bn = Op(n
−1/2), applying first with S1:n = T1:n, then

with Sn = 1. For the third term, E[Y (1)4] < ∞ by assumption. Note that G(p) ≡ p−1

is bounded and Lipschitz on [δ−1, 1]. Then Lemma 9.18 applied with H(W ) = Y (1) and
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G(p) = p−1 shows

En

[
Yi(1)2

pi,n

]
= E

[
Yi(1)2

pi

∣∣∣∣ζ]+Op(r
p
n) +Op(n

−1/2)

We have shown that En
[
Ti
q
DiYi(1)2

p2i,n

]
= E

[
Yi(1)2

pi

]
+Op(n

−1/2) +Op(r
p
n). The case d = 0 is

identical. This finishes the proof of the claim for v̂I .

Matching Corrections - First note that Yi(d) = md(Xi) + εdi = F d
i,n + udi,n + εdi . Then for

i 6= j and d, d′ ∈ {0, 1}, we have

Yi(d)Yj(d
′) = (F d

i,n + udi,n + εdi )(F
d′

j,n + ud
′

j,n + εd
′

j ) = F d
i,nF

d′

j,n + F d′

j,n(udi,n + εdi ) (9.6)

+ F d
i,n(ud

′

j,n + εd
′

j ) + (udi,n + εdi )(u
d′

j,n + εd
′

j ) ≡ F d
i,nF

d′

j,n +Rd,d′

i,j (9.7)

Define g1
a,s = ga,s ∩ {i : Di = 1}. Using this decomposition, and noting {i : Ti = 1} =⊔

a,s ga,s by Assumption 9.3, we have

v̂1 = En

[
TiDi

qpi,n
G(pi,n)YiYγ(i)

]
= n−1

|Ln|∑
a=1

n∑
s=1

∑
i∈g1a,s

(qpa)
−1G(pa)Yi(1)Yγ(i)(1)

= n−1

|Ln|∑
a=1

n∑
s=1

∑
i∈g1a,s

(qpa)
−1G(pa)(F

1
i,nF

1
γ(i),n +R1,1

i,γ(i)) ≡ An +Bn

Consider that for any i, j ∈ [n] and d ∈ {0, 1}

F d
i,nF

d
j,n = F d

i,nF
d
j,n − 1/2((F d

i,n)2 + (F d
j,n)2) + 1/2((F d

i,n)2 + (F d
j,n)2)

= (1/2)[(F d
i,n)2 + (F d

j,n)2 − (F d
i,n − F d

j,n)2]

Then the first part of the numerator above becomes

n−1

|Ln|∑
a=1

n∑
s=1

∑
i∈g1a,s

(qpa)
−1G(pa)F

1
i,nF

1
γ(i),n = (2n)−1

|Ln|∑
a=1

n∑
s=1

∑
i∈g1a,s

(qpa)
−1G(pa)[(F

1
i,n)2 + (F 1

γ(i),n)2]

+ (2n)−1

|Ln|∑
a=1

n∑
s=1

∑
i∈g1a,s

(qpa)
−1G(pa)(F

1
i,n − F 1

γ(i),n)2 ≡ A1
n + A2

n

Consider A1
n. Since pi,n = pγ(i),n = pa for i ∈ ga,s by matching admissibility, this is

(2n)−1

|Ln|∑
a=1

n∑
s=1

n∑
i∈g1a,s

(qpi,n)−1G(pi,n)(F 1
i,n)2 + (qpγ(i),n)−1G(pγ(i),n)(F 1

γ(i),n)2

= n−1

n∑
i=1

TiDi(qpi,n)−1G(pi,n)(F 1
i,n)2

The equality follows since γ is bijective and Di = Dγ(i), so the second term sums over
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each treated unit exactly twice. Continuing, the expression above is

= n−1

n∑
i=1

Ti(Di − pi,n)(qpi,n)−1G(pi,n)(F 1
i,n)2 + n−1

n∑
i=1

Ti
q
G(pi,n)(F 1

i,n)2

= n−1

n∑
i=1

Ti(Di − pi,n)(qpi,n)−1G(pi,n)(F 1
i,n)2 + n−1

n∑
i=1

Ti − q
q

G(pi,n)(F 1
i,n)2

+ n−1

n∑
i=1

G(pi,n)(F 1
i,n)2

As in the argument for v̂I , let Fn = σ(W1:n, ζn, π
t
n, π

d
n, τ

t). Note that Fn ⊥⊥ τ d, (ga,s)a,s ∈
Fn, and (qpi,n)−1G(pi,n)(F 1

i,n)2 ∈ Fn. Moreover, note that

sup
n≥1

E
[(

(qpi,n)−1G(pi,n)(F 1
i,n)2

)2
]
. δ−4 sup

n≥1
E
[
(F 1

i,n)4
]

= δ−4 sup
n≥1

E
[
E[(F 1

i,n)4|ζn]
]
<∞

Then by Lemma 9.20.(4), the first term is Op(n
−1/2). Similarly, the second term is

Op(n
−1/2) by Lemma 9.20.(4), applied with selection variables S1:n = 1. For the third

term, by boundedness we have |En[G(pi,n)(F 1
i,n)2 − (F 1

i )2]| . En[|F 1
i,n − F 1

i ||F 1
i,n + F 1

i |].
Taking a conditional expectation

E[En[|F 1
i,n − F 1

i ||F 1
i,n + F 1

i |]|ζ] . E[(F 1
i,n − F 1

i )2|ζ]1/2
(
E[(F 1

i,n)2|ζ]1/2 + E[(F 1
i )2|ζ]1/2

)
≤ Op(r

F
n )E[m1(X)2]1/2 = Op(r

F
n )

The first inequality by Cauchy-Schwarz and triangle inequality. The second inequality is
by assumption and properties of projection. Finally, note that by applying Lemma 9.18

En[G(pi,n)(F 1
i )2] = E[G(pi)(F

1
i )2|ζ] +Op(n

−1/2) +Op(r
p
n)

The lemma applies since E[(F 1
i )4|ζ] <∞, ζ-a.s. by assumption. Putting this all together,

we have shown that A1
n = E[G(pi)(F

1
i )2|ζ] +Op(n

−1/2) +Op(r
p
n) +Op(r

F
n ).

Next, consider A2
n. By the Lipschitz assumption 8.5, on an almost sure set given by the

definition, |A2
n| is bounded by

(2n)−1

|Ln|∑
a=1

n∑
s=1

∑
i∈g1a,s

(qpa)
−1|G(pa)|(F 1

i,n − F 1
γ(i),n)2 . n−1

|Ln|∑
a=1

n∑
s=1

∑
i∈g1a,s

(ψi − ψγ(i))
2

≤ n−1

|Ln|∑
a=1

n∑
s=1

∑
i∈ga,s

(ψi − ψγ(i))
2 = En[Ti(ψi − ψγ(i))

2] = Op(r
ψ
n )

The final equality follows by matching admissibility as in Definition 5.1.
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Next, we bound the residual terms above

Bn = n−1

|Ln|∑
a=1

n∑
s=1

∑
i∈g1a,s

(qpa)
−1G(pa)R

1,1
i,γ(i)

= n−1

|Ln|∑
a=1

(qpa)
−1G(pa)

n∑
s=1

n∑
i,j=1

Di1(i ∈ ga,s)1(j = γ(i))R1,1
i,j

By definition the matching can be written as a deterministic function

γ = γ((ga,s)a,s, ψ1:n, p1:n,n, D1:n, T1:n) = γ(ψ1:n, p1:n,n, π
t
n, π

d
n, τ

t, τ d)

By assumption 9.3 and Lemma 9.19.(i). Let F(ψ,pn,τd),n = σ(ψ1:n, p1:n,n, π
t
n, π

d
n, τ

t, τ d, ζ).
Again by Lemma 9.19.(i), Di ∈ F(ψ,pn,τd),n for all i, and clearly F d

i,n ∈ F(ψ,pn,τd),n.
In the sequel, we will make use of the following conditional moments. Momentarily
suppressing the 1-superscript notation, applying Lemma 9.22 with Fn = F(ψ,pn,τd),n,
ξn = (πdn, π

t
n, τ

t, τ d), and ζn = ζ gives

0 = E[ui,n|F(ψ,pn,τd),n] = E[εi|F(ψ,pn,τd),n] = E[ui,nuj,n|F(ψ,pn,τd),n] = E[ui,nεj|F(ψ,pn,τd),n]

= E[εiεj|F(ψ,pn,τd),n] = E[ui,nuj,nεl|F(ψ,pn,τd),n] = E[ui,nεjεl|F(ψ,pn,τd),n] = E[ui,nuj,nul,n|F(ψ,pn,τd),n]

= E[εiεjεl|F(ψ,pn,τd),n] = E[εiεjεlεf |F(ψ,pn,τd),n] = E[εiεjεluf,n|F(ψ,pn,τd),n]

= E[εiεjul,nuf,n|F(ψ,pn,τd),n] = E[εiuj,nul,nuf,n|F(ψ,pn,τd),n] = E[ui,nuj,nul,nuf,n|F(ψ,pn,τd),n]

Recall that

R1,1
i,j = F 1

j,n(u1
i,n + ε1i ) + F 1

i,n(u1
j,n + ε1j) + (u1

i,n + ε1i )(u
1
j,n + ε1j)

By the moments above, E[R1,1
i,j |F(ψ,pn,τd),n] = 0 for 1 ≤ i 6= j ≤ n. Since Di1(i ∈

ga,2s)1(j = γ(i)) ∈ F(ψ,pn,τd),n and 1(j = γ(i)) = 0 for j = i by definition, we have showns
that E[Bn|F(ψ,pn,τd),n] = 0. Next, consider the conditional variance E[B2

n|F(ψ,pn,τd),n],
given by

E[B2
n|F(ψ,pn,τd),n] = n−2

|Ln|∑
a,a′=1

G(pa)G(pa′)

q2papa′

n∑
s,s′=1

n∑
i 6=j=1

n∑
l 6=f=1

Ca,a′,s,s′

i,j,l,f E[R1,1
i,j R

1,1
l,f |F(ψ,pn,τd),n]

Ca,a′,s,s′

i,j,l,f ≡ DiDl1(i ∈ ga,s)1(l ∈ ga′,s′)1(j = γ(i))1(f = γ(l))

Case 1: f ∈ {i, j} or l ∈ {i, j} exclusive. By definition of our matching, e.g. for the case
{f = i, l 6= j} we have 1(j = γ(i))1(i = γ(l)) = 0, since each unit is matched uniquely.
The other subcases follow by permuting labels.

