Foreign Portfolios and Domestic Business Cycles with Heterogeneous Agents

Seungcheol Lee1,2, Ralph Luetticke2,3,4 and Morten O. Ravn3,4
Bank of Korea1, University Tuebingen2, the CEPR3, and University College London4

March 2023
Introduction

Research question:
US interest rates and the US dollar are on the rise again, what does this imply for emerging markets business cycles and inequality?

This paper provides a new perspective and quantification:
- New decomposition of foreign asset portfolios.
- Estimate a Small Open Economy - HANK model on macro/micro data.
- Allow for a broader set of foreign asset return shocks and heterogeneity in exposures.
Flow of Funds Data

Net Position of Korean Economy

(% of annual GDP)

-40 -30 -20 -10 0 10 20 30 40

- total

Luetticke

Foreign Portfolios and Domestic Business Cycles

March 2023
Key Question: How important are foreign return/demand shocks for domestic outcomes in SMOEs? Does the composition of foreign portfolios matter?

Additional Question: Are HANK insights about policy transmission robust to SMOE setting?

- **Monetary Policy**
 - Importance of indirect effects
 - Importance of fiscal policy

- **Fiscal Policy**
 - Bond rate elasticity
This paper: Builds and estimates a SMOE-HANK model for South Korea.

- **South Korea** is a very open economy (export/GDP around 40 percent).
- **South Korea**’s net foreign asset position is approx. zero. However, sizable savings in liquid bonds, while the illiquid investment position is negative.

- **Flexible** nominal exchange rate.

- **Sensitive to** variations in foreign demand for South Korean goods.
- **Sensitive to** shocks in international capital markets (East Asian crisis):
 1) Liquid bond returns
 2) Illiquid capital return
Summary of key results: Transmission of Foreign Shocks

Liquid Bond Return
- Domestic economy little affected by foreign return shocks to liquid assets
- Foreign savings provide insurance via income effects

Illiquid Capital Return
- Domestic economy strongly affected by foreign return shocks to illiquid assets
- Foreign financing amplifies investment response

Foreign Demand
- Foreign demand shocks transmit via wages
Summary of key results: Policy Transmission in SMOE-HANK

Monetary Transmission
- Indirect effects are still key
- Transmission also goes through net exports

Fiscal Transmission
- Interest rate responds little to foreign asset position / government debt
- Smaller Laffer curve to exploit

Empirics

A New Perspective on Foreign Asset Portfolios
Classification of Financial Instruments

Liquid instruments
- Gold and SDRs, Cash and Deposits,
- Bonds (government, corporate, etc),
- Loans (short term, government), FX reserves

Illiquid instruments
- Insurance and Pension,
- Long-term Bonds (ABS, external, derivatives-linked),
- Loans (long term), Equities and Investment Funds shares,
- Financial Derivatives, Trade Credits
- Foreign Direct Investment, etc
Flow of Funds Data: Net Positions by Liquidity

Net Liquid to GDP: 13.6%
Net Illiquid to GDP: -13.7%
Return rates

- Real return rate on liquid assets (LHS)
- Real return rate on illiquid assets (RHS)

Luetticke
Foreign Portfolios and Domestic Business Cycles
March 2023
Notes on Return rates of assets

<table>
<thead>
<tr>
<th>Component</th>
<th>Liquid assets</th>
<th>Iliquid assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Housing Bond Rate (5-yr)</td>
<td></td>
<td>Equity Return Rate,</td>
</tr>
<tr>
<td>Government Loan Rate,</td>
<td></td>
<td>FDI Abroad Return Rate,</td>
</tr>
<tr>
<td>Corporation Bonds Rate (O.T.C, 3-yr, AA-)</td>
<td></td>
<td>Loan to Corporation Rate</td>
</tr>
</tbody>
</table>
Net Positions of Domestic Economy by Sector

(Liquid Net Positions)

Households & NPISH
Government
Financial corporations
Non Financial corporations
Domestic total (RHS)

(%) of GDP

Illiquid Net Positions

Households & NPISH
Financial corporations
Domestic total (RHS)

(%) of GDP

Source: Flow of Funds Data

Luetticke

Foreign Portfolios and Domestic Business Cycles

March 2023
Model

A SMOE HANK Model with Foreign Asset Portfolios
SMOE HANK Model: Overall structure

- Domestic households
 - Liquid bonds, taxes
 - Illiquid Capital, Labor
 - Consumption
 - Liquid / Illiquid Savings
- Corporate sector
 - Government spending
 - Imports
 - Exports
- Domestic government
- World economy
- Liquid bonds, taxes
Households: Consumer, supply labor, manage portfolios of liquid and illiquid assets, subject to idiosyncratic productivity shocks.

