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Abstract

We use variation of test scores measuring closely related skills to isolate peer effects. The
intuition for our identification strategy is that the difference in closely related scores eliminates
factors common to the performance in either test while retaining idiosyncratic test specific
variation. Common factors include unobserved teacher and group effects as well as test invariant
ability and factors relevant for peer group formation. Peer effects work through idiosyncratic
shocks which have the interpretation of individual and test specific ability or effort. We use
education production functions as well as restrictions on the information content of unobserved
test taking ability to formalize our approach. An important implication of our identifying
assumptions is that we do not need to rely on randomized group assignment. We show that our
model restrictions are sufficient for the formulation of linear and quadratic moment conditions
that identify the peer effects parameter of interest. We use Project STAR data to empirically
measure peer effects in Kindergarten through Third Grade classes. We find evidence of highly
significant peer effects with magnitudes that are at the lower end of the range of estimates found
in the literature.
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1 Introduction

We develop a framework to analyze, identify and estimate the causal effect of peer groups on
performance measures for individuals who are allocated to groups. A leading example are test
scores of students who are allocated to class rooms. However, the theory could equally be applied
to outcome measures of members of sports teams, teams of workers or other groups. Identification
is based on the availability of multiple performance measures of comparable quality or information
content. We allow team formation to be endogenous but also cover the case of randomly selected
groups. For expositional purposes we refer to groups as class rooms and individuals selected into
groups as students with the understanding that our procedure applies to a broader set of scenarios.
For the statistical implementation we impose linear functional form restrictions. This allows us to
identify the marginal effect of observed and unobserved average peer characteristics.

The causal effect of peer group composition is of interest in policy settings where overall per-
formance of a set of individuals may be enhanced by forming groups with specific characteristics,
see Lazear (2001) for a theoretical model of the benefits of higher quality peers and class size in
the education context, Whitmore (2005) for an empirical analysis of the effects of class size and
the share of girls per class on student achievement using Project STAR data, Carrell, Sacerdote,
and West (2013) for an assessment of the effects of peer groups sorted by prior ability measures
on outcomes of lowest ability students using data from the United States Air Force Academy, or
Booij, Leuven, and Oosterbeek (2017) for the connection between peer group ability, tracking and
outcomes using data of undergraduate economics students at the University of Amsterdam. Studies
of peer group composition are part of a larger literature examining the existence and importance
of peer effects.1

Our analysis centers around the idea of measuring the performance of individuals in closely
related tasks and within a short period of time. An example are aptitude tests administered at the
end of the school year and in related areas such as reading, writing and word comprehension. By
considering the individual quasi-difference in scores we are able to eliminate unobserved ability and
unobserved group effects. Our key identifying assumption postulates that different tests measure
similar skills and that variation in differential scores is, apart from variation induced by observed
covariates, due to cross-sectional variation in ability or effort of individuals that is not related
to prior performance and other systematic and possibly unobserved factors correlated with group
formation such as teacher quality or parental support. Our theory builds on the concept of latent
performance, ability or effort measures defined in the absence of group interaction.

The first result of our paper shows that our key identifying restriction implies orthogonality
1See for example Hoxby (2000), Sacerdote (2001),Hanushek et al. (2003), Zimmerman (2003), Angrist and Lang

(2004), Cipollone and Rosolia (2007), Duflo, Dupas, and Kremer (2011), Carrell, Sacerdote, and West (2013), Burke
and Sass (2013), Booij, Leuven, and Oosterbeek (2017), Feld and Zölitz (2016), Carrell, Hoekstra, and Kuka (2018),
Garlick (2018), Griffith (2022), Wu, Zhang, and Wang (2023) and for a survey Sacerdote (2011).
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conditions that are at the core of our identification strategy. These restrictions are obtained without
any assumptions about random group selection or independence of individual characteristics in the
population of individuals. Combined with the assumption of linear latent outcomes and mean
group peer effects this leads to an empirical model that falls within the class of linear peer effects
models that have been prominently studied in the literature, see for example Manski (1993); Calvó-
Armengol, Patacchini, and Zenou (2009); Blume et al. (2015) and Angrist (2014) for a critique of
these models. We expand on this literature by explicitly accounting for endogenous peer group
selection and individual heterogeneity in unobserved test taking ability. Most of the empirical
literature uses observable characteristics as well as proxies for unobserved ability to measure the
quality of peer groups. Our baseline model is formulated for unobserved, at least to the analyst,
peer characteristics. We use multiple performance measures for similar skills to difference out
common test taking ability. We allow group selection to depend on unobserved as well as observed
characteristics. Recent contributions to the econometrics literature accounting for endogenous
group and network formation include Goldsmith-Pinkham and Imbens (2013), Hsieh and Lee (2016)
and Griffith (2022) who use an explicit network formation model, Qu and Lee (2015), Johnsson and
Moon (2019), Auerbach (2022) who use control function approaches and Kuersteiner and Prucha
(2020) who use an instrumental variables approach.2

In our setting, reduced form regression analysis that focuses on exogenous or contextual peer
effects leads to biased estimates. We propose instrumental variables estimators to overcome these
problems. By exploiting moment restrictions that are implied by our identifying assumptions we are
proposing methods of moments estimators that identify both exogenous as well as endogenous peer
effects. Formally, our moments based estimator is a panel type estimator based on quasi differences
between test performance measures. An important difference between our approach and typical
panel settings is the lack of a temporal dimension, and where the setup is geared towards the
utilization of different test performance measures that are obtained in an essentially simultaneous
fashion.

We apply our approach to the Project STAR data set of the Tennessee class size experiment.
We exploit variation on closely related test score outcomes for kindergarten to third grade stu-
dents. Our empirical analysis focuses on the identification, estimation and statistical inference
for the parameter determining the marginal effect of unobserved peer quality. More specifically,
this parameter measures the causal impact of a unit increase in peer quality, measured in terms
of latent peer outcomes, on individual outcomes. Obtaining data with convincing exogenous peer

2The literature on peer effects is part of a larger literature on network effects. It is well recognized that the
adjacency matrix frequently used in modeling peer effect is a special case of the weight matrices used in a class of
models introduced by Cliff and Ord (1973, 1981), which were originally intended for modeling spatial network effects;
see Anselin (2010) for a review of important contribution of this literature on identification and estimation of network
effects, and Kuersteiner and Prucha (2020) for a recent contribution that connects those strands of network literature.
.
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group variation is generally difficult and may require costly experimental designs. Yet, most of
the empirical literature estimating peer group composition effects relies on conditionally randomly
assigned peers. An advantage of the approach proposed in this paper is that we do not rely on
random group assignment. Our framework enables us to identify the marginal parameter without
variation in peer group composition. The random assignment assumption has been criticized for
Project STAR data, for example because of attrition in higher grades, see Hanushek (2003). Our
approach is designed to work despite these data limitations. In addition, and unlike in related
studies identifying similar parameters such as Kelejian and Prucha (2002), Lee (2007), Graham
(2008) or Kuersteiner, Prucha, and Zeng (2023) we do not rely on group size variation or variation
in group type variances.

The difficulties of identifying peer effects in models with transitive groups are well known
since Manski (1993). Approaches to overcome identification challenges have focused on random
group assignment, for example Sacerdote (2001); Sojourner (2013); Duflo and Saez (2003); Carrell,
Sacerdote, and West (2013), exogenous variation in group size as in Lee (2007) or Kuersteiner,
Prucha, and Zeng (2023), instrumentation of peer effects using non-transitive group structures as
in Bramoullé, Djebbari, and Fortin (2009), explicit group formation models in Goldsmith-Pinkham
and Imbens (2013), variation in group specific heteroskedasticity in Graham (2008), and panel
methods in Mas and Moretti (2009), Arcidiacono et al. (2012), Cornelissen, Dustmann, and Schön-
berg (2017) and Miraldo, Propper, and Rose (2021). The approach pursued in this paper builds on
the dynamic panel methods for spatial and social networks developed in Kuersteiner and Prucha
(2020).

We use a baseline model of peer effects that is similar to Arcidiacono et al. (2012) who consider
peer effects working through unobserved individual characteristics. Arcidiacono et al. (2012) allow
for individual specific effects as well as for endogenous group formation and use panel data. Techni-
cally, our estimator is different from theirs since we use a quasi differencing approach to eliminate
class and individual fixed effects while they use a non-linear fixed effects estimator. The more
important difference lies in the assumptions and empirical implementation of the method we have
in mind. While our estimator could be applied to more conventional panel data with performance
measures observed at different points in time, we emphasize applications where measures of closely
related skills are observed essentially simultaneously. For one, this framework alleviates problems
with sample attrition which are well documented for Project STAR. More importantly, our core
assumption on unobserved skill or effort centers around a lack of predictive power of additional
test results for closely related test measures. For example, a student scoring well on a reading test
is likely to score well on a word comprehension test given at the same time. An advantage of our
framework is that its credibility can be assessed and influenced by a testing protocol that complies
with its basic premise. This is in contrast to more detailed restrictions between various unobserved
components as well as on the evolution of individual effects measuring the change in skills over time

4



required in the framework of Arcidiacono et al. (2012). An additional advantage of our procedure
is that it does not require estimating unobserved skill or effort measures of individuals.

There is an extensive empirical literature studying educational outcomes using Project STAR
data. Peer effects specifically were considered by numerous authors. Boozer and Cacciola (2001)
use within and between class variation as well as controls for whether students currently are or pre-
viously were in a small classroom to estimate the parameter for endogenous peer effects. Variation
in the exposure of class mates to being previously in small class rooms provides variation in peer
quality that is used to identify the endogenous peer effect. They find large peer effects in second
and third grade and negative but insignificant effects in first grade. Whitmore (2005) studies the
effects of variation in the ratio of girls on test scores and finds mixed results depending on grades.
A decomposition of the effect into endogenous and exogenous peer effects results in an estimated
increase in own test score of .6 points for every point increase in the average peer test score. Gra-
ham (2008) uses a model similar to ours and estimates endogenous peer effects based on differences
of the between and within variances in small and regular size classes. He finds stronger peer effects
of being randomly assigned to smaller as compared to larger classes. Kuersteiner, Prucha, and
Zeng (2023) interpret the variance approach of Graham (2008) as being part of a class of more
general random group effects models, see also Rose (2017) for an approach similar to Graham
(2008) using variance restrictions. Chetty et al. (2011) link Project STAR data with 1996-2008
tax records to investigate class room, teacher and peer effects on future earnings. Their empirical
approach relies on random assignment to Kindergarten and elementary school grades which they
test using additional individual level data obtained from tax records. Using analysis of variance
and regression based methods exploiting within classroom variation they find significant effects of
class quality on earnings. In work that looks at a related question Bietenbeck (2020) investigates
the link between low ability repeaters in kindergarten classes on educational outcomes later in life
and finds positive effects of being exposed to repeaters on the probability to graduate from high
school and taking a college entrance exam. Pereda-Fernández (2017) relies on a conditional double
randomization assumption resulting in conditional independence restrictions between student and
teacher effects. These restrictions imply covariance as well as higher order restrictions that are
exploited to estimate both the endogenous peer effect as well as the distribution of teacher effects.
The paper finds sizable peer effects and investigates optimal teacher and class size allocation rules.
Lewbel, Qu, and Tang (2023) also estimate a linear peer effects model for Project STAR data, but
assuming that actual interaction between students is unobserved. They use restrictions on reduced
form parameters to recover the endogenous peer effect. Empirically, they find large peer effects for
second and third grade math scores.

In our empirical work we use Project STAR data and focus on classrooms in Kindergarten to
Third Grade. We consider four individual SAT scores, mathematics, reading, listening and word
study skills. We document the high correlation between pairs of these scores, unconditionally as
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well as conditionally on a full set of controls, with correlation coefficients ranging from .5 to .9. The
highest correlation is observed for the reading and word study skill scores. The correlation patterns
are robust across the four grade levels we consider. The peer effects coefficient of our model is
estimated precisely and stable across the different grades with the exception of first grade where
we observe a lower degree of peer effects. We find stronger peer effects for test score pairs that are
less highly correlated, in line with our model assumptions where more closely related scores offer
better control for unobserved confounding factors. Quantitatively, we estimate that an increase
of average unobserved peer quality measured in SAT equivalent scores of 100 SAT points leads
to an increase of 20 to 40 SAT points for an individual class mate. This estimate is based on the
reading-word score pair. For other score pairs the effects range from a 40 to a 70 SAT point increase
for the scores of individual class mates due to a change in average scores. These measurements are
quite robust to the inclusion or omission of additional controls. When we measure exogenous peer
effects, in other words the effects of average age, race and gender, as well as an indicator of economic
background, we find mostly insignificant results on differential scores. This lack of significance is
further evidence that our differencing strategy eliminates much of the systematic factors explaining
test score variation. However, it does not mean that exogenous controls have no effect on the level
of individual scores.

The paper is organized as follows. In Section 2 we develop the identification and estimation
strategy. Section 2.1 defines performance measures and group selection, Section 2.2 introduces the
education production function and peer effects, Section 2.3 discusses the key identifying restriction
and Section 2.4 introduces the estimators we propose. Section 3 contains the empirical analysis of
Project STAR data and Section 4 develops formal identification and consistency proofs as well as
an asymptotic distribution theory. Section 5 contains conclusions. Proofs and tables are contained
in the appendix.

2 Model

We assume that for each student i = 1, ..., n we observe results on two different tests, or more
generally that we observe two measures of academic achievement, say, yit where t = 1, 2 indexes
the test. Our empirical work uses Project STAR data where these measures are scores of the
Stanford Achievement Tests (SAT) chosen from math, word study skills, listening and reading tests
given to kindergarten through third grade students. Our approach uses two outcome measures to
control for unobserved and possibly correlated student characteristics as well as group level effects
related to classrooms, teachers and schools.

Let ỹ∗it be the unobserved ability or effort of student i taking test t. We use ∗ to denote variables
that are not observed by the analyst, but may be observed by the individuals, and we use a surmount
˜to denote variables in the original sample before group assignment. The notation ỹ∗it emphasizes
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that the variable refers to the i-th student in the population of students prior to group allocation,
and that the index i is an individual student identifier which is not directly tied to class rooms, e.g.,
i may correspond to an alphabetical ordering of all students by name . There are two steps that
link the vector of latent outcomes(ỹ∗1t, ..., ỹ∗nt) to a vector of observed performance (y1t, ..., ynt). The
first step consists in allocating student i in the original sample to classroom c where student i now
receives the in-class identifier r. For example, r could be the alphabetical rank of student i in class
c. Let nc denote the size of classroom c and suppose there are C classrooms so that n = n1+...+nC .
We then map the r-th student in classroom c into a new index, say, i′ = n1 + ...+ nc−1 + r. In the
following we will, abusing notation slightly, refer, e.g., to the unobserved ability of the r-th student
in classroom c taking test t either as y∗crt or y∗i′t, depending on the context. We will furthermore
use i rather than i′ for the new index for convenience of notation. The second step is an education
production function or a more general group interaction model ψ that relates latent ability y∗crt of
classmates to actual test performance ycrt. Actual performance depends on class level unobserved
effects, own latent ability, observed individual, class and school level covariates, as well as potential
peer interaction. Our goal is to isolate the portion of observed performance that is due to peer
effects.

2.1 Latent Performance and Group Selection

Selection into classrooms can be correlated with a latent baseline performance measure ζ̃∗i that
can also be thought of as prior test taking ability or latent performance, or effort prior to tak-
ing the observed tests. The purpose of introducing baseline test taking ability is to account for
unobserved student characteristics that are invariant for the two tests. We account for observed
student characteristics where ṽpi and w̃p

it denote row vectors of observed test invariant and test
varying characteristics. For notational convenience we collect the performance measures and char-
acteristics for all n students in the sample in the following vectors and matrices of row dimension
n: ỹ∗t = (ỹ∗1t, . . . , ỹ

∗
nt)

′ for t = 0, 1, 2, ṽp =
(
ṽp

′

1 , . . . , ṽ
p′
n

)′
, w̃p

t =
(
w̃p′

1t, . . . , w̃
p′

nt

)′
for t = 1, 2, and

X̃p = (ṽp, w̃p
1, w̃

p
2). The i-th row of X̃p then contains the covariates of student i in the original

sample. Selection into class rooms can, in addition to depending on ζ̃∗ and X̃p, depend on ob-
served school, classroom, teacher and test characteristics as well as on a vector α = (α1, ..., αC)

′

of unobserved classroom, teacher and school characteristics. We do not impose any restrictions on
the cross-sectional dependence in ỹ∗0, X̃, α or observed school, classroom, teacher and test charac-
teristics. Latent baseline performance of student i may be correlated with latent performance of
student j for a variety of reasons including similar educational, socioeconomic, cultural, religious
or geographic backgrounds that may or may not be known to the analyst.

We now describe the selection of students to classrooms. This assignment process results in a
reordering of the students characterized by a one-to-one mapping of the original index set to the new
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index set. Let ỹ∗t = (ỹ∗1t, ..., ỹ
∗
nt)

′ denote the vector of unobserved ability of students corresponding
to the the original sample or population, let Sc be the nc×n selection matrix that allocates students
to classroom c, and let S = [S′

1, ..., S
′
C ]

′ be the selector matrix for all students. The set of all possible
class room allocations is denoted by S . A random assignment mechanism can be thought of as
selecting one element of S at random. Then the vector y∗t = (y∗1t, . . . , y

∗
nt) representing the sample

or population of unobserved ability for test t of students ordered by classrooms is given by

y∗t = Sỹ∗t .

As remarked above, in slight but obvious abuse of notation, let i = n1 + ... + nc−1 + r. Then we
denote the i-th student’s unobserved ability for test t interchangeably by either y∗it or y∗crt. The
latter indexing convention, which we also employ analogously for other variables, is convenient
when an analysis at the class room level is required. Now let y∗ct =

(
y∗c1t, ..., y

∗
cnct

)′
, then

y∗ct = Scỹ
∗
t .

Similarly, we arrange unobserved and observed student characteristics by classroom through the
transformation y∗0 =

(
y∗0,1, . . . , y

∗
0,n

)
= Sỹ∗0, vp =

(
vp

′

1 , . . . , v
p′
n

)′
= Sṽp, wp

t =
(
wp′

1t, . . . , w
p′

nt

)′
=

Sw̃p
t , and for t = 1, 2, and Xp =

(
xp

′

1 , . . . , x
p′
n

)′
= SX̃p = (vp, wp

1, w
p
2). Thus, the row vector xpi

now denotes observable characteristics for student i in the sample ordered by class rooms.
We allow for Sc, ỹ∗t , for t = 0, 1, 2, and α to be mutually correlated and to be correlated with

X̃p as well as with observed school, classroom, teacher and test characteristics. This assumption
includes scenarios where Sc is selected completely at random, scenarios where Sc is selected based
on student, teacher and school characteristics, as well as scenarios where students respond to the
allocation Sc. Our assumptions, formally spelled out in Section 2.3, require that selection happens
before testing which is a mild restriction that should be satisfied in most scenarios we have in mind.
We do not otherwise specify or restrict the mechanism S that selects students into class rooms.
We also do not require that S is observed. This is relevant in situations where we do not have
information identifying individual students such as through their names, social security numbers
or residential address. On the other hand we do require that we know who, among all test takers,
is allocated to the same class room. For project STAR data, this information is available for the
majority of students in grades K through three through a class identifier, but not for students in
higher grades.

2.2 Peer Effects

We relate educational outputs to observed and unobserved inputs via an educational production
function denoted by ψ. Educational production functions were considered by Krueger (1999) and
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Todd and Wolpin (2003) among others. Our specification of the educational production function
models observed performance ycrt of student r in classroom c as a function of latent ability or effort
y∗c1t, . . . , y

∗
cnct of all students in class c. The assumptions we impose on y∗crt allow it to result from a

class assignment process that depends on both observed and unobserved student, teacher and school
characteristics. Specifications of ψ that explicitly account for peer effects are discussed for example
in Calvó-Armengol, Patacchini, and Zenou (2009), Blume et al. (2015) or Pereda-Fernández (2017).