Case 2: {i, j} ∩ {f, l} = ∅. Then we have

R1,1
i,j R

1,1
l,f = F 1

f,n(u1
l,n + ε1l )[F

1
j,n(u1

i,n + ε1i ) + F 1
i,n(u1

j,n + ε1j) + (u1
i,n + ε1i )(u

1
j,n + ε1j)]

+ F 1
l,n(u1

f,n + ε1f )[F
1
j,n(u1

i,n + ε1i ) + F 1
i,n(u1

j,n + ε1j) + (u1
i,n + ε1i )(u

1
j,n + ε1j)]

+ (u1
l,n + ε1l )(u

1
f,n + ε1f )[F

1
j,n(u1

i,n + ε1i ) + F 1
i,n(u1

j,n + ε1j) + (u1
i,n + ε1i )(u

1
j,n + ε1j)]

Let i, j, l, f jointly distinct indices. Then since F 1
i,n ∈ F(ψ,pn,τd),n for all i, we see that in
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this case E[R1,1
i,j R

1,1
l,f |F(ψ,pn,τd),n] = 0 by the moments above.

Case 3: {i, j} = {f, l}. Note that if 1(i ∈ ga,s)1(j = γ(i)) = 1 then 1(j ∈ ga,s)1(i =

γ(j)) = 0, since j can’t both be in an even and odd group, so Ca,a′,s,s′

i,j,j,i = 0 for all i, j.
Then we only need consider terms of the form

(R1,1
i,j )2 = (F 1

j,n)2(u1
i,n + ε1i )

2 + (F 1
i,n)2(u1

j,n + ε1j)
2 + (u1

i,n + ε1i )
2(u1

j,n + ε1j)
2

+ F 1
j,nF

1
i,n(u1

i,n + ε1i )(u
1
j,n + ε1j) + F 1

j,n(u1
i,n + ε1i )

2(u1
j,n + ε1j)

+ F 1
i,n(u1

j,n + ε1j)
2(u1

i,n + ε1i )

In addition to the moments above, note also that for any i 6= j

0 = E[ui,nεi|F(ψ,pn,τd),n] = E[ui,nεiuj,nεj|F(ψ,pn,τd),n] = E[(u1
i,n + ε1i )(u

1
j,n + ε1j)

2|F(ψ,pn,τd),n]

again by Lemma 9.22. Then all of the cross terms are conditionally mean zero. This
leaves only diagonal terms of the form E[(R1,1

i,j )2|F(ψ,pn,τd),n], which can be written

E
[
(F 1

j,n)2((u1
i,n)2 + (ε1i )

2) + (F 1
i,n)2((u1

j,n)2 + (ε1j)
2)|F(ψ,pn,τd),n

]
+ E

[
(u1

i,nu
1
j,n)2 + (u1

i,nε
1
j)

2 + (u1
j,nε

1
i )

2 + (ε1i ε
1
j)

2|F(ψ,pn,τd),n

]
= (F 1

j,n)2(σ2
u1,n(Xi) + E[σ2

1(Xi)|ψ, pi,n, ζ]) + (F 1
i,n)2(σ2

u1,n(Xj) + E[σ2
1(Xi)|ψ, pi,n, ζ])

+ σ2
u1,n(Xi)σ

2
u1,n(Xj) + σ2

u1,n(Xi)E[σ2
1(Xj)|ψ, pi,n, ζ] + σ2

u1,n(Xj)E[σ2
1(Xi)|ψ, pi,n, ζ]

+ E[σ2
1(Xi)|ψ, pi,n, ζ]E[σ2

1(Xj)|ψ, pi,n, ζ] ≤ 2σ2[(F 1
j,n)2 + (F 1

i,n)2] + 4(σ2)2

The second equality uses Lemma 9.22, and the final inequality is by assumption. Also,
note that 1(i ∈ ga,s)1(i ∈ ga′,s′) = 0 for (a, s) 6= (a′, s′) by uniqueness of group member-
ship. This leaves only the diagonal terms, so that E[B2

n|F(ψ,pn,τd),n] is

n−2

|Ln|∑
a=1

G(pa)
2

q2p2
a

n∑
s=1

n∑
i 6=j=1

Di1(i ∈ ga,s)1(j = γ(i))E[(R1,1
i,j )2|F(ψ,pn,τd),n]

. n−2

|Ln|∑
a=1

n∑
s=1

n∑
i 6=j=1

Di1(i ∈ ga,s)1(j = γ(i))
(
2σ2[(F 1

j,n)2 + (F 1
i,n)2] + 4(σ2)2

)
= n−2

|Ln|∑
a=1

n∑
s=1

n∑
i 6=j=1

1(i ∈ ga,s)1(j = γ(i))
(
2σ2[Dj(F

1
j,n)2 +Di(F

1
i,n)2] + 4Di(σ

2)2
)

The last equality since Di1(j = γ(i)) = Dj. Finally, note that this is

n−2

|Ln|∑
a=1

n∑
s=1

n∑
i∈ga,s

[
2σ2[Dγ(i)(F

1
γ(i),n)2 +Di(F

1
i,n)2] + 4Di(σ

2)2

]

. n−2

n∑
i=1

TiDi(F
1
i,n)2 + n−2 · (qn) = Op(n

−1)

The final equality follows since En[TiDi(F
1
i,n)2] = Op(1) by the calculations above for the

term A1
n. Then by conditional Chebyshev (Lemma 9.16), Bn = Op(n

−1/2). Putting this
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all together, we have shown that

v̂1 = A1
n + A2

n +Bn = E[G(pi)(F
1
i )2|ζ] +Op(n

−1/2) +Op(r
p
n) +Op(r

F
n ) +Op(r

ψ
n )

By symmetry of our assumptions with respect to permutation of the labels d ∈ {0, 1},
the same result holds for the estimator v̂0.

To conclude, we analyze the cross-moment estimator, expanding using Equation 9.6

v̂10 = 2n−1
∑

1≤i<j≤n

TiTj
q

1(g(i) = g(j))

Card(g)

Di(1−Dj)YiYj
pn(Xi)(1− pn)(Xj)

= (qn)−1

|Ln|∑
a=1

n∑
s=1

1

ka

k2
a

qa(ka − qa)
∑
i∈g1a,s

∑
j∈g0a,s

Yi(1)Yj(0)

= (qn)−1

|Ln|∑
a=1

n∑
s=1

1

ka − 1

ka(ka − 1)

qa(ka − qa)
∑
i∈g1a,s

∑
j∈g0a,s

(F 1
i,nF

0
j,n +R1,0

i,j ) ≡ Sn + Tn

First consider Sn. Let F(ψ,pn),n = σ(ψ1:n, p1:n,n, π
t
n, π

d
n, τ

t, ζ), then we have (ga,s)a,s, F
d
i,n ∈

F(ψ,pn),n and F(ψ,pn),n ⊥⊥ τ d, so by Lemma 9.19

E[Sn|F(ψ,pn),n] = (qn)−1

|Ln|∑
a=1

n∑
s=1

1

ka − 1

ka(ka − 1)

qa(ka − qa)
∑

i,j∈ga,s

E[Di(1−Dj)|F(ψ,pn),n]F 1
i,nF

0
j,n

= (qn)−1

|Ln|∑
a=1

n∑
s=1

1

ka − 1

ka(ka − 1)

qa(ka − qa)
∑

i,j∈ga,s
i 6=j

qa(ka − qa)
ka(ka − 1)

F 1
i,nF

0
j,n

= (qn)−1

|Ln|∑
a=1

n∑
s=1

1

ka − 1

∑
i,j∈ga,s
i<j

F 1
i,nF

0
j,n + F 1

j,nF
0
i,n

= (qn)−1

|Ln|∑
a=1

n∑
s=1

1

ka − 1

∑
i,j∈ga,s
i<j

F 1
i,nF

0
i,n + F 1

j,nF
0
j,n + (F 1

i,n − F 1
j,n)(F 0

j,n − F 0
i,n)

≡ S1
n + S2

n

First consider S1
n. Note that the final sum is

∑
i,j∈ga,s
i<j

F 1
i,nF

0
i,n +

∑
i,j∈ga,s
i<j

F 1
j,nF

0
j,n =

n∑
i=1

F 1
i,nF

0
i,n1(i ∈ ga,s)

∑
j>i

1(j ∈ ga,s)

+
n∑
j=1

F 1
j,nF

0
j,n1(j ∈ ga,s)

∑
i<j

1(i ∈ ga,s) =
n∑
i=1

F 1
i,nF

0
i,n1(i ∈ ga,s)(ka − 1)
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Then we have S1
n = (qn)−1

∑|Ln|
a=1

∑n
s=1

∑n
i∈ga,s F

1
i,nF

0
i,n = q−1En[TiF

1
i,nF

0
i,n]. Next we write

En[TiF
1
i,nF

0
i,n] = En[Ti(F

1
i,n − F 1

i + F 1
i )(F 0

i,n − F 0
i + F 0

i )]

= En[TiF
1
i F

0
i ] + En[Ti(F

1
i,n − F 1

i )(F 0
i,n − F 0

i )] + En[Ti(F
1
i,n − F 1

i )F 0
i ] + En[TiF

1
i (F 0

i,n − F 0
i )]

The first term has

E[|En[Ti(F
1
i,n − F 1

i )(F 0
i,n − F 0

i )]||ζ] ≤ E[|F 1
i,n − F 1

i ||F 0
i,n − F 0

i ||ζ]

≤ E[|F 1
i,n − F 1

i |2|ζ]1/2E[|F 0
i,n − F 0

i |2|ζ]1/2 = Op((r
F
n )2)

Also E[|En[Ti(F
1
i,n − F 1

i )F 0
i ]||ζ] ≤ E[|F 1

i,n − F 1
i |2|ζ]1/2E[|F 1

i |2|ζ]1/2 = Op(r
F
n ). Then by

conditional Markov, the last three terms above are Op(r
F
n ). Finally, note that

En[TiF
1
i F

0
i ] = En[(Ti − q)F 1

i F
0
i ] + qEn[F 1

i F
0
i ] = qE[F 1

i F
0
i |ζ] +Op(n

−1/2)

For the final equality, note that En[(Ti − q)F 1
i F

0
i ] by Lemma 9.20 since by assumption

E[(F 1
i )2(F 0

i )2|ζ] . E[(F 1
i )4|ζ] + E[(F 0

i )4|ζ] <∞

The conclusion then follows conditional Markov manipulations applied to qEn[F 1
i F

0
i ]. We

have shown that S1
n = E[F 1

i F
0
i |ζ] +Op(n

−1/2) +Op(r
F
n ).