Labor unions: Sell labor to firms, monopolistically competitive, nominal wages sticky.

Retailers: Competitive, produce final goods using input of domestic and imported goods.

Domestic goods producers: Monopolistically competitive, differentiate domestic intermediate goods, sell to domestic and foreign retailers, nominal prices sticky in domestic currency.

Intermediate goods producers: Competitive, produce using inputs of capital and labor.

Capital producers: Competitive, produce new capital subject to adjustment costs.

Domestic Government: In charge of monetary and fiscal policy, floating exchange rate.

Foreign bond markets: Provide bonds to domestic economy, interest rate is asset elastic.
Preferences:

$$u(c_i, l_i) = \left(\frac{c_i - G(h_i, n_i)}{1 - \xi}\right)^{1-\xi},$$

Skill Dynamics: Households have skill h_i and are either:
- Workers (share $\iota / (\iota + \zeta) \approx 1$), or
- rentiers, receive all profits.

Law of motion of skills:

$$h_i = \begin{cases}
\exp (\rho_h \log h_{i,-1} + \sigma_h \epsilon_{h,i}) & \text{with probability } 1 - \zeta \\
1 & \text{with probability } \iota \\
0 & \text{otherwise,}
\end{cases} \quad \text{if } h_{i,-1} \neq 0,$$

$$\epsilon_{h,i} \sim N(0, 1)$$
Households

Financial assets/liabilities:

\[b'_i \geq B_{\text{min}} : \text{Liquid assets} \]
\[k'_i \geq K_{\text{min}} : \text{Illiquid assets} \]

Net labor income:

\[y_{i,t} = \left(1 - \tau^L \right) \left(w_t h_{i,t} n_{i,t} \right)^{1 - \tau^P} \]

Budget constraint

\[c_{i,t} + b_{i,t+1} + k_{i,t+1} = y_{i,t} + R^b_t(\cdot) b_{i,t} A_t + R^k_t(\cdot) k_{i,t} + \tau_t \left(1_{h_{i,t} \neq 0} \Pi^U_t + 1_{h_{i,t} = 0} \Pi^f_t \right) \]
Households’ International Portfolios

Liquid asset portfolio
- Domestic bonds, share \(\Phi_B \in [0, 1] \), and foreign assets

\[
R^b_t(\cdot) = \Phi_B \frac{R^B_t}{\pi_t} + (1 - \Phi_B) \frac{R^B_F}{\pi_t} \frac{S_t}{S_{t-1}}
\]

Illiquid asset portfolio
- Domestic capital, share \(\Phi_K \in [0, 1] \), and foreign assets
- Adjustable with prob. \(\lambda > 0 \)

\[
R^k_t(\cdot) = \Phi_K \frac{q_t + r^K_t}{q_{t-1}} + (1 - \Phi_K) \frac{R^K_F}{\pi_t} \frac{S_t}{S_{t-1}}
\]

Setting: Continuum of monopolistically competitive labor unions, sell the differentiated labor

to labor packers. Calvo sticky wages set by unions.

Technology

\[
N_t = \left(\int n_{j,t}^{1-1/\zeta_t} \right)^{1/(1-1/\zeta_t)} \Rightarrow
\]

\[
n_{j,t} = \left(\frac{W_{j,t}}{W_t^F} \right)^{-\zeta_t} N_t
\]

Wage Setting

\[
W_{j,t} = \arg\max \ E_t \sum_{s=t}^{\infty} \beta^{s-t} \lambda_{s-t} \frac{W_s^F}{P_s} N_s \left[\left(\frac{W_{j,t} \pi_{s-t}^t}{W_s^F} - \frac{W_s}{W_s^F} \right) \left(\frac{W_{j,t} \pi_{s-t}^t}{W_s^F} \right)^{-\zeta_s} \right]
\]

\[
\Rightarrow \log \left(\frac{\pi_t^w}{\pi_t^{w+1}} \right) = \beta E_t \log \left(\frac{\pi_t^w}{\pi_t^w} \right) + \kappa_w \left(m c_t^w - \frac{1}{\mu_t^w} \right)
\]
Retailers

Setting: Competitive, sell final good at price P_t, produce it using inputs of domestic and foreign goods.

