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Abstract

Many structural econometric models include latent variables on whose prob-

ability distributions one may wish to place minimal restrictions. Leading exam-

ples in panel data models are individual-specific variables sometimes treated as

“fixed effects” and, in dynamic models, initial conditions. This paper presents a

generally applicable method for characterizing sharp identified sets when mod-

els place no restrictions on the probability distribution of certain latent vari-

ables and no restrictions on their covariation with other variables. Endogenous

explanatory variables can be easily accommodated. Examples of application

to some static and dynamic binary, ordered and multiple discrete choice panel

data models are presented.

1 Introduction

This paper deals with models of processes delivering values of outcomes, Y , given

values of exogenous variables, Z, and latent, that is unobserved, variables U and V .

The models that are the focus of this paper all leave the distribution of V on its

known support and its covariation with all other variables completely unrestricted.

By contrast, latent variable U may be required to be, to some degree, independent of

Z.

Leading examples of latent variables in structural econometric models employed

in practice on whose distribution one may not want to impose restrictions are the

*UCL, Duke University, UCL. Corresponding author andrew.chesher@ucl.ac.uk.
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individual-specific unobserved variables included in many panel data models, some-

times called “fixed effects” and the historic values of outcomes dynamically deter-

mined by a process, commonly called “initial conditions”.

The following example has both elements, a “fixed effect”, C, and an initial con-

dition, Y10.

Example 1 A dynamic binary response model specifies that for all t ∈ {1, . . . , T}

Y1t =


1 , αY2t + Ztβ + γY1t−1 + C + Ut ≥ 0,

0 , αY2t + Ztβ + γY1t−1 + C + Ut ≤ 0, (1)

with Y1t = 0 or Y1t = 1 permitted when both inequalities hold,1 and U ∥ Z where

U ≡ (U1, . . . , UT ), Z ≡ (Z1, . . . , ZT ).

Realizations of (Y, Z) are observed where

Y = (Y11, . . . , Y1T , Y21, . . . , Y2T )

and Zt and Y2t may be vectors. If the value of Y10 is observed then unrestricted V = C,

otherwise V = (C, Y10). If α is not restricted equal to zero there are endogenous

explanatory variables.

This paper presents characterizations of identified sets of structures and structural

features in models admitting unobserved variables such as V whose distribution is

unrestricted. There can be endogenous explanatory variables as in Example 1 when

α ̸= 0. A model may be incomplete in the sense that, given values of all observed

and all unobserved variables and a specification of parameter values and functional

forms, the model can deliver a nonsingleton set of values of outcomes.

The strategy employed here removes unrestricted latent variables like V by pro-

jection. In most cases this delivers an incomplete model in which for each value of

observed exogenous variables and unobserved U there is a set of values of endogenous

Y which the model permits to eventuate. Different values of Y in this set are deliv-

ered by choosing different values of V .2 This treatment allows for the possibility that

1This is equivalent to the representation Y1t = 1[αY2t + Ztβ + γY1t−1 + C + Ut > 0] when the
indicator function 1 [a > b] takes the value 1 if a > b, 0 if a < b, and either value if a = b.

2If the model is incomplete before projection then different values of V can deliver different sets
of values of Y .
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components of V are endogenous.

Similarly, for each value of observed endogenous Y and exogenous Z, after pro-

jecting V away there is a set of values of unobserved U , each member of which can

deliver that value of Y and Z. Identification analysis then proceeds using the GIV

approach introduced in Chesher and Rosen (2017).

Section 2 considers the relationship of this work to some other results in the lit-

erature. Section 3 presents characterizations of identified sets of structures. Sections

4 to 8 set out applications to linear panel models and to models of binary response

panels, ordered choice panels, multiple discrete choice panels and simultaneous binary

outcome panels.

2 Related literature

Rasch (1960), Rasch (1961), Andersen (1970), and Chamberlain (2010) study point

identifying static panel models (i.e. γ = 0 in (1)) with restrictions requiring U1, ..., UT

to be independent over time and distributed independently of Z and independently

of the fixed effect and each with logistic marginal distributions. Like all the papers

referred to in this section, except one paper which is noted, these models do not admit

endogenous explanatory variables.

Honoré and Kyriazidou (2000) study a dynamic model as in (1) but with no

endogenous explanatory variable (α = 0) with the Ut’s independent of the fixed effect,

independent over time, distributed independently of Z and with logistic distributions.

That paper also studies a case in which the logistic distribution restriction is dropped

and a case with multinomial logit panels with latent variables U independent of the

fixed effects and independent of Z. Honoré and Kyriazidou (2019) extends this work,

studying multivariate dynamic panel data logit models with fixed effects. Many other

papers, like these, invoke restrictions requiring independence between Ut’s and the

fixed effect conditional on some of the other observable variables including Honoré and

Tamer (2006), Honoré and De Paula (2021),3 Honoré and Weidner (2022), Davezies,

D’Haultfœuille, and Laage (2022), Bonhomme, Dano, and Graham (2023), Davezies,

D’Haultfœuille, and Mugnier (2023), and Honoré, Muris, and Weidner (2023). Such

independence restrictions are not imposed here.

There are many papers studying panel models of binary outcomes and multiple

discrete choice under conditional stationarity restrictions on the distribution of the

3This paper considers models in which there are simultaneous equations in binary outcomes and
so, endogenous explanatory variables.
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time varying latent variables introduced in Manski (1987). These papers include

Chernozhukov, Fernandez-Val, Hahn, and Newey (2013), Shi, Shum, and Song (2018),

Gao and Li (2020), Khan, Ouyang, and Tamer (2021), Pakes, Porter, Shepard, and

Calder-Wang (2021), Pakes and Porter (2022), Khan, Ponomareva, and Tamer (2023),

and Mbakop (2023).

In all of these cases the stationarity restriction placed on time-varying unobserv-

able heterogeneity is required to hold conditional on the value of the fixed effect and

the observable exogenous variables, which restricts the covariation of the fixed effect

and U .4 In contrast, the models considered in this paper impose no restrictions on

the covariation of the fixed effect with any variable.

In the linear panel data model with fixed effects, differencing across time periods

removes the fixed effect, delivering events whose probability of occurrence can be

known and is invariant with respect to changes in the value of the fixed effect. Under

suitable support restrictions this leads to point identification. Similarly, in the Rasch-

Andersen set up, events whose probability of occurrence can be known and is invariant

to changes in the value of the fixed effect are found. Under particular distributional

restrictions point identification results.

Aristodemou (2021) successfully uses this strategy to provide set-identifying mo-

ment inequalities in panel models of binary response and ordered choice when the

covariation of the fixed effects with other variables is unrestricted. The results de-

veloped in this paper provide a rule-directed procedure for finding all events whose

probability is invariant with respect to the value of unrestricted latent variables such

as fixed effects, and thereby delivers sharp set identification.

This paper presents a generally applicable approach to identification analysis in a

wide class of models in which there are distributionally unrestricted latent variables

and gives examples of the results it produces. The paper proceeds in the context

of the Generalized Instrumental Variable (GIV) framework set out in Chesher and

Rosen (2017).

3 Identified sets

First the notation employed in this paper is introduced.

4In the binary response specification (1) stationarity implies that for all z, FU1|Z=z,C=c =
FU2|Z=z,C=c and FU1|Z=z,C=c′ = FU2|Z=z,C=c′ for any c, c′, which restricts how the conditional
distribution of U can change with values of the fixed effect C. As pointed out by Chernozhukov,

Fernandez-Val, Hahn, and Newey (2013) the stationarity restriction Ut|C,Z
d
= U1|C,Z for all t is

equivalent to (Ut, C)|Z d
= (U1, C)|Z for all t.
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Notation. Generically RA denotes the support of random variable A and LA|Z=z

denotes a conditional probability distribution of random variable A given Z = z.

LA|Z=z(S) is the conditional probability A takes a value in set S given Z = z.