Next, consider the differences in S2
n above. By the Lipschitz assumption, on an almost

sure set given by definition 8.5 we have

|S2
n| ≤ (qn)−1

|Ln|∑
a=1

n∑
s=1

1

ka − 1

∑
i,j∈ga,s
i<j

|F 1
i,n − F 1

j,n||F 0
j,n − F 0

i,n|

. n−1

|Ln|∑
a=1

n∑
s=1

1

ka − 1

∑
i,j∈ga,s
i<j

(ψi − ψj)2 . n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈ga,s
i 6=j

(ψi − ψj)2 = Op(r
ψ
n )

Putting this all together, we have shown that

E[Sn|F(ψ,pn),n] = E[F 1
i F

0
i |ζ] +Op(n

−1/2) +Op(r
F
n ) +Op(r

ψ
n )

Next, we will show the coupling Sn − E[Sn|F(ψ,pn),n] = Op((kn/n)1/2). As previously,
define the higher-order inverse propensity weight wa,n ≡ E[Di(1−Dj)|F(ψ,pn),n]−11(i, j ∈
ga,s) = ka(ka−1)

qa(ka−qa)
. By work above, we have

Sn − E[Sn|F(ψ,pn),n] = (qn)−1

|Ln|∑
a=1

n∑
s=1

1

ka − 1

∑
i,j∈ga,s
i 6=j

F 1
i,nF

0
j,n(Di(1−Dj)wa,n − 1)
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Therefore, Var(Sn|F(ψ,pn),n) is given by the conditional expectation w.r.t. F(ψ,pn),n of

|Ln|∑
a,a′=1

n∑
s,s′=1

(qn)−2

(ka − 1)2

∑
i,j∈ga,s
i 6=j

∑
l,f∈ga′,s′
l 6=f

F 1
i,nF

1
l,nF

0
f,nF

0
j,n(Di(1−Dj)wa,n − 1)(Dl(1−Df )wa′,n − 1)

By the weight definition E[Di(1−Dj)wa,n1(i, j ∈ ga,s)|F(ψ,pn),n] = 1 for all i 6= j. Then
taking a conditional expectation, the above simplifies to

|Ln|∑
a=1

n∑
s=1

(qn)−2

(ka − 1)2

∑
i,j∈ga,s
i 6=j

∑
l,f∈ga,s
l 6=f

F 1
i,nF

1
l,nF

0
f,nF

0
j,nΓa,ni,j,l,f

Γa,ni,j,l,f ≡ E[DiDl(1−Dj)(1−Df )|F(ψ,pn),n]w2
a,n − 1

Case 1: {i, j} ∩ {l, f} = ∅. Note that in this case we have ka ≥ 4. By the representation
in Lemma 9.19.(i), we have

|Γa,ni,j,l,f | =

∣∣∣∣∣
(
ka − 4

qa − 2

)(
ka
qa

)−1

w2
a,n − 1

∣∣∣∣∣ =

∣∣∣∣(qa − 1)(ka − qa − 1)

(ka − 2)(ka − 3)
− 1

∣∣∣∣ ≤ 5

Using triangle inequality, the corresponding terms of the sum are bounded by

.
|Ln|∑
a=1

n∑
s=1

(qn)−2

(ka − 1)2

∑
i,j,l,f∈ga,s
i,j,l,f distinct

|F 1
i,nF

1
l,nF

0
f,nF

0
j,n||Γ

a,n
i,j,l,f |

≤
|Ln|∑
a=1

n∑
s=1

5(qn)−2

(ka − 1)2
k3
a

∑
i∈ga,s

|F 1
i,n|4 +

∑
i∈ga,s

|F 0
i,n|4


≤ 7kn(qn)−1
(
En[Ti|F 1

i,n|4] + En[Ti|F 0
i,n|4]

)
. kn(qn)−1

(
En[|F 1

i,n|4] + En[|F 0
i,n|4]

)
= Op(knn

−1)

The first inequality is by Lemma 9.17, and the second noting maxx≥4
x
x−1
≤ 4/3 and

ka ≤ kn. The third inequality by assumption 9.3, and the final equality follows by con-
ditional Markov, since E[(Fi,n)4|ζ] <∞ by assumption.

Case 2: i ∈ {l, f} or j ∈ {l, f}, exclusive. Then we must have ka ≥ 3.
Subcase (a): i = l, then we have

|Γa,ni,j,i,f | = |E[Di(1−Dj)(1−Df )|F(ψ,pn),n]w2
a,n − 1| =

∣∣∣∣∣
(
ka − 3

qa − 1

)(
ka
qa

)−1

w2
a,n − 1

∣∣∣∣∣
Using algebra, one can show that |Γa,ni,j,i,f | ≤ 2ka

qa
+ 1 ≤ 2δ−1 + 1. Again applying triangle
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inequality, these terms in the sum are bounded by

|Ln|∑
a=1

n∑
s=1

(qn)−2

(ka − 1)2

∑
i,j,f∈ga,s
i,j,f distinct

|F 1
i,n|2|F 0

f,nF
0
j,n||Γ

a,n
i,j,i,f |

≤
|Ln|∑
a=1

n∑
s=1

(2δ−1 + 1)(qn)−2

(ka − 1)2

∑
i,j,f∈ga,s
i,j,f distinct

|F 1
i,n|2|F 0

f,nF
0
j,n|

≤
|Ln|∑
a=1

n∑
s=1

(2δ−1 + 1)(qn)−2

(ka − 1)2
k2
a

∑
i∈ga,s

|F 1
i,n|4 +

∑
i∈ga,s

|F 0
i,n|4


. n−1(En[|F 1
i,n|4] + En[|F 0

i,n|4]) = Op(n
−1)

Subcase (b): j = f , then we have

|Γa,ni,j,l,j| = |E[DiDl(1−Dj)|F(ψ,pn),n]w2
a,n − 1| =

∣∣∣∣∣
(
ka − 3

qa − 2

)(
ka
qa

)−1

w2
a,n − 1

∣∣∣∣∣
≤ (qa − 1)ka(ka − 1)

(ka − 2)qa(ka − qa)
+ 1 ≤ 2

ka
ka − qa

+ 1 ≤ 2δ−1 + 1

Then the relevant terms in the sum are bounded by

|Ln|∑
a=1

n∑
s=1

(2δ−1 + 1)(qn)−2

(ka − 1)2

∑
i,l,j∈ga,s
i,l,j distinct

|F 1
i,n||F 1

l,n||F 0
j,n|2 = Op(n

−1)

by the same argument as the previous subcase, permuting labels {0, 1}.
Subcase (c): i = f , then Γa,ni,j,l,f = E[DiDl(1−Dj)(1−Di)|F(ψ,pn),n]w2

a,n − 1 = −1. Then
the relevant terms in the sum are bounded by

|Ln|∑
a=3

n∑
s=1

(qn)−2

(ka − 1)2

∑
i,j,l∈ga,s
i,j,l distinct

|F 1
i,n||F 0

i,n||F 1
l,n||F 0

j,n|

≤
|Ln|∑
a=3

n∑
s=1

(qn)−2

(ka − 1)2
(k3
a + ka)

∑
i∈ga,s

|F 1
i,n|4 + |F 0

i,n|4

. knn
−1(En[|F 1

i,n|4] + En[|F 0
i,n|4]) = Op(knn

−1)

The first inequality is by Lemma 9.17, and the second uses ka ≤ kn and maxk≥3
k(k+1)
(k−1)2

= 3.
Subcase (d): j = l, then Γa,ni,j,l,f = E[DiDj(1−Dj)(1−Df )|F(ψ,pn),n]w2

a,n − 1 = −1 Then
the relevant terms in the sum are bounded by

|Ln|∑
a=3

n∑
s=1

(qn)−2

(ka − 1)2

∑
i,j,f∈ga,s
i,j,f distinct

|F 1
i,n||F 0

j,n||F 1
j,n||F 0

f,n| = Op(knn
−1)
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since this is the same expression as the previous case.

Case 3: {i, j} = {l, f}.
Subcase (a): (i, j) = (l, f), then we have

|Γa,ni,j,i,j| = |E[Di(1−Dj)|F(ψ,pn),n]w2
a,n − 1| =

∣∣w−1
a,nw

2
a,n − 1

∣∣ ≤ wa,n + 1 ≤ δ−2 + 1

Then the relevant terms in the sum are bounded by

|Ln|∑
a=1

n∑
s=1

(qn)−2(δ−2 + 1)

(ka − 1)2

∑
i,j∈ga,s
i,j distinct

|F 1
i,n|2|F 0

j,n|2

≤
|Ln|∑
a=1

n∑
s=1

(qn)−2(δ−2 + 1)ka
(ka − 1)2

∑
i∈ga,s

|F 1
i,n|4 + |F 0

j,n|4

. n−1(En[|F 1
i,n|4] + En[|F 0

i,n|4]) = Op(n
−1)

The first inequality is by Lemma 9.17, then using maxk≥2
k

(k−1)2
= 2.

Subcase (b): (i, j) = (f, l), then Γa,ni,j,l,f = E[DiDj(1−Dj)(1−Di)|F(ψ,pn),n]w2
a,n−1 = −1.

