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Abstract

We consider a team-production environment augmented with a stage in which the team

decides how to communicate their productive outcome to outside observers. In this context,

we characterize equilibrium disclosure of team-outcomes when team-disclosure choices

aggregate individual recommendations through some deliberation procedure. We show that

equilibria often involve partial disclosure of the team’s outcome, and establish a relation

between the deliberation procedure and the observer’s equilibrium attribution of credit and

blame for the team’s successes and failures across team-members. Further, we show that,

through this credit/blame-attribution channel, a team’s deliberation procedure determines

individuals’ incentives to contribute to team production. We then characterize productive

environments where effort-incentives are maximized by unilateral disclosure protocols or

procedures such that disclosure require more consensus.

1 Introduction

Productive activities are increasingly conducted in teams. Startups are often founded by en-
trepreneurial partners, and in established firms new products are mostly developed and pro-
posed by teams built and empowered within the company.1 In policy-making or regulatory

*Paula Onuchic: paula.onuchic@economics.ox.ac.uk. João Ramos: joao.ramos@usc.edu. We are grateful for
detailed comments and suggestions from Nageeb Ali, Rohan Dutta, Robert Gibbons, Sam Kapon, Navin Kartik,
Elliot Lipnowski, Michael Powell, Debraj Ray, Ludvig Sinander, Caroline Thomas, and Mark Whitmeyer. We also
thank the audiences at seminars in several institutions, as well as the 2nd Southeast Theory Festival at Nuffield
College, 2023 ESSET - Gerzensee, 2023 SAET - Paris, and 2023 SITE - Dynamic Games, Contracts and Markets.

1Tamaseb (2021) documents that 80% of all billion-dollar companies launched since 2005 had two or more
founders. Lazear and Shaw (2007) shows that close to 80% of US firms rely on self-managing teams in some
capacity. Recent literature also documents the rise of teamwork in scientific research. See for example Fortunato
et al. 2018, Schwert 2021, and Jones (2021).
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scenarios, most investigation and evidence-gathering that informs decision-making is done by
committees.2 In all these contexts, team production is typically followed by a disclosure stage
in which the team communicates the outcome of their production to outsiders. Entrepreneurial
partners decide whether and when to pitch new startups to investors; within-firm teams report
their projects’ progress in regular meetings with managers; congressional committees abide by
formal rules guiding the publication of reports, gathered evidence, and meeting transcripts.3

These communications are collective disclosure decisions that have potentially distinct im-
plications for the individuals in a team. For example, if a development team composed of engi-
neers and marketers puts out a technically impressive but “badly packaged” new product, then
such disclosure is seen as an engineering success, but has negative reputational implications to
the marketing team-members. If this team instead chooses to delay the product launch, then
skeptical observers interpret this non-disclosure as a team failure, but blame for this negative
collective outcome may be unevenly shared between the co-developers.

This paper proposes a model that incorporates such a disclosure stage into a model of team-
production. In our model, the collective decision to disclose team-outcomes aggregates indi-
vidual recommendations through some deliberation procedure. This procedure determines the
allocation of voice rights across team-members — a voice right is defined by Zuckerman (2010)
and Freeland and Zuckerman (2018) as “the right to speak on behalf of an organization.” We
show that the allocation of such rights impacts how team-outcomes are perceived by outside ob-
servers. Specifically, it determines how credit and blame for the team’s successes and failures
are shared by team-members. Through this channel, the allocation of voice rights within a team
— at the disclosure stage — determines individuals’ incentives to contribute to the team in the
production stage. We leverage this insight to design team-deliberation protocols that incentivize
individual effort provision.

Section 2 introduces the team-disclosure environment. A team is made up of two or more
team-members who produce a team-outcome, drawn from a distribution known by all team-
members and by an outside observer.4 The team outcome is a piece of evidence which conveys

2These include both formal government bodies such as congressional committees and minipublics or other
mechanisms of citizen participation (described, for example, in Bardhi and Bobkova (2022)).

3In the United States, at the start of congress, committees adopt and publish procedural rules which determine,
among other things, guidelines for communications with the public. These guidelines vary across committees.
For example in 2017-18, the procedures for the special committee on aging determine that “committee findings
and recommendations shall be printed only with the approval of a majority of the committee;” the committee on
commerce, science and transportation resolved that “public hearings of the full committee, or any subcommittee
thereof, shall be televised or broadcast only when authorized by the chairman and the ranking minority member
of the full committee;” and the select committee on ethics decided that the release of reports to the public be
determined by either the chairman or the vice-chairman, who were thus given the authorization to speak on behalf
of the committee. Quotes are taken from the published “Authority and Rules of Senate Committees, 2017-18.”

4To study the team-disclosure problem in section 2, we take the team-outcome distribution as an exogenous
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to the outside observer some information about the team-members, or about a state relevant to
the team-members. For instance, the pitch of a new product by a development team conveys
to an observer some information about the ability of each member of the team, who may be
motivated by “career concerns;” and information gathered by a committee indicates the aptness
of a new policy that may be supported by some partisan committee-members, but not others.
Through a given deliberation procedure which aggregates individual disclosure recommenda-
tions, the team decides whether to reveal their outcome to the observer. If they do so, then each
team member receives their respective individual value implied by the revealed evidence. If
the outcome is not disclosed, then the observer forms a rational belief about each individual’s
value, accounting for the circumstances that may have led the team to choose not to reveal it.
Individual payoffs are then equal to their respective no-disclosure beliefs held by the observer.

The deliberation procedure affects the team’s disclosure decision directly by establishing
whose individual recommendations are heeded by the team; but also indirectly, because it de-
termines the equilibrium formation of the observer’s no-disclosure beliefs. Take, for instance,
a team with two team-members, and suppose each team-member can unilaterally decide that
the team-outcome be disclosed. That is, the outcome is disclosed if at least one of the team-
members recommends that decision. In any equilibrium, upon seeing that the team outcome is
not disclosed, the observer must infer that the realized outcome was “bad news” to both team-
members — for otherwise one of them would have chosen to disclose it — and must therefore
form no-disclosure beliefs that are unfavorable to both team-members. This logic is typically
referred to as unravelling in the single-agent evidence disclosure literature following Grossman
(1981) and Milgrom (1981). It ensures that in equilibrium all outcomes are disclosed to the
observer and that no-disclosure beliefs are “maximally skeptical” about every team-member.5

But suppose instead that the deliberation procedure is such that neither team-member can
unilaterally disclose the team’s outcome, that is, disclosure occurs only if neither team-member
vetoes that decision. Then upon seeing no disclosure, the observer understands that the out-
come must have been bad news about some team-member — for its disclosure was vetoed —
but cannot definitively attribute the team’s decision to an individual. A consequence is that
the observer’s equilibrium beliefs are not maximally skeptical about either team-member. Fol-
lowing this logic, Theorem 1 shows that in any equilibrium, the observer must be maximally
skeptical about every team-member who has the ability to unilaterally disclose the team’s out-

model primitive. At a later section, the outcome distribution is endogenously determined by individual effort
contributions to team production.

5Formally, we say that no-disclosure beliefs are maximally skeptical about a team-member if they indicate that
the realized team-outcome implied the worst possible value for that team-member (in the support of the team-
outcome distribution).
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come (that is, who has complete voice rights). Conversely, there exists an equilibrium in which
the observer is not maximally skeptical about any of the team-members who cannot unilater-
ally choose disclosure. The latter equilibrium must involve partial disclosure; specifically, the
team does not disclose outcomes that are sufficiently bad news about sufficiently many team-
members (“team failures”).

The literature on single-agent evidence disclosure games has established a clear relation
between model primitives, such as sender preferences and the evidence structure, and the equi-
librium observer skepticism which triggers the unravelling of uninformative equilibria — see
Hagenbagh, Koessler, and Perez-Richet (2014) and Rappoport (2023). In our model, individual
preferences and the evidence structure are simple, so as to highlight the key new mechanism
introduced by a disclosure model with a team, rather than a single individual, sender. In this
context, equilibrium non-disclosures are met with observer-skepticism about the team. How-
ever, this aggregate skepticism is not sufficient to ensure unravelling; we highlight instead the
importance of a new targeted notion of skepticism, which we call blame. We measure the blame
attributed to an individual for a team-failure by the equilibrium no-disclosure belief that the ob-
server assigns to that particular team-member. Proposition 1 and Corollaries 1 and 2 establish
a relation between a team’s deliberation procedure and the equilibrium assignment of blame
across team-members. These results clarify that increasing an individual’s voice rights (that is,
their ability to speak on behalf of the team) also increases the observer’s perception of their
blame for team failures.

Theorem 2 completes our characterization of team-disclosure equilibria. Under any delib-
eration procedure, full-disclosure is one equilibrium in the equilibrium set; the theorem de-
scribes a refinement of the equilibrium set, which we use to evaluate the plausibility of the
full-disclosure equilibrium. To that end, we introduce a refinement criterion bespoke to a team
communication environment, which requires no-disclosure beliefs (even if off-path) to be con-

sistent with deliberation. Intuitively, this criterion imposes the requirement that even off-path
beliefs held by the outside observer should be justified by the aggregation of individual be-
havior of the team-members through the given deliberation protocol. The theorem shows that
full-disclosure is consistent with deliberation if and only the procedure implies that disclosure
requires less consensus than concealing evidence (this notion is formalized in the text).

Section 4 studies the full team-production and team-disclosure problem: e augment the en-
vironment in section 2 with an initial stage in which team-members choose whether to covertly
exert costly effort to improve the team’s outcome distribution. Importantly, each team-member’s
effort positively affects not only the value of the team-outcome for themselves (what we call
the individual’s “own outcome”), but also the value of the team-outcome to the other team-
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members. As before, once the team outcome realizes — now drawn from a distribution which
now depends on the team-members’ effort profile — the team chooses whether to reveal it to the
outside observer. Our main results in this section evaluate the effort-incentives provided by dif-
ferent deliberation protocols, through their effect on equilibrium disclosure of team-outcomes.

For a given team-disclosure strategy, Lemma 3 shows that an individual’s incentive to exert
costly effort can be decomposed in two parts: an “individual effort benefit,” which compares
that individual’s expected own outcome with versus without their effort contribution, and a
“blame misattribution” component. The blame misattribution component is the novel incentive
mechanism introduced by strategic team-disclosure. In any equilibrium, the observer attributes
blame for team failures (which are not disclosed) under the assumption that each individual
exerted their respective equilibrium level of effort. If an individual deviates to another effort
level, and the team draws a team failure, then blame for that failure will be misattributed across
the team-members — each individual is either over- or under-punished for a group failure.
Excessive (misattributed) blame for team-failures provides individuals with extra incentives to
contribute effort to team-production.

Proposition 2 uses this insight to characterize deliberation procedures that induce extra
effort-incentives through blame-misattribution. We show that, if the productive environment
is such that effort has low team-externalities — in the sense that extra production due to an
individual’s effort accrues mostly to that same individual — then the protocol that gives ev-
ery individual the right to unilaterally disclose the team’s outcome provides stronger effort
incentives than any other deliberation protocol. On the other hand, if effort has high team-
externalities — so effort benefits accrue mostly to an individual’s fellow team-members and not
to themselves — then a protocol that requires disclosure decisions to be reached via consensus
dominates those in which disclosure decisions are made unilaterally.6 Proposition 3 also shows
that protocols that require more consensus for disclosure provide more incentives (relative to
the unilateral disclosure protocol) for individuals to invest in a “common output component,”
which improves the correlation between all team-members’ outcomes.

The disclosure equilibria induced by these effort-enhancing protocols can be connected to
“corporate cultures” often praised in the business literature. The full-disclosure equilibrium
induced by the unilateral-disclosure protocol parallels “radically transparent” organizations, in
which individuals are fully held accountable for their contributions to team-failures. An article
titled “How to Win the Blame Game” in the Harvard Business Review praises transparency and
the benefits of a “well-managed blame culture,” saying that “when used judiciously (...) blame

6Our distinction between high and low team-externalities environments parallels the distinction between selfish
and cooperative investments in a hold-up context, proposed by Che and Hausch (1999).
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can prod people to put forth their best efforts.” In contrast, the partial-disclosure equilibrium in-
duced by consensus-disclosure protocols resembles a corporate culture where teams “don’t play
the blame game,” but rather collectively suffer the burden of bad team outcomes — for exam-
ple, much of the technology world uses a “blameless postmortem” approach to understand the
causes of team-failures. Again in the Harvard Business Review, the article “When Transparency
Backfires, and How to Prevent It” argues that too much transparency can create a blaming cul-
ture that “may actually decrease constructive, reciprocal behavior between employees.” From
the perspective of the result in Proposition 2, both the radically transparent culture and the “no
blame game” cultures — induced through the different deliberation protocols that teams may
use — can be useful effort-incentivizing tools when used in the correct productive environment.
The former should be employed in low-group-externality teams, while the latter is beneficial in
high-team-externality environments.

In section 5, we consider binary-outcome environments, where every possible team-outcome
can is seen by each team-member as either a “high outcome” or a “low outcome.” In such an en-
vironment, we provide further characterization of team-disclosure and show stronger versions of
the results in previous sections. In particular, we characterize “effort-maximizing deliberation”
and show how the optimal degree of consensus required for disclosure varies with characteris-
tics of the productive environment.

1.1 Related Literature

As already mentioned, our paper relates to the large literature on evidence disclosure, mainly
stemming from Grossman (1981) and Milgrom (1981), and our paper is especially close to
models with multidimensional evidence, such as Dziuda (2011) and Martini (2018).7 We con-
tribute to this literature by studying a problem of team-disclosure. Among other results, we
show that team-disclosure equilibria often feature partial evidence revelation. The vast litera-
ture on single-agent disclosure games provides a variety of mechanisms that prevent “unrav-
elling.”8 Our result is connected to Dye’s (1985) observation that partial-disclosure equilibria
exist in a single-agent problem when the observer is unsure whether the sender has access to

7Our equilibrium characterization is reminiscent of that in Martini’s (2018) multi-dimensional disclosure
model. Martini (2018) shows that if a single sender separably values the receiver’s posterior about each dimen-
sional of the state, then partial-disclosure equilibria may exist if the sender’s preferences are sufficiently convex.
Such equilibria are supported by the fact that, upon seeing no disclosure, the receiver cannot distinguish on which
dimension the sender drew “bad news.” Despite the intuitive connection between this characterization and ours,
team-disclosure problems are inherently different from individual multi-dimensional disclosure problems and the
former cannot generally be mapped into instances of the latter through appropriately chosen sender preferences.

8See, for example, Dranove and Jin (2010) for a review of both theoretical and empirical explanations of why
verifiable information may not be voluntarily disclosed through a process of unravelling.
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evidence. In the team context, despite senders always having access to evidence, they may be
unable to disclose it because its disclosure is vetoed by other team-members. Our mechanism
is also connected to that in Seidmann and Winter (1997) and Giovannoni and Seidmann (2006),
which argue that partial-disclosure equilibria arise when, upon seeing no-disclosure, the is un-
sure whether the sender intended to bias their belief upwards or downwards. Similarly in the
team context, the observer is unable to attribute the decision to not disclose to the interests of a
particular individual in the team.

More broadly, our paper contributes to the literature on multi-sender communication. Us-
ing different communication protocols, Milgrom and Roberts (1986), Battaglini (2002), and
Gentzkow and Kamenica (2016) study models where multiple senders communicate with a sin-
gle receiver — Baumann and Dutta (2022), and Hu and Sobel (2019) are some more recent
contributions that model multi-sender evidence disclosure. All those papers consider environ-
ments where senders “competitively” communicate with a receiver; that is, they unilaterally
send messages to the same receiver. This competitive communication benchmark corresponds
to the unilateral disclosure protocol in our context; our paper expands on that by considering
“cooperative” communication by a group using different deliberation procedures.

Our paper also connects to a small literature relating disclosure and incentives. Ben-Porath,
Dekkel, and Lipman (2018) show that in a Dye (1985) individual-disclosure environment, par-
tial disclosure equilibria may incentivize the individual to favor risky projects, even at the ex-
pense of the project’s overall expected value. Matthews and Postlewaite (1985), and more re-
cently Shishkin (2021), Onuchic (2022), and Whitmeyer and Zhang (2022), study the effect of
the evidence-disclosure equilibrium on an individual’s incentives to acquire evidence. A closely
related literature — for example, Austen-Smith and Feddersen (2005), Gerardi and Yariv (2007,
2008), Levy (2007), Visser and Swank (2007), and more recently Name-Correa and Yildirim
(2019) and Bardhi and Bobkova (2023) — study information acquisition and information aggre-
gation in deliberative committees, under various voting and communication protocols as well as
committee compositions. Our paper first departs from that literature in that we study a model of
evidence disclosure by a team, rather than an environment where an action choice is delegated
to a committee.9 More importantly, our paper differs from that literature in its focus: while the
deliberative committees literature studies how different protocols fare in terms of information
acquisition and aggregation, we characterize disclosure equilibria under various protocols and
evaluate their power to incentivize team-members to put effort into a team project.

