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Abstract

This paper develops a partial-identification methodology for analyzing self-selection into alterna-

tive compensation schemes in a laboratory environment. We formulate a model of self-selection in

which individuals select the compensation scheme with the largest expected valuation, which depends

on individual- and scheme-specific beliefs and non-monetary preferences. We characterize the result-

ing sharp identified sets for individual-specific willingness-to-pay, subjective beliefs, and preferences,

and develop conditions on the experimental design under which these identified sets are informative.

We apply our methods to examine gender differences in preference for winner-take-all compensation

schemes. We find that what has commonly been attributed to a gender difference in preference for

performing in a competition is instead explained by men being more confident than women in their

probability of winning a future (though not necessarily a past) competition.
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1 Introduction

The seminal study of Niederle and Vesterlund (2007) finds that men and women differ in their desire to be

compensated based on competitive versus noncompetitive compensation schemes in a laboratory setting,

and attempts to identify the determinants of this gender gap. Using their experimental design (henceforth

referred to as the NV design), Niederle and Vesterlund (2007) find the gender gap in selection into

competitive compensation schemes persists conditional on objective performance, beliefs about relative

performance, and choice of how to be compensated for a past performance. They attribute this conditional

gender gap in selection to a gender gap in preference for performing in competitive environments.

Building on Niederle and Vesterlund (2007)’s study, subsequent papers have applied the NV design to

study differences in beliefs and preferences across various groups and settings.1 However, little attention

has been given to the experimental design itself and to the implicit assumptions that their analysis

requires using this design.

Our paper begins by re-visiting Niederle and Vesterlund (2007)’s observation that “to the extent

that there are gender differences in the participants’ beliefs about their future performance and that

these influence tournament entry, our study incorrectly attributes such an effect to men and women

having different preferences for performing in a competition.” Phrased differently, this observation implies

that, without certain assumptions, their conclusion that men have a greater non-monetary preference for

entering future competitive compensation schemes than women is only one of multiple observationally

equivalent explanations for their experimental results. The conclusions asserted under the NV design only

follow if all other observationally equivalent explanations are assumed away a priori—for example, by

imposing the assumption that individuals’ beliefs about their past and future performance are identical.

This paper develops a partial-identification methodology for analyzing self-selection into alternative

compensation schemes in laboratory settings given a choice of experimental design and an explicit eco-

nomic model of selection. In our model, individuals select into the compensation scheme that has the

highest expected valuation. Expected valuations are allowed to depend on the potential determinants of

self-selection discussed in Niederle and Vesterlund (2007), including subjective beliefs about monetary

payoffs and non-monetary preferences for participating in the selected compensation scheme. We allow

for rich heterogeneity across individuals: beliefs and preferences are individual-specific and we do not

1See Niederle and Vesterlund (2011) for a review, and see Markowsky and Beblo (2022) for a meta analysis. Examples of
recent papers that apply the NV design to study differences across other groups include Okudaira, Kinari, Mizutani, Ohtake,
and Kawaguchi, 2015 (family structure), Almås, Cappelen, Salvanes, Sørensen, and Tungodden, 2016 (socioeconomic class),
and Siddique and Vlassopoulos, 2020 (ethnicity).
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impose any restrictions on how they vary across participants or compensation schemes.

We consider the class of experimental designs in which individuals make choices between compensa-

tion schemes with different monetary payoffs. We do not rely on proxies for performance beliefs—such

as individuals’ rank guesses for their relative past performance as in Niederle and Vesterlund (2007)—to

subsequently attribute any remaining gender gap to a gender difference in preferences. Instead, we

set-identify individuals’ belief and preference parameters through their observed choices. We construct

identified sets for individual-specific parameters of interest that are sharp given the model and the ob-

served choices. For a large class of experimental designs and set of target parameters, we show that

sharp identified sets can be constructed by solving pairs of linear programs. We develop conditions on

the experimental design for identified sets on parameters of interest to be bounded and informative.

Our theoretical results imply that the sharp identified sets for our considered belief and preference

parameters are uninformative or unbounded under the NV design. Our analysis shows that judicious

modifications to the NV design result in informative and bounded identified sets for many of these

parameters, and we accordingly design and implement such an experiment.

We analyze the resulting experimental data. Consistent with the previous literature, we find that

men on average place a higher value on competitive compensation schemes than women, and that this

gender gap increases when considering compensation for a future performance relative to a past perfor-

mance. However, our results reject the assumptions required under the NV design to conclude that the

gender differences in valuations are largely caused by gender differences in preferences. We find that

the discrepancy between men and women’s willingness to enter a competitive compensation scheme that

has commonly been attributed to a gender difference in non-monetary preference for competition is ex-

plained instead by men, and especially low ability men, having relatively greater overconfidence in their

future (though not necessarily past) probabilities of winning in such competitive environments. We do

not find evidence that men and women systematically differ in their taste for competition—and indeed

find that women have a positive taste for competing—but do find that they differ substantially in their

performance-related beliefs.

The rest of the paper is organized as follows. In Section 2, we briefly discuss the NV design. Section

3 develops our framework for analyzing selection into compensation schemes. Section 4 presents our

identification analysis. Sections 5 and 6 introduce our experimental design and present our empirical

results. Section 7 concludes.
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2 Re-visiting the Niederle-Vesterlund design

Niederle and Vesterlund (2007) provide a thorough discussion of their design, and we now summarize its

main aspects. In their design, individuals complete addition tasks in which the goal is to maximize the

number of correct answers in the allotted time, and individuals choose whether to be compensated for

these performances under a piece-rate (non-competitive) or a tournament (competitive) compensation

scheme. Under the piece-rate scheme, payment is 50 cents per correct answer and is determined solely

based on an individual’s own performance. Under the tournament scheme, the payment is $2 per correct

answer, but is only awarded to the individual who performs the best out of a group of four.

Individuals choose between piece-rate and tournament compensation schemes, and their choices are

either applied to a past task performance or to a future task performance. In the case of a past task

performance, they complete the task, are told their performance (number of correct answers) on that

task, and subsequently decide whether they wish to be compensated for the completed task under a

piece-rate or tournament compensation scheme. Individuals also provide their rank guess for their relative

performance on the task they completed.2 In the case of a future task performance, they first decide

whether they want their next task performance to be compensated under a piece-rate or tournament

scheme, and then subsequently perform the task. For both past and future tournament compensation,

individuals’ performances are compared to the past task performances of the other individuals in their

group, which removes the potential for others’ compensation choices to affect an individual’s decisions.

Additionally, in both cases individuals are not given any information about the performances of others.

A key difference between the two cases is that in the second case individuals are choosing compensation

for a task before they perform it and, therefore, without knowing how they will do.

Under their design, Niederle and Vesterlund (2007) argue that gender differences in preference for

performing in a future competitive environment can be identified by the gender difference in the propensity

to enter a future tournament, controlling for choice of how to be compensated for a past performance,

realized past performance, and past subjective rank guess. The rationale is as follows: whereas “general”

factors such as overconfidence and feedback aversion are present in the choices of compensation scheme for

both past and future performances, the preference for performing the task in a competitive environment

only manifests itself in the decision on future compensation.

However, this identification strategy implicitly allows for only a very limited form of overconfidence.

2Rank guess involves providing the number that the individual believes represents the rank of their performance on a
completed task out of the group of four individuals.
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In particular, the controls used relate to either the individual’s own past performance or their self-reported

beliefs about the performance of others relative to their own past performance, and do not directly address

beliefs about future performance. Niederle and Vesterlund (2007) do not find a statistically significant

mean difference between the past and future performances of individuals who choose to enter a future

tournament, but beliefs about future performance need not correspond to observed performance.

This issue fundamentally alters the implications of studies using the NV design. Although differing

preferences for performing in a competitive environment is one possible explanation for the gender gap

observed in these studies, an equally consistent explanation is that men and women differ in beliefs about

future performance relative to past performance, and thus future payoffs relative to past payoffs. Although

Niederle and Vesterlund (2007) acknowledge the possibility of such threats to their identification strategy,

they—and subsequent applications of the design—do not consider the issue further. We formally revisit

this issue in Section 4 after first developing our framework.

3 Framework

We analyze laboratory settings that generalize that of Niederle and Vesterlund (2007). There are two key

components to our framework: an experimental design which formalizes the process of eliciting choices

between compensation schemes at different base-payoffs, and an explicit economic model of selection

into compensation schemes. Given these components, we develop a partial-identification methodology to

analyze the latent beliefs and preferences that determine selection into compensation schemes.

Our main identification results use the economic model and observed data to construct sharp bounds

on target parameters of interest. In doing so, our framework allows the researcher to a priori analyze

whether it is possible to form informative bounds on a target parameter. The researcher can accord-

ingly flexibly modify the experimental design while making explicit the assumptions underpinning their

analysis.

3.1 Class of experimental designs

We consider the class of experimental designs in which individuals make choices between alternative

compensation schemes with different base-payoffs that are applied to task performances. The class

of designs generalizes the NV design by allowing for the elicitation of choices between a larger set of

compensation schemes and at any number of base-payoffs.
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We denote the set of compensation schemes as J , with schemes indexed by j. For any scheme j,

we denote (j, p) as a scheme-payoff, where p > 0 is the base-payoff. For example, j may denote a

past tournament scheme, so that (j, p) denotes the past tournament with, conditional on winning, a

compensation of $p multiplied by the individual’s performance.

Niederle and Vesterlund (2007) consider four compensation schemes. Let pt (ft) denote the consid-

ered past (future) tournament compensation schemes, and pr (fr) denote the past (future) piece-rate

compensation schemes. Then the set of schemes considered in the NV design is JNV ≡ {pt, pr, ft, fr}.

We generalize this set of schemes by considering two additional compensation schemes, which we denote

as fixed pay (f) and future lumpsum tournament (fl). A fixed pay scheme-payoff (f, p) is a fixed cash

transfer of $p that does not depend on performance. A future lumpsum tournament scheme-payoff (fl, p)

is the same as a future tournament scheme-payoff except that, conditional on winning, the compensation

is performance-invariant. In particular, the winner receives a payoff $p rather than $p multiplied by their

performance. We collect these considered schemes via the set J .

Definition 1 (Set of Compensation Schemes). Define J =
{
f,J p,J f

}
where

J p =

{
pr, pt

}
(past schemes),

J f =

{
ft, fr, fl

}
(future schemes).

Because past and future tournaments and future lumpsum tournaments involve competing against

others, we will sometimes refer to these schemes as competitive schemes and the other schemes as non-

competitive schemes. Given J , we define a choice experimental design as follows.

Definition 2 (Choice Experimental Design). Let V ⊆ J 2 ×R2 denote the finite set of (j, j′, p, q) values,

j 6= j′, p, q > 0, such that the experiment elicits incentive compatible choices between scheme-payoff (j, p)

and scheme-payoff (j′, q). We call V the choice experimental design.

Remark 3.1 (Finite Number of Choices). The restriction that V is a finite set nests the NV design as

well as the design we use in our application. Our analysis can be immediately extended to allow for an

arbitrary (possibly infinite) number of choices at the cost of additional notational complexity.

For any individual i and any (j, j′, p, q) ∈ V, let Dj,j′(p, q; i) denote an indicator variable for i choosing

scheme-payoff (j, p) over (j′, q). The choice experimental design V results in the researcher observing

choice data Di,V ≡
{
Dj,j′(p, q; i)

}
(j,j′,p,q)∈V for each individual i. An experimental design elicits other
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covariates in addition to Di,V , with our only restriction on these additional covariates being that they

include past task performances and, if the researcher is interested in differences across groups like gender,

group membership. We accordingly define the data elicited by the experimental design for each individual

i as follows.

Definition 3 (Individual-level Data). Consider the set of schemes J and choice experimental design V.

Then the experimental design results in individual-level data (Di,V , Xi), where Xi = [Xi1, Xi2], with

Xi1 ≡
(
{S∗ij}j∈J p , Gi

)
,

{S∗ij}j∈J p denoting i’s realized task performances for past schemes, Gi denoting i’s group membership,

and with Xi2 denoting a vector of other covariates.

3.2 Model of selection into compensation schemes

Based on the discussions of Niederle and Vesterlund (2007), we develop a model of selection in which

agents facing a choice between alternative compensation schemes choose the scheme with the higher

expected valuation. We assume that the individual’s valuation (total compensation) from scheme j at

base-payoff p is additively separable in monetary and non-monetary components, where the non-monetary

component does not depend on the base-payoff. We thus write individual i’s valuation for scheme j as a

function of base-payoff p as

Mij(p) +Rij . (1)

For all schemes we consider, monetary payoff function Mij(p) takes the form

Mij(p) = Wij ·mj(Sij) · p, (2)

where Wij ∈ {0, 1} denotes whether i would receive monetary compensation if selecting into scheme j,

Sij is the performance for i under scheme j, and mj(Sij) is defined by

mj(Sij) ≡


1 if j ∈ {f, fl}

Sij if j 6∈ {f, fl}
. (3)
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For competitive schemes, Wij depends on Sij as well as the performance of other individuals in i’s group.

For example, if j is a past or future tournament, Wij = 1 indicates that individual i would win (have

the highest performance in their group) if selecting into scheme j, and since compensation is base-payoff

multiplied by performance, mj(Sij) = Sij .

Turning to the non-monetary component, NV hypothesize that it may depend on two factors: the

value of receiving feedback about whether the individual won or not, which they call feedback aversion,

and the cost of performing the task. In discussing the interpretation of feedback aversion, NV note that

some individuals may prefer not learning that they lost in a competition and others may derive value

from learning that they won. We thus assume that non-monetary compensation Rij takes the form

Rij = Wij · η̃ij(1) + (1−Wij) · η̃ij(0) + c̃ij , (4)

where η̃ij(1) and η̃ij(0) denote the cost of feedback aversion of respectively winning or losing if the

individual were to select into scheme j, and c̃ij is the cost of performing the task if selecting into the

task, where we allow these costs to be random from the individual’s perspective and we do not constrain

their sign. Recall that the valuation is from the individual’s perspective at the time she is selecting into

compensation schemes. Thus, c̃ij = 0 for any past scheme j as the cost of performing a past task has

already been incurred prior to the selection decision.

Let Ei denote the expectation operator integrating against individual i’s subjective beliefs at the time

she is selecting into compensation schemes, at which point Sij for j past tournament and past piece rate

have already been realized and observed by the individual and are in her information set. Individual i’s

expected valuation of scheme j as a function of base-payoff can be written as

Vij(p) ≡ Ei [Mij(p) +Rij ]

= {πij · µij} p+ {πij · ηij(1) + (1− πij) · ηij(0) + cij} ,
(5)

where

πij = Pi[Wij = 1],

µij = Ei [mj(Sij) |Wij = 1] ,

ηij(w) = Ei [η̃ij(w) |Wij = w] , w = 0, 1,

cij = Ei [c̃ij ] .

(6)
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Let θij = (θ
[1]
ij , θ

[2]
ij ), where θ

[1]
ij = (πij , µij) denotes i’s performance-related belief parameters and θ

[2]
ij =

(ηij(0), ηij(1), cij) denotes her (expected) preference parameters. Since Vij only depends on i through θij ,

we will define Vj(p; θij) ≡ Vij(p).

We will impose restrictions on the individual’s performance-related beliefs and preference parame-

ters that are implied by the particular compensation scheme j. Since the concepts of winning and, by

extension, of feedback aversion are only defined for competitive schemes, we impose that πij = 1 and

ηij(1) = ηij(0) = 0 for all non-competitive schemes. For competitive schemes, πij = Pi[Wij = 1] ∈ [0, 1]

and this value depends on the individual’s beliefs about their probability of winning. Since individuals

observe their realized past task performance when considering the valuation of a past scheme, we impose

that, for all j ∈ J p, Sij is degenerate and equal to the realized past performance S∗ij so that µij = S∗ij .

Because realized past task performances are always positive in practice, we impose that S∗ij > 0 for all

j ∈ J p.3 Since individuals performed the task (and incurred any cost of performing the task) prior to

considering the valuation of a past scheme, we accordingly impose that c̃ij = 0 so that cij = 0 for all

j ∈ J p. Collecting these restrictions, we have that θij ∈ Θj where

Θj ≡



{1} × {1} × {0} × {0} × {0} if j = f

{1} × N+ × {0} × {0} × {0} if j = pr

[0, 1]× N+ × (−∞,∞)× (−∞,∞)× {0} if j = pt

{1} × [0,∞)× {0} × {0} × (−∞,∞) if j = fr

[0, 1]× [0,∞)× (−∞,∞)× (−∞,∞)× (−∞,∞) if j = ft

[0, 1]× {1} × (−∞,∞)× (−∞,∞)× (−∞,∞) if j = fl.

(7)

We will write θi ≡ {θij}j∈J , θi ∈ Θ ⊆ RK , where K ≡ 5|J | and Θ ≡
∏
j∈J Θj . Together, the model and

these restrictions on θi lead us to define our model of selection, which we refer to as ASVM (Additively-

Separable Valuation Model).

Assumption 1 (ASVM). Given choice experimental design V, individual i satisfies Assumption 1 if they

have associated individual-level data (Di,V , Xi) and parameters θi ∈ Θ such that

1. µij = S∗ij for all j ∈ J p, and

3This requirement is not necessary: the upcoming identification analysis can be trivially modified to separately consider
the case where S∗ij = 0. However, doing so would introduce additional notation. In practice, individuals have ample time to
correctly complete at least one addition task in the NV design, and this also holds in our application.
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2. for all (j, j′, p, q) ∈ V,

Dj,j′(p, q; i) = 1

[
Vj(p; θij) ≥ Vj′(q; θij′)

]
. (8)

Under Assumption 1: (1) the individual’s subjective expected performance equals their realized per-

formance for a past task for which they have already been told their realized performance; and (2) for all

choices, they choose the option with the higher expected valuation, i.e., the higher Vj(p; θij) term.

From equation (5), we have that

Vj(p; θij) = δ(θ
[1]
ij ) p+ γ(θij), (9)

with

δ(θ
[1]
ij ) = πij · µij , (10)

γ(θij) = ψ(θij) + cij , (11)

where ψ(θij) is the expected value of feedback aversion,

ψ(θij) = πij · ηij(1) + (1− πij) · ηij(0). (12)

We thus have that valuation Vj(p; θij) is an affine function of base-payoffs with slope parameter that

only depends on performance beliefs θ
[1]
ij and intercept that depends on both beliefs θ

[1]
ij and preference

parameters θ
[2]
ij . This linear form with a non-negative slope coefficient on base-payoff will play a critical

role in our analysis.

For scheme j ∈ J , define

β(θij) ≡ (δ(θ
[1]
ij ), γ(θij)), (13)

λ(θij) ≡ (πij , µij , ψ(θij), cij). (14)

Thus, β(θij) collects the slope and intercept parameters that determine valuations, which respectively

correspond to the expected monetary (at base-payoff p = 1) and non-monetary values for scheme j.

Note that β(θij) only depends on θi through λ(θij), which collects the key parameters that underlie our

economic model for scheme j.
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Remark 3.2 (Choices as Functions of β(θij)). For any (j, j′, p, q) ∈ V, the selection model of equation

(8) can be rewritten as

Dj,j′(p, q; i) = 1

[
δ(θ

[1]
ij ) p+ γ(θij) ≥ δ(θ[1]ij′) q + γ(θij′)

]
. (15)

Remark 3.3 (Risk Neutrality). Our analysis is based on the assumption that individuals exhibit risk-

neutral behavior for the choice of compensation scheme in the laboratory experiment given the low stakes

involved. Although Niederle and Vesterlund (2007) briefly mention risk preferences as a possible factor

that may explain why genders differ in their propensity to enter tournaments, their analysis does not ex-

plicitly consider risk preferences. In our experiment, we elicit risk preferences following the design of Holt

and Laury (2002). We find that although participants are slightly risk averse on average, their elicited risk

preferences do not predict tournament valuations.4 Consistent with other studies using the design of Holt

and Laury (2002), we do not find a significant gender difference in elicited risk attitudes.5 Furthermore,

as discussed in Remark 4.3, there are testable restrictions from the assumption of risk neutrality, and we

find that the vast majority of elicited choices are consistent with risk-neutral behavior. Finally, assuming

individuals are risk-neutral simplifies our analysis and leads to tractable and computationally feasible

characterizations of identified sets for belief and preference parameters. We note that our utility function

is observationally equivalent to rank-dependent utility with a linear utility function. That is, beliefs in

our model can be interpreted as decision weights in a rank-dependent utility model. We accordingly leave

the corresponding analysis without risk neutrality for future work.

3.3 Target parameters

We construct individual-level identified sets for functions of the belief and preference parameters, which

we then aggregate to bound population-level quantities.

Definition 4 (Target Parameter). A target parameter for individual i is a real-valued target function

τ : RK → R evaluated at θi. We denote the target parameter as τ?i ≡ τ(θi).

Examples of target parameters we will consider include, for j ∈ J , the valuation Vj(p; θij), components

of β(θij), and components of λ(θij). The target parameters Vj(p; θij) determine selection. Recall from

equation (9) that Vj(p; θij) is an affine function of p parameterized by β(θij). The first component of

4We discuss these results in greater detail in Subsection 6.1 and Online Appendix E.
5Filippin and Crosetto (2016) survey studies using the design of Holt and Laury (2002) and find that out of 54 studies,

less than 10% show significant gender differences in risk attitudes.
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β(θij), the slope term δ(θ
[1]
ij ), can be interpreted as i’s subjective expected monetary compensation if

base-payoff were $1 and is a function of i’s performance-related beliefs. The second component of β(θij),

the intercept term γ(θij), is i’s expected non-monetary compensation, and is a function of i’s subjective

probability of winning and preference parameters. Analyzing components of β(θij) thus gives insight

into the relative role of performance-related beliefs versus preferences in driving differences in valuations

and thus differences in selection into compensation schemes. Finally, examining individual components

of λ(θij) allows us to examine the key parameters that underlie our economic model.

3.4 Identified sets

We call a set an identified set for individual i’s given target parameter if it is a known function of

individual i’s data, (Di,V , Xi), that contains individual i’s true parameter value. We will use two criteria

when evaluating identified sets: whether it is informative, and whether it is sharp. We call an identified set

informative if it is strictly tighter than the set implied by the parameter space Θ, and we call an identified

set sharp if it is the smallest possible identified set given the assumptions and individual’s data. Given our

model and assumptions, a given parameter is consistent with the individual’s data if it is consistent with

the individual’s past realized performances and the individual’s choices. We will additionally consider

whether the identified set is sharp relative to only using choice data between specified pairs of schemes.

In particular, defining

S ≡
{

(j, j′) | ∃ (p, q) s.t. (j, j′, p, q) ∈ V
}
, (16)

so that S is the set of (j, j′) scheme pairs for which the experiment elicits choices between j and j′, we

will also consider whether an identified set is sharp relative to using choice data between pairs of schemes

in S ′ ⊆ S. In the following, for any function f and set A, a subset of the domain of f , we will write f(A)

for the image of A under f .

Definition 5 (Identified Sets). Suppose individual i satisfies Assumption 1. Define

Θ̃i ≡
{
θ ∈ Θ

∣∣∣∣ µj = S∗ij ∀ j ∈ J p
}
, (17)

and for S ′ ⊆ S define

Θ?
i (S ′) ≡

{
θ ∈ Θ̃i

∣∣∣∣ Dj,j′(p, q; i) = 1

[
Vj(p; θj) ≥ Vj′(q; θj′)

]
∀ (j, j′, p, q) ∈ V s.t. (j, j′) ∈ S ′

}
. (18)
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Let Θ?
i ≡ Θ?

i (S). Let Υi = g(Di,V , Xi) for some known set-valued function g. Then, for any function

f : RK 7→ RL, Υi is an identified set for f(θi) if f(θi) ∈ Υi, is informative for f(θi) if f(θi) ∈ Υi and

Υi ( f(Θ̃i), is the S ′-sharp identified set for f(θi) if Υi = f (Θ?
i (S ′)), and is the sharp identified set for

f(θi) if Υi = f (Θ?
i ).

Here, Θ̃i corresponds to the parameter space implied by the model restrictions. Because Θ̃i is the

product space of j−specific spaces, we can write it as Θ̃i =
∏
j∈J Θ̃ij . Θ?

i (S ′) is the subspace that

exhausts choices in S ′, and Θ?
i is the subspace that exhausts all observed choice data. Following Remark

3.2, we can also rewrite the constraints in (18) as functions of {β(θij)}j∈J . Note that, taking f to be

the identity function, the definition implies that Θ?
i (S
′) is the S ′-sharp identified set for θi and Θ?

i is the

sharp identified set for θi.

Remark 3.4 (Parameters that are Trivially Point-Identified). Our parameter space restriction (7) implies

that Θ̃i,f is a point, while our parameter space restriction and Assumption 1 imply that Θ̃i,pr is a point:

Θ̃i,pr = {1} × S∗i,pr × {0} × {0} × {0}.

While θi,f and θi,pr, and thus any functions of them, are immediately point-identified, the same is not

true for the parameters that determine the expected valuation of the remaining schemes. In the following,

we thus analyze identification of those target parameters that are functions of θij for j ∈ J \ {f, pr}.

3.5 Payoff indifference sets

Payoff indifference sets will play a critical role in our identification analysis, and are defined as follows:

Definition 6 (Payoff Indifference Set). Define

Pj,j′ ≡ {p | ∃ q s.t. (j, j′, p, q) ∈ V}, (19)

so that Pj,j′ is the set of base payoffs p for scheme j for which the experiment elicits choices between

scheme-payoff (j, p) and scheme-payoff (j′, q) for some q. Define

Qj,j′,p ≡ {q | (j, j′, p, q) ∈ V}, (20)

so that Qj,j′,p is the set of q values for which individuals choose between (j, p) and (j′, q). For any

12



(j, j′) ∈ S, p ∈ Pj,j′ , define ql,(j,j′)(p; i) = −∞ if Dj,j′(p, q; i) = 0 for all q ∈ Qj,j′,p, and

ql,(j,j′)(p; i) ≡ max
{
q
∣∣∣ (j, j′, p, q) ∈ V and Dj,j′(p, q; i) = 1

}
(21)

otherwise. Define qu,(j,j′)(p; i) =∞ if Dj,j′(p, q; i) = 1 for all q ∈ Qj,j′,p, and

qu,(j,j′)(p; i) ≡ min
{
q
∣∣∣ (j, j′, p, q) ∈ V and Dj,j′(p, q; i) = 0

}
(22)

otherwise. We call [ql,(j,j′)(p; i), qu,(j,j′)(p; i)] the individual’s payoff indifference set (for scheme-payoff

(j, p) relative to j′).