We interpret y∗crt as the unobserved test taking ability in the absence of peer effects, but account-
ing for possible selection of student r into classroom c, taking test t. The function ψcrt (.) accounts
for the fact that test performance varies by student and thus depends on r as well as additional
student, teacher, classroom and school characteristics not captured by y∗crt. Observed performance
is determined by ycrt = ψcrt

(
y∗c1t, . . . , y

∗
cnct

)
. The formulation of ψcrt (.) explicitly accounts for the

possibility of peer effects by allowing for individual performance to depend on the characteristics
of all peers. In the absence of peer effects the function ψcrt (.) simplifies to ycrt = ψcrt (y

∗
crt) . In

other words, the performance of the r-th student in class c only depends on own characteristics and
class characteristics such as teachers and resources but not on the characteristics of other students
in the class.

In empirical applications it may be difficult to work with a non-parametric framework accounting
for peer effects. For this reason we focus on linear production functions with linear peer effects.
Let vc and wc

t , t = 1, 2, be matrices with row dimension n that capture observed test invariant
and test varying classroom, teacher or school characteristics not related to student characteristics,
such as the class size, the gender, education and experience of the teacher for subject t, and let
X = (vp, wp

1, w
p
2, v

c, wc
1, w

c
2) denote the matrix of observations on all covariates. At the class level

let yct = (yc1t, . . . , ycnct), y∗ct =
(
y∗c1t, . . . , y

∗
cnct

)′, vpc =
(
vp

′

c1, ..., v
p′
cnc

)′
, wp

ct =
(
wp′

c1t, ..., w
p′

cnct

)′
with

similar definitions for vcc and wc
ct. We impose the following restriction on the education production

function.

Assumption 1. Let Xc
ct = (vcc, w

c
ct), βct =

(
βc

′
vt, β

c′
wt

)′
, Xp

ct = (vpc , w
p
ct), β

p
t =

(
βp

′

vt, β
p′

wt

)′
. Assume

that
yct = ψct (y

∗
ct) = αcft1c +Xc

ctβ
c
t + (Ic + ρMc) (X

p
ctβ

p
t + y∗ct) (1)

where 1c = (1, ...., 1)′ is an nc × 1 vector and Mc is some matrix of dimension nc × nc with zero
diagonal elements and ρ is a fixed parameter. The parameter ft captures test specific interactive
effects.

The part of the expression involving Mc in (1) models peer effects. The vector Mcy
∗
ct contains

weighted averages of the latent performance of class room peers, and the parameter ρ specifies the
degree to which peer effects influence actual outcomes. 3 The vectorMcX

p
ctβ

p
t represents contextual

3In the usual terminology of Cliff-Ord (1973,1981) models, Mcy
∗
ct is called a spatial lag and ρ the corresponding

parameter.
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peer effects.
Linear specifications such as the one in Assumption 1 have been motivated as solutions to Nash

games in the literature, see Calvó-Armengol, Patacchini, and Zenou (2009), Blume et al. (2015) or
Pereda-Fernández (2017). Pereda-Fernández (2017) considers a full information game of student
and teacher effort where student and teacher quality is known to the players and that leads to
an equation like (1). Thus, Assumption 1 can be justified by assuming that student ability y∗ct

is unobserved by the analyst but known to class mates. Calvó-Armengol, Patacchini, and Zenou
(2009) consider a network game in effort under full information where agents have linear quadratic
utility. Therefore the educational production function (1) can be understood as an optimal response
function where y∗ct now has the interpretation of effort, unobserved by the analyst but known to
peers. Finally, Blume et al. (2015) analyze a Bayes-Nash equilibrium of agents choosing effort and
facing a linear quadratic utility function that depends on their own as well as their peer’s effort; cp.
also Cohen-Cole, Liu, and Zenou (2018) and Drukker, Egger, and Prucha (2022). Agents maximize
expected utility conditional on publicly observable characteristics as well as private information
that is only known to the individual player but not the other agents. They argue, see Blume et al.
(2015) p. 452, that their model is observationally equivalent to Calvó-Armengol, Patacchini, and
Zenou (2009) as long as the row sums of Mc are all equal, an assumption we impose below. In
particular, as noted by Blume et al. (2015) p. 458, y∗ct then can be interpreted as ability, with
agents expectations absorbed into a fixed effect. This can be matched to our setting by assuming
that y∗ct is ability that is unobserved by the analyst.

The matrixMc in Assumption 1 could be an arbitrary weight matrix describing peer interaction
subject to certain measurability assumptions specified below. For exposition and concreteness we
focus on the case where average characteristics of peers determine peer effects. Define

Mc =
(
1c1′c − Ic

)
/ (nc − 1)

where Ic is the nc×nc identity matrix. Then,Mc is the operator that computes the leave out average
of peer characteristics. Using the functional form in Assumption 1 leads to an education production
function ycrt = ψcrt (y

∗
ct) for observed outcomes in terms of unobservables and observables in scalar

notation (t = 1, 2)

ycrt = αcft + xcctβ
c
t + xpcrtβ

p
t + y∗crt + ρ

(nc − 1)−1
nc∑

l=1,l ̸=r

(
xpcltβ

p
t + y∗clt

) . (2)

2.3 Identification

In this paper we propose an identification strategy for the parameter ρ that does not require
randomization over S or variation in Sc. Our argument proceeds in two steps. First, we propose
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a moment restriction on unobserved test taking ability y∗it and show that this restriction implies
linear and quadratic moment restrictions for quantities we are able to observe in the data. We
then show that ρ can be identified by considering a quasi differencing transformation of (2) and a
GMM estimator that exploits the restrictions on the conditional mean and variance implied by our
identifying assumption. The asymptotic theory for a general class of GMM estimators of this type
was developed by Kuersteiner and Prucha (2020). Here, we rely on their theory to derive sharp
identification results and inference procedures that are specific to this application.

We formalize the information structure of our model in the following definition. Recall that y∗0
stands for latent test performance, effort or ability prior to taking tests t = 1, 2. Also note that t is
an arbitrary label such that t − 1 in the definition below has the interpretation of the other test.
We define the following:

Definition 2.1. Let y∗−it =
(
y∗1t, .., y

∗
i−1,t, y

∗
i+1,t, ..., y

∗
n,t

)′
and y∗t = (y∗1t, ..., y

∗
nt) . Define the sigma

fields (information sets)

Fn,i,t = σ
(
S, α,X,

{
ζ∗j,0, ..., y

∗
j,t−1

}n
j=1

, y∗−i,t

)
for t = 1, 2,

and let Z∗
n = σ (S, y∗0, α,X, z) be the sigma field of all conditioning variables, where z denotes

variables excluded from X that may be used as instruments, and let Zn = σ (X, z) ⊂ Z∗
n be the

subset of observable information.

The information set Z∗
n consists both of observable characteristics X, class room allocations S,

excluded variables z that may be used as instruments as well as of unobserved variables y∗0 and α.
The following proportionality restriction on part of the conditional means of the latent outcomes
is at the core of our proposed method of identifying peer effects.

Assumption 2. Assume that
E [y∗it|Fn,i,t] = κift

where κi is a random variable that is invariant to t and is measurable with respect to Z∗
n and ft

is a fixed parameter that only varies with t. In addition, assume that the random variable y∗it is
either bounded, or there exists an η > 0 and a random variable y such that |y∗it| + |κift| ≤ y with
E
[
|y|4+η |Z∗

n

]
≤ Ky <∞ for all i and t. In addition, E

[
|αc|2+η

]
≤ Kα <∞ for all c.

The assumption includes cases where ft = 1 which is relevant in situations where tests t measure
closely related skills. The interpretation of the condition is that conditional on a hypothetical or
actual baseline of test results ζ∗, as well as information about group formation S, unobserved
group characteristics α, as well as other observed characteristics X, additional test results do not
change expected performance, except maybe for a common scale factor ft accounting for systematic
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differences between tests affecting all test takers in the same fashion.4 It is in this sense that tests
t = 1 and t = 2 measure essentially identical skills. Note that E [y∗it|Z∗

n] = κift by iterated
expectations and Z∗

n ⊂ Fn,i,t.

Relative to a baseline represented by Z∗
n the latent test results y∗it are as good as randomly

assigned. Conditional on observed covariates as well as the information in Z∗
n, actual outcomes yit

which are determined by the educational production function in (1), then are only correlated in
the cross-section because of peer effects, i.e. when ρ ̸= 0.

The variable κi is a function of the entire cross section of latent performance measures ζ∗, of the
allocation S and observed and unobserved characteristics. It is generally cross-sectionally dependent
in ways we do not restrict or specify and captures such common effects as the socioeconomic
background of students and classmates, their family background including parental education and
support, their interaction with peers, the exposure to their teachers and resources available in their
class room. It also depends on a student’s own ability. The restriction we impose is that these
factors do not change between tests t = 1 and t = 2, except maybe for a change in scale ft.

Baseline performance ζ∗ does not necessarily have to be observed or realized and ζ∗ can al-
ternatively be interpreted as latent ability prior to taking the actual tests t = 1, 2. In this sense,
κift and E [y∗it|Z∗

n] are also unobserved. A scenario where Assumption 2 is realistic arises when
the same type of test is taken multiple times without additional training between iterations of the
test, or when several tests are given that focus on related skills, as is the case in Project STAR
data for grades K-3 and tests for reading, word study and and listening skills.5 The assumption
is less plausible if comparisons are attempted across different subjects in a high school or college
setting, for tests given at different times during the school year, or measuring different skills in a
professional or team setting. In the latter case, additional factors can be introduced if multiple
measurements per skill category are available.6

The following theorem formally establishes a representation for y∗it that decomposes y∗it into its
conditional mean, E [y∗it|Fn,i,t], that is dependent cross-sectionally as well as across tests, and into
uncorrelated idiosyncratic noise uit. The theorem formalizes the definition of uit .

Theorem 2.1. Suppose Assumption 2 holds. Define

uit = y∗it − E [y∗it|Fn,i,t] = y∗it − κift,

4For simplicity we assume that ft in Assumptions 1 and 2 are the same. This restriction can be relaxed if three
test outcomes are used. The factors ft can be treated as random rather than fixed at the expense of slightly more
complex asymptotic arguments needed for the analysis of statistical inference, see Kuersteiner and Prucha (2020).

5Another example of a test with multiple scores is the Comprehensive Testing Program (CTP) administered by
the Educational Records Bureau and given to grades 1-11. The CTP test consists of several main categories such as
’Auditory Comprehension’, ’Reading Comprehension’ and ’Mathematics’ with each category consisting of additional
subcategories that each receive separate scores.

6The multi factor case is discussed in detail in Kuersteiner and Prucha (2020).

12



then by construction
E [uit|Fn,i,t] = 0 and Cov (uitujs|Fn,i,t) = 0

for any j ̸= i or t ̸= s. Furthermore, let Gn,i,t be any sigma field with Gn,i,t ⊆ Fn,i,t, then
E [uit|Gn,i,t] = 0 and Cov (uit, ujs|Gn,i,t) = 0 for any j ̸= i or t ̸= s, and Cov (uit, κift) =

0,Cov (uit, X) = 0, etc. If E [y∗it − κift|Gn,i,t] ̸= 0 for some Gn,i,t, then Assumption 2 cannot
hold.

Examples for the information sets Gn,i,t in the above theorem are Gn,i,t = σ
(
S, α,X, ζ∗, . . . , y∗t−1, y

∗s
−i,t

)
where y∗s−i,t is a subvector of y∗−i,t or Gn,i,t = Z∗

n. The above theorem makes clear that the main
restriction we impose on y∗it is the assumption that latent test performance is not predictable condi-
tional on observable characteristics and unobserved baseline ability. The properties E [uit|Z∗

n] = 0,

Cov (uit, ujs|Z∗
n) = 0 for any j ̸= i or t ̸= s and Cov (uit, κift) = 0, Cov (uit, X) = 0 follow directly

from Assumption 2 and are not additional assumptions imposed on the distribution of y∗it. In other
words, Assumption 2 is necessary and sufficient for the decomposition of y∗it = κift + uit with
uncorrelated errors uit.

We do not attach a specific economic or behavioral interpretation to the decomposition of y∗it
into κift and uit. It is merely a statistical representation for the purpose of isolating variation in test
scores that is correlated within groups but invariant across tests and variation that is idiosyncratic
to the individual student and test. Normalizing f2 = 1, which is without loss of generality, leads
to an immediate consequence of the decomposition: The quasi difference

y∗i1 − y∗i2f1 = ui1 − ui2f1 (3)

is mean zero and uncorrelated across i conditional on Z∗
n. We exploit these two moment restrictions

to formulate our GMM estimator. They are at the heart of our identification result which is formally
proved in Section 4.

Our framework is in contrast with much of the econometrics literature on the identification of
peer effects where assumptions about the orthogonality of uit and κift and covariates are usually im-
posed directly. These unobservable quantities often are given economic interpretations. Examples
of papers with such assumptions include Lee (2007) who assumes iid errors, Graham (2008) who
assumes independent class room and idiosyncratic errors conditional on class type, Arcidiacono
et al. (2012) who assume uncorrelated idiosyncratic errors and fixed effects that are orthogonal
to idiosyncratic errors, Rose (2017) who assumes uncorrelated idiosyncratic errors, Kuersteiner,
Prucha, and Zeng (2023) who assume a random effects specification and Lewbel, Qu, and Tang
(2023) who assume exogeneity of group formation. Often these assumptions are justified by random
group selection. In our setting we neither assume that individuals are randomly assigned to groups,
nor that they are randomly selected from a population or that they have otherwise observed or
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unobserved characteristics that are independent in the cross-section.
Let κ = (κ1, . . . , κn)

′ and κ̃ = (κ̃1, . . . , κ̃n)
′ = S−1κ, then it is of interest to note that our

theory allows for the variables κ̃i to be arbitrarily influential on the process that forms groups. An
example of such correlation potentially arises in the Project Star data. Despite random allocation of
students to class rooms and teachers to class rooms in kindergarten it is possible that parents who
are unhappy with their allocation try and succeed to move their child to a different class or school,
or that those parents provide additional training for their child. In such a scenario individual and
classroom specific effects κ̃i are not independent of classroom allocations. In addition, attrition in
first through third grades makes random assignment less plausible, see Hanushek (2003).

2.4 Estimation

Our estimators are using differential, or quasi differential test scores, yi1 − yi2f1. These differential
measures purge performance measures from common unobserved influences captured by αc and κc
and shed light on the existence of peer effects. Define the unobserved class and individual effect as

µ∗c = αc1c + (Ic + ρMc)κc (4)

such that assumptions 1, 2 and Theorem 2.1 imply the empirical specification

yct = µ∗cft +vccβ
c
vt + wc

ctβ
c
wt + (Ic + ρMc) (v

p
cβ

p
vt + wp

ctβ
p
wt + uct). (5)

We normalize f2 = 1 without loss of generality. By quasi differencing (5), which eliminates class
room and individual fixed effects, we obtain

yc1 − yc2f1 = vcc(β
c
v1 − f1β

c
v2) + wc

c1β
c
w1 − f1w

c
c2β

c
w2 (6)

+ (Ic + ρMc) (v
p
c (β

p
v1 − f1β

p
v2) + wp

c1β
p
w1 − f1w

p
c2β

p
w2) + (Ic + ρMc) (uc1 − f1uc2).

We treat ft as an unknown parameter to be estimated that accounts for differences in average
test scores between test 1 and 2. Collecting terms with f1 leads to an interpretation of (6) where
yc2 − vccβ

c
v2 −wc

c2β
c
w2 − (Ic + ρMc) (v

p
cβ

p
v2 +wp

c2β
p
w2) is used to control for unobserved µ∗c similar to

a control function approach. The difference to a conventional control function approach is that (5)
for t = 2cannot be consistently estimated by least squares because unobserved components may be
correlated with observed covariates, a problem that our GMM estimators address.

We next write (6) more compactly by stacking observations across class rooms. Let yt , vp and
wp
t be as defined earlier. In similar fashion define vp, wp

t and ut, and let M = diagCc=1 (Mc). Let
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X = (vc, wc
1, w

c
2, v

p, wp
1, w

p
2,Mvp,Mwp

1,Mwp
2) and define

δ(f1, ρ, β) =
(
δc

′
v , β

c′
w1,−f1βc

′
w2, δ

p′
v , β

p′

w1,−f1β
p′

w2, ρδ
p′
v , ρβ

p′

w1,−ρf1β
p′

w2

)′
, (7)

then we can write (6) for the entire sample more compactly as

y1 = f1y2 +Xδ + (I + ρM)(u1 − f1u2). (8)

With Assumptions 1 and 2, and standard regularity conditions on X, we can identify δ, which is
sufficient for the identification of (ρ, f1). The parameters βcw1 and β

p
w1 can be directly recovered from

δ, and βcw2 and βpw2 can be identified when f1 ̸= 0. As is common in pure fixed effect panel settings,
the effects of test invariant covariates v, in our case βcv1, βc

v2 and βpv1, β
p
v2 are not identified when

using within or differencing estimators. In our case, except when f1 = 1, we are quasi differencing
the equation and allowing for heterogeneity in parameters between t = 1 and t = 2. This leads to a
formulation of the model where vc and vp enter the quasi, or fully differenced equation. However,
without further assumptions the parameters βcv1, βcv2, β

p
v1 and βpv2 are not separately identified. An

example of restrictions where the parameters βcv1 and βcv2 are identified arises when f1 ̸= 1 and
βcv1 = βcv2.

In empirical applications it is sometimes sufficient to estimate β or even just δ, for example
when X contains contextual peer effects. Conventional regression methods applied directly to (5)
are invalid because unobserved fixed effects collected in µ∗c may be correlated with X. We show
in Section 4 that linear instrumental variables estimation of (8) instrumenting for y2 identifies the
parameters δ and f1. We show in Corollary 4.1 that when test scores are recorded as non-negative
valuesthe class room fixed effect or an overall constant is a valid instrument. More generally,
exogenous covariates that vary at the class room level but are excluded fromX are valid instruments
by Lemma 4.1.

Valid standard errors are obtained by clustering by class rooms. For estimation of the full set
of parameters including the peer effect parameter ρ we use the efficient GMM estimator developed
in Kuersteiner and Prucha (2020) for a fairly general class of networks covering both social and
spatial network effects. Identification of the parameters ρ, f1 and δ follows from Assumptions 1 and
2 as well as class room level homoskedasticity and some restrictions on the parameter space that
are detailed in Section 4.

Feasible efficient inference requires some additional restrictions on conditional variances that we
now describe. We allow for some forms of heteroskedasticity for uit across tests and by class type.
Let τc be a categorical variable for class type with τc = j if class room c is of type j ∈ {1, ..., J} .
Examples of types are small, medium and large classes, or classes located in urban, suburban or
rural areas.
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Assumption 3. Let uit be as defined in Theorem 2.1 and let i = n1+ . . .+nc−1+r with 1 ≤ r ≤ nc,
i.e., i refers to student r in class c. Let u−i,t = (u1,t, ..., ui−1,t, ui+1,t, ..., un,t). Define the filtration

Bn,i,t = σ
(
S, α,X,

{
y∗j,0, uj1..., uj,t−1

}n
j=1

, u−i,t

)
for t = 1, 2.

Then the conditional variance of uit is given by

E
[
u2it|Bn,i,t

]
= σ2t ρ

2
τc ,

where τc is Zn-measurable, and cu ≤ σ2t , ρ
2
j ≤ Cu for some finite positive bounds. For t = 1, 2,

Σt ≡ E [utu
′
t|Z∗

n] = σ2t diagCc=1

(
ρ2τcIc

)
.

Observing that ft is a fixed constant, conditional on S, ζ∗, X knowledge of y∗it is equivalent with
knowledge of uit. Thus we have the following equivalence of information sets

Fn,i,t = Bn,i,t for t = 1, 2.

Assumption 3 imposes a similar factor structure on conditional variances as does Assumption
2 for conditional means.