Our work is also related to the literature on incentives provided by career concerns, follow-

9Bardhi and Bobkova (2023) also study an environment where the committee discloses evidence to a principal.
However, in their model, all acquired evidence is necessarily disclosed to the outside observer.
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ing Holmström (1999), and specifically to papers on career concerns in teams.10 More gener-
ally, our results on incentive provision relate to the large literature on incentives in teams —
following, for example, Alchian and Demsetz (1972), Holmström (1982), and Itoh (1991). Our
contribution is to study the design of the deliberation procedure determining voice rights within
a team; and to show that authority over team communication can be used as a motivational tool.
Specifically, we show that it may be gainful to share power among team-members, inducing an
equilibrium where blame for team-failures cannot be attributed across team-members.11

Finally, our study of blame for team failures connects to a small literature that considers
credit attribution in teams. Onuchic r⃝ Ray (2023), Ray r⃝ Robson (2018), and Ozerturk and
Yildirim (2021) study team production with unequal credit attribution to team-members. In
the latter two papers, the attribution of credit is endogenously based on estimates of individ-
ual contributions. There are no reputational concerns, and credit attributed to each agent only
determines their share in the physical outcome of the project.

2 Team Disclosure

2.1 Environment

A group N = {1, 2, ..., n} of agents makes up a team, whose outcome ω = (ω1, ..., ωn) may
be seen by an outside observer. The team’s outcome is drawn from a distribution µ over a
finite outcome space Ω ⊂ Rn. When the outcome ω realizes, the team has some piece of hard

evidence that conveys to the observer the outcome that realized. For each ω ∈ Ω and i ∈ N ,
ωi should be interpreted as the value to team-member i of having the observer see outcome
ω. This value may be derived from the observer making an assessment about i’s ability, or
by the observer learning about a state of the world which is relevant to the team-members;
our general formulation allows for various interpretations of the individual implications of the
team-product.

Each team member i, after seeing the team-product ω, makes an individual disclosure rec-
ommendation: xi(ω) ∈ [0, 1] indicates the probability that agent i recommends the disclosure
of outcome ω; with complementary probability 1−xi(ω), agent i recommends that the outcome

10Jeon (1996) and Bar-Isaac (2007) show that pairing older and younger workers in teams may be beneficial for
incentive provision. Ortega (2003) shows that the power allocation within a team — the distribution of how individ-
ual efforts affect team outcomes — affect effort incentives. Auriol, Friebel, and Pechlivanos (2002) and Chaliotti
(2016) show that sabotage incentives arise when team-members are motivated by career concerns; and Arya and
Mittendorf (2011) argue for the incentive benefits of aggregate performance measures in such environments.

11In a single-agent career-concerns environment, Dewatripont, Jewitt, and Tirole (1999) show that when the
observed outcome is a coarser signal about an individual’s abilities, effort incentives may actually be improved.
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be concealed from the outside observer. Individual disclosure recommendation strategies define
a distribution over the set of team-members who favor the disclosure of outcome ω. Formally,
for every subset of team-members X ⊆ N

ΠX(ω) = xi(ω)
1[i∈X](1− xi(ω))

1[i/∈X]

is the probability that the set of team-members who favor the disclosure of outcome ω is X . The
teams’ disclosure decision is then made according to some deliberation process. A deliberation
process D : P(N) → [0, 1] is procedure that aggregates individual disclosure decisions into a
team disclosure decision. The team’s disclosure decision d(ω) =

∑
X⊆N ΠX(ω)D(X) ∈ [0, 1]

represents the probability that the outcome ω is disclosed to the outside observer.
In a real-world scenario, deliberation is a perhaps lengthy process made up of formal rules

and communication between team-members which somehow aggregates the interests of the
group into a team decision. Indeed, previous literature — such as Gerardi and Yariv (2007) —
highlights the interplay of formal rules and communication in shaping equilibrium behavior in
a deliberative committee. In this model, we interpret our deliberation protocol D as a reduced
form aggregation rule which already accounts for that interplay and informs how individual
recommendations map into a team decision. We assume that this protocol agrees with unani-
mous team decisions, so that if all team-members recommend disclosure or all team-members
recommend non-disclosure, then that decision is followed. And we require that the probability
of disclosure be increasing in the set of people who favor the outcome’s disclosure. Formally:

Assumption 1. The deliberation process D : P(N) → [0, 1]

1. Respects unanimity: D(N) = 1 and D(∅) = 0.

2. Is monotone: X ⊆ X ′ implies D(X) ⩽ D(X ′).

Given these assumptions, the deliberation procedure for a team with N = {1, 2} is fully
defined by D({1}) ∈ [0, 1], the probability that a team discloses an outcome when person
1 recommends its disclosure and person 2 does not, and D({2}) ∈ [0, 1], the probability of
team-disclosure when it is supported only by team-member 2. The set of possible deliberation
procedures for a two-person team is accordingly depicted in the two panels in Figure 1.

The figure also highlights some possible features of deliberation procedures. We say team-
member i can unilaterally choose disclosure if D({i}) = 1, so that the team discloses its
outcome even if only team-member i recommends that decision. We accordingly denote by
unilateral the deliberation procedure where all team-members can unilaterally choose disclo-
sure, so that D({i}) = 1 for every i ∈ N . Conversely, we say disclosure decisions are made
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via consensus if the deliberation procedure is such that D({i}) = 0 for every i ∈ N ; this proce-
dure mandates that the outcome be disclosed with any probability only if every team-member
favors its disclosure. Both these protocols are highlighted in the left-hand panel of Figure 1.
The right-hand panel highlights procedures where each of the team-members can unilaterally
choose disclosure. In particular, we highlight the team-leader protocols: team-member i is a
team-leader if D(X) = 1 if i ∈ X and D(X) = 0 if i /∈ X , implying that the team always
follows i’s recommended action.

Once the team makes its disclosure decision, the team-outcome is seen/not seen by the out-
side observer, who then forms a posterior belief about the outcome that led to that observation.
If ω is disclosed, then the observer perfectly understands it and their mean-posterior about team-
member i’s outcome is equal to the realized ωi, for each i ∈ N . If instead ω is not disclosed,
then the observer’s mean-posterior about i’s outcome is given by

ωND
i ≡ E [ωi|no disclosure] =

∑
Ω ωi(1− d(ω))µ(ω)∑
Ω(1− d(ω))µ(ω)

, (1)

for each i ∈ N , if
∑

Ω(1 − d(ω))µ(ω) > 0. If no disclosure is an off-path (measure zero)
event, then the observer’s mean posterior is indeterminate. We refer to ωND

i as the observer’s
no-disclosure belief about team-member i. Agents’ payoffs are equal to the observer’s belief
about their own outcomes, both when the team-outcome is disclosed and when it is not.12

2.2 Equilibrium

Definition 1 (Equilibrium). Given a deliberation procedure D, individual disclosure strategies

xi for i ∈ N , the team’s disclosure decision d, and no-disclosure posteriors ωND
i for i ∈ N

constitute an equilibrium if

1. Individual disclosure strategies are as if pivotal:

ωi > ωND
i ⇒ xi(ω) = 1 and ωi < ωND

i ⇒ xi(ω) = 0.

2. The team’s disclosure decision aggregates individual disclosure strategies x:

d(ω) =
∑
X⊆N

ΠX(ω)D(X) for every ω ∈ Ω.

12We assume that agents’ payoffs depend on the posterior mean induced on the observer about their outcomes.
However, we can also allow agents to value other moments of the outcome distribution, by renormalizing the
outcomes. For example, if agents’ payoffs are given by E(ω2

i ), they can be equivalently expressed by E(νi), where
νi = ω2

i . In that case, we would take µ to be the joint distribution of (ν1, ..., νN ).
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0 1

Unilateral

Consensus

D ({1})

D ({2})
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Team-Leader 1

Team-Leader 2

Figure 1: The set of deliberation procedures for two-person teams. The left-hand panel highlights
the unilateral procedure, in which D({1}) = D({2} = 1 and the consensus procedure, in which
D({1}) = D({2} = 1. The right-hand panel highlights in red the procedures such that team-member 1
can unilaterally choose disclosure, and in blue those in which team-member 2 can unilaterally disclose.

3. No-disclosure posteriors are Bayes-consistent: for each i ∈ N , ωND
i satisfies (1).

The equilibrium notion described above is Perfect Bayesian Equilibrium, in which all team
members and the outside observer understand the deliberation process, and with the additional
restriction that individuals make disclosure recommendations as if their recommendation is piv-
otal to the team’s decision. With this requirement, we refine out equilibria where individuals
position themselves for/against disclosure solely because they believe themselves not to bepiv-
otal, and the equilibrium strategies indeed support that their recommendations are not pivotal.
Condition 2 states that the teams’ equilibrium disclosure strategy is reached by aggregating
the individual equilibrium disclosure strategies, according to the given deliberation process.
Finally, condition 3 imposes Bayes-consistency for beliefs reached on the equilibrium path.

We know from previous literature on disclosure with verifiable information — for a sur-
vey, see Milgrom (2008) — that when disclosure decisions are made by a single individual,
the unique equilibrium involves full disclosure of all outcomes. The key insight supporting
that result is that if the observer knows that an individual holds some hard evidence of their
outcome, then the non-disclosure of that evidence makes the observer skeptical about the out-
come realization. The observer’s skepticism then generates an unraveling of any equilibrium
with (partial) non-disclosure. We first remark in passing that in our environment, if all team
members have perfectly correlated outcomes, then the team-disclosure game is equivalent to a
disclosure problem for a single individual (regardless of the deliberation procedure).

Observation 1. Suppose µ is such that outcomes are perfectly correlated across team members.

Then for any deliberation protocol D, the unique equilibrium outcome is full disclosure.
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To highlight the differences between individual- and team-disclosure problems, for the rest
of the paper we assume that µ is such that team members outcomes are “not too correlated.”

Assumption 2. The outcome distribution µ has a product support, that is, Ω = Ω1 × ... × ΩN

where Ωi ⊂ R has at least 2 elements for all i ∈ N , and µ has full support over Ω.

Given this assumption, our results show that when disclosure decisions are made by teams,
equilibria often involve partial non-disclosure. We will see that the usual unraveling argument
often fails because the outside observer cannot fully attribute a non-disclosure decision to a
specific team member.

3 Equilibrium Team Disclosure

A deliberation procedure D determines which team-members have complete “voice rights,”
and therefore can choose unilaterally to speak on behalf of the team. Specifically, remember
that we say a team-member i can unilaterally choose disclosure if D({i}) = 1. Theorem 1
shows that equilibrium team-disclosure distinguishes between these team-members, to whom
the observer can fully attribute the team’s decision to not disclose an outcome, and those who
cannot unilaterally choose disclosure.

We say an equilibrium has full disclosure if the observer can always perfectly infer the
realized outcome ω ∈ Ω on path. Or, equivalently, if there is at most one ω ∈ Ω such that
d(ω) < 1. An equilibrium has partial disclosure if it does not have full disclosure.

Theorem 1. The following statements are true about the equilibrium set:

1. A full-disclosure equilibrium exists, with

ωND
i = min(Ωi) for every i ∈ N.

2. If i is a team-member who can unilaterally choose disclosure, then

ωND
i = min(Ωi) in every partial-disclosure equilibrium.

3. Conversely, if I ⊆ N is the set of team-members who cannot unilaterally choose disclo-

sure, then there exists a partial-disclosure equilibrium where

ωND
i > min(Ωi) for every i ∈ I.
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Figure 2: Both panels depict candidate team-disclosure equilibria in a team with n = 2. The
left-hand panel supposes a deliberation protocol where team-member 1 is the team-leader. The
right-hand panel supposes a protocol whereby disclosure decisions are made via consensus.

A full proof of Theorem 1 is available in the Appendix. The first statement in the Theo-
rem argues that, regardless of the deliberation procedure D with which the team makes dis-
closure decisions, a full-disclosure equilibrium always exists. To see, suppose the observer’s
no-disclosure beliefs satisfy ωND

i = min(Ωi) for every team-member i ∈ N . That is, upon
seeing no disclosure, the observer is maximally skeptical about all team-members, and believes
that surely the realized outcome corresponded the worst possible realization for all of them. In
that case, every team-member is willing to recommend the disclosure of all outcomes — for
no outcome yields strictly worse payoff than the observer’s no-disclosure belief — and conse-
quently the team’s decision to disclose all outcomes is unanimous. In turn, because all outcomes
are disclosed, no-disclosure happens only off the equilibrium path and therefore the observer’s
beliefs are consistent with Bayes updating.

More interestingly, the theorem further describes the equilibrium set. Specifically, it states
that if a team-member i can unilaterally choose disclosure, then the observer must be maximally
skeptical about their outcome in any team-disclosure equilibrium. But a converse also holds:
there is an equilibrium in which the observer is not maximally skeptical about any team-member
who cannot unilaterally disclose the team’s outcome.

For an illustration, let’s refer to Figure 2. In each panel, the figure pictures the space of
possible team outcomes in a two-people team, which correspond to outcome-values for person
1 (pictured in the x-axis) and outcome-values for person 2 (pictured on the y-axis). Conjecture
an equilibrium where the observer is not maximally skeptical about either team-member, so that
ωND
1 > min(Ω1) and ωND

2 > min(Ω2). In such an equilibrium, each team-member must recom-
mend the disclosure of an outcome if and only if the realized value of their respective outcome

13



component is larger than the conjectured no-disclosure beliefs about that component. In both
panels, the red-shaded area depicts team-outcomes that team-member 1 recommends to conceal;
and the blue-shaded area represents those that team-member 2 recommends to conceal. These
recommendations are then aggregated according to the team’s deliberation procedure. The left-
hand side figure supposes that team-member 1 is the team-leader, and the right-hand side panel
supposes that the deliberation procedure is such that disclosure is chosen via consensus.

In the former case, the team’s decision follows precisely team-member 1’s recommenda-
tions, and therefore the team does not disclose outcomes in the red-shaded area, but discloses
all other outcomes — the no-disclosure recommendation in the blue-shaded area is not followed
by the team, as represented by the dashed pattern in the figure. But note that all outcomes in that
area are such that ω1 is smaller than the originally conjectured no disclosure belief ωND

1 . And
therefore it cannot be that the conjectured belief is Bayes-consistent; which thus implies that
there is no equilibrium in which ωND

1 > min(Ω1), as described in statement 2 of the theorem.
Instead if disclosure is chosen via consensus, then both the red- and the blue-shaded areas

are not disclosed by the team, for at least one of the team-members recommends that those
outcomes be concealed. But note that, in that case, there are some outcome realizations that are
“good news” for team-member 1 (ω1 > ωND

1 ) which are not disclosed, because team-member 2
favors their concealment; and likewise some “good news” about individual 2 are also not shown
for their disclosure is blocked by team-member 1. A consequence is that the Bayes-consistent
update made by the observer upon seeing no-disclosure is not necessarily lower than the initially
conjectured no-disclosure beliefs. Indeed, statement 3 in the theorem shows that there is such a
initially conjectured pair of no-disclosure beliefs, which is not maximally skeptical about either
team-member, that satisfies Bayes-consistency.

Note that, when team-members cannot unilaterally choose to disclose the team’s outcome,
the existing partial-disclosure equilibrium is supported by the fact that the observer is not able
to attribute “blame” for an outcome’s non-disclosure to one particular team-member (or to all
team-members). In this equilibrium, the team chooses not to disclose outcomes when the result
of the team project is bad news about a set of people in the team who can collectively block
the outcome’s disclosure — this is the team-equivalent of “sanitization strategies,” in the lan-
guage of Shin (1994). Accordingly, upon seeing that an outcome is not disclosed, the observer
becomes skeptical about the team, and thus interprets non-disclosure as a team failure. Impor-
tantly, the team takes the negative repercussions of this failure as a group, instead of precisely
revealing each team-member’s contribution to the team’s failure. In contrast, if a team-member
can unilaterally disclose, then they are seen as “fully to blame” for a team’s decision to not
disclose, and the observer must thus be maximally skeptical about them in any equilibrium.

14



The results in Theorem 1 highlight that in a team context, a notion of aggregate skepticism
(about the team’s outcome) is not sufficient to determine the team’s communication behavior
in equilibrium. In fact, we see that the team’s disclosure behavior is intimately connected to a
targeted notion of skepticism, which we refer to as blame and its determination via the team’s
deliberation procedure. In section 3.1, we further explore the relation between the deliberation
procedure, blame, and aggregate skepticism. Section 3.2 complements our characterization of
the team-disclosure equilibrium set by discussing when the full-disclosure equilibrium can be
deemed “inconsistent” with the deliberation procedure.

3.1 Blame as Targeted Skepticism

We see the vector of the observer’s no-disclosure beliefs ωND as describing each individual’s
equilibrium level of blame for a team failure — remember that the observer interprets “non
disclosure” as a team failure. In our exercise in this section, we will refer to decreases in
ωND
i as increases in team-member i’s blame; or equivalently as increases in the observer’s

skepticism that is targeted at team-member i. Note that our chosen measure of blame, ωND
i , is

not normalized by the distribution of i’s outcomes, but our results remain unchanged if we use
the measure ωND

i / [max(Ωi)−min(Ωi)] instead. Our measure is also not normalized by the
total aggregate blame, as for example ωND

i /
∑

j∈N ωND
j . Our choice reflects that in a Bayesian

learning model as ours, blame is not a “zero-sum game.” Because agents are not just “sharing
a pie,” but rather each signaling their outcome realizations to the observer, it is possible for all
team-members to be blamed for a group failure, or for none of them to be blamed.