LA|Z ≡ {LA|A=z; z ∈ RZ} is the collection of conditional distributions delivered by

a joint distribution LAZ when the support of Z is RZ. A ∥ B denotes A and B are

independently distributed. Sets and set-valued random variables are expressed using

calligraphic font. Collections of sets are expressed using sans serif font. R denotes

the real line. The empty set is denoted ∅.

Variables Y are endogenous outcomes, variables Z are exogenous5 and variables U

and V are latent variables. Random vectors (Y, Z, U, V ) are defined on a probability

space (Ω, L,P), endowed with the Borel sets on Ω. The support of (Y, Z, U, V ) is a

subset of a finite dimensional Euclidean space. The sampling process identifies FY Z ,

equivalently the collection of conditional distributions FY |Z and FZ , as occurs for

example under random sampling in the cross section.

Models place restrictions on a structural function h : RY ZUV → R which specifies

the combinations of these variables that can occur via the following restriction.6

P[h(Y, Z, U, V ) = 0] = 1

Models place restrictions on the conditional probability distributions of U given Z

which are elements of a collection GU |Z . Coupled pairs (h,GU |Z) are called structures.

A model M is a collection of structures that obey the restrictions imposed a priori on

the data generation process by the researcher. This paper provides sharp identification

analysis of structures (h,GU |Z) ∈ M and hence functionals thereof given knowledge

of FY |Z .

The essential element of the models considered here is that they place no restric-

tions on the marginal distribution of V and no restrictions on the covariation of V

with (Z,U).

This paper shows how the framework set out in Chesher and Rosen (2017) (CR)

can be used to study cases with unobserved variables whose distribution and covari-

ation with other variables is not subject to restrictions. The support of any initial

5In the sense that their values are not affected by the evolution of the process.
6In the case of (1) a suitable h function would be

h(Y, Z, U, V ) =

T∑
t=1

max{0, (1− 2Y1t) · (αY2t + Ztβ + γY1t−1 + C + Ut)}.

with V = (C, Y0).
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condition components of V is assumed known and the support of all “fixed effect”

components of V is assumed to be the entirety of the Euclidean space in which it

resides. It is straightforward to generalize the analysis to cases in which the support

of the fixed effect component, is restricted in similar manner to how initial conditions

are restricted to their known support.7

It is assumed throughout this paper, as is typically the case, that the distribution

of U |Z is absolutely continuous with respect to Lebesgue measure almost surely.

This renders the boundary of sets U∗(y, z;h) to be measure zero with respect to any

GU |Z=z. It is convenient to define the structural function h such that sets U∗(Y, Z;h)

are closed almost surely in the usual Euclidean topology, and we do so here, but this

is of no substantive consequence and can be relaxed.8

Taken together the restrictions set out above ensure that Restrictions A1 - A6 of

CR hold in the models considered, suitably modified to accommodate unobservable

variables (U, V ) with the distribution of V unrestricted.9

Theorem 1 provides a characterization of the identified set of structures, denoted

I(M,FY |Z), delivered by a model M and a collection of distributions, FY |Z which

is the collection of distributions marginal with respect to V obtained from some

collection FY V |Z .

Theorem 1 Let RV denote the support of V . Define U∗(y, z;h) as follows.

U∗(y, z;h) ≡ {u : ∃v ∈ RV such that h(y, z, u, v) = 0} (2)

Let FY |Z be a collection of distributions whose members are marginal distributions of

the members of some collection of distributions FY V |Z. The set of structures (h,GU |Z)

identified by model M and the collection of distributions FY |Z comprises all struc-

tures admitted by the model M such that for all z ∈ RZ, the probability distribution

GU |Z=z ∈ GU |Z is selectionable with respect to the conditional distribution of the ran-

dom set U∗(Y, Z;h) delivered by the probability distribution FY |Z=z ∈ FY |Z.

7See for example the U∗ set defined in (10) when the initial condition is unobserved. A fixed
effect C could be similarly restricted to below to RC ⊊ Rdim(C) with additional notation.

8With some care equivalent results could be obtained allowing for random open sets and random
closed sets, or by working with an alternative topology in which the sets under consideration are
closed, such as the discrete topology when RY is discrete. One could also allow sets of values of
unobservables that deliver “ties” in the optimal choice of discrete outcome with positive probability,
and apply results of CR, with suitable care.

9The latent variables U in restrictions A1-A6 of CR should be taken to include both the variables
U and V of this paper. For completeness, these restrictions, adapted to the present context, are
collected in Appendix A.
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Formally the Theorem defines the identified set of structures (h,GU |Z) as

I(M,FY |Z) ≡
{
(h,GU |Z) ∈ M : GU |Z=z ⪯ U∗(Y, Z;h)

conditional on Z = z a.e. z ∈ RZ , }

where, as in Chesher and Rosen (2020), for any random variable A with distribution

FA and random set A, FA ⪯ A denotes that FA is selectionable with respect to the

distribution of A.10

The proof relies on the following Lemma.

Lemma 1 Define Y∗(u, z;h).

Y∗(u, z;h) ≡ {y : ∃v ∈ RV such that h(y, z, u, v) = 0}

The sets Y∗(u, z;h) and U∗(y, z;h) possess the duality property

∀z, y+, u+ y+ ∈ Y∗(u+, z;h) ⇐⇒ u+ ∈ U∗(y+, z;h)

Proof. The result follows because

y+ ∈ Y∗(u+, z;h) ⇐⇒ ∃v ∈ RV such that h(y+, z, u+, v) = 0

u+ ∈ U∗(y+, z;h) ⇐⇒ ∃v ∈ RV such that h(y+, z, u+, v) = 0.

The proof of Theorem 1 above proceeds as the proof of Theorem 2 in CR, replacing

U sets with U∗ sets.

The identified set of structures can be characterized as shown in Corollary 1 using

the characterization of selectionability given in Artstein (1983), as in Corollary 2 of

CR.

Corollary 1 Let F(RU) denote the collection of closed sets on the support of U . The

set of structures identified by model M and the collection of distributions FY |Z is as

10The probability distribution of random variable A is selectionable with respect to the probabilty
distribution of random set A when there exists (i) Ã having the same distribution as A, and (ii)

Ã having the same distribution as A, both defined on the same probability space such that P[Ã ∈
Ã] = 1. See Definition 2 of Chesher and Rosen (2020).
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follows.

I(M,FY |Z) ≡
{
(h,GU |Z) ∈ M : ∀S ∈ F(RU)

FY |Z=z({y : U∗(y, z;h) ⊆ S}) ≤ GU |Z=z(S) a.e. z ∈ RZ

}
. (3)

Remarks

1. The probability FY |Z=z({y : U∗(y, z;h) ⊆ S}) is the probability conditional on

Z = z of the occurrence of a value of Y that only occurs when U ∈ S. We will

refer to such a probability as a containment probability.

2. Because the inequalities defining I(M,FY |Z) only involve probabilities of events

under which U∗ sets are subsets of test sets, S, the collection of test sets F(RU)

in the definition of I(M,FY |Z) can, for each z ∈ RZ , be replaced by the

collection of all unions of U∗ sets,

U∗(z;h) ≡

{⋃
y∈Y

U∗(y, z;h) : Y ⊆ RY

}
. (4)

When all sets U∗(y, z;h) are connected sets, only unions that are connected

need be considered. Theorem 3 of CR applies and gives further refinements. In

particular applications some unions need not be considered because they deliver

inequalities that are dominated by others.

3. Many of our illustrative examples will employ the restriction that U and Z are

fully independent, but the characterizations afforded by Theorem 1 and Corol-

lary 1 allow for a much wider variety of restrictions on the family of distributions

of GU |Z=z. For example the collection of conditional distributions GU |Z could

require that Ut
∥ (Z1, ..., Zt) for all t, while permitting dependence between Ut

and Zs for s > t, hence allowing models that impose only weak exogeneity.