Thus, ql,(j,j′)(p; i) is defined as the largest base-payoff q for which individual i chooses scheme-payoff

(j, p) over (j′, q), while qu,(j,j′)(p; i) is defined as the smallest base-payoff q for which individual i chooses

scheme-payoff (j′, q) over (j, p). From our selection model (equation 8) and that Vj′(q; θij′) is (weakly)

increasing in q, it follows that ql,(j,j′)(p; i) ≤ qu,(j,j′)(p; i), which makes the payoff indifference set well-

defined as an interval.

Definition 7 (Payoff Indifference Points). Suppose there exists a unique q?i ∈ R such that Vj(p; θij) =

Vj′(q
?
i ; θij′). Then we call q?i the payoff indifference point for (j, j′, p), which, when it exists, will necessarily

satisfy

q?i ∈
[
ql,(j,j′)(p; i) , qu,(j,j′)(p; i)

]
. (23)

In the special case where j′ = f , the payoff indifference point will necessarily exist with q?i = Vj(p; θij),

so that

Vj(p; θij) ∈
[
ql,(j,f)(p; i) , qu,(j,f)(p; i)

]
. (24)

In other words, the target parameter Vj(p; θij) is set-identified by the payoff indifference set for (j, p)

relative to f .

Remark 3.5 (Bounded Payoff Indifference Sets). By their definitions, ql,(j,f)(p; i) and qu,(j,f)(p; i) will be

finite if Dj,f (p, q0; i) = 0 and Dj,f (p, q1; i) = 1 for some q0, q1 ∈ Qj,f,p, equivalently, if q1 < Vj(p; θij) < q0.

Thus, the identified set on Vj(p; θij) from equation (24) will be bounded w.p.1 if

P [minQj,f,p < Vj(p; θij) < maxQj,f,p] = 1. (25)

Additionally, equation (25) implies that P [ql,(j,f)(p; i) ∈ Qj,f,p] = P [qu,(j,f)(p; i) ∈ Qj,f,p] = 1.
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4 Identification analysis

We use payoff indifference sets to characterize identified sets for arbitrary target parameters in Subsection

4.1, and we specialize the results to characterize the identified sets for the underlying parameters of our

economic model in Subsection 4.2. We state necessary and sufficient conditions for these identified sets

to be informative. In Subsection 4.3 we consider the implications of our analysis for experimental design.

Our identification analysis focuses on identified sets that only use choices where the alternative is

fixed pay. Our rationale for doing so is based on robustness to misreported choices. We speculate that

it is cognitively less challenging for subjects to choose between a compensation scheme and fixed pay

than between one compensation scheme and another non-fixed pay compensation scheme, and thus easier

for individuals to correctly report choices versus fixed pay than versus other schemes. This speculation

is supported by Chew, Miao, Shen, and Zhong (2022), who show that choices between two alternative

lotteries result in more inconsistent responses than choices between a lottery and a fixed, certain payment.

In addition, using only elicited choices against fixed pay is more robust than using the full set of elicited

choices as the latter allows a misreport in one choice to potentially invalidate the implied identified

sets for the parameters of all schemes. We will use the elicited choices between pairs of non-fixed pay

alternatives in Section 5 when analyzing differences in average payoff indifference sets across groups, but

not for identifying the underlying parameters of our economic model.

4.1 Characterizing identified sets

Define Sf ⊆ S as the restriction of scheme choices to choices where the alternative is fixed pay, so that

Sf ≡ {(j, j′) ∈ S | j′ = f}.

We are interested in constructing identified sets that are sharp relative to Sf . We begin with two

observations. First, since Vj′(q; θj′) is (weakly) increasing in q for any candidate θ, if the model with

parameter θ is consistent with observed Dj,j′(p, q; i) = 1 for some q, then it is consistent with observed

Dj,j′(p, q
′; i) = 1 for all q′ < q. Likewise, if the model with parameter θ is consistent with observed

Dj,j′(p, q; i) = 0 for some q, then it is consistent with observedDj,j′(p, q
′; i) = 0 for all q′ > q. This suggests

that we can determine whether the model with a particular candidate parameter value is consistent with

all observed choices simply by checking whether it is consistent with the payoff indifference sets. When

the alternative is fixed pay, this observation trivially holds as Vf (q; θf ) = q, and the indifference sets take
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the simple form as in (24).

Second, when assessing whether a vector θ belongs to the Sf -sharp identified set for θi, observe

that constraints on the subvector θj arising from the j−specific parameter space and choices between

scheme j and fixed pay do not impose any restrictions on the subvector θ−j . As such, we can assess

whether θ belongs to the identified set by separately considering whether each subvector θj satisfies the

requisite j−specific constraints. The following theorem formalizes these observations and characterizes

the Sf -sharp identified set for θi.

Theorem 1. Suppose individual i satisfies Assumption 1. Then the Sf -sharp identified set for θi is

characterized by

Θ?
i (Sf ) =

∏
j:(j,f)∈Sf

{
θj ∈ Θ̃ij

∣∣∣∣ δ(θ[1]j ) p+ γ(θj) ∈
[
ql,(j,f)(p; i), qu,(j,f)(p; i)

]
∀ p ∈ Pj,f

}
, (26)

and thus τ(Θ?
i (Sf )) is the Sf -sharp identified set for any target parameter τ?i .

The proof of Theorem 1 is in Online Appendix B and follows from the above arguments. The theorem

states that the identified set for θi that exploits all of individual i’s choices against fixed pay is the set

of θ such that, for each scheme j such that the individual chooses between scheme j and fixed pay, the

resulting line δ(θ
[1]
j ) p + γ(θj) intersects the individual’s payoff indifference sets for scheme j relative to

fixed pay. The bounds on θi will necessarily be sharp if Sf = S, i.e., if all choices are against fixed pay.

4.2 Analysis of key parameters underlying the economic model

We now specialize our identification analysis to considering slope and intercept parameters (components

of β(θij)), and preference parameters (components of λ(θij)) for j ∈ J \
{
f, pr

}
, which following Remark

3.4 are those schemes for which θij is not immediately point identified. For any j ∈ J \
{
f, pr

}
, define

Bi,(j,f) ≡
{

(δ, γ) ∈ Aij × R
∣∣∣∣ δ p+ γ ∈

[
ql,(j,f)(p; i), qu,(j,f)(p; i)

]
∀ p ∈ Pj,f

}
, (27)

where

Aij =


[0, S∗ij ] for j = pt,

[0,∞) for j ∈ {fr, ft},

[0, 1] for j = fl.

(28)
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Let B[k]i,(j,f) denote the projection of Bi,(j,f) onto its kth component. Also define δij ≡ δ(θ
[1]
ij ) and γij ≡

γ(θij) so that β(θij) = (δij , γij). The following theorem characterizes the identified sets for the components

of β(θij).

Theorem 2. Suppose individual i satisfies Assumption 1. Then, for j ∈ J \
{
f, pr

}
,

1. (δij , γij) ∈ Bi,(j,f).

2. B[1]i,(j,f) and B[2]i,(j,f) are Sf -sharp for δij and γij respectively, and these sets are intervals:

B[1]i,(j,f) = [δij,l, δij,u],

B[2]i,(j,f) = [γij,l, γij,u].

Result 1. of Theorem 2 follows from Theorem 1 and the specification of Θ in (7). Result 2. is proven

in Online Appendix B. Our proof that B[1]i,(j,f) is Sf -sharp is based on the parameter space for θ being the

product space of j−specific parameter spaces, that β(Θ̃ij) = Aij ×R, and appealing to Theorem 1. That

this set is an interval follows since, for any (δ1, γ1), (δ2, γ2) and for any δ∗ between δ1 and δ2, there exists

a γ∗ between γ1 and γ2 such that the line δ∗ p+ γ∗ lies in-between the lines δ1 p+ γ1 and δ2 p+ γ2 for

all p. The case for B[2]i,(j,f) follows analogously.

Remark 4.1 (Point-Identified Valuations). Suppose ql,(j,f)(p; i) = qu,(j,f)(p; i) ∀ p ∈ Pj,f , which, from

equation (24), is equivalent to Vj(p; θij) being point identified for p ∈ Pj,f . Since two points define a line,

we have that (δij , γij) is point identified if |Pj,f | ≥ 2 and over-identified if |Pj,f | ≥ 3.

Remark 4.2 (Necessary and Sufficient Conditions). A necessary condition for [δij,l, δij,u] to be informa-

tive is that |Pj,f | ≥ 2. A sufficient condition for this interval and for [γij,l, γij,u] to both be bounded and

informative is that there exists p1, p2 ∈ Pj,f with p2 > p1 such that

(
qu,(j,f)(p2; i)− ql,(j,f)(p2; i)

)
+
(
qu,(j,f)(p1; i)− ql,(j,f)(p1; i)

)
p2 − p1

< supAij . (29)

See Online Appendix B for the proof.

Using that supAij ≥ 1, a sufficient condition for equation (29) to hold is that

(
qu,(j,f)(p2; i)− ql,(j,f)(p2; i)

)
+
(
qu,(j,f)(p1; i)− ql,(j,f)(p1; i)

)
< p2 − p1. (30)

Suppose that equation (25) holds for p = p1, p2. Then each term on the left hand side of (30) is an
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element of Qj,f,p1 or Qj,f,p2 , where Qj,f,p was defined in equation (20), and thus a sufficient condition for

(30) and thus for (29) to hold is that

max
k=1,2

max
q∈Qj,f,pk

min
q′∈Qj,f,pk\{q}

|q − q′| < p2 − p1
2

. (31)

Remark 4.3 (Testing Risk Neutrality). Our analysis relies on our assumption of risk neutrality to obtain

valuations that are linear in base-payoffs. Theorem 2 immediately implies a testable restriction from risk

neutrality for any j such that |Pj,f | ≥ 3: in particular, it implies that there exists values of (δ, γ) such

that the line δ p+ γ intersects the intervals
{[
ql,(j,f)(p; i), qu,(j,f)(p; i)

] ∣∣ p ∈ Pj,f}.

We now consider the individual components of λ(θij). Define ψij ≡ ψ(θij). Recalling that λ(θij) =

(πij , µij , ψij , cij), the following theorem characterizes the identified sets for the individual components of

this vector.

Theorem 3. Suppose individual i satisfies Assumption 1. Then for any j ∈ J \
{
f, pr

}
and target

parameter τ?i = λ(θij)
[k] corresponding to the kth component of λ(θij),

1. The Sf -sharp identified set for τ?i is given in Table 1.

2. The sharp identified set for τ?i is uninformative for τ?i ∈ {ψi,ft, ψi,fl, ci,ft, ci,fl}, is unbounded for

τ?i = µi,ft, and is uninformative up to taking the closure for τ?i = πi,ft.

Table 1: Sf -sharp identified sets for individual preference parameters.

Scheme j πij ∈ µij ∈ ψij ∈ cij ∈
Past Tournament [δij,l/S

∗
ij , δij,u/S

∗
ij ] {S∗ij} [γij,l, γij,u] {0}

Future Piece Rate {1} [δij,l, δij,u] {0} [γij,l, γij,u]

Future Tournament

{
[0, 1] if 0 ∈ δ(Θ?

i (Sf ))

(0, 1] o/w
[δij,l,∞) (−∞,∞) (−∞,∞)

Future Lumpsum Tournament [δij,l, δij,u] {1} (−∞,∞) (−∞,∞)

The theorem is proven in Online Appendix B, with a proof based on Theorem 1 and the definitions

of Θ̃ij and β(θij).

Remark 4.4 (Set Identification by Solving Linear Programs). Results 1. and 2. of Theorem 2 imply

that we can construct the Sf -sharp identified sets [δij,l, δij,u] and [γij,l, γij,u] by solving pairs of linear

programs that respectively minimize (maximize) δ or γ subject to (δ, γ) lying in (27). Result 1. of

Theorem 3 implies that we can then plug the endpoints of these intervals into the expressions in Table 1

to calculate Sf -sharp identified sets on τ?i ∈ {πij , µij , ψij , cij}.
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Remark 4.5. While our primary reason to exclusively use Sf for identification of target parameters is

for robustness to misreporting, there is an additional computational advantage of doing so. We’ve shown

that we can construct identified sets for our target parameters by solving pairs of straightforward linear

programs. In contrast, more generally, the sharp identified sets for our target parameters need not be

an interval, and the programs based on the analogue of Theorem 1 presented in Online Appendix C

to construct the convex hulls of the identified sets will generally be quadratic programs with quadratic

fractional constraints for which there exists no standard solution method.

Remark 4.6 (Informative and Uninformative Sharp Identified Sets). For any j ∈ J \
{
f, pr

}
, we can

partition λ(θij) into λ1(θij) and λ2(θij), where λ2(θij) denotes the subvector of parameters listed in

Result 2. of Theorem 3 and λ1(θij) denotes the subvector containing the remaining components. For the

components of λ1(θij), the associated Sf -sharp identified sets presented in Table 1 are informative if and

only if the relevant Sf -sharp identified sets on δij or γij are informative. For the components of λ2(θij),

the closure of the sharp identified set is either unbounded or uninformative.

The following corollary provides a general approach for obtaining Sf -sharp identified sets on functions

of components of β(θij) and λ(θij) across distinct schemes.

Corollary 3.1. Suppose individual i satisfies Assumption 1. Consider j1, . . . , jL ∈ J \
{
f, pr

}
, j` 6= j`′

for any ` 6= `′. For all ` = 1, . . . , L, let τij` denote a component of (β(θij`), λ(θij`)) and denote the

Sf -sharp identified set for τij` as [τij`,l, τij`,u], as constructed in Result 2. of Theorem 2 and Result 1. of

Theorem 3. Given any function g : RL → R, define

Gi,(j1,...,jL)(τij1 , . . . , τijL) ≡
{
g(x1, . . . , xL)

∣∣∣∣ x` ∈ [τij`,l, τij`,u] ∀ ` = 1, . . . , L

}
. (32)

Then Gi,(j1,...,jL)(τij1 , . . . , τijL) is the Sf -sharp identified set for g(τij1 , . . . , τijL).

In our application, we use Corollary 3.1 to construct bounds on (1) the difference in perceived prob-

abilities of winning past and future tournaments; (2) measures of overconfidence defined as indicators

for perceived probabilities of winning exceeding the objective probabilities; and (3) averages of target

parameters across multiple past tournament schemes. In Appendix A we show how these three examples

are covered as special cases of Corollary 3.1.

It is not possible to obtain meaningful conclusions regarding the cross-group differences in the ex-

pected value of parameters that are always unbounded or uninformative. Likewise, for any two such
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parameters defined for different schemes, the sharp identified set on their difference will be unbounded or

uninformative, and it will not be possible to obtain meaningful conclusions on how the difference varies

across groups. Thus, based on Remark 4.6, it is natural for us to exclude individual components of λ2(θij)

when examining how parameters or differences in parameters vary across groups.

4.3 Experimental design

Our results have important implications for the design of experiments that yield bounded and informative

identified sets. Consider constructing an experimental design V that satisfies the following condition:

(V-1) For each j ∈ J \
{
f, pr

}
, (j, f) ∈ S and there exists p1, p2 ∈ Pj,f such that equation (25) holds for

p = p1, p2, and such that equation (31) holds.

Using Remark 3.5 and Remark 4.2, any experimental design satisfying (V-1) results in the identified set

on Vj(p; θij) from equation (24) and the Sf -identified sets on elements of β(θij) for all j ∈ J \
{
f, pr

}
being bounded and informative w.p.1, which in turn implies that the identified sets on many other target

parameters are bounded and informative w.p.1 by Theorem 3 and Corollary 3.1. Following Remark 4.3,

one may additionally wish to choose |Pj,f | ≥ 3 for some j in order for risk neutrality to imply testable

restrictions.

We now consider conditions under which (V-1) will hold. Consider some j ∈ J \
{
f, pr

}
, and suppose

(j, f) ∈ S. Recall that Qj,f,p was defined by equation (20). Let {q1, ..., qK} = Qj,f,p, where q1 ≤ · · · ≤ qK

and for ease of exposition we suppose that Qj,f,p does not depend on p. Supposing that K ≥ 2, equation

(25) can be rewritten as

P [q1 < Vj(p; θij) < qK ] = 1, (33)

while equation (31) can be rewritten as

max
k=1,...,K−1

|qk+1 − qk| <
p2 − p1

2
. (34)

In this case, (V-1) can be restated as: for each j ∈ J \
{
f, pr

}
, (j, f) ∈ S, there exists p1, p2 ∈ Pj,f such

that equation (33) holds for p = p1, p2, and such that (34) holds. Equation (33) becomes more plausible

the smaller q1 and the larger qK . However, the smaller q1 is and the larger qK is, the larger must be K

19



for equation (34) to hold. For instance, equation (34) requires6

K ≥
⌈
2

(
qK − q1
p2 − p1

)⌉
. (35)

This analysis emphasizes the importance of including many choices as part of the experimental design,

in particular, for each scheme j ∈ J \
{
f, pr

}
, eliciting choices between (j, p) and (f, q) for at least

two (preferably at least three) values of p and for any such p eliciting the choices for many values of q.

However if j involves a task performance, it may create some incentives for individuals to hedge across

tasks, and it may not be feasible in practice for individuals to perform so many additional tasks as part

of the experiment. It also might not be financially feasible to compensate subjects for so many tasks.

As an alternative, the experiment could elicit stated preferences with no actual tasks being performed

or compensated. However, individuals would then have no incentive to state their true preferences. A

mechanism that finesses this tension is to have subjects state preferences for a set of choices knowing

that the experimenter will later randomly implement one of their stated choices. Azrieli, Chambers, and

Healy (2018) show that this mechanism is incentive compatible under even weaker conditions than the

mechanism that implements all choices. This random incentive mechanism is often coupled with the

multiple price lists (MPLs) method to elicit preferences (Andersen, Harrison, Lau, and Rutström, 2006).7

Remark 4.7 (Eliciting Choices via MPLs). Applied to our setting, an MPL comparing (j, p) to (f, q) for

alternative q contains two K-dimensional columns: the first column is an increasing sequence of fixed pay

payoffs {qk}Kk=1 with qk < qk+1, and the second column is a constant sequence of the scheme-payoff (j, p).

For each row k, individuals choose whether they prefer the fixed payoff qk to scheme-payoff (j, p), knowing

that the experimenter will later select one of the K rows at random from the MPL and implement the

participant’s choice for that row.

The above discussion suggests a design different from the NV design, which elicits a single choice

between past tournament and piece-rate schemes and a single choice between future versions of these

schemes. Although their alternative schemes are not fixed pay, following Remark 4.2, it is natural to

conjecture that identified sets on δij and γij are uninformative under their design without additional

6Although it may be tempting to choose p2, p1 so that their difference is large, choosing a smaller p1 (respectively, larger
p2) will require a smaller q1 (respectively, larger qK) for equation (33) to hold.

7MPLs are commonly used in the experimental literature and have been used to elicit risk attitudes (Holt and Laury,
2002), discount rate (Andersen, Harrison, Lau, and Rutström, 2008; Coller and Williams, 1999), joint estimation of time
preferences and curvature parameters (Andreoni and Sprenger, 2011), willingness to pay for commodities (Kahneman,
Knetsch, and Thaler, 1990) and willingness to pay for non-commodities such as self-control (Toussaert, 2018).
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assumptions because individuals only make a single choice between j and another scheme. The following

remark establishes this conjecture, and further shows that identified sets on generalizations of these

parameters are also uninformative.

Remark 4.8 (Identification under NV Design). Consider the NV experimental design. In Online Ap-

pendix D, we show that without further assumptions, the sharp identified sets for δij and γij are un-

bounded or uninformative for any j ∈ J \
{
f, pr

}
. Furthermore, as long as δij′ 6= 0, the sharp identified

sets for
δij
δij′

and
γij−γij′
δij′

, which are the natural generalizations of slope and intercept parameters when

the alternative scheme is not fixed pay, are also respectively unbounded and uninformative for any (j, j′)

where either j or j′ in J \
{
f, pr

}
.

As we show in Online Appendix D, NV are able to provide non-trivial results with their design by

implicitly imposing several cross-scheme restrictions and cross-individual homogeneity restrictions. The

restrictions are that πi,ft = πi,pt, that µi,ft = µi,pt, and that πi,ft and πi,pt are degenerate and equal

across men and women with the same past tournament choice, past rank guess, and past score. We

empirically reject these restrictions in our experiment: individuals have differing subjective beliefs about

past and future tournaments, and we consistently find heterogeneity in beliefs between men and women,

even conditional on past rank guess or past performance.

4.4 Estimation and inference of group-level mean parameters

Thus far we have considered individual-level bounds on parameters of interest, in particular, individual-

level bounds [Li, Ui] on various individual-level parameters τ?i for which it is possible to obtain bounded

and informative partial identification. We now consider aggregating these bounds across individuals to

perform inference for group-level population means (and cross-group differences in such means) of these

individual-level parameters. We keep this analysis brief and defer theoretical details to Appendix B.

Recall that Gi is a discrete random variable denoting group membership like gender. Supposing that

E|Li|, E|Ui| <∞, that τ?i ∈ [Li, Ui] w.p.1 implies that for any group g:

E[τ?i | Gi = g] ∈

[
E[Li | Gi = g], E[Ui | Gi = g]

]
, (36)

and for any groups g, g′,

E[τ?i | Gi = g]−E[τ?i | Gi = g′] ∈

[
E[Li | Gi = g]−E[Ui | Gi = g′], E[Ui | Gi = g]−E[Li | Gi = g′]

]
. (37)
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Consider estimation of the above parameters. For any group g, let L̄g and Ūg denote the sample

means of Li and Ui, respectively, conditional on Gi = g. We estimate the population mean bounds in

(36) and (37) using their respective sample analogues: [L̄g, Ūg] and [L̄g − Ūg′ , Ūg − L̄g′ ]. Supposing i.i.d

sampling, the sample analog’s lower and upper bounds are consistent estimators of the population lower

and upper bounds assuming that E|Li|,E|Ui| <∞, Pr[Gg = g] > 0 and Pr[Gg = g′] > 0.

For inference on the above parameters, we implement the confidence intervals proposed in Imbens

and Manski (2004). In Appendix B, we give details on the CIs and use the results of Imbens and

Manski (2004), Stoye (2009) and Bhattacharya, Shaikh, and Vytlacil (2012) to establish that the CIs

have desirable properties (are uniformly consistent in level) under weak conditions in our context. With

Li and Ui random variables that take only a finite number of values, the conditions require only that

Li ≤ Ui w.p.1, that Pr[Gi = g] and Pr[Gi = g′] are bounded away from zero, and that the conditional

probabilities that Li and Ui equal any given value is bounded away from one. The results of Appendix B

may be of interest outside of our context whenever applying the confidence intervals proposed in Imbens

and Manski (2004) to bounds for which the upper and lower endpoints are conditional means of discrete

random variables.

Remark 4.9 (When Individual-Level Identified Sets are not Bounded w.p.1). Suppose that equation (33)

is violated, so that with positive probability either Dj,f (p, q; i) = 0 for all q ∈ Qj,f,p, or Dj,f (p, qk; i) = 1

for all q ∈ Qj,f,p, and thus identified sets for Vj(p; θij) are unbounded with positive probability. In that

case, it is possible for identified sets for τ?i to be unbounded with positive probability, which would imply

that the identified set for the population mean of τ?i is unbounded. In order to avoid unbounded identified

sets for the aggregate parameter, one could redefine the aggregate parameter to be the expectation of τ?i

conditional on some event Bi that ensures that the corresponding identified set is bounded. One could

then follow the previous analysis to estimate this aggregate parameter by group, and the differences in

the parameter across groups, using the sample of individuals with Bi = 1. We take Bi to be the indicator

that the identified set for τ?i is bounded. To ensure that identified sets for multiple parameters are jointly

bounded, it suffices to take Bi to be the intersection of indicators for each identified set being bounded.

Note that the inference results of Appendix B with straightforward extensions nest this case with the

added assumption that Pr[Bi = 1] is bounded away from zero uniformly.
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5 Empirical application

We apply our methodology to analyze the role of gender in self-selection into competitive compensation

schemes. We discuss our experimental design in Subsection 5.1 and present descriptive statistics for our

experiment in Subsection 5.2. We compare payoff indifference sets by gender in Subsection 5.3 and find

that, relative to women, men consistently prefer tournament tasks. This gender gap widens when schemes

are applied to future tasks. These findings are consistent with that of Niederle and Vesterlund (2007).

In Section 6, we use our model of selection to determine what drives these gender gaps.

5.1 Experimental design and implementation

Our experimental design is built on that of Niederle and Vesterlund (2007) with judicious modifications.

These modifications are based on both the application of our theoretical results and the practical limi-

tations of those results discussed in Section 4. We now briefly discuss our design. Further details can be

found in Online Appendices H and I.

Experiment design. We follow the NV design and ask participants to add up sets of five 2-digit

numbers in a series of addition tasks during the experiment. We similarly ask participants to choose

between pairs of scheme-payoffs that they’d like to apply to these tasks, with the choices elicited in a

manner that incentivizes truthful revelation. As in the NV design, we also elicit past performance, past

tournament rank guess, and gender.

We make three key modifications to the NV design for the purposes of identifying parameters of

interest. First, we expand the set of compensation schemes to include fixed pay and future lumpsum

schemes. Second, for each considered compensation scheme, we elicit choices between that scheme and

fixed pay at three base-payoffs. Eliciting choices at three base-payoffs allows us to additionally test an

empirical implication of risk neutrality following Remark 4.3. Finally, following Remark 4.7, we elicit

choices using the Multiple Price List (MPL) method.8 For each MPL, participants are presented two

columns: the first column (Option A) is a sequence of scheme-payoffs with ascending payoffs, and the

second column (Option B) is a constant sequence of a scheme-payoff. For each row of the MPL, individuals

choose whether they prefer to apply Option A or Option B to their relevant performance, knowing that

8An alternative mechanism to elicit valuations is the Becker-DeGroot-Marshak (BDM) mechanism. However, several
studies have found that, in practice, individuals frequently misunderstand the BDM mechanism and report values that do
not equate to their true valuations (Bull, Courty, Doyon, and Rondeau, 2019; Cason and Plott, 2014; Holt and Smith, 2016).
This practical concern motivated our use of MPLs instead of the BDM mechanism.
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the experimenter may later select one row at random from the MPL and implement the participant’s

choice. When designing the ascending sequences of Option A payoffs for each MPL, we are mindful of

the tension between the theory suggesting having many payoffs that span a wide interval and practical

concerns suggesting having fewer payoffs that span a smaller interval to limit the total number of choices

made by individuals and to ensure budget-feasibility.