In this exercise, we will focus on strict equilibria: a strict equilibrium in this environment
is one in which ωND

i /∈ Ωi for any i ∈ N . That is, the observer’s no-disclosure belief about
each individual does not coincide with any possible realization in their (finite) realization set.
Consequently, for any realized outcome, each team-member has strict preferences over disclos-
ing or not disclosing that outcome, and therefore the equilibrium can be fully described by
the no-disclosure belief vector ωND. Accordingly, for each deliberation procedure D and each
outcome distribution µ, let ED

µ ⊂ co(Ω) be the set of strict equilibria of the disclosure game.
Proposition 1 considers the effect of marginal changes in the deliberation procedure D on

the equilibrium blame vector ωND around a particular starting strict equilibrium. Lemmas 1
and 2 ensure that this is a well defined exercise. Also remember that a deliberation procedure
can be thought of as a vector with 2n entries, specifying for each subset I ⊆ N a probability of
disclosure D(I) ∈ [0, 1]. Our assumptions require that D(∅) = 0, D(N) = 1, and I ⊆ I ′ ⇒
D(I) ⩽ D(I ′); and consequently the relevant space of deliberation procedures is a compact
subset of [0, 1]2n−2.
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Lemma 1. For every full-support outcome distribution µ, there is an open set of deliberation

procedures D such that ED
µ ̸= ∅. Additionally, for every deliberation procedure with D({i}) <

1 for every i ∈ N , there is an open set of outcome distributions µ such that ED
µ ̸= ∅.

Lemma 2. Fix a procedure D and a distribution µ such that ED
µ ̸= ∅, and a strict equilibrium

ε ∈ ED
µ . In a neighborhood of D, there is a unique continuous selection E of the strict-

equilibrium correspondence ED
µ such that E(D) = ε.

Specifically, Lemma 1 shows that strict equilibria often exist in our team-disclosure model,
and Lemma 2 ensures that the notion of marginal changes in ωND due to marginal changes
in D around a particular strict equilibrium is well defined. Because D is a multidimensional
object, the effect of marginal changes in D on ωND depends on the direction of these marginal
changes. Proposition 1 characterizes directions of changes in the deliberation procedure such
that a team-member i’s blame increases or decreases.

Proposition 1. Fix a procedure D and a distribution µ such that ED
µ ̸= ∅, and a strict equi-

librium ε ∈ ED
µ . Consider marginal changes in the deliberation procedure D and their effect

on the observer’s no-disclosure belief about team-member i, ωND
i . If the marginal change in D

satisfies

min

{
dD(I)

1−D(I)
: i ∈ I ⊆ N

}
⩾ max

{
dD(I)

1−D(I)
: i /∈ I ⊆ N

}
, (2)

then dωND
i /dD ⩽ 0. Conversely, dωND

i /dD ⩾ 0 if

min

{
dD(I)

1−D(I)
: i /∈ I

}
⩾ max

{
dD(I)

1−D(I)
: i ∈ I

}
. (3)

The Appendix contains proofs of both lemmas in this section and of Proposition 1. Intu-
itively, condition (2) requires that the deliberation procedure move in a direction that increases
the probability of disclosure when sets of team-members that include team-member i recom-
mend disclosure relatively more than when sets of team-members that do not include team-
member i recommend disclosure. In that case, the observer’s equilibrium no-diclosure belief
about team-member i’s outcome must decrease. An interpretation is that condition (2) ensures
that team-member i’s voice rights — their right to speak on behalf of the team — increase; and
as a consequence i’s blame for team failures also increase. Two corollaries of Proposition 1
stated below highlight two different sets of directional changes in deliberation that ensure an
increase in i’s voice rights.

Corollary 1 considers changes in the deliberation procedure that increase the probability
of disclosure after every possible set of team-members recommends disclosure, but does so

16



D ({1})

D ({2})

1

0 1 D ({1})

D ({2})

1

0 1

Figure 3: Both panels show the effect of changes in the deliberation procedure in a two-person team
on the observer’s no-disclosure belief about each team-member. Red-shaded areas indicate directions
of changes in D that decrease ωND

1 (increase team-member 1’s blame) and blue-shaded areas indicate
directions that increase team-member 2’s blame. The left panel shows illustrates in black the direction
that makes the protocol more unilateral (see Corollary 1), and the right panel illustrates in darker red the
directions that increase team-member 1’s pivotality (see Corollary 2).

in a proportional way. Because the probability of disclosure after all or no team-members
recommend disclosure is fixed by assumption, the direction of change requires that those remain
constant. We say this direction of change makes the deliberation protocol more unilateral,
because it corresponds to a convex combination between the original deliberation protocol and
the unilateral disclosure protocol — see the right panel of Figure 3 for an illustration.

Corollary 1 (to Proposition 1). We say the deliberation protocol D becomes more unilateral if

dD(I)

1−D(I)
=

dD(I ′)

1−D(I ′)
⩾ 0 for every I, I ′ ⊆ N with I, I ′ /∈ {∅, N}.

If D becomes more unilateral, then dωND
i /dD ⩽ 0 for all i ∈ N .

When the deliberation procedure becomes more unilateral, the observer understands that all
team-members have increased opportunity to enforce the disclosure of a given outcome, and
therefore interprets the team’s choice to not disclose an outcome as worse news about every
individual team-member. In other words, a “aggregate increase” in all team-members’ voice
rights leads to a corresponding “aggregate increase” in their blame for team failures. Corollary 2
instead shows that a relative increase in a particular team-member’s voice rights — which makes
their disclosure recommendations more pivotal — leads to an increase in their own blame.

Corollary 2 (to Proposition 1). We say team-member i becomes more pivotal if for every I ⊆ N

dD(I) > 0 ⇒ i ∈ I and dD(I) < 0 ⇒ i /∈ I.
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If i becomes more pivotal, then dωND
i /dD ⩽ 0.

The right panel in Figure 3 shows the directions that increase a team-member’s pivotality in
a two-person team. Note that in a two-person team, an increase in team-member 1’s pivotality
implies a decrease in team-member 2’s pivotality; but this is not necessarily true in larger teams.
However, for any team-size, Corollary 2 shows that relative increases in i’s voice rights — due
to either increases in the probability of disclosure after i recommends it or to decreases in the
probability of disclosure when it is recommended only by other team members — ensures an
increase in i’s blame.

3.2 Is Full-Disclosure Consistent with Deliberation?

Theorem 1 shows that partial-disclosure equilibria, when present, coexist with a full disclosure
equilibrium. Theorem 2 below is a result refining the equilibrium set: we characterize delib-
eration procedure environments under which a “plausible” full disclosure equilibrium exists.
By definition, full-disclosure equilibria are such that no-disclosure does not happen on the path
of play — or perhaps only when all team members draw their worst-possible outcome — and
therefore no-disclosure posteriors are vacuously Bayes-consistent. As usual with “forward in-
duction” refinements, we wish to evaluate whether these off-path posteriors which support the
full-disclosure equilibrium can be justified by some reasonable off-path behavior. In the context
of team disclosure, we posit that even off-path beliefs should be justified by some behavior that
is consistent with the team’s deliberation protocol.

Definition 2. No-disclosure beliefs ωND = (ωND
1 , ..., ωND

N ) are consistent with deliberation
for protocol D if there exists some team disclosure decision d with d(ω) < 1 for some ω ∈ Ω,

and a vector of individual disclosure strategies x such that

1. For each i, j ∈ N with j ̸= i, xi(ω) is constant with respect to ωj .

2. The team’s disclosure decision aggregates the individual disclosure strategies x:

d(ω) =
∑
X⊆N

ΠX(ω)D(X) for every ω ∈ Ω.

3. No-disclosure posteriors are Bayes-consistent: for each i ∈ N , ωND
i satisfies (1).

The definition states that a vector of no-disclosure beliefs is consistent with deliberation
if there is some set of individual disclosure strategies (that ensure no-disclosure happens with
positive probability), and such that the no-disclosure beliefs are Bayes-plausible given these
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strategies. Condition 1 also demands that the disclosure strategy each team-member uses to
justify the vector ωND be independent of other team-members’ outcomes — so that the over-
all team decision can be interpreted as purely aggregating stated individual preferences and
nothing further. Note that, unlike in the equilibrium notion in Definition 1, we do not require
the individual strategies to be optimal for any of the team-members. Our refinement therefore
places a very weak requirement: that there be any set of such individual strategies that, once
aggregated through the team’s deliberation procedure, ensure the consistency of the conjectured
no-disclosure beliefs.

Theorem 2 shows a condition on the deliberation protocol that is necessary and sufficient for
full-disclosure equilibria to be consistent with deliberation. Informally, this condition requires
the deliberation protocol to be such that a decision to disclose is easier to reach than a decision
to conceal an outcome with some probability. Formally, we say that disclosure requires more

consensus than concealing if for every subgroup I ⊆ N , such that D(I) = 1 and D(N \I) < 1,
there exists a smaller subgroup J ⊂ I such that D(N \ J) < 1 but D(J) ̸= 1. For example,
if we consider a team of only two individuals, then disclosure requires more consensus than
concealing if and only if disclosure only happens with certainty if decided via perfect consensus
between the two team members — or equivalently, iff neither team-member can unilaterally
choose disclosure — so that D({1}), D({2}) < 1.

Theorem 2. A full-disclosure equilibrium that is consistent with the deliberation procedure D

exists if and only if D is such that disclosure requires more consensus than concealing.

To understand the result, suppose there are only two team members, and suppose disclosure
requires more consensus than concealing — for example, D({1}) = D({2}) = 0 — so that
each team member can unilaterally choose to conceal a realization. Now suppose there is a
full-disclosure equilibrium supported by a pair of no-disclosure beliefs ωND. It must be that
ωND
1 = min(Ω1) and ωND

2 = min(Ω2); for otherwise one of the team members would strictly
prefer to not disclose realizations where they draw their worst possible outcome, and they would
be able to unilaterally impose such non-disclosure. This would contradict the initial assumption
that the equilibrium has full-disclosure.

Now we wish to craft a pair of individual disclosure strategies x̂ to be used to “justify” the
beliefs ωND = (min(Ω1),min(Ω2)). These strategies must imply that some realization ω̂ is not
disclosed with positive probability, and therefore it must be that either x̂1(ω̂1, ω2) < 1 for all
ω2 ∈ Ω2 or x̂2(ω1, ω̂2) < 1 for all ω1 ∈ Ω1. If the former is true, then all realizations ω2 ∈ Ω2 are
concealed with positive probability, which implies that the no-disclosure posterior ωND

2 consis-
tent with x̂ is strictly larger than min(Ω2). If the latter is true, then ωND

1 > min(Ω1). Combining
these two cases, we conclude that the off-path beliefs necessary to sustain full-disclosure cannot
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be justified by any disclosure strategies consistent with the deliberation process; and therefore
full-disclosure is not consistent with deliberation.

With some work shown in the Appendix, this argument generalizes to teams with more
than two members, so long as the deliberation process is such that disclosing requires more
consensus than concealing.13 To see the other direction of Theorem 2, let’s again consider
that there are only two team members, and now suppose that disclosure does not require more
consensus than concealing. That is, either D({1}) = 1 or D({2}) = 1 — suppose the former
is true for the sake of this argument. Then there exists a full disclosure equilibrium where
ωND
1 = min(Ω1) and ωND

2 > min(Ω2). Moreover, these off-path beliefs can be justified by
the following individual disclosure strategies: x̂1(ω) = 0 if ω1 = min(Ω1) and x̂1(ω) = 1

otherwise; and x̂2(ω) = 0 for all ω ∈ Ω.
Together, Theorems 1 and 2 characterize how equilibrium disclosure “decreases” after an

increase in the degree of consensus required for the team to disclose. In the first result, we see
that unless disclosure is very easy — in the sense that it can be chosen unilaterally by all team-
members — then full-disclosure is not the unique equilibrium outcome. Theorem 2 strength-
ens the observation by delineating a necessary and sufficient condition under which not only
a partial-disclosure equilibrium exists, but also it is more plausible than full-disclosure. The
predictions made by Theorems 1 and 2 are particularly clear when we consider anonymous de-
liberation (so that the team’s disclosure decision depends only on the number of team-members
who recommend disclosure). Within the class of anonymous deliberation procedures, disclo-
sure can be chosen unilaterally if D(I) = 1 whenever |I| ⩾ 1; and disclosure requires more
consensus than concealing if D(I) = 1 whenever |I| ⩾ n/2.

Corollary 3 (to Theorems 1 and 2). Suppose D is an anonymous deliberation procedure, with

D(I) = 1 if and only if |I| ⩾ k. Full-disclosure is the unique equilibrium outcome if and only

if k = 1; and full-disclosure is consistent with deliberation if and only if k ⩽ n/2.

4 Deliberation and Incentives

So far in the paper, we studied a problem where a team chooses how to communicate about
their group outcomes with outside observers, taking team production as given by the outcome
distribution µ. In this section, we explore the effects of features of equilibrium team disclosure

13More precisely, in any full-disclosure equilibrium there must be a subgroup I ⊆ N of the team, who can
together choose disclosure (that is, D(I) = 1) and such that ωND

i = min(Ωi) for all i ∈ I . But we show that it is
impossible to construct a strategy profile x̂ that justifies these off-path beliefs. To argue this point, we use the fact
that there is a subset of team members J ⊂ I that can together ensure that an outcome is not disclosed with some
probability, that is, D(J) < 1.
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on individual incentives to contribute to team production in the first place. To do so, we add a
pre-disclosure stage to the team’s problem.

Individuals make
effort choices.

Team outcome
realizes.

Team makes
disclosure
decision.

Formally, at the initial stage, each agent unilaterally and covertly makes an effort decision:
team-member i ∈ N chooses ei ∈ {0, 1}, incurring in cost ci > 0 if they choose to put effort
into the team-project (ei = 1) and no cost otherwise. Individual effort choices are collected
into the team’s effort vector e = (e1, ..., en). Once individuals make effort decisions, a team
outcome is drawn from distribution µ(·; e), which now depends on the effort vector e chosen
by the team. After the team outcome realizes, the communication stage ensues as before: all
team-members see the realized outcome ω and make disclosure recommendations. Disclosure
is decided by the aggregation of individual recommendations through the team’s deliberation
procedure D. The observer sees the disclosed/not-disclosed outcome, according tot he team’s
decision, but never sees the team-members’ effort choices — that is the sense in which effort
decisions are covert.

Assumption 3 imposes that the support of outcomes is invariant to the chosen vector of
efforts, and that the outcome distribution increases in the team’s effort.

Assumption 3. For each e ∈ {0, 1}n, µ(·; e) has full support over Ω = Ω1 × ... × Ωn, where

Ωi ⊂ R has at least 2 elements for all i ∈ N . Moreover, effort is productive, so that14

e ⩾ e′ ⇒ µ(·; e) ≿FOS µ(·; e′).

An equilibrium is defined by an equilibrium of the team-disclosure game (as in Definition
1) and individual rationality at the effort-choice stage, given the team-disclosure equilibrium.

Throughout the game, we understand that the deliberation procedure is fixed at some exoge-
nously given D, and commonly understood by all team-members and by the observer. One in-
terpretation is that, even prior to the effort-stage, team-members collectively pick a deliberation
procedure — that is, they agree on a governance structure to guide their future communication
decisions. From that lens, our exercise in this section describes what types of such governance
structures a team should implement if they wish to incentivize individuals to contribute effort to

14The notation ≿FOS indicates (multivariate) first order stochastic dominance. We say that a random vector X
dominates a random vector Y in the first order stochastic if P(X ∈ U) ⩾ P(Y ∈ U) for every upper set U ∈ Rn.
Equivalently, random vector X dominates random vector Y in the first order stochastic if E [φ(X)] ⩾ E [φ(Y )]
for all increasing functions φ for which the expectations exist. See Shaked and Shanthikumar (2007).
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team production. Such a “deliberation design” problem is relevant in applied scenarios where
team-members cannot contract on outcomes of team-production — which may be especially
hard in career concerns environments, where each individual’s outcome is given by the ob-
server’s perception of their type, which is not an easily measurable variable — but can contract
on how to map observable individual recommended decisions into overall team decisions.

A stage in which “voice rights” are decided indeed occur in the applied scenarios we con-
sider. For example, as mentioned in the introduction, at the beginning of congress, congres-
sional committees explicitly write down and pledge to abide by a set of formal rules guiding
how the committee will later make decisions regarding the publication of reports and gath-
ered evidence. In entrepreneurial and other productive teams, much importance is placed in
establishing a “corporate culture” and governance to guide future team communications. In-
deed, corporate teams also strongly value communicating the team’s culture and hierarchical
structures to third parties — in our model, ensuring that the observer understands the team’s
deliberation procedure. We comment further on the interpretation of deliberation as corporate
culture later in this section.