4. If there is additionally the restriction U ∥ Z then GU |Z = {GU} and there is the

following simplification.

I(M,FY |Z) ≡

{
(h,GU) ∈ M : ∀S ∈ F(RU)

sup
z∈RZ

FY |Z=z({y : U∗(y, z;h) ⊆ S}) ≤ GU(S)
}

(5)
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5. Identified sets of values of a structural feature, defined as a functional, θ
(
(h,GU |Z)

)
,

are obtained by projection.

Iθ(M,FY |Z) = {θ(
(
h,GU |Z

)
) :

(
h,GU |Z

)
∈ I(M,FY |Z)}.

An example of such a structural feature is a vector of coefficients multiplying

included exogenous variables in models in which h is parametrically specified

with a linear index restriction.

6. Outer sets for the projection of the identified set of structures onto the space

of structural functions can be obtained. Impose the restriction U ∥ Z and let

there be no further restrictions on GU . All structures in I(M,FY |Z) satisfy the

inequality

sup
z∈RZ

FY |Z=z({y : U∗(y, z;h) ⊆ S}) ≤ GU(S)

and applying this with S replaced by its complement delivers

GU(S) ≤ inf
z∈RZ

FY |Z=z({y : U∗(y, z;h) ∩ S ≠ ∅}).

Let H(M) denote the set of structural functions admitted by model M. There

is the following outer identified set on the space of structural functions.

Ih(M,FY |Z) ≡

{
h ∈ H(M) : ∀S ∈ F(RU)

sup
z∈RZ

FY |Z=z({y : U∗(y, z;h) ⊆ S}) ≤

inf
z∈RZ

FY |Z=z({y : U∗(y, z;h) ∩ S ≠ ∅})
}

(6)

In this case test sets additional to the unions of U∗ sets may deliver tighter

bounds.

Some examples of the application of these results are now presented. The devel-

opment of some of these results was done by exploiting the symbolic computational

power of Mathematica, Wolfram Research, Inc. (2023).11

11In particular we made use of Mathematica’s Reduce function, which reduces expressions by
solving inequalities for specified variables, eliminating existential qualifiers.
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4 Linear panel data model

The approach set out in this paper delivers classical results when taken to the simple

linear panel data model. Consider the simplest case with two periods of observation

and the following model incorporating a conditional mean independence restriction

Yt = β0 + β1Zt + V + Ut, E[Ut|Z] = 0, t ∈ {1, 2},

where Z1 and Z2 are scalar, Z ≡ (Z1, Z2), and z ≡ (z1, z2).
12

The Y ∗ and U∗ sets are as follows.

Y∗(u, z; β) = {(y1, y2) : y2 − y1 = β1 (z2 − z1) + u2 − u1}

U∗(y, z; β) = {(u1, u2) : u2 − u1 = y2 − y1 − β1 (z2 − z1)}

Theorem 5 of CR delivers the result that the values of β1, say β+
1 in the identified

set are all values such that zero is an element of the Aumann expectation of the set

U∗(Y, Z; β+
1 ) conditional on Z = z for all z ∈ RZ . The set U∗(Y, Z; β1) is singleton

in this example, so the Aumann expectation is simply the classical expectation of

point-valued random variables and there is

E[U∗(Y, Z; β1)|Z = z] = E[Y2 − Y1|Z = z]− β1 (z2 − z1)

which, set equal to zero, delivers the correspondence

β1 =
E[Y2 − Y1|Z = z]

(z2 − z1)

which is point identifying as long as z2 ̸= z1.

Extension to T > 2 and dynamic models is straightforward and need not be

rehearsed here. The point is that the general approach proposed here delivers classical

results.

However the approach will not deliver the well-known point identification result

in binary response panel data models with logistic distributed time-varying latent

variables because those models further impose U ∥ V .13 In this paper the covariation

12The function
T∑

t=1

(Yt − (β0 + Ztβ1 + V + Ut))
2

can serve as the function h(Y,Z, U, V ).
13See Chamberlain (2010).
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of V with all other variables is unrestricted.

5 Binary response panel models

This section studies the dynamic binary response model of Example 1 under a va-

riety of restrictions. Only in the final Section 5.3 are models admitting endogenous

explanatory variables considered. Section 2 lists many papers that study binary re-

sponse panel models with fixed effects. In all but one previous paper known to us

there is a restriction on the joint distribution of the fixed effect and other variables

such that the conditional distribution of other variables given the fixed effect is sub-

ject to restrictions. The one exception of which we are aware is Aristodemou (2021),

in which bounds are provided for binary response panel data models with an observed

initial condition. No such restrictions are imposed here.

Section 5.1 gives results for the two period dynamic binary response model when

the initial condition (Y0) is observed. This model is studied in Aristodemou (2021).

Three period dynamic models with unobserved initial condition are studied in Section

5.2. Section 5.3 gives results for a general case in which there may be endogenous

explanatory variables. Extension to models with multiple lagged dependent variables

is straightforward.

Define Y = (Y1, . . . , YT ) and Z and U similarly.

5.1 Two period dynamic binary response model, initial con-

dition observed

In the case considered in this section, T = 2 and Y0 is observed. Define ∆u ≡ u2−u1,

and ∆z ≡ z2 − z1, θ = (β′, γ)′.

The U∗ sets are as follows.

U∗(y, z, y0; θ) =


RU , y = (0, 0)

{u : ∆u ≥ −∆zβ + y0γ} , y = (0, 1)

{u : ∆u ≤ −∆zβ + (y0 − 1)γ} , y = (1, 0)

RU , y = (1, 1)

Unions of these U∗ sets do not deliver additional informative inequalities.14

Let G∆U |Y0 denote the conditional distribution of U2 − U1 given Y0. Under the

independence restriction U ∥ Z|Y0 the identified set of values of (θ,G∆U |Y0) comprises

14Unions are either disjoint or equal to the support of U depending on the sign of γ.
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Table 1: U∗ sets in the dynamic binary response panel data model with 3 periods, Y0

not observed, and γ ≥ 0.

y U∗(y, z; θ) when γ ≥ 0

1 (0, 0, 0) RU

2 (0, 0, 1) {u : (∆31u ≥ −∆31zβ) ∧ (∆32u ≥ −∆32zβ)}
3 (0, 1, 0) {u : (∆21u ≥ −∆21zβ) ∧ (∆32u ≤ −∆32zβ − γ)}
4 (0, 1, 1) {u : (∆21u ≥ −∆21zβ) ∧ (∆31u ≥ −∆31zβ − γ)}
5 (1, 0, 0) {u : (∆21u ≤ −∆21zβ) ∧ (∆31u ≤ −∆31zβ + γ)}
6 (1, 0, 1) {u : (∆21u ≤ −∆21zβ) ∧ (∆32u ≥ −∆32zβ + γ)}
7 (1, 1, 0) {u : (∆31u ≤ −∆31zβ) ∧ (∆32u ≤ −∆32zβ)}
8 (1, 1, 1) RU

those values such that the following inequalities hold for y0 ∈ {0, 1} and a.e. z ∈ RZ .

P[Y = (0, 1)|Z = z, Y0 = y0] ≤ G∆U |Y0=y0 ({∆u : ∆u ≥ −∆zβ + y0γ})

P[Y = (1, 0)|Z = z, Y0 = y0] ≤ G∆U |Y0=y0 ({∆u : ∆u ≤ −∆zβ + (y0 − 1)γ})

These are the inequalities of Theorem 1 of Aristodemou (2021).

Setting γ = 0 delivers the inequalities defining the identified set in the two period

static binary response panel model.

5.2 A three period dynamic binary response model with the

initial condition not observed

For any s, t ∈ {1, ..., T} define ∆stu ≡ us − ut, and ∆stz ≡ zs − zt. With T = 3, and

treating both V and Y0 as unobserved latent variables with unrestricted distributions

the U∗ sets are as shown in Table 1 (γ ≥ 0) and Table 2 (γ ≤ 0).