Two other aspects of our experimental design warrant a brief discussion. First, we follow NV in

eliciting choices between future tournament and future piece-rate compensation schemes, allowing us to

examine whether these choices elicited in the same manner as NV are consistent with those elicited using

MPLs between either scheme and fixed pay. We discuss these consistency checks in greater detail in

Subsection 6.1. Second, we elicit choices for three past tournament and three past piece-rate schemes

instead of just one of each.9

Experiment flow. Each experiment consists of four parts. Part one contains practice rounds for both

addition tasks and MPLs. In part two, participants perform three piece-rate addition tasks and three

tournament addition tasks. After each tournament addition task, participants are asked to fill out MPLs

to be applied to these past tournament tasks. MPLs in this part ask participants to make choices between

each past tournament at three distinct base-payoffs versus fixed pay.10 We notify participants about these

base-payoffs before the start of each relevant addition task, and notify participants about their relevant

past performances when completing the MPLs. In part three, participants do not perform any addition

tasks but instead fill out MPLs to be applied to a future addition task. Participants are told that if

one row of an MPL in this part is selected for payment, they will subsequently perform a three minute

addition task and be compensated given the choice they made in the selected row. In the last part of the

experiment, we elicit participants’ risk preferences following Holt and Laury (2002) and rank guess about

their past performances following Niederle and Vesterlund (2007).11 Finally, compensation is determined.

If the compensation requires that the participant performs a future task, participants perform the task.

Compensation. Prior to the start of the experiment, participants are told that a randomization device

will choose either an addition task from part 2, a MPL from part 2, or a MPL from part 3 to determine

9For ease of notation, we considered a single past tournament scheme and a single past piece-rate scheme in our theoretical
analysis. The analysis of Sections 3 and 4 immediately extends to a setting with multiple past tournaments and multiple
past piece-rate schemes.

10For tournament or piece-rate schemes, the base-payoff is the payment per correct answer (conditional on winning in
case the case of tournament). In this experiment the base-payoffs for piece rate are: $0.8, $1.6, and $2.4, and for tournament
are: $3.2, $6.4, and $9.6.

11For all rank guesses, individuals are paid 50 cents per correct rank guess.
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compensation. If an addition task is chosen for payment, participants will be paid according to the task

type and their performance. If a MPL is chosen for payment, a random row will be chosen from that

MPL and the choice made by the participants in that row will be implemented. This randomization

process provides incentive for participants to be truth-telling in choices they make (Azrieli, Chambers,

and Healy, 2018; Freeman, Halevy, and Kneeland, 2019).

Group assignment for competitive pay schemes. At the start of the experiment, participants are

randomly assigned into groups of four. In all competitive compensation schemes, regardless of whether

it is for a past or future performance, participants are told that they will be competing against the

past performances of three randomly selected members in the experiment. This controls the effect of

perceptions about the selection decisions of others (Niederle and Vesterlund, 2007).

5.2 Data and descriptive statistics

The experiment was conducted between October 2019 to March 2020 at Yale University’s Behavioral

Research Lab (BRL).12 Undergraduate students were recruited using standard recruiting procedures by

the BRL, including sending email invitations to the subject pool maintained by the BRL and advertising

on the university’s interactive teaching platform. We recruited 176 participants in total. In addition to

knowing the gender of participants, we also elicited the participants’ age, major, and GPA. Since the

main objective of our experiment is to understand differences by gender, we dropped three participants

who identified as non-binary. Of the remaining 173 participants, 103 (60%) were female.13 The average

age of participants was 21, and the median was 20. Among participants, 16% were pursuing economics

majors, 33% were pursuing STEM majors, and another 25% were pursuing political science, history, and

sociology majors. We conducted 19 sessions with an average of 9 participants per session. Each session

lasted about an hour and fifteen minutes. Participants received an average total compensation of $30.

We further restrict our sample by dropping individuals who exhibited behavior indicative of not

complying with our experiment or not understanding the MPL format. In particular, we drop one

individual who did not complete the addition tasks, and twenty-five individuals who either left blank

or switched multiple times on MPLs that elicited choices between fixed pay and competitive schemes.14

12The experiment was approved by the Institutional Review Board of Yale University.
13The BRL’s total subject pool is about 62% female. The overrepresentation of women is common in lab experiments

conducted on university campuses.
14The presence of multiple-switchers is a common phenomenon in lab experiments using MPLs and may reflect poor

quality of decision making (Yu, Zhang, and Zuo, 2020).
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There is no gender discrepancy in the share of such individuals. Our baseline sample thus consists of

147 participants, of which 84 (57%) were female. In this sample, we find that the average score on the

addition tasks is 8.4 for men and 7.3 for women, and this difference is significant at the 0.05 level.15 This

gender difference in performance is consistent with the findings of other studies, including Niederle and

Vesterlund (2007). Although Niederle and Vesterlund (2007) find a statistically insignificant difference,

larger studies often find the difference to be statistically significant (see, e.g., Alm̊as, Cappelen, Salvanes,

Sørensen, and Tungodden (2016); Buser, Niederle, and Oosterbeek (2014); Price (2012); Balafoutas,

Fornwagner, and Sutter (2018)).

5.3 Payoff indifference sets

We begin by examining payoff indifference sets by gender.16 Following Remark 4.9, we condition our

baseline sample on individuals who switch from choosing the constant scheme-payoff to the alternative

scheme with varying base-payoffs at some row of the relevant MPL and thus have bounded payoff indif-

ference sets. Only 4% of payoff indifference sets are unbounded. Online Appendix Table A.2 presents,

by gender and pair of schemes, the frequency of payoff indifference sets that are bounded, unbounded

above, and unbounded below. We find that men are more likely to have unbounded payoff indifference

sets and are substantially more likely to have these sets be unbounded above.17

Figure 1 presents estimated mean payoff indifference sets of tournament schemes relative to piece-rate

schemes by gender. For each tournament payoff (x-axis), we depict mean payoff indifference sets in blue

for men and in red for women, with bounds on the gender difference presented alongside in brackets.

Panel (a) reports these sets for past tournament relative to past piece rate, while Panel (b) reports them

for future tournament relative to future piece rate.18 We find that men value tournaments relative to

piece-rate compensation more than women at all base-payoffs, and this gender gap is higher for future

tasks than for past tasks. The figure also shows that the difference in valuation for tournament versus

15Online Appendix Table A.1 presents performances by compensation scheme (piece rate or tournament), base-payoff,
and gender.

16If individuals make choices based on maximizing expected utility, and expected utility is strictly increasing in base-payoff,
then payoff indifference sets are identified sets for the value at which the individual is indifferent between the scheme-payoff
and the alternative scheme with base-payoff at that value. These payoff indifference sets can thus be interpreted under
weaker conditions than Assumption 1.

17Given this finding, a potential concern with conditioning on bounded payoff indifference sets is that it may unequally
truncate the distributions of valuations by gender. Because men are substantially more likely to have valuations that are
unbounded from above while women are more likely to have valuations that are unbounded from below, our results may
understate the gender gap.

18Since past piece rate is equivalent to a scaled fixed pay scheme, payoff indifference sets for past tournament relative to
past piece rate are constructed by taking payoff indifference sets for past tournament relative to fixed pay and dividing by
the past piece-rate performance.
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piece rate is higher on average for future tasks than for past tasks for both genders.

Figure 1: Tournament payoff indifference sets relative to piece rate

(a) Past Tournament vs Past Piece Rate (b) Future Tournament vs Future Piece Rate

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Sample mean valuation sets are depicted in blue for men and red for women. Bounds
on the difference between mean male and female valuation sets are presented by the curly brackets. For each difference, we
test the null of the bounds containing zero. Sample is restricted to the baseline sample, and we further restrict to bounded
payoff indifference sets.

We present mean payoff indifference sets by gender for these MPLs in table form in Online Appendix

Table A.3. This table also presents payoff indifference sets by gender for MPLs where the alternative

scheme is fixed pay. Compared to women, men have a greater valuation for task-based compensation

schemes (competitive or noncompetitive) relative to fixed pay. We also find that the gender gap in the

valuation of a tournament appears to be larger for future tournament relative to past tournament.

Our analysis of payoff indifference sets is consistent with the findings of Niederle and Vesterlund (2007)

that men are more likely than women to select tournament over piece-rate compensation, and that this

gender gap is larger when the schemes are applied to a future as opposed to a past task. We replicate

the analysis of Niederle and Vesterlund (2007) using our sample to further investigate the similarities

between our sample and theirs. Notably, a probit of future tournament entry on past performance, past

rank guess, and past tournament entry results in an estimated marginal gender effect of 0.17 (p < 0.05),

which is remarkably similar to the estimated marginal effect of 0.16 of Niederle and Vesterlund (2007).

Rather than attributing this gender gap to a difference in non-monetary preferences for entering a future

tournament, we use our methodology to (partially) identify belief and preference parameters.
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6 Empirical analysis under our model of selection

Our findings in the previous section reveal that, relative to women, men consistently prefer tournament

tasks. This gender gap widens when considering future tournament tasks. In this section, we use our

methodology to estimate identified sets for beliefs and non-monetary preference parameters to determine

what drives these gender gaps. Subsection 6.1 assesses the validity of our model, and Subsections 6.2 and

6.3 present our main results. Overall, our results suggest that the main explanation for the gender gap

in selection into future tournaments is not a gender difference in non-monetary preferences, but rather a

gender difference in the subjective probability of winning a future competitive task.

6.1 Imposing our model of selection

Prior to examining identified sets for the mean belief and preference parameters, we investigate empirical

evidence related to the validity of the selection model of Assumption 1. For the purposes of contextualizing

our analysis, we also investigate whether the elicitation methods of the NV design and our experimental

design are consistent with each other. Finally, we discuss restricting our sample to those individuals for

whom we can construct bounded identified sets for all beliefs and preference parameters we consider in

our upcoming analysis.

Evidence related to model validity. Our model imposes that beliefs and preferences are base-payoff

invariant and that risk preferences do not influence valuations of compensation schemes. We analyze

supporting evidence for these assumptions in Online Appendix E, and here summarize that evidence.

Consider elicited rank guess as a proxy for perceived performance on the corresponding past tour-

nament. A regression of rank guess on past tournament base-payoffs and other controls reveals a small

and insignificant coefficient for base-payoffs (p = 0.69). Now consider relative risk aversion, which we

set-identify for individuals based on the Holt and Laury (2002) design. We find that individuals are

slightly risk averse on average, though we fail to find a difference in mean risk aversion by gender.19 We

also find that risk preferences do not appear to influence tournament valuations. In particular, we run

regressions of valuations on number of safe choices in the Holt and Laury (2002) design–a proxy for risk

aversion–and other covariates separately by tournament type and base-payoff. In each regression, the

coefficient on elicited risk aversion is small and statistically insignificant, and we cannot reject the null

19The absence of a gender difference in risk attitude using the Holt and Laury (2002) design is largely consistent with
the literature (Filippin and Crosetto, 2016).
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hypothesis that the coefficients on risk aversion for these regressions are jointly equal to zero (p = 0.98).

We examine the testable restriction of risk neutrality described in Remark 4.3 for each individual and

scheme. Only 8% of cases reject the testable restriction, and there is no appreciable gender difference in

the share of cases that reject the restriction.20

Consistency between elicitation methods. The NV design elicits a single choice between a past

tournament scheme at a base-payoff of $2 and a piece-rate scheme at a base-payoff of 50 cents, and a

single choice between future tournament and piece-rate schemes at these same base-payoffs. In contrast,

our analysis uses MPLs including MPL-elicited choices between these schemes and fixed pay. We exploit

that our experimental design includes both elicitation methods to examine consistency between them.

Online Appendix F describes the consistency checks we perform. In 90% of cases, NV’s approach

and the MPL approach of eliciting choices between tournament and piece-rate schemes are consistent

with each other. In 84% of cases, MPL-elicited choices between tournament and piece-rate schemes are

consistent with MPL-elicited choices between these schemes and fixed pay. These shares are similar by

gender. Coupled with our near-exact replication of the main result of Niederle and Vesterlund (2007)

using their methods on our data, these results suggest that differences in our conclusions from Niederle

and Vesterlund (2007) follow from our alternative methodology and not from our differing experimental

samples or choice of elicitation methods.

Restricting to a model sample. We focus on analyzing belief and preference parameters for com-

petitive compensation schemes, and, in particular, for j = pt (average past tournament as defined in

Appendix A), j = ft (future tournament), and j = fl (future lumpsum tournament). We do so by first

restricting our sample to those individuals i for whom the programs for constructing the identified sets

for δij and γij for our considered schemes are feasible. Doing so removes thirty-three individuals, and

there is no gender discrepancy in the share of such individuals. We henceforth restrict our analysis to the

resulting sample of 114 individuals, of which 68 (60%) are female. We denote this sample as the model

sample.21 Following Remark 4.9, we further restrict our analysis to those individuals with bounded iden-

tified sets for all considered parameters, resulting in a sample of 103 individuals, of which 67 (65%) are

female. Of the eleven individuals in the model sample who have at least one unbounded identified set,

20See Online Appendix Table E.4 for the share of cases that reject the restriction by scheme and gender.
21Online Appendix Table A.4 presents task scores for this model sample, while Online Appendix Table A.5 presents mean

payoff indifference sets for individuals in the model sample with bounded payoff indifference sets. The conclusions are similar
to those in Section 5.
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ten are men. Examining whether these unbounded identified sets are due to payoff indifference sets that

are unbounded below or above, we find that they are unbounded above for all ten men, and unbounded

below for the single woman.22

6.2 Expected value of beliefs and non-monetary preference parameters

In this subsection, we investigate the expected value of individual-level belief and non-monetary preference

parameters conditional on gender. We first review the relevant individual-level parameters and relate them

to the terminology we use in the upcoming empirical analysis. Notation for the expected value of these

parameters is presented in parentheses.

Beginning with performance-related beliefs, we compare individuals’ subjective probabilities of win-

ning past and future tournaments. Since individuals perform three past tournament tasks, we consider

individuals’ subjective probability of winning averaged over these three past tasks and refer to this average

as the individual’s past subjective probability of winning (πpt). While we cannot construct informative

identified sets on the subjective probability of winning a future tournament, we can on the subjective

probability of winning a future lumpsum tournament. We suspect that these subjective probabilities

are equal since they have the same condition for winning.23 We thus refer to this value as the future

subjective probability of winning (πfl). We examine how the future and past subjective probabilities of

winning compare by constructing identified sets on the difference of these values (πfl − πpt).

We also compare subjective beliefs to objective performance. An individual wins a past tournament

task if their score for the task is weakly higher than the past performance of three other randomly-selected

participants, and thus we compute an individual’s objective probability of winning that task given their

realized score in the task by cubing the full sample CDF of past performances evaluated at their realized

score. An individual may have distinct realized scores, and thus distinct objective probabilities of winning

given their realized scores, for each of the three past tournament tasks. We thus consider an individual’s

objective probability of winning averaged over their three past tournament tasks and refer to this average

as the individual’s objective probability of winning (π?).

We also consider non-monetary preferences. For each past tournament, expected non-monetary pref-

erences correspond to the expected value of feedback aversion. As above, we consider the average of

22Given this finding, a potential concern with conditioning on bounded identified sets for all our considered parameters is
that it may unequally truncate the distributions of these parameters by gender. Because the men have unbounded identified
sets due to payoff indifference sets that are unbounded above while the woman has unbounded identified sets due to payoff
indifference sets that are unbounded below, our results may understate the gender gaps in beliefs and preferences.

23The only difference is the compensation conditional on winning: a future tournament offers the payoff multiplied by
the realized performance whereas a future lumpsum tournament offers the payoff and thus does not depend on performance.
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these parameters across the three past tournament tasks, which we denote as the past tournament non-

monetary preference (ψpt). While we cannot construct bounded and informative identified sets for the cost

of entering a future tournament, we can construct such sets for the expected non-monetary preferences

for future tournament, which we denote as the future tournament non-monetary preference (ψft + cft).

As the notation suggests, this value corresponds to the sum of expected values of feedback aversion and

cost of performing a future tournament task.

The individual identified sets that we aggregate are explicitly defined in Online Appendix Table G.1.24

We construct asymptotic 95% confidence intervals on the expected values of these parameters following

the analysis of Appendix B.

6.2.1 Analysis by gender

Table 2 reports estimated identified sets and asymptotic 95% confidence intervals for the expected value

of tournament performance-related belief and preference parameters conditional on gender, and for the

cross-gender difference in these conditional expectations. In the following, we focus our discussion on the

95% asymptotic confidence intervals, and all statements of statistical significance are at the corresponding

0.05 nominal level.

From Panel A, we cannot reject the null hypothesis that men and women have the same average sub-

jective probability of winning a past tournament. In contrast, we reject the null for a future tournament,

with the 95% CI implying that men are eight to twenty-nine percentage points more confident on average.

Examining the results in Panel B, the relevant 95% CI implies that men on average are at least eight

percentage points (and as high as twenty-eight percentage points) more confident in their future than

past chance of winning. In contrast, we cannot reject the null hypothesis that women are equally con-

fident in their subjective probability of winning a future versus past tournament. Comparing perceived

to objective probability of winning tournaments, the CIs imply that women (but not necessarily men)

are overly pessimistic about their chances of winning a past tournament, while men (but not necessarily

women) are overly optimistic about their chances of winning a future tournament. While Panels A and

B of Table 2 report results for perceived probability of winning tournaments, Online Appendix Table

A.6 reports the analogous results for anticipated tournament earnings. We find that men expect higher

earnings from future tournaments than women on average and this difference is statistically significant,

24All individual identified sets correspond to δij and γij for some j or functions of these parameters which are constructed
following the Examples in Appendix A. We construct identified sets for these parameters by solving programs following
Remark 4.4. Programs are solved with Gurobi Optimization (2020).
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while we cannot reject the null hypothesis that men and women have equal average expected earnings

from past tournaments.

Panel C provides results for the expected non-monetary value of a tournament task, which is the value

of feedback for a past tournament and the sum of the value of feedback and the preference for performing

the task in a competition for a future tournament. The corresponding 95% CIs for men includes zero for

both past and future tournaments. In contrast, the corresponding CIs for women are strictly positive for

both past and future tournaments, indicating that women on average place positive value on the feedback

from a past tournament and on the sum of that value and the preference for performing the task in a

competitive environment for a future tournament.

In summary, the results in Table 2 suggest that men are far more confident than women in their

probability of winning a future (though not necessarily a past) tournament. The results emphasize that

individuals, especially men, have different beliefs about performance for future versus past tournaments,

and that their beliefs do not correspond on average to objective measures. Our results on preferences

contrast with the previous literature: we find that women place positive non-monetary value on par-

ticipating in a tournament, and we are unable to reject that men and women have the same average

non-monetary preferences for competing. These results thus suggest that it is beliefs and not necessarily

preferences that explain men having a greater tendency than women to enter future tournaments.

6.2.2 Analysis by gender and performance level

Table 3 replicates the results from Table 2 by performance level, where we classify individuals as high or

low performing based on whether their objective probability of winning (given their realized performance)

averaged over the three past tournament tasks is weakly greater than one-fourth.25 Individuals typically

perform similarly in the three past tournament tasks, with the average individual-specific variance in

performance equaling 2.25. In contrast, the cross-person variance in average performance is more than

2.5 times as large at 5.71.26 This finding motivates our classification of individuals as high or low

performing. We document four key takeaways.27

First, for both low and high performing individuals, we find that men have a higher average subjective-

25Since individuals compete in groups of four, if task performances were random draws from the same distribution and if
we ignored ties arising from the discrete nature of performances, each individual would have a 25% chance of winning.

26A similar result emerges comparing the average individual-specific variance in objective probability of winning (0.02)
and the cross-person variance in average objective probability of winning (0.06).

27While Panels A and B of Table 3 report results for perceived probability of winning tournaments, Online Appendix
Table A.7 reports the analogous results for anticipated tournament earnings. The CIs for anticipated earnings conditional
on gender and performance tend to be wide and uninformative.
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Table 2: Beliefs and preferences

No. Parameter Description Male Female Male - Female

Panel A: tournament beliefs

(1) π∗ Objective 0.27 0.23 0.04

probability of winning (0.18,0.36) (0.17,0.28) (-0.06,0.15)

(2) πpt Past subjective [0.18,0.23] [0.10,0.14] [0.04,0.13]

probability of winning (0.13,0.28) (0.07,0.17) (-0.02,0.19)

(3) πfl Future subjective [0.36,0.40] [0.17,0.22] [0.14,0.23]

probability of winning (0.31,0.46) (0.14,0.26) (0.08,0.29)

Panel B: differences in tournament beliefs

(4) πpt − π∗ Past subjective - objective [-0.09,-0.04] [-0.13,-0.09] [-0.01,0.09]

probability of winning (-0.17,0.04) (-0.18,-0.04) (-0.10,0.18)

(5) πfl − π∗ Future subjective - objective [0.09,0.13] [-0.05,-0.01] [0.10,0.18]

probability of winning (0.01,0.21) (-0.10,0.04) (0.00,0.28)

(6) πfl − πpt Future subjective - past subjective [0.13,0.23] [0.03,0.12] [0.01,0.19]

probability of winning (0.08,0.28) (-0.00,0.16) (-0.05,0.25)

Panel C: non-monetary preferences

(7) ψpt Past tournament [-0.01,1.73] [0.98,2.91] [-2.92,0.75]

non-monetary preference (-1.01,2.73) (0.38,3.82) (-4.27,1.92)

(8) ψft + cft Future tournament [0.88,2.91] [1.41,2.64] [-1.76,1.50]

non-monetary preference (-0.12,3.89) (0.92,3.17) (-2.89,2.59)

Notes: This table presents mean estimated identified sets (in brackets) and 95% CIs (in parentheses) for belief and preference
parameters by gender and for the difference between men and women. Notation follows that of Subsection 6.2 and identified
sets for parameters are explicitly defined in Online Appendix Table G.1. Sample is restricted to those individuals in the
model sample with bounded identified sets for all parameters considered in this section.

net-of-objective probability of winning a future (but not necessarily a past) tournament compared to

women. Thus, the cross-gender differences in perceived chances of winning a tournament that we found

in Table 2 holds within both low and high performing subgroups. In Online Appendix Figures A.1 and A.2

we show that differences in these beliefs between men and women persist conditional on past performance

and on past rank guess. Taken together, these results reject the implicit assumption of homogeneity in

beliefs required in NV’s analysis (see Subsection 4.3).

Second, the results from Table 2 that women on average are overly pessimistic about their chances

of winning a past tournament and men on average are overly optimistic about their chances of winning

a future tournament appear to be driven by high performing women being overly pessimistic and low

performing men being overly optimistic. Comparing average perceived probabilities of winning a tourna-

33



ment to the objective probabilities, we find that low—but not high—performing men are overly confident

in their chances of winning a past tournament and vastly overconfident for future tournaments. We find

that, on average, high—but not low—performing women are overly pessimistic about their chances of

winning a future tournament and vastly overpessimistic for past tournaments.

Third, low performing men have beliefs that exceed or are comparable to high performing women. The

estimated identified set on subjective probability of winning a future tournament for low performing men

is not only strictly above that of low performing women, it is also strictly above that of high performing

women. This is despite the fact that the objective probability of winning for low performing men is 38

percentage points lower than that of high performing women. In additional analysis, we find that the

95% CI on the difference in average subjective probability of winning a future tournament between low

performing men and high performing women is (−0.051, 0.224), so that not only do we fail to reject the

null hypothesis of equal beliefs, we also cannot reject the null hypothesis that low performing men are 22

percentage points more confident of success in future tournaments than are high performing women.

Finally, we find that high performing women place positive non-monetary value on participating

in both past and future tournaments, and that low performing women do so for future (though not

necessarily for past) tournaments. In contrast, we cannot reject the null hypothesis for both low and high

performing men that their non-monetary value of participating in either a past or future tournament is

zero.

In summary, the results from Table 2 largely hold conditional on performance level, though with

evidence that low performing men are driving much of the overconfidence of men for future tournaments

while high performing women are driving much of the under-confidence of women for past tournaments.

We again find evidence that women (especially high performing women) on average enjoy participating

in tournaments without finding corresponding evidence for men.

6.3 Indicator target parameters

Thus far, we have examined conditional expected values of belief and preference parameters. We found,

for example, that men on average are overconfident in their chances of winning a future tournament.

That analysis does not directly address the question of what fraction of men are overconfident. We now

address such questions by applying Corollary 3.1.28 We are able to do so by exploiting that we set-identify

the belief and preference parameters at the individual-level.