4.1 Team Disclosure and Effort Incentives

There are many possible criteria with which to evaluate the effort incentives provided by differ-
ent deliberation processes. We do so in terms of whether — and for what cost vectors — each
deliberation procedure can implement an equilibrium in which all team-members exert costly
effort.15 Although we use this specific criterion, the mechanisms highlighted in the current
analysis are more general and our results could be adapted to other criteria, such as the equi-
librium implementation of efficient effort and comparisons in terms of the overall set of efforts
implementable in equilibrium by each procedure.

Lemma 3 below establishes the basis for this analysis, clarifying the relation between dis-
closure strategies implemented in the team-disclosure stage and team-members’ incentives to
exert costly effort. Let c ∈ Rn

++ be the vector of effort costs for the team. For any team-
disclosure strategy d : Ω → [0, 1], let fe(d) ⊂ Rn

++ be its corresponding full-effort set. That is,
c ∈ fe(d) if, given the team-disclosure strategy d, there is an equilibrium of the effort-choice
stage in which ei = 1 for all i ∈ N . For any subgroup I ⊂ N , we use notation eI to indicate an
effort vector such that individuals i ∈ I exert effort and individuals i ∈ N \ I do not.

15Our results in section 2 show that there are often multiple equilibria in the team-disclosure game; and ac-
cordingly there are often multiple equilibrium effort vectors that are implementable in the larger game under the
same deliberation procedure. Our criterion therefore requires that full effort be implementable in some, but not
necessarily all, such equilibria.
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Lemma 3. A team-disclosure strategy d : Ω → [0, 1] implements full effort for a given cost

vector c ∈ RN — that is, c ∈ fe(d) — if and only if, for every i ∈ N ,16

E (ωi|eN)− E
(
ωi|eN\i

)︸ ︷︷ ︸
Individual Effort Benefits

+P
(
ND|eN\i

) [
E
(
ωi|ND; eN\i

)
− E (ωi|ND; eN)

]︸ ︷︷ ︸
Misattributed Blame

⩾ ci. (4)

The expression in (4) clarifies how the selective disclosure of the teams outcomes can be
used to incentivize team-members to put in effort beyond their baseline “full-disclosure” in-
centives. On the left-hand side of (4), the first highlighted term corresponds to team-member
i’s direct individual benefits from exerting effort: it compares individual i’s expected outcome
value when they choose ei = 1 versus ei = 0 while maintaining the assumption that all other
team-members exert effort.

The second term corresponds to extra incentives provided by selective non-disclosure. Specif-
ically, it measures how the observer misattributes blame to team-member i when they do not
exert effort and a team-failure ensues. More formally, in a full-effort equilibrium, the observer
expects all team-members to contribute effort to the team project, so that e = eN . But suppose
person i chooses instead to deviate to no effort, so the true effort vector is e = eN\i; and sup-
pose that the drawn outcome after that deviation is such that the team chooses not to disclose
it. Because i’s effort is covert, the observer still calculates i’s “blame” in that case under the
presumption that all team-members exerted effort — and therefore i’s value is E (ωi|ND; eN),
as opposed to the “correct” blame assessment E

(
ωi|ND; eN\i

)
.17

The misattributed blame term is positive — and therefore selective non-disclosure through
d provides stronger effort incentives than full-disclosure — if, for each team-member i, the
observer’s equilibrium blame attribution to them is harsher than the correct assessment given a
deviation by i to no effort. Intuitively, this is the case when the team’s disclosure decisions are
more correlated with i’s outcome under the full-effort vector eN than under effort eN\i.18

The decomposition of individual effort incentives in Lemma 3 parallels incentive decom-
16The following rewriting of (4) expresses the relation with the team disclosure strategy d more directly:

ci ⩽
∑
Ω

ωiµ(ω; eN )−
∑
Ω

ωiµ(ω; eN\i)

−
∑
Ω

(1− d(ω))µ(ω; eN\i)

[∑
Ω ωi(1− d(ω))µ(ω; eN )∑
Ω(1− d(ω))µ(ω; eN )

−
∑

Ω ωi(1− d(ω))µ(ω; eN\i)∑
Ω(1− d(ω))µ(ω; eN\i)

]
.

17To calculate these conditional expectations, we maintain the team-disclosure strategy d unchanged as a func-
tion of the realized outcome ω, and vary the outcome distribution with i’s effort choice. In any equilibrium,
disclosure strategies in the disclosure stage must not depend on the effort choice in the initial stage, because effort
is chosen covertly by each agent.

18Indeed, the following rewriting of the left-hand side of (4) expresses i’s effort gains directly in terms of the
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positions for different governance structures in hold-up models. For example, Grossman and
Hart (1986) show that individual incentives to invest in a relationship are determined first by
the direct benefits of that investment and second by the effect of that investment on actions
later chosen by whoever has control over the relationship asset. And moreover, the efficient
allocation of control over the relationship asset is the one that best aligns this second term with
efficient effort incentives.19 Similarly in our model, effort incentives are determined partly by
the direct effect of effort on individual outcomes and partly by the effect of effort on the team’s
disclosure decisions in the communication stage (and the implied blame assignment follow-
ing those decisions). And effort-maximizing allocations of voice-rights — effort-maximizing
deliberation protocols — are those that maximize this latter term.

4.2 Effort Environments and Effective Deliberation

We now use the characterization in Lemma 3 to study which types of deliberation procedures
effectively incentivize effort in a variety of effort environments — where an effort environment
describes the impact of each individual’s effort on the distribution of team outcomes. We say
effort is purely self-improving if, for every i ∈ N and every I ⊂ N ,20

µN\i(·; eI) = µN\i(·; eI\i), and µi(·|ωN\i; eI) ≻FOS µi(·|ωN\i; eI\i).

The notation µN\i(·; eI) indicates the joint distribution of outcomes of all team members except
team-member i, when the team’s effort is eI . In turn, µi(·|ωN\i; eI) indicates the outcome distri-
bution for team-member i conditional on outcome realization ωN\i for all other team-members,
given the team effort eI . Accordingly, we say effort is self-improving if, for every team-member
i ∈ N , their own effort leaves the outcome distribution of other team-members unchanged, but
improves their own outcome distribution, conditional on others’ outcome realization.A purely
self-improving environment thus describes a low-team-externality situation, in which all the
benefits from exerting effort accrue directly to the individual who puts in that effort and not to
their fellow team-mates.

improvement of the covariance between i’s outcome and disclosure:

[
1− P

(
ND|eN\i

)] [
E (ωi|eN )− E

(
ωi|eN\i

)]
+

P
(
ND|eN\i

)
P (ND|eN )

Cov (ωi, d|eN )− Cov
(
ωi, d|eN\i

)
. (5)

Please see the Appendix, where we derive this expression from (4).
19See also Gibbons (2005), section 2.2, for a more detailed description.
20The notation ≻FOS indicates strict (multivariate) first order stochastic dominance. We say that a random

vector X strictly dominates a random vector Y , both defined over Ω, in the first order stochastic if P(X ∈ U) >
P(Y ∈ U) for every upper set U ∈ Ω.
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In contrast, we describe a high-team-externility effort environment — in which an indi-
vidual’s effort benefits accrue not to themselves directly, but to the other team-members — as
purely team-improving. Formally, effort is purely self-improving if for every i ∈ N and every
I ⊂ N ,

µN\i(·|ωi; eI) ≻FOS µN\i(·|ωi; eI\i), and µi(·; eI) = µi(·; eI\i).

Both these definitions describe effort environments in which the team-outcome distribution may
involve outcome-correlation across team-members. If we consider the special case in which
outcomes are independent across team-members, then self-improving effort corresponds to a
situation where i’s outcome distribution increases in the first order stochastic if i exerts effort,
and j’s outcome distribution remains unchanged for all j ̸= i. Analogously, team-improving
effort is then such that j’s outcome distribution increases with i’s effort, for j ̸= i, but i’s
distribution is unchanged. Our distinction between high and low team-externalities environ-
ments parallels the distinction between selfish and cooperative investments in a hold-up context
proposed by Che and Hausch (1999).

Proposition 2 ranks deliberation procedures in both of these effort environments. To that
end, we formally introduce an order over deliberation procedures. For a given procedure D,
we let FE(D) ⊂ Rn

++ be its corresponding full-effort set: c ∈ FE(D) if, given D, there is a
team-disclosure strategy d with c ∈ fe(d) that can be sustained in a team-disclosure equilibrium
under the full-effort outcome distribution µ(·; eN). And we say that a deliberation procedure
D dominates a deliberation procedure D′ if FE(D′) ⊆ FE(D). Also remember that D is the
unilateral disclosure protocol if every team-member can unilaterally choose disclosure; and the
consensus disclosure protocol is such that every team-member can unilaterally veto disclosure.

Proposition 2. 1. If effort is purely self-improving, then the unilateral disclosure protocol

dominates any other deliberation procedure.

2. If effort is purely team-improving, then consensus disclosure strictly dominates every de-

liberation procedure in which some team-member can unilaterally choose disclosure.

The proposition as stated describes purely self-improving and purely team-improving en-
vironments, but the respective statements also hold for environments close enough to either of
these extreme cases. Likewise, Proposition 2 holds for comparisons between almost-unilateral
and almost-consensus deliberation procedures.

A full proof of Proposition 2 is in the Appendix. When effort is self-improving, we show
that all of i’s gains from effort are captured when the team fully discloses their outcomes, which
is the (unique) equilibrium team-disclosure attained when the deliberation process allows any
team-member to unilaterally choose disclosure. Intuitively, because an agent’s effort affects
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only their own outcome, non-disclosure can only harm effort incentives by concealing some
of the effort gains from the observer. Indeed, we show that as a consequence, the unilateral
disclosure protocol — by inducing an equilibrium with full disclosure — maximizes the team’s
“full effort cost set.” Note that, as per Theorem 1, full-disclosure is an equilibrium for any
deliberation procedure; and therefore the maximal full-effort cost set can be attained regard-
less of the deliberation process. In that sense, the unilateral disclosure procedure is sufficient
for maximizing the full-effort set. By Theorem 2, we can refine the equilibrium set induced
by different deliberation protocols — specifically, we can refine out the full-disclosure equi-
librium when “disclosing requires more consensus than concealing.” If we accordingly define
our dominance criterion accounting for this refinement, we can then establish that the unilateral
disclosure protocol strictly dominates deliberation protocols in which disclosing requires more
consensus than concealing.

Suppose instead that effort is purely team-improving: the proposition argues that in such
a high-team-externality effort environment, the equilibrium team-disclosure strategy imple-
mented by consensus disclosure produces larger effort incentives than equilibrium disclosure
induced under more unilateral deliberation protocols. Consider the consensus disclosure proce-
dure, and remember that an equilibrium exists in which each team-member favors disclosure if
and only if their own-outcome draw is good-enough. When team-member i puts in effort, they
improve the odds that all other team-members draw an outcome for which they favor disclosure;
therefore improving the odds that i’s disclosure recommendation is pivotal to the overall team
decision. And consequently, team-member i is “more to blame” for team failures under full
effort than in the deviation where i does not exert effort. In other words, under the consensus
disclosure deliberation protocol, each team-member has incentives to improve the outcomes of
their partners, so as to avoid situations where the disclosure of their own good outcome realiza-
tions is vetoed by others.

Proposition 3 below considers effort environments such that effort increases the correlation
between team-members’ outcomes. We can interpret these as investments in some common
component of team-production. The proposition states that if each team-member’s effort suffi-
ciently improves the correlation between all team-member’s outcomes, then the unilateral dis-
closure procedure is dominated by all other procedures. To that end, we momentarily assume
that the support of outcomes does not differ across agents, so that Ω = Ωn

i for some Ωi ⊂ R;
and we say that a distribution ν over Ω has perfect correlation across team-members’ outcomes
if it has full support on the locus ω1 = ... = ωn.21

21These assumptions are made for notational convenience. Proposition 3 holds if the support of outcomes differs
across agents, and under the weaker assumption that ν is supported on the locus ωj = φij(ωi) for some strictly
increasing function φij for all i, j ∈ N .
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Proposition 3. Suppose µ and ν are two distributions over Ω = Ωn
i , where µ has full support

and ν has perfect correlation across team-members’ outcomes, and suppose ν ≿FOS µ ≿

µ(·; eN\i) for every i ∈ N . Consider varying the correlation in µ(·; eN) by letting, for ϵ ∈ (0, 1),

µϵ(·; eN) = (1− ϵ)µ+ ϵν.

Let D be a the unilateral disclosure protocol and D′ be a deliberation protocol in which no

team-member can unilaterally choose disclosure. There exists some ϵ̄ ∈ (0, 1) such that, if

ϵ > ϵ̄ and µϵ(·; eN) is the full-effort distribution, then D′ strictly dominates D.

One way to interpret deliberation procedures in real-world team production environments is
as the “corporate culture” in a team. O’Reilly and Chatman (1996) define corporate culture as “a
set of norms and values that are widely shared and strongly held throughout the organization.”
In our environment, the norm that is being upheld in the team is the one guiding how the team
aggregates individual disclosure recommendations into the team’s disclosure decision.

The unilateral disclosure procedure induces an equilibrium in which teams, after every pos-
sible team-outcome realization, reveal to the observer which exact realization occurred. There-
fore, both after team successes and after team failures, each team-member’s share of blame for
that outcome is clarified. These equilibria parallel the idea of “radically transparent” corporate
cultures, in which individuals are fully held accountable for their contributions to their team’s
successes and failures. Business sources often praise the effort incentives provided by radically
transparent cultures. In that context, the article “How to Win the Blame Game,” in the Harvard
Business Review posits that “when used judiciously (...) blame can prod people to put forth
their best efforts.” In contrast, the consensus disclosure protocol induces equilibria in which the
team suffers the burden of team failures collectively. When an outcome realization happens that
is deemed a team failure, the team decides not to disclose it to the outside observer, who then
spreads the blame for this outcome across all team-members. This dynamic resembles corpo-
rate cultures in which teams are committed not to “play the blame game.” The article “When
Transparency Backfires, and How to Prevent It,” Harvard Business Review, acknowledges the
benefits of such cultures, in comparison with more transparent teams: “too much transparency
can create a blaming culture that may actually decrease constructive, reciprocal behavior be-
tween employees.”

From the perspective of our Proposition 2, both types of corporate cultures may be effective
in incentivizing individuals to contribute effort to their teams, each proving suited to a particular
type of effort environment. This result points to a possible empirical exercise that attempts to
assess whether indeed “accountability,” “transparency,” and “blame” cultures are less present
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in effort environments with higher team externalities. We view this exercise as beyond the
scope of the current theoretical paper, but note the difficulties in measuring both the relevant
component of corporate culture and the degree to which a team’s activity has high or low team-
externalities.22

5 Disclosure and Incentives in Binary Environments

This section further characterizes team disclosure, and its relation to effort incentives, in an
environment where each individual’s outcome is binary. We say the distribution µ has binary

outcomes if Ωi = {ωℓ,i, ωh,i}, with ωℓ,i < ωh,i for each i ∈ N .

5.1 Equilibrium Team Disclosure with Binary Outcomes

Proposition 4 characterizes, in the binary outcome setting, the equilibrium with the least disclo-
sure for a given deliberation procedure D. We say an equilibrium is the least-informative equi-
librium (or has the least disclosure) for a given deliberation procedure D if its team-disclosure
strategy d is such that d(ω) ⩽ d′(ω) for every other equilibrium team-disclosure strategy d′ for
the same procedure D.

Proposition 4. Suppose µ has binary outcomes. Then, for a given deliberation procedure D,

the least informative equilibrium is such that

(i) Each team-member recommends disclosure if and only if they draw a high outcome:

xi(ω) =

1, if ωi = ωh,i,

0, if ωi = ωℓ,i.

(ii) The observer’s no-disclosure belief about team-member i is maximally skeptical if and

only if i can unilaterally choose disclosure:

ωND
i = ωℓ,i ⇔ D({i}) = 1.

22The empirical literature that aims to measure corporate culture — for example Guiso, Sapienza, and Zingales
(2015) — highlight and measure five “core corporate values.” They are innovation, integrity, quality, respect, and
teamwork. Li, Mai, Shen, and Yan (2021) develop a culture dictionary for each of these core values; from their
documentations, we can see that accountability and transparency fall under the umbrella of integrity. However,
other components of integrity do not seem to correlate with the mechanism highlighted in our paper.
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When outcomes are binary it is a weakly dominant strategy for each agent i to recommend
disclosure if and only if ωi = ωh,i. Moreover, in any equilibrium, every agent must recommend
disclosure weakly more than under that strategy — for it is always individually optimal to
recommend the disclosure of an agent’s own high outcomes with certainty. Therefore, the
equilibrium implied by all agents using this weakly dominant strategy must be the equilibrium
with least disclosure. This is stated in part (i) of the proposition. Part (ii) states the no-disclosure
beliefs implied by the team-disclosure strategy given by the aggregation of these individual
disclosure recommendation strategies via protocol D. See the Appendix for a more detailed
proof of the proposition.

We know from Theorem 1 that for any deliberation procedure D, the most informative equi-
librium (the equilibrium with most disclosure) invoves full-disclosure of every outcome. The
equilibrium set includes other equilibria beyond the most informative and the least informa-
tive, because each team-member about whom the observer is maximally skeptical is indifferent
between disclosing and not disclosing their low outcome realizations.