Below we illustrate the nature of our efficient quasi differencing transformation. By Theorem
2.1 the errors uit are mutually uncorrelated over tests as well as cross-sectionally. Consequently
the variance covariance matrix of u1 − f1u2 is given by,

Ω = Var (u1 − f1u2|Z∗
n) = Σ1 + f21Σ2 =

(
σ21 + f21σ

2
2

)
diagCc=1

(
ρ2τcIc

)
.

Define γ2j =
(
σ21 + f21σ

2
2

)
ρ2j , for j = 1, ..., J and γ = (γ21 , ..., γ

2
J). Then Ω(γ) = diagCc=1

(
γ2τcIc

)
.

The disturbance term in (8) is of the form (I + ρM)(u1 − f1u2). Denote the parameter ϕ =

(ρ, f1, δ). Premultiplying (8) by Ω(γ)−1/2(I + ρM)−1 then yields the following model

y+(ϕ, γ) = X+(ϕ, γ)δ + u+ (9)

where,
y+(ϕ, γ) = Ω(γ)−1/2(I + ρM)−1(y1 − f1y2), (10)

X+(ϕ, γ) = Ω(γ)−1/2(I + ρM)−1X, (11)

u+ = Ω(γ)−1/2(u1 − f1u2) (12)
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and Var (u+|Z∗
n) = In. In light of (9)-(12) we define

u+(ϕ, γ) = y+(ϕ, γ)−X+(ϕ, γ)δ

= Ω(γ)−1/2(I + ρM)−1(y1 − f1y2 −Xδ) (13)

and observe that u+(ϕ, γ) = u+ at the true parameters.
The transformation leading to u+ consists of three components. Quasi differencing eliminates

classroom and individual effects. The operator (I + ρM)−1 removes cross-sectional correlation
and can be understood as a form of spatial Cochrane-Orcutt transformation. Finally, the operator
Ω(γ)−1/2 scales the spatially uncorrelated residuals to unit variance in the case of heteroskedasticity.

We next provide an outline of our GMM estimation methodology. For clarity we explicitly
denote in the following the true parameter vectors as ϕ0 = (ρ0, f1,0, δ

′
0)

′ and γ0 = (γ1,0, ..., γJ,0)
′.

Rigorous consistency and asymptotic normality results as well as additional assumptions needed to
establish these properties will be given in Section 4 below. Our GMM estimator is based on both
linear and quadratic moment conditions. We consider instrument matrices H and A and require
that all elements of H and A are functions of the observable variables that are measurable with
respect to Zn. Note that by construction, these variables may depend on the unobserved effects α
and κ.

In particular, we set H = [X, z] as an n× q instrument matrix.
The moment function consists of a set of linear and quadratic moments for the transformed

residuals7

mn(ϕ, γ) = n−1/2

(
H ′u+(ϕ, γ)

u+′(ϕ, γ)Au+(ϕ, γ)

)
.

Under the maintained assumptions of this paper the results in Kuersteiner and Prucha (2020),
Theorem 1, imply that the linear moment function is uncorrelated with the quadratic moments.
We have

E
[
mn(ϕ0, γ0)mn(ϕ0, γ0)

′] = 1

n

(
E [H ′H] 0

0 2E
[
tr
(
A2
)] ) ≡ Ξn. (14)

Therefore, our optimal weight matrix is the inverse of Ξn. Consistent estimates of the elements of
Ξn can be obtained as follows. For V h

n = 1
nE [H ′H] we can use the estimator V̂ h

n = 1
nH

′H and for
V a
n = 1

nE
[
tr
(
A2
)]

we can use the estimator V̂ a
n = 1

n tr
(
A2
)
. The empirical criterion function of

the GMM estimator then can be written as

Qn (ϕ, γ) = u+′(ϕ, γ)H
(
H ′H

)−1
H ′u+(ϕ, γ) +

(u+(ϕ, γ)′Au+(ϕ, γ))
2

2 tr (A2)
(15)

7The specification can be readily extended to include several quadratic moment conditions along the lines of, e.g.,
Kuersteiner and Prucha (2020).
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such that the GMM estimator for ϕ0 is defined as ϕ̂ (γ) = argminϕQn (ϕ, γ) for a fixed value of γ. In
applications γ is replaced with a first step consistent estimator. We discuss consistent estimation of
γ and feasible versions of ϕ̂ (γ) in Section 4. A simple two-step procedure to obtain initial estimates
for δ, f1, and ρ may sometimes be sufficient and can be used to estimate γ. The first step relies on
linear moment conditions for the identification of the parameters δ and f1, setting ρ = 0. The idea
is to concentrate out δ and f1 in a first stage using the linear moment function. Note that by Lemma
2.1 the linear moment condition E [H ′ (y1 − y2f1 −Xδ)] = 0 holds at the true parameter values
for δ and f1. This equation corresponds to a regular just identified linear instrumental variables
problem with included exogenous covariates X and where z is instrumenting for the endogenous
variable y2. Letting W = (X, y2) and solving the sample analog of the moment condition yields(

f̃1

δ̃

)
=
(
H ′W

)−1
H ′y1. (16)

The estimator for the coefficient f1 has the familiar form of just identified two stage least squares
with included covariates

f̃1 =
z′QXy1
z′QXy2

(17)

where QX is the residual operator of a projection onto X. In the second step we estimate ρ using a
form of the quadratic moment function, where we plug into the residual vector δ̃ and f̃1 for δ and
f1. Let

ϵ+ (ϕ) = ϵ+ (ρ, f1, δ) = (I + ρM)−1 (y1 − f1y2 −Xδ)

and consider the quadratic moment vector

mq
ϵ (ρ) = ϵ+

(
ρ, f̃1, δ̃

)′
Aϵ+

(
ρ, f̃1, δ̃

)
with A is defined as before. The first stage estimator for ρ then is obtained as

ρ̃ = argminρ (mq
ϵ (ρ))

2 . (18)

Consistency and the asymptotic distribution of ϕ̃ is discussed in Section 4 together with a discussion
of the efficient estimator ϕ̂.

3 Empirical Results

In this section, we apply our identification strategy to the Tennessee’s Project STAR (student-
teacher achievement ratio) data, exploring peer effects among students in Kindergarten through
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Grade 3. 8Project STAR is a randomized experiment aiming at studying the impact of class size
reduction on children’s development. The data set has been widely used in studies of class size,
peer effects, teacher effectiveness and other education-related topics (e.g., Krueger 1999; Dee 2004;
Graham 2008; Chetty et al. 2011; Mueller 2013). Here we briefly discuss the details which are
relevant for our study. For a complete description of the project and data, see Word et al. (1990);
Mosteller (1995); Boyd-Zaharias et al. (2007).

Project STAR was carried out in Tennessee from 1985 to 1989, with additional data on the
participants collected after the project ended. The experiments followed the kindergarten cohort of
1985 in participating schools for four years, from Kindergarten to the third grade. At the start of the
1985 academic year, participating schools randomly assigned kindergarten students and teachers
into small classes (with an intended size of 13-17 students), regular classes (with an intended size of
22-25 students) and regular classes with a full-time teacher’s aide. In actual implementation, small
classes included 11 to 20 students, while regular classes (with or without aides) included 15 to 30
students. Randomness of the initial class assignment is ensured by the careful implementation and
has been examined by a number of studies, e.g., Krueger (1999); Chetty et al. (2011). However,
nonrandom attrition, switching and migration might have happened in higher grades (Hanushek,
1999). Our analysis uses the sample of each of the four grades, as our estimator remains consistent
even without random assignment. The bottom panel of Table 1 summarizes the number of students
and classes in each grade. While there are 11601 students in the experiment in total, the sample
size in each grade is between 6325 and 6840 due to students migrating in or out of the participating
schools. The total count of schools is 79 at the Kindergarten level, but it decreases to 76 at the
Grade 1 level and subsequently to 75 at the Grade 2-3 level. This decline can be attributed to
schools withdrawing from the STAR program. There are between 325 and 340 classes in each grade,
with 124 to 140 of them being small classes.

We collect raw Stanford Achievement Tests (SAT) scores in mathematics (math), reading (read),
listening (list) and word study skills (word) as test t = 1 and test t = 2 in our model. SAT is a
nationally standardized test with scores comparable across grades. The test was administered on
state specified examination days, occurring between late March and early April each year (Word
et al., 1990; Krueger, 1999). The narrow time frame for the tests lends credence to the assumption
that student’s ability and preparation remain stable over the testing window. SAT scores for these
four subjects are available from Grade K to Grade 3. The mean and standard deviations of scores
for the four SAT tests are in the third panel of Table 1. The four tests generally share comparable
means, except that the mean listening score is much higher than others in Grade K. Notably,

8We downloaded the data from Harvard Dataverse (https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/10766),
which differs slightly from the version used by Graham(2008) and Rose(2017). For example, they construct class
ID using teacher characteristics while our data has class ID readily available. Their kindergarten sample has 6,172
student, and ours have 6,325. We believe our dataset is more trustworthy as it matches the description in Word et
al. (1990) in terms of sample size and summary statistics.
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reading and word study skills scores have means that are close in all grades. With four test scores,
there are 12 pairs of y1 and y2. We report results for only six unique combinations, as reversing
the order of y1 and y2 does not change the estimate of ρ, transforms f1 to its reciprocal, and and
will scale the coefficients of control variables by −f1.

Our main model includes a set of student and teacher characteristics, the mean and standard
errors of which are summarized in the top panel of Table 1 by grade. Between 56.0% and 59.2%
of students receive a free lunch during the experimental period, an indicator of low family income.
To account for the influence of race, we employ an indicator for black students, as more than 98%
of the minority students are of black ethnicity. The share of black students ranges from 32.6% to
34.7%. Girls make up 48.0% to 48.6% of the sample. We calculate age as of April 1st in each year,
which is roughly the SAT examination date, using students’ dates of birth. Teacher’s characteristics
are weighted by class size. Between 16.5% and 20.9% of the students are taught by black teachers.
Meanwhile, 34.6% to 44.2% of the students have teachers with a master’s degree or higher. Years
of experience of the teachers are between 9.3 and 13.9.

In our preferred specification, we include four types of control variables: school fixed effects
(excluding one dummy for the first school), class type fixed effects (excluding the dummy for small
classes), student characteristics (including indicators for free lunch, black ethnicity, female gender,
and age) and teacher characteristics (including indicators for black teachers, having master’s degree
or higher, and years of experience) and peer characteristics – specifically, the leave-out-mean of
student characteristics. We start from the specification with only school fixed effects and subse-
quently introduce other types of control variables incrementally. We allow for heteroscedasticity
of u between small classes and regular classes (with or without teacher’s aide). Standard errors
are clustered at the class level. The estimators for f1 and ρ are summarized in Tables 6 and 7
respectively.

Before proceeding to discussing the main estimates of peer effects, we present several summary
statistics to validate our model specifications and assumptions. Our estimator relies on the premise
that tests t = 1 and t = 2 measure similar skills within a brief time frame. The combination of
reading and word study skills aligns most closely with this narrative. To document the close con-
nection between test scores, we use four measures to evaluate the correlation between various SAT
scores from Grade K to Grade 3 in Table 2. The first two measures on the left panel are Spearman
correlations between y1 and y2, and between QXy1 and QXy2. Here QX = I−X(X ′X)−1X ′ denotes
the residual projection matrix of X, where X encompasses the complete set of control variables:
school fixed effects, class type fixed effect, student characteristics, teacher characteristics, and peer
characteristics. The right panel of Table 2 reports the pseudo R2 from 2SLS, i.e., the Spearman
correlation between y1 and ŷ1, or between y2 and ŷ2. Here ŷ1 is the predicted value of y1 in the
equation y1 = f1y2 + Xδ + u estimated by 2SLS, where y2 is instrumented by a constant term.
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Similarly, ŷ2 corresponds to the counterpart obtained by reversing the order of y1 and y2. 9The
different correlation measures paint a consistent picture of the correlation between the six reported
pairs as well as across grades. The listening score is generally a bit less correlated with other
measures. The math scores are somewhat more correlated with reading and word skills than with
listening. We find the strongest connection between word study skills and reading scores which
exhibit substantial correlations of approximately 0.9 across all four measures and in all grades.
This finding is consistent with these scores measuring skills that are both related to language com-
prehension. Correlations between other pairs range between 0.5 and 0.8. While a key identifying
assumption, Assumption 2 is not directly testable because it relates to unobserved ability, finding
strong correlation between test scores is consistent with a setting where test scores have common
conditional means. If this interpretation of the results in Table 2 is correct then we would expect
the word-read pair of scores to provide the best control for unobserved individual and class effects
that may be confounding measures of peer effects at the class room level. Our model implies that
conditional on covariates correlation between tests only is due to unobserved interactive effects
µ∗cft. While not a test for correct specification, our results are consistent with µ∗cft accounting for
a large fraction of the variation in test scores.

Further evidence of the ability of test score differences to control for unobserved class room
and individual effects is the size of the estimated coefficient f1. If scores measure closely related
skills we expect f1 to be close to one. In that scenario Assumption 2 is interpreted to imply that
unobserved individual specific and class room level effects captured by µ∗c affect both scores in
the same way. We report estimated values of f1 for the set of test score pairs in Table 6. Point
estimates for f1 are obtained by our efficient GMM estimator for all grades and for specifications
with just a school effect in Column (1), school and class type effects in Column (2), with a full set
of controls excluding contextual peer effects in Column (3) and the full set of controls in Column
(4). The coefficient f1 is estimated with high precision in Columns (1) through (3) and somewhat
less precisely in Column (4). The point estimates are generally close to one with a few exceptions,
such as for the listening scores in grade K and specifications (1)-(3) as well as the listening scores
in grades two and three for specification (4). The parameter estimates for the read-word score
combination are remarkably stable across all specifications and across all grades, are close to one
and estimated precisely. This is further evidence that the read-word score pair is best suited to
control for unobserved class level effects.

We explore one additional approach to evaluate the plausibility of Assumption 2. If unobserved
individual and class effects µ∗c are stable over time then scores from previous years should be
good predictors for current year scores. Here, it is important to note that our theory does not

9We also adjust for missing values using a similar method as the one for the GMM estimator. That is replacing
the peer averages of the observed individuals x̄obs

(−r)c = (ncx̄c − xobs
rc )/(nc − 1) with x̃obs

(−r)c = (ncx̄
obs
c − xobs

rc )/(nc − 1),
where x̄obs

c is the average of all observed x, Although this makes little difference to the results.
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assume µ∗c to be time invariant between grades. Conceptually, ζ∗ measures unobserved ability just
prior to taking the tests in the current year. As a result, µ∗c similarly reflects only current year
unobserved ability and other class room level effects coming from teachers and peers. Unobserved
effects µ∗c are expected to vary year by year for various reasons, including the fact that instruction
during the year improves skills, that teachers may change and that students may move to different
classes. However, it is expected that at least some components of µ∗c that are more closely related
to individual student ability are time invariant. We examine this hypothesis by measuring the
explanatory power of lagged scores on current scores. The regression sample includes stayers in
each grade, defined as individuals participating in the STAR project for both the previous and the
current grades to ensure availability of both current and lagged scores. The Grade 1 sample includes
66% stayers, while Grade 2 and 3 samples have 73.8% and 79.6% respectively. Among the stayers
in Grade 1, 88.7% stay in the same type of classes (small v.s. regular(w/wo) aide) in the same
schools. This proportion exceeds 93% for Grade 2 and Grade 3. 10 The share is lower if we consider
regular and regular/aid as different types, due to a random reallocation of students in regular and
regular/aid classes to these two types within school in Grade 1. However, the literature generally
finds no significant impact of teacher’s aide (e.g., Krueger, 1999). The stability of school and class
types among the large share of stayers fosters a steady learning environment. While newcomers and
leavers might marginally influence peer quality, the allocation of newcomers to different classrooms
is random within schools. Consequently, when accounting for school fixed effects, we anticipate a
consistent level of peer quality over time.

The relatively stable environment that these students are in suggests that µ∗c and ft should
contain significant time invariant components that in turn imply high correlation between observed
scores and lagged scores. As a result we expect to see relatively high R2 in predictive regressions
with lagged scores as controls in addition to the observed characteristics. Consequently, we regress
test outcomes on the full set of control variables (school and class type fixed effects, students,
teacher and peer characteristics and a constant term), and then add lagged outcomes of the same
or different type and their peer averages to assess changes in R2. The results are summarized in
Table 3. The results show the predictive power of lagged scores for the same test in bold, as well as
when using other tests instead, for grades one through three. The predictive power of lagged scores
is documented by comparing the R2 with and without adding lags. For example, for the word score,
adding its own lag improves the R2 from .244 to .435 in grade one, from .25 to .539 in grade two
and from .229 to .488 in grade three. Using the reading score, which is the score of the test most
closely related to the word score, leads to increases in the R2 that are even slightly higher. Overall,
the coefficients on lagged scores when using the own lag of word as well as the lagged reading score
are large in magnitude and highly statistically significant. These findings hold up for the other test
score pairs with similar magnitudes and statistical significance. As may be expected, the predictive

10Based on the authors’ calculation using the STAR data.
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effects are slightly weaker for listening scores than for math, read and word. The results are further
evidence that the data distributions are consistent with key features of our model.

Our analysis thus far has documented that pairs of tests scores are highly correlated both
contemporaneously as well as over the course of one school year. This evidence is consistent with
restrictions imposed by Assumption 2 and the hypothesis that closely related scores depend on the
same unobserved components. A caveat is that closely related scores may remove too much common
variation when quasi differences of these scores are used and thus render statistical evidence about
peer effects imprecise. Table 4 reports pseudo R2 measures of model estimates for the six pairs of
scores and model specifications (1) through (4) with column (1) only controlling for school fixed
effects, and column (4) being the full specification with school and class type effects, student and
teacher characteristics as well as peer characteristics.

The observed pseudo R2 measures are generally below .2 with a few exceptions for Grade K.
We also see that the R2 is a bit higher for models with listening scores. More over and as expected
the pseudo R2 generally increases with larger models, or in other words by moving from Column (1)
to (4). The read-word score pair often has the lowest R2 which is an indication that the differential
score in these specifications already controls for most of the variation explained by the covariates.
We take this as further evidence that read-word best fits the model assumptions we impose.

Table 5 presents standard deviations of Qxy for four test scores and Qx(y1−f1y2) for six pairs of
test scores for Grade K to 3. The left and right panels are for small and regular classes respectively.
Control variables for specifications (1)-(4) are the same as those in Table 4, as discussed above.
Estimates of f1 are obtained from our efficient GMM estimator and presented in Table 6. We see
that in Grade K and Grade 1, the ratio of standard deviations of Qx(y1 − f1y2) to that of Qxy

is around 1/2 for most pairs of tests and 1/5 to 1/4 for the read-word pair. In Grade 2 and 3,
this ratio is around 1/3 for most pairs and about 1/5 for the read-word pair. This shows that
quasi-differencing removes a significant part of the variation in the test scores, especially for the
read-word pair, consistent with the term µ∗f1 playing a major role in determining test performance.
At the same time, the results in Table 4 indicate that the inclusion of controls does not eliminate
much of the remaining variation not captured by fixed effects. The conclusion is that there is
between 20 to 30 percent of test score variation remaining for the identification of ρ.

Table 7 presents estimates and standard errors (in parentheses) for peer effects ρ. To provide
some context and interpretation of ρ consider the education production function in Equation (1).
When ρ = 0 such that there are no peer effects it follows that the observed scores are yct =

αcf11c +Xc
ctβ

c + (Xp
ctβ

p + y∗ct) where y∗ct has the interpretation of an unobserved (error) term that
is measured in the same units as the test score variable. When ρ is different from zero test score
performance of student i changes by ρ times the leave-out-average of y∗ct, through the term ρMcy

∗
ct.

This interpretation implies that ρ measures the effect on student i’s test score as a fraction of
the increase in peer ability measured in units of test score performance. Similarly, the effect on
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test scores as a result of changes in peer characteristics are measured as ρβp times the changes in
relevant peer characteristics.