For sets of values of Y , T ⊂ RY , define functions

S(T , z; θ) ≡
⋃
y∈T

U∗(y, z; θ) (7)

and15

Y(T , z; θ) ≡ {y : U∗(y, z; θ) ⊆ S(T , z; θ)}. (8)

The identified set of values of (β, γ,GU) comprises the values satisfying, for z ∈ RZ ,

15The set T can be a strict subset of Y(T , z; θ). For example, this is the case when T contains
two values of Y and there is a third value of Y such that its U∗ set is a subset of S(T , z; θ) as in
row 7 of Table 6.
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Table 2: U∗ sets in the dynamic binary response panel data model with 3 periods, Y0

not observed, and γ ≤ 0.

y U∗(y, z; θ) when γ ≤ 0

1 (0, 0, 0) RU

2 (0, 0, 1) {u : (∆31u ≥ −∆31zβ + γ) ∧ (∆32u ≥ −∆32zβ)}
3 (0, 1, 0) {u : (∆21u ≥ −∆21zβ + γ) ∧ (∆32u ≤ −∆32zβ − γ)}
4 (0, 1, 1) {u : (∆21u ≥ −∆21zβ + γ) ∧ (∆31u ≥ −∆31zβ)}
5 (1, 0, 0) {u : (∆21u ≤ −∆21zβ − γ) ∧ (∆31u ≤ −∆31zβ)}
6 (1, 0, 1) {u : (∆21u ≤ −∆21zβ − γ) ∧ (∆32u ≥ −∆32zβ + γ)}
7 (1, 1, 0) {u : (∆31u ≤ −∆31zβ − γ) ∧ (∆32u ≤ −∆32zβ)}
8 (1, 1, 1) RU

inequalities of the form

P[Y ∈ Y(T , z; θ)|Z = z] ≤ GU(S(T , z; θ)), a.e. z ∈ RZ ,

where the sets Y(T , z; θ) and T are shown in the first and second columns of Tables

6, 7, and 8, covering the cases in which γ = 0, γ > 0, and γ < 0, respectively.

5.3 General dynamic binary response panel models

Consider now the general specification of a dynamic panel data model from Example

1 given in (1), allowing for endogeneity such that possibly α ̸= 0. This section

illustrates application of our identification analysis to such cases, also allowing for

arbitrary finite T .16

Define

T0 ≡ {t ∈ {1, ..., T} : Y1t = 0} , T1 ≡ {t ∈ {1, ..., T} : Y1t = 1} , (9)

denoting the sets of periods in which Y1t = 0 and Y1t = 1, respectively. Let Y0

denote the set of values in which the initial condition Y10 is known to lie, such that

Y0 = {Y10} if the initial condition is observed and Y0 = {0, 1} if the initial condition

is not observed.

16Here we impose C = R, as typically done in the literature. Extension to cases in which C is a
subset of R is straightforward.
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Then the set U∗(Y, Z;h) defined in (2) in this model can be written

U∗(Y, Z;h) = {u ∈ RU : ∃Y10 ∈ Y0 such that

max
t∈T0

Y2tα + Ztβ + Y1t−1γ + ut ≤ min
t∈T1

Y2tα + Ztβ + Y1t−1γ + ut}. (10)

This is so because the constituent inequalities may be equivalently expressed as

C ≤ C

where

C ≡ max
t∈T1

− (Y2tα + Ztβ + Y1t−1γ + ut) ,

C ≡ min
t∈T0

− (Y2tα + Ztβ + Y1t−1γ + ut) .

That C ≤ C for some Y10 ∈ Y0 guarantees there exists a C ∈
[
C,C

]
and Y10 ∈ Y0

such that (1) holds.17

Define θ = (α′, β′, γ)′. For any panel data model for a binary outcome as in (1)

with U ∼ GU independent of Z, the identified set of values of (θ,GU) are those pairs

satisfying, for an appropriately chosen collection18 of sets T , the inequalities

P[Y ∈ Y(T , z; θ)|Z = z] ≤ GU(S(T , z; θ)), a.e. z ∈ RZ ,

where the sets S(T , z; θ) and Y(T , z; θ) are as defined in (7) and (8).

This characterization applies for both dynamic models and static models (for

which γ = 0 is imposed), models allowing endogenous explanatory variables (for

which α ̸= 0 is permitted), and for arbitrary T .

6 Static multiple discrete choice panel models

Consider a 3 choice model and a 2 period panel. There is

Yt = argmax
d

{Jdt : d ∈ {1, 2, 3}}, t ∈ {1, 2}

17The max and min operators applied to the empty set are defined to be −∞ and ∞, respectively.
18The collection of all unions of U∗ sets, U∗(z;h), defined in (4), will suffice. In practice there may

be unions in this collection which need not be considered because they deliver redundant inequalities.
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Table 3: U∗ sets in the multiple discrete three choice two period panel model.

y U∗(y, z; θ)

1 (1, 1) RW

2 (1, 2) {w : ∆w2 −∆w1 ≥ ∆zβ1 −∆zβ2}
3 (1, 3) {w : ∆w1 ≤ −∆zβ1}
4 (2, 1) {w : ∆w2 −∆w1 ≤ ∆zβ1 −∆zβ2}
5 (2, 2) RW

6 (2, 3) {w : ∆w2 ≤ −∆zβ2}
7 (3, 1) {w : ∆w1 ≥ −∆zβ1}
8 (3, 2) {w : ∆w2 ≥ −∆zβ2}
9 (3, 3) RW

where the Jdt terms are random utilities as follows.

J1t ≡ Ztβ1 + V1 + U1t, t ∈ {1, 2}

J2t ≡ Ztβ2 + V2 + U2t, t ∈ {1, 2}

J3t ≡ U3t, t ∈ {1, 2}

The terms V1 and V2 are “fixed effects” whose distribution and covariation with other

variables is unrestricted.

Section 2 lists many papers that study multiple discrete panel models with fixed

effects. In all studies of multiple discrete choice panel data models known to us there

are conditions imposed on the joint distribution of fixed effects and other variables

such that the conditional distribution of other variables given the fixed effect is subject

to restriction. No such restrictions are imposed here.

Define W1t ≡ U1t−U3t, W2t ≡ U2t−U3t, W ≡ (W11,W12,W21,W22), Z ≡ (Z1, Z2),

∆z ≡ z2 − z1, ∆w1 ≡ w12 − w11, ∆w2 ≡ w22 − w21, θ ≡ (β′
1, β

′
2)

′.

The U∗ sets are shown in Table 3.

The independence restriction W ∥ Z is imposed. Let GW denote the probability

distribution of W . At each value of Z there are 6 inequalities arising from U∗ sets, 6

arising from unions of pairs of U∗ sets and 6 arising from unions of three U∗ sets.

The identified set of values of (θ,GW ) are those pairs satisfying, for all z ∈ RZ

the inequalities

P[Y ∈ Y(T , z; θ)|Z = z] ≤ GW (S(T , z; θ))

where the sets S(T , z; θ) and Y(T , z; θ) are as defined in (7) and (8) and the sets T
and Y(T , z; θ) are shown in Table 9. As we show for ordered choice panels in the
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following section, this characterization can be generalized to allow arbitrary periods

T and alternatives {1, ..., K}, and can allow for dependence on lagged choices. En-

dogenous covariates can be permitted as for cross sectional multiple discrete choice

as in Chesher, Rosen, and Smolinski (2013).

7 Ordered response panel models

This section generalizes the binary response models of Section 5 to models in which

the outcome is an ordered response variable. Section 7.1 gives results for a static two

period model with three ordered outcomes. Section 7.2 then gives results for a general

ordered outcome model allowing an arbitrary finite number of ordered outcomes,

arbitrary periods, and dynamics.

7.1 Two period ordered response panel models with three

categories

There are structural equations as follows.