Technology

\[
V_t = \left[(1 - \alpha)^{1/\eta} \left(\int_0^1 V_{H,t}(j)(1-1/\epsilon_t) dj \right)^{(1-1/\eta)/(1-1/\epsilon_t)} + \alpha^{1/\eta} V_{F,t}^{1-1/\eta} \right]^{1/(1-1/\eta)}
\]

\[
V_t = C_t + I_t + G_t
\]

The demand functions and domestic CPI inflation are then given as:

\[
V_{H,t} = (1 - \alpha) p_{H,t}^{-\eta} V_t
\]

\[
V_{F,t} = \alpha p_{F,t}^{-\eta} V_t
\]

\[
\hat{\pi}_t = (1 - \alpha) p_H^{(1-\eta)} \hat{\pi}_{H,t} + \alpha p_F^{(1-\eta)} \hat{\pi}_{F,t}
\]
Setting: Monopolistically competitive, differentiate intermediate good, sell at home and export.

Assumption: Prices sticky in the producer currency and LOP, \(P_{H,t}(j) = S_t P^*_t(j) \).

Price Setting (exploiting LOP)

\[
P_{j,t} = \arg\max E_t \sum_{s=t}^{\infty} (\beta \lambda_p)^{s-t} \left(1 - \tau_s^L\right) D_{H,s}^{1-\tau_s^P} \left(\frac{P_{H,t}(j) \pi_{H,s}^{s-t}}{P_{H,s}} - MC_s \right) \left(\frac{P_{H,t}(j) \pi_{H,s}^{s-t}}{P^*_H} \right)^{-\epsilon_s} - \tau_s^P
\]

\[
\Rightarrow \log \left(\frac{\pi_{H,t}}{\pi_H} \right) = \beta E_t \log \left(\frac{\pi_{H,t+1}}{\pi_H} \right) + \kappa_w \left(m c_t - \frac{1}{\mu_Y} \right)
\]

where:

\[
D_{H,t}(j) = \left(\frac{P_{H,t}(j)}{P_{H,t}} \right)^{-\epsilon_t} \left(1 - \alpha \right) \left(\frac{P_{H,t}}{P_t} \right)^{-\eta} V_t + \alpha^* \left(\frac{P^*_H}{P_t^*} \right)^{-\eta} V_t^*
\]
Setting: Competitive, turn final goods into new capital goods subject to adjustment costs.

Technology

\[K_{t+1} = (1 - \delta(u_t)) K_t + \Psi_t \left[1 - \frac{\phi}{2} \left(\log \frac{l_t}{l_{t-1}} \right)^2 \right] l_t \]

Profit maximization and F.O.C.

\[
V_{K,t} = \max_s \mathbb{E}_s \sum_{s=t}^{\infty} \beta^{s-t} l_s \left[\Psi_s q_s \left(1 - \frac{\phi}{2} \left(\log \frac{l_s}{l_{s-1}} \right)^2 \right) \right] - 1 \\
\Rightarrow \\
\Psi_t q_t \left[1 - \phi \log \left(\frac{l_t}{l_{t-1}} \right) \right] = 1 - \beta \mathbb{E}_t \Psi_{t+1} q_{t+1} \phi \log \left(\frac{l_t}{l_{t-1}} \right) \]
Intermediate Goods Producers

Setting: Competitive, rent labor from packers, capital from households

Technology

\[Y_t = Z_t (u_t K_t)^{1-\vartheta} N_t^{\vartheta} \]

Factor demands

\[w_t^F = p_{H,t} \theta mc_t Z_t \left(\frac{u_t K_t}{N_t} \right)^{1-\vartheta} \]

\[r_t + q_t \delta(u_t) = p_{H,t} (1 - \vartheta) mc_t u_t Z_t \left(\frac{u_t K_t}{N_t} \right)^{-\vartheta} \]

\[q_t \delta'(u_t) = p_{H,t} (1 - \vartheta) mc_t Z_t \left(\frac{u_t K_t}{N_t} \right)^{-\vartheta} \]
Government

Setting: In charge of monetary and fiscal policy.