28See Example A.2 of Appendix A for how this analysis follows from Corollary 3.1.
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Table 3: Beliefs and preferences, by performance

Low Performance High Performance

No. Parameter Description Male Female Male - Female Male Female Male - Female

Panel A: tournament beliefs

(1) π∗ Objective 0.09 0.10 -0.01 0.56 0.47 0.09

probability of winning (0.05,0.13) (0.08,0.12) (-0.06,0.03) (0.44,0.68) (0.40,0.55) (-0.05,0.22)

(2) πpt Past subjective [0.15,0.20] [0.09,0.14] [0.01,0.11] [0.22,0.26] [0.10,0.15] [0.07,0.16]

probability of winning (0.09,0.27) (0.06,0.17) (-0.05,0.19) (0.15,0.35) (0.06,0.20) (-0.02,0.25)

(3) πfl Future subjective [0.32,0.37] [0.14,0.18] [0.14,0.23] [0.41,0.46] [0.24,0.28] [0.13,0.22]

probability of winning (0.27,0.43) (0.10,0.23) (0.07,0.30) (0.32,0.55) (0.17,0.36) (0.02,0.34)

Panel B: differences in tournament beliefs

(4) πpt − π∗ Past subjective - objective [0.06,0.12] [-0.01,0.04] [0.02,0.12] [-0.34,-0.29] [-0.37,-0.32] [-0.02,0.07]

probability of winning (0.00,0.19) (-0.05,0.08) (-0.05,0.20) (-0.44,-0.19) (-0.43,-0.25) (-0.14,0.19)

(5) πfl − π∗ Future subjective - objective [0.24,0.28] [0.04,0.08] [0.15,0.24] [-0.15,-0.10] [-0.23,-0.19] [0.04,0.14]

probability of winning (0.18,0.35) (-0.01,0.13) (0.08,0.32) (-0.27,0.03) (-0.32,-0.10) (-0.10,0.28)

(6) πfl − πpt Future subjective - past subjective [0.12,0.22] [0.01,0.09] [0.03,0.21] [0.15,0.24] [0.09,0.18] [-0.03,0.15]

probability of winning (0.05,0.29) (-0.03,0.13) (-0.05,0.30) (0.08,0.31) (0.03,0.24) (-0.13,0.24)

Panel C: non-monetary preferences

(7) ψpt Past tournament [0.73,2.16] [0.11,1.39] [-0.66,2.05] [-1.18,1.05] [2.63,5.81] [-6.99,-1.58]

non-monetary preference (-0.03,2.81) (-0.37,1.89) (-1.57,2.86) (-3.40,3.46) (1.31,7.99) (-10.10,1.16)

(8) ψft + cft Future tournament [0.68,2.39] [0.74,1.88] [-1.20,1.65] [1.20,3.73] [2.70,4.10] [-2.90,1.03]

non-monetary preference (-0.22,3.31) (0.22,2.41) (-2.24,2.70) (-1.00,5.79) (1.82,5.09) (-5.31,3.27)

Notes: This table presents mean estimated identified sets (in brackets) and 95% CIs (in parentheses) for belief and
preference parameters by gender and for the difference between men and women, by performance status. An individual is
high performance if their objective probability of winning is greater than or equal to 25%, and is otherwise low performance.
Notation follows that of Subsection 6.2 and identified sets for parameters are explicitly defined in Online Appendix Table
G.1. Sample is restricted to those individuals in the model sample with bounded identified sets for all parameters considered
in this section.

We address such questions for three underlying individual-level parameters: the objective probability

of winning a tournament, the subjective probability of winning a past tournament, and the subjective

probability of winning a future tournament. For each pair of these individual-level parameters, we consider

the probability that one parameter is strictly greater than another conditional on gender (in Subsection

6.3.1) or conditional on gender and performance level (in Subsection 6.3.2). The individual identified sets

that we aggregate are explicitly defined in Online Appendix Table G.2.29 As in Subsection 6.2, we focus

our discussion on the 95% asymptotic confidence intervals, and all statements of statistical significance

are at the corresponding 0.05 nominal level.

6.3.1 Analysis by gender

Table 4 reports, for each pair of listed underlying parameters, the estimated identified set and 95%

confidence interval for the probability that the first parameter does not equal the second (column 1),

and for the probability that the first parameter is strictly larger than the second conditional on gender

29See also Example A.2 of Appendix A. For details on how we construct asymptotic 95% confidence intervals on these
conditional probabilities, see Example B.3 of Appendix B.
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(columns 2 and 3). Due to space considerations, this table as well as Table 5 do not state results for

the probability that the first parameter is strictly smaller than the second. However, if the estimated

identified set or 95% confidence interval on the first parameter being strictly larger than the second is

[a, b], then the corresponding estimated identified set or 95% confidence interval on the first parameter

being strictly smaller than the second is [1− b, 1− a].

We begin our analysis by noting that the CI for the probability that past and future subjective

probabilities are not equal implies that at least 62% of individuals differ in their past versus future

beliefs, thus rejecting a key implicit assumption of NV’s analysis (see Subsection 4.3). Turning our

attention to the second and third columns of results, the CIs imply that at least 54% (and perhaps as

high as 86%) of women are overly pessimistic about their chances of winning a past tournament.30 The

corresponding CIs for men are relatively uninformative, as we are unable to reject that as many as 75% or

as few as 33% of men are overly pessimistic about past tournaments. For future tournaments, we find that

at least 49% (and possibly as high as 81%) of men are overly optimistic about their chances of winning a

future tournament. The corresponding results for women are relatively uninformative, as we are unable

to reject that as many as 59% or as few as 28% of women are overly optimistic about future tournaments.

Finally, we find that the majority of men have higher subjective probabilities of winning a future than

a past tournament, while we cannot reject the null hypothesis that half of women have higher and half

lower subjective probabilities of winning a future versus past tournament. In summary, we find that

most women are overly pessimistic about their chances of winning a past tournament, that a substantial

fraction (though not necessarily a majority) of men are optimistic about their chances of winning a future

tournament, and that the majority of men are more confident in their chances of winning a future than

a past tournament, with the data being relatively uninformative about the remaining comparisons.

This table also highlights the heterogeneity across individuals, including within gender. For example,

the CIs imply that at least 54% of women are overly pessimistic and at least 14% of women are overly

optimistic about their chances of winning a past tournament. Thus, while we find that women on average

are overly pessimistic about their chances of winning a past tournament, and that the majority of women

are overly pessimistic about those chances, there is still a substantial fraction of women who are overly

optimistic about those chances.

30To highlight how we obtain these values, observe that the CI for P [X > Y ] for women is (0.14, 0.46). As discussed above,
this implies that the CI for P [X < Y ]–which indicates pessimism about changes of winning–is (1−0.46, 1−0.14) = (0.54, 0.86).
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Table 4: Relative beliefs

All Male Female
No. Variable X Variable Y P [X 6= Y ] ∈ P [X > Y ] ∈

(1) Past subjective Objective [0.86,1.00] [0.39,0.53] [0.22,0.36]

probability probability (0.81,1.00) (0.25,0.67) (0.14,0.46)

(2) Future subjective Objective [0.91,1.00] [0.64,0.67] [0.37,0.49]

probability probability (0.87,1.00) (0.49,0.81) (0.28,0.59)

(3) Future subjective Past subjective [0.70,1.00] [0.72,0.92] [0.49,0.84]

probability probability (0.62,1.00) (0.60,0.99) (0.39,0.91)

Notes: This table presents mean estimated identified sets (in brackets) and 95% CIs (in parentheses) for the indicator that
X 6= Y for all and for the indicator that X > Y by gender. For all results, if the identified set or 95% CI for P [X > Y ] is
[a, b], the the identified set or 95% CI for P [X < Y ] is [1− b, 1− a]. Notation follows that of Subsection 6.3 and identified
sets for parameters are explicitly defined in Online Appendix Table G.2. Sample is restricted to those individuals in the
model sample with bounded identified sets for all parameters considered in this section.

6.3.2 Analysis by gender and performance level

Table 5 replicates Table 4 but conditional on gender and performance level, where high/low performance

was defined in Subsection 6.2.2. We find that the vast majority (at least 87%, as high as 100%) of

low performing men are overly optimistic about their chances of winning future tournaments, while a

substantial fraction (though possibly less than half) are overly optimistic about past tournaments. In

contrast, the vast majority of both high performing men and high performing women are overly pessimistic

about their chances of winning a past or future tournament. The corresponding CIs for low performing

women are less informative, as we are unable to reject that a sizeable majority are pessimistic or that a

sizeable majority are optimistic about their chances of winning a future or past tournament. The majority

of low and high performing men are more confident that they will win a future tournament than a past

tournament. We find that at least nearly half of high performing women are more confident that they

will win a future than a past tournament, while the corresponding results for low performing women are

relatively uninformative.

Thus, the finding from Table 4 that a substantial fraction of men are overconfident in their chances

of winning a future tournament is driven by low performing men, while the result that the majority of

women are overly pessimistic about their chances of winning a past tournament appears to be driven

by high performing women. The majority of low and high performing men are more confident in their

chances of winning a future as opposed to past tournament, with us being unable to reject that half of
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Table 5: Relative beliefs, by performance

Low Performance High Performance

Male Female Male Female
No. Variable X Variable Y P [X > Y ] ∈

(1) Past subjective Objective [0.59,0.82] [0.34,0.52] [0.07,0.07] [0.00,0.04]

probability probability (0.41,0.96) (0.22,0.65) (-0.07,0.21) (0.00,0.12)

(2) Future subjective Objective [0.95,0.95] [0.48,0.66] [0.14,0.21] [0.17,0.17]

probability probability (0.87,1.00) (0.35,0.78) (-0.03,0.41) (0.02,0.33)

(3) Future subjective Past subjective [0.73,0.91] [0.41,0.82] [0.71,0.93] [0.65,0.87]

probability probability (0.57,1.00) (0.29,0.91) (0.51,1.00) (0.49,0.99)

Notes: This table presents mean estimated identified sets (in brackets) and 95% CIs (in parentheses) for the indicator that
X > Y by gender and performance status. An individual is high performance if their objective probability of winning is
greater than or equal to 25%, and is otherwise low performance. For all results, if the identified set or 95% CI for P [X > Y ]
is [a, b], the the identified set or 95% CI for P [X < Y ] is [1− b, 1−a]. Notation follows that of Subsection 6.3 and identified
sets for parameters are explicitly defined in Online Appendix Table G.2. Sample is restricted to those individuals in the
model sample with bounded identified sets for all parameters considered in this section.

both low performing and high performing women are more (or less) optimistic about future as opposed

to past performance.

Finally, while we find less evidence of heterogeneity when conditioning on gender and performance level

than we did in Table 4 when conditioning only on gender, we continue to find considerable heterogeneity

in beliefs for low performing women: we find, for instance, that at least 22% of low performing women are

overly optimistic while at least 35% of low performing women are overly pessimistic about their chances

of winning a past tournament.

7 Conclusion

Researchers that employ laboratory experiments to study self-selection into compensation schemes often

use individuals’ revealed choices to make conclusions about their latent preferences and beliefs. How-

ever, researchers often do not explicitly model how choices relate to latent factors, leaving open the

possibility that conclusions about beliefs and preferences hinge on implicit assumptions. Our analysis

begins by formally analyzing the seminal design of Niederle and Vesterlund (2007). Building on their

insights, we formulate a simple economic model of self-selection into compensation schemes based on their

hypothesized determinants of self-selection.

We use our economic model and individuals’ revealed choices to (partially) identify the determinants of
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self-selection into alternative compensation schemes in a laboratory setting. Our methodology emphasizes

that identification depends jointly on assumptions about how individuals self-select into compensation

schemes and on the choice of experimental design, and allows us to formally evaluate the threats to

identification raised by Niederle and Vesterlund (2007) in interpreting their own conclusions. We show

that, for a large class of belief and preference parameters, the sharp identified sets can be constructed

by a pair of linear programs. We develop necessary and sufficient conditions for the identified sets to

be bounded and/or informative, with resulting implications for experimental design. We aggregate the

individual-level parameters and implement the confidence intervals proposed in Imbens and Manski (2004)

for inference on the aggregate parameters, justifying the use of such confidence intervals in our context

by adapting the results of Stoye (2009) and the analysis of Bhattacharya, Shaikh, and Vytlacil (2012).

Our empirical application illustrates our framework while contributing to the experimental gender and

competition literature. Our analysis of gender differences in the value of compensation schemes extends

and is consistent with the existing literature. However, we reject key assumptions implicitly required for

studies using the NV design to conclude that their results imply a gender difference in preferences for

entering a future tournament. In particular, our empirical analysis rejects that individuals have the same

beliefs for their chances of winning future versus past tournaments, and further rejects that men and

women have the same mean beliefs conditional on past performance and rank guess.

Without imposing such assumptions, we find evidence that men are substantially more confident

than women and more confident than objective measures in their chances of winning a future (but not

necessarily a past) tournament. These results are largely driven by low performing men tending to be

vastly overconfident in their chances of winning a future tournament, with us finding, for instance, that

at least 87% of low performing men are overly confident that they will win a future tournament compared

to their objective chances and they have on average at least a seven percentage point higher subjective

probability of winning a future tournament than comparable women. We find that women, and especially

high performing women, enjoy competing in tournaments, while we find no such evidence for men. Our

results thus suggest that what has commonly been attributed to a gender difference in non-monetary

preferences is instead explained by men, and especially low ability men, having far greater confidence in

their probability of winning a future tournament compared to women.

Our findings relate to the recent literature which suggests that the observed gender gap reflects gender

differences in beliefs and confidence rather than preference for competition (van Veldhuizen, 2022). We

contribute to the literature in part by using revealed choices to study how beliefs of future success

39



diverge from beliefs of past success and how those beliefs relate to both gender and performance level.

Our findings also relate to the literature on decision-making under risk and uncertainty. It is commonly

observed that individuals assign different probability judgments for the same event depending on whether

the certainty is resolved but not revealed before their choice or whether the certainty is resolved after their

choice (Rothbart and Snyder, 1970; Tannenbaum, Fox, and Ülkümen, 2017). Although the probability of

winning may change across past and future tournaments and is thus not constant, our findings similarly

point to a setting in which beliefs about past and future events differ.

Our results can also be linked to the literature on gender differences in belief formation and belief

updating (Barber and Odean, 2001; Bordalo, Coffman, Gennaioli, and Shleifer, 2019; Shastry, Shurchkov,

and Xia, 2020). Perhaps our most striking empirical finding is that low performing men, but not low

performing women, are vastly more confident of future success than of past success or of objective measures

of likelihood of future success. In line with this literature, we conjecture that low performing men

may attribute their poor past performances to mere bad luck and remain optimistic about winning

competitions based on future performances.

Failing to account for the possibility that future and past beliefs differ may lead to erroneous conclu-

sions in literatures beyond that of gender and competition. For example, the entrepreneurship literature

documents that entrepreneurs do not change occupations despite repeated failures and lower earnings

relative to employees. Although some studies interpret this fact as evidence that these individuals have

a taste for being an entrepreneur (e.g. Hamilton (2000)), this fact can be equivalently interpreted as

entrepreneurs being consistently optimistic about future success despite past failure. In many settings,

researchers have a certain degree of flexibility in choosing what data to collect. Our methodology empha-

sizes the importance of making explicit how observed data relates to latent parameters of interest, and

further highlights how doing so prior to collecting data may guide the design of experiments, and, more

generally, the data-collection process.
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A Examples of Corollary 3.1

Corollary 3.1 provides a general approach for constructing Sf -sharp identified sets on functions of parameters across distinct

schemes. We develop three examples of Corollary 3.1 that we use in our application. We use Example A.1 to construct

bounds on the difference in perceived probabilities of winning past and future tournaments, we use Example A.2 to construct

bounds on measures of overconfidence defined as indicators for perceived probabilities of winning exceeding the objective

probabilities, and we use Example A.3 to construct bounds on averages of target parameters across multiple past tournament

schemes. This last example requires slightly modifying our set of compensation schemes J , which, for ease of notation,

included a single past piece-rate scheme and a single past tournament scheme. In our application, we elicit choices for n

past tournament and n past piece-rate schemes, where n = 3. The analysis of Sections 3 and 4 immediately extends to this

setting by instead defining J =
{
f,J pn ,J f

}
, where J f is as in Definition 1 and

J pn =

{
{(pr, k)}k=1,...,n, {(pt, k)}k=1,...,n

}
(past schemes).

Example A.1. Consider any j, j′ ∈ J \ {f, pr}, j 6= j′, and any τij and τij′ respectively corresponding to components of

(β(θij), λ(θij)) and (β(θij′), λ(θij′)). Applying Corollary 3.1 with g given by g(x, y) = x − y, we have that the Sf -sharp

identified set for τij − τij′ is
[
τij,l − τij′,u , τij,u − τij′,l

]
. The identified set is bounded (respectively, informative) if the

Sf -sharp identified sets for τij and τij′ are bounded (respectively, informative).

Example A.2. Consider any j, j′ ∈ J \ {f, pr}, j 6= j′, and any τij and τij′ respectively corresponding to components of

(β(θij), λ(θij)) and (β(θij′), λ(θij′)). Applying Corollary 3.1 with g given by g(x, y) = 1{x− y ∈ A} for some set A ⊂ R, we

have that the Sf -sharp identified set for 1{τij − τij′ ∈ A} is {1} if the Sf -sharp identified set for τij − τij′ is a subset of A,

is {0} if this set is a subset of the complement of A, and is {0, 1} otherwise. A necessary condition for the identified set to

be informative is that the Sf -sharp identified sets for τij and τij′ are informative.

Example A.3. Index the n past tournament schemes as (pt, k) for k = 1, . . . , n. Consider either τi,(pt,k) = δi,(pt,k) for all k,

τi,(pt,k) = πi,(pt,k) for all k, or τi,(pt,k) = γi,(pt,k) for all k. Define Li as the set of indices k such that the Sf -sharp identified

set for τi,(pt,k) is bounded. Suppose this set is non-empty, so that L ≡ |Li| > 0. With slight abuse of notation, relabel

the indices in Li as ` = 1, . . . , L. Consider applying Corollary 3.1 with g given by g(x1, . . . , xL) = 1
L

∑L
`=1 x`. Depending

on the choice of τi,(pt,k), g(τij1 , . . . , τijL) respectively corresponds to the average subjective expected monetary earnings of

a past tournament (denoted δi,pt), the average subjective probability of winning a past tournament (denoted πi,pt), or the

average expected value of feedback aversion for past tournaments (denoted as γi,pt, or, equivalently, as ψi,pt), where averages

are taken over schemes for which identified sets are bounded. Then the corollary states that the Sf -sharp identified set

is
[
1
L

∑L
`=1 τi,(pt,k),l ,

1
L

∑L
`=1 τi,(pt,k),u

]
. If τi,(pt,k) is bounded for at least some k = 1, . . . , n, then the identified set is
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bounded.

B Inference

We apply the confidence intervals proposed by Imbens and Manski (2004) for inference on aggregated (cross-individual)

partially identified parameters. We first summarize their proposed confidence interval. Suppose one has a sample of random

variables from some distribution P ∈ P. Let µ0(P ) denote an interval-identified parameter of interest that lies in the set

[µl(P ), µu(P )]. Suppose that (µ̂l,n, µ̂u,n) is an asymptotically normal estimator of (µl, µu), with corresponding standard

errors σ̂l,n, σ̂u,n. Imbens and Manski (2004) propose the following confidence interval:

CIα =

[
µ̂l,n −

Cασ̂l,n√
n

, µ̂u,n +
Cασ̂u,n√

n

]
, (B.1)

where Cα is defined as the value that solves

Φ

(
Cα +

√
n∆̂n

max{σ̂l,n, σ̂u,n}

)
− Φ(−Cα) = 1− α, (B.2)

with ∆̂n ≡ µ̂u,n − µ̂l,n. Imbens and Manski (2004) establish conditions on P such that the confidence interval of (B.1) is

uniformly consistent in level over P:

lim
n→∞

inf
P∈P

inf
µ0∈[µl(P ), µu(P )]

P [µ ∈ CIα] = 1− α. (B.3)

Stoye (2009) establishes weaker conditions on P for equation (B.3) to hold.

Consider the following special case of the above framework. Let (Yi, Zi, Gi), i = 1, ..., n be an i.i.d. sequence of

random variables with distribution P ∈ P. For any random variable U , let µU|G=g(P ) ≡ EP [U | G = g], σ2
U|G=g(P ) =

EP [(U − µU|G=g(P ))2 | G = g], Ūg ≡ 1
ng

∑
i:Gi=g

Ui and σ̂2
U|G=g ≡ 1

ng

∑
i:Gi=g

(Ui − Ūg)2, where ng =
∑
i 1{Gi = g}. For

some groups g0, g1 and (a0, a1) ∈ {(1, 0), (1,−1)}, suppose

µl(P ) = a0 · µY |G=g0(P ) + a1 · µZ|G=g1(P ), (B.4)

µu(P ) = a0 · µZ|G=g0(P ) + a1 · µY |G=g1(P ), (B.5)

with sample analogs

µ̂l,n ≡ a0 · Ȳg0 + a1 · Z̄g1 , (B.6)

µ̂u,n ≡ a0 · Z̄g0 + a1 · Ȳg1 , (B.7)

and corresponding standard errors as the square-roots of

σ̂2
l,n ≡ a20

σ̂2
Y |G=g0

n0
+ a21

σ̂2
Z|G=g1

n1
, (B.8)

σ̂2
u,n ≡ a20

σ̂2
Z|G=g0

n0
+ a21

σ̂2
Y |G=g1

n1
. (B.9)
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In our application, we use examples with (a0, a1) = (1, 0) to construct confidence intervals on target parameters by gender,

and we use examples with (a0, a1) = (1,−1) to construct confidence intervals on mean differences in target parameters across

genders. Consider the following assumption:

Assumption 2. Let (Yi, Zi, Gi), i = 1, ..., n be an i.i.d. sequence of random variables with distribution P ∈ P. Assume

that

1. P [Yi ≤ Zi] = 1 ∀ P ∈ P;

2. There exists finite sets Y, Z, G such that

(a) P [(Yi, Zi, Gi) ∈ Y × Z × G] = 1 ∀ P ∈ P;

(b) For some ε > 0,

i. infP∈P P [Gi = g] > ε,

ii. supP∈P P [Yi = y | Gi = g] < 1− ε,

iii. supP∈P P [Zi = z | Gi = g] < 1− ε,

for all (y, z, g) ∈ Y × Z × G.

Note that (a0, a1) ∈ {(1, 0), (1,−1)} and Assumption 2.1 imply that P [µ̂u,n ≥ µ̂l,n] = 1 for all P ∈ P. Assumption 2.2

implies that |Yi|, |Zi| are uniformly bounded from above, and that the variances of Yi and Zi are bounded from below and

above. Assumption 2.2 also includes that P [Gi = g] is bounded from below, which will be critical to obtain uniform results

for means conditional on Gi = g.

We now have the following theorem.

Theorem B.1. Let Assumption 2 hold. Suppose that for some g0, g1 ∈ G and (a0, a1) ∈ {(1, 0), (1,−1)}, µ0(P ) ∈

[µl(P ), µu(P )] with µl(P ) and µu(P ) given by (B.4)-(B.5). Let µ̂l,n, µ̂u,n, σ̂
2
l,n, and σ̂2

u,n be given by equations (B.6)-(B.9).

Then:

1. µ̂l, µ̂u converge to µl(P ), µu(P ) uniformly in P ∈ P;

2. CIα defined by equation (B.1) satisfies (B.3).

The proof of Result 1. of Theorem B.1 follows from modifying the arguments used in Lemmas (B.1)-(B.3) of Bhat-

tacharya, Shaikh, and Vytlacil (2012). By Lemma 3. and Proposition 1. of Stoye (2009), Result 2. of Theorem B.1 can

be proven by verifying his assumptions Assumptions 1(i), 1(ii) and 3. His Assumption 3. is that P [µ̂u,n ≥ µ̂l,n] = 1 for

all P ∈ P, which follows immediately from our Assumption 2.1. His Assumption 1(i) follows from our Assumption 2.2, as

is straightforward to verify by modifying the arguments used in Lemmas (B.1)-(B.5) of Bhattacharya, Shaikh, and Vyt-

lacil (2012). His Assumption 1(ii) also follows from our Assumption 2.2, as is straightforward to verify by modifying the

arguments used in Lemmas (B.1)-(B.3) of Bhattacharya, Shaikh, and Vytlacil (2012).

We now consider applying Theorem B.1 in our context. In the following examples, we take (Di,V , Xi), i = 1, ..., n to be

an i.i.d. sequence with distribution P ∈ P. For notational ease, we define β̄(θi) ≡ {β(θij)}j∈J , λ̄(θi) ≡ {λ(θij)}j∈J , and

λ̄1(θi) ≡ {λ1(θij)}j∈J .

Example B.1 (Payoff Indifference Points). Following Definition 7, suppose that the indifference point for (j, j′, p) is uniquely

defined w.p.1. and let q∗i denote that indifference point so that q∗i ∈ [ql,(j,j′)(p; i), qu,(j,j′)(p; i)]. Recall that V is assumed to

be finite. Suppose that ql,(j,j′)(p; i), qu,(j,j′)(p; i) are finite w.p.1, so that ql,(j,j′)(p; i) and qu,(j,j′)(p; i) must be equal to one

44



of the finitely many q in V by definition. For some (a0, a1) ∈ {(1, 0), (1,−1)} and g0, g1 ∈ G, taking µ0 = a0E[q∗i | Gi =

g0] + a1E[q∗i | Gi = g1] and (Yi, Zi) = (ql,(j,j′)(p; i), qu,(j,j′)(p; i)), we have that Assumption 2.1 and 2.2(a) are satisfied.

Imposing Assumption 2.2(b), by Theorem B.1 the confidence interval of CIα defined by equation (B.1) is uniformly consistent

in level for µ0. Note that in this example we require the relevant payoff indifference set to be bounded, but the Sf -sharp

identified set on components of β̄(θi), λ̄(θi) need not be bounded.

Example B.2 (Components of β̄(θi) and λ̄1(θi)). Let τ?i denote a component of β̄(θi), of λ̄1(θi), or a cross-scheme difference

in such components as in Example A.1. In all of these cases, if it is bounded, the Sf -sharp identified set has the form of an

identified interval [τi,l, τi,u]. Recall that V is a finite set. Suppose that there exists S̄ such that S∗ij ≤ S̄ w.p.1 for all j ∈ J pn ,

P ∈ P, and further that τi,l, τi,u are finite w.p.1 for all P ∈ P. Then τi,l, τi,u are necessarily functions of (Di,V , X1i), where

(Di,V , X1i) is a discrete random vector that takes a finite number of potential values so that τi,l, τi,u can take at most a finite

number of values. For some (a0, a1) ∈ {(1, 0), (1,−1)} and g0, g1 ∈ G, taking µ0 = a0E[τ?i | Gi = g0] + a1E[τ?i | Gi = g1]

and (Yi, Zi) = (τi,l, τi,u), we have that Assumption 2.1 and 2.2(a) are satisfied. Imposing Assumption 2.2(b), by Theorem

B.1 the confidence interval of CIα defined by equation (B.1) is uniformly consistent in level for µ0. That τi,l, τi,u are finite

w.p.1 for all P ∈ P will require that the appropriate elements of β̄(θi), λ̄(θi) are bounded w.p.1 for all P ∈ P.