Yt =


0 , Ztβ + V + Ut ≤ c1

1 , c1 ≤ Ztβ + V + Ut ≤ c2

2 , c2 ≤ Ztβ + V + Ut

, t ∈ {1, 2}

Let Y = (Y1, Y2), Z = (Z1, Z2), U = (U1, U2). Let θ = (β′, c1, c2)
′.19 There is the

restriction U ∥ Z. This model is studied in Aristodemou (2021) where, as here,

no restrictions are placed on the distribution of V or on its covariation with other

variables.

Define ∆u ≡ u2 − u1 and ∆z ≡ z2 − z1. The U∗ sets are as follows.

U∗((0, 0), z; θ) = RU

U∗((0, 1), z; θ) = {u : ∆u ≥ −∆zβ}

U∗((0, 2), z; θ) = {u : ∆u ≥ c2 − c1 −∆zβ}

U∗((1, 0), z; θ) = {u : ∆u ≤ −∆zβ}

U∗((1, 1), z; θ) = {u : (∆u ≤ c2 − c1 −∆zβ) ∧ (∆u ≥ c1 − c2 −∆zβ)}
19In some applications c1 and c2 can have known values.
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Table 4: Sets Y and S in the inequalities defining the identified set of values of β and
GU in the two period ordered response panel model with three categories.

Y S
1 {(0, 2)} {u : ∆u ≥ c2 − c1 −∆zβ}
2 {(1, 1)} {u : (∆u ≤ c2 − c1 −∆zβ) ∧ (∆u ≥ c1 − c2 −∆zβ)}
3 {(2, 0)} {u : ∆u ≤ c1 − c2 −∆zβ}
4 {(0, 1), (0, 2), (1, 2)} {u : ∆u ≥ −∆zβ}
5 {(1, 0), (2, 0), (2, 1)} {u : ∆u ≤ −∆zβ}
6 {(0, 1), (0, 2), (1, 1), (1, 2)} {u : ∆u ≥ c1 − c2 −∆zβ}
7 {(1, 0), (1, 1), (2, 0), (2, 1)} {u : ∆u ≤ c2 − c1 −∆zβ}

U∗((1, 2), z; θ) = {u : ∆u ≥ −∆zβ}

U∗((2, 0), z; θ) = {u : ∆u ≤ c1 − c2 −∆zβ}

U∗((2, 1), z; θ) = {u : ∆u ≤ −∆zβ}

U∗((2, 2), z; θ) = RU

The identified set of values of (θ,GU) comprises the values satisfying, for z ∈ RZ ,

7 inequalities of the form

P[Y ∈ Y|Z = z] ≤ GU(S)

where Y and S are given in the 7 rows of Table 4.

Theorem 5 of Aristodemou (2021) delivers an outer set using the inequalities 1, 2

and 3 in Table 4 and the inequalities:

P(Y = (0, 1)|Z = z] ≤ GU({u : ∆u > −∆zβ})

and

P(Y = (1, 2)|Z = z] ≤ GU({u : ∆u > −∆zβ})

which are implied by inequality 4, and

P(Y = (1, 0)|Z = z] ≤ GU({u : ∆u < −∆zβ})

and

P(Y = (2, 1)|Z = z] ≤ GU({u : ∆u < −∆zβ})

which are implied by inequality 5.

17



7.2 General ordered response panel models

Consider now a general specification of an ordered response panel data model with

RY = {0, ..., J} and allowing for dynamics as in e.g. Honoré, Muris, and Weidner

(2023) in which for all j ∈ RY :

Yt = j =⇒ cj ≤ Ztβ + ıtγ + V + Ut ≤ cj+1, (11)

where c0 ≡ −∞, cJ+1 ≡ ∞, and ıt ≡ (1 [Yt−1 = 0] , . . . , 1 [Yt−1 = J ]) with each com-

ponent of γ encoding the impact of lagged Y on Yt.
20 Let Z̃t ≡ (Zt, ıt), β̃ ≡ (β′, γ′)′,

Y ≡ (Y1, ..., YT ), Z ≡ (Z1, ..., ZT ), U ≡ (U1, ..., UT ). Let θ ≡ (β′, γ′, c1, ..., cJ)
′ denote

parameters of the structural function, restricted such that c1 < · · · < cJ . The ini-

tial condition Y0 is assumed observed, but it is straightforward to accommodate an

unobserved initial condition as for the binary panel studied in Section 5.2.

Sets U∗ (Y, Z;h) are given by

U∗(Y, Z;h) = {u ∈ RU : ∀s, t ∈ {1, ..., T},

ut − us ≤ cYt+1 − cYs − (Z̃t − Z̃s)β̃},

This is verified by noting that for all u ∈ U∗(Y, Z;h) we have that

∀s, t ∈ {1, ..., T}, cYs − Z̃sβ̃ − us ≤ cYt+1 − Z̃tβ̃ − ut,

in turn implying the existence of v such that

∀s, t ∈ {1, ..., T}, cYs − Z̃sβ̃ − us ≤ v ≤ cYt+1 − Z̃tβ̃ − ut.

For all such u, v it follows that (11) holds for all t with U = u and V = v.

When the independence restriction U ∥ Z is imposed, the identified set for (θ,GU)

are those pairs satisfying

P[Y ∈ Y(T , z; θ)|Z = z] ≤ GU(S(T , z; θ)), a.e. z ∈ RZ

for an appropriately chosen collection of sets T where the sets S(T , z; θ) and Y(T , z; θ)

are as defined in (7) and (8).21 This characterization can be generalized to allow for

20It is straightforward to accommodate multiple lags.
21Once again the collection of all unions of U∗ sets, U∗(z;h), defined in (4), will suffice, but in

practice some of these unions may not be necessary.
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endogenous variables on the right hand side of (11) as done for cross section analysis

of ordered choice models in Chesher and Smolinski (2012) and Chesher, Rosen, and

Siddique (2023). It is straightforward to allow GU |Z=z to vary with z by replacing GU

with GU |Z=z in the inequality above, which then delivers an identified set for pairs(
θ,GU |Z

)
.

8 Simultaneous binary response panel models

There is the model

Y1t = 1[α1Y2t + Ztβ1 + V1 + U1t ≥ 0]

Y2t = 1[α2Y1t + Ztβ2 + V2 + U2t ≥ 0]

with t ∈ {1, . . . , T} and the independence restriction U ∥ Z ≡ (Z1, . . . , ZT ) where

U ≡ (U1, . . . , UT ) and Ut ≡ (U1t, U2t).
22

This is a simultaneous equations model with binary outcomes such as is found in

simultaneous firm entry applications23 and models of social interactions, put into a

panel context with “fixed effects”, constant through time, one for each outcome.

Honoré and De Paula (2021) study a restricted version of this model with β1 = β2,

α1 = α2 and U and V restricted to be independently distributed. No such restrictions

are imposed here.

Define Yt ≡ (Y1t, Y2t), Y ≡ (Y1, . . . , YT ), θ ≡ (α1, α2, β
′
1, β

′
2)

′. The distribution of

V ≡ (V1, V2) and the covariation of V with other variables is unrestricted.

Consider the case with T = 2 when Y = (Y11, Y21, Y12, Y22). Extension to more

time periods and outcomes is straightforward.

Define ∆u1 ≡ u12 − u11, ∆u2 ≡ u22 − u21, ∆z ≡ z2 − z1. The U∗ sets, U∗(y, z; θ),

are as shown in Table 5.

There are 12 U∗ sets that are not equal to RU and 4 pairs of these U∗ sets are

identical - for example U∗(0, 0, 0, 1), z; θ) = U∗(1, 1, 0, 1), z; θ), so there are unions of

8 U∗ sets to be considered when calculating the identified set, that is 254 unions in

total. In fact only 24 of these deliver inequalities that characterize the identified set

of parameter values, the remaining unions delivering redundant inequalities.