In this binary environment, we can evaluate the effect of increasing the correlation between
team-members’ outcomes on the probability that outcomes are disclosed and on the equilib-
rium blame vector. This complements the analysis in section 3.1, which evaluates the effect of
changes in the deliberation procedure on equilibrium blame. Corollary 4 follows from Proposi-
tion 4 and shows that when the correlation between team-members’ outcomes increases, equi-
librium disclosure becomes more correlated with each agent’s outcome — in the sense that the
disclosure of an agent’s high outcome becomes more likely and the disclosure of that same
agent’s low outcome becomes less likely. A consequence is that every agent becomes “more to
blame” for team failures. To state this result, we propose an ordering on the correlation of team-
members’ outcomes. Suppose µ and µ′ are two outcome distributions with the same marginal
distributions for every i ∈ N . We say µ′ features more outcome correlation than µ if for every
i ∈ N , µN\i(·|ωℓ,i) ≿FOS µ′

N\i(·|ωℓ,i) and µ′
N\i(·|ωh,i) ≿FOS µN\i(·|ωh,i). (Where µN\i and

µ′
N\i indicate the distribution of outcomes for team-members other than i.)

Corollary 4. Let µ and µ′ have the same marginal distributions over Ωi = {ωℓ,i, ωh,i} for every

i ∈ N , and suppose µ′ has more outcome correlation than µ. The least-informative equilibrium

team-disclosure strategy is the same under µ and µ′ — denote it d. The following hold:

(i) Each i’s high (low) outcomes are disclosed with higher (lower) probability under µ′:

dµ′(ωh,i) =
∑

{ω:ωi=ωh,i}

µ′(ω)d(ω) ⩾
∑

{ω:ωi=ωh,i}

µ(ω)d(ω) = dµ(ωh,i).
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dµ′(ωℓ,i) =
∑

{ω:ωi=ωℓ,i}

µ′(ω)d(ω) ⩾
∑

{ω:ωi=ωℓ,i}

µ(ω)d(ω) = dµ(ωℓ,i).

(ii) All team-members are more to blame for team failures under µ′:

ωND
i (µ′) ⩽ ωND

i (µ) for all i ∈ N.

For this result, we consider increasing the correlation between agents’ outcomes without
ever making them perfectly correlated — remember that we maintain the assumption of Ω be-
ing a product space throughout. However, suppose we consider a sequence of “correlation
increases” that converges to fully correlated outcomes; that is, for all i, j ∈ N , µk(ωh,i|ωh,j) →
1 and µk(ωℓ,i|ωℓ,j) → 1. In that limit, we have that in the least-informative equilibrium
dk(ωh,i) → 1 and dk(ωℓ,i) → 0 for any i ∈ N . In words, all agents’ high outcomes are
with certainty and all agents’ low outcomes are not disclosed, also with certainty, in the limit as
correlation becomes perfect. And therefore in the least informative equilibrium — and conse-
quently in all equilibria — ωND

i (µk) → ωℓ,i.

5.2 Effort-Maximizing Deliberation in Binary Environments

The results in section 4 rank different deliberation procedures in terms of their effort-incentives
provision. Using the further tractability implied by binary environments, we can strengthen
those results and provide a characterization of deliberation procedures that maximize effort in-
centives. In a fully general binary environment, such an effort-maximizing deliberation pro-
cedure may not always exist, since a deliberation procedure may improve effort incentives for
some team-members, but decrease them for other individuals. To ensure that effort-maximizing
procedures exist, we consider only symmetric environments:

Assumption 4 (Symmetry). A binary-outcomes environment is symmetric if

(i) The deliberation procedure is symmetric: for all X ⊆ N , D(X) depends only on the

cardinality of X , |X|.

(ii) Agents’ outcomes share the same binary support: Ωi = {ωℓ, ωh} for every i ∈ N .

(iii) If all agents exert effort, then the outcome distribution is symmetric:

|{i : ωi = ωh}| = |{i : ω′
i = ωh}| ⇒ µ(ω; eN) = µ(ω′; eN).
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(iv) Agents’ efforts affect the outcome distribution symmetrically:

For every i, j ∈ N,µ(ωi = w, ωj = w′, ωN\i,j; eN\i) = µ(ωi = w′, ωj = w, ωN\i,j; eN\j).

The symmetry assumption requires the deliberation procedure to be symmetric, as well as
the outcome distribution and effort environment. Conditions (iii) and (iv) are sufficient sym-
metry requirements for our evaluation of effort incentives in terms of the implementation of
full-effort equilibria. If all team-members exert effort, then condition (iii) requires the probabil-
ity of an outcome ω to depend only on the number of agents to whom ω is a high outcome; in
this way, the probability of that outcome does not depend on the identity of the agents to whom
ω is a high or a low outcome. Condition (iv), in turn, imposes that the impact of an agent’s effort
decision on their own outcome — as well as the impact of their effort on other team-members’
outcomes — is the same across all team-members. Note that we do not impose that the outcome
distribution when all but one team-member exerts effort be itself symmetric, because we allow
an agent’s effort to affect their own and other team-members’ outcomes differently.

Lemma 4. Under Assumption 4, there are at most two symmetric team-disclosure equilibria

in the subgame where all team-members exert effort. First, a full-disclosure equilibrium with

ωND
i = ωℓ for all i ∈ N . Second, if D({i}) ̸= 1, there exists a unique symmetric partial-

disclosure equilibrium.

Let SFE(D) be the symmetric full-effort set of the symmetric deliberation procedure D:
a cost vector c ∈ SFE(D) if, given D, there is a team-disclosure strategy d, with c ∈ fe(d),
that can be sustained in a symmetric team-disclosure equilibrium under the symmetric full-
effort distribution µ(·; eN). We say the symmetric deliberation procedure D maximizes effort
incentives if for any symmetric procedure D′, SFE(D′) ⊆ SFE(D). By symmetry, we also
know that for every D, the set SFE(D) is equal to (0, c̄(D)]n for some c̄(D) ∈ R+. And so D

maximizes effort incentives if c̄(D) ⩾ c̄(D′) for all symmetric deliberation procedures D′.
Lemma 4 implies that, to evaluate the effort incentives provided by a symmetric procedure

D, it suffices to consider the incentives provided by its unique partial-disclosure equilibrium
of the team-disclosure subgame. By Lemma 3 in section 4, we then know that c̄(D) is deter-
mined by the extra effort-incentives provided by “blame misattribution” in the unique symmet-
ric partial-disclosure equilibrium under deliberation procedure D; and c̄(D) = 0 if D is such
that all team-members can unilaterally disclose. The maximum cost c̄(D) is thus the unique
value of c that satisfies equation (4) with equality. Lemma 5 follows from the fact that c̄(D) is a
continuous function of D, and that the space of symmetric deliberation procedures is compact.
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Lemma 5. In a binary symmetric environment, there exists a symmetric deliberation procedure

D that maximizes effort incentives. That is, for every symmetric deliberation procedure D′,

SFE(D′) ⊆ SFE(D).

5.2.1 Effort-Maximizing Deliberation with Two Team-Members

If a team is made up of two individuals, there are four possible team outcomes: (ωℓ, ωℓ),
(ωℓ, ωh), (ωh, ωℓ), and (ωh, ωh). For a given team-member i, consider two distributions over
these four outcomes: the distribution µ(·; eN) implied if both team-members exert effort, and
the distribution µ(·; eN\i) induced if only team-member −i exerts effort. The following features
of each of these distributions are important for our analysis:

ρ =
µ
[
(ωℓ, ωℓ); eN\i

]
µ
[
(ωh, ωℓ); eN\i

]
+ µ

[
(ωℓ, ωh); eN\i

] and ρ̄ =
µ [(ωℓ, ωℓ); eN ]

µ [(ωh, ωℓ); eN ] + µ [(ωℓ, ωh); eN ]

measure the correlation between the two team-members low outcomes, when one or both agents
exert effort, respectively. Specifically, if at least one agent has a low outcome, then these mea-
sure the ratio between the probability that both agents had a low outcome relative to the proba-
bility that exactly one of them did. (Note that ρ does not depend on the selected agent i because
of symmetry.) The terms

σ =
µ
[
(ωi = ωh, ω−i = ωℓ); eN\i

]
µ
[
(ωh, ωℓ); eN\i

]
+ µ

[
(ωℓ, ωh); eN\i

] and σ̄ =
µ [(ωi = ωh, ω−i = ωℓ); eN ]

µ [(ωh, ωℓ); eN ] + µ [(ωℓ, ωh); eN ]

measure the probability that i has a high outcome, conditional on exactly one team-member
having a high outcome — again calculated if only team-member −i or both team-members
exert effort, respectively. If σ < 1/2, then team-member −i has a higher expected outcome
than team-member i when i does not exert effort; the opposite holds if σ > 1/2. Our symmetry
assumption implies that σ̄ = 1/2. Therefore σ < 1/2, or equivalently σ̄ − σ > 0, indicates that
by exerting effort team-member i can balance the outcome distribution in their favor; conversely,
σ̄ − σ < 0 indicates that i’s effort favors their partner −i. In sum,

• ∆σ = σ̄ − σ measures the degree to which effort is self-improving.

• ∆ρ = ρ̄− ρ measures the degree to which effort correlates team-members’ outcomes.

Proposition 5 relates the effort-maximizing deliberation procedure to these features of the ef-
fort environment. Because there are only two individuals in a team, a symmetric deliberation
procedure is described by a single parameter D(1) ≡ D({1}) = D({2}). Proposition 5 shows
that the effort-maximizing value of D(1) is increasing in ∆σ and decreasing in ∆ρ.
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Proposition 5. Fix ρ̄ and σ̄, and let ρ and σ vary. Denote by D∗ the level of D(1) in the

effort-maximizing deliberation procedure.

1. If ∆ρ = ρ̄− ρ < 0, D∗ ∈ {0, 1} and D∗ = 1 if and only if

σ

σ̄
⩽

ρ+ 1

ρ̄+ 1
.

D∗ is therefore non-increasing in σ and non-decreasing in ρ; or equivalently.

2. If ∆ρ > 0, then D∗ is a continuous non-increasing (non-decreasing) function of σ (of ρ).

The proof of Proposition 5 is in the Appendix. This proposition complements the results
in section 4 by showing that, in a binary-outcome environment, effort-maximizing deliberation
procedures are “more unilateral” when effort is more self-improving or when effort correlates
individuals’ outcomes to a lesser extent.

5.2.2 Effort-Maximizing Deliberation in Larger Teams

We now consider, in a numerical exercise, effort-maximizing deliberation in teams with more
than two team-members. To that end, we specify outcome distributions as follows. First suppose
all team-members exert effort. Then with probability ρ̄ ∈ (0, 1), all team members receive the
same outcome, so that either ω = (ωℓ, ..., ωℓ) (with probability hT ) or ω = (ωh, ..., ωh) (with
probability 1 − hT ). With complementary probability 1 − ρ, each team-member i ∈ N draws
their own outcome ωi ∈ {ωℓ, ωh} independently; the probability of a high outcome for each
individual is h̄. If instead individual i deviates to no effort, the probability that all team-members
receive the same outcome is ρ, the probability that i receives an independent high outcome is
hi, and the probability that a team-member j ̸= i receives an independent high outcome is hj .

We use ∆σ = (h̄ − hi)/(h̄ − hj) as a measure of how self-improving i’s effort is; and
∆ρ = ρ̄ − ρ as a measure of how much i’s effort increases the correlation in individuals’ out-
comes. Further, we assume that the team must use a symmetric and deterministic deliberation
procedure: D(X) = 1 if |X| ⩾ K and D(X) = 0 if |X| < K, for some 1 ⩽ K ⩽ N . The
value K is therefore the number of individual recommendations required for an outcome to be
disclosed. If K = N , then disclosure must be a decision made by consensus, and K = 1

corresponds to the unilateral disclosure protocol. We wish to assess what is K∗, the degree of
consensus required for disclosure in the effort-maximizing deliberation procedure, and how it
varies with ∆ρ and ∆σ.

In the Appendix, we calculate the “misattributed blame” component of individual effort
incentives under different deliberation procedures and state a proposition ranking effort incen-
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Figure 4: Effort-maximizing degree of consensus required for disclosure as a function of ∆ρ and ∆σ.
In the left panel, ρ̄ = .5 and changes in ρ create the variation in ∆ρ. Other parameters are fixed at
hT = hi = hj = .5 and h̄ = .6. In the right panel, h̄ = .6 and hj = .5, and changes in hi create the
variation in ∆σ. Other parameters are fixed at hT = .5 and ρ = ρ̄ = .5. In both panels, the number of
team-members is set to n = 10.

tives provided by different consensus levels K. We also use these expressions in our numerical
exercise to determine the effort-maximizing required consensus K∗.

Figure 4 displays the numerical results, which are in line with the results shown for teams
with n = 2. The parameters used in the simmulation are specified in the figure, but the results
are robust to various parameter specifications. We see that in effort environments in which i’s
effort more strongly correlates individuals’ outcomes, it is best (in terms of effort incentives)
to require higher degrees of consensus in order to disclose the team’s outcome. And in more
“self-improving” effort environments, it is best to require lower degrees of consensus for the
team to choose to disclose an outcome.
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A Proofs

A.1 Proof of Theorem 1

We prove the three statements in the Theorem separately.

A.1.1 Proof of Statement 1

It is easy to see that a full-disclosure equilibrium always exists, where xi(ω) = 1 for all ω ∈ Ω

and all i ∈ N , and ωND
i = min{ωi : ω ∈ Ω}. Given this vector of no-disclosure beliefs,

“always disclose” is individual’s as-if pivotal optimal behavior. The vector of no-disclosure
beliefs is Bayes-consistent, because no-disclosure does not happen on-path.

A.1.2 Proof of Statement 2

Let i be a team-member who can unilaterally disclose. Suppose by contradiction that a partial-
disclosure equilibrium exists in which ωND

i > min(Ωi). Then person i’s as-if pivotal disclosure
recommendations must satisfy xi(ω) = 1 whenever ωi > ωND

i ; and because i can unilaterally
choose disclosure, all such outcome realizations are disclosed. Consequently, all outcomes
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ω that are not disclosed with some probability must satisfy ωi ⩽ ωND
i . Also note that if an

outcome ω is not disclosed with some probability, then the outcome ω̂ with ω̂j = ω for all
j ̸= i and ω̂i = min(Ωi) must also be concealed with equal or larger probability. These
two observations imply that E[ωi| no disclosure] is strictly smaller than the initially conjectured
ωND
i , which contradicts that the initial conjecture was indeed an equilibrium.

Consequently, in all partial-disclosure equilibria, we must have ωND
i = min(Ωi) for every

team-member i who can unilaterally choose disclosure.

A.1.3 Proof of Statement 3

Define a map Φ : co(Ω) ⇒ co(Ω), as follows:
For each ω̄ ∈ co(Ω), ω̂ ∈ Φ(ω̄) if and only if there exists a vector x of individual disclosure
recommendation strategies satisfying xi(ω) = 0 if ωi = min(Ωi), and

ωi > ω̄i ⇒ xi(ω) = 1 and ωi < ω̄i ⇒ xi(ω) = 0,

and such that

ω̂i =

∑
Ω ωi(1− d(ω))µ(ω)∑
Ω(1− d(ω))µ(ω)

, where d(ω) =
∑
X⊆N

ΠX(ω)D(X) for every ω ∈ Ω.

In words, Φ maps each “candidate vector” of equilibrium no-disclosure posteriors into a vector
of “individually rational” no-disclosure posteriors which is consistent with the starting can-
didate vector. These “individually rational” posteriors are those consistent with agents’ as-if
pivotal optimal behavior given the candidate vector of no-disclosure beliefs. We allow individ-
uals to use any mixed strategy if their realized outcome equals their candidate no-disclosure
posterior, with the exception that individuals always recommend to not disclose if their worst
possible outcome realizes.

First note that Φ(ω̄) is non-empty for every ω̄ ∈ co(Ω), because no-disclosure happens on
path for all the described strategies — at the very least, all agents recommend non-disclosure
when ω = (min(Ω1), ...,min(ΩN)), and the team chooses no disclosure by consensus. Now
observe that, because the construction of Φ allows individuals to use any mixed strategy when
their realized outcome equals their candidate no-disclosure posterior, then Φ(ω̄) is a closed set
for all ω̄ ∈ co(Ω); and Φ is upper-hemicontinuous. Therefore, Φ has a closed graph, and by the
Kakutani fixed point theorem, Φ has a fixed point in co(Ω). It is easy to see that a fixed point of
Φ defines an equilibrium of the team-disclosure game.

Now let I ⊆ N be the set of team-members who cannot unilaterally choose disclosure. We
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will argue that there must be a fixed point w of Φ with wi > min(Ωi) for all i ∈ I . To that end,
let w ∈ Φ(w) be a fixed point of Φ. Then it must be that there is a vector of individual disclosure
recommendation strategies x satisfying xi(ω) = 0 if ωi = min(Ωi) such that for every i ∈ N ,

wi =

∑
Ω ωi(1− d(ω))µ(ω)∑
Ω(1− d(ω))µ(ω)

, where d(ω) =
∑
X⊆N

ΠX(ω)D(X) for every ω ∈ Ω.