Standard errors are clustered at the class level. Test types of y1 and y2 are indicated in Columns
(1) and (2). Control variables for the four specifications are outlined at the bottom of the table.
Specification (1) includes only school fixed effects. Specification (2) further adds class type fixed ef-
fects. Specification (3) introduces student characteristics (free lunch, black, girl, age) and teacher
characteristics (black, master, experience). Specification (4) further controls for peer characteris-
tics, defined as the leave-out-mean of the four student characteristics variables.

The comparison of the four specifications demonstrates the robustness of our estimators to
additional controls. We now focus on Specification (4), which includes the full set of control
variables. Across all grade levels and all test pairings, our results consistently reveal positive and
statistically significant peer effects, ranging from 0.2 to 0.7. The results we find are relatively stable
across the four specifications in Columns (1)-(4) with the magnitude of the coefficient ρ generally
decreasing somewhat for the larger models. The results for read-word are more robust in this
sense especially in Grades K and one. Estimated peer effects tend to be largest for specifications
involving the listening score as well as the math-word score. The results for Grades K, two and
three are quite similar, while results for Grade one are generally somewhat smaller in magnitude
but remain statistically very significant. Importantly, when examining the pairing of reading and
word study skills—a context wherein the tests evaluate closely related abilities as documented by
our prior analysis—the effects are notably smaller than for the remaining pairings, ranging from
0.2 to 0.4 across different grade levels. The implications of these results are that improvements in
peer quality measured in terms of potential SAT scores y∗t translate at the rate of 20 to 40 percent
to improvements of individual scores or in other words a 100 point increase in the peer potential
SAT score results in a 20 to 40 point increase in individual SAT scores. These effects are at the
lower end of the spectrum of results reported in the literature.

The comparison with other results in the literature is complicated by the fact that often a model
with endogenous peer effects is estimated. To focus ideas, consider the case without covariates and
only one outcome measure y1. Then, an endogenous peer effect specification is y1 = λMy1 + u.

If peer effects are measured with full rather than leave-one-out means this formulation is identical
to our model which is y1 = (I + ρM)u in this simplified stylized setting. The parameters ρ
and λ satisfy the one-to-one mapping λ = ρ/(1 + ρ) which is a consequence of the fact that
(I + ρM) = (I − λM)−1. The inverse captures multiplier effects of peer performance inherent in
the endogenous peer effect formulation, while ρ is a summary measure of all these multiplier effects.
When peer effects are measured by leave-one-out rather than full means the relationship between
the two formulations is no longer exact. However, it can be shown that (I + ρMc)

−1 = (I − λMc)

continues to hold approximately with an error that is O
(
n−2
c

)
where nc is the size of class c. Based

on this approximation, we convert our measure of ρ to an endogenous peer effect λ = ρ/(1 + ρ), or
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equivalently, ρ = λ/ (1− λ) for the prupose of the discussion that follows.
In comparison with existing results for peer effects employing STAR data, our estimates are

relatively small in magnitude but estimated with high precision and statistical significance. Using
normalized kindergarten SAT scores, Graham (2008) derives endogenous peer effects of 0.46 and
0.56 for math and reading respectively, which translates to ρ = 0.86 or ρ = 1.30 in our context.11

Using normalized Kindergarten SAT math score as outcome, Rose (2017) finds an endogenous
peer effect of 0.65 or a correlated effect (measured by coefficients of the peer average errors) of
0.71. When both are considered simultaneously, endogenous and correlated effects are 0.90 and
-0.03, albeit with standard deviations over 1.7, indicating weak identification. Boozer and Cacciola
(2001), using average percentiles of math and reading scores as outcomes and an instrumental
variable methods for estimation, identify endogenous peer effects of 0.30, 0.86 and 0.92 for Grades
1 to 3 respectively, with standard deviations of 1.0, 0.12 and 0.04. Sojourner (2013) uses first-grade
averages of SAT percentiles of math, reading and listening as outcome measure, and checks the
exogenous peer effects of lagged peer outcomes. He finds an estimate of about 0.35 with a standard
deviation around 0.14.

At the upper end of the spectrum are estimates by Lewbel, Qu, and Tang (2023) who report
endogenous peer effects of 0.85 and 0.92 for small and regular classes in third-grade SATmath scores,
each with standard deviations around 0.02. Translated to our parametrization, these estimates
correspond to ρ = 5.6 and ρ = 11.5 respectively, using the approximation ρ = λ/(1 − λ). The
magnitude of their findings is remarkably high and suggests that a mere 10-point rise in ability
equivalent peer SAT scores lead to an increase of individual scores of up to over 100 points.

The observed peer effects in our study exhibit smaller magnitudes compared to most of the
results discussed above. It is important to note that estimates in Lewbel, Qu, and Tang (2023), Rose
(2017) and Boozer and Cacciola (2001) pertain to coefficients of peer’s average contemporaneous
scores, resulting in a multiplier effect as explained above. In contrast, our estimated peer effects are
coefficients of average peer unobserved ability. This notion is more akin to the "correlated effects"
discussed in Rose (2017), who finds a value of 0.71. Meanwhile, Graham (2008)’s estimates can
be translated to peer effects measured in our parametrization lead to equivalent values of ρ = 0.86

for mathematics and ρ = 1.3 for reading according to our definition. This indicates a noticeable
difference in peer effects’ magnitude between our study and those of Rose (2017) and Graham
(2008).

Our proposed estimator leads to highly precise estimates compared to all the aforementioned
estimates, except that of Lewbel, Qu, and Tang (2023). The enhancement in precision can be
attributed in part to the elimination of individual fixed effects through differencing. Certain in-

11Graham (2008) does not directly estimate endogenous peer effects. His model is yic = αc + (γ − 1)ϵ̄c + ϵic, with
yic being the outcome of student i in class c and ϵ̄c is the full mean of unobserved ability ϵic in class c. Hence γ − 1
is comparable with our estimate ρ, both are coefficients of average peer unobserved ability. Due to the full-mean
specification, the equation is equivalent to yic = λȳc+(1−λ)αc+ ϵic, where λ = 1− 1

γ
is the endogenous peer effects.
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dividual characteristics that have been recognized for their significant influence on scores are not
observed in the data for Project STAR. These include parents’ education, family income and most
importantly unobserved IQ. Our estimator, by removing unobserved class effects and individual
fixed effects, effectively eliminates residual variance associated with these characteristics which may
be one explanation for the precise estimates with obtain. In addition, our GMM estimators use
additional quadratic moment restrictions efficiently.

The aforementioned studies have each focused on one or two specific tests and are often limited
to a particular grade. Methods that rely on random peer assignment are typically constrained in
where they can be applied. In project STAR the random assignment assumption is more defensible
in earlier grades(Sojourner, 2013; Graham, 2008; Boozer and Cacciola, 2001). In contrast, our
analysis does not require random assignment and facilitates the estimation of peer effects across
diverse test types and grade levels. Encouragingly, our findings consistently fall within a reasonably
narrow range, affirming the robustness and reliability of our method.

We also provide the coefficients of peer averages of individual characteristics (age, black, free
lunch, and girl) in Table 8. These four variables all pertain to test-invariant individual characteris-
tics. The estimated coefficients can be expressed as ρ(βpv1 − f1β

p
v2), where ρβ

p
v1 and ρβpv2 represent

the exogenous peer effect of the variable on tests t = 1 and t = 2 respectively. Thus, these co-
efficients capture the differential exogenous peer effects across the two tests. We also scale the
coefficients for dummies girl, black and free lunch by 1/100 so that the coefficients are the im-
pact on the outcome of 1 percentage point changes in share of peers who are girl/black/free lunch
receivers. The first observation is that, except for kindergarten where the presence of girls among
peers positively impacts reading more than word study, none of the four variables show significant
differential exogenous peer effects in the closely related word-read pair. Secondly, the share of
black peers and the average peer age generally display insignificant differential exogenous peer ef-
fects. An exception is in Kindergarten, where peer age more favorably affects listening scores than
reading scores. Given our general expectation of a negative impact from peers receiving free lunch
and a positive impact from a higher share of girls, the results suggest that these two exogenous
peer effects are stronger for reading and word study skills compared to listening and mathematical
abilities in Grade 1. Similar patterns emerge in other grade levels, albeit with lower significance
and consistency. Overall, the results indicate small and mostly insignificant peer effects on differ-
ential scores. This is consistent with a scenario where y2 is essentially sufficient to control for both
observed and unobserved test invariant determinants of test performance. In fact, when f1 = 1 and
βpv1 = βpv2 these effects would be zero in our model and the overall evidence points to the conclusion
that this is approximately the case in the sample as well.
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4 Identification and Inference

4.1 Identification Conditions

We next discuss identification of our model. To establish identification we introduce additional
assumptions imposed on the parameter space. We call the model identified at the parameter
value ϕ0 if the population moment conditions underlying the formulation of our estimators are
only satisfied at ϕ = ϕ0 for all ϕ ∈ Φ. This definition can be seen as an extension of classical
definitions of identification such as Rothenberg (1971) for likelihood based approaches. In general,
identification is neither necessary nor sufficient for consistency which is established separately, see
Newey and McFadden (1994) for a discussion.

Assumption 4. We use subscript zero to denote true parameters and treat δ0, ignoring the restric-
tions given in (7), as an unrestricted parameter vector. Let ϕ0 = [ρ0, f1,0, δ0]

′ with δ0 = δ(f1,0, ρ0, β0)

defined in (7). Then assume ϕ0 ∈ Φ, where Φ is a compact subset of Φ0 = (−1, 1)× (−Kf ,Kf )×
(−KX ,KX)px, and where Kf and KX are finite positive constants and px is the column dimension
of X. In addition, let γ0 =

(
γ21,0, ..., γ

2
J,0

)′
with γ2j,0 = (σ21,0 + σ22,0f

2
1,0)ρ

2
j,0. Then γ0 ∈ Γ with

Γ = [K−1
γ ,Kγ ]

J where Kγ is a finite positive constant.

Remark 4.1. The assumption implies that the parameter space for ρ is a subset of [−Kρ,Kρ] for
some positive Kρ < 1.

In addition, we impose the the following assumption on A.

Assumption 5. (i) The matrix A = (aij) = diagCc=1(Ac) is measurable with Zn and has zero
diagonal elements. Moreover, Ac is a function of Mc and is symmetric.

(ii) 1′cAc1c/nc ≥ Ka > 0 for some constant Ka.
(iii) supi

∑n
j=1 |aij | ≤ Ka <∞ for some constant Ka.

Two valid choices for A are A =M and A =M ′M − diag (M ′M) .

Assumption 6. Group size nc satisfies 2 ≤ nc ≤ n̄c <∞ for some constant n̄c.

Before discussing the general case, we start discussing identification of our model in the case
where no additional covariates are present. Note that in the case of no covariates, the parameters
δ of the covariates are omitted, ϕ = (ρ, f1, δ

′)′ is reduced to (ρ, f1)
′ and (13) becomes u+(ϕ, γ) =

y+(ϕ, γ).
Observe that Ω(γ) = diagCc=1(γ

2
τcIc) is diagonal for all admissible γ and that Ω0 = Ω(γ0) =

Var(u1−f1,0u2|Zn) in light of Assumptions 2 and 3 and Theorem 2.1. Also, u+(ϕ0, γ) = Ω(γ)−1/2Ω
1/2
0 u+.

Thus it is readily seen that for all A satisfying Assumption 5(i) we have

E
[
u+(ϕ0, γ)|Zn

]
= 0, (19)
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E
[
u+(ϕ0, γ)

′Au+(ϕ0, γ)|Zn

]
= tr

(
Ω(γ)−1/2AΩ(γ)−1/2Ω0

)
(20)

= tr
(
AΩ(γ)−1Ω0

)
(21)

= 0 (22)

observing that the diagonal elements of AΩ(γ)−1Ω0 are zero.
We next discuss identification for a given matrix H = z ≡ (z′1, ..., z

′
c, ..., z

′
C)

′ of Zn measurable
instruments, where the zc are nc × q matrices of random variables that are invariant at the class
room level, i.e., zc = 1cz̀c, where 1c is an nc × 1 vector with all elements equal to one and z̀c is a
1 × q vector of class level characteristics. We focus on the just identified case with q = 1 for ease
of exposition. Additional overidentifying restrictions can be added but do not affect arguments
related to identification. Consider the moment vector

mn (ϕ, γ) = n−1/2

[
H ′u+(ϕ, γ)

u+(ϕ, γ)′Au+(ϕ, γ)

]
(23)

where A is a matrix that satisfies the properties listed in Assumption 5.
We next show that E [mn (ρ, f1, γ)] = 0 if and only if (ρ, f1) = (ρ0, f1,0) . Identification of f1,0

can be established from an inspection of the linear moment condition. Identification of the social
interaction parameter ρ0 follows from an analysis of the quadratic moment condition.

Lemma 4.1. As a special case of (5) without covariates consider the data generating process
yt = µ∗f0,t + (In + ρ0M)ut where µ∗ is defined in (4). Suppose Assumptions 1, 2, 3, 5, 4, and 6
hold, let mn (ϕ, γ) be defined in (23) and let H = z. In addition, assume that q = 1 and

n−1
∣∣∣E [y′2Ω(γ)−1/2z |Zn

]∣∣∣ ≥ Ky > 0 (24)

for all γ ∈ Γ and all n, where Ky is a constant. Then for all γ ∈ Γ we have E [mn (ρ0, f1,0, γ) |Zn ] =

0 and E [mn (ρ, f1, γ) |Zn ] ̸= 0 a.s. for all (ρ, f1) ̸= (ρ0, f1,0) and γ ∈ Γ.

A proof of Lemma 4.1 establishing the identifiability of (ρ0, f1,0) is given in the appendix. The
subsequent corollary considers a special case of the lemma that is of interest in the context of test
scores, and arises when H = 1n and when test scores are non-negative. The latter is typically the
case for non-normalized test scores.

Corollary 4.1. Suppose the assumptions of Lemma 4.1 hold, H = 1n, yt≥ 0, and suppose condition
(24) is replaced by n−1

∑C
c=1E [y′c21c |Zn ] > Ky > 0 for some constant Ky. Then the conclusions

of Lemma 4.1 hold.

We emphasize further that no restrictions on µ∗ (other than the fact that µ∗ does not depend
on t and µ∗ ̸= 0 a.s. and is uniformly bounded in absolute value) are needed to identify ρ0. Also,
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the analysis in the appendix shows that neither knowledge of, nor restrictions on heteroskedasticity
are necessary for the identification of ϕ0. Thus, initial estimates of ϕ0 can be obtained with γ2j = 1

for all j = 1, ..., J .
Next we turn to a discussion of identification of ϕ = (ρ, f1, δ

′)′ when the model contains covari-
ates. We use instruments H = [X, z] for linear moment restrictions and a matrix A for quadratic
moment restrictions, with A defined as before. Both H and A are Zn-measurable and diag(A) = 0.
For ease of exposition we focus again on the case where z is a vector. Recall that with covariates,
u+(ϕ, γ) is defined in (13).

We consider the following (q + 1)× 1 vector of linear and quadratic moment functions:

mn(ϕ, γ) =

(
m

(l)
n (ϕ, γ)

m
(q)
n (ϕ, γ)

)
= n−1/2

(
H ′u+(ϕ, γ)

u+(ϕ, γ)′Au+(ϕ, γ)

)
(25)

where the functions m(l)
n (ϕ, γ) and m(q)

n (ϕ, γ) denote the linear and quadratic moment conditions
respectively.

Note that our procedure is not designed to identify γ, nor is that required for the identifi-
cation of ϕ. Lemma 4.2 below shows that for all premissible γ the moment condition satisfies
E [mn(ϕ0, γ) |Zn ] = 0 and E [mn(ϕ, γ) |Zn ] ̸= 0 for ϕ ̸= ϕ0. The parameters γ can be pinned down
by estimating the variance of u1−f1,0u2 for different types of groups. For identification, we further
impose the following assumption.

Assumption 7. (i)The absolute values of the elements of hir of H = [X, z] and µ∗i in µ∗ are
uniformly bounded in i, r, n by some positive constant KH <∞.

(ii) The smallest eigenvalue of X ′X/n is bounded from below by some ξX > 0 uniformly in n.
(iii) Define V (ρ, γ) = Ω(γ)−1/2(I + ρM)−1 and let

QV 1/2X(ρ, γ) = I − V (ρ, γ)1/2X
(
X ′V (ρ, γ)X

)−1X ′V (ρ, γ)1/2

be the projection matrix onto the orthogonal complement of the column space of V 1/2X, then

inf
γ∈Γ,ρ∈[−Kρ,Kρ]

n−1
∣∣∣E [(V (ρ, γ)1/2z)′QV 1/2X(ρ, γ)V (ρ, γ)1/2y2 |Zn

]∣∣∣ > Ky > 0 a.s.. (26)

Remark. Note that the elements of the matrix H are by construction measurable w.r.t. Zn =

σ(X, z).

Since X contains X, part (i) of the assumption implies that also the elements of X are bounded
in absolute value by KH . Observing that (X, z) has full column rank by Assumption 7(iii), as
setting ρ = 0 and γ = (1, ..., 1) in V (ρ, γ), (26) becomes n−1 |E [z′QXy2|Zn]| > Ky > 0, where
QX = I −X (X ′X)−1X ′. It is readily seen from an inspection of the proof of Lemma 4.2 that a
necessary condition for Assumption 7(iii) is that (X,E [µ∗|Zn]) has full column rank. The latter
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condition is equivalent to the condition that (X,E [y2|Zn]) has full column rank, observing that in
light of (5) we have E [y2|Zn] = E [µ∗ +Xβ2,0|Zn].

Condition (26) generalizes condition (24) in Lemma 4.1. Under homoskedasticity or when esti-
mators are not taking heteroskedasticity into account, the latter condition takes the more familiar
form n−1 |E [y′2z|Zn]| > Ky > 0. Further simplifications of (26) are obtained if in addition to
heteroskedasticity, spatial correlation is ignored by setting ρ = 0. Considering this case is useful
when discussing first step estimators for δ and f1. For the case with covariates (26) simplifies to
n−1 |E [z′QXy2|Zn]| > Ky > 0, where QX is defined as above. Both versions of the simplified iden-
tification conditions are conventional rank conditions for linear instrumental variables estimators.
A second scenario under which the conditions can be simplified is when γ is evaluated at a fixed con-
stant level. For example, when γ = γ̄ then (24) is replaced by n−1

∣∣E [y′2Ω(γ̄)−1/2z |Zn

]∣∣ > Ky > 0

and and a similar simplification obtained for (26).
The following Lemma is a generalization of Lemma 4.1.

Lemma 4.2. Let Assumptions 1, 2, 3, 4, 5, 6 and 7 be satisfied. Let mn (ϕ, γ) be defined as in
(25). Then for all admissible γ ∈ Γ, E [mn (ϕ0, γ) |Zn ] = 0 and E [mn (ϕ0, γ) |Zn ] ̸= 0 for ϕ ̸= ϕ0

a.s.

4.2 Consistency of Parameter Estimators

Formulating the moment conditions using transformed residuals as in (25) requires consistent es-
timates of the variance parameters γ. These can be obtained by first obtaining consistent but
inefficient parameter estimates. To do so, we set all elements of γ = (γ21 , ..., γ

2
J) to one. Lemma 4.2

implies that the parameters ϕ = (ρ, f1, δ) are still identified by the moment conditions in (25).
First step estimators

(
δ̃, f̃1, ρ̃

)
are defined in (16) and (18). To formalize the identification

result for these non-efficient first step estimators define the moment vector

mϵ (ϕ) = n−1/2

(
H ′(I + ρM)ϵ+ (ϕ)

ϵ+ (ϕ)′Aϵ+ (ϕ)

)
. (27)

The next lemma shows that the moment conditions in (27) are sufficient to identify the parameters
ϕ = (ρ, f1, δ

′)′.