Fiscal policy

\[
\frac{G_t}{G} = \left(\frac{G_{t-1}}{G} \right)^{\rho_G} \left(\frac{B_t}{B} \right)^{(1-\rho_G)\gamma_B^G} \left(\frac{V_t}{V_{t-1}} \right)^{(1-\rho_G)\gamma_V^G} \epsilon_t^G
\]

\[
\frac{\tau_t}{\tau} = \left(\frac{\tau_{t-1}}{\tau} \right)^{\rho_\tau} \left(\frac{B_t}{B} \right)^{(1-\rho_\tau)\gamma_B^\tau} \left(\frac{V_t}{V_{t-1}} \right)^{(1-\rho_\tau)\gamma_V^\tau}
\]

\[
T_t = \tau_t \left(w_t n_{it} h_{it} + \mathbb{1}_{h_{it} \neq 0} \Pi_t^U + \mathbb{1}_{h_{it} = 0} \Pi_t^F \right)
\]

\[
B_{t+1} = G_t - T_t + \frac{R^b_t B_t}{\pi_t}
\]

Monetary policy

\[
\frac{R^b_{t+1}}{R^b} = \left(\frac{R^b_t}{R^b} \right)^{\rho_R} \left(\frac{\pi_t}{\pi} \right)^{(1-\rho_R)\theta_\pi} \left(\frac{V_t}{V_{t-1}} \right)^{(1-\rho_R)\theta_V} \epsilon_t^R
\]
Import price

\[P_{F,t} = S_t P_{F,t}^* \]

World demand

\[\log \frac{V_t^*}{V^*} = \rho_{V*} \log \frac{V_{t-1}^*}{V^*} + e_t^V \]

International flows

\[S_t B_{t+1}^F + S_t K_{t+1}^F = \left(1 + R_t^{BF}\right) S_t B_t^F + \left(1 + R_t^{KF}\right) S_t K_t^F + NX_t \]
International liquid asset market

\[
\mathbb{E}_t R_{t+1}^B = \mathbb{E}_t R_{t+1}^{B_F} \frac{S_{t+1}}{S_t}
\]

\[
Q^B \left(\frac{SB^F}{P} \right) + e^{B_F}_t = 1, \quad Q^{B'} < 0, \quad Q^{B''} < 0
\]

International illiquid asset market

\[
\mathbb{E}_t R_{t+1}^K = \mathbb{E}_t \frac{R_{t+1}^{K_F} \frac{S_{t+1}}{S_t}}{\pi_{t+1}}
\]

\[
Q^K \left(\frac{SK^F}{P} \right) + e^{K_F}_t = 1, \quad Q^{K'} < 0, \quad Q^{K''} < 0
\]
Model combines
- **Incomplete markets** through idiosyncratic risk, lack of insurance, illiquid assets.
- **New Keynesian features** through sticky prices and wages.
- **Open Economy features** through trade in goods and in liquid / illiquid assets.

Fluctuations driven by:
- **Shocks**: Idiosyncratic, domestic policy, domestic technology and markups, foreign demand and interest rates.
- **State variables**: Wealth distribution, portfolio composition including capital stock, government debt, foreign assets and debt.
Solution and Estimation Strategies

Model solution:
- The distribution Θ over b, k, h is a state variable.
- First-order perturbation of the non-linear difference equation $EF(x_t, x_{t+1}, \epsilon_t) = 0$ around the stationary equilibrium.
- Approximate the policy functions as sparse polynomials around their stationary equilibrium values and approximate the distribution functions by histograms of their marginals and a **time-varying Copula** as in Bayer and Luetticke, 2018.
- Linear system depends only on a subset of model parameters.

Parameter estimation:
- Bayesian likelihood approach as in An and Schorfheide, 2007.
- Estimate those parameters that do not enter the non-linear part of the model solution.
- Employ Kalman filter to get state-space representation of the model, then use random walk Metropolis-Hastings algorithm to generate draws from the posterior likelihood.
Sources of Fluctuations

Domestic Aggregate Shocks
- total factor and investment-specific productivity
- price and wage markup
- risk premium
- monetary policy
- government spending

Foreign Aggregate Shocks
- foreign liquid return
- foreign illiquid return
- foreign demand
Estimation
What we estimate

HA Small Open Economy-HANK model

HA0 Small Open Economy-HANK model (zero foreign assets, liquid and illiquid return shocks)

RA0 Small Open Economy-RANK model (zero foreign assets, only one return shock)
Estimation: Two-step procedure

- First, we calibrate or fix all parameters that affect the steady state of the model.

- Second, we estimate by full-information methods all parameters that only matter for the dynamics of the model, i.e., the aggregate shocks, frictions, and policy rules.