Then the relevant terms are bounded by

|Ln|∑
a=1

n∑
s=1

(qn)−2

(ka − 1)2

∑
i,j∈ga,s
i,j distinct

|F 1
i,n||F 0

i,n||F 0
j,n||F 1

j,n| ≤
|Ln|∑
a=1

n∑
s=1

n−2ka
(ka − 1)2

∑
i∈ga,s

|F 1
i,n|4 + |F 0

j,n|4

≤2n−1(En[|F 1
i,n|4] + En[|F 0

i,n|4]) = Op(n
−1)

By Lemma 9.17 again. From the work above and triangle inequality, we see that

Var(Sn|F(ψ,pn),n) ≤
|Ln|∑
a=1

n∑
s=1

n−2

(ka − 1)2

∑
i,j∈ga,s
i 6=j

∑
l,f∈ga,s
l 6=f

|F 1
i,nF

1
l,nF

0
f,nF

0
j,n||Γ

a,n
i,j,l,f |

= Op(n
−1) +Op(knn

−1)

Then by Lemma 9.16, we have the coupling Sn − E[Sn|F(ψ,pn),n] = Op((kn/n)1/2).
Together with the result above, we have shown that

Sn = E[F 1
i F

0
i |ζ] +Op(n

−1/2) +Op(r
F
n ) +Op(r

ψ
n ) +Op((kn/n)1/2)

Next, we consider the residual terms Tn.

Tn = (qn)−1

|Ln|∑
a=1

wa,n
ka

n∑
s=1

n∑
i 6=j=1

Di(1−Dj)1(i ∈ ga,s)1(j ∈ ga,s)R1,0
i,j

R1,0
i,j = F 0

j,n(u1
i,n + ε1i ) + F 1

i,n(u0
j,n + ε0j) + (u1

i,n + ε1i )(u
0
j,n + ε0j)

Again, let F(ψ,pn,τd),n = σ(ψ1:n, p1:n,n, π
d
n, π

t
n, τ

t, τ d, ζ). By the residual moments analyzed
above, we have E[R1,0

i,j |F(ψ,pn,τd),n] = 0 for i 6= j. Since Di(1−Dj)1(i ∈ ga,s)1(j ∈ ga,s) ∈
F(ψ,pn,τd),n, we have E[Tn|F(ψ,pn,τd),n] = 0. Next, we consider the conditional variance
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E[T 2
n |F(ψ,pn,τd),n]. This can be written as

(qn)−2

|Ln|∑
a,a′=1

wa,nwa′,n
(ka − 1)(ka′,n − 1)

n∑
s,s′=1

n∑
i 6=j=1

n∑
l 6=f=1

κa,a
′,s,s′

i,j,l,f E[R1,0
i,j R

1,0
l,f |F(ψ,pn,τd),n]

κa,a
′,s,s′

i,j,l,f ≡ DiDl(1−Dj)(1−Df )1(i ∈ ga,s)1(j ∈ ga,s)1(l ∈ ga′,s′)1(f ∈ ga′,s′)

Case 1: {i, j} ∩ {l, f} = ∅. Then we have E[R1,0
i,j R

1,0
l,f |F(ψ,pn,τd),n] = 0 by the work in our

analysis of v̂1, noting that we did not rely on the superscript values. If (a, s) 6= (a′, s′),
then {i, j} ∩ {l, f} = ∅ on the event {i, j ∈ ga,s} ∩ {l, f ∈ ga′,s′}, so all terms with
(a, s) 6= (a′, s′) are 0.

Case 2: i ∈ {l, f} or j ∈ {l, f}, exclusive. If i = f then DiDl(1 − Dj)(1 − Df ) =
DiDl(1−Dj)(1−Di) = 0 and similarly if j = l. This leaves the subcases i = l or j = f ,
exclusive. Suppose i = l, then

R1,0
i,j R

1,0
i,f = F 0

f,n(u1
i,n + ε1i )[F

0
j,n(u1

i,n + ε1i ) + F 1
i,n(u0

j,n + ε0j) + (u1
i,n + ε1i )(u

0
j,n + ε0j)]

+ F 1
i,n(u0

f,n + ε0f )[F
0
j,n(u1

i,n + ε1i ) + F 1
i,n(u0

j,n + ε0j) + (u1
i,n + ε1i )(u

0
j,n + ε0j)]

+ (u1
i,n + ε1i )(u

0
f,n + ε0f )[F

0
j,n(u1

i,n + ε1i ) + F 1
i,n(u0

j,n + ε0j) + (u1
i,n + ε1i )(u

0
j,n + ε0j)]

Again applying Lemma 9.22, only the first cross moments remains, leaving

|E[R1,0
i,j R

1,0
i,f |F(ψ,pn,τd),n]| = |E[F 0

f,nF
0
j,n(u1

i,n + ε1i )
2|F(ψ,pn,τd),n]|

= |F 0
f,nF

0
j,n|(σ2

u1,n(Xi) + E[σ2
1(Xi)|ψi, pi,n]) ≤ 2|F 0

f,nF
0
j,n|σ2

Suppose j = f . Then reasoning similarly the only non-zero cross-moment is

|E[R1,0
i,j R

1,0
l,j |F(ψ,pn,τd),n]| = |E[F 1

l,nF
1
i,n(u0

j,n + ε0j)
2|F(ψ,pn,τd),n]| ≤ 2|F 1

l,nF
1
i,n|σ2

Case 3: {i, j} = {l, f}. Note that DiDj(1 −Di)(1 −Dj) = 0, so we need only consider
the case where i = l and j = f . We have

(R1,0
i,j )2 = (F 0

j,n(u1
i,n + ε1i ) + F 1

i,n(u0
j,n + ε0j) + (u1

i,n + ε1i )(u
0
j,n + ε0j))

2

= (F 0
j,n)2(u1

i,n + ε1i )
2 + (F 1

i,n)2(u0
j,n + ε0j)

2 + (u1
i,n + ε1i )

2(u0
j,n + ε0j)

2

+ 2
(
F 0
j,nF

1
i,n(u1

i,n + ε1i )(u
0
j,n + ε0j) + F 0

j,n(u1
i,n + ε1i )

2(u0
j,n + ε0j) + F 1

i,n(u0
j,n + ε0j)

2(u1
i,n + ε1i )

)
As in our analysis of v̂1, using Lemma 9.22, all the cross terms are conditionally mean
zero. Also

E[u1
i,nε

1
i |F(ψ,pn,τd),n] = E[u1

i,nε
1
i (u

0
j,n + ε0j)

2|F(ψ,pn,τd),n] = 0

Using these observations and application of Lemma 9.22 to compute higher order moments
as in the previous analysis, E[(R1,0

i,j )2|F(ψ,pn,τd),n] simplifies as

(F 0
j,n)2(σ2

u1,n(Xi) + E[σ2
1(Xi)|ψi, pi,n, ζ]) + (F 1

i,n)2(σ2
u0,n(Xj) + E[σ2

0(Xj)|ψj, pj,n, ζ])

+ σ2
u1,n(Xi)σ

2
u0,n(Xj) + σ2

u1,n(Xi)E[σ2
0(Xj)|ψj, pj,n, ζ] + E[σ2

1(Xi)|ψi, pi,n, ζ]σ2
u0,n(Xj)

+ E[σ2
1(Xi)|ψi, pi,n, ζ]E[σ2

0(Xj)|ψj, pj,n, ζ] ≤ 2(F 0
j,n)2σ2 + 2(F 1

i,n)2σ2 + 4(σ2)2
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From the discussion above, we can simplify

E[T 2
n |F(ψ,pn,τd),n] = (qn)−2

|Ln|∑
a=1

w2
a,n

(ka − 1)2

n∑
s=1

n∑
i 6=j=1

κa,a,s,si,j,i,j E[(R1,0
i,j )2|F(ψ,pn,τd),n]

+ (qn)−2

|Ln|∑
a=1

w2
a,n

(ka − 1)2

n∑
s=1

n∑
i 6=j=1

∑
f 6∈{i,j}

κa,a,s,si,j,i,f E[R1,0
i,j R

1,0
i,f |F(ψ,pn,τd),n]

+ (qn)−2

|Ln|∑
a=1

w2
a,n

(ka − 1)2

n∑
s=1

n∑
i 6=j=1

∑
l 6∈{i,j}

κa,a,s,si,j,l,j E[R1,0
i,j R

1,0
l,j |F(ψ,pn,τd),n]

≡ T n,1 + T n,2 + T n,3

Note the weight bound

w2
a,n =

k2
a(ka − 1)2

q2
a(ka − qa)2

≤ k4
a

q2
a(ka − qa)2

=
1

p2
a(1− pa)2

≤ δ−4

Then we have

T n,1 = (qn)−2

|Ln|∑
a=1

w2
a,n

(ka − 1)2

n∑
s=1

n∑
i 6=j=1

Di(1−Dj)1(i, j ∈ ga,s)E[(R1,0
i,j )2|F(ψ,pn,τd),n]

≤ δ−4(qn)−2

|Ln|∑
a=1

1

(ka − 1)2

n∑
s=1

n∑
i 6=j=1

Di(1−Dj)1(i, j ∈ ga,s)
[
2(F 0

j,n)2σ2 + 2(F 1
i,n)2σ2 + 4(σ2)2

]
The first term in the brackets is bounded by

. n−2

|Ln|∑
a=1

1

(ka − 1)2

n∑
s=1

n∑
j=1

(1−Dj)1(j ∈ ga,s)(F 0
j,n)2

n∑
i=1
i 6=j

Di1(i ∈ ga,s)

≤ n−2

|Ln|∑
a=1

1

(ka − 1)2

n∑
s=1

n∑
j=1

(1−Dj)1(j ∈ ga,s)(F 0
j,n)2qa1(ga,s 6= ∅)

= n−2

|Ln|∑
a=1

qa
(ka − 1)2

n∑
s=1

n∑
j=1

(1−Dj)1(j ∈ ga,s)(F 0
j,n)2

≤ n−2

|Ln|∑
a=1

n∑
s=1

n∑
j=1

(1−Dj)1(j ∈ ga,s)(F 0
j,n)2 = n−1En[Ti(1−Dj)(F

0
j,n)2] = Op(n

−1)