Example B.3 (Indicator Target Parameters). Following Example A.2, for some j, j′ ∈ J \ {f, pr}, j 6= j′, τij and τij′

components of (β̄(θi), λ̄(θi)), and some set A ⊂ R, let Υi denote the Sf -sharp identified set for 1{τij − τij′ ∈ A} so

that Υi ∈
{
{0}, {1}, {0, 1}

}
. For some (a0, a1) ∈ {(1, 0), (1,−1)}, g0, g1 ∈ G, taking µ0 ≡ a0P [τij − τij′ ∈ A | Gi =

g0] + a1P [τij − τij′ ∈ A | Gi = g1], (Yi, Zi) = (1
{

Υi = {1}
}
, 1
{

Υi ∈ {{1}, {0, 1}}
}

), we have that µ0(P ) ∈ [µl(P ), µu(P )]

and that Assumption 2.1 and 2.2(a) are satisfied. Imposing Assumption 2.2(b), by Theorem B.1 the confidence interval of

CIα defined by equation (B.1) is uniformly consistent in level for µ0. Note that in this example the payoff indifference sets

and the Sf -sharp identified sets on components of β̄(θi), λ̄(θi) need not be bounded.
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Online Appendix for

Eliciting Willingness-to-Pay to Decompose Beliefs and Preferences that Determine

Selection into Competition in Lab Experiments

Appendix A Additional empirical results

Table A.1: Task performances (baseline sample)

Average performance
Male Female Male - Female

Combined

Practice 7.23 6.13 1.10**
(0.29) (0.17) (0.44)

Main 8.42 7.30 1.12**
(0.18) (0.11) (0.48)

Piece Rate

Base-payoff: 0.8 8.06 7.04 1.03**
(0.43) (0.29) (0.51)

Base-payoff: 1.6 8.57 7.23 1.35***
(0.42) (0.23) (0.48)

Base-payoff: 2.4 8.43 7.39 1.04*
(0.48) (0.27) (0.55)

Tournament

Base-payoff: 3.2 8.06 6.94 1.12**
(0.46) (0.27) (0.53)

Base-payoff: 6.4 8.65 7.70 0.95*
(0.45) (0.25) (0.51)

Base-payoff: 9.6 8.75 7.50 1.25**
(0.47) (0.28) (0.55)

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table presents average task performance by gender, compensation scheme (all
tasks combined, piece rate, or tournament), and base-payoff. Gender differences for each scheme-payoff are presented in
the third column. Standard errors are reported in parentheses. Standard errors for combined estimates are clustered at the
individual level. Hypothesis testing was only conducted on gender differences. Sample is restricted to the baseline sample.
Practice tasks are unpaid and performed before the main experiment.
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Table A.2: MPL behavior (baseline sample)

MPL type Gender Bounded Unbounded below Unbounded above

Past Tournament - Fixed Pay (avg) male 0.91 0.00 0.09
Past Tournament - Fixed Pay (avg) female 0.99 0.01 0.00
Future Tournament - Fixed Pay male 0.88 0.00 0.12
Future Tournament - Fixed Pay female 0.98 0.02 0.00
Future Piece Rate - Fixed Pay male 0.99 0.00 0.00
Future Piece Rate - Fixed Pay female 0.98 0.01 0.00
Future Lumpsum Tournament - Fixed Pay male 0.92 0.00 0.08
Future Lumpsum Tournament - Fixed Pay female 0.98 0.02 0.00
Future Tournament - Future Piece Rate male 0.97 0.01 0.02
Future Tournament - Future Piece Rate female 0.98 0.02 0.00

Notes: This table presents shares of MPLs that result in payoff indifference sets that are bounded, unbounded below, and
unbounded above by gender and MPL type. MPLs take the form of ‘scheme X – scheme Y’, where scheme X is fixed at the
listed base-payoff and scheme Y varies in base-payoff. MPLs with ‘(avg)’ denote taking, for each individual, the mean of
multiple MPLs at the given base-payoff, as is the case for past tournament since individuals perform three past tasks and
complete MPLs at the listed base-payoffs for each of these past performances. Sample is restricted to the baseline sample.
Shares for each gender and MPL type may not sum to 1 due to rounding.
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Table A.3: Mean payoff indifference sets, by gender (baseline sample with bounded sets)

MPL type Base-payoff Male Female Male - Female

Past Tournament - Fixed Pay (avg) 3.2 [6.25,6.84] [4.50,5.02] [1.23,2.34]
(5.22,7.94) (3.72,5.83) (-0.06,3.66)

Past Tournament - Fixed Pay (avg) 6.4 [10.91,12.04] [7.42,8.39] [2.51,4.62]
(9.04,14.02) (6.07,9.80) (0.21,6.98)

Past Tournament - Fixed Pay (avg) 9.6 [16.38,18.25] [10.68,12.24] [4.13,7.56]
(13.26,21.61) (8.67,14.38) (0.42,11.41)

Future Tournament - Fixed Pay 3.2 [6.49,7.13] [4.63,5.14] [1.36,2.50]
(5.34,8.36) (3.88,5.92) (-0.01,3.91)

Future Tournament - Fixed Pay 6.4 [11.76,12.97] [6.93,7.87] [3.88,6.04]
(9.42,15.47) (5.71,9.12) (1.29,8.76)

Future Tournament - Fixed Pay 9.6 [16.52,18.11] [9.22,10.60] [5.92,8.89]
(13.14,21.69) (7.48,12.39) (2.19,12.78)

Future Lumpsum Tournament - Fixed Pay 6.4 [2.44,2.60] [2.19,2.37] [0.08,0.41]
(2.15,2.90) (1.91,2.66) (-0.33,0.81)

Future Lumpsum Tournament - Fixed Pay 12.8 [4.77,5.11] [3.66,3.98] [0.79,1.45]
(4.22,5.69) (3.20,4.44) (0.09,2.18)

Future Lumpsum Tournament - Fixed Pay 19.2 [7.43,7.95] [5.01,5.50] [1.94,2.94]
(6.64,8.79) (4.35,6.17) (0.90,3.99)

Future Piece Rate - Fixed Pay 0.8 [6.40,6.85] [5.13,5.60] [0.80,1.73]
(5.76,7.51) (4.63,6.10) (0.00,2.54)

Future Piece Rate - Fixed Pay 1.6 [11.68,12.62] [10.15,11.10] [0.58,2.47]
(10.47,13.87) (9.29,11.98) (-0.90,3.98)

Future Piece Rate - Fixed Pay 2.4 [18.58,20.01] [14.62,15.90] [2.68,5.40]
(16.75,21.92) (13.47,17.06) (0.53,7.60)

Past Tournament - Past Piece Rate (avg) 3.2 [0.79,0.87] [0.57,0.64] [0.15,0.30]
(0.67,1.00) (0.48,0.73) (0.00,0.46)

Past Tournament - Past Piece Rate (avg) 6.4 [1.34,1.50] [0.92,1.07] [0.27,0.57]
(1.14,1.71) (0.78,1.22) (0.03,0.83)

Past Tournament - Past Piece Rate (avg) 9.6 [1.97,2.22] [1.34,1.57] [0.40,0.88]
(1.64,2.57) (1.11,1.81) (-0.00,1.29)

Future Tournament - Future Piece Rate 3.2 [1.42,1.56] [1.00,1.10] [0.32,0.57]
(1.23,1.77) (0.86,1.24) (0.09,0.81)

Future Tournament - Future Piece Rate 6.4 [2.76,3.05] [1.60,1.81] [0.95,1.45]
(2.37,3.48) (1.37,2.05) (0.49,1.93)

Future Tournament - Future Piece Rate 9.6 [3.58,3.99] [2.29,2.63] [0.95,1.70]
(3.06,4.57) (1.90,3.06) (0.28,2.39)

Notes: This table presents bounds (in brackets) and 95% CIs (in parentheses) for mean payoff indifference sets by gender,
MPL type, and base-payoff. MPLs take the form of ‘scheme X – scheme Y’, where scheme X is fixed at the listed base-payoff
and scheme Y varies in base-payoff. MPLs with ‘(avg)’ denote taking, for each individual, the mean of multiple MPLs at
the given base-payoff, as is the case for past tournament since individuals perform three past tasks and complete MPLs
at the listed base-payoffs for each of these past performances. Sample is restricted to the baseline sample, and we further
restrict to bounded payoff indifference sets.
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Table A.4: Task performances (model sample)

Average Performance
Male Female Male-Female

Combined

Practice 7.60 5.92 1.68***
(0.37) (0.19) (0.54)

Main 8.61 7.15 1.46**
(0.23) (0.11) (0.58)

Piece Rate

Base payoff: 0.8 8.28 6.91 1.37**
(0.54) (0.29) (0.61)

Base payoff: 1.6 8.89 7.04 1.85***
(0.54) (0.24) (0.59)

Base payoff: 2.4 8.57 7.24 1.33**
(0.60) (0.27) (0.66)

Tournament

Base payoff: 3.2 8.15 6.76 1.39**
(0.59) (0.28) (0.65)

Base payoff: 6.4 8.72 7.50 1.22*
(0.57) (0.25) (0.63)

Base payoff: 9.6 9.02 7.44 1.58**
(0.60) (0.30) (0.67)

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table presents average task performance by gender, compensation scheme (all
tasks combined, piece rate, or tournament), and base-payoff. Gender differences for each scheme-payoff are presented in
the third column. Standard errors are reported in parentheses. Standard errors for combined estimates are clustered at the
individual level. Hypothesis testing was only conducted on gender differences. Sample is restricted to the model sample.
Practice tasks are unpaid and performed before the main experiment.
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Table A.5: Mean payoff indifference sets, by gender (model sample with bounded sets)

MPL schemes Price Male Female Male - Female

Past Tournament - Fixed Pay (avg) 3.2 [6.25,6.86] [4.03,4.53] [1.72,2.83]
(4.90,8.30) (3.19,5.42) (0.14,4.46)

Past Tournament - Fixed Pay (avg) 6.4 [10.93,12.12] [6.87,7.83] [3.10,5.25]
(8.54,14.67) (5.38,9.38) (0.31,8.14)

Past Tournament - Fixed Pay (avg) 9.6 [15.73,17.66] [10.02,11.55] [4.19,7.64]
(11.84,21.87) (7.79,13.92) (-0.28,12.30)

Future Tournament - Fixed Pay 3.2 [6.80,7.50] [4.11,4.60] [2.20,3.39]
(5.23,9.19) (3.35,5.38) (0.48,5.20)

Future Tournament - Fixed Pay 6.4 [12.29,13.58] [5.86,6.77] [5.52,7.72]
(9.08,17.01) (4.72,7.91) (2.21,11.23)

Future Tournament - Fixed Pay 9.6 [16.73,18.45] [8.27,9.55] [7.19,10.17]
(12.12,23.38) (6.59,11.24) (2.42,15.23)

Future Lumpsum Tournament - Fixed Pay 6.4 [2.21,2.37] [2.10,2.27] [-0.06,0.27]
(1.81,2.77) (1.79,2.59) (-0.56,0.77)

Future Lumpsum Tournament - Fixed Pay 12.8 [4.58,4.92] [3.26,3.57] [1.01,1.66]
(3.89,5.64) (2.78,4.07) (0.18,2.50)

Future Lumpsum Tournament - Fixed Pay 19.2 [6.92,7.40] [4.43,4.91] [2.01,2.97]
(5.96,8.41) (3.74,5.61) (0.85,4.16)

Future Piece Rate - Fixed Pay 0.8 [5.97,6.41] [4.92,5.38] [0.59,1.50]
(5.19,7.22) (4.38,5.93) (-0.35,2.45)

Future Piece Rate - Fixed Pay 1.6 [10.56,11.51] [9.79,10.72] [-0.17,1.72]
(9.06,13.08) (8.84,11.68) (-1.92,3.52)

Future Piece Rate - Fixed Pay 2.4 [17.42,18.89] [14.29,15.58] [1.84,4.60]
(15.11,21.33) (13.05,16.84) (-0.75,7.29)

Past Tournament - Past Piece Rate (avg) 3.2 [0.81,0.90] [0.52,0.59] [0.22,0.39]
(0.65,1.07) (0.42,0.69) (0.03,0.58)

Past Tournament - Past Piece Rate (avg) 6.4 [1.38,1.55] [0.87,1.02] [0.36,0.67]
(1.11,1.82) (0.70,1.19) (0.04,0.99)

Past Tournament - Past Piece Rate (avg) 9.6 [1.98,2.25] [1.29,1.52] [0.46,0.96]
(1.55,2.71) (1.02,1.80) (-0.05,1.48)

Future Tournament - Future Piece Rate 3.2 [1.30,1.43] [0.94,1.05] [0.25,0.48]
(1.06,1.69) (0.79,1.20) (-0.03,0.78)

Future Tournament - Future Piece Rate 6.4 [2.25,2.48] [1.39,1.60] [0.65,1.08]
(1.84,2.90) (1.15,1.85) (0.18,1.56)

Future Tournament - Future Piece Rate 9.6 [3.01,3.31] [2.07,2.39] [0.62,1.24]
(2.46,3.87) (1.67,2.82) (-0.07,1.92)

Notes: This table presents bounds (in brackets) and 95% CIs (in parentheses) for mean payoff indifference sets by gender,
MPL type, and base-payoff. MPLs take the form of ‘scheme X – scheme Y’, where scheme X is fixed at the listed base-payoff
and scheme Y varies in base-payoff. MPLs with ‘(avg)’ denote taking, for each individual, the mean of multiple MPLs at
the given base-payoff, as is the case for past tournament since individuals perform three past tasks and complete MPLs
at the listed base-payoffs for each of these past performances. Sample is restricted to the model sample, and we further
restrict to bounded payoff indifference sets.
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Table A.6: Tournament expected monetary earnings (model sample with bounded sets)

No. Parameter Description Male Female Male - Female

Panel A: tournament expected monetary earnings

(1) π∗µ∗ Objective 2.87 2.14 0.73

tournament expected monetary value (1.66,4.08) (1.54,2.75) (-0.62,2.07)

(2) πptµpt Past subjective [1.49,1.85] [0.71,1.03] [0.46,1.14]

tournament expected monetary value (1.05,2.35) (0.52,1.27) (-0.04,1.67)

(3) πftµft Future subjective [1.58,1.96] [0.61,0.84] [0.74,1.36]

tournament expected monetary value (1.09,2.54) (0.45,1.00) (0.23,1.94)

Panel B: differences in tournament expected monetary earnings

(4) πptµpt − π∗µ∗ Past subjective - objective [-1.38,-1.02] [-1.44,-1.11] [-0.27,0.42]

tournament expected monetary value (-2.26,-0.15) (-1.92,-0.63) (-1.24,1.38)

(5) πftµft − π∗µ∗ Future subjective - objective [-1.29,-0.91] [-1.54,-1.30] [0.01,0.63]

tournament expected monetary value (-2.21,0.03) (-2.02,-0.83) (-1.00,1.66)

(6) πftµft − πptµpt Future subjective - past subjective [-0.27,0.47] [-0.43,0.13] [-0.40,0.90]

tournament expected monetary value (-0.58,0.84) (-0.63,0.30) (-0.75,1.32)

Notes: This table presents mean estimated identified sets (in brackets) and 95% CIs (in parentheses) for belief parameters
by gender and for the difference between men and women. Notation and identified sets for parameters are explicitly defined
in Online Appendix Table G.1. Sample is restricted to those individuals in the model sample with bounded identified sets
for all parameters considered in Section 6.
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Table A.7: Tournament expected monetary earnings, by ability (model sample with bounded sets)

Low Ability High Ability

No. Parameter Description Male Female Male - Female Male Female Male - Female

Panel A: tournament expected monetary earnings

(1) π∗µ∗ Objective 0.70 0.74 -0.04 6.28 4.84 1.44

tournament expected monetary value (0.36,1.04) (0.55,0.92) (-0.42,0.35) (4.19,8.38) (3.76,5.91) (-0.85,3.73)

(2) πptµpt Past subjective [0.94,1.24] [0.57,0.82] [0.12,0.67] [2.36,2.82] [0.98,1.45] [0.91,1.84]

tournament expected monetary value (0.53,1.72) (0.37,1.03) (-0.33,1.19) (1.53,3.74) (0.59,1.97) (-0.05,2.81)

(3) πftµft Future subjective [1.12,1.45] [0.44,0.65] [0.47,1.01] [2.31,2.78] [0.93,1.20] [1.11,1.84]

tournament expected monetary value (0.58,2.10) (0.28,0.82) (-0.09,1.67) (1.41,3.79) (0.62,1.52) (0.17,2.88)

Panel B: differences in tournament expected monetary earnings

(4) πptµpt − π∗µ∗ Past subjective - objective [0.24,0.54] [-0.17,0.08] [0.16,0.71] [-3.92,-3.47] [-3.86,-3.39] [-0.54,0.40]

tournament expected monetary value (-0.19,1.03) (-0.40,0.33) (-0.33,1.24) (-5.53,-1.91) (-4.70,-2.51) (-2.30,2.11)

(5) πftµft − π∗µ∗ Future subjective - objective [0.42,0.75] [-0.30,-0.08] [0.50,1.05] [-3.97,-3.50] [-3.91,-3.64] [-0.34,0.40]

tournament expected monetary value (-0.16,1.43) (-0.48,0.10) (-0.09,1.74) (-5.55,-1.93) (-4.81,-2.75) (-2.10,2.17)

(6) πftµft − πptµpt Future subjective - past subjective [-0.12,0.51] [-0.38,0.09] [-0.20,0.89] [-0.51,0.42] [-0.52,0.23] [-0.73,0.94]

tournament expected monetary value (-0.56,1.03) (-0.58,0.27) (-0.68,1.44) (-0.89,0.91) (-0.96,0.57) (-1.25,1.60)

Notes: This table presents mean estimated identified sets (in brackets) and 95% CIs (in parentheses) for belief and
preference parameters by gender and for the difference between men and women, by performance status. An individual is
high performance if their objective probability of winning is greater than or equal to 25%, and is otherwise low performance.
Notation and identified sets for parameters are explicitly defined in Online Appendix Table G.1. Sample is restricted to
those individuals in the model sample with bounded identified sets for all parameters considered in Section 6.
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Figure A.1: Beliefs by performance (model sample with bounded sets)

Notes: Panel (a) plots estimated bounds on the k-th past tournament subjective probability of winning by gender condi-
tional on past performance, while Panel (b) plots estimated bounds on future subjective probability of winning by gender
conditional on average past performance. Blue triangles denote upper and lower estimated mean bounds for men, and
red dots denote upper and lower estimated mean bounds for women. The dotted line denotes the objective probabil-
ity of winning for a given past tournament score. Average past tournament score denotes the average of the three past
tournament performances (rounded to closest integer). Notation follows that of Section 3 and Online Appendix G, where
πi,(pt,k) denotes the past subjective probability of winning the kth past tournament, and πi,fl denotes the future subjective
probability of winning. Sample is restricted to those individuals in the model sample with bounded identified sets for all
parameters considered in Section 6.

Figure A.2: Beliefs by rank guess (model sample with bounded sets)

Notes: Panel (a) plots estimated bounds on the k-th past tournament subjective probability of winning by gender conditional
on past rank guess for the associated k-th past tournament, while Panel (b) plots estimated bounds on future subjective
probability of winning by gender conditional on the rank guess for last past tournament performance prior to which the
individual evaluates choices for future tournament. Blue triangles denote upper and lower estimated mean bounds for men,
and red dots denote upper and lower estimated mean bounds for women. Notation follows that of Section 3 and Online
Appendix G, where πi,(pt,k) denotes the past subjective probability of winning the kth past tournament, and πi,fl denotes
the future subjective probability of winning. Sample is restricted to those individuals in the model sample with bounded
identified sets for all parameters considered in Section 6.
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Appendix B Proofs

The following lemma will be useful for proving Theorem 1.

Lemma B.1. Suppose θ ∈ Θ̃i. θ satisfies Dj,f (p, q; i) = 1

[
Vj(p; θj) ≥ Vf (q; θf )

]
for all (j, f, p, q) ∈ V if and only if

ql,(j,f)(p; i) ≤ δ(θ[1]j ) p+ γ(θj) ≤ qu,(j,f)(p; i) for all (j, f) ∈ Sf , p ∈ Pj,f .

Proof of Lemma B.1. Following Remark 3.2, we can rewrite Dj,f (p, q; i) = 1

[
Vj(p; θj) ≥ Vf (q; θf )

]
as

Dj,f (p, q; i) = 1

[
δ(θ

[1]
j ) p+ γ(θj) ≥ δ(θ[1]f ) q + γ(θf )

]
. (B.1)

Because θ ∈ Θ̃i, δ(θ
[1]
f ) = 1 and γ(θf ) = 0, so

Dj,f (p, q; i) = 1

[
δ(θ

[1]
j ) p+ γ(θj) ≥ q

]
. (B.2)

Define

Ql(j, j
′, p) ≡

{
q
∣∣∣ (j, j′, p, q) ∈ V and Dj,j′(p, q; i) = 1

}
, (B.3)

Qu(j, j′, p) ≡
{
q
∣∣∣ (j, j′, p, q) ∈ V and Dj,j′(p, q; i) = 0

}
, (B.4)

with ql,(j,j′)(p; i) ≡ supq Ql(j, j
′, p), qu,(j,j′)(p; i) ≡ infq Qu(j, j′, p) by definition (see (21) and (22)).

Equation (C.8) holds for all (j, f, p, q) ∈ V if and only if for all (j, f) ∈ Sf , p ∈ Pj,f

q ≤ δ(θ[1]j ) p+ γ(θj) ∀ q ∈ Ql(j, f, p) (B.5)

and

q ≥ δ(θ[1]j ) p+ γ(θj) ∀ q ∈ Qu(j, f, p), (B.6)

with equations (C.9) and (C.10) holding if and only if for all (j, f) ∈ Sf , p ∈ Pj,f

ql,(j,f)(p; i) ≤ δ(θ[1]j ) p+ γ(θj) (B.7)

and

qu,(j,f)(p; i) ≥ δ(θ[1]j ) p+ γ(θj). (B.8)

This completes the proof.

We now prove Theorem 1.

Proof of Theorem 1. We first show that θi is in the set given by (26). Because θi satisfies Assumption 1, θi ∈ Θ̃i and

Dj,f (p, q; i) = 1

[
Vj(p; θij) ≥ Vf (q; θi,f )

]
for all (j, f, p, q) ∈ V. Then by applying Lemma B.1 to θi, it follows that δ(θ

[1]
ij ) p+

γ(θij) ∈
[
ql,(j,f)(p; i), qu,(j,f)(p; i)

]
for any (j, f) ∈ Sf , p ∈ Pj,f .

We now show that the set given by (26) is equal to Θ?
i (Sf ). Inspecting the definition of Θ?

i (Sf ) as given by (18) and
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applying Lemma B.1 to any candidate θ, Θ?
i (Sf ) is equivalent to the set

{
θ ∈ Θ̃i

∣∣∣ δ(θ[1]j ) p+ γ(θj) ∈
[
ql,(j,f)(p; i), qu,(j,f)(p; i)

]
∀(j, f) ∈ Sf , p ∈ Pj,f

}
. (B.9)

Note that the constraints imposed on subvector θj for any θ in (C.13) do not impose any restrictions on subvector θ−j .

Thus the set in (C.13) is equivalent to the set given by (26). By Definition 5, it follows that the Sf -sharp identified set for

θi is given by the set in (26).

Proof of Theorem 2. Result 1. follows directly from Theorem 1 and from the definitions of Bi,(j,f), the specification of Θ in

(7), and the fact that Θ is a product space of j−specific parameter spaces. We now prove Result 2.

Proof of Result 2.

For any j ∈ J \
{
f, pr

}
, B[1]

i,(j,f) and B[2]

i,(j,f) are defined as

B[1]

i,(j,f) =
{
δ ∈ Aij | ∃γ ∈ R s.t. δp+ γ ∈

[
ql,(j,f)(p; i), qu,(j,f)(p; i)

]
∀p ∈ Pj,f

}
, (B.10)

B[2]

i,(j,f) =
{
γ ∈ R | ∃δ ∈ Aij s.t. δp+ γ ∈

[
ql,(j,f)(p; i), qu,(j,f)(p; i)

]
∀p ∈ Pj,f

}
. (B.11)

Let β̄j(θ) = β(θj). Observe that δij = β̄j(θi)
[1] and γij = β̄j(θi)

[2]. To show that B[1]

i,(j,f) and B[2]

i,(j,f) are Sf -sharp for

these respective parameters, we need to show B[1]

i,(j,f) = β̄j(Θ
?
i (Sf ))[1] and B[2]

i,(j,f) = β̄j(Θ
?
i (Sf ))[2].

Since Θ?
i (Sf ) is the product space of j−specific sets, β̄j(Θ

?
i (Sf )) can be written as:

β̄j(Θ
?
i (Sf )) =

{
(δj , γj) ∈ β(Θ̃ij)

∣∣∣∣ δj p+ γj ∈
[
ql,(j,f)(p; i), qu,(j,f)(p; i)

]
∀p ∈ Pj,f

}
. (B.12)

Because Θ is a product space, the projections of β̄j(Θ
?
i (Sf )) onto its 1st and 2nd component are:

β̄j(Θ
?
i (Sf ))[1] =

{
δj ∈ δ(Θ̃ij)

∣∣∣∣ ∃γj ∈ γ(Θ̃ij) s.t.

δj p+ γj ∈
[
ql,(j,f)(p; i), qu,(j,f)(p; i)

]
∀p ∈ Pj,f

}
,

(B.13)

β̄j(Θ
?
i (Sf ))[2] =

{
γj ∈ γ(Θ̃ij)

∣∣∣∣ ∃δj ∈ δ(Θ̃ij) s.t.

δj p+ γj ∈
[
ql,(j,f)(p; i), qu,(j,f)(p; i)

]
∀p ∈ Pj,f

}
.

(B.14)

Thus, to show that B[1]

i,(j,f) = β̄j(Θ
?
i (Sf ))[1] and B[2]

i,(j,f) = β̄j(Θ
?
i (Sf ))[2] for any j ∈ J \

{
f, pr

}
, it is sufficient to show

that δ(Θ̃ij) = Aij and γ(Θ̃ij) = R for any j ∈ J \
{
f, pr

}
, where δ(θj) = πjµj and γ(θj) = πjηj(1) + (1 − πj)ηj(0) + cj .

This follows from inspection of Θ̃ij (and thus Θj as defined in (7)) and Aij for j ∈ J \
{
f, pr

}
.

We now show that B[1]

i,(j,f) and B[2]

i,(j,f) are intervals for any j ∈ J \
{
f, pr

}
. Consider any j ∈ J \

{
f, pr

}
. If either

B[1]

i,(j,f) or B[2]

i,(j,f) are singletons, they are trivially intervals. We will thus assume that there exist at least two distinct points

in B[1]

i,(j,f) and B[2]

i,(j,f).