- We set the priors for shocks, frictions, and policy rules to standard values from the representative agent literature.
Calibration/Parameterization of Steady-State

Table: Steady State Calibration Targets

<table>
<thead>
<tr>
<th>Target</th>
<th>Annual value</th>
<th>Source</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital to Output ($\frac{K}{Y}$)</td>
<td>307%</td>
<td>BOK</td>
<td>Discount factor</td>
</tr>
<tr>
<td>Gov Debt to Output ($\frac{D_G}{Y}$)</td>
<td>30%</td>
<td>Stat Korea</td>
<td>Portfolio liquidity</td>
</tr>
<tr>
<td>Gov spending over GDP ($\frac{G}{Y}$)</td>
<td>14%</td>
<td>BOK</td>
<td>Tax level</td>
</tr>
<tr>
<td>Top 10% Wealth Share</td>
<td>58%</td>
<td>WID</td>
<td>Fraction of entrepreneurs</td>
</tr>
<tr>
<td>Import share ($\frac{V^*_H}{V}$)</td>
<td>37%</td>
<td>Stat Korea</td>
<td>Share in V</td>
</tr>
<tr>
<td>Foreign Liquid Assets to Output ($\frac{B_F}{Y}$)</td>
<td>13.6%</td>
<td>Stat Korea</td>
<td>Share in liquid assets</td>
</tr>
<tr>
<td>Foreign Illiquid Assets to Output ($\frac{K_F}{Y}$)</td>
<td>-13.7%</td>
<td>Stat Korea</td>
<td>Share in illiquid assets</td>
</tr>
</tbody>
</table>

Time period: 1990-2019
Household side:

- Risk aversion: 2, Frisch elasticity: 0.5

- Income process: $\rho_h = 0.95$, $\sigma_h = 0.20$ from Chang et al. (2015)

- Average time as rentier: 6 years from Guvenen et al. (2014)

- Tax progressivity: $\tau^p = 0.13$ from Chang et al. (2015)
Calibration/Parameterization of Steady-State

Firm side:
- Labor income share of 62 percent
- Capital depreciation rate of 2% per quarter
- Price and wage markups of 10%
Estimation of Dynamics

Remaining parameters estimated using full-information approach:

- Real frictions: capital utilization and investment adjustment costs
- Nominal frictions: Price and wage adjustment costs
- Monetary policy rule
- Fiscal policy rules
- Elasticity of substitution with foreign goods
- Foreign interest rate schedule
- Aggregate shocks: Persistence and variance of domestic and foreign shocks
Observables

Table: Aggregate time series data (quarterly)

<table>
<thead>
<tr>
<th>Time series (90Q1∼19Q4)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>In first-differences:</td>
<td></td>
</tr>
<tr>
<td>Output (Y_t), Consumption (C_t), Investment (I_t)</td>
<td>National Accounts (BOK)</td>
</tr>
<tr>
<td>Wage (w_t, hourly), Hours worked (N_t)</td>
<td>Stat Korea</td>
</tr>
<tr>
<td>(all seasonally adjusted, per capita, real)</td>
<td></td>
</tr>
<tr>
<td>Effective exchange rate (S_t)</td>
<td>Effective rate (BIS)</td>
</tr>
<tr>
<td>Exports (X_t), Imports (I_t)</td>
<td>National accounts (BOK)</td>
</tr>
<tr>
<td>In log-levels:</td>
<td></td>
</tr>
<tr>
<td>Inflation (π_t)</td>
<td>Consumption deflator (BOK)</td>
</tr>
<tr>
<td>Nominal interest rate (R^B_t)</td>
<td>Average of base rate (BOK)</td>
</tr>
<tr>
<td>Spread ($R^K_t - R^B_t$)</td>
<td>Own calculations</td>
</tr>
</tbody>
</table>

All demeaned and with measurement error on w_t, I_t.

Luetticke
Foreign Portfolios and Domestic Business Cycles
March 2023
41 / 77
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Distribution</th>
<th>Prior</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Dev.</td>
<td>HANK</td>
</tr>
<tr>
<td>Frictions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\delta_s = \delta'' / \delta'$</td>
<td>Gamma</td>
<td>5.00</td>
<td>2.00</td>
</tr>
<tr>
<td>ϕ</td>
<td>Gamma</td>
<td>4.00</td>
<td>2.00</td>
</tr>
<tr>
<td>κ</td>
<td>Gamma</td>
<td>0.10</td>
<td>0.01</td>
</tr>
<tr>
<td>κ_w</td>
<td>Gamma</td>
<td>0.10</td>
<td>0.01</td>
</tr>
<tr>
<td>Monetary policy rule</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_R</td>
<td>Beta</td>
<td>0.50</td>
<td>0.20</td>
</tr>
<tr>
<td>σ_R</td>
<td>Inv.-Gamma</td>
<td>0.10</td>
<td>2.00</td>
</tr>
<tr>
<td>θ_π</td>
<td>Normal</td>
<td>1.70</td>
<td>0.30</td>
</tr>
<tr>
<td>θ_Y</td>
<td>Normal</td>
<td>0.13</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Prior and Posterior