Identical reasoning can be used to show that

n−2

|Ln|∑
a=1

1

(ka − 1)2

n∑
s=1

n∑
i 6=j=1

Di(1−Dj)1(i, j ∈ ga,s)2(F 1
i,n)2σ2 = Op(n

−1)
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The last term in the bracket gives

4δ−4n−2

|Ln|∑
a=1

1

(ka − 1)2

n∑
s=1

n∑
i 6=j=1

Di(1−Dj)1(i, j ∈ ga,s)(σ2)2

. n−2

|Ln|∑
a=1

qa(ka − qa)
(ka − 1)2

[(
n∑
s=1

1(ga,s 6= ∅)

)
+ 1

]

≤ n−2

|Ln|∑
a=1

[(
n∑
s=1

1(ga,s 6= ∅)

)
+ 1

]
≤ 4δ−4(σ2)2n−2[n+ |Ln|]

=Op(n
−1) +Op(|Ln|n−2)

Summarizing, we have shown that T n,1 = Op(n
−1). Next, consider T n,2. By triangle

inequality

|T n,2| ≤ (qn)−2

|Ln|∑
a=1

w2
a,n

(ka − 1)2

n∑
s=1

n∑
i 6=j=1

∑
f 6∈{i,j}

κa,a,s,si,j,i,f |E[R1,0
i,j R

1,0
i,f |F(ψ,pn,τd),n]|

. n−2

|Ln|∑
a=1

w2
a,n

(ka − 1)2

n∑
s=1

n∑
i 6=j=1

∑
f 6∈{i,j}

Di(1−Dj)(1−Df )1(i, j, f ∈ ga,s)|F 0
f,nF

0
j,n|

Then E[|T n,2||F(ψ,pn),n] is bounded above by

|Ln|∑
a=1

n−2w2
a,n

(ka − 1)2

n∑
s=1

n∑
i 6=j=1

∑
f 6∈{i,j}

E[Di(1−Dj)(1−Df )|F(ψ,pn),n]1(i, j, f ∈ ga,s)|F 0
f,nF

0
j,n|

=

|Ln|∑
a=1

n−2w2
a,n

(ka − 1)2

n∑
s=1

n∑
i 6=j=1

∑
f 6∈{i,j}

qa(ka − qa)(ka − qa − 1)

ka(ka − 1)(ka − 2)
1(i, j, f ∈ ga,s)|F 0

f,nF
0
j,n|

We can simplify the (a, n) weight as

w2
a,nqa(ka − qa)(ka − qa − 1)

ka(ka − 1)3(ka − 2)
=
k2
a(ka − 1)2(ka − qa)(ka − qa − 1)

ka(ka − 1)3(ka − 2)q2
a(ka − qa)2

=
ka(ka − qa − 1)

(ka − 1)(ka − 2)q2
a(ka − qa)
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The inner summand is
n∑
s=1

n∑
i 6=j=1

∑
f 6∈{i,j}

1(i, j, f ∈ ga,s)|F 0
f,nF

0
j,n| =

n∑
s=1

n∑
j 6=f

1(j, f ∈ ga,s)|F 0
f,nF

0
j,n|

∑
i 6∈{j,f}

1(i ∈ ga,s)

=
n∑
s=1

(ka − 2)
n∑
j 6=f

1(j, f ∈ ga,s)|F 0
f,nF

0
j,n| ≤

n∑
s=1

(ka − 2)

∑
j∈ga,s

|F 0
j,n|

2

=
n∑
s=1

(ka − 2)k2
a

k−1
a

∑
j∈ga,s

|F 0
j,n|

2

≤
n∑
s=1

(ka − 2)k2
ak
−1
a

∑
j∈ga,s

(F 0
j,n)2

The first inequality is by adding and subtracting the diagonal terms, and the second is
by Jensen. Using the two preceding displays, we have

E[|T n,2||F(ψ,pn),n] .
|Ln|∑
a=1

n−2k2
a(ka − 2)(ka − qa − 1)

(ka − 1)(ka − 2)q2
a(ka − qa)

n∑
s=1

∑
j∈ga,s

(F 0
j,n)2

≤ n−2

|Ln|∑
a=1

2ka
q2
a

n∑
s=1

∑
j∈ga,s

(F 0
j,n)2 ≤ δ−1n−2

|Ln|∑
a=1

n∑
s=1

∑
j∈ga,s

(F 0
j,n)2

. n−1En[Ti(F
0
j,n)2] = Op(n

−1)

The first inequality simplifies, using maxk≥2
k
k−1

= 2 and maxk≥2
k−1
k
≤ 1. The second

inequality uses ka/qa = 1
pa
≤ δ−1 and q−1

a ≤ 1. By Lemma 9.16, T n,2 = Op(n
−1). A very

similar argument shows that T n,3 = Op(n
−1). Putting this together, we have shown that

E[T 2
n |F(ψ,pn,τd),n] = T n,1 +T n,2 +T n,3 = Op(n

−1), so that Tn = Op(n
−1/2) by Lemma 9.16.

Summarizing, we have shown that

v̂10 = Sn + Tn = E[Sn|F(ψ,pn),n] + (Sn − E[Sn|F(ψ,pn),n]) + Tn

= E[F 1
i F

0
i |ζ] +Op(n

−1/2) +Op(r
F
n ) +Op(r

ψ
n ) +Op((kn/n)1/2) +Op

(√
|Ln|/n

)
This completes the proof of the lemma.

9.5 Propositions

Definition 9.13 (Conditional Weak Convergence). For random variables An ∈ Rd and
σ-algebras (Fn)n, define conditional weak convergence

An|Fn ⇒ A ⇐⇒ E[eit
′An|Fn] = E[eit

′A] + op(1) ∀t ∈ Rd

We require a slight modification of the martingale difference CLT in Billingsley.

Proposition 9.14 (MDS-CLT). Consider probability spaces (Ωn,Gn, Pn) each equipped
with filtration (Fk,n)k≥0. Suppose (Yk,n)rnk=1 is adapted to (Fk,n)k≥0 and has E[Yk,n|Fk−1,n] =
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0 for all k ≥ 1 with rn →∞. Make the following definitions

Sk,n =
k∑
j=1

Yk,n σ2
k,n = E[Y 2

k,n|Fk−1,n] Σk,n =
k∑
j=1

σ2
k,n

Denote Sn ≡ Srn,n and Σn ≡ Σrn,n. Suppose that Σn ∈ F0,n for all n and Σn = σ2 +op(1).
Also, suppose for each ε > 0

n∑
k=1

E[Y 2
k,n1(|Yk,n| ≥ ε)|F0,n] = op(1) (9.8)

Then E[eitSn|F0,n] = e−
1
2
t2σ2

+ op(1).

Proof. We may compute

E
[
eitSn − e−

1
2
t2σ2|F0,n

]
= E[eitSn(1− e

1
2
t2Σne−

1
2
t2σ2

)|F0,n] + E[e−
1
2
t2σ2

(e
1
2
t2ΣneitSn − 1)|F0,n]

For the first term, by conditional Jensen inequality

|E[eitSn(1− e
1
2
t2Σne−

1
2
t2σ2

)|F0,n]| ≤ E[|(1− e
1
2
t2Σne−

1
2
t2σ2

)||F0,n]

= |(1− e
1
2
t2Σne−

1
2
t2σ2

)| = op(1)

The first equality since Σn ∈ F0,n. Since Σn = σ2 + op(1), the second equality follows by
continuous mapping. Following the telescoping argument in Billingsley (henceforth BL),
the second term is

|e−
1
2
t2σ2

E[(e
1
2
t2ΣneitSn − 1)|F0,n]| = e−

1
2
t2σ2 |E[(e

1
2
t2ΣneitSn − 1)|F0,n]|

≤ |E[(e
1
2
t2ΣneitSn − 1)|F0,n]| =

∣∣∣∣∣
rn∑
k=1

E[eitSk−1,ne
1
2
t2Σk,n(eitYk,n − e−

1
2
t2σ2

k,n)|F0,n]

∣∣∣∣∣
≤ e

1
2
t2Σn

rn∑
k=1

E[|eitSk−1,nE[(eitYk,n − e−
1
2
t2σ2

k,n)|Fk−1,n]||F0,n]

≤ e
1
2
t2c

rn∑
k=1

E[|E[(eitYk,n − e−
1
2
t2σ2

k,n)|Fk−1,n]||F0,n] + op(1)

The second to last inequality follows by triangle inequality and since Σk,n ∈ F0,n, Σk,n ≤
Σn, and Sk−1,n ∈ Fk−1,n for 1 ≤ k ≤ n. Define Zn =

∑n
k=1E[|E[(eitYk,n−e−

1
2
t2σ2

k,n)|Fk−1,n]||F0,n],
and note that this is positive. For the final inequality, let c > σ2 and note that

(e
1
2
t2Σn − e

1
2
t2c)Zn ≤ (e

1
2
t2Σn − e

1
2
t2c)Zn1(Σn ≥ c)

≤ 2n(e
1
2
t2Σn − e

1
2
t2c)1(Σn ≥ c) = op(1)

The first inequality since Zn ≥ 0. The second is by (conditional) Jensen inequality. For
the final equality

P
(

2n(e
1
2
t2Σn − e

1
2
t2c)1(Σn ≥ c) > ε

)
≤ P (Σn ≥ c) = op(1)
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Fix ε > 0 and let Ik,n = 1(|Yk,n| > ε). The same argument as in BL shows that for
Kt ≥ t2 ∨ |t|3

|E[(eitYk,n − e−
1
2
t2σ2

k,n)|Fk−1,n]| ≤ Kt(σ
4
k,n + Y 2

k,nIk,n + εσ2
k,n)

so that the sum above is
rn∑
k=1

E[|E[(eitYk,n − e−
1
2
t2σ2

k,n)|Fk−1,n]||F0,n] ≤ Kt

rn∑
k=1

E[σ4
k,n + Y 2

k,nIk,n + εσ2
k,n|F0,n]

=KtE

[
rn∑
k=1

σ4
k,n + Y 2

k,nIk,n + εσ2
k,n|F0,n

]
≤ KtE

[
Σn(max

k
σ2
k,n + ε) +

rn∑
k=1

Y 2
k,nIk,n|F0,n

]

≤KtE

[
Σn

(
ε2 +

rn∑
k=1

E[Y 2
k,nIk,n|Fk−1,n] + ε

)
+

rn∑
k=1

Y 2
k,nIk,n|F0,n

]

=KtΣn(ε2 + ε) +Kt(Σn + 1)
rn∑
k=1

E[Y 2
k,nIk,n|F0,n] ≤ Ktc(ε

2 + ε) +Kt(c+ 1)op(1) + op(1)

The first inequality by the fact from BL in second to last display. The first equality is by
Tonelli’s theorem. The second inequality uses the definition of Σn. The third inequality
follows as in BL by taking maxk on both sides of

σ2
k,n = E[Y 2

k,n|Fk−1,n] ≤ E[ε2 + Y 2
k,nIk,n|Fk−1,n] ≤ ε2 +

n∑
k=1

E[Y 2
k,nIk,n|Fk−1,n]

The second to last equality follows by tower law and because Σn ∈ F0,n as assumed above.
The final inequality because (1) Σn = c + Σn − c ≤ c + (Σn − c)+1(Σn ≥ c) = c + op(1)
as shown before and (2) from the assumed Lindberg condition in probability. Then we
have shown that E

[
eitSn − e− 1

2
t2σ2 |F0,n

]
= op(1).