The configuration of the unions of these U∗ sets depends on the signs of α1 and

α2 and in practice there are likely to be restrictions on these. For example in a

22This strong exogeneity restriction can be relaxed.
23See for example Tamer (2003).
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Table 5: U∗ sets in the simultaneous binary response two period panel.

y U∗(y, z; θ)

1 (0, 0, 0, 0) RU

2 (0, 0, 0, 1) {u : ∆u2 ≥ −∆zβ2}
3 (0, 0, 1, 0) {u : ∆u2 ≤ −∆zβ2}
4 (0, 0, 1, 1) RU

5 (0, 1, 0, 0) {u : ∆u1 ≥ −∆zβ1}
6 (0, 1, 0, 1) {u : (∆u1 ≥ −∆zβ1 − α1) ∧ (∆u2 ≥ −∆zβ2 − α2)}
7 (0, 1, 1, 0) {u : (∆u1 ≥ −∆zβ1 + α1) ∧ (∆u2 ≤ −∆zβ2 − α2)}
8 (0, 1, 1, 1) {u : ∆u1 ≥ −∆zβ1}
9 (1, 0, 0, 0) {u : ∆u1 ≤ −∆zβ1}
10 (1, 0, 0, 1) {u : (∆u1 ≤ −∆zβ1 − α1) ∧ (∆u2 ≥ −∆zβ2 + α2)}
11 (1, 0, 1, 0) {u : (∆u1 ≤ −∆zβ1 + α1) ∧ (∆u2 ≤ −∆zβ2 + α2)}
12 (1, 0, 1, 1) {u : ∆u1 ≤ −∆zβ1}
13 (1, 1, 0, 0) RU

14 (1, 1, 0, 1) {u : ∆u2 ≥ −∆zβ2}
15 (1, 1, 1, 0) {u : ∆u2 ≤ −∆zβ2}
16 (1, 1, 1, 1) RU

simultaneous firm entry application α1 ≤ 0 and α2 ≤ 0 would likely be imposed and

in a model of couple’s choices of activity (e.g. cinema attendance) α1 ≥ 0 and α2 ≥ 0.

Only the case with α1 ≥ 0 and α2 ≥ 0 is presented here. In this case, among

the U∗ sets only the sets U∗((0, 1, 0, 1), z; θ) and U∗((1, 0, 1, 0), z; θ) have a non-empty

intersection.

The identified set of values of (θ,GU) are those pairs satisfying, for all z ∈ RZ the

inequalities

P[Y ∈ Y(T , z; θ)|Z = z] ≤ GU(S(T , z; θ))

where the sets S(T , z; θ) and Y(T , z; θ) are as defined in (7) and (8) and the sets T
and Y(T , z; θ) are shown in Tables 10, 11 and 12 which report values of Y appearing

in inequalities delivered by unions of respectively one, two and three U∗ sets.

9 Concluding remarks

This paper delivers methods for producing identified sets when models admit unob-

served, latent, variables on which no distributional restrictions are placed.

Examples found in econometric practice include models incorporating so-called

fixed effects and initial conditions and there are other examples, including models of

auctions with unobserved reserve prices or particular bids and models of economic
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behavior with unobserved measures of individuals’ expectations. Endogenous ex-

planatory variables are easily accommodated.

The identified sets delivered by the models in this paper that place no restric-

tion on the distribution of latent V will contain the structures identified by more

restrictive models if the restrictions of those models are satisfied by the process under

study. The analysis here will then show how sensitive the findings obtained by that

more restrictive model are to those additional restrictions. In some cases it may be

found that a point-identifying model delivers a structure outside the identified set ob-

tained using a less restrictive model of the type studied in this paper. Such a finding

would suggest the more restrictive model is misspecified. Formal development of such

specification tests is not undertaken here but may be of interest for future research.
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A CR Restrictions A1-A6

This section collects restrictions from Chesher and Rosen (2017) adapted to the

present setting with unobservable variables (U, V ), which are imposed throughout

the paper.

Restriction A1: (Y, Z, U, V ) are random vectors defined on a probability space

(Ω, L,P), endowed with the Borel sets on Ω. The support of (Y, Z, U, V ) is a subset

of Euclidean space. □

Restriction A2: A collection of conditional distributions

FY |Z ≡
{
FY |Z (·|z) : z ∈ RZ

}
,

is identified by the sampling process, where for all T ⊆ RY |z, FY |Z (T |z) ≡ P [Y ∈ T |z].
□

Restriction A3: There is an L-measurable function h (·, ·, ·, ·) : RY ZUV → R such

that

P [h (Y, Z, U) = 0] = 1,

and there is a collection of conditional distributions

GU |Z ≡
{
GU |Z (·|z) : z ∈ RZ

}
,

where for all S ⊆ RU |z, GU |Z (S|z) ≡ P [U ∈ S|z]. □
Restriction A4: The pair

(
h,GU |Z

)
belongs to a known set of admissible structures

M. □

Restriction A5: U∗ (Y, Z;h) is closed almost surely P [·|z], each z ∈ RZ . □

Restriction A6: Y∗ (Z,U ;h) is closed almost surely P [·|z], each z ∈ RZ . □
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B Sets T for sharp identified sets

This section collects tables of T and Y(T , z; θ) defined in (8) as

Y(T , z; θ) ≡ {y : U∗(y, z; θ) ⊆ S(T , z; θ)},

such that inequalities of the form

P[Y ∈ Y(T , z; θ)|Z = z] ≤ GU |Z=z(S(T , z; θ))

for all T listed characterize the identified set for
(
θ,GU |Z

)
in all examples covered in

Sections 5–8. Recall from (7) the definition of S(T , z; θ):

S(T , z; θ) ≡
⋃
y∈T

U∗(y, z; θ).
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Table 6: Sets Y(T , z; θ) and T in the inequalities defining the identified set of struc-
tures in the static binary response 3 period panel data model (γ = 0).

Y(T , z; θ) T
1 {(0, 0, 1)} {(0, 0, 1)}
2 {(0, 1, 0)} {(0, 1, 0)}
3 {(0, 1, 1)} {(0, 1, 1)}
4 {(1, 0, 0)} {(1, 0, 0)}
5 {(1, 0, 1)} {(1, 0, 1)}
6 {(1, 1, 0)} {(1, 1, 0)}
7 {(0, 0, 1), (0, 1, 0), (0, 1, 1)} {(0, 0, 1), (0, 1, 0)}
8 {(0, 0, 1), (0, 1, 1)} {(0, 0, 1), (0, 1, 1)}
9 {(0, 0, 1), (1, 0, 0), (1, 0, 1)} {(0, 0, 1), (1, 0, 0)}
10 {(0, 0, 1), (1, 0, 1)} {(0, 0, 1), (1, 0, 1)}
11 {(0, 1, 0), (0, 1, 1)} {(0, 1, 0), (0, 1, 1)}
12 {(0, 1, 0), (1, 0, 0), (1, 1, 0)} {(0, 1, 0), (1, 0, 0)}
13 {(0, 1, 0), (1, 1, 0)} {(0, 1, 0), (1, 1, 0)}
14 {(0, 0, 1), (0, 1, 1), (1, 0, 1)} {(0, 1, 1), (1, 0, 1)}
15 {(0, 1, 0), (0, 1, 1), (1, 1, 0)} {(0, 1, 1), (1, 1, 0)}
16 {(1, 0, 0), (1, 0, 1)} {(1, 0, 0), (1, 0, 1)}
17 {(1, 0, 0), (1, 1, 0)} {(1, 0, 0), (1, 1, 0)}
18 {(1, 0, 0), (1, 0, 1), (1, 1, 0)} {(1, 0, 1), (1, 1, 0)}
19 {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 1)} {(0, 0, 1), (0, 1, 0), (1, 0, 1)}
20 {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 1, 0)} {(0, 0, 1), (0, 1, 0), (1, 1, 0)}
21 {(0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 0, 1)} {(0, 0, 1), (0, 1, 1), (1, 0, 0)}
22 {(0, 0, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)} {(0, 0, 1), (1, 0, 0), (1, 1, 0)}
23 {(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 1, 0)} {(0, 1, 0), (0, 1, 1), (1, 0, 0)}
24 {(0, 1, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0)} {(0, 1, 0), (1, 0, 0), (1, 0, 1)}
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Table 7: Sets Y(T , z; θ) and T in the core determining inequalities defining the
identified set of structures in the dynamic binary response 3 period panel with Y0 not
observed and γ > 0.