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior Distribution</th>
<th>Prior Mean</th>
<th>Prior Std. Dev.</th>
<th>Posterior HANK</th>
<th>Posterior HANK0</th>
<th>Posterior RANK0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HANK</td>
<td>HANK0</td>
<td>RANK0</td>
</tr>
<tr>
<td>Spending rule</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_B</td>
<td>Normal</td>
<td>0.00</td>
<td>1.00</td>
<td>-0.18</td>
<td>-0.26</td>
<td>-0.31</td>
</tr>
<tr>
<td>γ_Y</td>
<td>Normal</td>
<td>0.00</td>
<td>1.00</td>
<td>-0.11</td>
<td>-0.01</td>
<td>-0.02</td>
</tr>
<tr>
<td>ρ_G</td>
<td>Beta</td>
<td>0.50</td>
<td>0.20</td>
<td>0.98</td>
<td>0.96</td>
<td>0.99</td>
</tr>
<tr>
<td>σ_G</td>
<td>Inv.-Gamma</td>
<td>0.10</td>
<td>2.00</td>
<td>17.34</td>
<td>16.25</td>
<td>23.86</td>
</tr>
<tr>
<td>Parameter</td>
<td>Prior</td>
<td>Posterior</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution</td>
<td>Mean</td>
<td>Std. Dev.</td>
<td>HANK</td>
<td>HANK0</td>
<td>RANK0</td>
<td></td>
</tr>
<tr>
<td>Foreign Elasticities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>η_{open}</td>
<td>Gamma</td>
<td>2.00</td>
<td>1.00</td>
<td>0.83</td>
<td>0.67</td>
<td>0.69</td>
</tr>
<tr>
<td>ϕ_{BF}</td>
<td>Inv.-Gamma</td>
<td>0.10</td>
<td>2.00</td>
<td>0.0007</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>ϕ_{KF}</td>
<td>Inv.-Gamma</td>
<td>0.10</td>
<td>2.00</td>
<td>0.0004</td>
<td>0.0002</td>
<td>-</td>
</tr>
<tr>
<td>Foreign Shocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_{VS}</td>
<td>Beta</td>
<td>0.50</td>
<td>0.20</td>
<td>0.94</td>
<td>0.93</td>
<td>0.89</td>
</tr>
<tr>
<td>σ_{VS}</td>
<td>Inv.-Gamma</td>
<td>0.10</td>
<td>2.00</td>
<td>4.66</td>
<td>4.58</td>
<td>4.71</td>
</tr>
<tr>
<td>ρ_{RBF}</td>
<td>Beta</td>
<td>0.50</td>
<td>0.20</td>
<td>0.97</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>σ_{RBF}</td>
<td>Inv.-Gamma</td>
<td>0.10</td>
<td>2.00</td>
<td>0.25</td>
<td>0.18</td>
<td>0.15</td>
</tr>
<tr>
<td>ρ_{RKF}</td>
<td>Beta</td>
<td>0.50</td>
<td>0.20</td>
<td>0.70</td>
<td>0.94</td>
<td>-</td>
</tr>
<tr>
<td>σ_{RKF}</td>
<td>Inv.-Gamma</td>
<td>0.10</td>
<td>2.00</td>
<td>2.23</td>
<td>2.16</td>
<td>-</td>
</tr>
</tbody>
</table>
Prior and Posterior

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Distribution</th>
<th>Prior</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Dev.</td>
<td>HANK</td>
</tr>
<tr>
<td>Domestic shocks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_A</td>
<td>Beta</td>
<td>0.50</td>
<td>0.20</td>
</tr>
<tr>
<td>σ_A</td>
<td>Inv.-Gamma</td>
<td>0.10</td>
<td>2.00</td>
</tr>
<tr>
<td>ρ_Z</td>
<td>Beta</td>
<td>0.50</td>
<td>0.20</td>
</tr>
<tr>
<td>σ_Z</td>
<td>Inv.-Gamma</td>
<td>0.10</td>
<td>2.00</td>
</tr>
<tr>
<td>ρ_Ψ</td>
<td>Beta</td>
<td>0.50</td>
<td>0.20</td>
</tr>
<tr>
<td>σ_Ψ</td>
<td>Inv.-Gamma</td>
<td>0.10</td>
<td>2.00</td>
</tr>
<tr>
<td>ρ_μ</td>
<td>Beta</td>
<td>0.50</td>
<td>0.20</td>
</tr>
<tr>
<td>σ_μ</td>
<td>Inv.-Gamma</td>
<td>0.10</td>
<td>2.00</td>
</tr>
<tr>
<td>$\rho_{\mu w}$</td>
<td>Beta</td>
<td>0.50</td>
<td>0.20</td>
</tr>
<tr>
<td>$\sigma_{\mu w}$</td>
<td>Inv.-Gamma</td>
<td>0.10</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Luetticke
Foreign Portfolios and Domestic Business Cycles
March 2023
Parameter estimates: SMOE-HANK is a mix of the RANK and SMOE-NK model:

- Prices sticky for around 6-8 months, wages close to a year.
- Smaller investment adjustment costs in HANK than RANK due to incomplete markets.
- Estimates of “foreign” parameters very similar in HANK and RANK.
- We find elasticity of substitution between foreign and domestic bundle below one.
Foreign Portfolios and the Transmission Mechanism of Shocks
Impulse Responses to Foreign Liquid Return in 3 Models (estimated)

World bond return
- HANK
- HANKLPC
- RANK0

Output

Investment

Consumption

Inflation

Ex. Rate

Luetticke
Foreign Portfolios and Domestic Business Cycles
March 2023
Impulse Responses to Foreign Liquid Return in 3 Models (counterfactual)

World bond return

Output

Investment

Consumption

Inflation

Ex. Rate

Luetticke

Foreign Portfolios and Domestic Business Cycles

March 2023
Impulse Responses to Foreign Illiquid Return in 3 Models (estimated)

World capital return

Output

Investment

Consumption

Inflation

Ex. Rate
Impulse Responses to Foreign Illiquid Return in 3 Models (counterfactual)

World capital return

Output

Investment

Consumption

Inflation

Ex. Rate
Foreign Illiquid Return Shock: Decomposition of Consumption
Impulse Responses to Foreign Demand in 3 Models (estimated)

World demand

- HANK
- HANKLP
- RANK0

Output

Consumption

Inflation

Investment

Ex. Rate
Impulse Responses to Foreign Demand in 3 Models (counterfactual)
Impulse Responses of Inequality to Foreign Return Shocks (estimated)
Foreign Portfolios and the Transmission Mechanism of Policy
Monetary Transmission: Decomposition of Consumption

![Graph showing monetary transmission decomposition](image-url)
International liquid and illiquid asset market

\[
R_{t+1}^{BF} = R^* + \phi_{BF} \log \left(\frac{B_t^F}{B^F} \right) + \epsilon_{R^{BF}}
\]

\[
R_{t+1}^{KF} = R^* + \phi_{KF} \log \left(\frac{K_t^F}{K^F} \right) + \epsilon_{R^{KF}}
\]

- **Parameter estimates:** \(\phi_{BF} = 0.000425 \) \(\phi_{KF} = 0.000467 \)

- In words, semi-elasticity of 0.04%. Foreign returns respond little to Korean investment.
Fiscal Transmission

Domestic bonds market

- Bayer et al (2022) find a semi-elasticity of 2.5% for US government debt (closed economy).
- Here: Substitution between domestic and foreign bonds.
- Semi-elasticity of 0.1% for South Korean government debt.
- Implication: Fiscal revenue maximizing level of government debt is close to zero for KOR, but fiscal costs are smaller too.
Historical and Variance Decompositions of Korean Business Cycle
Variance decomposition: Policy Rate and Liquidity Premium

Variance Decomposition for RB, Forecast Horizon:

Variance Decomposition for LP, Forecast Horizon:

Luetticke
Foreign Portfolios and Domestic Business Cycles
March 2023
68 / 77
Variance decomposition: Inequality

Variance Decomposition for TOP10Ishare, Forecast Horizon:

Variance Decomposition for TOP10Wshare, Forecast Horizon:
Historical decomposition: Growth of Consumption
Historical decomposition: Growth of Investment
Historical Decomposition: Return on Bonds
Summary

What we have done
- Formulated SMOE with heterogeneity in foreign portfolios.
- Estimated model on South Korean data.
- Used the model to
 - understand transmission mechanisms of foreign shocks.
 - understand the effect of foreign portfolios on monetary and fiscal policy.
 - understand drivers of the economy in KOR.