Proposition 9.15 (SBR Equivalence). Suppose n = `k for ` ∈ N. Then Locn(1, a/k) =
CR(a/k) for any 1 ≤ a ≤ k − 1

Let τ ∈ Sn and g(τ) = 1/n!. For 1 ≤ t ≤ `, let gt = {(t − 1)k + 1, . . . , tk} and the
pre-image τ−1(gt) = {τ−1(i) : i ∈ gt}. Then for D1:n ∼ Locn(1, a/k) by definition

P (D1:n = d1:n) =
∑
τ∈Sn

P (D1:n = d1:n|τ)g(τ) =
∑
τ∈Sn

∏̀
t=1

P (Dτ−1(gt) = dτ−1(gt)|τ)g(τ)

=
∑
τ∈Sn

∏̀
t=1

∑
ξt∈{0,1}k

P (Dτ−1(gt) = dτ−1(gt)|ξt, τ)g(ξt|τ)g(τ)

=
∑
τ∈Sn

∏̀
t=1

∑
ξt∈{0,1}k

P (Dτ−1(gt) = dτ−1(gt)|ξt, τ)g(ξt)g(τ)

Where by abuse of notation we also denote g(ξt) =
(
k
a

)−1
1(#{i : ξit = 1} = a). The

last equality by definition of the design since the index permutation is independent of the
within-group randomizations. The inner probability is in {0, 1}, since the design is totally
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determined by ((ξt)t, τ). In particular, there exists H deterministic s.t. D1:n = H((ξt)t, τ)
with (ξt)t ⊥⊥ τ .

Consider d, d′ ∈ {0, 1} s.t. #{i : di = 1} = a` and likewise for d′. Clearly there exists
π ∈ Sn s.t. dπ(i) = d′i for all 1 ≤ i ≤ n. Then we have

P (D1:n = d′) = P ((Di) = (d′i)) = P ((Di) = (dπ(i))) = P ((Dπ−1(i)) = (di))

Now note that
(Di) = H((ξt)t, τ)

d
= H((ξt)t, π ◦ τ) = (Dπ−1(i))

The second equality follows since τ ∼ Unif(Sn), so π ◦ τ d
= τ and because (ξt)t ⊥⊥ τ .

Putting this together, we see that P (D1:n = d′) = P (D1:n = d). Since d, d′ were arbitrary

Locn(1, a/k) = Unif({d1:n : En[di] = a/k}) = CR(a/k)

9.6 Lemmas

Lemma 9.16 (Conditional Convergence). Let (Gn)n≥1 and (An)n≥1 a sequence of σ-
algebras and RV’s. Define conditional convergence

An = op,Gn(1) ⇐⇒ P (|An| > ε|Gn) = op(1) ∀ε > 0

An = Op,Gn(1) ⇐⇒ P (|An| > sn|Gn) = op(1) ∀sn →∞

Then the following results hold

(i) An = op(1) ⇐⇒ An = op,Gn(1) and An = Op(1) ⇐⇒ An = Op,Gn(1)

(ii) E[|An||Gn] = op(1)/Op(1) =⇒ An = op(1)/Op(1)

(iii) Var(An|Gn) = op(c
2
n)/Op(c

2
n) =⇒ An − E[An|Gn] = op(cn)/Op(cn) for all positive

(cn)n

(iv) If (An)n≥1 has An ≤ Ā <∞ Gn-a.s. ∀n and An = op(1) =⇒ E[|An||Gn] = op(1)

Proof. (i) Consider that for any ε > 0

P (|An| > ε) = E[1(|An| > ε)] = E[E[1(|An| > ε)|Gn]] = E[P (|An| > ε|Gn)]

If An = op(1), then E[P (|An| > ε|Gn)] = o(1), so P (|An| > ε|Gn) = op(1) by Markov
inequality. Conversely, if P (|An| > ε|Gn) = op(1), then E[P (|An| > ε|Gn)] = o(1) since
(P (|An| > ε|Gn))n≥1 is uniformly bounded, hence UI. Then P (|An| > ε) = o(1). The
second equivalence follows directly from the first. (ii) follows from (i) and conditional
Markov inequality. (iii) is an application of (ii). For (iv), note that for any ε > 0

E[|An||Gn] ≤ ε+ E[|An|1(|An| > ε)|Gn] ≤ ε+ ĀP (|An| > ε|Gn) = ε+ op(1)

The equality is by (i) and our assumption. Since ε > 0 was arbitrary E[|An||Gn] =
op(1).
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Lemma 9.17 (Product Diagonalization). Consider positive scalar arrays (xi)
k
i=1, (yi)

k
i=1.

Then the following inequalities are valid

k∑
i,j,l,f=1

i,j,l,f distinct

xixlyjyf ≤ k3

k∑
i=1

x4
i + k3

k∑
j=1

y4
j ;

k∑
i,j,f=1

i,j,f distinct

x2
i yjyf ≤ k2

k∑
i=1

x4
i + k2

k∑
j=1

y4
j

k∑
i,j,l=1

i,j,l distinct

xiyixlyj ≤ k
k∑
i=1

x4
i + k

k∑
i=1

y4
i + k3

k∑
i=1

x4
l + k3

k∑
j=1

y4
j

k∑
i,j=1

i,j distinct

x2
i y

2
j ≤ k

k∑
i=1

x4
i + k

k∑
j=1

y4
j ;

k∑
i,j=1

i,j distinct

xiyixjyj ≤ k
k∑
i=1

x4
i + k

k∑
j=1

y4
j

Proof. Let a ≥ 1, so that ϕ(x) = xa is convex on R≥0. Note that by Jensen’s inequality(
k∑
i=1

xi

)a

= ka

(
k−1

k∑
i=1

xi

)a

≤ kak−1

k∑
i=1

xai = ka−1

k∑
i=1

xai

For the first statement

k∑
i,j,l,f=1

i,j,l,f distinct

xixlyjyf ≤

(
k∑

i,j=1

xiyj

)2

=

((
k∑
i=1

xi

)(
k∑
j=1

yj

))2

≤

(
k∑
i=1

xi

)4

+

(
k∑
j=1

yj

)4

≤ k3

k∑
i=1

x4
i + k3

k∑
j=1

y4
j

The first inequality by positivity, the second by Young’s inequality, and the third by the
fact above. Next we have

k∑
i,j,f=1

i,j,f distinct

x2
i yjyf ≤

(
k∑
i=1

x2
i

)(
k∑
j=1

yj

)2

≤ k

(
k∑
i=1

x2
i

)(
k∑
j=1

y2
j

)

≤ k

(
k∑
i=1

x2
i

)2

+ k

(
k∑
j=1

y2
j

)2

≤ k2

k∑
i=1

x4
i + k2

k∑
j=1

y4
j

The inequalities follow by positivity and inspection, the fact above, Young’s inequality,
and the fact above again, respectively. Note that by AM-GM inequality and Jensen, for
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a, b, c, d ≥ 0 we have abcd ≤ (1
4
(a+ b+ c+ d))4 ≤ 1

4
(a4 + b4 + c4 + d4). Then we have

k∑
i,j,l=1

i,j,l distinct

xiyixlyj ≤

(
k∑
i=1

xiyi

)(
k∑
l=1

xl

)(
k∑
j=1

yj

)

≤

(
k∑
i=1

x2
i

)1/2( k∑
i=1

y2
i

)1/2( k∑
l=1

xl

)(
k∑
j=1

yj

)
≤ ‖x‖2‖y‖2

(
k∑
l=1

xl

)(
k∑
j=1

yj

)

≤‖x‖4
2 + ‖y‖4

2 +

(
k∑
l=1

xl

)4

+

(
k∑
j=1

yj

)4

≤ k

k∑
i=1

x4
i + k

k∑
i=1

y4
i + k3

k∑
i=1

x4
l + k3

k∑
j=1

y4
j

Next we have

k∑
i,j=1

i,j distinct

x2
i y

2
j ≤

(
k∑
i=1

x2
i

)(
k∑
j=1

y2
j

)
≤

(
k∑
i=1

x2
i

)2

+

(
k∑
j=1

y2
j

)2

≤ k
k∑
i=1

x4
i + k

k∑
j=1

y4
j

Next we have

k∑
i,j=1

i,j distinct

xiyixjyj ≤

(
k∑
i=1

xiyi

)2

≤ ‖x‖2‖y‖2 ≤ ‖x‖4 + ‖y‖4 ≤ k
k∑
i=1

x4
i + k

k∑
j=1

y4
j

Lemma 9.18 (Discretization Properties). Suppose assumption 9.1 holds with ζn = ζ for
n ≥ 1, ζ ⊥⊥ W1:n, and p̂i,n = pi,n = p(Xi, ζ). Suppose G is bounded, Lipschitz and H a
function with E[H(Wi, ζ)2|ζ] <∞, ζ-a.s. Then we have

En[H(Wi, ζ)G(pi,n)] = E[H(Wi, ζ)G(pi)|ζ] +Op(r
p
n) +Op(n

−1/2)

In particular, this holds for any C1(K) function on K compact.