Now take i ∈ I; it must be that all realizations ω with ωj = min(Ωj) for every j ̸= i are
not disclosed — regardless of the realization of ωi — because i cannot unilaterally choose
disclosure. Consequently, every possible realized outcome for individual i is not disclosed with
positive probability, and therefore wi > min(Ωi). This fixed-point of Φ thus defines a partial-
disclosure equilibrium in which ωND

i > min(Ωi) for every i ∈ I .

A.2 Proof of Lemma 1

First fix a full-support outcome distribution µ. For each team-member i ∈ N , for k ∈ {1, ..., |Ωi|},
we denote by ωk

i the kth lowest value in Ωi.

Claim 1. Consider the following class of deliberation procedures: D(∅) = 0, D(N) = 1,

and, for some ϵ ∈ (0, 1), ϵ ⩽ D(I) < 1 for every I /∈ {∅, N}. For every i ∈ N and every

k ∈ {2, ..., |Ωi|}, there exists an ϵik ∈ (0, 1) such that if ϵ > ϵik, then no partial-disclosure

equilibrium exists in which

ωi > ωk
i ⇒ xi(ω) = 1 and ωi ⩽ ωk

i ⇒ xi(ω) < 1. (6)

Proof of Claim. Fix a team-member i and some k ∈ {2, ..., |Ωi|}. Consider a candidate partial-
disclosure equilibrium, under a deliberation protocol in the class defined in the statement of the
claim, in which

ωi > ωk
i ⇒ xi(ω) = 1 and ωi ⩽ ωk

i ⇒ xi(ω) < 1.

In such an equilibrium, we must have

ωND
i =

∑
Ω ωi(1− d(ω))µ(ω)∑
Ω(1− d(ω))µ(ω)

, where d(ω) =
∑
X⊆N

ΠX(ω)D(X) for every ω ∈ Ω,

where remember ΠX(ω) is the probability that exactly the subset X of team-members recom-
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mend the disclosure of outcome ω. Because i recommends disclosure of all outcomes with
ωi > ωk

i , it must be that d(ω) ⩾ ϵ for all such ω. In contrast, there exist outcomes with ωi < ωk
i

— for example, ω = (min(Ω1), ...,min(Ωn)) — for which d(ω) = 0 in any such equilibrium.
Consequently, if ϵ ∈ (0, 1) is sufficiently large — above some ϵik ∈ (0, 1) — then we must have
ωND
i < ωk

i , which contradicts the initially assumed equilibrium behavior of individual i.

Let ϵ̄ = maxi,k ϵik and consider deliberation procedures satisfying ϵ̄ ⩽ D(I) < 1. By
Claim 1, we know that there is no partial disclosure equilibrium in which equilibrium disclosure
recommendations satisfy (6) for any i ∈ N and any k ∈ {2, ..., |Ωi}. But e know from Theorem
1 that a partial-disclosure equilibrium exists, in which ωND

i > min(Ωi) for all i ∈ N . So it
must be that in such an equilibrium, for each i,

ωi > min(Ωi) ⇒ xi(ω) = 1 and ωi = min(Ωi) ⇒ xi(ω) = 0.

And consequently, in such partial-disclosure equilibrium, we must have min(Ωi) < ωND
i < ω2

i

for every team-member i ∈ N . The equilibrium is therefore strict.

Now for the second statement in the lemma, fix a deliberation procedure D with D({i}) < 1

for every i ∈ N . The proof uses the following claim, analogous to Claim 1. The proof of the
claim, and that of the statement follow analogously to the proof of the first statement.

Claim 2. Consider the following class of outcome distributions: µ(ω) > 0 for all ω ∈ Ω and

µ(ω) < ϵ for all ω ̸= (min(Ω1), ...,min(Ωn)). For every i ∈ N and every k ∈ {2, ..., |Ωi|},

there exists an ϵik ∈ (0, 1) such that if ϵ < ϵik, no partial-disclosure equilibrium exists in which

ωi > ωk
i ⇒ xi(ω) = 1 and ωi ⩽ ωk

i ⇒ xi(ω) < 1.

A.3 Proof of Lemma 2

At the fixed strict equilibrium, we have

ωND
i =

∑
Ω ωi(1− d(ω))µ(ω)∑
Ω(1− d(ω))µ(ω)

, where d(ω) =
∑
X⊆N

ΠX(ω)D(X) for every ω ∈ Ω,
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where ΠX(·) is determined by the equilibrium individual recommendation strategies. Consider
a different deliberation procedure D̂, and let for each i ∈ N ,

ω̂ND
i =

∑
Ω ωi(1− d̂(ω))µ(ω)∑
Ω(1− d̂(ω))µ(ω)

, with d̂(ω) =
∑
X⊆N

ΠX(ω)D̂(X) for every ω ∈ Ω, (7)

where d̂ is calculated under the same original equilibrium individual recommendation strategies,
but the new deliberation procedure D̂. It is easy to see that for every ϵ > 0, there is some δ > 0

such that e(D, D̂) < δ implies e(ωND, ω̂ND) < ϵ, where e indicates the Euclidian distance.
For each team-member i ∈ N , for k ∈ {1, ..., |Ωi|}, we denote by ωk

i the kth lowest value
in Ωi. Then take D̂ with e(D, D̂) small enough, so that for every i ∈ N , ωk

i < ωND
i < ωk+1

i

implies ωk
i < ω̂ND

i < ωk+1
i . Therefore the equilibrium disclosure recommendation strategies

given ωND are also equilibrium recommendation strategies given ω̂ND; and so ω̂ND is a strict
equilibrium under D̂, ω̂ND ∈ Eµ

D̂
. And so there exists a continuous selection E of the strict-

equilibrium correspondence such that E(D) = ε.
Further note that for any continuous selection E ′ of the strict-equilibrium correspondence,

for any D̂ close enough to D, ω̂ND = E(D̂) must satisfy ωk
i < ω̂ND

i < ωk+1
i for each i — where

ωk
i and ωk+1

i are such that ωk
i < ωND

i < ωk+1
i . So it must be that in the equilibrium E(D̂), every

team-member uses the same recommendation strategy as in the original equilibrium ωND ∈ Eµ
D.

And consequently ˆωND must satisfy (7), and so E(D̂) = E ′(D̂). Therefore, in a neighborhood
of D, there exists a unique continuous selection of the strict-equilibrium correspondence.

A.4 Proof of Proposition 1

Fixing a starting strict equilibrium with no-disclosure beliefs ωND, we can partition each team-
member’s outcome realizations Ωi into low realizations with ωi < ωND

i and high realizations
with ωi > ωND

i . Accordingly, for each team-outcome realization ω ∈ Ω, we can define the
set of team-members for which this realization was high: H(ω) = {i ∈ N : ωi > ωND

i }.
Remember that the distribution of outcomes is µ. With a slight abuse of notation, for any given
set I ⊆ N , we let µ (H(ω) = I) be the probability that an outcome ω realizes which is a high
realization for exactly team-members I .

Lemma 6. Fix a starting deliberation procedure D and a strict equilibrium ωND. Let dD =

(dD(I))I⊆N be a marginal change to the deliberation procedure. Then we have, for each i ∈ N ,

dωND
i =

∑
I⊆N

µ(H(ω) = I)∑
I′⊆N µ(H(ω) = I ′)(1−D(I ′))

[
ωND
i − E (ωi|H(ω) = I)

]
dD(I). (8)
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Proof of Lemma. We can write ωND
i as

ωND
i =

∑
I⊆N µ(H(ω) = I)(1−D(I))E(ωi|H(ω) = I)∑

I⊆N µ(H(ω) = I)(1−D(I))
,

where note that we do not have to consider agent mixed-strategies because the equilibrium
is strict. Now note that small variations in the protocol D only change individual disclosure
strategies for zero-measure sets of outcome realizations — because the original equilibrium is
strict. Therefore the change in ωND

i can be computed only as its “direct effect,” as follows.

dωND
i =

∑
I⊆N

[
−µ(H(ω) = I)E(ωi|H(ω) = I)∑

I′⊆N µ(H(ω) = I ′)(1−D(I ′))

+ µ(H(ω) = I)

∑
I′⊆N µ(H(ω) = I ′)(1−D(I ′))E(ωi|H(ω) = I ′)[∑

I′⊆N µ(H(ω) = I ′)(1−D(I ′))
]2 ]

dD(I) =

=
∑
I⊆N

µ(H(ω) = I)∑
I′⊆N µ(H(ω) = I ′)(1−D(I ′))

[
ωND
i − E (ωi|H(ω) = I)

]
dD(I).

Back to the proof of the proposition. Suppose the first condition, condition (2), holds. Let
m = min

{
dD(I)
1−D(I)

: i ∈ I
}

and M = max
{

dD(I)
1−D(I)

: i /∈ I
}

, so that m ⩾ M . Then, using
equation (8), we have

dωND
i =

∑
I⊆N

µ(H(ω) = I)(1−D(I))∑
I′⊆N µ(H(ω) = I ′)(1−D(I ′))

[
ωND
i − E (ωi|H(ω) = I)

] dD(I)

(1−D(I))

⩽ m

[ ∑
i∈I⊆N

µ(H(ω) = I)(1−D(I))∑
I′⊆N µ(H(ω) = I ′)(1−D(I ′))

(
ωND
i − E (ωi|H(ω) = I)

)]

+M

 ∑
i/∈I⊆N

µ(H(ω) = I)(1−D(I))∑
I′⊆N µ(H(ω) = I ′)(1−D(I ′))

(
ωND
i − E (ωi|H(ω) = I)

)

⩽ m

[∑
I⊆N

µ(H(ω) = I)(1−D(I))∑
I′⊆N µ(H(ω) = I ′)(1−D(I ′))

(
ωND
i − E (ωi|H(ω) = I)

)]

= m

[
ωND
i −

∑
I⊆N

µ(H(ω) = I)(1−D(I))E (ωi|H(ω) = I)∑
I′⊆N µ(H(ω) = I ′)(1−D(I ′))

]
= 0.
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The inequalities follow from (2) and the fact that ωND
i ⩽ E(ωi|H(ω) = I) if i ∈ I and

ωND
i ⩾ E(ωi|H(ω) = I) if i /∈ I . The last equality follows from the definition of ωND

i .
Following analogous steps, it is easy to see that if condition (3) holds, then dωND

i ⩾ 0.

A.5 Proof of Theorem 2

The proof uses the following auxiliary lemma:

Lemma 7. D is such that disclosing requires more consensus than concealing if and only if for

all I ⊆ N such that D(I) = 1 and D(N \ I) < 1, there exists J ⊂ I such that D(N \ J) < 1.

Proof of Lemma 7. One direction (⇒) is trivial given the definition of “disclosing requires more
consensus than concealing.” Consider the other direction (⇐). Suppose D is such that for all
I ⊆ N such that D(I) = 1 and D(N \ I) < 1, there exists J ⊂ I such that D(N \ J) < 1.

Fix some subset I ⊆ N such that D(I) = 1 and D(N \ I) < 1, and take some J ⊂ I such
that D(N \J) < 1. If D(J) < 1, then we know that there is a set J ⊂ I such that D(N \J) < 1

and D(J) < 1. Suppose instead that D(J) = 1. Then there must be some K ⊂ J such that
D(N \K) < 1. If D(K) < 1, then we know that there is a set K ⊂ I such that D(N \K) < 1

and D(K) < 1. If not, we can repeat this procedure until we find such a subset of I — the
repetition of the procedure must return a subset of I that satisfies the conditions, because we
know that D(N) = 1.

We can now prove the theorem in two parts:

Part 1 (⇒) . If disclosing does not require more consensus than concelaing, then there exists a
full disclosure equilibrium that is consistent with deliberation.

Suppose D is such that disclosing does not require more consensus than concealing. By
Lemma 7, we know that there exists some subgroup I ⊂ N such that D(I) = 1, D(N \ I) < 1

and, for all J ⊂ I , D(N \ J) = 1. Consider a candidate full-disclosure equilibrium where
xi(ω) = 1 for all ω ∈ Ω and all i ∈ I (we will specify the other agents’ individual disclosure
strategies later). These disclosure strategies aggregated according to the given deliberation
protocol guarantee that all evidence is disclosed. Moreover, in this candidate equilibrium, we
conjecture that the (off-path) no-disclosure beliefs are ωND

i = min(Ωi) for each i ∈ I .
We want to build another vector of individual disclosure strategies to be used to “justify”

these off-path beliefs. We do so as follows: for every i ∈ I , let x̂i(ω) = 0 if ωi = min(Ωi) and
x̂i(ω) = 1 otherwise. And for every j ∈ N \ I , x̂j(ω) = 1 for all ω ∈ Ω. Given the deliberation
protocol, the team-disclosure strategy implied by x̂ satisfies d(ω) = D(x̂(ω)) = 0 if and only
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if ωi = min(Ωi) for all i ∈ I . And therefore Bayes updating implies that ωND
i = min(Ωi)

for all i ∈ I . To complete the construction of the equilibrium, for every j ∈ N \ I , let ωND
j

be the Bayes-consistent no-disclosure beliefs implied by x̂. And for every j ∈ N \ I , let their
equilibrium individual disclosure strategy be xj(ω) = 1 if ωj ⩾ ωND

j and xj(ω) = 0 otherwise.

Part 2 (⇐) . If disclosure requires more consensus than concealing, then there is no full-
disclosure equilibrium that is consistent with deliberation.

Let D be such that disclosure requires more consensus than concealing. And suppose a vec-
tor x of individual disclosure strategies and a vector ωND of no-disclosure posteriors constitute
a full-disclosure equilibrium. Let I ⊂ N be the largest subgroup of team members such that

ωND
i = min(Ωi) for all i ∈ I.

Claim 3. The set I is non-empty, and D(I) = 1.

Proof of Claim. Suppose towards a contradiction that D(I) < 1 (which would vacuously hold
if I were empty). Then every member of subgroup N \ I strictly prefers to not disclose all
realizations ω where ωi = min(Ωi) for every i ∈ N \ I . And moreover, because D(I) < 1,
the subgroup N \ I is able to block the disclosure of such realizations with positive probability.
This contradicts the assumption that the starting equilibrium has full-disclosure.

Take a vector of individual disclosure strategies x̂ to be used as a candidate to “justify” the
off-path no-disclosure beliefs ωND. Take some ω̂ ∈ Ω with ω̂i = min(Ωi) for every i ∈ I ,
and such that d(ω̂) = D(x̂(ω̂)) < 1 — such a ω̂ must exist if x̂ is to justify the conjectured
no-disclosure beliefs. Let I ′ be the set of team-members such that x̂i(ω̂) < 1 for i ∈ I ′. We
consider two cases.

Case 1. Suppose there is some i∗ ∈ I \ I ′; that is, there is some i∗ ∈ I such that x̂i∗(ω̂) =

1. Then there must exist some ω̂′ with ω̂′
i = ω̂i for all i ∈ N \ {i∗} and ω̂′

i∗ ̸= ω̂i∗ such
that d(ω̂′) ⩽ d(ω̂) < 1 (because each individual strategy depends only on their own realized
outcome). But note that, because ω̂′

i∗ ̸= ω̂i∗ , then it must be that ω̂′
i∗ > min(Ωi∗); and therefore

the no-disclosure posterior about i∗’s outcome implied by x̂ cannot be min(Ωi∗).

Case 2. Suppose instead that I ⊆ I ′ (and therefore I \ I ′ = ∅).
In this case, it must be that D(I ′) = 1 — because D(I) = 1 and the deliberation procedure

is monotonic — and D(N \ I ′) < 1 by construction, since we assumed that d(ω̂) < 1. And
therefore, because D is such that disclosure requires more consensus than concealing, there
exists some I ′′ ⊂ I ′ such that D(N \ I ′′) < 1. If I \ I ′′ = ∅, then I ′′ itself must have a subset
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I ′′′ such that D(N \ I ′′′) < 1. By iterating this process, we note that there is some J ⊂ I ′ such
that D(N \ J) < 1 and I \ J ̸= ∅.

Then take some i∗ ∈ I \ J . There exists some ω̂′ with ω̂′
i = ω̂i for all i ∈ N \ {i∗} and

ω̂′
i∗ = ω̂i∗ such that d(ω̂′) ⩽ d(ω̂) < 1 (because each individual strategy depends only on their

own realized outcome). But then it must be that ω̂′
i∗ > min(Ωi∗); and therefore the no-disclosure

posterior about i∗’s outcome implied by x̂ cannot be min(Ωi∗).

Combining cases 1 and 2, we conclude that there is no vector of individual disclosure rules x̂,
with each individual strategy depending only on their own realized outcome, that can “justify”
the conjectured no-disclosure posteriors as consistent with the deliberation protocol. And this
is true for any conjectured full-disclosure equilibrium. Consequently, there is no full-disclosure
equilibrium that is consistent with deliberation.