Lemma 4.3. Let Assumptions 1-6, and Assumption 7(i),(ii) be satisfied. Let mϵ(ϕ) be defined as
in (27). Assume further that n−1 |E [z′QXy2|Zn]| > Ky > 0 a.s . Then E

[
n−1/2mϵ (ϕ0) |Zn

]
= 0

and E
[
n−1/2mϵ (ϕ) |Zn

]
̸= 0 if ϕ ̸= ϕ0 for all ϕ ∈ Φ.

We next show that the above defined initial estimators are consistent. To establish consistency
we impose assumptions related to the convergence of sample averages and moments of sample
averages to well defined limits. These assumptions are adaptations of Assumptions 2, 3 and 5 in
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Kuersteiner and Prucha (2020) to the present setting which differs somewhat from the framework
of sequential exogeneity in that paper.

Let i = n1 + . . . nc−1 + r with 1 ≤ r ≤ nc. Then, with some abuse of notation, denote the i-th
diagonal element of Ω(γ) = diagCc=1

(
γ2τcIc

)
as γ2(i) = γ2τc , noting that τc varies with i. Let the linear

and quadratic moment vectors m(l)
n (ϕ, γ) and m(q)

n (ϕ, γ) be as defined in (25). Then note that with
u+(ϕ0, γ) = Ω(γ)−1(u1 − f10u2), the variance of m(l)

n (ϕ0, γ) is

1

n
E
[
H ′Ω(γ)−1Ω(γ0)H

]
=

1

n

n∑
i=1

E

[
γ2(i),0

γ2(i)
h′ihi

]
(28)

and the variance of m(q)
n (ϕ0, γ) is

1

n
E
[
tr
(
Ω0Ω

−1AΩ0Ω
−1A

)]
=

1

n
E

n∑
i=1

n∑
j=1

[
γ2(i),0

γ2(i)

γ2(j),0

γ2(j)
a2ij

]
. (29)

The assumption below ensures that for any admissible γ, Var
(
m

(l)
n (ϕ0, γ)

)
and Var

(
m

(q)
n (ϕ0, γ)

)
and their corresponding sample analogues converge, respectively, to finite positive definite matrices.

Assumption 8. Let hi = [hi1, ..., hiq] denote the i-th row vector of H, and let aij denote the the
(i, j)-th element of matrix A. The following holds :

n−1
n∑

i=1

E

[
γ2(i),0

γ2(i)
h′ihi

]
→ V h

γ , n−1
n∑

i=1

n∑
j=1

E

[
γ2(i),0

γ2(i)

γ2(j),0

γ2(j)
a2ij

]
→ V a

γ ,

where the elements of V h
γ and V a

γ are finite , and

V h
n,γ = n−1

n∑
i=1

γ2(i),0

γ2(i)
h′ihi

p→ V h
γ , V a

n,γ = n−1
n∑

i=1

n∑
j=1

γ2(i),0

γ2(i)

γ2(j),0

γ2(j)
a2ij

p→ V a
γ .

The matrix Vγ = diag
(
V h
γ , 2V

a
γ

)
is positive definite.

(i) Let C (θ, γ) be a n × n matrix of the form D, DP , DAD, DADP , or PDADP , where D
is an n × n positive diagonal matrix with elements which are uniformly bounded and measurable
w.r.t. Zn and where P is P = diagc (pI∗c + qJ∗

c ) and where p and q are continuously differentiable
functions of the parameters θ and γ as well as of variables generating Zn. Then

lim
n→∞

sup
θ,γ

∣∣n−1Υ′
aC (θ, γ)Υb − n−1E

[
Υ′

aC (θ, γ)Υb

]∣∣ = 0 a.s.

where Υa,Υb are selected from the set {H,X, µ∗, u1, u2}.
(ii) limn→∞ supθ,γ

∥∥E [n−1Υ′
aC (θ, γ)Υb

]
− Ua,b (θ, γ)

∥∥ = 0 where Ua,b (θ, γ) is bounded and
continuously differentiable in θ and γ.
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In Kuersteiner, Prucha, and Zeng (2023) we show uniform convergence under more primitive
conditions in a closely related situation while directly assuming it here in Assumption 8 to save
space. Without further assumptions on cross-sectional dependence, high level assumptions about
the convergence of sample averages such as n−1X ′X are required irrespective. The next theorem
establishes consistency of the GMM estimator.

Theorem 4.1. Let Assumptions 1- 8 be satisfied. Assume that γ̄n
p→ γ for some sequence γ̄n and

some γ ∈ Γ. Then,
(i) for ϕ̂ (γ) = argminθQn (ϕ, γ) with Qn (ϕ, γ) defined in (15) it follows that ϕ̂ (γ̄n)

p→ ϕ0.
(ii) for f̃1 and δ̃ defined in (16) and ρ̃ defined in (18) it follows that f̃1

p→ f0,1, δ̃
p→ δ0 and

ρ̃
p→ ρ0.

4.3 Asymptotic Normality of Parameter Estimators

In the following we develop an asymptotically justified inference theory for our proposed GMM
estimator. For that purpose we first discuss consistent estimators for the variance parameters
γ = (γ21 , ..., γ

2
J)

′, which are treated as nuisance parameters in the objective function of our GMM
estimator.

Assumption 9. Let ωj ≡ lim n→∞n
−1
∑C

c=1 nc1 {τc = j} and assume that ωj exists and ωj > 0

for all j = 1, ..., J .

In the following we denote with Ku a generic finite constant (which is taken, w.o.l.o.g., to be
greater then one) and which is invariant over t = 1, 2, i = 1, . . . , n, n ≥ 1. The central limit theorem
of Kuersteiner and Prucha (2020) requires that E

[
|uituis|1+ηu |Zn

]
⩽ Ku with ηu > 0 for t, s = 1, 2

and all i. This condition is implied by Assumption 2, as Lemma B.3 in the appendix demonstrates.
Assumption 9 guarantees that there is enough data to estimate γ2j for each j by requiring that the
fraction ωj of all students in class rooms of type j is asymptotically non-negligible for all types of
class rooms.

The first step inefficient but consistent estimators f̃1, δ̃ and ρ̃ defined in (16) and (18) can be
used to obtain consistent estimates of the variance parameters γ. Form the residuals

ϵ̃ = ϵ+(ϕ̃) = (In + ρ̃M)−1
(
y1 − y2f̃1 −Xδ̃

)
(30)

and organize the residuals by class rooms c as ϵ̃ = (ϵ̃′1, ...., ϵ̃
′
C)

′. Then construct the variance
estimators

γ̂2j = (Nj − px − 1)−1
C∑
c=1

ϵ̃′cϵ̃c1 (τc = j) , (31)

where Nj =
∑C

c=1 nc (τc = j) is the number of students in class rooms of type j, and where px
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denotes the number of columns in X. Now set

γ̂ =
(
γ̂21 , . . . , γ̂

2
J

) ′. (32)

Efficient GMM estimators can now be formed by plugging γ̂ into u+(ϕ, γ̂) defined in (13). Recall
that Ω(γ) = diagCc=1(γ

2
τcIc). The central limit theorem in Proposition 3 of Kuersteiner and Prucha

(2020) can be applied to obtain distributional approximations for estimators based on u+. When
setting

γ̃ = (1, 1, ..., 1) (33)

it follows that Ω(γ) = In. The feasible efficient GMM estimator for ϕ0 = (ρ0, f0,1, δ
′
0)

′ is defined
as ϕ̂ (γ̂) = argminθQn (ϕ, γ̂) where Qn (ϕ, γ) is given in (15) and the inefficient counterpart ϕ̂ (γ̃) is
defined in an analogous way. The next theorem establishes the limiting distribution of ϕ̂ (γ̃) and
ϕ̂ (γ̂) . The limiting distribution of ϕ̂ (γ̃) for γ̃ defined in (33) provides a distributional result for the
first step estimators defined in (16) and (18).

Theorem 4.2. Let Assumptions 1-9 hold. Let γ̂ be as defined in (32) and γ̃ as defined in (33).
For γn →p γ let plimn→∞ n−1/2∂mn

(
ϕ̂ (γn) , γn

)
/∂ϕ = G(γ) and Ξ = plimn→∞ Ξn, where Ξn is

defined in (14). Then γ̂→p γ0, and for γn = γ̂ or γn = γ̃,

√
n
(
ϕ̂ (γn)− ϕ0

)
→d N(0,Ψγ)

where the limiting variance covariance matrix Ψγ has the form

Ψγ =
(
G′Ξ−1G

)−1
G′Ξ−1VγΞ

−1G
(
G′Ξ−1G

)−1
.

with Vγ defined in Assumption 8 and G is the shorthand notation for G(γ). When γn = γ̂ then
Vγ = Ξ and Ψγ =

(
G(γ0)

′Ξ−1G(γ0)
)−1.

In the appendix in Section D we provide explicit formulas for the derivatives G. Together with
the expressions for Ξn it is then easy to construct sample based estimators Ĝ and Ξ̂. Letting Ψ̂γ =(
Ĝ′Ξ̂−1Ĝ

)−1
it follows from a standard Slutsky argument that Ψ̂−1/2

γ
√
n
(
ϕ̂ (γ̂)− ϕ0

)
→d N (0, I) .

5 Conclusions

We identify peer effects using differential scores of closely related subject tests. Our analysis and
identification strategy is based on a variance decomposition that distinguishes between test invariant
components and unobserved idiosyncratic effects that are not predictable using concurrent test
performance in related tests. The additional parametric assumption of linear education production
functions and peer effects allows to identify a common endogenous peer effects parameter. Our
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method depends on the availability of closely related, yet separate test results but has the advantage
of being robust to non-random group assignment. We prove identification of model parameters
under conditions that are typical in the linear instrumental variables literature. These results
depend on a careful exploration of the parametric structure of linear peer effects models. Our
empirical results for Project STAR data and classrooms in Kindergarten to Third Grade show
highly significant peer effects, but smaller in magnitude than those found in a number of studies
that have looked at the same data.
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A Tables

Table 1: Summary Statistics

Grade K Grade 1 Grade 2 Grade 3
mean sd mean sd mean sd mean sd

indiviudal characteristics
free lunch 0.560 0.496 0.588 0.492 0.592 0.491 0.578 0.494

black 0.326 0.469 0.327 0.469 0.347 0.476 0.333 0.471
girl 0.486 0.500 0.480 0.500 0.484 0.500 0.480 0.500
age 6.011 0.349 7.158 0.492 8.242 0.557 9.285 0.586

teacher characteristics
black teacher 0.165 0.371 0.174 0.379 0.204 0.403 0.209 0.406
master degree 0.347 0.476 0.346 0.476 0.373 0.484 0.442 0.497

years of experience 9.258 5.809 11.633 8.937 13.145 8.655 13.933 8.615
SAT test scores

math 485.377 47.698 530.528 43.109 580.613 44.574 617.970 39.841
read 436.725 31.706 520.787 55.192 583.935 46.043 615.422 38.563
list 537.475 33.140 567.487 33.674 595.476 34.908 624.119 32.265

word 434.179 36.759 513.436 53.316 582.986 50.658 610.136 45.041
Sample Size

number of students 6325 6829 6840 6801
number of classes 325 339 340 336

# small 127 124 133 140
# regular 99 115 100 89

# regular/aide 99 100 107 107
number of schools 79 76 75 75
1. Mean and standard deviations of student characteristics, teacher charcteristics, and SAT scores, as well as number of
students and classes in each grade.
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Table 2: Rank Correlation between Scores
Rank Correlation between Tests Pseudo R squared of 2SLS

y1 y2 y1, y2 QXy1, QXy2 y1, ŷ1 y2, ŷ2
Grade K

list math 0.657 0.584 0.638 0.728
list read 0.621 0.554 0.691 0.686
list word 0.558 0.477 0.610 0.637
read math 0.741 0.672 0.697 0.763
word math 0.656 0.579 0.643 0.727
word read 0.908 0.881 0.915 0.909

Grade 1
list math 0.721 0.654 0.716 0.766
list read 0.624 0.534 0.601 0.704
list word 0.570 0.483 0.562 0.645
read math 0.737 0.669 0.782 0.753
word math 0.686 0.619 0.726 0.715
word read 0.932 0.905 0.936 0.940

Grade 2
list math 0.678 0.611 0.705 0.713
list read 0.667 0.601 0.699 0.709
list word 0.597 0.533 0.639 0.639
read math 0.724 0.673 0.756 0.758
word math 0.625 0.564 0.659 0.670
word read 0.884 0.848 0.892 0.894

Grade 3
list math 0.649 0.610 0.673 0.689
list read 0.652 0.623 0.683 0.690
list word 0.524 0.478 0.552 0.581
read math 0.741 0.706 0.759 0.769
word math 0.683 0.643 0.712 0.708
word read 0.890 0.869 0.901 0.895

1. The left panel is Spearman’s rank correlation between y1 y2 and between QXy1 and QXy2,
where QX = I − X(X ′X)−1X ′, y1 and y2 are raw SAT scores specified in Columns 1 and
2, X are the complete set of control variables, including school fixed effects, class type fixed
effects, student characteristics, teacher characteristics and peer characteristics.
2. The right panel is pseudo R2, i.e., Spearman’s rank correlation between y1 and ŷ1 in
Column 3, and between y2 and ŷ2 in Column 4, where ŷ1 is the predicted value of y1 from
2SLS for y1 = f1y2 +X ′β + ϵ with y2 instrumented by the constant term, X is the complete
set of controls as described in note 1, ŷ2 is defined in a similar manner by reversing the order
of y1, y2.
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Table 3: Explanatory Power of Lagged Scores

Estiamtes for lagged scores R2 w/wo lagged scores
lagged score Grade 1 Grade 2 Grade 3 Grade 1 Grade 2 Grade 3

Dependent Variable: Listening Score
N.A. 0.256 0.297 0.236
list 0.620(0.019) 0.707(0.014) 0.687(0.013) 0.515 0.617 0.599
math 0.362(0.012) 0.465(0.013) 0.394(0.011) 0.435 0.488 0.419
read 0.476(0.020) 0.303(0.009) 0.386(0.011) 0.410 0.448 0.424
word 0.355(0.016) 0.272(0.010) 0.296(0.010) 0.381 0.409 0.378

Dependent Variable: Mathematics Score
N.A. 0.284 0.272 0.258
list 0.616(0.021) 0.679(0.019) 0.606(0.017) 0.454 0.464 0.444

math 0.549(0.015) 0.780(0.016) 0.697(0.013) 0.537 0.614 0.630
read 0.655(0.026) 0.455(0.011) 0.554(0.013) 0.464 0.496 0.513
word 0.505(0.019) 0.421(0.014) 0.396(0.012) 0.442 0.455 0.428

Dependent Variable: Reading Score
N.A. 0.290 0.294 0.246
list 0.592(0.026) 0.662(0.020) 0.628(0.016) 0.391 0.451 0.458
math 0.592(0.019) 0.669(0.018) 0.538(0.013) 0.468 0.521 0.485
read 1.026(0.032) 0.622(0.011) 0.671(0.010) 0.544 0.648 0.644
word 0.809(0.024) 0.582(0.013) 0.512(0.010) 0.522 0.588 0.544

Dependent Variable: Word Study Skills Score
N.A. 0.244 0.250 0.229
list 0.509(0.028) 0.645(0.022) 0.579(0.020) 0.333 0.377 0.363
math 0.511(0.020) 0.645(0.020) 0.579(0.016) 0.399 0.426 0.441
read 0.860(0.033) 0.668(0.012) 0.737(0.013) 0.453 0.588 0.594

word 0.686(0.025) 0.631(0.014) 0.547(0.012) 0.435 0.539 0.488
1. Each panel represents regressions of a specific score types against a comprehensive set of control variables
(including school fixed effects, class type fixed effects, student, teacher, and peer characteristics in the main
specification and a constant term), along with possible own and peer average lagged scores.
2. The lagged score type is indicated in column 1 and highlighted in bold if it matches the dependent variable
type. N.A. means no lagged scores are controlled for.
3. The left panel displays coefficients and standard deviations (in parentheses) of lagged scores for grade 1 to
3.The right panel reports the R2 of the regression, where the first row in each panel representing the R2 when no
lagged scores are included.
4. Coefficients of peer average lagged scores, typically small and statistically insignificant, are omitted for con-
ciseness.
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Table 4: Pseudo R2: 1− var(u1 − f1u2)/var(y1 − f1y2)

Small Classes Regualr Classes(w/wo Aide)
y1 y2 (1) (2) (3) (4) (1) (2) (3) (4)

Grade K
list math 0.179 0.180 0.206 0.216 0.177 0.179 0.201 0.208
list read 0.143 0.144 0.153 0.150 0.145 0.146 0.150 0.147
list word 0.124 0.125 0.132 0.129 0.132 0.133 0.136 0.134
math read 0.148 0.148 0.177 0.219 0.126 0.127 0.155 0.192
math word 0.138 0.139 0.164 0.200 0.128 0.129 0.154 0.184
read word 0.104 0.104 0.107 0.113 0.140 0.140 0.142 0.146

Grade 1
list math 0.138 0.140 0.143 0.144 0.113 0.115 0.123 0.124
list read 0.131 0.133 0.154 0.163 0.113 0.116 0.148 0.161
list word 0.105 0.106 0.122 0.132 0.068 0.071 0.094 0.108
math read 0.105 0.105 0.130 0.137 0.070 0.071 0.119 0.132
math word 0.092 0.092 0.114 0.118 0.058 0.059 0.101 0.109
read word 0.088 0.088 0.092 0.090 0.093 0.093 0.098 0.093

Grade 2
list math 0.116 0.117 0.123 0.119 0.104 0.106 0.118 0.109
list read 0.087 0.087 0.144 0.141 0.083 0.084 0.125 0.125
list word 0.084 0.084 0.131 0.132 0.070 0.072 0.107 0.109
math read 0.092 0.092 0.134 0.137 0.086 0.087 0.110 0.109
math word 0.089 0.089 0.124 0.126 0.081 0.081 0.106 0.107
read word 0.064 0.064 0.077 0.082 0.065 0.065 0.074 0.078

Grade 3
list math 0.135 0.136 0.147 0.144 0.085 0.087 0.092 0.089
list read 0.073 0.074 0.133 0.133 0.024 0.027 0.077 0.078
list word 0.090 0.090 0.132 0.131 0.030 0.033 0.065 0.066
math read 0.083 0.083 0.107 0.106 0.050 0.050 0.085 0.086
math word 0.085 0.085 0.107 0.106 0.039 0.040 0.071 0.070
read word 0.093 0.093 0.092 0.096 0.033 0.034 0.035 0.038
school FE Y Y Y Y Y Y Y Y

class type FE Y Y Y Y Y Y
stu&tch char Y Y Y Y
peer char Y Y
1. The table reports one minus the ratio of the variance of u1 − f1u2 to that of y1 − f1y2
for small classes (in the left panel) and regular (with or without aide) classes (in the right
panel)All models allow for heteroscedasticity across small and regular classes.
2. The scores are raw SAT scores in listening (list), mathematics (math), reading (read),
word study skills (word).
3. As indicated at the bottom of the table, the models may control for (1) school fixed effects
(excluding one); (2) class type fixed effects (excluding small); (3) a student’s characteristics
(free lunch, black, girl, age) and teacher characteristics (black teacher, master, years of
experience); (4) peer averages of student characteristics.
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Table 5: Standard Deviations of Qxy and Qx(y1 − f1y2)

Small Classes Regular Classes
y1 y2 (1) (2) (3) (4) (1) (2) (3) (4)

Grade K
Qxy list 75.810 75.122 37.769 28.508 78.091 76.238 38.954 29.681
Qxy math 75.456 74.762 44.444 39.421 80.333 78.669 48.468 43.319
Qxy read 62.748 62.169 33.699 26.827 66.321 64.827 35.534 29.143
Qxy word 65.196 64.629 38.017 31.883 68.723 67.294 39.693 33.916