Still to be done
- Indirect net household foreign asset positions
- Decomposition of transmission to investment
- Correlated return shocks
Households’ Asset and Liability Classification

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liquid</th>
<th>Illiquid</th>
<th>Liabilities</th>
<th>Liquid</th>
<th>Illiquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Estate</td>
<td>262.3</td>
<td></td>
<td>Mortgages</td>
<td></td>
<td>43.8</td>
</tr>
<tr>
<td>Consumer durables</td>
<td>3.2</td>
<td></td>
<td>Credit card loan & etc</td>
<td></td>
<td>9.7</td>
</tr>
<tr>
<td>Deposits</td>
<td>92.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government bonds</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corporate bonds</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corporate equity</td>
<td>38.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private equity</td>
<td>5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference date: 31 Dec 2019
Households’ Domestic/Foreign Assets/Liabilities Structure

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liquid</th>
<th>Illiquid</th>
<th>Liabilities</th>
<th>Liquid</th>
<th>Illiquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic Assets and Liabilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A) Domestic liquid assets</td>
<td>98.8</td>
<td></td>
<td>(E) Domestic liquid liabilities</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td>(B) Foreign liquid asset</td>
<td>0.5</td>
<td></td>
<td>(F) Foreign liquid liabilities</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(C) Domestic illiquid assets</td>
<td>373.6</td>
<td></td>
<td>(G) Domestic illiquid liabilities</td>
<td>73.5</td>
<td></td>
</tr>
<tr>
<td>(D) Foreign illiquid assets</td>
<td>1.2</td>
<td></td>
<td>(H) Foreign illiquid Liabilities</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Total Positions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I) Total liquid assets, (A)+(B)</td>
<td>99.4</td>
<td></td>
<td>(L) Total liquid liabilities, (E)+(F)</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td>(J) total illiquid assets, (C)+(D)</td>
<td>374.9</td>
<td></td>
<td>(M) Total illiquid liabilities, (G)+(H)</td>
<td>75.4</td>
<td></td>
</tr>
<tr>
<td>(K) Total foreign assets, (B)+(D)</td>
<td>1.7</td>
<td></td>
<td>(N) total foreign liabilities, (F)+(H)</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Net Positions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(O) Net liquid assets, (I)-(L)</td>
<td>75.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P) Net illiquid assets, (J)-(M)</td>
<td>299.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Q) Net foreign assets, (K)-(N)</td>
<td>-0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Households’ Domestic/Foreign Assets/Liabilities Structure

<table>
<thead>
<tr>
<th>Domestic Assets and Liabilities</th>
<th>Liquid</th>
<th>Illiquid</th>
<th>Liabilities</th>
<th>Liquid</th>
<th>Illiquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Real estate</td>
<td>262.3</td>
<td></td>
<td>(10) Mortgages</td>
<td>43.8</td>
<td></td>
</tr>
<tr>
<td>(2) Consumer durables</td>
<td>3.2</td>
<td></td>
<td>(11) Credit card loans & etc</td>
<td>9.7</td>
<td></td>
</tr>
<tr>
<td>(3) Deposits</td>
<td>92.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Domestic government bonds, BG_H</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) Domestic corporate bonds, BC_H</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6) Domestic corporate equity, E_H</td>
<td>37.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) Domestic private equity, EP_H</td>
<td>5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8) Other dom. liquid assets</td>
<td>4.1</td>
<td></td>
<td>(12) Other dom. liquid liab.</td>
<td>14.4</td>
<td></td>
</tr>
<tr>
<td>(9) Other dom. illiquid assets</td>
<td>65.2</td>
<td></td>
<td>(13) Other dom. illiquid liab.</td>
<td>29.8</td>
<td></td>
</tr>
</tbody>
</table>

Foreign Assets and Liabilities

<table>
<thead>
<tr>
<th>Foreign Assets and Liabilities</th>
<th>Liquid</th>
<th>Illiquid</th>
<th>Liabilities</th>
<th>Liquid</th>
<th>Illiquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>(14) Foreign government bonds, BG_F</td>
<td>0.3</td>
<td></td>
<td>(20) Domestic government bonds, BG_F</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(15) Foreign corporate bonds, BC_F</td>
<td>0.2</td>
<td></td>
<td>(21) Domestic corporate bonds, BC_F</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(16) Foreign equity, E_F</td>
<td>0.7</td>
<td></td>
<td>(22) Domestic equity, E_F</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(17) Domestic FDI abroad, FDI_H</td>
<td>0.6</td>
<td></td>
<td>(23) Foreign FDI at home, FDI_F</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(18) Other liquid foreign assets</td>
<td>0</td>
<td></td>
<td>(24) Other liquid foreign liabilities</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(19) Other illiquid foreign assets</td>
<td>0</td>
<td></td>
<td>(25) Other illiquid foreign liabilities</td>
<td>1.9</td>
<td></td>
</tr>
</tbody>
</table>