A.6 Proof of Lemma 3

Fix a vector of effort costs c ∈ Rn
++. Suppose team member i anticipates that every other team

member will choose ej = 1 (for j ̸= i), and that the team disclosure strategy will be d. Then i’s
payoff from choosing effort ei = 1 is∑

Ω

ωid(ω)µ(ω; eN) +
∑
Ω

(1− d(ω))ωND
i µ(ω; eN)− ci

=
∑
Ω

ωid(ω)µ(ω; eN) +
∑
Ω

(1− d(ω))

[∑
Ω ωi(1− d(ω))µ(ω; eN)∑
Ω(1− d(ω))µ(ω; eN)

]
µ(ω; eN)− ci

=
∑
Ω

ωiµ(ω; eN) +
∑
Ω

(1− d(ω))

[∑
Ω ωi(1− d(ω))µ(ω; eN)∑
Ω(1− d(ω))µ(ω; eN)

− ωi

]
µ(ω; eN)− ci

=
∑
Ω

ωiµ(ω; eN)− ci,

where the last equality uses the fact that
∑

Ω(1−d(ω))
[∑

Ω ωi(1−d(ω))µ(ω;eN )∑
Ω(1−d(ω))µ(ω;eN )

− ωi

]
µ(ω; eN) = 0.

And i’s payoff from choosing effort ei = 0 is

∑
Ω

ωiµ(ω; eN\i) +
∑
Ω

(1− d(ω))

[∑
Ω ωi(1− d(ω))µ(ω; eN)∑
Ω(1− d(ω))dF (ω; eN)

− ωi

]
µ(ω; eN\i),

where note that in the second term the distribution of outcomes is affected by i’s effort choice,
but the value of ωND

i is still calculated under the presumption that ei = 1, for the deviation to
ei = 0 is not seen by the observer. Therefore, there is an equilibrium of the effort-choice stage
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where every team member exerts effort if and only if for every i ∈ N ,

∑
Ω

ωi

[
µ(ω; eN)− µ(ω; eN\i))

]
+
∑
Ω

(1−d(ω))

[
ωi −

∑
Ω ωi(1− d(ω))µ(ω; eN)∑
Ω(1− d(ω))µ(ω; eN)

]
µ(ω; eN\i)

⩾ ci.

Or equivalently if and only if

−
∑
Ω

(1− d(ω))µ(ω; eN\i)

[∑
Ω ωi(1− d(ω))µ(ω; eN)∑
Ω(1− d(ω))µ(ω; eN)

−
∑

Ω ωi(1− d(ω))µ(ω; eN\i)∑
Ω(1− d(ω))µ(ω; eN\i)

]

+
∑
Ω

ωi

[
µ(ω; eN)− µ(ω; eN\i))

]
⩾ ci, for every i ∈ N.

A.7 Rewriting Equation (4) as (5)

The left-hand side of equation (4) is E (ωi|eN)−E
(
ωi|eN\i

)
−P

(
ND|eN\i

)
[E (ωi|ND; eN)−

E
(
ωi|ND; eN\i

)
]. Or equivalently,∑

Ω

ωi

[
µ(ω; eN)− µ(ω; eN\i)

]
+
∑
Ω

ωi(1− d(ω))µ(ω; eN\i)

−
∑

Ω(1− d(ω))µ(ω; eN\i)∑
Ω(1− d(ω))µ(ω; eN)

∑
Ω

ωi(1− d(ω))µ(ω; eN)

=
∑
Ω

d(ω)µ(ω; eN\i)

[∑
Ω

ωiµ(ω; eN)−
∑
Ω

ωiµ(ω; eN\i)

]
+
∑
Ω

(1− d(ω))µ(ω; eN\i)
∑
Ω

ωiµ(ω; eN)−
∑
Ω

(1− d(ω))µ(ω; eN\i)
∑
Ω

ωiµ(ω; eN\i)

+
∑
Ω

ωi(1− d(ω))µ(ω; eN\i)−
∑

Ω(1− d(ω))µ(ω; eN\i)∑
Ω(1− d(ω))µ(ω; eN)

∑
Ω

ωi(1− d(ω))µ(ω; eN)

=
∑
Ω

d(ω)µ(ω; eN\i)

[∑
Ω

ωiµ(ω; eN)−
∑
Ω

ωiµ(ω; eN\i)

]
+
∑
Ω

ωi(1− d(ω))µ(ω; eN\i)−
∑
Ω

(1− d(ω))µ(ω; eN\i)
∑
Ω

ωiµ(ω; eN\i)

+

∑
Ω(1− d(ω))µ(ω; eN\i)∑
Ω(1− d(ω))µ(ω; eN)

[∑
Ω

(1− d(ω))µ(ω; eN)
∑
Ω

ωiµ(ω; eN)−
∑
Ω

ωi(1− d(ω))µ(ω; eN)

]
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=
[
1− P

(
ND|eN\i

)] [
E (ωi|eN)− E

(
ωi|eN\i

)]
+ Cov

(
ωi, (1− d)|eN\i

)
−

P
(
ND|eN\i

)
P (ND|eN)

Cov (ωi, (1− d)|eN)

=
[
1− P

(
ND|eN\i

)] [
E (ωi|eN)− E

(
ωi|eN\i

)]
+

P
(
ND|eN\i

)
P (ND|eN)

Cov (ωi, d|eN)− Cov
(
ωi, d|eN\i

)
,

which is the expression in (5).

A.8 Proof of Proposition 2

A.8.1 Proof of Statement 1

The proof of statement 1 uses the following lemma.

Lemma 8. If effort is purely self-improving, then for any full-effort equilibrium disclosure rule

d with d(ω) < 1 for some ω ∈ Ω, we have that for all i ∈ N

E (ωi|ND; eN) > E
(
ωi|ND; eN\i

)
.

Proof of Lemma. For notational convenience, we fix some team-member i ∈ N , and let νw =

µi(·|w; eN), ν̂w = µi(·|w; eN\i) for all w ∈ ΩN\i and η = µN\i(·; eN) = µN\i(·; eN\i). There-
fore, for any equilibrium disclosure rule d with d with d(ω) < 1 for some ω ∈ Ω, we have

E
(
ωi|ND; eN\i

)
=

∑
ΩN\i

∑
Ωi
ωi(1− d(ωi, w))ν̂w(ωi)η(w)∑

ΩN\i

∑
Ωi
(1− d(ωi, w))ν̂w(ωi)η(w)

. (9)

E (ωi|ND; eN) =

∑
ΩN\i

∑
Ωi
ωi(1− d(ωi, w))νw(ωi)η(w)∑

ΩN\i

∑
Ωi
(1− d(ωi, w))νw(ωi)η(w)

. (10)

Now observe that for every such disclosure rule d, and every realization w ∈ ΩN\i of the out-
comes of team-members N \ i, there is some probability α(w) that the outcome is not disclosed

regardless of the realization ωi, some probability β(w) that the realization ωi (and therefore i’s
individual disclosure strategy) is pivotal for the team-disclosure decision, and some probability
1− α(w)− β(w) that the outcome is disclosed, regardless of the realization ωi. Using this, we
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can rewrite (9) as

E
(
ωi|ND; eN\i

)
=

∑
ΩN\i

[
α(w)

∑
Ωi
ωiν̂w(ωi) + β(w)

∑
ωi⩽ωND

i
ωiν̂w(ωi)

]
η(w)∑

ΩN\i

[
α(w)

∑
Ωi
ν̂w(ωi) + β(w)

∑
ωi⩽ωND

i
ν̂w(ωi)

]
η(w)

, (11)

Of course, we can rewrite (10) analogously. Let V̂w be the cdf implied by ν̂w, so that for each
ωi ∈ Ωi, V̂w(ωi) =

∑
vi⩽ωi

ν̂w(vi). And let V̂−1
w be the quantile function implied by V̂w: for

each q ∈ [0, 1], V̂w(q) = inf{ωi : V̂i(ωi) ⩾ q}. We can rewrite (11) as

E
(
ωi|ND; eN\i

)
=

∑
ΩN\i

[
α(w)

∫ 1

0
ν̂−1
w (q)dq + β(w)

∫ V̂w(ωND
i )

0
ν̂−1
w (q)dq

]
η(w)∑

ΩN\i

[
α(w) + β(w)V̂w(ωND

i )
]
η(w)

, (12)

where ωND
i = E (ωi|ND; eN) is the conjectured equilibrium observer’s no-disclosure belief.

Suppose by contradiction that E
(
ωi|ND; eN\i

)
⩾ E (ωi|ND; eN) = ωND

i . Because effort is
purely self-improving, we have V̂w(ω

ND
i ) > Vw(ω

ND
i ) and therefore

E
(
ωi|ND; eN\i

)
<

∑
ΩN\i

[
α(w)

∫ 1

0
V̂−1
w (q)dq + β(w)

∫ Vw(ωND
i )

0
V̂−1
w (q)dq

]
η(w)∑

ΩN\i
[α(w) + β(w)Vw(ωND

i )] η(w)
, (13)

where we used the fact that E
(
ωi|ND; eN\i

)
⩾ ωND

i ; which implies that the right-hand side
of (13) can be reached by removing “worse than average” realizations of ωi from the average
computed in (12). But also note that, because V̂w ≻FOS Vw for every w ∈ ΩN\i, we have
V−1
w (q) ⩾ V̂−1

w (q) for every q ∈ [0, 1]. And consequently

∑
ΩN\i

[
α(w)

∫ 1

0
V̂−1
w (q)dq + β(w)

∫ Vw(ωND
i )

0
V̂−1
w (q)dq

]
η(w)∑

ΩN\i
[α(w) + β(w)Vw(ωND

i )] η(w)
⩽

∑
ΩN\i

[
α(w)

∫ 1

0
V−1
w (q)dq + β(w)

∫ Vw(ωND
i )

0
V−1
w (q)dq

]
η(w)∑

ΩN\i
[α(w) + β(w)Vw(ωND

i )] η(w)
= E (ωi|ND; eN) .

Now combining this with (13), we have E
(
ωi|ND; eN\i

)
< E (ωi|ND; eN), which contradicts

the assumption that E
(
ωi|ND; eN\i

)
⩾ E (ωi|ND; eN); thereby proving the lemma.

Using Lemma 8 we therefore know that for any full-effort equilibrium disclosure rule d with
d(ω) < 1 for some ω ∈ Ω, the second term in the left-hand side of equation (4) — in Lemma
3 — is negative. And therefore, by Lemma 3, fe(d) ⊂ fe(d′), where d′ is the full-disclosure
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rule. And consequently FE(D) ⊂ FE(D′), where D′ is the unilateral disclosure protocol and
D is any other deliberation procedure.

A.8.2 Proof of Statement 2

First note that for any team-disclosure rule d and any effort vector e, we can write

E (ωi|ND; e) =

∑
Ωi
ωi(1− di(ωi))µi(ωi; e)∑

Ωi
(1− di(ωi))µi(ωi; e)

, (14)

where µi(·; e) is the marginal distribution of ωi given e, and

di(ωi) =
∑

w∈ΩN\i

d(ωi, w)µN\i(w|ωi; e)

is the overall probability that a ωi would be disclosed (integrating over all the possible outcome
realizations for other team members, given that ωi happens).

Now consider the consensus disclosure deliberation procedure. By Theorem 1, there exists
an equilibrium in which ωND

i > min(Ωi) for every i ∈ N . For ease of exposition, assume that
equilibrium is strict, so that for each i ∈ N , ωND

i ̸∈ Ωi. We can thus express i’s individual
disclosure strategy without loss as xi(ω) = 1 if ωi > ωND

i and xi(ω) = 0 otherwise. The proof
works analogously if ωND

i ∈ Ωi for any i ∈ N .
Because the disclosure must be chosen by consensus, we have that for each i ∈ N and a

given effort vector e,

di(ωi; e) =

0, if ωi ⩽ ωND
i

P
(
ωj > ωND

j for all j ̸= i|ωi; e
)

, if ωi > ωND
i .

And because effort is purely team-improving, for all i ∈ N ,

di(ωi; eN) = di(ωi; eN\i) = 0, if ωi ⩽ ωND
i and di(ωi; eN) > di(ωi; eN\i), if ωi > ωND

i ,

where this inequality is due to ωj > ωND
j for all j being an upper set of ΩN\i. Combining

this with the expression in (14), and dropping the dependence of µi(·; e) on effort (since team-
improving effort does not affect an agent’s own marginal outcome distribution), we thus have

E
(
ωi|ND; eN\i

)
=

∑
Ωi
ωi(1− di(ωi; eN\i))µi(ωi)∑

Ωi
(1− di(ωi; eN\i))µi(ωi)
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=

∑
ωi⩽ωND

i
ωiµi(ωi) +

∑
ωi>ωND

i
ωi(1− di(ωi; eN\i))µi(ωi)∑

ωi⩽ωND
i

µi(ωi) +
∑

ωi>ωND
i

(1− di(ωi; eN\i))µi(ωi)

>

∑
ωi⩽ωND

i
ωiµi(ωi) +

∑
ωi>ωND

i
ωi(1− di(ωi; eN))µi(ωi)∑

ωi⩽ωND
i

µi(ωi) +
∑

ωi>ωND
i

(1− di(ωi; eN))µi(ωi)
= ωND

i = E (ωi|ND; eN) .

And therefore in any full-effort equilibrium, for each i ∈ N , the second term on the left-
hand side of (4) is strictly positive. And consequently the full-effort equilibrium set under the
consensus disclosure protocol (let’s denote it D) is non-empty, so FE(D) ̸= ∅.

In contrast, for any deliberation procedure D′ in which some team-member can unilaterally
choose disclosure, it must be that FE(D′) = ∅. To see, let i be a team-member who can
unilaterally choose disclosure. By Theorem 1, in any equilibrium we must have d(ω) = 1 for all
ω with ωi > min(Ω); and therefore in any such equilibrium, E(ωi|ND, eN) = E(ωi|ND, eN\i).
Moreover, because effort is purely team-improving E(ωi|eN) = E(ωi|eN\i). And so there are
no direct or indirect benefits to i from exerting effort. Because effort is costly, there cannot be
an equilibrium in which i exerts effort. Consequently, for any c ∈ Rn

++, FE(D′) = ∅.
And so we trivially have FE(D′) ⊂ FE(D), which concludes the proof of the statement.

A.9 Proof of Proposition 3

Step 1. Fix D′ ̸= D, where D is the unilateral disclosure protocol. As our first step in the proof,
we observe (in Lemma 9) that if ϵ is sufficiently large, an equilibrium of the team-disclosure
stage exists in which every team-member favors disclosure if and only if they do not draw their
worst outcome.

Lemma 9. There exists some ϵ′ ∈ (0, 1) such that if ϵ > ϵ′, there exists an equilibrium of

the team-disclosure stage — given full effort and deliberation procedure D′ — where for every

i ∈ N ,

xi(ω) =

0, if ωi = ωi ≡ min(Ωi)

1, otherwise.
(15)

Proof of Lemma. Conjecture an equilibrium of the team-disclosure stage in which individual
disclosure strategies are as given in (15); and suppose the implied equilibrium team-disclosure
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strategy is d(ω) = D(x(ω)). Then we have for each i ∈ N , and each ϵ ∈ (0, 1),

ωND,ϵ
i = Eϵ (ωi|ND; eN)

= Pϵ(ωi = ωi|ND; eN)ωi + Pϵ(ωi ̸= ωi|ND; eN)Eϵ
(
ωi|ND,ωi ̸= ωi; eN

)
. (16)

Note that, given the individual disclosure strategies in (15), no-disclosure happens only if at
least one team-member j ∈ N draws their worst possible outcome ωj . But as ϵ → 1, it must
be that for any i, j ∈ N , P(ωi = ωi|ωj = ωj) → 1. This, along with (16) and the fact that
Eϵ

(
ωi|ND,ωi ̸= ωi

)
is bounded implies that for every i ∈ N ,

lim
ϵ→1

ωND,ϵ
i = ωi. (17)

And consequently there is some ϵ′ such that ϵ > ϵ′ implies that for every i ∈ N , ωND,ϵ
i < ωi

for all ωi ∈ Ωi \ {ωi}. And therefore the individual disclosure strategy in (15) is individually
rational and can be supported as an equilibrium of the team-disclosure stage.

Step 2. For ϵ > ϵ′ as given in Lemma 9, in the team-disclosure equilibrium described in the
lemma we have for some i ∈ N ,

E
(
ωi|ND; eN\i

)
> ωi.

And moreover, this value is independent of ϵ. These statements are true because (i) µ(·; eN\i)

has full support over Ω and is independent of ϵ for every i ∈ N ; and (ii) D′ is not the unilateral
disclosure deliberation procedure, and therefore given the individual disclosure strategies in
(15) and D′, for all i ∈ N there exists some ω ∈ Ω with ωi ̸= ωi such that d(ω) < 1.

Step 3. Fix ϵ > ϵ′ as given in Lemma 9 and consider the team-disclosure equilibrium described
in the lemma. By equation (17), and Step 2, we know that there is some ϵ̄ > ϵ′ such that, if
ϵ > ϵ̄,

E
[
ωi|ND; eN\i

]
> E [ωi|ND; eN ]

for all i ∈ N .

Step 4. As a consequence of Step 3, and using Lemma 3, we know that if ϵ > ϵ̄, fe(d′) ⊂ fe(d)

— where d′ is the full disclosure rule and d is the equilibrium disclosure rule described in
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Lemma 9. Consequently, if ϵ > ϵ̄,

FE(D) ⊂ FE(D′),

and so the unilateral disclosure protocol is strictly dominated by D′.