Let δ1, δ2 ∈ B[1]

i,(j,f) with δ1 6= δ2. Without loss of generality, suppose δ1 < δ2. By definition of B[1]

i,(j,f), 0 ≤ δ1. There

must exist corresponding γ1, γ2 such that (δ1, γ1), (δ2, γ2) ∈ Bi,(j,f). Let p∗ denote the intersection point between the lines
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δ1p+ γ1 and δ2p+ γ2:

p∗ =
γ1 − γ2
δ2 − δ1

. (B.15)

Consider any δ∗ such that δ1 < δ∗ < δ2. Define γ∗ so that the line δ∗p+ γ∗ intersects δ1p+ γ1 and δ2p+ γ2 at p = p∗:

γ∗ ≡ (δ2 − δ∗)p∗ + γ2 = (δ1 − δ∗)p∗ + γ1. (B.16)

Then, using that 0 ≤ δ1:

ql,(j,f)(p; i) ≤ δ2p+ γ2 ≤ δ∗p+ γ∗ ≤ δ1p+ γ1 ≤ qu,(j,f)(p; i) ∀p < p∗ (B.17)

ql,(j,f)(p; i) ≤ δ1p+ γ1 ≤ δ∗p+ γ∗ ≤ δ2p+ γ2 ≤ qu,(j,f)(p; i) ∀p ≥ p∗. (B.18)

So for any p ∈ Pj,f , δ∗p + γ∗ ∈ [ql,(j,f)(p; i), qu,(j,f)(p; i)]. Because Aij is an interval for all j, δ∗ ∈ [δ1, δ2] ⊆ Aij . Trivially,

γ∗ ∈ R. We conclude that δ∗ ∈ B[1]

i,(j,f).

Similarly, let γ1, γ2 ∈ B[2]

i,(j,f) with γ1 6= γ2 be arbitrary. Without loss of generality, suppose γ1 < γ2. Consider any γ∗

such that γ1 < γ∗ < γ2. There must exist corresponding δ1, δ2 such that (δ1, γ1), (δ2, γ2) ∈ Bi,(j,f).

Case 1: δ1 = δ2. Then ql,(j,f)(p; i) ≤ δ1p + γ1 ≤ δ1p + γ∗ ≤ δ2p + γ2 ≤ qu,(j,f)(p; i). Because γ∗ ∈ R and δ1 ∈ Aij , we

conclude γ∗ ∈ B[2]

i,(j,f).

Case 2: δ1 6= δ2. Then there must exist an intersection point p∗ between the lines δ1p+ γ1 and δ2p+ γ2, as before:

p∗ =
γ1 − γ2
δ2 − δ1

. (B.19)

Note p∗ 6= 0 because γ1 6= γ2. Define δ∗ so that the line δ∗p+ γ∗ intersects δ1p+ γ1 and δ2p+ γ2 at p = p∗:

δ∗ ≡ δ2 +
γ2 − γ∗

p∗
= δ1 +

γ1 − γ∗

p∗
. (B.20)

Note that if δ2 > δ1 then p∗ < 0. Because γ2 − γ∗ > 0 and γ1 − γ∗ < 0, δ1 < δ∗ < δ2. If δ2 < δ1, then p∗ > 0, so that

δ2 < δ∗ < δ1. Thus by an analogous argument to the proof for B[1]

i,(j,f), δ
∗p+ γ∗ ∈ [ql,(j,f)(p; i), qu,(j,f)(p; i)] for any p ∈ Pj,f .

Because δ1, δ2 ∈ Aij by assumption and δ∗ ∈ [δ1, δ2], we have that δ∗ ∈ Aij . Because γ∗ ∈ R, we conclude γ∗ ∈ B[2]

i,(j,f).

Proof of Theorem 3. Proof of Result 1.

Let λ̄j(θ) = λ(θj). From Theorem 2, [δij,l, δij,u] and [γij,l, γij,u] are Sf -sharp for δ(θ
[1]
ij ) and γ(θij). It suffices to consider

the bounds that are not singletons, as the singleton bounds are trivially equal to the respective kth projections of λ̄j
(

Θ?
i (Sf )

)
by inspection of Θ̃i. Note that λ̄j

(
Θ?
i (Sf )

)[k]
is the Sf -sharp identified set for the kth component of λ(θij). By inspection

of the non-singleton bounds in Table 1, it is clear that these are outer sets for the Sf -sharp identified sets. Thus, it suffices

to show that the Sf -sharp identified sets contain these bounds. We proceed by considering each scheme separately.

Suppose j = (pt, k). We first consider the bounds for πij . For any d ∈ [δij,l, δij,u], there exists θ ∈ Θ?
i (Sf ) such that

δ(θ
[1]
j ) = πjµj = d. The constraints given θ ∈ Θ?

i (Sf ) ⊆ Θ̃i imply that µj = S∗ij , so that πj = d/S∗ij . Since this holds for

any d, it follows that the Sf -sharp identified set for πij contains [δij,l/S
∗
ij , δij,u/S

∗
ij ], which are the bounds listed in Table

1. Next, consider the bounds for ψij . For any g ∈ [γij,l, γij,u], there exists θ ∈ Θ?
i (Sf ) such that γ(θj) = g. Since it must
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hold that cj = 0 for θ, it follows that g = ψ(θj) + cj = ψ(θj), so that the Sf -sharp identified set for ψij contains [γij,l, γij,u],

which are the bounds listed in Table 1.

Suppose j = fr. For µij , for any d ∈ [δij,l, δij,u], there exists θ ∈ Θ?
i (Sf ) with πj = 1 so that πjµj = µj = d, so that the

Sf -sharp identified set contains [δij,l, δij,u]. For cij , for any g ∈ [γij,l, γij,u], there exists θ ∈ Θ?
i (Sf ) with ψ(θj) = 0 so that

ψ(θj) + cj = cj = g, so that the Sf -sharp identified set contains [γij,l, γij,u].

Suppose j = ft. We first consider bounds on µij . For any d ∈ [δij,l, δij,u], there exists some θ ∈ Θ?
i (Sf ) such that

δ(θ
[1]
j ) = πjµj = d and

γ(θj) = πjηj(1) + (1− πj)ηj(0) + cj ≡ g.

For any α ∈ (0, 1], construct θ̃ that is equal to θ except that π̃j = α, µ̃j = d/α and c̃j = cj + (πj − π̃j)ηj(1) + ((1 − πj) −

(1 − π̃j))ηj(0). By construction, θ̃ ∈ Θ̃i, δ(θ̃
[1]
j ) = d and γ(θ̃j) = g. Note that for all schemes j′ 6= ft, θ̃j′ = θj′ . Thus by

inspection of the definition of Θ?
i (Sf ), θ̃ ∈ Θ?

i (Sf ). Since this construction holds for any (d, α) ∈ [δij,l, δij,u]× (0, 1], it follows

that the Sf -sharp identified set for µij contains [δj,l,∞).

We use a slightly different approach for the rest of the parameters under the case where j = ft.

Consider πij . If δij = 0, then for any α ∈ [0, 1] construct θ that is equal to θi except that πj = α, µj = 0, and

cj = cij + (πij − πj)ηij(1) + ((1− πij)− (1− πj))ηij(0).

If δij 6= 0, then for any α ∈ (0, 1] construct θ that is equal to θi except that πj = α, µj =
δij
α

, and

cj = cij + (πij − πj)ηij(1) + ((1− πij)− (1− πj))ηij(0).

Since the components of θ are equal to those of θi except for πj , µj , and cj , and since we have that πj ∈ [0, 1] and µj ≥ 0

because δij ≥ 0, it follows from inspection of Θ that θ ∈ Θ̃i. Also, we have δ(θ
[1]

j′ ) = δij′ and γ(θj′) = γij′ for all j′ 6= j.

By construction, δ(θ
[1]
j ) = δij and γ(θj) = γij . Since θi ∈ Θ?

i (Sf ), by inspection of the definition of Θ?
i (Sf ), θ ∈ Θ?

i (Sf ). If

0 ∈ δ(Θ?
i (Sf )), because δij ∈ δ(Θ?

i (Sf )) then it is possible that δij = 0. If 0 6∈ δ(Θ?
i (Sf )), because δij ∈ δ(Θ?

i (Sf )) then we

know δij 6= 0. So the Sf -sharp identified set for πij is [0, 1] if 0 ∈ δ(Θ?
i (Sf )) and (0, 1] otherwise.

For the bounds on ψij and cij , for any ε ∈ R construct a vector θ whose components are equal to θi except that

cj = cij + ε and choose (ηj(0), ηj(1)) ∈ R2 so that

πijηj(1) + (1− πij)ηj(0) = πijηij(1) + (1− πij)ηij(0)− ε,

which can always be done since at least one of πij or (1 − πij) is non-zero. Then ψ(θj) = ψ(θij) − ε and γ(θj) = γ(θij).

Since the components of θ are equal to those of θi except for ηj(0), ηj(1), and cj , it follows from inspection of Θ that θ ∈ Θ̃i.

It also follows that δ(θ
[1]

j′ ) = δ(θ
[1]

ij′) for all j′ ∈ J and γ(θj′) = γ(θij′) for all j′ ∈ J such that j′ 6= ft. Since θi ∈ Θ?
i (Sf ),

by inspection of the definition of Θ?
i (Sf ), θ ∈ Θ?

i (Sf ). It follows that cj = cij + ε is in the sharp identified set for cij and

ψ(θj) = ψ(θij)− ε is in the sharp identified set for ψ(θij). Because this holds for any ε ∈ R, the Sf -sharp identified sets for

cij and ψij are both (−∞,∞).

Finally, suppose j = fl. For the bounds on πij , we employ the exact same approach as for the case where j = (pt, k)

with S∗ij = 1. For the bounds on ψij and cij , we employ the same approach as for the case where j = ft.
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Proof of Result 2.

We showed in the proof of Result 1. that the bounds presented in Table 1 for πi,ft, ψi,ft, ψi,fl, and ci,ft are the Sf -sharp

identified sets. We will show that the sharp identified sets for those parameters are equal to the Sf -sharp identified sets.

Following Remark 3.2 and Definition 5, the sharp identified set for θi can be written as

Θ?
i =

{
θ ∈ Θ̃i

∣∣∣∣ Dj,j′(p, q; i) = 1

[
δ(θ

[1]
j ) p+ γ(θj) ≥ δ(θ[1]j′ ) q + γ(θj′)

]
∀ (j, j′, p, q) ∈ V

}
. (B.21)

Let θ ∈ Θ?
i . Inspecting (B.21), it is clear that if for some candidate θ̃ it holds that θ̃ ∈ Θ̃i, δ(θ̃

[1]
j ) = δ(θ

[1]
j ) for all j ∈ J ,

and γ(θ̃j) = γ(θj) for all j ∈ J , it must follow that θ̃ ∈ Θ?
i as well. We showed in the proof of Result 1. that for πi,ft, ψi,ft,

ψi,fl, and ci,ft, it is possible to construct some candidate θ such that θ ∈ Θ̃i, δ(θ
[1]
j ) = δij for all j ∈ J , and γ(θj) = γij for

all j ∈ J . Since θi ∈ Θ?
i by definition of an identified set, it follows that the candidate θ ∈ Θ?

i .

Thus the bounds presented in Table 1 for πi,ft, ψi,ft, ψi,fl, ci,ft are the sharp identified sets and inspection of Θ̃i

establishes that these bounds are uninformative (up to taking the closure of the bounds on πi,ft). It remains to show that

the sharp identified set for µi,ft is unbounded above.

Let x > µi,ft be arbitrary. Construct a vector θ whose components are equal to θi except for µft = x and πft =
δ(θ

[1]
i,ft

)

x
.

Note that this is well-defined because µi,ft ≥ 0 and thus x > µi,ft ≥ 0. Since the components of θ are equal to those of θi

except for πft and µft, it follows that γ(θj) = γ(θij) for all j ∈ J and δ(θ
[1]
j ) = δ(θ

[1]
ij ) for all j ∈ J except for j = ft. For

j = ft, δ(θ
[1]
ft ) = πftµft = δ(θ

[1]
i,ft).

Note that πft =
δ(θ

[1]
i,ft

)

x
=

πi,ftµi,ft

x
. x > µi,ft implies that µft ≥ 0 and πft < πi,ft ≤ 1. Since πi,ft ≥ 0 and

x > µi,ft ≥ 0, it follows that πft ≥ 0 and thus πft ∈ [0, 1]. Thus θ ∈ Θ̃i. Because we showed that δ(θ
[1]
j ) = δ(θ

[1]
ij ) and

γ(θj) = γ(θij) for all j ∈ J , it follows that θ ∈ Θ?
i , so µft = x is in the sharp identified set for µi,ft. Because this holds for

any x > µi,ft, we can take x as large as we want and thus the sharp identified set for µi,ft must be unbounded.

We now formally state and prove the claim of Remark 4.2.

Proposition B.1 (Formal statement of Remark 4.2). Suppose individual i satisfies Assumption 1. Let [δij,l, δij,u] and

[γij,l, γij,u] be defined as in Theorem 2. A necessary condition for [δij,l, δij,u] to be informative is that |Pj,f | ≥ 2. A

sufficient condition for this interval and for [γij,l, γij,u] to both be bounded and informative is that there exists p1, p2 ∈ Pj,f

with p2 > p1 such that(
qu,(j,f)(p2; i)− ql,(j,f)(p2; i)

)
+
(
qu,(j,f)(p1; i)− ql,(j,f)(p1; i)

)
p2 − p1

< supAij − inf Aij . (B.22)

Proof of Proposition B.1. We first show the necessary condition is necessary. Fix j ∈ J \
{
f, pr

}
and suppose |Pj,f | = 1.

Let p denote the single value in Pj,f . By Theorem 2,

[δij,l, δij,u] =
{
δ ∈ Aij

∣∣ ∃γ ∈ R s.t. δp+ γ ∈ [ql,(j,f)(p; i), qu,(j,f)(p; i)]
}
. (B.23)

In the proof of Theorem 2, we showed [δij,l, δij,u] is uninformative if [δij,l, δij,u] = Aij , so it suffices to show Aij ⊆ [δij,l, δij,u].

Consider arbitrary d ∈ Aij . Let g be any value in the interval [ql,(j,f)(p; i) − dp, qu,(j,f)(p; i) − dp]. By construction,
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ql,(j,f)(p; i) ≤ dp+ g ≤ qu,(j,f)(p; i) and g ∈ R. Thus d ∈ [δij,l, δij,u], as required.

We now show the sufficient condition is sufficient. Fix j ∈ J \
{
f, pr

}
and suppose that there exists distinct p1, p2 ∈ Pj,f

with p2 > p1 (and recalling that these values are strictly positive) such that(
qu,(j,f)(p2; i)− ql,(j,f)(p2; i)

)
+
(
qu,(j,f)(p1; i)− ql,(j,f)(p1; i)

)
p2 − p1

< supAij − inf Aij . (B.24)

We want to show that both [δij,l, δij,u] and [γij,l, γij,u] are bounded and informative. From the above, [δij,l, δij,u] is informative

if it is a strict subset of Aij , and [γij,l, γij,u] is informative if it is a strict subset of R.

Consider any d ∈ [δij,l, δij,u]. There thus exists some g such that

ql,(j,f)(pk; i) ≤ d pk + g ≤ qu,(j,f)(pk; i) (B.25)

for k = 1, 2. Re-arranging these inequalities, we have that

ql,(j,f)(p2; i)− g ≤ d p2 ≤ qu,(j,f)(p2; i)− g (B.26)

and

ql,(j,f)(p1; i)− d p1 ≤ g ≤ qu,(j,f)(p1; i)− d p1. (B.27)

Combining these two inequalities and simplifying yields

ql,(j,f)(p2; i)− qu,(j,f)(p1; i)

p2 − p1
≤ d ≤

qu,(j,f)(p2; i)− ql,(j,f)(p1; i)

p2 − p1
. (B.28)

Since d ∈ [δij,l, δij,u] implies that d ∈ Aij , and since Aij is a connected set, d ∈ [inf Aij , supAij ]. Thus,

d ∈ [inf Aij , supAij ] ∩
[
ql,(j,f)(p2; i)− qu,(j,f)(p1; i)

p2 − p1
,
qu,(j,f)(p2; i)− ql,(j,f)(p1; i)

p2 − p1

]
⊆ Aij , (B.29)

and the subset inclusion holds strictly because the second interval has width(
qu,(j,f)(p2; i)− ql,(j,f)(p2; i)

)
−
(
qu,(j,f)(p1; i)− ql,(j,f)(p1; i)

)
p2 − p1

< supAij − inf Aij (B.30)

by assumption. Since this holds for any d in the proposed bounds, and since the set in (B.29) is independent of d, we have

shown that [δij,l, δij,u] is informative and bounded.

Now consider any g ∈ [γij,l, γij,u]. We know there must exist an associated d ∈ Aij so that

ql,(j,f)(pk; i) ≤ d pk + g ≤ qu,(j,f)(pk; i) (B.31)

for k = 1, 2. Rewriting for k = 1, we have that

g ∈
[
ql,(j,f)(pk; i)− d p1, qu,(j,f)(pk; i)− d p1

]
(B.32)
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Because this holds for any g ∈ [γij,l, γij,u], it follows that

[γij,l, γij,u] ⊆
[
ql,(j,f)(pk; i)− d p1, qu,(j,f)(pk; i)− d p1

]
. (B.33)

Equation (B.24) implies that
[
ql,(j,f)(pk; i), qu,(j,f)(pk; i)

]
is bounded.

[
ql,(j,f)(pk; i)− d p1, qu,(j,f)(pk; i)− d p1

]
must also

be bounded because d and p1 are finite. Thus [γij,l, γij,u] is bounded and informative, as required.

Appendix C S-sharp identified sets

In this appendix we provide results for sharp identified sets of target parameters that are sharp relative to the entire set of

scheme choices S. As discussed in Subsection 4.1, we can check if the model with a candidate parameter value θ is consistent

with all observed choices by checking if θ is consistent with the payoff indifference sets. The following theorem uses this

observation to generalize Theorem 1, which provides Sf -sharp identified sets, to identified sets that are sharp relative to S.

Theorem C.1. Suppose individual i satisfies Assumption 1. For any (j, j′) ∈ S, p ∈ Pj,j′ , define:

Θ
[a]

i,(j,j′,p) =

{
θ ∈ RK

∣∣∣∣ δ(θ[1]j′ ) 6= 0

& ql,(j,j′)(p; i) ≤
1

δ(θ
[1]

j′ )

(
δ(θ

[1]
j ) p+ γ(θj)− γ(θj′)

)
≤ qu,(j,j′)(p; i)

}
,

Θ
[b]

i,(j,j′,p) =

{
θ ∈ RK

∣∣∣∣ δ(θ[1]j′ ) = 0 & qu,(j,j′)(p; i) =∞ & 0 ≤ δ(θ[1]j ) p+ γ(θj)− γ(θj′)

}
,

Θ
[c]

i,(j,j′,p) =

{
θ ∈ RK

∣∣∣∣ δ(θ[1]j′ ) = 0 & ql,(j,j′)(p; i) = −∞ & 0 ≥ δ(θ[1]j ) p+ γ(θj)− γ(θj′)

}
.

Then, for any S ′ ⊆ S and target parameter τ?i , θi ∈ Θ∗i (S ′) and thus τ?i ∈ τ (Θ?
i (S ′)), where

Θ?
i (S ′) ≡

 ⋂
(j,j′)∈S′

⋂
p∈Pj,j′

(
Θ

[a]

i,(j,j′,p) ∪ Θ
[b]

i,(j,j′,p) ∪ Θ
[c]

i,(j,j′,p)

) ⋂
Θ̃i. (C.1)

Furthermore, Θ?
i (S) is the sharp identified set for θi, Θ?

i (S) = Θ?
i , and thus τ(Θ?

i (S)) = τ(Θ?
i ).

Following the reasoning of Remark 3.2 we see that a parameter θ ∈ Θ̃i is consistent with the data for individual i if

and only if {(δ(θ[1]j ), γ(θj))}j∈J is consistent with the individual’s choices. This observation leads us to the following dual

to Theorem C.1.

Corollary C.1.1. Suppose individual i satisfies Assumption 1. Define the function g implicitly via β̄(θ) = g ◦ λ̄(θ), and

thus β̄− = λ̄− ◦ g−, where f−(B) denotes the preimage of set B under any function f , where B is a subset of the codomain

of f . For any (j, j′) ∈ S, p ∈ Pj,j′ , define:

B[a]

i,(j,j′,p) =

{
β ∈ R2|J |

∣∣∣∣ δj′ 6= 0 & ql,(j,j′)(p; i) ≤
1

δj′

(
δj p+ γj − γj′

)
≤ qu,(j,j′)(p; i)

)}
,

B[b]

i,(j,j′,p) =

{
β ∈ R2|J |

∣∣∣∣ δj′ = 0 & qu,(j,j′)(p; i) =∞ & 0 ≤ δj p+ γj − γj′
}
,

B[c]

i,(j,j′,p) =

{
β ∈ R2|J |

∣∣∣∣ δj′ = 0 & ql,(j,j′)(p; i) = −∞ & 0 ≥ δj p+ γj − γj′
}
.
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Then, for any S ′ ⊆ S, define

Bi(S ′) ≡
⋂

(j,j′)∈S′

⋂
p∈Pj,j′

(
B[a]

i,(j,j′,p) ∪ B
[b]

i,(j,j′,p) ∪ B
[c]

i,(j,j′,p)

)
.

Then:

1. Θ?
i (S ′) = β̄−(Bi(S ′)) ∩ Θ̃i;

2. β̄(Θ?
i (S ′)) = Bi(S ′) ∩ β̄(Θ̃i);

3. λ̄(Θ?
i (S ′)) = g−(Bi(S ′)) ∩ λ̄(Θ̃i).

Theorem C.1 and Corollary C.1.1 provide general identification results, including characterizations of the sharp identified

sets. For any (j, k), the projections of Bi(S ′) and τ(Θ?
i (S ′)) onto the jth scheme’s kth component, which we respectively

denote as Bi(S ′)[j,k] and τ(Θ?
i (S ′))[j,k], provide identified sets for our considered scalar target parameters. These sets are

sharp for S ′ = S.

The following lemma will be useful for proving Theorem C.1.

Lemma C.2. Given any (j, j′, p, q) ∈ V, θ satisfies Dj,j′(p, q; i) = 1

[
Vj(p; θj) ≥ Vj′(q; θj′)

]
if and only if at least one of

the following holds for θ:

1. δ(θ
[1]

j′ ) 6= 0 and ql,(j,j′)(p; i) ≤
1

δ(θ
[1]

j′ )

(
δ(θ

[1]
j ) p+ γ(θj)− γ(θj′)

)
≤ qu,(j,j′)(p; i) (C.2)

2. δ(θ
[1]

j′ ) = 0 and qu,(j,j′)(p; i) =∞ and 0 ≤ δ(θ[1]j ) p+ γ(θj)− γ(θj′) (C.3)

3. δ(θ
[1]

j′ ) = 0 and ql,(j,j′)(p; i) = −∞ and 0 ≥ δ(θ[1]j ) p+ γ(θj)− γ(θj′) (C.4)

Proof of Lemma C.2. Following Remark 3.2, we can rewrite Dj,j′(p, q; i) = 1

[
Vj(p; θj) ≥ Vj′(q; θj′)

]
as

Dj,j′(p, q; i) = 1

[
δ(θ

[1]
j ) p+ γ(θj) ≥ δ(θ[1]j′ ) q + γ(θj′)

]
. (C.5)

Define

Ql(j, j
′, p) ≡

{
q
∣∣∣ (j, j′, p, q) ∈ V and Dj,j′(p, q; i) = 1

}
, (C.6)

Qu(j, j′, p) ≡
{
q
∣∣∣ (j, j′, p, q) ∈ V and Dj,j′(p, q; i) = 0

}
, (C.7)

and define ql,(j,j′)(p; i) ≡ supq Ql(j, j
′, p), qu,(j,j′)(p; i) ≡ infq Qu(j, j′, p).

Case 1: Suppose δ(θ
[1]

j′ ) 6= 0. Then we can rewrite equation (C.5) as

Dj,j′(p, q; i) = 1

[
1

δ(θ
[1]

j′ )

(
δ(θ

[1]
j ) p+ γ(θj)− γ(θj′)

)
≥ q

]
. (C.8)
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Equation (C.8) holds if and only if

q ≤ 1

δ(θ
[1]

j′ )

(
δ(θ

[1]
j ) p+ γ(θj)− γ(θj′)

)
∀ q ∈ Ql(j, j′, p) (C.9)

and

q ≥ 1

δ(θ
[1]

j′ )

(
δ(θ

[1]
j ) p+ γ(θj)− γ(θj′)

)
∀ q ∈ Qu(j, j′, p), (C.10)

with equations (C.9) and (C.10) holding if and only if

ql,(j,j′)(p; i) ≤
1

δ(θ
[1]

j′ )

(
δ(θ

[1]
j ) p+ γ(θj)− γ(θj′)

)
(C.11)

and

qu,(j,j′)(p; i) ≥
1

δ(θ
[1]

j′ )

(
δ(θ

[1]
j ) p+ γ(θj)− γ(θj′)

)
. (C.12)

It follows that if δ(θ
[1]

j′ ) 6= 0, then equation (C.5) holds if and only if condition (C.2) holds.

Case 2: Suppose δ(θ
[1]

j′ ) = 0. Then we can rewrite equation (C.5) as

Dj,j′(p, q; i) = 1

[
δ(θ

[1]
j ) p+ γ(θj)− γ(θj′) ≥ 0

]
. (C.13)

Using equations (C.6), (C.7), (C.13), and the definitions of supremum and infimum of an empty set,

δ(θ
[1]
j ) p+ γ(θj)− γ(θj′) ≥ 0⇔ Dj,j′(p, q; i) = 1 ∀ q ⇔ Qu(j, j′, p) = ∅ ⇔ qu,(j,j′)(p; i) =∞,

and

δ(θ
[1]
j ) p+ γ(θj)− γ(θij′) < 0⇔ Dj,j′(p, q; i) = 0 ∀ q ⇔ Ql(j, j

′, p) = ∅ ⇔ ql,(j,j′)(p; i) = −∞.