Qx(y1 − f1y2) list math 35.462 35.555 38.504 41.091 38.064 38.131 41.515 44.471
Qx(y1 − f1y2) list read 30.802 30.801 30.488 27.544 31.701 31.697 31.347 28.060
Qx(y1 − f1y2) list word 36.916 36.919 36.311 33.052 37.006 37.015 36.336 32.868
Qx(y1 − f1y2) math read 30.874 30.867 30.338 30.583 31.934 31.927 31.556 32.405
Qx(y1 − f1y2) math word 35.724 35.696 34.235 32.883 35.731 35.707 34.486 33.819
Qx(y1 − f1y2) read word 14.055 14.059 13.883 14.896 14.625 14.632 14.422 15.448

Grade 1
Qxy list 78.430 77.682 44.281 29.291 82.153 80.072 43.729 32.263
Qxy math 77.259 76.454 47.817 36.254 81.842 79.872 48.874 39.564
Qxy read 83.720 82.984 57.172 46.261 88.372 86.584 58.298 49.448
Qxy word 81.314 80.624 57.574 46.620 85.880 84.192 57.174 47.750

Qx(y1 − f1y2) list math 29.766 29.822 29.377 29.449 30.662 30.730 30.227 30.285
Qx(y1 − f1y2) list read 42.790 42.812 38.711 40.458 43.672 43.660 39.169 40.844
Qx(y1 − f1y2) list word 44.810 44.856 40.579 42.694 45.258 45.272 40.989 42.897
Qx(y1 − f1y2) math read 35.658 35.595 32.807 34.226 37.625 37.547 34.073 35.289
Qx(y1 − f1y2) math word 38.230 38.195 35.500 36.668 39.197 39.143 36.076 36.874
Qx(y1 − f1y2) read word 21.646 21.649 21.648 21.786 22.530 22.533 22.493 22.616

Grade 2
Qxy list 92.075 90.731 48.088 29.859 85.236 82.708 45.789 32.371
Qxy math 90.878 89.540 53.323 38.275 85.553 83.117 52.234 41.389
Qxy read 93.586 92.295 57.595 39.409 87.831 85.406 54.519 41.740
Qxy word 96.864 95.555 62.274 44.613 90.149 87.782 59.070 46.967

Qx(y1 − f1y2) list math 32.791 32.843 31.327 28.848 34.666 34.691 32.803 30.147
Qx(y1 − f1y2) list read 34.210 34.242 29.824 28.460 34.229 34.216 29.939 28.515
Qx(y1 − f1y2) list word 40.464 40.509 34.546 31.816 39.898 39.907 34.124 31.404
Qx(y1 − f1y2) math read 31.591 31.571 29.607 30.029 32.541 32.523 31.102 31.550
Qx(y1 − f1y2) math word 39.107 39.083 35.878 35.793 39.412 39.388 36.700 36.676
Qx(y1 − f1y2) read word 23.891 23.894 23.273 22.593 24.312 24.318 23.726 23.043

Grade 3
Qxy list 100.934 98.926 46.812 28.881 81.116 78.549 45.571 31.663
Qxy math 99.438 97.593 51.961 35.145 82.400 79.955 50.671 37.816
Qxy read 102.223 100.223 52.813 33.948 85.025 82.325 51.772 38.114
Qxy word 102.419 100.495 56.860 39.320 86.959 84.387 56.262 43.608

Qx(y1 − f1y2) list math 29.971 29.941 28.331 27.089 30.284 30.259 28.579 27.304
Qx(y1 − f1y2) list read 29.166 29.145 26.466 25.715 29.828 29.770 26.962 26.078
Qx(y1 − f1y2) list word 38.217 38.212 34.066 33.314 39.272 39.206 34.788 33.930
Qx(y1 − f1y2) math read 27.010 27.013 26.326 26.477 26.807 26.801 25.922 26.045
Qx(y1 − f1y2) math word 32.785 32.796 31.350 31.918 32.844 32.832 31.064 31.683
Qx(y1 − f1y2) read word 20.631 20.634 20.090 20.639 21.111 21.106 20.485 21.043

1. Standard deviations of Qxy and Qx(y1 − f1y2) for small (on the left) and regular classes (on the right). For Qxy, the
test score y is specified in y1. For Qx(y1 − f1y2), y1 and y2 are specifed in columns 2 and 3. The control variables for
models (1)-(4) are the same as those for the main models in Tables 6 and 7. The estiamtes of f1 are from our efficient GMM
estimations for each specifications and presetned in Tables 6.
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Table 6: Estiamtes of f1
y1 y2 (1) (2) (3) (4)

Grade K
list math 1.093(0.011) 1.096(0.010) 1.201(0.027) 1.283(0.243)
list read 1.231(0.008) 1.231(0.008) 1.217(0.021) 1.011(0.109)
list word 1.224(0.007) 1.225(0.006) 1.201(0.023) 1.048(0.128)
math read 1.126(0.005) 1.124(0.004) 1.014(0.018) 0.771(0.140)
math word 1.120(0.008) 1.118(0.008) 0.999(0.021) 0.793(0.152)
read word 0.995(0.004) 0.995(0.005) 0.984(0.009) 1.042(0.055)

Grade 1
list math 1.065(0.009) 1.068(0.008) 1.054(0.012) 1.057(0.070)
list read 1.060(0.008) 1.061(0.008) 0.973(0.014) 1.023(0.077)
list word 1.071(0.009) 1.073(0.009) 0.977(0.015) 1.038(0.087)
math read 0.995(0.005) 0.993(0.006) 0.916(0.012) 0.969(0.072)
math word 1.007(0.004) 1.006(0.005) 0.929(0.012) 0.973(0.084)
read word 1.008(0.005) 1.008(0.006) 1.014(0.009) 1.026(0.045)

Grade 2
list math 1.057(0.005) 1.059(0.005) 1.007(0.012) 0.902(0.055)
list read 1.030(0.006) 1.031(0.006) 0.903(0.009) 0.842(0.050)
list word 1.023(0.006) 1.024(0.007) 0.873(0.011) 0.779(0.052)
math read 0.975(0.006) 0.974(0.006) 0.893(0.010) 0.929(0.048)
math word 0.967(0.006) 0.967(0.007) 0.863(0.010) 0.862(0.055)
read word 0.992(0.004) 0.993(0.004) 0.967(0.007) 0.929(0.030)

Grade 3
list math 1.028(0.002) 1.027(0.002) 0.961(0.008) 0.898(0.055)
list read 1.014(0.003) 1.013(0.003) 0.915(0.008) 0.869(0.045)
list word 1.027(0.004) 1.026(0.004) 0.903(0.010) 0.873(0.053)
math read 0.986(0.003) 0.986(0.003) 0.951(0.008) 0.965(0.047)
math word 0.999(0.004) 0.999(0.004) 0.940(0.009) 0.970(0.051)
read word 1.013(0.002) 1.013(0.002) 0.988(0.005) 1.016(0.032)
school FE Y Y Y Y

class type FE Y Y Y
stu&tch char Y Y
peer char Y
1. Estimates and standard errors (in the parenthesis) for ρ. Standardard errors are
clustered at the classroom level. All models allow for heteroscedasticity across small
and regular classes. Estimates are adjusted for missing observations.
2. The scores are raw SAT scores in listening (list), mathematics (math), reading
(read), word study skills(word).
3. As indicated at the bottom of the table, the models may control for (1) school fixed
effects (excluding one); (2) class type fixed effects (excluding small); (3) a student’s
characteristics (free lunch, black, girl, age) and teacher characteristics (black teacher,
master, years of experience); (4) peer averages of student characteristics.
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Table 7: Estiamtes of ρ
y1 y2 (1) (2) (3) (4)

Grade K
list math 0.721(0.079) 0.691(0.073) 0.694(0.075) 0.688(0.078)
list read 0.434(0.079) 0.415(0.076) 0.407(0.078) 0.377(0.083)
list word 0.398(0.066) 0.378(0.065) 0.373(0.065) 0.359(0.068)
math read 0.492(0.065) 0.485(0.065) 0.519(0.066) 0.575(0.076)
math word 0.517(0.067) 0.513(0.067) 0.538(0.070) 0.578(0.081)
read word 0.452(0.078) 0.449(0.078) 0.443(0.080) 0.424(0.075)

Grade 1
list math 0.627(0.069) 0.587(0.073) 0.579(0.073) 0.578(0.074)
list read 0.322(0.051) 0.277(0.049) 0.256(0.048) 0.218(0.046)
list word 0.385(0.054) 0.340(0.052) 0.308(0.048) 0.257(0.047)
math read 0.441(0.063) 0.434(0.064) 0.434(0.061) 0.360(0.061)
math word 0.487(0.066) 0.480(0.065) 0.469(0.062) 0.388(0.064)
read word 0.178(0.054) 0.178(0.054) 0.190(0.054) 0.193(0.053)

Grade 2
list math 0.637(0.073) 0.621(0.072) 0.554(0.071) 0.525(0.068)
list read 0.568(0.073) 0.553(0.071) 0.571(0.074) 0.561(0.074)
list word 0.537(0.070) 0.521(0.068) 0.512(0.070) 0.497(0.069)
math read 0.481(0.071) 0.479(0.071) 0.475(0.066) 0.444(0.066)
math word 0.493(0.071) 0.492(0.071) 0.478(0.066) 0.459(0.065)
read word 0.399(0.065) 0.398(0.064) 0.363(0.063) 0.348(0.064)

Grade 3
list math 0.747(0.088) 0.728(0.087) 0.714(0.086) 0.703(0.090)
list read 0.606(0.091) 0.572(0.088) 0.613(0.096) 0.623(0.101)
list word 0.512(0.095) 0.482(0.091) 0.518(0.095) 0.522(0.097)
math read 0.462(0.078) 0.460(0.078) 0.452(0.082) 0.440(0.086)
math word 0.371(0.074) 0.366(0.072) 0.370(0.074) 0.357(0.078)
read word 0.391(0.078) 0.387(0.077) 0.377(0.077) 0.379(0.076)
school FE Y Y Y Y

class type FE Y Y Y
stu&tch char Y Y
peer char Y
1. Estimates and standard errors (in the parenthesis) for ρ. Standardard errors are
clustered at the classroom level. All models allow for heteroscedasticity across small
and regular classes. Estimates are adjusted for missing observations.
2. The scores are raw SAT scores in listening (list), mathematics (math), reading
(read), word study skills(word).
3. As indicated at the bottom of the table, the models may control for (1) school fixed
effects (excluding one); (2) class type fixed effects (excluding small); (3) a student’s
characteristics (free lunch, black, girl, age) and teacher characteristics (black teacher,
master, years of experience); (4) peer averages of student characteristics.
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Table 8: Estiamtes of Exogenous Peer Effects
y1 y2 age black(pct.) free lunch(pct.) girl(pct.)

Grade K
list math -4.290(15.730) -0.196(0.244) 0.117(0.099) -0.177(0.102)*
list read 13.784(6.951)** 0.093(0.103) 0.024(0.050) -0.031(0.050)
list word 10.097(8.239) 0.066(0.134) 0.014(0.058) 0.020(0.058)
math read 15.222(9.027)* 0.238(0.159) -0.076(0.065) 0.111(0.063)*
math word 12.705(9.930) 0.200(0.156) -0.082(0.066) 0.159(0.064)**
read word -4.298(3.626) -0.029(0.062) -0.005(0.024) 0.070(0.027)**

Grade 1
list math -0.268(5.134) -0.016(0.095) -0.049(0.068) 0.013(0.079)
list read -1.922(6.076) -0.125(0.124) 0.129(0.084) -0.354(0.095)***
list word -2.212(6.848) -0.186(0.147) 0.160(0.095)* -0.454(0.108)***
math read -2.392(5.540) -0.099(0.103) 0.179(0.076)** -0.330(0.096)***
math word -1.156(6.399) -0.161(0.118) 0.196(0.086)** -0.416(0.107)***
read word -0.719(3.423) -0.033(0.065) 0.038(0.043) -0.037(0.050)

Grade 2
list math 7.639(4.183)* 0.166(0.123) -0.045(0.071) 0.120(0.089)
list read 4.909(4.197) 0.109(0.104) 0.127(0.072)* 0.063(0.082)
list word 7.808(4.551)* -0.001(0.102) 0.150(0.079)* 0.149(0.086)*
math read -2.902(3.933) -0.062(0.107) 0.187(0.068)*** -0.064(0.084)
math word -0.032(4.720) -0.183(0.130) 0.213(0.082)*** 0.025(0.096)
read word 2.977(2.691) -0.134(0.088) 0.025(0.050) 0.105(0.054)*

Grade 3
list math 5.041(4.171) 0.187(0.094)** -0.111(0.055)** -0.059(0.066)
list read 4.026(3.618) 0.030(0.084) -0.079(0.048)* -0.055(0.059)
list word 2.712(4.286) 0.061(0.097) -0.045(0.058) -0.063(0.073)
math read -1.133(3.779) -0.162(0.087)* 0.032(0.047) 0.003(0.054)
math word -2.395(4.101) -0.129(0.104) 0.073(0.057) -0.009(0.058)
read word -2.190(2.593) 0.030(0.062) 0.037(0.040) -0.025(0.045)

1. Estimates and standard errors (in the parenthesis) for exogenoous peer effects of peer’s age, race,
free lunch status and gender. Coeffiicnets for dummies black, free lunch and girl are divided by 100
so they can be interpreted as the impact of one percentage point changes in these variables. Note
that these four variables are all test-invariant personal characteristics. The reported coefficients are
ρ(βp

v1 − f1β
p
v2).

2. Standardard errors are clustered at the classroom level. All models allow for heteroscedasticity
across small and regular classes. Estimates are adjusted for missing observations.
3. The scores are raw SAT scores in listening (list), mathematics (math), reading (read), word study
skills(word).
4. All specifications control for (1) school fixed effects (excluding one); (2) class type fixed effects
(excluding small); (3) a student’s characteristics (free lunch, black, girl, age) and teacher character-
istics (black teacher, master, years of experience); (4) peer averages of student characteristics.
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B Auxiliary Lemmas

Before proving the main results, we establish a number of preliminary lemmas. Note that many
matrices in this paper, e.g., M , Ω(γ), Σt defined in Assumption 3 can be written in the form of
diagCc=1 (pcI

∗
c + qcJ

∗
c ) ,where I∗c = Ic−1c1′c/nc, J∗

c = 1c1′c/nc are the residual projection matrix and
the projection matrix onto 1c respectively. To see this note that

M = diagCc=1

(
− 1

nc − 1
I∗c + J∗

c

)
, (34)

I + ρM = diagCc=1

(
nc − 1− ρ

nc − 1
I∗c + (1 + ρ) J∗

c

)
, (35)

Ω(γ) = diagCc=1

(
γ2τcIc

)
= diagCc=1

(
γ2τcI

∗
c + γ2τcJ

∗
c

)
, (36)

Σt = σ20,t diagCc=1

(
ρ20,τcIc

)
= diagCc=1

(
ρ20,τcσ

2
0,tI

∗
c + ρ20,τcσ

2
0,tJ

∗
c

)
, t = 1, 2, (37)

We call the row and column sums of an n× n matrix S(ϕ, γ) with elements sij(ϕ, γ) uniformly
bounded in absolute value if supi,ϕ,γ

∑n
j=1 |sij(ϕ, γ)| ⩽ Cs < ∞ and supj,ϕ,γ

∑n
i=1 |sij(ϕ, γ)| ⩽

Cs < ∞ for some positive constant Cs. The product matrix of such matrices also shares the same
property. The product of S(ϕ, γ) with a matrix whose elements are uniformly bounded in absolute
value has elements uniformly bounded in absolute value. See, e.g., Remark A.1 in Kelejian and
Prucha (2004). The following lemma summarizes some well understood key properties of these
matrices for the convenience of the reader. Proofs are straight forward and omitted, and can e.g.,
be found in Kuersteiner, Prucha, and Zeng (2023).

Lemma B.1. The matrices I∗c , J∗
c and pI∗c + qJ∗

c have the following properties:
(i) They are symmetric, idempotent, orthogonal, I∗c + J∗

c = I and I∗c 1c = 0, J∗
c 1c = 1c.

(ii) det (pI∗c + qJ∗
c ) = p(nc−1)q.

(iii) The eigenvalues of pI∗c + qJ∗
c are p (n− 1 times) and q (once).

(iv) For p1, p2 ,q1 and q2 arbitrary constants, (p1I∗c + q1J
∗
c )(p2I

∗
c + q2J

∗
c ) = (p1p2I

∗
c + q1q2J

∗
c ),

and thus multiplication of matrices of the form pI∗c + qJ∗
c is commutative and associative.

(v) If p ̸= 0, q ̸= 0, (pI∗c + qJ∗
c ) is invertible with (pI∗c + qJ∗

c )
−1 = p−1I∗c + q−1J∗

c .
(vi) tr(pI∗c + qJ∗

c ) = p(nc − 1) + q.
(vii) Both I∗c and J∗

c have row and column sum uniformly bounded in absolute value. When p

and q are bounded in absolute value, the row and column sums of pI∗c + qJ∗
c are uniformly bounded

in absolute value.

Corollary B.1. Suppose Assumptions 3, 5, 4, 6, 7, and 9 hold. Then I + ρM , Ω(γ), and Σt are
singular. If Sa(ϕ, γ) and Sb(ϕ, γ) are elements or product matrices of elements from

{
M, (I + ρM), (I + ρM)−1,Ω(γ),Ω(γ)−1,Σ−1

t ,Σt

}
(38)
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then (i) Sa(ϕ, γ) and Sa(ϕ, γ)A is measurable w.r.t Z∗
n, continuous in ϕ and γ, and has row and

column sums uniformly bounded in absolute value.
(ii) For Υ ∈ {H,µ∗, X}, Sa(ϕ, γ)Υ, ASa(ϕ, γ)Υ and SaASbΥ are measurable w.r.t. Z∗

n, con-
tinuous in ϕ and γ, and have elements uniformly bounded in absolute value.

Proof. By Assumptions 3, 4 and 6, (nc − 1− ρ) / (nc − 1), (1 + ρ), γ2j , ρ20,τc , and σ
2
0,t in (35), (36),

(37) are uniformly bounded below by 0. Hence by B.1(v), I + ρM , Ω(γ) and Σt are non-singular.
An inspection of Equations (34)-(37) shows that all matrices in the set can be written in the
form of diagCc=1 (pcI

∗
c + qcJ

∗
c ) , with pc and qc measurable w.r.t Z∗

n, continuous in ϕ and γ, and
uniformly bounded. Also note that by Assumption 5, the row and column sums of A are also
uniformly bounded in absolute value. Utilizing remark A.1 in Kelejian and Prucha (2004), part (i)
of the corollary thus follows. Note that Υ ∈ {H,µ∗, X} is measurable w.r.t. Z∗

n, and has elements
uniformly bounded in absolute value under Assumption 7(i). Applying remark A.1 in Kelejian and
Prucha (2004) again, part (ii) of the corollary holds.

We use these properties frequently in the derivations that follow.

Lemma B.2. Suppose Assumptions 3, 4, 5, , 6, 8 and 9 hold. Consider the block diagonal matrices
M (ρ) = diag C

c=1 (Mc (ρ)) with Mc (ρ) = (Ic + ρMc)
−1 (Ic + ρ0Mc). Then for all γ ∈ Γ,

tr
(
M (ρ)Ω(γ)−1/2AΩ(γ)−1/2M (ρ)Ω0

)
= 0

and
lim
n→∞

1

n
tr
(
M (ρ)Ω(γ)−1/2AΩ(γ)−1/2M (ρ)Ω0

)
= 0

each has only one solution for ρ ∈ (−1, 1). This solution is given by ρ = ρ0.

Proof. LetD(ρ, γ) = M (ρ)Ω(γ)−1/2AΩ(γ)−1/2M (ρ)Ω0 and observe thatD(ρ, γ) = diag C
c=1 (Dc(ρ, γ))

with

Dc(ρ, γ) = Mc (ρ)
(
γ2τcIc

)−1/2
Ac

(
γ2τcIc

)−1/2Mc (ρ)
(
γ20,τcIc

)
=

γ2τc,0
γ2τc

Mc (ρ)AcMc (ρ) .