A.10 Proof of Proposition 4

An equilibrium exists in which each team-member i recommends disclosure with certainty if
ωi = ωh,i and recommends concealing the outcome with certainty if ωi = ωℓ,i. To see, note
that in any equilibrium, it must be that ωND

i ∈ [ωℓ,i, ωh,i), and therefore the proposed strategy is
consistent with each agent’s “as if pivotal” rationality; and so the proposed strategies constitute
an equilibrium. Moreover, as in statement (i), they must constitute the least-informative equilib-
rium. This is true because there is no equilibrium in which any team-member recommends the
concealment of their own high outcomes — because ωND

i < ωℓ,i and therefore concealing indi-
vidual outcomes would not satisfy individual “as if pivotal” rationality — and the deliberation
procedure is monotonic.

The team’s disclosure strategy in the least-informative equilibrium is thus given by d(ω) =

D({i : ωi = ωh,i}). It is easy to see that, if i is a team-member who can unilaterally choose
disclosure, then D({i}) = 1, and therefore by monotonicity it must be that d(ω) = 1 for
all ω with ωi = ωh,i. Therefore all concealed realizations are such that ωi = ωℓ,i, and so
ωND
i = ωℓ,i. If instead i is a team-member who cannot unilaterally choose disclosure, then for

ω̂ with ω̂i = ωh, i and ω̂j = ωℓ,j , it must be that d(ω̂) = D({i}) < 1; and therefore a “high”
realization for team-member i is concealed with positive probability, yielding thus ωND

i > ωℓ,i.

A.11 Proof of Corollary 4

If µ′ has more outcome correlation than µ, then

dµ′(ωh,i) =
∑

{ω:ωi=ωh,i}

µ′(ω)d(ω) = µ′
i(ωh,i)

∑
{ω:ωi=ωh,i}

µ′(ωN\i|ωh,i)d(ω)

⩽ µi(ωh,i)
∑

{ω:ωi=ωh,i}

µ(ωN\i|ωh,i)d(ω) = dµ(ωh,i),

where the inequality is due to the fact that µ′
i(ωh,i) = µi(ωh,i), µ′(ωN\i|ωh,i) first-order stochas-

tically dominates µ(ωN\i|ωh,i) and d(ω) is an increasing function of ω. The second inequality
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in the first statement of the corollary follows analogously, using the fact that µ′(ωN\i|ωℓ,i) is
first-order stochastically dominated by µ(ωN\i|ωℓ,i).

The second statement in the corollary follows directly from the first statement and the fact
that µ and µ′ have the same marginal distributions.

A.12 Proof of Lemma 4

Theorem 1 implies that a full-disclosure equilibrium exists, which is also symmetric with
ωND
i = ωℓ for all i ∈ N . If D({i}) = 1 for every i, we know that this is the unique

symmetric equilibrium. If instead D({i}) ̸= 1, we want to argue that there exists a unique
partial-disclosure symmetric equilibrium. First note that there is a symmetric partial-disclosure
equilibrium in which ωND

i > ωℓ is equal across all team members — this is implied by the
least-informative equilibrium described in Proposition 4. Now observe that there is no other
symmetric partial-disclosure equilibrium in which ωND

i > ωℓ for all i ∈ N , for any such no-
disclosure beliefs imply that the unique individually rational “as if pivotal” recommendation
strategy for each i ∈ N is to recommend the disclosure of their “high” outcomes and the non-
disclosure of their “low” outcomes, both with certainty.

Finally note that in any partial disclosure equilibrium, it must be that ωND
i > ωℓ for some

team-member i, for otherwise the unique non-disclosed outcome must be ω = (ωℓ, ..., ωℓ),
which then implies that the equilibrium has full-disclosure. But by symmetry, it must then
be that ωND

i > ωℓ for all team-members; and so there exists no symmetric partial-disclosure
equilibrium in which ωND

i = ωℓ for some i ∈ N .

A.13 Proof of Lemma 5

From Lemmas 3 and 4, we know that full effort can be implemented in a symmetric equilibrium
given a cost vector c and deliberation procedure D — c ∈ SFE(D) — if and only if ci ∈
(0, c̄(D)] for each i ∈ N , where c̄(D) is given by

c̄(D) =
∑
Ω

ωiµ(ω; eN)−
∑
Ω

ωiµ(ω; eN\i), if D({i}) = 1,

and if D({i}) < 1, c̄(D) =
∑
Ω

ωiµ(ω; eN)−
∑
Ω

ωiµ(ω; eN\i)

+
∑
Ω

(1− d(ω))µ(ω; eN\i)

[∑
Ω ωi(1− d(ω))µ(ω; eN\i)∑
Ω(1− d(ω))µ(ω; eN\i)

−
∑

Ω ωi(1− d(ω))µ(ω; eN)∑
Ω(1− d(ω))µ(ω; eN)

]
,
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where d is the team-disclosure strategy in the unique symmetric partial-disclosure equilibrium.
Note that, by symmetry, these expressions are independent of the particular choice of i ∈ N .

Because the individual disclosure recommendation strategies are independent of D in the
unique symmetric partial-disclosure equilibrium, we know that for each ω ∈ Ω, d(ω) changes
continuously with changes in the deliberation procedure D. And moreover, for any sequence
{Dk} of symmetric deliberation procedures with Dk({i}) → 1, it must be that dk(ω) → 1 for
every ω ∈ Ω. These two facts imply that c̄(D) is a continuous function of D.

Moreover, a symmetric deliberation procedure D is fully determined by a n−1-dimensional
vector with each entry between 0 and 1 — remember that D(X) depends only on the cardinality
of X , and we fixed D(∅) = 0, D(N) = 1. Monotonicity further requires that D(X) ⩽ D(X ′)

if |X| ⩽ |X ′|. The space of deliberation procedures is thus a compact subset of [0, 1]n−1.
Consequently, there is a deliberation procedure D that maximizes c̄(D), and therefore this

procedure is such that SFE(D′) ⊆ SFE(D) for every symmetric deliberation procedure D.

A.14 Proof of Proposition 5

Because the team has two individuals, a symmetric deliberation procedure is fully described by
the disclosure probability if exactly one team-member recommends disclosure, D(1).

From Lemmas 3 and 4, we know that full effort can be implemented in a symmetric equi-
librium given a cost vector c and deliberation procedure D — c ∈ SFE(D) — if and only if
ci ∈ (0, c̄(D)] for each i ∈ N , where c̄(D) is given by

c̄(D) = E (ωi|eN)− E
(
ωi|eN\i

)
, if D(1) = 1,

and c̄(D) = E (ωi|eN)− E
(
ωi|eN\i

)
+ P

(
ND|eN\i

) [
E
(
ωi|ND; eN\i

)
− E (ωi|ND; eN)

]
,

if D(1) < 1, where the disclosure/non-disclosure of each ω realization is given by the team-
disclosure strategy in the unique symmetric partial-disclosure equilibrium. The effort-maximizing
procedure is therefore the one that maximizes the objective

P
(
ND|eN\i

) [
E
(
ωi|ND; eN\i

)
− E (ωi|ND; eN)

]
. (18)

We can write the expression for each of the terms in this objective. To that end, we will use the
notation C = 1−D(1). We have:

P
(
ND|eN\i

)
= µ

[
(ωℓ, ωℓ); eN\i

]
+ C

{
µ
[
(ωh, ωℓ); eN\i

]
+ µ

[
(ωℓ, ωh); eN\i

]}
.
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E
(
ω1|eN\1

)
= ωℓ + (ωh −ωℓ)

Cµ
[
(ωh, ωℓ); eN\1

]
µ
[
(ωℓ, ωℓ); eN\1

]
+ C

{
µ
[
(ωh, ωℓ); eN\1

]
+ µ

[
(ωℓ, ωh); eN\1

]}
= ωℓ + (ωh − ωℓ)

×
µ
[
(ωh, ωℓ); eN\1

]
µ
[
(ωh, ωℓ); eN\1

]
+ µ

[
(ωℓ, ωh); eN\1

] C
{
µ
[
(ωh, ωℓ); eN\1

]
+ µ

[
(ωℓ, ωh); eN\1

]}
µ
[
(ωℓ, ωℓ); eN\1

]
+ C

{
µ
[
(ωh, ωℓ); eN\1

]
+ µ

[
(ωℓ, ωh); eN\1

]}
= ωℓ + (ωh − ωℓ)

µ
[
(ωh, ωℓ); eN\1

]
µ
[
(ωh, ωℓ); eN\1

]
+ µ

[
(ωℓ, ωh); eN\1

] C
µ[(ωℓ,ωℓ);eN\1]

µ[(ωh,ωℓ);eN\1]+µ[(ωℓ,ωh);eN ]
+ C

= ωℓ + (ωh − ωℓ)σ
C

ρ+ C
.

Using analogous steps, we have

E (ω1|eN) = ωℓ + (ωh − ωℓ)σ̄
C

ρ̄+ C
.

And therefore the objective in (18) can be rewritten as[
µ
[
(ωℓ, ωℓ); eN\i

]
+C

{
µ
[
(ωh, ωℓ); eN\i

]
+ µ

[
(ωℓ, ωh); eN\i

]} ]
×

[
ωℓ + (ωh − ωℓ)σ

C

ρ+ C
− ωℓ − (ωh − ωℓ)σ̄

C

ρ̄+ C

]
=

[
µ
[
(ωℓ, ωℓ); eN\i

]
+ C

{
µ
[
(ωh, ωℓ); eN\i

]
+ µ

[
(ωℓ, ωh); eN\i

] }]
(ωh − ωℓ)

[
σ

C

ρ+ C
− σ̄

C

ρ̄+ C

]
,

which is proportional to[
µ
[
(ωℓ, ωℓ); eN\i

]
µ
[
(ωh, ωℓ); eN\i

]
+ µ

[
(ωℓ, ωh); eN\i

] + C

] [
σ

C

ρ+ C
− σ̄

C

ρ̄+ C

]
,

=(ρ+ C)

[
σ

C

ρ+ C
− σ̄

C

ρ̄+ C

]
=

[
σ − ρ+ C

ρ̄+ C
σ̄

]
C ≡ Ψ(C). (19)

We now want to maximize the objective in (19) with respect to C. We consider two cases.

Case 1. ρ > ρ̄. First, we verify that the objective is strictly convex for all C > 0.

Ψ′(C) =

[
σ − σ̄

ρ+ C

ρ̄+ C

]
− C

σ̄(ρ̄− ρ)

(ρ̄+ C)2
(20)
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Ψ′′(C) = −2σ̄(ρ̄− ρ)

(ρ̄+ C)2
+

2(ρ̄+ C)Cσ̄(ρ̄− ρ)

(ρ̄+ C)4
> 0 ⇔ C

ρ̄+ C
< 1, which holds for all C > 0.

And so C∗ that maximizes Ψ(C) is either C∗ = 0 or C∗ = 1. And C∗ = 1 if and only if
Ψ(1) ⩾ Ψ(0), or equivalently

σ ⩾ σ̄
ρ+ 1

ρ̄+ 1
⇔ σ

σ̄
⩾

ρ+ 1

ρ̄+ 1
,

which yields statement 1 in the proposition (where note D∗ = 1− C∗).

Case 2. ρ < ρ̄. By the same steps, we know that the objective is strictly concave for all C > 0.
And therefore

C∗ =


0, if Ψ′(0) ⩽ 0,

C ∈ (0, 1), if Ψ′(C) = 0 for some C ∈ (0, 1),

1, if Ψ′(1) ⩾ 0.

From equation (20), we have that

Ψ′(C) =

[
σ − σ̄

ρ+ C

ρ̄+ C

]
− C

σ̄(ρ̄− ρ)

(ρ̄+ C)2
,

which is increasing in σ, and therefore C∗ is weakly increasing in σ (or equivalently, D∗ is
weakly decreasing in σ). We also have that

∂Ψ′(C)

∂ρ
= − σ̄

ρ̄+ C
+

Cσ̄

(ρ̄+ C)2
⩽ 0.

And so C∗ is weakly decreasing in ρ.

B Additional Results

B.1 Additional Results for Section 5.2.2

As in the proof of Proposition 5, we know that a deliberation protocol maximizes effort incen-
tives if it maximizes the following objective:

P(ωi|ND; eN\i)
[
E
(
ωi|ND; eN\i

)
− E (ωi|ND; eN)

]
,
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which is proportional to

P(ωi|ND; eN\i)

[
Pr(ωi = 1 ∩ND; eN\i)

Pr(ND; eN\i)
− Pr(ωi = 1 ∩ND; eN)

Pr(ND; eN)

]
.

Using the binary structure and the given deterministic symmetric deliberation protocol, we can
write expressions for each of these terms. If the protocol is such that disclosure occurs if at least
K team-members favor it, then no-disclosure occurs if and only if at least N − K + 1 team
members are against disclosure, i.e. obtain a bad outcome. This can occur if either all receive
the same common bad outcome or if at least N −K + 1 team members receive independently
bad draws of their individual binary outcome. Using this additional structure, we write23

P(ωi = 1 ∩ND; eN\i) = (1− ρ)hi

N−1∑
m=N−K+1

(
N − 1

m

)
(1− hj)

mhN−1−m
j .

P(ND; eN\i) = ρ(1− hT ) + (1− ρ)(1− hi)
N−1∑

m=N−K

(
N − 1

m

)
(1− hj)

mhN−1−m
j

+ (1− ρ)hi

N−1∑
m=N−K+1

(
N − 1

m

)
(1− hj)

mhN−1−m
j

⇒ P(ND; eN\i) = ρ(1− hT ) + (1− ρ)
N−1∑

m=N−K+1

(
N − 1

m

)
(1− hj)

mhN−1−m
j

+ (1− ρ)(1− hi)

(
N − 1

N −K

)
(1− hj)

N−KhK−1
j .

And so

E
[
ωi|ND; eN\i

]
=

[
ρ(1− hT )

(1− ρ)hi

∑N−1
m=N−K+1

(
N−1
m

)
(1− hj)mh

N−1−m
j

+
1

hi

(21)

+
(1− hi)

(
N−1
N−K

)
hi

∑N−1
m=N−K+1

(
N−1
m

) (1−hj

hj

)m−(N−K)

]−1

.

23We adopt the convention that
∑N−1

m=N X(m) = 0 for any function X. This is relevant if K = 1, in which case,
following a good outcome for player i there is no possibility for no-disclosure.
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And using the same steps, we have

E [ωi|ND; eN ] =

[
ρ̄(1− hT )

(1− ρ̄)h̄
∑N−1

m=N−K+1

(
N−1
m

)
(1− h̄)mh̄N−1−m

+
1

h̄
(22)

+
(1− h̄)

(
N−1
N−K

)
h̄
∑N−1

m=N−K+1

(
N−1
m

) (
1−h̄
h̄

)m−(N−K)

]−1

.

By comparing the difference between (21) and (22), we can assess whether protocols with
K > 1 provide more effort incentives than the unilateral protocol (with K = 1). Results are
stated in Proposition 6 below.

Proposition 6. The unilateral disclosure protocol (K = 1) is strictly dominated by all symmet-

ric deterministic protocols with K > 1 if

(i) Effort is purely team-improving, that is, for each i ∈ N and j ̸= i,

h̄ > hj, h̄ = hi, and ρ̄ = ρ.

(ii) Effort improves correlation between individual outcomes, that is, for every i ∈ N and

j ̸= i,

ρ̄ > ρ, hj = h̄, and hi = h̄.

The unilateral disclosure protocol (K = 1) dominates all K-majority protocols if

(iii) Effort is purely self-improving, that is, for each i ∈ N and j ̸= i,

h̄ > hi, h̄ = hj , and ρ̄ = ρ.

The first two statements in the proposition are stronger versions of results in section 4. In
this binary environment, if effort is team-improving, then the unilateral disclosure protocol is
dominated by all symmetric deliberation protocols such that disclosure requires more consen-
sus. If effort improves the correlation between team-members’ outcomes — not necessarily to
an extreme degree as in Proposition 3 — then all symmetric deliberation protocols dominate
the unilateral disclosure protocol.

B.1.1 Proof of Proposition 6

In order to show the four statements, it suffices to sign the derivative of (21) with respect to the
appropriate parameter. We begin with the first statement, so that we want to sign that derivative
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with respect to hj . To do so, note that

N−1∑
m=N−K+1

(
N − 1

m

)
(1− hj)

mhN−1−m
j

is decreasing in hj , as it equals the probability of at least N −K−1 successes under a binomial
with N − 1 draws and success probability 1− hj . Moreover,

N−1∑
m=N−K+1

(
N − 1

m

)(
1− hj

hj

)m−(N−K)

is also decreasing in hj , as m > N −K for the whole range of summation. Consequently, we
have that E (ωi|ND) is decreasing in hj , and therefore under the parametrization in statement
(i), we have E

(
ωi|ND, eN\i

)
> E (ωi|ND, eN). This implies that all symmetric deliberation

protocols with K > 1 strictly dominate the unilateral disclosure protocol (with K = 1).
Statements (ii)-(iv) follow from the same logic as statement (i), noting from equation (21)

that E (ωi|ND) decreases in ρ, and increases in hi.
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