Proof. Let Hi ≡ H(Wi, ζ). We may calculate

|En[HiG(pi,n)]− En[HiG(pi)]| ≤ En [|Hi||G(pi,n)−G(pi)|] ≤ BEn [|Hi||pi,n − pi|]
. |pn − p|∞En[|Hi|] = Op(r

p
n)Op(1)

Now note that E[En[H(Wi, ζ)G(pi)]|ζ] = E[H(Wi, ζ)G(pi)|ζ] and

Var (En[H(Wi, ζ)G(p(Xi, ζ))]|ζ) = n−2
∑
i,j

Cov(HiG(pi,n), Hj,nG(pj,n)|ζ)

= n−1En [Var(HiG(pi,n)|ζ)] . n−1E[H2
i |ζ] = Op(n

−1)

The second equality by Lemma 9.21 with ri(Wi) = 1 and ξn = 1. The first inequality by a
second moment bound of the variance and boundedness of G. By conditional Chebyshev
(Lemma 9.16), this shows the claim.

Lemma 9.19 (Design Properties). Let D1:n ∼ Grn((ga,s)a,s, Ln). Let τ d = (τ da,s)a,s jointly
independent with (τ da,s,`)

ka
`=1 ∼ CR(qa/ka) for 1 ≤ s ≤ n− 1 and (τ da,n,`)

ka
`=1 ∼ SRS(qa/ka).
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Let (Fn)n≥0 a sequence of σ-algebras with σ((ga,s)a,s) ⊆ Fn and Fn ⊥⊥ τ d. Then the
following hold

(i) For all 1 ≤ i ≤ n, there are deterministic Gi such that

Di1(i ∈ ga,s) =
ka∑
`=1

1(i = ga,s,`)τ
d
a,s,` ≡ Gi(ga,s, τ

d
a,s)

(ii) For each i ∈ [n] we have

E[Di|Fn] =

|Ln|∑
a=1

n∑
s=1

1(i ∈ ga,s) · pa

In particular, E[Di1(i ∈ ga,s)|Fn] = 1(i ∈ ga,s) · pa.
(iii) For 1 ≤ i ≤ n and 1 ≤ s ≤ n

Var(Di|Fn)1(i ∈ ga,s) = pa(1− pa)1(i ∈ ga,s)

For 1 ≤ i, j ≤ n distinct indices and 1 ≤ s ≤ n− 1

E[DiDj|Fn]1(i, j ∈ ga,s) =
qa(qa − 1)

ka(ka − 1)
1(i, j ∈ ga,s)

Cov(Di, Dj|Fn)1(i, j ∈ ga,s) = −qa(ka − qa)
k2
a(ka − 1)

1(i, j ∈ ga,s)

For 1 ≤ i, j ≤ n distinct indices and s = n

Cov(Di, Dj|Fn)1(i, j ∈ ga,s) = 0

For 1 ≤ i, j ≤ n distinct indices

Cov(Di, Dj|Fn)1(g(i) 6= g(j)) = 0

In particular we have

Var(Di|Fn)1(i ∈ ga,s)| ≤ (1/4)1(i ∈ ga,s)
|Cov(Di, Dj|Fn)1(i, j ∈ ga,s)| ≤ k−1

a 1(i, j ∈ ga,s)1(s 6= n)

Proof. For the first statement, note that

Di1(i ∈ ga,s) =

|Ln|∑
a=1

n∑
s=1

ka∑
`=1

1(i = ga,s,`)τ
d
a,s,`1(i ∈ ga,s) =

ka∑
`=1

1(i = ga,s,`)τ
d
a,s,` ≡ Gi(ga,s, τ

d
a,s)
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For the second, note that under (i) and the assumed conditions

E[Di|Fn] =

|Ln|∑
a=1

n∑
s=1

ka∑
`=1

E[1(i = ga,s,`)τ
d
a,s,`|Fn] =

|Ln|∑
a=1

n∑
s=1

ka∑
`=1

1(i = ga,s,`)E[τ da,s,`|Fn]

=

|Ln|∑
a=1

n∑
s=1

ka∑
`=1

1(i = ga,s,`)E[τ da,s,`] =

|Ln|∑
a=1

n∑
s=1

ka∑
`=1

1(i = ga,s,`)pa

The second equality by the first containment. The third equality is by independence.
Then note that

∑ka
`=1 1(i = ga,s,`) = 1(i ∈ ga,s).

For (iii), by the decomposition above and σ-algebra assumption, for 1 ≤ j 6= i ≤ n we
have

Cov(Di, Dj|Fn) =

|Ln|∑
a,a′=1

n∑
s,s′=1

ka∑
`=1

ka′∑
`′=1

1(i = ga,s,`)1(j = ga′,s′,`′) Cov(τ da,s,`, τ
d
a′,s′,`′ |Fn)

By σ-algebra independence and joint independence of groupwise randomizations

Cov(τ da,s,`, τ
d
a′,s′,`′ |Fn) = Cov(τ da,s,`, τ

d
a′,s′,`′)

=


0 (a, s) 6= (a′, s′)

pa − p2
a (a, s, `) = (a′, s′, `′)

− qa(ka−qa)
k2a(ka−1)

(a, s) = (a′, s′); ` 6= `′ 1 ≤ s ≤ n

0 (a, s) = (a′, s′); ` 6= `′ s = n

The third line follows since by definition of CR(qa/ka), for (a, s) = (a′, s′) we have

Cov(τ da,s,`, τ
d
a′,s′,`′) = P (τ da,s,` = τ da,s,`′ = 1)− (qa/ka)

2 =

(
ka
qa

)−1(
ka − 2

qa − 2

)
− (qa/ka)

2

=
qa(qa − 1)

ka(ka − 1)
− (qa/ka)

2 = −qa(ka − qa)
k2
a(ka − 1)

The bounds follow by inspection.

Lemma 9.20 (Stochastic Balance). Let (Fn)n≥1 such that σ((ga,s)a,s, (hn(Wi))
n
i=1) ⊆ Fn

for a sequence of functions (hn)n≥1. Let D1:n ∼ Locn(ψ, p) and require Fn ⊥⊥ τ d. Let
S1:n ∈ {0, 1}n such that {i : Si = 1} =

⊔
a,s ga,s. The following hold

(1) En[Si(Di − pn(Xi))hn(Wi)] = n−1
∑|Ln|

a=1

∑n
s=1

∑
i∈ga,s(Di − pi,n)hn(Wi)

(2) E[En[Si(Di − pn(Xi))hn(Wi)]|Fn] = 0

(3) Var(En[Si(Di − pn(Xi)))hn(Wi)]|Fn) ≤ 2n−1En[Sihn(Wi)
2] ≤ 2n−1En[hn(Wi)

2]

(4) If supn≥1E[hn(W )2] < ∞ and ∃ (Fn)n≥1 satisfying the conditions above, then
En[Si(Di − pn(Xi))hn(Wi)] = Op(n

−1/2)
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Finally, (5) we have a representation by within-group differences

Var(En[Si(Di − pn(Xi)))hn(Wi)]|Fn) ≤ n−2

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈ga,s
i 6=j

(hn(Wi)− hn(Wj))
2

+ n−2kn|Ln| ·
n

max
i=1

hn(Wi)
2

Proof. For (1), by assumption {i : Si = 1} =
⊔
a,s ga,s, so we have

En[Si(Di − pi,n)hn(Wi)] = n−1
∑
i:Si=1

(Di − pi,n)hn(Wi) = n−1

|Ln|∑
a=1

n∑
s=1

∑
i∈ga,s

(Di − pi,n)hn(Wi)

= n−1

|Ln|∑
a=1

n∑
s=1

n∑
i=1

(Di − pa)hn(Wi)1(i ∈ ga,s)

For (2), by Lemma 9.19.(ii) and our measurability assumptions

E[(Di − pa)hn(Wi)1(i ∈ ga,s)|Fn] = hn(Wi)E[(Di − pa)1(i ∈ ga,s)|Fn] = 0

Then E[En[(Di−pi,n)hn(Wi)]|Fn] = 0. Using the expansion, Var(En[(Di−pi,n)hn(Wi)]|Fn)
is

n−2

|Ln|∑
a,a′

n∑
s,s′=1

n∑
i,j

Cov((Di − pa)hn(Wi)1(i ∈ ga,s), (Dj − pa′)hn(Wj)1(j ∈ ga′,s′)|Fn)

= n−2

|Ln|∑
a,a′

n∑
s,s′=1

n∑
i,j

hn(Wi)hn(Wj)1(i ∈ ga,s)1(j ∈ ga′,s′) Cov(Di, Dj|Fn)

= n−2

|Ln|∑
a=1

n∑
s=1

n∑
i,j

hn(Wi)hn(Wj)1(i, j ∈ ga,s) Cov(Di, Dj|Fn)

The final equality follows from Lemma 9.19.(iii). By triangle inequality and the covariance
bound in Lemma 9.19.(iii), this is bounded above by

n−2

|Ln|∑
a=1

n∑
s=1

[
n∑
i=1

hn(Wi)
21(i ∈ ga,s) +

n∑
i 6=j

|hn(Wi)||hn(Wj)|1(i, j ∈ ga,s)k−1
a 1(s 6= n)

]

≤ n−1En[hn(Wi)
2] +

|Ln|∑
a=1

n∑
s=1

n∑
i 6=j

|hn(Wi)||hn(Wj)|1(i, j ∈ ga,s)k−1
a

≤ n−1En[hn(Wi)
2] + n−2

|Ln|∑
a=1

n∑
s=1

(
n∑
i=1

|hn(Wi)|1(i ∈ ga,s)

)2

k−1
a
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Continuing the calculation

= n−1En[hn(Wi)
2] + n−2ka

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i∈ga,s

|hn(Wi)|

2

≤ n−1En[hn(Wi)
2] + n−2ka

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i∈ga,s

|hn(Wi)|2

= 2n−1En[Sihn(Wi)
2] ≤ 2n−1En[hn(Wi)

2]

The first inequality by removing the 1(s 6= n) indicator. The second inequality by adding
and subtracting diagonal terms. The third inequality is Jensen’s. This completes the
proof of (3). Claim (4) follows by applying (2), (3) with (Fn)n≥1 any sequence satisfying
the conditions, followed by conditional Markov inequality (Lemma 9.16).