Y(T , z; θ) T
1 {(0, 0, 1)} {(0, 0, 1)}
2 {(0, 1, 0)} {(0, 1, 0)}
3 {(0, 1, 1)} {(0, 1, 1)}
4 {(1, 0, 0)} {(1, 0, 0)}
5 {(1, 0, 1)} {(1, 0, 1)}
6 {(1, 1, 0)} {(1, 1, 0)}
7 {(0, 0, 1), (0, 1, 1)} {(0, 0, 1), (0, 1, 1)}
8 {(0, 0, 1), (1, 0, 0), (1, 0, 1)} {(0, 0, 1), (1, 0, 0)}
9 {(0, 0, 1), (1, 0, 1)} {(0, 0, 1), (1, 0, 1)}
10 {(0, 1, 0), (0, 1, 1)} {(0, 1, 0), (0, 1, 1)}
11 {(0, 1, 0), (1, 1, 0)} {(0, 1, 0), (1, 1, 0)}
12 {(0, 0, 1), (0, 1, 1), (1, 1, 0)} {(0, 1, 1), (1, 1, 0)}
13 {(1, 0, 0), (1, 0, 1)} {(1, 0, 0), (1, 0, 1)}
14 {(1, 0, 0), (1, 1, 0)} {(1, 0, 0), (1, 1, 0)}
15 {(0, 0, 1), (0, 1, 0), (0, 1, 1)} {(0, 0, 1), (0, 1, 0), (0, 1, 1)}
16 {(0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 0, 1)} {(0, 0, 1), (0, 1, 1), (1, 0, 0)}
17 {(0, 0, 1), (0, 1, 1), (1, 0, 1)} {(0, 0, 1), (0, 1, 1), (1, 0, 1)}
18 {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 1, 0)} {(0, 0, 1), (0, 1, 1), (1, 1, 0)}
19 {(0, 0, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)} {(0, 0, 1), (1, 0, 0), (1, 1, 0)}
20 {(0, 1, 0), (1, 0, 0), (1, 1, 0)} {(0, 1, 0), (1, 0, 0), (1, 1, 0)}
21 {(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 1, 0)} {(0, 1, 1), (1, 0, 0), (1, 1, 0)}
22 {(1, 0, 0), (1, 0, 1), (1, 1, 0)} {(1, 0, 0), (1, 0, 1), (1, 1, 0)}
23 {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 1)} {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 1)}
24 {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 0, 1)(1, 1, 0)} {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0)}
25 {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)} {(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0)}
26 {(0, 1, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0)} {(0, 1, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0)}
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Table 8: Sets Y(T , z; θ) and T in the inequalities defining the identified set of struc-
tures in the dynamic binary response 3 period panel with Y0 not observed and γ < 0.

Y(T , z; θ) T
1 {(0, 0, 1)} {(0, 0, 1)}
2 {(0, 1, 0)} {(0, 1, 0)}
3 {(0, 1, 1)} {(0, 1, 1)}
4 {(1, 0, 0)} {(1, 0, 0)}
5 {(1, 0, 1)} {(1, 0, 1)}
6 {(1, 1, 0)} {(1, 1, 0)}
7 {(0, 0, 1), (0, 1, 0), (0, 1, 1} {(0, 0, 1), (0, 1, 0)}
8 {(0, 0, 1), (0, 1, 1)} {(0, 0, 1), (0, 1, 1)}
9 {(0, 0, 1), (1, 0, 0)} {(0, 0, 1), (1, 0, 0)}
10 {(0, 0, 1), (1, 0, 1)} {(0, 0, 1), (1, 0, 1)}
11 {(0, 1, 0), (0, 1, 1)} {(0, 1, 0), (0, 1, 1)}
12 {(0, 1, 0), (1, 0, 0), (1, 1, 0)} {(0, 1, 0), (1, 0, 0)}
13 {(0, 1, 0), (1, 0, 1)} {(0, 1, 0), (1, 0, 1)}
14 {(0, 1, 0), (1, 1, 0)} {(0, 1, 0), (1, 1, 0)}
15 {(0, 0, 1), (0, 1, 1), (1, 0, 1)} {(0, 1, 1), (1, 0, 1)}
16 {(0, 1, 1), (1, 1, 0)} {(0, 1, 1), (1, 1, 0)}
17 {(1, 0, 0), (1, 0, 1)} {(1, 0, 0), (1, 0, 1)}
18 {(1, 0, 0), (1, 1, 0)} {(1, 0, 0), (1, 1, 0)}
19 {(1, 0, 0), (1, 0, 1), (1, 1, 0)} {(1, 0, 1), (1, 1, 0)}
20 {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 1)} {(0, 0, 1), (0, 1, 0), (1, 0, 1)}
21 {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 1, 0)} {(0, 0, 1), (0, 1, 0), (1, 1, 0)}
22 {(0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 0, 1)} {(0, 0, 1), (0, 1, 1), (1, 0, 0)}
23 {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 1, 0)} {(0, 0, 1), (0, 1, 1), (1, 1, 0)}
24 {(0, 0, 1), (1, 0, 0), (1, 0, 1)} {(0, 0, 1), (1, 0, 0), (1, 0, 1)}
25 {(0, 0, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0) {(0, 0, 1), (1, 0, 0), (1, 1, 0)}
26 {(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 1, 0)} {(0, 1, 0), (0, 1, 1), (1, 0, 0)}
27 {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 1)} {(0, 1, 0), (0, 1, 1), (1, 0, 1)}
28 {(0, 1, 0), (0, 1, 1), (1, 1, 0)} {(0, 1, 0), (0, 1, 1), (1, 1, 0)}
29 {(0, 1, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0)} {(0, 1, 0), (1, 0, 0), (1, 0, 1)}
30 {(0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 0, 1)} {(0, 1, 1), (1, 0, 0), (1, 0, 1)}
31 {(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 1, 0)} {(0, 1, 1), (1, 0, 0), (1, 1, 0)}
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Table 9: Sets Y(T , z; θ) and T in the inequalities defining the identified set of struc-
tures in the 3 choice multiple discrete choice 2 period panel data model.

Y(T , z; θ) T
{(1, 2)} {(1, 2)}
{(1, 3)} {(1, 3)}
{(2, 1)} {(2, 1)}
{(2, 3)} {(2, 3)}
{(3, 1)} {(3, 1)}
{(3, 2)} {(3, 2)}

{(1, 2), (1, 3)} {(1, 2), (1, 3)}
{(1, 2), (3, 2)} {(1, 2), (3, 2)}
{(1, 3), (2, 3)} {(1, 3), (2, 3)}
{(2, 1), (2, 3)} {(2, 1), (2, 3)}
{(2, 1), (3, 1)} {(2, 1), (3, 1)}
{(3, 1), (3, 2)} {(3, 1), (3, 2)}

{(1, 2), (1, 3), (2, 3)} {(1, 2), (2, 3)}
{(1, 2), (1, 3), (3, 2)} {(1, 3), (3, 2)}
{(1, 2), (3, 1), (3, 2)} {(1, 2), (3, 1)}
{(1, 3), (2, 1), (2, 3)} {(1, 3), (2, 1)}
{(2, 1), (2, 3), (3, 1)} {(2, 3), (3, 1)}
{(2, 1), (3, 1), (3, 2)} {(2, 1), (3, 2)}

Table 10: Sets Y(T , z; θ) and T in the inequalities defining the identified set of
structures in the simultaneous binary response 2 period panel produced by simple U∗

sets.