It follows that if δ(θ
[1]

j′ ) = 0, then equation (C.5) holds if and only if either condition (C.3) or condition (C.4) holds.

The cases are exhaustive, which completes the proof.

We now prove Theorem C.1.

Proof of Theorem C.1. Because θi satisfies Assumption 1, Dj,j′(p, q; i) = 1

[
Vj(p; θij) ≥ Vj′(q; θij′)

]
. Then by applying

Lemma C.2 to θi and inspecting the definitions given in the statement of Theorem C.1, θi ∈ Θ
[a]

i,(j,j′,p) ∪Θ
[b]

i,(j,j′,p) ∪Θ
[c]

i,(j,j′,p)

for any (j, j′) ∈ S ′, p ∈ Pj,j′ . Since θi ∈ Θ̃i from Assumption 1, we conclude that θi ∈ Θ?
i (S ′).

We now show that Θ?
i (S) = Θ?

i , where the former set is the proposed set of the theorem as defined by (C.1) and the

latter set is the sharp identified set as defined in Definition (5). This follows immediately from comparing the definition of

these sets and applying Lemma C.2 to every candidate θ for all (j, j′) ∈ S, (p, q) ∈ R2 such that (j, j′, p, q) ∈ V.
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Appendix D Identification analysis under the NV design

In this appendix, we revisit the experimental design of Niederle and Vesterlund (2007). We show in Subsection D.1 that

the main assertion of NV’s conclusions only follows under strong assumptions on individual preferences. In Subsection D.2

we prove the claim made in Remark 4.8 that the sharp identified sets for δij , γij , and the generalizations of the slope and

intercept parameters are unbounded or uninformative under their design if the researcher only imposes Assumption 1.

NV elicit two choices in their experiment: a choice between past tournament (pt) at base-payoff $2 and past piece

rate (pr) at base-payoff $0.5 applied to the same past performance, and between future tournament (ft) and future

piece rate (fr) at the same base-payoffs as for the past choice. Thus, the NV choice experimental design is VNV ≡

{(pt, pr, 2, 0.5), (ft, fr, 2, 0.5)}. In addition to eliciting past performance S∗i,p ≡ S∗i,(pt) = S∗i,(pr) and gender Gi, the NV

design additionally elicits past tournament rank guess Ri,p ∈ {1, 2, 3, 4}, where rank guess denotes the individual’s per-

ceived rank relative to the three individuals they are competing against. The NV experimental design thus corresponds to

the choice experimental design VNV ≡ {(pt, pr, 2, 0.5), (ft, fr, 2, 0.5)} and associated individual-level data (Di,VNV , Xi,NV ),

where Di,VNV = (Di,p, Di,f ) are indicator variables for choosing tournament over piece rate for past and future compensation

schemes, and where Xi,NV = (Xi1,NV , Xi2,NV ) with

Xi1,NV = (S∗i,(pt), Gi) , Xi2,NV = Ri,p. (D.1)

To relate individuals’ choices and covariates to beliefs and preferences, we suppose throughout that all individuals i satisfy

Assumption 1 with individual-level data (Di,VNV , Xi,NV ).

D.1 Implicit restrictions in NV’s analysis

The NV design attributes the gender gap in the propensity to enter a future tournament after conditioning on past tournament

choice, past performance, and past rank guess, to a gender gap in cost of entering a tournament task (relative to the cost of

performing a piece-rate task). The NV assertion is that

Pr
[
Di,f = 1

∣∣Di,p = t, S∗i,p = s,Ri,p = r,Gi = male
]

> Pr
[
Di,f = 1

∣∣Di,p = t, S∗i,p = s,Ri,p = r,Gi = female
] (D.2)

implies that men have a higher preference than women for entering a future tournament instead of a piece-rate compensation

scheme. Observed past and future choices relate to beliefs and preferences via Di,p = Dp(θi) and Di,f = Df (θi), where

Dp(θi) ≡ 1

[
0.5

(
4πi,ptS

∗
i,p − S∗i,p

)
+
(
πi,ptηi,pt(1) + (1− πi,pt)ηi,pt(0)

)
︸ ︷︷ ︸

≡ψi,pt

≥ 0

]
, (D.3)

and

Df (θi) ≡ 1

[
0.5

(
4πi,ftµi,ft − µi,fr

)
+
(
πi,ftηi,ft(1) + (1− πi,ft)ηi,ft(0) + ci,ft︸ ︷︷ ︸

≡ψi,ft

)
− ci,fr ≥ 0)

]
. (D.4)

Niederle and Vesterlund (2007) do not provide a formal definition of what they mean by the preference of entering

a future tournament. Two candidate parameters are (ψi,ft + ci,ft) − ci,fr, the difference between the cost of entering a

future tournament versus a future piece rate, and ci,ft − ci,fr, the difference between the cost of performing under a future
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tournament versus a future piece-rate compensation scheme.1 For either candidate parameter, a minimum requirement for

(D.2) to imply that men have higher preferences for entering future tournaments is that (D.2) implies that the distribution of

the candidate parameter for men is not stochastically dominated by the distribution of the candidate parameter for women.

Without further restrictions, (D.2) does not imply this minimum requirement. To illustrate ideas, consider the special

case that ηi,ft(w) = ηi,pt(w) = 0 for w = 0, 1 and all i, so that the candidate parameters coincide (the analysis in the general

case will require weakly stronger assumptions than those that will be provided). Furthermore, consider the case where we

condition on Di,p = 1 in equation (D.2) (the case where Di,p = 0 follows analogously). Then

Pr

[
Di,f = 1

∣∣∣∣Di,p = 1, S∗i,p = s,Ri,p = r,Gi = g

]
= Pr

[
0.5

(
4πi,ftµi,ft − µi,fr

)
+ ci,ft − ci,fr ≥ 0

∣∣∣∣ πi,pt ≥ 1

4
, S∗i,p = s,Ri,p = r,Gi = g

]
.

(D.5)

The conditioning set relates to the individual’s own past performance, beliefs and preferences, and is not directly related to

future beliefs or preferences. Thus, it could be, for example, that men tend to have a lower value of ci,ft− ci,fr than women,

yet tend to be more overconfident about future performance relative to past performance so that 0.5
(

4πi,ftµi,ft − µi,fr
)

tends to be larger for men than women, causing (D.2) to hold despite men having lower preferences than women for entering

future tournaments.

As discussed in Section 2, NV appear to (implicitly) discipline this possibility by imposing the restriction that πi ≡

πi,ft = πi,pt for all i. Assume further that µi,ft = µi,fr = S∗i,p for all i. These are restrictive assumptions, as they not

only rule out differences in beliefs between past and future probabilities of winning, but they also require that both future

tournament and piece-rate expected performances equal the realized past tournament performance. Then (D.5) can be

written as

Pr

[
0.5s

(
4πi − 1

)
+ ci,ft − ci,fr ≥ 0

∣∣∣∣ πi ≥ 1

4
, S∗i,p = s,Ri,p = r,Gi = g

]
. (D.6)

Even under these restrictive assumptions, it may be that there is heterogeneity in the subjective probability of winning (πi)

across genders conditional on πi ≥ 1
4
, past performance, and past rank guess, so that men tend to have—conditional on

these controls—a higher perceived probability of winning relative to women and thus (D.2) holds despite men tending to

have a lower value of ci,ft − ci,fr.

To proceed, we thus further suppose there exists π̄s,r such that Pr[πi = π̄s,r|πi ≥ 1
4
, S∗i,p = s,Ri,p = r] = 1, so that

conditional on these controls, πi (and thus both πi,ft and πi,pt) is degenerate. This is a restrictive assumption as it implies

that, conditional on past score and choosing the tournament compensation scheme in the past, everyone with the same rank

guess has the same subjective probability of winning a future tournament.2

Let ᾱs,r ≡ −0.5s
(

4π̄s,r − 1
)

. Under these assumptions, (D.6) equals

Pr

[
ci,ft − ci,fr ≥ ᾱs,r

∣∣∣∣ π̄s,r ≥ 1

4
, S∗i,p = s,Ri,p = r,Gi = g

]
, (D.7)

1As our upcoming analysis will make clear, because Niederle and Vesterlund (2007) elicit choices between tournament and
piece rate, identification of tournament preferences separately from piece-rate preferences will require additional restrictions
beyond those imposed.

2Without such an assumption, both an individual who believes they have a 99% chance of winning and an individual
who believes they have a 28% chance of winning (and a 24% chance of respectively getting 2nd, 3rd, and 4th) would choose
a rank guess of 1.
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so that (D.2) implies that the conditional probability that ci,ft − ci,fr exceeds ᾱs,r is higher for men than for women, and

thus the distribution of ci,ft − ci,fr for men is not stochastically dominated by that for women.

Even under these restrictive assumptions and after imposing that ηi,ft(w) = ηi,pt(w) = 0 for w = 0, 1, this result only

holds for a specific ᾱs,r. We still have no guarantee that the distribution of the value of entering a future tournament

relative to piece rate (using either of the two candidate parameter definitions) for men actually stochastically dominates

that of women. We cannot think of any reasonable alternative set of assumptions that would yield the conclusions of

Niederle and Vesterlund (2007). We conclude that the central assertion of Niederle and Vesterlund (2007), at a minimum,

relies on unrealistic assumptions about individual preferences and beliefs and how these preferences and beliefs relate across

individuals.

D.2 Statement and proof of Remark 4.8

We formally state and prove the results of Remark 4.8.

Theorem D.1. Given VNV , suppose individual i satisfies Assumption 1. Then

1. For all j ∈ J \{f, pr}, the sharp identified set for δij is uninformative and the sharp identified set for γij is unbounded.

2. For any (j, j′) where either j or j′ is in J \ {f, pr}, the sharp identified set for
δij
δij′

is uninformative and the sharp

identified set for
γij−γij′
δij′

is unbounded.

Proof. Proof of Result 1.

We only consider j ∈ {pt, ft, fr} because bounds for δ and γ for all other schemes in J \{f, pr} are trivially uninformative.

Let SNV = {(j, j′) | ∃ (p, q) s.t. (j, j′, p, q) ∈ VNV } = {(pt, pr), (ft, fr)}. For any given (j, j′) ∈ SNV there only exists one

p ∈ Pj,j′ , namely p = 2. Also note that there is only one q for each given (j, j′) ∈ SNV , p ∈ Pj,j′ such that (j, j′, p, q) ∈ VNV ,

namely q = 0.5.

Following the results of Online Appendix C, the sharp identified sets for δij and γij are the (j, 1)th and (j, 2)th projections,

respectively, of β̄(Θ?
i (SNV )). By Corollary C.1.1, β̄(Θ?

i (SNV )) = Bi(SNV ) ∩ β̄(Θ̃i).

By inspection of Bi(SNV ) and Θ̃i, the sharp identified set for δij for any j ∈ {pt, ft, fr} is equal to Aij as defined

in (28). Thus, using the observation that there is only one base-payoff for each scheme, the sharp identified set for δij is

uninformative for all j ∈ J \ {f, pr}, following the argument in the proof of the necessary condition of Remark 4.2.

We now consider sharp identified sets for γij . Because there is only one q for each given (j, j′) ∈ SNV , p ∈ Pj,j′

such that (j, j′, p, q) ∈ VNV , namely q = 0.5, either ql,(j,j′)(p; i) = −∞ and qu,(j,j′)(p; i) = 0.5, or ql,(j,j′)(p; i) = 0.5 and

qu,(j,j′)(p; i) =∞. Then by inspection of Bi(SNV ) and Θ̃i, it is evident that for any j ∈ {pt, ft, fr} it is possible to construct

a candidate θ = θi except for γj which can be unbounded in one direction above or below γij (the direction depends on

whether ql,(j,j′)(p; i) = −∞ or qu,(j,j′)(p; i) = ∞ and what j is). This candidate θ satisfies the constraints of Bi(SNV ) and

Θ̃i, meaning that the sharp identified set for γij must be unbounded.

Proof of Result 2.

We only consider (j, j′) ∈ SNV = {(pt, pr), (ft, fr)} because bounds for the expressions considered in this result for all

other (j, j′) with j or j′ in J \ {f, pr} are trivially unbounded/uninformative.
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For any (j, j′) ∈ SNV , the restrictions of Θ̃ are such that for any candidate θ ∈ Θ̃, γj , γj′ can take on any value

in (−∞,∞). Then it is possible to construct a candidate θ ∈ Θ̃ where
δj
δj′

= x for any x ∈ [0,∞), because either

ql,(j,j′)(p; i) = −∞ or qu,(j,j′)(p; i) = ∞, so we can accordingly adjust γj or γj′ such that restrictions from Bi(SNV ) still

hold. Therefore the sharp identified set for
δij
δij′

contains [0,∞) and so is uninformative.

For any (j, j′) ∈ SNV , we noted that it is always the case that either ql,(j,j′)(p; i) = −∞ or qu,(j,j′)(p; i) = −∞. Then

we can construct a candidate θ = θi except for γj , which will be unbounded in one direction above or below γij depending

on if ql,(j,j′)(p; i) = −∞ or qu,(j,j′)(p; i) =∞, such that this candidate θ satisfies the restrictions of Bi(SNV ). Because θ also

satisfies the restrictions of Θ̃, the sharp identified set for
γij−γij′
δij′

is unbounded.

Appendix E Investigating validity of model

Our model imposes that beliefs and preferences are base-payoff invariant and that risk preferences do not influence valuations

of compensation schemes. In Subsection E.1, we test if beliefs are base-payoff invariant. In Subsection E.2, we test whether

risk preferences influence valuations of compensation schemes, and also examine whether there is a gender difference in risk

preferences. In Subsection E.3, we examine the testable restriction of risk neutrality described in Remark 4.3.

E.1 Beliefs and base-payoffs

Online Appendix Table E.1 presents coefficients from a regression of past rank guess (a proxy for beliefs) on base-payoff,

task performance, the timing of task, and gender. The coefficient on base-payoff is small and insignificant, suggesting beliefs

are base-payoff invariant.

E.2 The role of risk preferences

We elicit risk preferences following the Holt and Laury (2002) design (HL design). In the HL design, participants are

presented with a menu of ten different choices between paired lotteries, one of which has payoffs that are more variable than

the other (and thus riskier). Each decision presents a choice between lotteries with an increasingly negative payoff difference.

We implement the high payoff version of their method in our experiment. We consider two measures of risk preferences.

First, following Holt and Laury (2002), we consider the number of times the participant chooses the “safe” option (denoted

number of safe choices) as a measure of relative risk aversion. Second, we use the mapping between number of safe choices

and relative risk aversion to set-identify relative risk aversion (see Table 3 of Holt and Laury (2002)).

We first examine whether risk preferences influence valuations for past and future tournaments by regressing, for each

past or future tournament and base-payoff, the midpoints of payoff indifference sets on the number of safe choices, gender,

and performance. Online Appendix Table E.2 presents the coefficient on the number of safe choices for each such regression.

The coefficients are all small and insignificant, and we fail to reject a joint test of all coefficients being zero (p = 0.98). These

results support our assumption that risk preferences do not influence valuations of compensation schemes.

We next examine relative risk aversion and how it differs by gender. Because the HL design elicits risk aversion via an

MPL, we set-identify relative risk aversion and can perform inference on group-level means of risk preference following our

methods for estimation and inference detailed in Example B.1.
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Table E.1: Regression of rank guess on base-payoff

Dependent variable:

Rank guess

Female 0.081
(0.141)

Second addition task −0.060
(0.076)

Third addition task −0.094
(0.084)

Base-payoff −0.021
(0.053)

Score −0.158∗∗∗

(0.021)

(Intercept) 3.323∗∗∗

(0.225)

Observations 441
Residual Std. Error 0.964 (df = 435)

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table presents results from a regression of rank guess on base-payoff and other
controls, with standard errors reported in parentheses. Standard errors are clustered at the individual level. Sample is
restricted to the baseline sample. The coefficient on base-payoff has a p-value of 0.69.

Online Appendix Table E.3 reports bounds on mean relative risk aversion by gender and for the gender difference in

mean relative risk aversion. We restrict our analysis to individuals with bounded identified sets, and thus exclude individuals

who always choose the safer option or always choose the riskier option. We find that both genders are, on average, slightly

risk averse, but we fail to find a significant difference in mean relative risk aversion by gender.

E.3 Testing linearity

Finally, we examine the testable restriction of risk neutrality described in Remark 4.3. Specifically, if participants are risk-

neutral, the linear programs solved as in Remark 4.4 should be feasible. Infeasible programs are a rejection of the testable

restriction. Online Appendix Table E.4 presents the share of infeasible linear programs by gender and pair of schemes. We

see that only a small share of programs are infeasible, and differences in the share of infeasible sets by gender are small.
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Table E.2: Regressions of valuation on RRA

Dependent variable:

Midpoint of payoff indifference set

RRA safe choices, FT Future 3.2 0.008
(0.180)

RRA safe choices, FT Future 6.4 −0.023
(0.230)

RRA safe choices, FT Future 9.6 0.145
(0.370)

RRA safe choices, FT Past 3.2 −0.074
(0.143)

RRA safe choices FT Past 6.4 −0.151
(0.240)

RRA safe choices, FT Past 9.6 −0.314
(0.441)

Observations 1,604
R2 0.465
Adjusted R2 0.457
Residual Std. Error 9.248 (df = 1580)

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table presents results from regressing, for each past or future tournament and
base-payoff, the midpoints of payoff indifference sets on the number of safe choices, gender, and performance. We only
display coefficients for the estimated effect of number of safe choices on midpoints. When the payoff indifference set is
bounded, the midpoint is well defined. When the payoff indifference set is unbounded below (above), we instead use the
upper (lower) bound of the payoff indifference set. Standard errors are clustered at the individual level and reported in
parentheses. Sample is restricted to the baseline sample. We fail to reject a joint test of all coefficients being zero (p = 0.98).

Table E.3: Difference in risk preference

Male Female Male - Female

[0.209,0.510]*** [0.395,0.704]*** [-0.495,0.115]
(0.101,0.612) (0.302,0.799) (-0.638,0.253)

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table presents bounds (in brackets) and 95% CIs (in parentheses) on mean
RRA by gender, with the gender difference in bounds on RRA in the last column. Sample is restricted to the baseline
sample, and we further drop individuals with unbounded RRA. We test whether RRA and the gender difference in RRA
is statistically different from zero.

Table E.4: Properties of linear programs

MPL type Gender Informative Uninformative Infeasible

Past Tournament - Fixed Pay (avg) male 0.90 0.08 0.00
Past Tournament - Fixed Pay (avg) female 0.98 0.01 0.00
Future Tournament - Fixed Pay male 0.78 0.11 0.11
Future Tournament - Fixed Pay female 0.89 0.01 0.10
Future Lumpsum Tournament - Fixed Pay male 0.73 0.08 0.19
Future Lumpsum Tournament - Fixed Pay female 0.86 0.02 0.12

Notes: This table presents the share of linear programs that are informative, uninformative, and infeasible by MPL type
and gender. MPLs take the form of ‘scheme X – scheme Y’, where scheme X is fixed at the listed base-payoff and scheme
Y varies in base-payoff. MPLs with ‘(avg)’ denote taking, for each individual, the mean of multiple MPLs at the given
base-payoff, as is the case for past tournament since individuals perform three past tasks and complete MPLs at the listed
base-payoffs for each of these past performances. Sample is restricted to the baseline sample. Shares for each gender and
MPL type may not sum to 1 due to rounding.
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Appendix F Investigating consistency between elicitation methods

The NV design elicits Take-It-Or-Leave-It (TIOLI) choices between tournament and piece-rate schemes, whereas our analysis

uses MPLs that elicit choices between these schemes and fixed pay. We exploit that our experimental design includes both

elicitation methods to examine consistency between them.

This appendix describes the consistency checks we perform. In 90% of the cases, TIOLI and MPL-elicited choices

between tournament and piece-rate schemes are consistent with each other. In 84% of cases, MPL-elicited choices between

tournament and piece-rate schemes are consistent with MPL-elicited choices between these schemes and fixed pay. These

shares are similar by gender. Coupled with our near-exact replication of the main result of Niederle and Vesterlund (2007)

using their methods on our data, these results suggest that any differences in our conclusions from Niederle and Vesterlund

(2007) follow from our alternative methodology and not from our differing experimental samples or choice of elicitation

methods.

In Subsection F.1, we examine consistency between TIOLI choices and MPLs that elicit choices between tournament

and piece-rate schemes. In Subsection F.2, we examine consistency between MPLs that elicit choices between tournament

and piece-rate schemes and MPLs that elicit choices between these schemes and fixed pay.

F.1 Consistency between oneshots and MPLs

Individuals complete MPLs between past tournament and fixed pay. Individuals also complete MPLs between future tour-

nament and future piece rate. Because past piece rate is equivalent to a fixed pay scheme scaled by the past performance,

we can think of an MPL between past tournament and fixed pay as equivalent to an MPL between past tournament and an

appropriately scaled past piece rate. Separately, individuals complete TIOLIs between past tournament and past piece rate

and between future tournament and future piece rate. Both MPLs and TIOLIs imply payoff indifference sets (the latter of

which will always be unbounded in one direction).

To verify whether individuals are consistent between MPLs and TIOLIs, we check whether the payoff indifference sets

intersect nontrivially. We find that 90% of TIOLIs and MPLs are consistent with each other, with that figure equal to 89%

for men and 90% for women.

F.2 Consistency between fixed pay and non-fixed pay MPLs

Individuals also complete MPLs between future tournament and future piece rate. Thus we can verify whether individuals

are consistent between MPLs between future tournament and future piece rate and MPLs between future tournament and

fixed pay.

In particular, consider any piece-rate base-payoff r and tournament base-payoff t. Let [rl(t), ru(t)], [fl(r), fu(r)], and

[fl(t), fu(t)] respectively denote the payoff indifference sets for future tournament (in terms of future piece rate), for future

piece rate (in terms of fixed pay), and future tournament (in terms of fixed pay). If r ≥ ru(t), then

fu(r) < r ≥ ru(t) < fl(t) =⇒ fu(r) ≥ fl(t). (F.1)

Similarly, if r ≤ rl(t), it must be that fl(r) ≤ fu(t). We can thus check whether this holds for every (r, t) pair for which there

exists a MPL between future piece rate at base-payoff r and fixed pay, a MPL between future tournament at base-payoff
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t and future piece rate, and a MPL between future tournament at base-payoff t and fixed pay in the experiment. We find

that the share of cases for which this consistency check holds is 85%. That figure is 88% for men and 82% for women.

Appendix G Explicit definitions of considered parameters

Online Appendix Table G.1 explicitly defines the individual-level identified sets for all parameters (apart from considered

differences in these parameters) considered in Table 2, Table 3, Online Appendix Table A.6, and Online Appendix Table

A.7. Individual-level identified sets for considered differences in the parameters are constructed following Examples A.2 and

A.3 and are a function of the presented identified sets for the individuals parameters.

Online Appendix Table G.2 explicitly defines the individual-level identified sets for all differences between pairs of

variables X and Y (denoted X − Y ) mentioned in Table 4 and Table 5. Individual identified sets for 1{X 6= Y } and

1{X > Y } are then constructed following Example A.2. Specifically, if we let [τi,l, τi,u] denote the individual identified

set on X − Y , the individual identified set for 1{X 6= Y } is {1} if [τi,l, τi,u] ⊆ R \ {0}, {0} if [τi,l, τi,u] ⊆ {0}, and {0, 1}

otherwise.

Table G.1: Individual bounds on beliefs and non-monetary preferences

Parameter Description Individual bounds (or point)

Panel A: beliefs

Objective probability of winning 1
n

∑n
`=1 π

∗(S∗i,(pt,`))

πi,pt Past subjective probability of winning [ 1n
∑n

`=1 δi,(pt,`),l/S
∗
i,(pt,`),

1
n

∑n
`=1 δi,(pt,`),u/S

∗
i,(pt,`)]

πi,fl Future subjective probability of winning [δi,fl,l, δi,fl,u]

Panel B: non-monetary preferences

ψi,pt Past tournament non-monetary preference [ 1n
∑n

`=1 γi,(pt,`),l,
1
n

∑n
`=1 γi,(pt,`),u]

ψi,ft + ci,ft Future tournament non-monetary preference [γi,ft,l, γi,ft,u]

Panel C: expected monetary value

Objective tournament expected monetary value 1
n

∑n
`=1 π

∗(S∗i,(pt,`)) · S
∗
i,(pt,`)

πi,ptµi,pt Past subjective tournament expected monetary value [ 1n
∑n

`=1 δi,pt,l,
1
n

∑n
`=1 δi,pt,u]

πi,ftµi,ft Future subjective tournament expected monetary value [δi,ft,l, δi,ft,u]

Notes: This table defines individual identified sets for all individual belief and preference parameters mentioned in Table
2, Table 3, Online Appendix Table A.6, and Online Appendix Table A.7, except for differences between parameters. Point
values for objective probability of winning are calculated as described in Subsection 6.2. In particular, given any individual’s
realized `-th past tournament score S∗i,(pt,`), let π∗(S∗i,(pt,`)) denote the cube of the sample CDF of all past performances

evaluated at S∗i,(pt,`). Then i’s objective probability of winning is the average of π∗(S∗i,(pt,`)) over all past tournaments, and

i’s objective tournament expected monetary value is the average of π∗(S∗i,(pt,`)) · S∗i,(pt,`) over all past tournaments. In our
experimental design we elicit choices for multiple past tournament schemes, and index the n past tournament schemes as
(pt, k) for k = 1, . . . , n. All other notation follows that of Section 3 and Section 4. See Subsection 6.2 for further details on
construction of the bounds.
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Table G.2: Individual bounds on differences in beliefs and preferences

Variable X Variable Y Individual bounds on X − Y

Past subjective Objective [πi,pt,l − 1
n

∑n
`=1 π

∗(S∗i,(pt,`)), πi,pt,u −
1
n

∑n
`=1 π

∗(S∗i,(pt,`))]

probability of winning probability of winning

Future subjective Objective [πi,fl,l − 1
n

∑n
`=1 π

∗(S∗i,(pt,`)), πi,fl,u −
1
n

∑n
`=1 π

∗(S∗i,(pt,`))]

probability of winning probability of winning

Future subjective Past subjective [πi,fl,l − πi,pt,u, πi,fl,u − πi,pt,l]
probability of winning probability of winning

Notes: This table defines individual identified sets for all differences between pairs of variables X and Y mentioned in
Table 4 and Table 5. For any parameter τ∗i listed in Online Appendix Table G.1, [τi,l, τi,u] denotes the individual identified
set on τ∗i detailed in Online Appendix Table G.1. Other notation follows that of Section 3, Section 4, and table notes for
Online Appendix Table G.1.