Noting that tr (Ac) = 0 and hence tr (AcI
∗
c ) = tr (Ac(I − J∗

c )) = − tr (AcJ
∗
c ), and using that in

light of Lemma B.1

Mc (ρ) = (Ic + ρMc)
−1 (Ic + ρ0Mc) =

nc − 1− ρ0
nc − 1− ρ

I∗c +
1 + ρ0
1 + ρ

J∗
c
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we have

tr (Mc (ρ)AcMc (ρ)) = tr
(
Ac

[(
nc − 1− ρ0
nc − 1− ρ

)2

I∗c +

(
1 + ρ0
1 + ρ

)2

J∗
c

])

=

[(
1 + ρ0
1 + ρ

)2

−
(
nc − 1− ρ0
nc − 1− ρ

)2
]
tr (AcJ

∗
c )

= (ρ0 − ρ)C(ρ, nc) tr (AcJ
∗
c )

where
C(ρ, nc) =

[(
1 + ρ0
1 + ρ

)
+

(
nc − 1− ρ0
nc − 1− ρ

)][
1

1 + ρ
+

1

nc − 1− ρ

]
.

Hence

tr (D(ρ, γ)) =
C∑
c=1

tr (Dc(ρ, γ)) = (ρ0 − ρ)
C∑
c=1

γ2τc,0
γ2τc

C(ρ, nc) tr (AcJ
∗
c ) .

Clearly, at ρ = ρ0, for all γ ∈ Γ, we have tr (D(ρ0, γ)) = 0 for all n.
Next observe that tr (AcJ

∗
c ) = 1′

cAc1c/nc > 0 and that for any nc ⩾ 2, and −1 < ρ < 1, both
nc − 1 − ρ and 1 + ρ are positive, and therefore C(ρ, nc) is positive for all ρ ∈ (−1, 1). Therefore,
tr [Mc (ρ)AcMc (ρ)] < 0 if ρ > ρ0, tr [Mc (ρ)AcMc (ρ)] > 0 if ρ < ρ0 and tr [Mc (ρ)AcMc (ρ)] has
the same sign for all c. In all, for any value of γ the only solution for

tr
(
M (ρ)Ω(γ, θ)−1/2AΩ(γ, θ)−1/2M (ρ)Ω0

)
= 0

is ρ = ρ0. Fruthermore, by Assumptions 4 and 6 there exists some constants cD and cγ such that
for any ρ0 in the interior of the parameter space, C(ρ, nc) > CD and γ2

τc,0

γ2
τc

> cγ > 0. This implies
that,

|tr(D(ρ))| ⩾ |ρ0 − ρ|
C∑
c=1

CAcDcς ,

∣∣∣∣ 1n tr(D(ρ))

∣∣∣∣ ⩾ |ρ0 − ρ|CAcDcς
C

n
.

By Assumption 6, C/n ≥ 1/n̄c > 0 such that the conclusion follows.

Lemma B.3. Let Assumption 2 hold. Then, uit defined in Theorem 2.1 is a martingale difference
sequence w.r.t to the filtration An,ν with An,0 = Z∗

n = σ (S, α,X, z, ζ∗) and

An,(t−1)n+i−1 = σ
(
S, α,X, z,

{
y∗j0, uj1..., uj,t−1

}n
j=1

, {ujt}i−1
j=1

)
for t = 1, 2; i = 1, . . . , n. (39)

In addition, supi,tE
[
|uit|4+η

]
<∞ for some η > 0.

Proof. First note that the filtrations An,ν are increasing in the sense An,0 ⊆ An,1.... ⊆ An,ν ⊆
An,ν+1..... By construction uit = y∗it − κift where κift is An,0-measurable. For general i and
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t note that since ui,t = y∗i,t − κift and κift is Z∗
n-measurable it follows that Bn,i,t ⊆ Fn,i,t. Since

y∗i,t = κift+ui,t and κift is Z∗
n-measurable it follows that Fn,i,t ⊆ Bn,i,t. Consequently Fn,i,t = Bn,i,t.

Observing that An,(t−1)n+i−1 ⊆ Bn,i,t it follows, using iterated expectations, that

E
[
uit|An,(t−1)n+i−1

]
= E

[
E [uit|Bn,i,t] |An,(t−1)n+i−1

]
= 0

observing that E [uit|Bn,i,t] = E
[
y∗i,t − κift|Fn,i,t

]
= 0 in light of Assumption 2. Finally observe

that uit is measurable w.r.t. An,(t−1)n+i .
Recall that by Assumption 2 there exists a random variable y such that |y∗it| + |κift| ≤ y with

E
[
|y|4+η |An,0

]
≤ Ky <∞. Hence

E
[
|uit|4+η |An,0

]
≤ E

[
(|y∗it|+ |κift|)4+η |An,0

]
≤ E

[
|y|4+η |An,0

]
< Ky <∞. (40)

Since the bound on the RHS is uniform in i and t by assumption it follows that supi,tE
[
|uit|4+η

]
<

∞.

C Proofs

Proof of Theorem 2.1. By the assumption on the boundedness of the 4+ η moments all considered
expectations and conditional expectations exist. Since uit = y∗it−E [y∗it|Fn,i,t] we have E [uit|Fn,i,t] =

0 by construction. Observing that E [y∗it|Fn,i,t] = κift and that κi is Z∗
n-measurable it follows that

conditional on Z∗
n knowledge if y∗it is equivalent to knowledge of uit. Given that Z∗

n ⊂ Fn,i,t it

follows that Fn,i,t = σ

(
S, α,X,

{
y∗j,0, ..., y

∗
j,t−1

}n

j=1
, y∗−i,t

)
for t = 1, 2 can be written equivalently

as

Fn,i,1 = σ (S, α,X, ζ∗, u−i,1)

Fn,i,2 = σ
(
S, α,X, ζ∗, {ui1}nj=1 , u−i,2

)
with u−i,t = [u1t, .., ui−1,i, ui+1,t, ..., un,t]

′. Next observe that the ujt are Fn,i,t-measurable for i ̸= j,
and hence by iterated expectations Cov (uitujt|Fn,i,t) = E [ujtE [uit|Fn,i,t]] = 0. Observe fur-
ther that for s < t the ujs are Fn,i,t-measurable for all i, and hence by iterated expectations
Cov (uitujs|Fn,i,t) = E [ujsE [uit|Fn,i,t]] = 0. The corresponding claims regarding the mean and
covariances of the uit conditional on Gn,i,t ⊆ Fn,i,t follow immediately by iterated expectations.
This proves the first part of the lemma.

To prove the second part, let Gn,i,t ⊆ Fn,i,t be some information set. Then given Assumption 2
holds, it follows by iterated expectations that

E[y∗ii − κift|Gn,i,t] = E [E [y∗it|Fn,i,t] |Gn,i,t]− E [κift|Gn,i,t] = E [κift|Gn,i,t]− E [κift|Gn,i,t] = 0.
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Thus Assumption 2 cannot hold if E [y∗ii − κift|Gn,i,t] ̸= 0.

Note that Lemma 4.1, Corollary 4.1, and Lemma 4.3 can be viewed as special cases of Lemma
4.2. We therefore prove Lemma 4.2 first.

Proof of Lemma 4.2. In light of (5) it follows that,

y1 − f1y2 = µ∗(f0,1 − f1) +Xδ(f1, ρ0, β0) + (I + ρ0M)(u1 − f1u2), (41)

where δ(f1, ρ0, β0) is defined in (7) and δ(f1,0, ρ0, β0) = δ0.
Substitution of (41) into (13) yields

u+(ϕ, γ) = Ω(γ)−1/2(I + ρM)−1 (42)

×{(f0,1 − f1)µ
∗ +X (δ(f1, ρ0, β0)− δ) + (I + ρ0M)(u1 − f1u2)}

= V (ρ, γ)
(
X, µ∗

)( δ(f1, ρ0, β0)− δ

f0,1 − f1

)
+Ω(γ)−1/2M(ρ)(u1 − f1u2), (43)

recalling that V (ρ, γ) = Ω(γ)−1/2(I + ρM)−1 and M(ρ) = (I + ρM)−1(I + ρ0M).
We first analyze the linear moment conditions. Note that

H ′u+(ϕ, γ) = H ′V (ρ, γ)
(
X, µ∗

)( δ(f1, ρ0, β0)− δ

f0,1 − f1

)
+H ′Ω(γ)−1/2M(ρ)(u1 − f1u2). (44)

Let

Kn(ρ, γ) = n−1H ′V (ρ, γ) (X, µ∗) (45)

Observe that

n−1E
[
H ′u+(ϕ, γ) |Zn

]
= E (Kn(ρ, γ) |Zn )

(
δ(f1, ρ0, β0)− δ

f0,1 − f1

)
. (46)

where the r.h.s. is seen to hold in light of (44) and (45), and since H is Zn-measurable and thus

E
[
H ′Ω(γ)−1/2M(ρ)(u1 − f1u2) |Zn

]
= 0.

The assumptions imply that Kn has full rank a.s. To see this, note that in light of (35), (36),
Lemma (B.1)(iv) implies that

V (ρ, γ) = diagCc=1

(
1

γτc

nc − 1− ρ

nc − 1
I∗c +

1

γτc
(1 + ρ) J∗

c

)
. (47)
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Under Assumptions 4 and 6, there exists some constants ce and Ce such that 0 < ce <
1
γτc

nc−1−ρ
nc−1 <

Ce <∞ and 0 < ce <
1
γτc

(1 + ρ) < Ce <∞. In light of Lemma B.1(iii), the eigenvalues of V (ρ, γ)

are uniformly bounded below by ce > 0. By Assumption 7 we have λmin

(
n−1X ′X

)
≥ ξX > 0 and

thus λmin

(
n−1X ′V (ρ, γ)X

)
≥ ceξX > 0 uniformly for all γ, ρ, and n.

Recalling that H = (X, z) and recalling the expression for Kn(θ, γ) given in (45) the matrix
can be written as

Kn(ρ, γ) =
1

n

(
X ′V (ρ, γ)X X ′V (ρ, γ)µ∗

z′V (ρ, γ)X z′V (ρ, γ)µ∗

)
. (48)

Thus by the determinant for partitioned matrices, and using the shorthand notation V = V (ρ, γ),

|det (E [Kn(ρ, γ) |Zn ])| =
∣∣∣∣det( 1

n
E
[
X ′V X |Zn

])∣∣∣∣ ∣∣∣∣det{E [( 1

n
z′V µ∗ − 1

n
z′V X(

1

n
X ′V X)−1 1

n
X ′V µ∗

)
|Zn

]}∣∣∣∣
(49)

≥ ξXce

∣∣∣∣ 1nE [(V 1/2z)′QV 1/2X(V 1/2µ∗) |Zn

]∣∣∣∣ .
Observe that Zn ⊆ Z∗

n, and that V , X and µ∗ are measurable w.r.t Z∗
n, so

E
[
(V 1/2z)′QV 1/2X(V 1/2y2) |Zn

]
= E

[
(V 1/2z)′QV 1/2X(V 1/2µ∗) |Zn

]
in light of (8) and since QV 1/2X is orthogonal to V 1/2X and E [ui2|Zn] = 0 by Theorem 2.1. Thus

inf
γ∈Γ,ρ∈[−Kρ,Kρ]

|det (E [Kn(ρ, γ) |Zn ])| ≥ ξXce inf
γ∈Γ,ρ∈[−Kρ,Kρ]

n−1
∣∣∣E [(V 1/2z)′QV 1/2X(V 1/2y2) |Zn

]∣∣∣(50)

≥ ξXceKy > 0

in light of Assumption 7. This proves that E [Kn(ρ, γ) |Zn ] has full rank for all admissible values
of ρ and γ, and consequently the moment condition (46) equates to zero if and only if f1 = f1,0

and δ = δ0.This means that E
[
n−1/2m

(l)
n (ϕ, γ)

]
= 0 if and only if f1 = f1,0 and δ = δ0 for all

admissible ρ and γ. Therefore f1,0 and δ0 are identified from the linear moment condition.
Once f1,0 and δ0 are identified, ρ can be identified from the quadratic moment condition. To

see this, note that when evaluated at δ0 and f1,0, u+1 (ϕ, γ) in Equation (42) becomes

u+(ϕ, γ)|f1,0,δ0 = Ω(γ)−1/2(I + ρM)−1(I + ρ0M)(u1 − f1,0u2)

= Ω(γ)−1/2M(ρ)(u1 − f1,0u2)
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Then,

n−1 E
[
u+(ϕ, γ)′Au+(ϕ, γ)|Zn

]∣∣
f1,0,δ0

=n−1E
[
(u1 − f0,1u2)

′M (ρ)Ω(γ)−1/2AΩ(γ)−1/2M (ρ) (u1 − f0,1u2)|Zn

]
=n−1E

[
tr
(
M (ρ)Ω(γ)−1/2AΩ(γ)−1/2M (ρ)Ω0

)
|Zn

]
.

By Lemma B.2 the equation above equals 0 if and only if ρ = ρ0 for −1 < ρ < 1. This establishes
that for all admissible γ we have E

[
n−1/2mn (ϕ0, γ) |Zn

]
= 0 a.s. and E

[
n−1/2mn (ϕ, γ) |Zn

]
̸=

0 a.s. for ϕ ̸= ϕ0.

Proof of Lemma 4.1 and Corollary 4.1. Lemma 4.1 is a special case of Lemma 4.2 without covari-
ates.

Note that Assumptions 1, 2, 3, 4, 5, and 6 hold. Without covariatesEquation (48) reduces to
Kn (ρ, γ) = z′V (ρ, γ)µ∗ where V (ρ, γ) = Ω (γ)−1/2 (I + ρM)−1 .

Recall that z = [z′1, ..., z
′
c, ..., z

′
C ] with zc = z̀c1c. Utilizing Lemma B.1,

(Ic + ρMc)
−1zc =

(
nc − 1− ρ

nc − 1
I∗c +

1

1 + ρ
J∗
c

)
z̀c1c =

1

1 + ρ
z̀c1c =

zc
1 + ρ

leads to

n−1E
[
y′2Ω(γ)

−1/2(I + ρM)−1z|Zn

]
=

1

1 + ρ
n−1E

[
y′2Ω(γ)

−1/2z|Zn

]
≥ 1

1 + ρ
Ky > 0

where the inequality follows from the conditions imposed in the Lemma, in particular (24). With
ρ ∈ (−1, 1),E[Kn (ρ, γ) |Zn] ̸= 0 such that (46) only has one solution, f1 = f1,0. Identification of ρ0
from the quadratic moment is not affected by the absence of covariates. Thus Lemma 4.1 follows
from Lemma 4.2.

To prove Corollary 4.1 observe that when z = 1n, n−1
∑C

c=1E [y′c21c] > Ky > 0 implies that
(24) holds, observing that

n−1
∣∣∣E [y′2Ω(γ)−1/21n |Zn

]∣∣∣ = n−1E

C∑
c=1

[
y′c21c
γτc

|Zn

]
≥ 1

Kγ

1

n

C∑
c=1

E
[
y′c21c |Zn

]
≥ Ky

Kγ
> 0.

Proof of Lemma 4.3. Observe that utilizing (8) we have

n−1E
[
H ′(I + ρM)ϵ+ (ρ, f1, δ) |Zn

]
= n−1E

[
H ′ (y1 − f1y2 −Xδ) |Zn

]
= n−1E

[
H ′ (µ∗(f0,1 − f1) +Xδ(f1, ρ0, β0)) |Zn

]
.
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Let K̃n = n−1H ′ (X,µ∗), then the linear moment condition can be expressed as

n−1E
[
H ′(I + ρM)ϵ+ (ρ, f1, δ) |Zn

]
= E

[
K̃n |Zn

]( δ(f1, ρ0, β0)− δ

f0,1 − f1

)
= 0 (51)

Observe that E
[
K̃n

]
as full rank, as is readily seen from the proof of Lemma 4.2 in light of (50)

with V = I. This implies that the only solution to (51) is δ = δ0 and f1 = f1,0. It now follows that

ε+ (ρ, f0,1, δ0) = M (ρ) (u1 − f0,1u2)

such that the quadratic moment condition is

E
[
ε+ (ρ, f1,0, δ0)

′Aε+ (ρ, f0,1, δ0) |Zn

]
= tr (M (ρ)AM (ρ)Ω0) = 0. (52)

By Lemma B.2 it follows that the only solution to (52) is ρ = ρ0.

Proof of Theorem 4.1. To prove part (i) of the theorem we establish the conditions of Lemma 3.1
in Pötscher and Prucha (1997).

For the linear moment conditions use (44). We have

n−1H ′u+1 (ϕ, γ) = (f1,0 − f1)n
−1H ′V (ρ, γ)µ∗

+
1

n
H ′V (ρ, γ)X (δ(f1, ρ0, β0)− δ)

+
1

n
H ′Ω(γ)−1/2M(ρ)(u1 − f1u2).

≡ I + II + III.

Consider I and II. Using Assumption 8 and noting that V (ρ, γ) defined in (47) satisfies the
assumption on C(ϕ, γ), hence n−1H ′V (ρ, γ)X converges uniformly to

lim
n→∞

E
[
n−1H ′V (ρ, γ)X

]
≡ UH,x (ϕ, γ) a.s. (53)

and n−1H ′V (ρ, γ)µ∗ converges uniformly to

lim
n→∞

E
[
n−1H ′V (ρ, γ)µ∗

]
≡ UH,µ (ϕ, γ) a.s.. (54)

Consider III. From Corollary B.1 and Assumption 8, we have supϕ,γ |III| →p 0.
Now consider the quadratic moment conditions. LetΥ1 = [X,µ∗], ϑ = (δ′, f1)

′, ϑ0 = (δ(f1, ρ0, β0)
′, f0,1)

′,
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then in light of (42) we have

n−1u+1 (ϕ, γ)Au
+
1 (ϕ, γ) = n−1 (ϑ− ϑ0)

′Υ′
1V (ρ, γ)′AV (ρ, γ)Υ1 (ϑ− ϑ0)

+n−12 (ϑ− ϑ0)
′Υ′

1V (ρ, γ)′AΩ(γ)−1/2M(ρ) (u1 − f1u2)

+n−1 (u1 − f1u2)
′M(ρ)′Ω(γ)−1/2AΩ(γ)−1/2M(ρ) (u1 − f1u2)

= I + II + III. (55)

By Assumption 8(i) and (ii) , n−1Υ′
1V (ρ, γ)′AV (ρ, γ)Υ1 in I converges uniformly to

lim
n→∞

n−1E
[
Υ′

1V (ρ, γ)′AV (ρ, γ)Υ1

]
≡ UA,Υ (ϕ, γ) (56)

By Corollary B.1 and Assumption 8, II converges uniformly to 0. Consider III, let B(ϕ, γ) =

M(ρ)′Ω(γ)−1/2AΩ(γ)−1/2M(ρ), then

1

n
(u1 − f1u2)

′B(ϕ, γ)(u1 − f1u2) =
1

n
u′1B(ϕ, γ)u1 +

f21
n
u′2B(ϕ, γ)u2 −

2

n
f1u

′
1B(ϕ, γ)u2.