For the final identity (5), note that from Lemma 9.19.(iii) for s 6= n

n∑
i,j∈ga,s

hn(Wi)hn(Wj) Cov(Di, Dj|Fn) =
qa(ka − qa)

k2
a

n∑
i∈ga,s

hn(Wi)
2

+
qa(ka − qa)
k2
a(ka − 1)

n∑
i,j∈ga,s
i<j

(−2)hn(Wi)hn(Wj)

Note that −2ab = (a− b)2 − a2 − b2. Then the second sum is

n∑
i,j∈ga,s
i<j

(−2)hn(Wi)hn(Wj) =
n∑

i,j∈ga,s
i<j

[(hn(Wi)− hn(Wj))
2 − hn(Wi)

2 − hn(Wj)
2]

=
n∑

i,j∈ga,s
i<j

(hn(Wi)− hn(Wj))
2 − (ka − 1)

n∑
i∈ga,s

hn(Wi)
2

Substituting in the first display above, the diagonal terms cancel. For the claimed con-
stant, note that maxp∈(0,1) p(1 − p) ≤ 1/4 and maxk≥2

k
k−1
≤ 2, so qa(ka−qa)

k2a(ka−1)
≤ k−1

a .
Aggregating over (a, s) gives

n−2

|Ln|∑
a=1

n−1∑
s=1

n∑
i,j∈ga,s
i<j

(hn(Wi)− hn(Wj))
2 +

n∑
i=1

hn(Wi)
21(i ∈ ga,n)


The second term is

n−2

|Ln|∑
a=1

n∑
i=1

hn(Wi)
21(i ∈ ga,n) ≤ n−2 n

max
i=1

hn(Wi)
2

|Ln|∑
a=1

n∑
i=1

1(i ∈ ga,n)

≤ n−2kn|Ln| ·
n

max
i=1

hn(Wi)
2
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This finishes the proof.

Lemma 9.21 (Conditional Moments). Write Wi = (Xi, Yi(1), Yi(0)). Let (hi)
n
i=1 and

(ri)
n
i=1 a collection of deterministic functions. Consider random elements (ξn, ζn) such

that (W1:n, ξn, ζn) are jointly independent. Let Fn = σ((ri(Wi, ζn))ni=1, ξn, ζn). Then for
any I ⊆ [n]

E

[∏
i∈I

hi(Wi, ζn)|Fn

]
=
∏
i∈I

E [hi(Wi, ζn)|ri(Wi, ζn), ζn]

In particular, if ∃j ∈ I such that E[hj(Wj, ζn)|rj(Wj, ζn), ζn] = 0 then

E

[∏
i∈I

hi(Wi, ζn)|Fn

]
= 0

Proof. First, note that since the elements ofW1:n are jointly independent, andW1:n ⊥⊥ ζn,
one can show that ((Wi, ζn))ni=1 are jointly independent given ζn. The proof heavily relies
on the following fact: (A,B) ⊥⊥ C =⇒ A ⊥⊥ C|B. We have

E

[∏
i∈I

hi(Wi, ζn)|Fn

]
= E

[∏
i∈I

hi(Wi, ζn)

∣∣∣∣(ri(Wi, ζn))ni=1, ζn, ξn

]

= E

[∏
i∈I

hi(Wi, ζn)

∣∣∣∣(ri(Wi, ζn))ni=1, ζn

]
= E

[∏
i∈I

hi(Wi, ζn)

∣∣∣∣(ri(Wi, ζn))i∈I , ζn

]

= E

 ∏
i∈I\{j}

hi(Wi, ζn)E

hj(Wj, ζn)

∣∣∣∣ ∏
i∈I\{j}

hi(Wi, ζn), (ri(Wi, ζn))i∈I , ζn

 ∣∣∣∣(ri(Wi, ζn))i∈I , ζn


The second equality is by ξn ⊥⊥ (W1:n, ζn) and the fact above. The third equality is by
independent sampling the fact above with (A,B) = ((hi(Wi, ζn))i∈I , (ri(Wi, ζn))i∈I) and
C = (ri(Wi, ζn))i∈Ic , applied under the conditional measure given ζn. The final equality
is by tower law. The inner expectation is

E

hj(Wj, ζn)

∣∣∣∣ ∏
i∈I\{j}

hi(Wi, ζn), (ri(Wi, ζn))i∈I , ζn


= E

hj(Wj, ζn)

∣∣∣∣ ∏
i∈I\{j}

hi(Wi, ζn), (ri(Wi, ζn))i∈I\{j}, rj(Wj, ζn), ζn


= E [hj(Wj, ζn)|rj(Wj, ζn), ζn]

The final equality uses the fact above with C =
(∏

i∈I\{j} hi(Wi, ζn), (ri(Wi, ζn))i∈I\{j}

)
and (A,B) = (hj(Wj, ζn), rj(Wj, ζn)), again applied conditionally on ζn. Returning to
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the display above, we have

E

[∏
i∈I

hi(Wi, ζn)|Fn

]
= E [hj(Wj, ζn)|rj(Wj, ζn), ζn]E

 ∏
i∈I\{j}

hi(Wi, ζn)

∣∣∣∣(ri(Wi, ζn))i∈I , ζn


= E [hj(Wj, ζn)|rj(Wj, ζn), ζn]E

 ∏
i∈I\{j}

hi(Wi, ζn)

∣∣∣∣(ri(Wi, ζn))i∈I\{j}, ζn


The last equality uses (A,B) =

(∏
i∈I\{j} hi(Wi, ζn), (ri(Wi, ζn))i∈I\{j}

)
and C = rj(Wj, ζn).

This expression has the same form as in the first display, so the conclusion follows by
induction.

Lemma 9.22 (Residual Selection). Let Fn = σ(ψ1:n, p1:n,n, ζn, ξn), with pi,n = pn(Xi, ζn),
ψi = ψ(Xi, ζn). Assume (W1:n, ξn, ζn) are jointly independent. Suppose that for (Fi,n)ni=1

deterministic functions

ui,n = Fi,n(Xi, ζn)− E[Fi,n(Xi, ζn)|ψi, pi,n, ζn] σ2
u,i,n = E[u2

i,n|ψi, pi,n, ζn]

Let i, j, l, f ∈ [n] distinct indices. The following moments hold for arbitrary mixtures of
superscripts εi ∈ {ε1i , ε0i }, which we suppress.

E[ui,n|Fn] = E[εi|Fn] = E[ui,nεi|Fn] = E[ui,nuj,n|Fn] = E[ui,nεj|Fn] = E[εiεj|Fn]

=E[ui,nuj,nεl|Fn] = E[ui,nεjεl|Fn] = E[ui,nuj,nul,n|Fn] = E[εiεjεl|Fn] = E[εiεjεlεf |Fn]

=E[εiεjεluf,n|Fn] = E[εiεjul,nuf,n|Fn] = E[εiuj,nul,nuf,n|Fn] = E[ui,nuj,nul,nuf,n|Fn]

=E[ui,nεiuj,nεj|Fn] = E[(ui,n + εi)(uj,n + εj)
2|Fn] = 0

The higher order moments

E[u2
i,n|Fn] = σ2

u,i,n

E[(ui,nuj,n)2|Fn] = σ2
u,i,nσ

2
u,j,n

E[ε2i |Fn] = E[σ2(Xi)|ψi, pi,n, ζn]

E[(ui,nεj)
2|Fn] = σ2

u,n(Xi)E[σ2(Xj)|ψj, pj,n, ζn]

E[(εiεj)
2|Fn] = E[σ2(Xi)|ψi, pi,n, ζn]E[σ2(Xj)|ψj, pj,n, ζn]

Proof. We start with the first three inequalities. By applying Lemma 9.21 with hi(Wi, ζn) =
ui,n, ri(Wi, ζn) = (ψ(Xi, ζn), pn(Xi, ζn)) and I = [n], we have E[ui,n|Fn] = E[ui,n|ψi, pi,n, ζn] =
0. Similarly, we have

E[εi|Fn] = E[εi|ψi, pi,n, ζn] = E[E[εi|Xi, ζn]|ψi, pi,n, ζn] = E[E[εi|Xi]|ψi, pi,n, ζn] = 0

Also, E[ui,nεi|Fn] = 0 because

E[ui,nεi|ψi, pi,n, ζn] = E[E[ui,nεi|Xi, ζn]|ψi, pi,n, ζn] = E[ui,nE[εi|Xi]|ψi, pi,n, ζn] = 0

The claims in the first display follow from these moments by applying Lemma 9.21 with
ri(Wi, ζn) = (ψi, pi,n) and varying the index set I and functions (hi)

n
i=1. For instance, for

the second to last statement I = {i, j}, hi(Wi, ζn) = ui,n+εi and hj(Wj, ζn) = (uj,n+εj)
2.
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The other equalities are similar.

For the second display, by Lemma 9.21 we have E[u2
i,n|Fn] = E[u2

i,n|ψi, pi,n, ζn] = σ2
u,i,n

and

E[ε2i |Fn] = E[ε2i |ψi, pi,n, ζn] = E[E[ε2i |Xi, ζn]|ψi, pi,n, ζn] = E[E[ε2i |Xi]|ψi, pi,n, ζn]

= E[σ2(Xi)|ψi, pi,n, ζn]

The first line by applying Lemma 9.21, then tower law and independence. The other
equalities in the display now again follow by applying the Lemma 9.21 with ri(Wi, ζn) =
(ψi, pi,n) and varying the index set I and functions (hi)

n
i=1. For instance, for the last

equality let I = {i, j}, hi(Wi, ζn) = ε2i .
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