Appendix H Outline of the experiment

The experiment was conducted between January and March 2020 at the Behavioral Research Lab (BRL) at Yale University.

Participants were recruited by the BRL using standard procedures. We recruited 176 participants in total, of which 59%

were female. (The total BRL participant pool is about 62% female). We conducted 19 sessions, with an average number

of nine participants per session. Sessions would only be conducted if the female share of participants was roughly 60%.

The average gender composition per session was 57%. Participants received a $5 show-up fee and a $7 completion fee. The

average payment was $30. Participants were told up front that there were many parts in the experiment and that a randomly

selected part (or a selected row if it was an MPL) would be implemented as payment.

H.1 Addition tasks and base-payoff

In our experiment, each participant completed a series of addition tasks. In an addition task, participants complete a 3-

minute, two-digit addition problem under given compensation schemes. Online Appendix Figure H.1 shows an example of

an addition task.

There are six types of compensation schemes that could be applied to addition tasks. The first four compensation

schemes (past and future piece rate, past and future tournament) are frequently used in the gender and competitiveness

literature following the Niederle and Vesterlund (2007) design.3 To identify a richer set of parameters, we add two new

compensation schemes: fixed pay and future lumpsum tournament. The six compensation schemes are defined as follows:

Past/Future Piece Rate: Under a past or future piece-rate scheme, payment is a base-payoff multiplied by the number

of questions a participant solves correctly on a 3-minute addition task. Payment does not decrease if an incorrect answer to

a problem is provided.

Past/Future Tournament: Under a past or future tournament scheme, payment depends on participants’ performance

relative to that of a group of other participants. In this experiment, all tournaments consisted of four people randomly chosen

in the room, and the group composition was fixed at the start of the experiment. If a participant were to solve the most

problems in her group, she would receive the tournament price per correct problem; otherwise, she would receive no payment.

3In the original Niederle and Vesterlund (2007) experiment, participants were asked to choose between piece rate at $0.5
per correct question versus tournament at $2 per correct question under different task status (i.e. past or future).
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When there were ties for the highest score, both winners would receive the tournament price per correct problem.

Fixed Pay: Under the fixed pay scheme, payment is disbursed according to a fixed price and does not depend on

participants’ performance in the addition tasks. For example, under fixed pay of $1, a participant will always receive $1 no

matter how many questions she correctly computes in an addition task.

Future Lumpsum Tournament: The future lumpsum tournament scheme is similar to the future tournament com-

pensation scheme. However, under the future lumpsum tournament, if a participant wins a tournament as described above,

she receives a lumpsum payment; otherwise, she receives $0. The amount of lumpsum payment does not depend on the

number of questions she solves correctly during the addition task.

In our experiment, all participants were expected to perform at least six addition tasks under various base-payoffs. A

base-payoff is the piece-rate or tournament payment per correct question. In this experiment we used three base-payoffs

for the piece-rate scheme, at $0.8, $1.6, and $2.4 per correct question. We also used three base-payoffs for the tournament

scheme, at $3.2, $6.4, and $9.6 per correct question. We notified participants about these base-payoffs before the start of

each relevant addition task. If a row of an MPL applied to a future addition task was selected for payment, that participant

performed an extra addition task at the end of the experiment.

H.2 MPL

In the experiment, participants were asked to fill out MPLs that elicited their preference between scheme-payoffs.4 In the

instruction manual and during the experiment we refer to these MPLs as “choice tables” to make the concept easier to

understand. Online Appendix Figure H.3(a) presents an example of one such MPL involving a tournament scheme at $3.2

base-payoff and fixed pay. In this example, Option A comprises fixed pay at ascending payoffs, whereas Option B comprises

a future tournament at $3.2 per correct question. All MPLs in our experiment had this structure: Option A contained fixed

pay with ascending payoffs, whereas Option B contained a constant scheme-payoff.5 All MPLs in the experiment contained

36 rows. For each row, knowing that their choices will be randomly implemented at the end of the experiment, participants

chose whether they preferred to apply Option A or Option B to their relevant performance.

H.3 Experiment flow

The experiment consisted of seven stages, and Online Appendix Figure H.2 presents a summary of the experiment flow.

Stage 1 involved practice rounds for addition tasks and MPLs. Stage 2 and stage 3 were addition tasks. Performance in

stage 2 was compensated under a piece-rate scheme if this stage was randomly selected for payment, whereas performance in

stage 3 was compensated under a tournament scheme if this was selected. In stage 4, participants filled out MPLs regarding

their performance in stage 3 (i.e., past tournament performance). In stage 5, participants were asked to decide whether they

would like to be compensated under a piece-rate or tournament scheme for their past piece-rate performance in stage 2. This

stage was designed to replicate task 4 in the Niederle and Vesterlund (2007) study (NV hereafter). In stage 6, participants

filled out MPLs regarding a future addition task. In stage 7, participants were asked to decide whether they would like to be

compensated under a piece-rate or tournament scheme for the future addition task. This stage is designed to replicate task

4Since the compensation schemes can be grouped according to different price levels, we call the groupings “scheme-payoff”
in the main manuscript. For example, the piece-rate addition task at $0.8 per correct question is a scheme-payoff.

5In stage 6 of the experiment, we introduced two new MPLs with a slightly different structure. Please see the discussions
of experiment flow in Online Appendix H.3 below.
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3 in the NV study. Participants learned about their performance at the end of stage 2 and stage 3. They were reminded of

their performance before the start of stage 4 and stage 5. Participants were told that if stage 6 or 7 was chosen for payment,

they would have to perform another addition task at the end of the experiment.

Stages 2 to 5 and stages 6 to 7 were repeated three times. We called each repetition a “period.” In each period,

participants were presented with one of the three base-payoffs as defined above. It should be noted that the piece-rate

and tournament base-payoffs appeared in pairs, but the order of appearance was randomized for each participant. Hence,

for a particular period, if the chosen piece-rate base-payoff was $2.4 per correct question in stage 2, then the tournament

base-payoff would be $9.6 in stage 3. However, in the same period, another participant could be working with a piece-rate

base-payoff of $1.6 per correct question and a tournament base-payoff of $6.4 per correct question.

Suppose a participant scored 10 correct questions in both stage 2 and stage 3 in a particular period. If stage 2 of

this period were chosen for payment, she would be paid $2.4 × 10 = $24. If stage 3 were chosen, she would be paid

$9.6× 10 = $96 if nobody in her group scored higher than 10 at the same base payoff in stage 3. It should be noted that her

group members’ order of base-payoffs could be different. Therefore, the participant could be competing with other members’

stage 3 performances from a different period.

Stages 4 through 7 consisted of MPLs and one-shot valuation questions. The structures of stages 4 and 5 were highly

similar to those of stages 6 and 7. The main difference was that the MPLs and the one-shot valuation questions in stages

4 and 5 dealt with past performances, whereas stages 6 and 7 dealt with future performances. In each period of stage

4, participants filled out three MPLs, as shown in Online Appendix Figure H.3. All three MPLs listed tournaments at

base-payoffs of $3.2, $6.4, and $9.6 in Option B, as well as varying fixed pay in Option A. Taking the same participant who

scored 10 in both stages 2 and 3 as an example, stage 4 essentially asked the participant if, knowing that she scored 10 in

stage 3, she would like to apply the fixed payoff listed in Option A or tournament base-payoff listed in Option B to her

past tournament performance. If a randomly selected row in this stage was chosen for payment and the participant chose

fixed pay, she would be paid the indicated fixed amount regardless of her performance. If she chose the tournament, then

she would submit her score (10) to compete with other participants’ tournament scores at the same base-payoff and be paid

accordingly.6

During each period of stage 6, participants were asked to fill out five MPLs regarding their future performances, with a

different base-payoff for each period. Online Appendix Figures H.4, H.5, and H.6 list all 15 MPLs that appear in stage 6 in

three periods. The first three MPLs (panels (a)-(c)) have a familiar structure: Option A comprised fixed pay with ascending

payoffs, whereas Option B contains a constant scheme-payoff pair. The scheme-payoff pairs listed in Option B in this stage

included piece-rate, tournament, and lumpsum tournament schemes, to be applied to participants’ future performances.

Stage 6 comprised two additional MPLs that did not use fixed pay as the alternatives (panels (d)-(e)). Instead, these

two MPLs asked participants to compare a constant tournament (piece-rate) scheme listed in Option B versus a piece-rate

(tournament) scheme at ascending prices listed in Option A. In stage 7, participants were asked to decide whether they

would like to be compensated under a piece-rate or tournament scheme for the future addition task. Participants were told

that if stage 6 or 7 were chosen for payment, they would need to perform an additional 3-minute addition task at the end of

the experiment and be paid accordingly. Before they performed the future addition tasks, they learned the chosen row that

6Since participants could receive different scores for stage 3 in different periods, it made sense to have them fill out
identical MPLs in each period. However, it was also possible that performances would not change between periods. In that
case, stage 4 of the specific period would be skipped.
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would be implemented.

During each period of stages 6 and 7, one of the three pairs of base-payoffs were randomly used. For example, if

participants were presented a piece-rate base-payoff of $2.4 per correct question and tournament base-payoff of $9.6 per

correct question in a particular period, in stage 6 of this period, participants would fill out MPLs as shown in Online

Appendix Figure H.6. If one of the first three MPLs was randomly chosen for payment, one row would be randomly picked.

If the participant chose fixed pay, she would be paid the indicated amount regardless of her performance at the end of

the experiment. If she chose piece-rate, she would be paid $2.4 per correct question based on her future performance. If

she chose the tournament or lumpsum tournament schemes, she would compete with her group members’ past tournament

performances at the same base-payoff. In other words, she would not compete with those that chose the tournament scheme

in this stage but only with her group members’ performances in stage 3 at a base-payoff of $9.6. If an MPL in Online

Appendix Figure H.6(d) was chosen for payment, she would also need to perform an extra addition task at the end of the

experiment. If the piece-rate scheme was chosen in the randomly chosen row, the participant would be paid according to

the indicated piece-rate base-payoff multiplied by her future performance. If the tournament scheme was chosen, she would

compete with group members’ stage 3 performances at a base-payoff of $9.6 and be paid accordingly. If the MPL in Online

Appendix Figure H.6(e) was chosen for payment and the piece-rate scheme was chosen in the randomly selected row, she

would be paid $2.4 per correct question for her future performance. If the tournament scheme was chosen, the situation

becomes slightly tricky, as there would not be that many tournament base-payoffs in stage 3. Therefore, in this case, we

compared the future performance with group members’ piece-rate performance at $2.4 in stage 2.

H.4 Implementation details of MPL

It is important to make sure that participants understand the concept of a MPL and minimize the errors that they make.

In this section, we discuss how the MPLs were designed and implemented to achieve these goals.

Iterated MPL As discussed above, each MPL contained 36 rows of scheme-payoff pairs. To reduce the burden of

choice for participants, we followed the iterative multiple price list (iMPL) design proposed by Andersen, Harrison, Lau,

and Rutström (2006). iMPL allows participants to choose from refined options from within the options last selected. In

our setting, we divided the 36 rows in a given MPL into segments of six. We first asked participants to make decisions for

rows 1, 7, 13, 19, 25, and 31. (We call this a sub-choice table 1 in the experiment). If a switching point was observed in

sub-choice table 1, the five rows immediately above the switching point were displayed. Online Appendix Figure H.7a shows

a sub-choice table 1 MPL with the tournament scheme at a base-payoff of $3.2 in Option B and fixed pay going from $0

to $12. Suppose there were a switching point at row 4; the participant would then be prompted with a sub-choice table 2

MPL, as shown in Online Appendix Figure H.7b. The sub-choice table 2 MPL would expand the rows between fixed pay of

$4.8 and $7.2 so that a more refined switching point could be identified.

Multiple Switchers Our model does not explicitly deal with individuals that are multiple switchers (i.e. those that tend

to switch back and forth between options within an MPL). However, multiple switchers comprise a substantial proportion of

participants in many field and lab experiments, and according to existing literature, this indicates poor quality of decision

making (Yu, Zhang, and Zuo, 2020). If multiple switchers comprise a large portion of participants, this might pose a threat

to our structural model. Overall, these individuals represent a rather small portion of our data. In the experiment, if we

observed more than two switching points in a stage-1 MPL, we only expanded the five rows immediately before the first
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switching point. In the empirical analyses, we dropped observations of twenty-five individuals that either left blank or

switched multiple times on MPLs that elicited choices between fixed pay and competitive schemes.

No Switching Point If no switching point was observed in a stage-1 MPL and the participant always chose Option

B, we expanded the last 5 rows from 32 to 36. Online Appendix Figures H.7c and H.7d show an example of a participant

who always chose B in stage 1. To increase the likelihood of observing a switching point, the intervals in 32 to 36 were made

wider than those in the previous rows. (All rows before 32 had the same width.) If the participant still always chose Option

B in stage-2, then they would be identified as a non-switcher.

If a participant always chose Option A in a stage-1 MPL, there was little we could do to force her to switch (as we can

not go into negative payments in Option A), and the stage-2 choice table was skipped with the participant recorded as a

non-switcher. By design, the value in row 1 of column A in all choice tables was set as equal to or very close to zero. Choosing

all Option A in stage 1 meant the participant was potentially willing to pay out of pocket to remain in the compensation

scheme. A more sophisticated experimental design would incorporate this possibility and elicit participants’ willingness to

pay to stay in a compensation scheme. This can be a direction for future research.

H.5 Other details

In the practice rounds in stage 1, we asked participants to perform a 3-minute piece-rate addition task and a 3-minute

tournament addition task, followed by a practice MPL that asked participants to choose between $0.5 per correct answer

and varying fixed pay to be applied to the piece-rate addition task they had just finished. Since participants were notified of

their piece-rate performance, from this MPL, we could infer if the participants truly understood the meaning of these tables.

At the end of the experiment, before the last addition task that some of the participants had to perform, participants

were asked to fill out a series of questionnaires. The questionnaires included their rank guesses for the stage 3 performances

at all three base-payoffs and their rank guess for future performance if they were selected to perform. Participants were paid

$0.5 for each correct guess. We also collected information on participants’ gender, country of origin, major, and GPA.

In our experiment, we closely follow Holt and Laury (2002) and elicit participants’ risk preference using two MPLs, each

with 10 choices between paired gambles. We use the same gamble pairs as shown in Holt and Laury (2002) Table 1 and

a second MPL with all payoffs multiplied by 10.7 Following the literature, we use the number of safe choices as a control

for risk preference in our analyses. The number of safe choices is computed as the number of choices (among the 10 in the

same MPL) that are Option A. The higher the number of safe choices made by a participant, the higher their level of risk

aversion.

7Holt and Laury (2002) used the base case (Table 1 in their paper) and 20x payoff in each experiment to see changes in
risk preference from low to high payoff. We use 10x payoff in order to match the range of high payoff in our experiment.
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Figure H.1: Addition task

Figure H.2: Experiment flow
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(a) base payoff = 3.2 (b) base payoff = 6.4 (c) base payoff = 9.6

Figure H.3: MPLs for stage 4
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(a) (b) (c)

(d) (e)

Figure H.4: MPLs for stage 6 at low base-payoff (piece rate = 0.8, tournament = 3.2)
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(a) (b) (c)

(d) (e)

Figure H.5: MPLs for stage 6 at median base-payoff (piece rate = 1.6, tournament = 6.4)
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(a) (b) (c)

(d) (e)

Figure H.6: MPLs for stage 6 at high base-payoff (piece rate = 2.4, tournament = 9.6)
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(a) Sub-choice table 1 Multiple Price List with a Valid
Switching Point

(b) Sub-choice table 2 Multiple Price List

(c) Sub-choice table 1 Multiple Price List with All B (d) Sub-choice table 2 Multiple Price List with All B

Figure H.7: Examples of iterated MPL and non-switchers
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Appendix I Instruction manual

Welcome to our study on decision making. Before we begin the experiment, please take several minutes to carefully read

these instructions. These instructions will also be provided throughout the experiment, when applicable. Each participant

will receive a $5 show up fee and $7 completion fee in addition to additional payment depending on performance and choices

you make during the experiment. All information provided will be kept confidential and will be used for research purposes

only. Please refrain from discussing any aspect of the specific tasks of the study with anyone.

• It is important to read the instructions carefully so that you understand the tasks in making your decisions.

• If you are done with a certain part and have the option of clicking ‘Continue,’ please do so to continue with the

experiment.

• Please turn off your cellphone.

• Please do not communicate with others during the experiment.

• At any time, if you have questions, please raise your hand.

I.1 Addition task

In this study, you will be asked to perform a number of Addition Tasks. In each Addition Task, you will calculate the sum

of five randomly chosen two-digit numbers. Below is an example.

In each Addition Task, you will be given 3 minutes to calculate as many sums as possible. You cannot use a calculator

(including cellphone), however, you are welcome to use the provided scratch paper. Once you enter your answer to the sum

of these five numbers in the provided box, please submit your answer by clicking submit with your mouse. NOTE: you can

use the number pad or the numbers at the top of the keyboard to enter your answer, but you CANNOT press ‘ENTER’

to submit, and must click on the red “Submit” button with your mouse. After you enter your answer, you will be notified

regarding whether you got the question correct and will be given a new set of five numbers to add. Continue answering these

problems until the time runs out — in order to maximize payment, it is in your best interest to answer as many correctly

as possible in the allotted time. You will be told your performance after you complete an Addition Task. Your performance

will not be shared with other participants, and will only be revealed to you.

I.2 Payment scheme

There are 4 types of payment schemes which could be applied to the aforementioned Addition Tasks.

Fixed Pay: Under this scheme, your payment will be a fixed pay price and will not depend on your score on the Addition

Task. Note that the fixed pay price may vary across tasks. For example, under fixed pay of $1, no matter how many questions

you correctly compute in an Addition Task, you will receive $1.

Piece Rate: Under this scheme, your payment will be a piece rate price multiplied by the number of questions you solve

correctly in a 3 minute Addition Task. Your payment does not decrease if you provide an incorrect answer to a problem.

Hence under Piece Rate, your payment is computed as: Payment = piece rate price x number of correct answers. For

example, if you correctly compute 4 questions in an Addition Task, at piece rate price $2, your pay will be $2 x 4 = $8.

Please note that the piece rate price may vary across tasks.
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Tournament: Under this scheme, your payment depends on your performance relative to that of a group of other

participants. In this experiment, all tournaments consist of FOUR people randomly chosen in the room, and the group

composition is fixed at the start of the experiment. You will not be told who is in your group. If you solve the highest number

of problems in your group, you will receive the tournament price per correct problem, otherwise you receive no payment. If

you tie for the highest score, you still receive the tournament price per correct problems. Hence under Tournament, your

payment is computed as Payment = Tournament price x number of correct answers if you win (i.e. solve the most correct

problems irrespective of ties); and Payment = 0 if you lose (i.e. at least one of the other four members scored higher than

you). For example, if you correctly compute 4 questions in a round and the other three members in your group correctly

compute 3, you win the tournament. Supposing the tournament price is $2 per correct question, your pay will be $2 x 4

= $8. If one other member also scored 4, your pay will still be $2 x 4 = $8. If you correctly compute 4 questions and one

of the other three members in your group correctly computes 5 questions, you lose the tournament, and your pay will be

$0. Please note that the tournament price also varies across tasks and the price per question correct is typically higher than

piece rate.

Lumpsum Tournament: Under this scheme, if you win a tournament as described above, you will receive a lumpsum

payment; and Payment = $0 if you lose. The amount of lumpsum payment does not depend on the number of questions you

correctly compute. For example, if you correctly compute 4 questions in a round and the other three members in your group

correctly compute 3, you win the tournament. Suppose the lumpsum price is $10, then your pay will be $10, and that pay

will be the same irrespective of how many questions you answered correctly as long as you have the most correct answers in

your group. If one other member also scored 4, your pay will still be $10. If you correctly compute 4 questions and one of

the other three members in your group correctly computes 5 questions, you lose the tournament, and your pay will be $0.

I.3 Choice table

In a Choice Table, you will be asked to choose between two of the four aforementioned payment schemes to apply to a given

Addition Task you completed or will complete. The Addition Task in question will be made clear during the experiment.

Option A indicates one payment scheme, and Option B indicates another payment scheme. In each table, the payment

schemes for Option A and Option B vary, and the specific prices will be explicitly given. For each row, you will choose

whether you prefer Option A or Option B. In most Choice Tables, Option B will be a constant value under a given pay

scheme, and Option A will be increasing under another pay scheme. Note that when filling out each single choice table, you

will have up to 35 seconds to make a decision for each row. For the purpose of maximizing your payment, it is crucial that

you make a choice for each row before the timer runs out. Although the timers should provide you ample time to fill out the

rows, if you take too long on a choice table, you may run out of time. If a row that is left blank is chosen for payment, you

will receive $0 from it, so it is in your interest to move at a good pace while making the choices that are preferable to you.

When you finish filling out a Choice Table, click ‘Continue’ to move on. There are 36 choices to be made in each Choice

Table. If a Choice Table is chosen for payment, one out of 36 choices will be randomly selected for payment. As each choice

you made in a Choice Table has a chance to be applied to compute your total payoff for this experiment, it is in your best

interest to make each choice carefully. Below is an example of a Choice Table. Choice Tables are all similar, except that the

payment schemes and amounts in Option A and Option B change depending on the Choice Table. As can be seen, for each

row, you will be asked to choose whether you prefer Option A or Option B. The experiment will make clear what you are
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applying these payments towards.

Example: Choice Table: Between Fixed Pay and Tournament

There are five types of main Choice Tables. Type 1 Choice Table: This table elicits your preference between Fixed Pay

and Piece Rate. For this choice table, the payoff for Option A (Fixed Pay scheme) increases in each row, and the payoff for

Option B (Piece Rate scheme) is constant. For each row, you must choose which of the two options you prefer in the final

“Decision” column – A or B – by clicking on the one you prefer.

Type 2 Choice Table: This table elicits your preference between Fixed Pay and Tournament. For this choice table, the

payoff for Option A (Fixed Pay scheme) increases in payoff in each row, and the payoff for Option B (Tournament scheme)

is constant. For each row, you must choose which of the two options you prefer in the final “Decision” column – A or B –

by clicking on the one you prefer.

Type 3 Choice Table: This table elicits your preference between Tournament and Piece Rate. For this choice table, the

payoff for Option A (Tournament scheme) increases in payoff in each row, and the payoff for Option B (Piece Rate scheme)

is constant. For each row, you must choose which of the two options you prefer in the final “Decision” column – A or B –

by clicking on the one you prefer.

Type 4 Choice Table: This table elicits your preference between Piece Rate and Tournament. For this choice table, the

payoff for Option A (Piece Rate scheme) increases in payoff in each row, and the payoff for Option B (Tournament scheme)

is constant. For each row, you must choose which of the two options you prefer in the final “Decision” column – A or B –

by clicking on the one you prefer.

Type 5 Choice Table: This table elicits your preference between Fixed Pay and Lumpsum Tournament. For this choice

table, the payoff for Option A (Fixed Pay scheme) increases in payoff in each row, and the payoff for Option B (Lumpsum

Tournament scheme) is constant. For each row, you must choose which of the two options you prefer in the final “Decision”

column – A or B – by clicking on the one you prefer.

Note: In order to make the decision process easier for you, in this experiment, we adopt a “two-stage choice table”

design. Each choice table contains 2 sub-choice tables. Since Option B is fixed, and Option A increases in amount as you go

down the rows, you may decide to switch from Option B to Option A at some point. After making your decisions for each

row and clicking ‘Continue’, you will then be prompted with a sub-table 2 which contains more refined grids than sub-table

1 with choices in between the two points where you switched from Option B to Option A.

Additionally, there are a few choice tables that are unrelated to your performance in past or future addition tasks, but

instead elicit your preference between two different Options. These choice tables will be explained fully when they appear,

and follow the same concept as the previous choice tables and ask you, for each row, to make a decision between Option A

and Option B.

I.4 Experiment flow

Next, we will explain the flow of this experiment. The experiment consists of 10 parts. Each part contains multiple sub-parts.

Part 1 includes 2 rounds of practice addition tasks as well as a pre-experiment questionnaire. Parts 2, 3, and 4 each contain

two rounds of addition tasks and 4 sets of choice tables for your performance on these past two rounds of addition tasks.

Parts 5, 6 and 7 each contain 4 sets of choice tables for future performance. Part 8 asks you to guess your relative ranking in

addition tasks as well as some risk preference questions. Part 9 is a short survey questionnaire. Part 10 is a potential final
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addition task. The experiment takes about 1 hour to complete. It is important that you finish ALL parts of the experiment.

I.5 Payment calculation

Your payment total will be calculated as follows: You will receive a minimum of $12 for fully completing the experiment.

In addition to this sum, certain sub-parts in the pre-survey question and rank guess parts have payments that may depend

on your performance on the addition tasks and the choices you make. It will be made clear when a part involves payment.

In addition to the above two payments, one sub-part from parts 2-7 will be randomly selected for payment.

- If the randomly selected sub-part is an Addition Task, then you will be paid depending on the type of Addition Task.

For example, if the Addition Task is under a Piece Rate scheme at price $1, you will be paid $1 x number of correct answers.

- If the randomly selected sub-part is a choice table, one of the rows will be randomly chosen for payment. For this

randomly chosen row, you will be paid given the choice you made between Option A and Option B. Recall that the choice

tables are timed (35 seconds per sub choice table). Although this should be plenty of time to fill out each choice table, if

you run out of time and a row that you did not complete is selected for payment, your payment for this part will be $0. As

such, you should be sure to complete the choice tables in the allotted time.

Your final payment will be rounded up to the nearest 25 cents. So if your final pay is $25.05, you will receive $25.25.

To maximize your profit, it is important to finish all parts. It is also important to make your preferred decision for each

row in the Choice Tables while moving at a good pace and perform well in the Addition Tasks.

ONCE YOU HAVE FINISHED READING THE INSTRUCTIONS, PLEASE PRESS “CONTINUE” ON THE SCREEN.

ONCE EVERYONE HAS DONE SO, THE EXPERIMENT WILL BEGIN.
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