Each term on the R.H.S. converges to its mean uniformly in ϕ and γ under Corollary (B.1) and
Assumption 8. Consequently, 1

n(u1 − f1u2)
′B(ϕ, γ)(u1 − f1u2) converges uniformly to the limit of

its mean

E

[
1

n
(u1 − f1u2)

′B(ϕ, γ)(u1 − f1u2)

]
= tr

[
1

n
B(ϕ, γ)

(
Σ1 + f21Σ2

)]
=

1

n
tr (B(ϕ, γ)Ω0) +

1

n

(
f21 − f20,1

)
tr (B(ϕ, γ)Σ2) ,

observing that Ω0 = Σ1 + f20,1Σ2.
Note that both tr (B(ϕ, γ)Ω0) and tr (B(ϕ, γ)Σ2) can be written in the form of tr (AC(ϕ, γ)),

with C(ϕ, γ) satisfy the conditions in Assumption 8, consequently, there exist bounded and con-
tinuously differentiable functions in ϕ and γ denoted by UA,Ω(ϕ, γ) and UA,Σ(ϕ, γ) such that

lim
n→∞

sup
ϕ,γ

∥∥∥∥E [ 1n tr (B(ϕ, γ)Ω0)

]
− UA,Ω(ϕ, γ)

∥∥∥∥ = 0 (57)

and
lim
n→∞

sup
ϕ,γ

∥∥∥∥E [ 1n tr (B(ϕ, γ)Σ2)

]
− UA,Σ(ϕ, γ)

∥∥∥∥ = 0 (58)
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From uniform convergence and (53), (54), (56), (57) and (58) it follows that

lim
n→∞

n−1/2E [mn (ϕ, γ)] =

 (UH,x (ϕ, γ) ,UH,µ (ϕ, γ))

(
δ(f1, ρ0, β0)− δ

f1,0 − f1

)
(ϑ− ϑ0)

′ UA,Υ (ϕ, γ) (ϑ− ϑ0) + UA,Ω (ϕ, γ) +
(
f21 − f21,0

)
UA,Σ(ϕ, γ)


(59)

≡

[
ml (ϕ, γ)

mq (ϕ, γ)

]
≡ m (ϕ, γ)

By uniform convergence of n−1/2mn (ϕ, γ) it also follows that for γ̄n → γ∗

sup
ϕ

∥∥∥n−1/2mn (ϕ, γ̄n)−m (ϕ, γ∗)
∥∥∥→ 0i.p.

We proceed to show, building on our results for finite n, that ϕ0 is also the unique solution vector
of the limiting moment condition m (ϕ, γ∗) = 0. Observe that from (45), (53) and (54) we have[
[U H,x (ϕ, γ∗) ,UH,µ (ϕ, γ∗)

]
= limn→∞E [Kn(ρ, γ∗)] ,and by (50) we have infγ∈Γ,ρ |det (E [Kn(ρ, γ)])| ≥

CK > 0 for some CK > 0 and all n. Since det(.) is a continuous function it follows that for any
ϕ, γ∗ we have∣∣∣det([[U H,x (ϕ, γ∗) ,UH,µ (ϕ, γ∗)

])∣∣∣ = ∣∣∣det( lim
n→∞

E [Kn(ρ, γ∗)]
)∣∣∣

= lim
n→∞

|det (E [Kn(ρ, γ∗)])| ≥ CK > 0.

In light of this for any ρ and γ∗

ml (ϕ, γ∗) = ml (ρ, f1, δ, γ∗) = 0

if and only if δ = δ0 = δ(f1,0, ρ0, β0) and f1 = f1,0, i.e., ϑ = ϑ0.
To show that m (ϕ, γ∗) = 0 if and only if ϕ = (ρ, f1, δ

′)′ = ϕ0 = (ρ0, f1,0, δ
′
0)

′ it thus suffices to
show that mq (ρ, f1,0, δ0, γ∗) = 0 if and only if ρ = ρ0.

Recall that

mq (ρ, f1,0, δ0, γ∗) = UA,Ω (ρ, f1,0, δ0, γ∗)

= lim
n→∞

1

n
tr
(
M (ρ)Ω(γ)−1/2AΩ(γ)−1/2M (ρ)Ω0

)
.

By Lemma B.2, mq (ρ, f0,1, δ0, γ∗) = 0 if and only if ρ = ρ0, and consequently m (ϕ, γ∗) = 0 if and
only if ϕ = ϕ0. Assumption 8 implies that m (ϕ, γ∗) and thus m (ϕ, γ∗)

′ Ξ−1m (ϕ, γ∗) is continuous.
Since the parameter space is compact it follows that ϕ0 = [ρ0, f0,1, δ

′
0]
′ is the identifiable unique

minimizer of m (ϕ, γ∗)
′ Ξ−1m (ϕ, γ∗); cp. the discussion after Definition 3.1 in Pötscher and Prucha
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(1997). Consistency now follows immediately from Lemma 3.1 in Pötscher and Prucha (1997).
For part (ii) of the theorem we first consider f̃1. Observing that in light of (8) we have

y1 = f1,0y2 +Xδ0 + (I + ρ0M)(u1 − f1,0u2) and that QXX = 0 it follows from (17) that

f̃1 =
z′QXy1
z′QXy2

= f1,0 +
n−1z′QX(I + ρ0M)(u1 − f1,0u2)

n−1z′QXy2
. (60)

Given that the elements of X and z are uniformly bounded by Assumption 7 and observing that
the row and columns sums of M are uniformly bounded in absolute value it follows, e.g., from
Remark A.1 in Kelejian and Prucha (2004) that the elements of z′QX(I + ρ0M) are uniformly
bounded. Thus n−1z′QX(I + ρ0M)(u1 − f1,0u2) →p 0 since n−1z′QX(I + ρ0M)ut →p 0 for t = 1, 2

by Assumption 8.
Observe that for ρ = 0, f1 = 1, ρ2τc = 1, σ2 = 1, V (γ, θ) = In and QV 1/2X = QX . Using (5)

implies that
n−1z′QXy2 = n−1z′QXµ

∗ + n−1z′QX(I + ρ0M)u2

and E
[
n−1z′QXy2|Zn

]
= E

[
n−1z′QXµ

∗|Zn

]
. As argued above, n−1z′QX(I+ρ0M)u2 →p 0. By As-

sumption 8(i) and (ii) it follows that n−1 |z′QXµ
∗ − E [z′QXµ

∗]| → 0 a.s. and n−1 |E [z′QXµ
∗]− Uzµ| →

0 a.s. Assumption 7(iii) implies that n−1 |E [z′QXµ
∗]| ≥ Ky > 0 which in turn implies that

|Uzµ| ≥ Ky > 0 . This shows that the denominator on the r.h.s. of (60) converges to a positive
constant. Having shown that the numerator converges to zero it follows that f̃1 →p f1,0.

Then, turning to

δ̃ =
(
X ′X

)−1
X ′
(
y1 − y2f̃1

)
=

(
X ′X

)−1
X ′ (Xδ0 + (In + ρ0M) (u1 − u2f1,0))

+
(
X ′X

)−1
X ′y2

(
f1,0 − f̃1

)
≡ I + II

where we used (8) for y1− f1,0y2. By Assumptions 7 and 8 it follows that n−1X ′X →p UXX where
UXX is positive definite and symmetric and n−1X ′y2 →p UXy whereUXy is bounded. This implies
that II →p 0. For I recall from above that n−1X ′ (In + ρ0M) (u1 − u2f0,1) →p 0. This shows that
δ̃ →p δ0.

Now consider the quadratic moment conditions. Let Υ1 = [X, y2], ϑ̃ =
(
δ̃, f̃1

)
, and observe

that utilizing (8) we have

ϵ+
(
ρ, f̃1, δ̃

)
= (I + ρM)−1 [y1 − y2f̃1 −Xδ̃]

= (I + ρM)−1 [(I + ρ0M)(u1 − f1,0u2)−Υ1(ϑ̃− ϑ0)],
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and consequently

n−1ϵ+(ρ, f̃1, δ̃)
′Aϵ+(ρ, f̃1, δ̃) = n−1

(
ϑ̃− ϑ0

)′
Υ′

1 (I + ρM)−1A (I + ρM)−1Υ1

(
ϑ̃− ϑ0

)
−n−12

(
ϑ̃− ϑ0

)′
Υ′

1 (I + ρM)−1AM (ρ) (u1 − f0,1u2)

+n−1 (u1 − f1,0u2)
′M (ρ)AM (ρ) (u1 − f1,0u2)

= I + II + III.

By Assumption 8 it follows that supρ
∣∣n−1Υ′

1(I + ρM)−1A(I + ρM)−1Υ1 − UΥ1Υ1 (ρ))
∣∣→ 0 a.s. for

some uniformly bounded UΥ1Υ1 (ρ). Thus I converges to zero uniformly in probability. Uniform con-
vergence in probability to zero for the second term, II, follows by noting that Υ′

1A (I + ρ0M)M (ρ)

is Z∗
n measurable and uniformly bounded by, e.g., Remark A.1 in Kelejian and Prucha (2004) t

such that pointwise convergence follows from Assumption 8. Uniform convergence follows from
Lipschitz continuity as before.

Finally, using Lemmas B.2 and Assumption 8 it follows that

sup
ρ

∣∣n−1 (u1 − f0,1u2)
′M (ρ)AM (ρ) (u1 − f0,1u2)− tr (M (ρ)AM (ρ)Ω0)

∣∣→ 0 a.s.

Then the consistency of ρ̃ follows from Lemma 3.1 in Poetscher and Prucha (1997), and analogous
arguments as those used for part (i) of the theorem.

Proof of Theorem 4.2. First show consistency of γ̂. Define Υ1 = [X, y2] and ϑ = (δ, f1). observing
from (8) that y1 − f0,1y2 −Xδ0 = (I + ρ0M)(u1 − f0,1u2) we have

ũ = (In + ρ̃M)−1
(
y1 −Υ1ϑ̃

)
= (u1 − u2f1,0) + (M (ρ̃)− I) (u1 − u2f1,0)

+M (ρ̃)Υ1

(
ϑ0 − ϑ̃

)
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such that

C∑
c=1

ũ′cũc1 {τc = j} =
C∑
c=1

(uc1 − uc2f0,1)
′ (uc1 − uc2f0,1) 1 {τc = j}

+
C∑
c=1

(uc1 − uc2f0,1)
′ (Mc (ρ̃)− I)2 (uc1 − uc2f0,1) 1 {τc = j}

+

C∑
c=1

(
ϑ0 − ϑ̃

)′
Υ′

1M (ρ̃)′M (ρ̃)Υ1

(
ϑ0 − ϑ̃

)
1 {τc = j}

+2

C∑
c=1

(uc1 − uc2f0,1)
′ (Mc (ρ̃)− I) (uc1 − uc2f0,1) 1 {τc = j}

+2

C∑
c=1

(uc1 − uc2f0,1)
′ (Mc (ρ̃)− I)′Mc (ρ̃)Υ1

(
ϑ0 − ϑ̃

)
1 {τc = j}

+2

C∑
c=1

(uc1 − uc2f0,1)
′Mc (ρ̃)Υ1

(
ϑ0 − ϑ̃

)
1 {τc = j}

= I + II + III + IV + V + V I.

Now consider the components of (Nj − q − 1)−1∑C
c=1 ũ

′
cũc1 {τc = j} . For I, note that

n−1E [I] = n−1
C∑
c=1

E
[
E
[
(uc1 − uc2f0,1)

′ (uc1 − uc2f0,1) |Z∗
n

]
1 {τc = j}

]
=

= σ20
(
1 + f21,0

)
n−1

C∑
c=1

ncρ
2
0,τc1 {τc = j}

= σ20
(
1 + f21,0

)
ρ2j,0n

−1
C∑
c=1

nc

= σ20
(
1 + f21,0

)
ρ2j,0(Nj/n) → σ20

(
1 + f21,0

)
ρ2j,0wj

such that
(
Nj − q − 1

)−1
E [I] = [n/(Nj−q−1]n−1E [I] → σ20ρ

2
j,0

(
1 + f21,0

)
since n/ (Nj − q − 1) →

1/ωj . By Assumption 8 it follows that I → σ20ρ
2
j,0

(
1 + f21,0

)
a.s. uniformly in the parameter space

for j = 1, . . . , J − 1, and I → σ20
(
1 + f21,0

)
a.s. for j = J For II, IV and V consider

(M (ρ̃)− I) = (I + ρ̃M)−1M (ρ0 − ρ̃)

= diagc
(
− 1

(nc − 1− ρ̃)
I∗c +

1

1 + ρ̃
J∗
c

)
(ρ0 − ρ̃)

such that for II

(Mc (ρ̃)− I)2 = diagc
(

1

(nc − 1− ρ̃)2
I∗c +

1

(1 + ρ̃)2
J∗
c

)
(ρ0 − ρ̃)2 .
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Then using the notation

C (ρ) = diagc
(

1 {tc = j}
(nc − 1− ρ)2

I∗c +
1 {tc = j}
(1 + ρ)2

J∗
c

)
in line with Assumption 8 shows that

n−1II = (ρ0 − ρ̃)2 n−1 (u1 − u2f1,0)
′C (ρ̃) (u1 − u2f0,1)

≤ (ρ0 − ρ̃)2 sup
ρ

∣∣n−1 (u1 − u2f0,1)
′C (ρ) (u1 − u2f0,1)− E

[
n−1 tr (C (ρ)Ω0)

]∣∣
+(ρ0 − ρ̃)2 sup

ρ

∣∣∣[E [n−1 tr (C (ρ)Ω0)
]
− lim

n
E
[
n−1 tr (C (ρ)Ω0)

]]∣∣∣
+(ρ0 − ρ̃)2 sup

ρ

∣∣∣lim
n
E [tr (C (ρ)Ω0)]

∣∣∣
= op (1) ,

observing that ρ0− ρ̃ = op (1) by Theorem 4.1(ii), that the first and second supremum converges to
zero a.s. by Assumption 8(i) and that limnE [tr (C (ρ)Ω0)] is uniformly bounded by Assumption
8(ii). Arguments analogous to these show that the remaining terms of n−1

∑C
c=1 ũ

′
cũc1 {τc = j}

converge to zero in probability. The details are omitted. This establishes that

γ̂j =
(
Nj − q − 1

)−1
C∑
c=1

ũ′cũc1 {τc = j} →p σ
2
0ρ

2
0,j

(
1 + f20,1

)
.

To obtain the limiting distribution note that Qn (ϕ, γ) defined in (15) can be written as

Qn (ϕ, γ) = mn (ϕ, γ)
′ Ξ−1

n mn (ϕ, γ)

where Ξn is defined in (14). Using a mean value expansion around ϕ0 we obtain

0 =
√
n
∂Qn

(
ϕ̂, γ

)
∂ϕ

=
∂mn (ϕ0, γ)

′

∂ϕ
Ξ−1
n

√
nmn (ϕ0, γ) +

∂mn (ϕ, γ)
′

∂ϕ
Ξ−1
n

∂mn

(
ϕ̄, γ

)
∂ϕ

√
n
(
ϕ̂− ϕ0

)
where

∥∥ϕ̄− ϕ0
∥∥ ≤

∥∥∥ϕ̂− ϕ0

∥∥∥ and with some abuse of notation it is understood that ϕ̄ differs among
rows of mn (.) . Using the explicit derivatives given in Section D it follows from Assumption 8(i) and
(ii) that for any sequence γn with γn →p γ∗ that ∂mn

(
ϕ̄, γn

)
/∂ϕ →p G where G is fixed matrix

and Ξn →p Ξ with Ξ a square matrix and where G is full column rank and Ξ is full rank. This
implies that

√
n
(
ϕ̂− ϕ0

)
=
((
G′Ξ−1G

)−1
G′Ξ−1 + op (1)

)√
nmn (ϕ0, γn) .

It remains to establish the limiting distribution of
√
nmn (ϕ0, γn) where γn is a possibly random

sequence with γn →p γ∗. To apply the results of Kuersteiner and Prucha (2020) note that the

61



moment vectormn (.) can be represented as the sum over the linear and quadratic terms by defining
hi,1 = (h′i, 0)

′ and aij,1 = (0, ...., 0, aij)
′ with hi the i-th row of H and aij the i, j-th element of

A. Then, mn (ϕ, γn) =
∑n

i=1 hi,1u
+
i,∗1 +

∑n
j,i=1 aij,1u

+
i,∗1u

+
j,∗1 has the same form as Equation (23) in

Kuersteiner and Prucha (2020). It is then sufficient to check that the conditions for Proposition 3
in Kuersteiner and Prucha (2020) hold. Proposition 3 requires that Assumptions 1-3 of Kuersteiner
and Prucha (2020) hold. We abbreviate assumptions in Kuersteiner and Prucha (2020) with A-KP
to avoid confusion with assumptions in this paper.

The moment bounds of A-KP 1(i) hold by Assumption 2 and Lemma 2.1 which implies that
uit and µi have bounded moments, and Assumption 7(i) which bounds the moments of xit and zit.
A-KP 1(ii), Eq 15, holds by Lemma B.3, A-KP 1(ii), Eq 16 holds by Assumption ?? and A-KP
1(ii), Eq 17 holds by Lemma B.3, and the parametric restrictions on the conditional cross-sectional
variances hold by Assumption 3.

Now turning to A-KP 2, the σ-field that corresponds to Bn,t is An,(t−1)n defined in (39). Since
Z∗
n ⊂ An,(t−1)n, the fact that hi and aij are assumed measurable w.r.t to Zn∨C ⊂Z∗

n in Assumption
7(i) and (iii), and uniformly bounded in Assumption 7(i), A-KP 2(i) and (ii) hold. We also normalize
f2 = 1 and restrict the parameter space of f1 to a compact interval in Assumption 4 such that
A-KP 2(iii) holds.

Finally, consider A-KP 3 which is identical to Assumption 8. In summary, all conditions of
Proposition 3 in Kuersteiner and Prucha (2020) hold. It follows that

√
nmn (ϕ0, γ) →d V

1/2
ϱ ξ where

ξ ∼ N (0, Iq+2) For any conformable, matrix A it follows that
√
nAmn (ϕ0, γ) →d (A′V A)1/2 ξ. By

choosing A =
(
G′Ξ−1G

)−1
G′Ξ−1 the claim of the theorem is proven.

D Gradient Vector

In this section, we derive the gradient vector for the two-step-GMM estimator. Recall that ϕ =

[ρ, f1, δ
′]′,

u+1 (ϕ, γ) = Ω(γ)−1/2(I + ρM)−1 (y1 − f1y2 −Xδ)

= Ω(γ)−1/2(I + ρM)−1 ((f10 − f1)µ
∗ +X(δ(f1, ρ0, β0)− δ) + (I + ρ0M)(u1 − f1u2))

and that yt = µ∗f0,t +Xβ0,t + (I + ρ0M)ut.

∂mn(ϕ, γ)/
√
n

∂ϕ′
=

1

n

 H ′ ∂u
+
1

∂ϕ′

2u+′
1 A

∂u+′
1

∂ϕ′

 =
1

n

 H ′ ∂u
+
1

∂ρ H ′ ∂u
+
1

∂f1
H ′ ∂u

+
1

∂δ′

2u+′
1 A

∂u+′
1

∂ρ 2u+′
1 A

∂u+′
1

∂f1
2u+′

1 A
∂u+

1
∂δ′

 .
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The derivative of u+(ϕ, γ) w.r.t ϕ = (ρ, f1, δ) are

∂
u+(ϕ, γ)

∂f1
= −Ω(γ)−1/2(I + ρM)−1y2

= −Ω(γ)−1/2(I + ρM)−1[µ∗ +Xβ0,2 + (I + ρ0M)u2].

∂
u+(ϕ, γ)

∂ρ
= −Ω(γ)−1/2(I + ρM)−1M(I + ρM)−1(y1 − f1y2 −Xδ)

= −Ω(γ)−1/2(I + ρM)−1M(I + ρM)−1

× ((f10 − f1)µ
∗ +X(δ(f1, ρ0, β0)− δ) + (I + ρ0M)(u1 − f1u2))

∂
u+(ϕ, γ)

∂δ
= −Ω(γ)−1/2(I + ρM)−1X.

It thus is obvious that u+(ϕ, γ) and each element of u+
1 (ϕ,γ)
∂ϕ can be written as linear combinations

of S(ϕ, γ)Υ, S(ϕ, γ)ut, where S(ϕ, γ) is an element or the product of elements of the matrix set
in (38), and Υ ∈ {H,µ∗, X}. Applying Corollary B.1 and Assumption 8 , the gradient vector
converges uniformly to its expected value.
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