Y(T , z; θ) T
{(0, 1, 0, 1)} {(0, 1, 0, 1)}
{(0, 1, 1, 0)} {(0, 1, 1, 0)}
{(1, 0, 0, 1)} {(1, 0, 0, 1)}
{(1, 0, 1, 0)} {(1, 0, 1, 0)}

{(0, 0, 0, 1), (1, 1, 0, 1), (1, 0, 0, 1)} {(0, 0, 0, 1)}
{(0, 0, 1, 0), (1, 1, 1, 0), (0, 1, 1, 0)} {(0, 0, 1, 0)}
{(0, 1, 0, 0), (0, 1, 1, 1), (0, 1, 1, 0)} {(0, 1, 0, 0)}
{(1, 0, 0, 0), (0, 1, 0, 0), (1, 0, 0, 1)} {(1, 0, 0, 0)}
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Table 11: Sets Y(T , z; θ) and T in the inequalities defining the identified set of values
of θ in the simultaneous binary response 2 period panel produced by unions of two U∗

sets. Inequalities delivered by unions marked D do not need to be considered because
they are unions of disjoint sets. Inequalities delivered by unions marked S do not
need to be considered because they are unions of sets, one of which is a subset of the
other.

Y(T , z; θ) T
{(0, 1, 0, 1), (1, 0, 1, 0)} {(0, 1, 0, 1), (1, 0, 1, 0)}{

(0, 0, 0, 1), (1, 1, 0, 1), (1, 0, 0, 1),
(0, 0, 1, 0), (1, 1, 1, 0), (0, 1, 1, 0)

}
{(0, 0, 0, 1) , (0, 1, 0, 0)}

{(0, 0, 0, 1), (1, 1, 0, 1), (1, 0, 0, 1), (1, 0, 0, 0), (0, 1, 0, 0)} {(0, 0, 0, 1) , (1, 0, 0, 0)}
{(0, 0, 1, 0), (1, 1, 1, 0), (0, 1, 1, 0), (0, 0, 1, 0), (1, 1, 1, 0)} {(0, 0, 1, 0), (0, 1, 0, 0)}{

(0, 0, 1, 0), (1, 1, 1, 0), (0, 1, 1, 0),
(1, 0, 0, 0), (0, 1, 0, 0), (1, 0, 0, 1)

}
{(0, 0, 1, 0), (1, 0, 0, 0)}

{(0, 0, 0, 1), (1, 1, 0, 1), (1, 0, 0, 1), (0, 1, 0, 1)} {(0, 0, 0, 1), (0, 1, 0, 1)}
{(0, 0, 0, 1), (1, 1, 0, 1), (1, 0, 0, 1), (0, 1, 1, 0)} {(0, 0, 0, 1), (0, 1, 1, 0)}D

{(0, 0, 0, 1), (1, 1, 0, 1), (1, 0, 0, 1)} {(0, 0, 0, 1), (1, 0, 0, 1)}S

{(0, 0, 0, 1), (1, 1, 0, 1), (1, 0, 0, 1), (1, 0, 1, 0)} {(0, 0, 0, 1), (1, 0, 1, 0)}
{(0, 0, 1, 0), (1, 1, 1, 0), (0, 1, 1, 0), (0, 1, 0, 1)} {(0, 0, 1, 0), (0, 1, 0, 1)}

{(0, 0, 1, 0), (1, 1, 1, 0), (0, 1, 1, 0)} {(0, 0, 1, 0), (0, 1, 1, 0)}S

{(0, 0, 1, 0), (1, 1, 1, 0), (0, 1, 1, 0), (1, 0, 0, 1)} {(0, 0, 1, 0), (1, 0, 0, 1)}D

{(0, 0, 1, 0), (1, 1, 1, 0), (0, 1, 1, 0), (1, 0, 1, 0)} {(0, 0, 1, 0), (1, 0, 1, 0)}
{(0, 1, 0, 0), (0, 1, 1, 1), (0, 1, 1, 0), (0, 1, 0, 1)} {(0, 1, 0, 0), (0, 1, 0, 1)}

{(0, 1, 0, 0), (0, 1, 1, 1), (0, 1, 1, 0)} {(0, 1, 0, 0), (0, 1, 1, 0)}S

{(0, 1, 0, 0), (0, 1, 1, 1), (0, 1, 1, 0), (1, 0, 0, 1)} {(0, 1, 0, 0), (1, 0, 0, 1)}D

{(0, 1, 0, 0), (0, 1, 1, 1), (0, 1, 1, 0), (1, 0, 1, 0)} {(0, 1, 0, 0), (1, 0, 1, 0)}
{(1, 0, 0, 0), (0, 1, 0, 0), (1, 0, 0, 1), (0, 1, 0, 1)} {(1, 0, 0, 0), (0, 1, 0, 1)}
{(1, 0, 0, 0), (0, 1, 0, 0), (1, 0, 0, 1), (0, 1, 1, 0)} {(1, 0, 0, 0), (0, 1, 1, 0)}D

{(1, 0, 0, 0), (0, 1, 0, 0), (1, 0, 0, 1)} {(1, 0, 0, 0), (1, 0, 0, 1)}S

{(1, 0, 0, 0), (0, 1, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0)} {(1, 0, 0, 0), (1, 0, 1, 0)}
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Table 12: Sets Y(T , z; θ) and T in the inequalities defining the identified set of
structures in the simultaeous binary response 2 period panel produced by unions of
three U∗ sets.

Y(T , z; θ) T{
(0, 0, 0, 1), (1, 1, 0, 1), (1, 0, 0, 1), (0, 0, 1, 0),

(1, 1, 1, 0), (0, 1, 1, 0), (0, 1, 0, 1)

}
{(0, 0, 0, 1) , (0, 1, 0, 0), (0, 1, 0, 1)}{

(0, 0, 0, 1), (1, 1, 0, 1), (1, 0, 0, 1), (0, 0, 1, 0),
(1, 1, 1, 0), (0, 1, 1, 0), (1, 0, 1, 0)

}
{(0, 0, 0, 1) , (0, 1, 0, 0), (1, 0, 1, 0)}{

(0, 0, 0, 1), (1, 1, 0, 1), (1, 0, 0, 1),
(1, 0, 0, 0), (0, 1, 0, 0), (0, 1, 0, 1)

}
{(0, 0, 0, 1) , (1, 0, 0, 0), (0, 1, 0, 1)}{

(0, 0, 0, 1), (1, 1, 0, 1), (1, 0, 0, 1),
(1, 0, 0, 0), (0, 1, 0, 0), (1, 0, 1, 0)

}
{(0, 0, 0, 1) , (1, 0, 0, 0), (1, 0, 1, 0)}{

(0, 0, 1, 0), (1, 1, 1, 0), (0, 1, 1, 0),
(0, 0, 1, 0), (1, 1, 1, 0), (0, 1, 0, 1)

}
{(0, 0, 1, 0), (0, 1, 0, 0), (0, 1, 0, 1)}{

(0, 0, 1, 0), (1, 1, 1, 0), (0, 1, 1, 0),
(0, 0, 1, 0), (1, 1, 1, 0), (1, 0, 1, 0)

}
{(0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 1, 0)}{

(0, 0, 1, 0), (1, 1, 1, 0), (0, 1, 1, 0), (1, 0, 0, 0),
(0, 1, 0, 0), (1, 0, 0, 1), (0, 1, 0, 1)

}
{(0, 0, 1, 0), (1, 0, 0, 0), (0, 1, 0, 1)}{

(0, 0, 1, 0), (1, 1, 1, 0), (0, 1, 1, 0), (1, 0, 0, 0),
(0, 1, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0)

}
{(0, 0, 1, 0), (1, 0, 0, 0), (1, 0, 1, 0)}
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